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The effective elastic modulus of ice is an important physical parameter for the calculation of 

ice stresses in different situations when ice deformations are small. In the present paper the 

review of methods used for the calculation of the elastic modulus of ice is performed, new tests 

for the calculation of the elastic modulus are described, and their results are discussed. Field 

experiments with floating vibrating ice beams with fixed ends were performed in March and 

November 2019 on sea ice of the Van Mijen Fjord and fresh-water ice of a lake near 

Longyearbyen. Laboratory experiments with vibrating cantilever beams were performed in the 

cold laboratory of UNIS in November 2019. The results are compared with the values of the 

effective elastic modulus obtained in quasi-static tests with floating cantilever beams, and with 

in-situ dynamic tests where the effective elastic modulus was measured by the speed of sound 

waves.             
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1. Introduction 

Elastic moduli of ice are important characteristics used for the formulation of rheological 

models of ice. Measurements of elastic constants of ice crystal were performed by Jona and 

Scherrer (1952) using ultrasonic waves with frequencies of 15-18 MHz, and by Zarembovitch 

and Kahane (1964) using the same method with wave frequencies of 6-14 MHz. Green and 

Mackinnon (1956), Bogorodskii (1964) and Dantl (1969) used the direct ultrasonic pulse 

propagation method. Gammon et al (1980) and Gagnon et al (1988) detrmined the elastic 

constants of ice by Brillouin spectroscopy. It was discovered that elastic constant 

characterizing propagation of longitudinal waves increases with the temperature decrease and 

changes in the range from 9.8 GPa to above 13 GPa. Dantl (1969) determined the frequency 

dependence of elastic constant of ice in the range of 4-190 MHz and their dependence from the 

temperature from the melting point to -140 C.  

 

Sinha (1989) derived the practical elastic moduli for polycrystalline ice using the data of Dantl 

(1969) and averaging procedure applied to a polycrystalline mass having randomly oriented 

grains (Voight, 1910). For the columnar-grained ice with horizontal and randomly oriented c-

axes Sinha (1989) derived the formula describing temperature dependence of the longitudinal 

elastic modulus in the vertical and horizontal directions 𝐸𝑣 = 𝐸𝑣,0 − 𝑐𝑣𝑇 and 𝐸ℎ = 𝐸ℎ,0 − 𝑐ℎ𝑇,                                                                                            

where 𝐸𝑣,0 = 9.61, 𝐸ℎ,0 = 9.39 GPa, 𝑐𝑣 = 0.011  GPa/C, 𝑐ℎ = 0.013  GPa/C, and 𝑇  is the 

temperature (oC). According to formula (1) the vertical and horizontal elastic moduli increases 

respectively from 9.61 GPa to 9.72 GPa and from 9.39 GPa to 9.52 GPa when the ice 

temperature decreases from 0oC to -10oC. Dependencies of 𝐸𝑣 and 𝐸ℎ from the temperature are 

shown in Fig. 1.  

 

 
 

Figure 1. Elastic moduli of fresh ice versus the temperature. 

 

Elastic modulus of sea ice was measured by Langleben and Pounder (1963) by seismic 

resonance experiments. Their data are approximated by the formula 𝐸 = 10 − 0.0351 𝜈𝑏 ,                                                                                                   

where 𝜈𝑏  is the liquid brine content (ppt). Their measurements were performed for 0 < 𝜈𝑏 <
90 ppt. Slesarenko and Frolov (1972) measured elastic modulus of sea ice by the ultrasonic 

pulse method in the range 0 < 𝜈𝑏 < 220 ppt. Vaundrey (1977) calculated apparent elastic 

modulus from the results of laboratory and field tests on flexural strength. His empirical 

equation was included in ISO19906 as 𝐸 = 5.31 − 0.436 √𝜈𝑏. Assur (1971) recommended 
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for practical use the formula 𝐸 = 𝐸𝑓(1 − 0.001𝜈𝑏)4, where 𝐸𝑓 is the elastic modulus for fresh 

ice assumed equal to 9.5 GPa. All above mentioned results are shown in Fig. 2.  

 

 
 

Figure 2. Elastic modulus of sea ice versus the liquid brine content.    

 

In the present paper we perform the elastic modulus of fresh-water lake ice and sea ice 

calculated from the field tests with floating cantilever beams, floating fixed-ends beams, and 

laboratory tests with fixed end beams. All field tests were performed on sea ice in the Van 

Mijen fjord, and fresh ice in the lake near Longyearbyen in Spitsbergen. Laboratory tests were 

performed with ice beams sawn from sea ice in the places of the field works. 

2. Tests with floating cantilever beams 

Tests with floating cantilever beams (FCB tests) of sea ice were performed in the Vallunden 

lake (lagoon) near Svea in the Van Mijen fjord in March of 2019. Tests with floating cantilever 

beams of fresh ice were performed on the lake near Longyearbyen in November 2019. Figure 

3 shows schematic of the test with downward bending of floating cantilever beam. Hydraulic 

equipment used in the tests is described in (Karulina et al., 2019). In 2019 measurements of 

vertical displacements was performed in several points located in the middle of the beam 

surface with LVDT displacement sensors (HBM). Data of the load cell and displacement 

sensors were collected by the amplifier SomatXR MX840B-R. Locations of the displacement 

measurements in the four tests are shown in Fig. 3c. The hydraulic cylinder and the 

displacement sensors were mounted on different metal frames R1 and R2 (Fig. 3b). The frames 

were fastened on the ice with ice screws. Figure 6 shows similar frame with the displacement 

sensors mounted near the beam with fixed ends. Further three tests (1,2,3) with sea ice beams 

and one test (4) with fresh ice beam are described.     
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Figure 3. Schematic of the test with floating cantilever beam (FCB test) (a). Rig R1 is equipped 

with hydraulic cylinder (HC) and load cell (LC), rig R2 is equipped with displacement sensors 

(DS) (b).  Locations of the measurements of vertical displacements at the beam axis in tests 1-

4 (c). Dimensions of the computational domain (d). 

 
Lengths and widths of the cantilever beams, ice thickness and locations of displacement sensors 

in the frame reference (𝑥, 𝑦, 𝑧) shown in Fig. 3a are given below 

 
1: 𝐿1 = 3.4 m, 𝑤1 = 0.7 m, ℎ1 = 0.72 m, 𝑥11 = 0.0 m;                                                    [1]      
2: 𝐿2 = 3.36 m, 𝑤2 = 0.68 m, ℎ2 = 0.73 m, 𝑥21 = 0.67 m, 𝑥21 = 0.67 m, 
𝑥22 = 1.28 m, 𝑥23 = 1.88 m, 𝑥24 = 2.44 m; 
3: 𝐿3 = 3.94 m, 𝑤3 = 0.74 m, ℎ3 = 0.75 m, 𝑥31 = 0.0 m; 
4: 𝐿4 = 3.0 m, 𝑤4 = 0.53 m, ℎ4 = 0.515 m, 𝑥41 = 0.0 m, 𝑥42 = 0.70 m, 
𝑥43 = 1.30 m, 𝑥44 = 1.90 m, 𝑥45 = 2.48 m. 

 
The mean values of the ice temperatures and salinities measured during the tests near the beams 

are 𝑇1 = −6.14 C, 𝑆1 = 4.93 ppt, 𝑇2 = −6.11 C, 𝑆2 = 4.93 ppt, 𝑇3 = −5.86 C,  𝑆3 = 5.74 

ppt, 𝑇4 = −4.39  C, 𝑆4 = 0.0  ppt. For the calculation of the elastic modulus numerical 

simulations were performed by the finite element method in the program COMSOL 

Multiphysics 5.4. The simulations are performed to model the beam deformations near the root 

(Karulin et al., 2019). Figure 3d shows the computational domain including a half of the 

cantilever beam. Symmetry boundary condition was used along the axis 𝑥 and on the right 

boundary of the computational domain parallel to the axis 𝑦. Other boundaries on the plane 

(𝑥, 𝑦)  and the upper surface at 𝑧 = 0  were free. At the ice bottom the elastic foundation 

imitating buoyancy force was used as a boundary condition. Sea density was equal to 920 

kg/m3, and fresh ice density was set to 916 kg/m3. The Poisson’s ratio was taken to be equal 

to 0.33. Linear elastic analysis was used for the modeling.  

 
Measured forces were used directly in the simulations of each test. Elastic modulus was chosen 

by iteration to minimize the difference between calculated and measured displacements. Forces 

versus measured and computed displacements are shown in Fig. 4 for each of the tests. The 

values of adjusted elastic moduli are 𝐸1 = 2.2GPa,𝐸2 = 1.83GPa,𝐸3 = 2.2GPa,𝐸4 = 5.7GPa.                                       
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Figure 4. Forces versus displacements in tests 1-4. Solid straight lines correspond to the results 

of numerical simulations, curved lines correspond to the experimental data. 

3. Tests with floating vibrating fixed-ends beams 

Floating fixed-ends beam is shown in Fig. 5a. Natural frequencies of bending oscillations of 

the beam depend on the elastic modulus. In the test the beam oscillations are excited by a 

mechanic pulse and the beam motion is registered with accelerometers deployed on the beam 

surface. In the test on sea ice the beam was lifted in the middle by a chain connected to a winch, 

and then the chain was released by a release-hook (Fig. 6). This test is further named VFEB 

test. Two accelerometers are visible in the figure at the beam axis in the middle of the beam 

and to the left from the middle. In the test on fresh-water lake ice the pulse was applied by a 

jump of a person on the beam in the middle. Accelerometers Bruel & Kjær DeltaTron Type 

8344 designed for the measurements of vibrations in the frequency range from 0.2 Hz to 3 kHz 

were used. The data of accelerometers were collected by the amplifier.   

 

It is assumed that oscillations of an ice beam on hydraulic foundation are described by the 

equation 

 

(𝜌𝑖ℎ + 𝑚𝑎𝑑)
𝜕2𝜂

𝜕𝑡2
+

𝐸ℎ3

12

𝜕4𝜂

𝜕𝑥4
+ 𝜌𝑤𝑔𝜂 = 0,                                                                             [2] 

  
where 𝜂 is the beam elevation, 𝜌𝑖  and 𝜌𝑤  are the ice and water densities, ℎ is the ice thickness,  
𝑚𝑎𝑑  is the added mass per unit area of the beam surface, 𝐸 is the elastic modulus of ice, 𝑔 is 

the gravitational acceleration, 𝑡 and 𝑥 are the time and the coordinate directed along the beam 

axis.  

 

 
 
Figure 5. Schematic of the test with floating vibrating fixed-ends beam (VFEB test) (a). 

Photograph of in-situ VFEB test. Svea, March 2019 (b). 
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Boundary conditions for the fixed ends beam are 

 

 𝜂 = 0, 
𝜕𝜂

𝜕𝑥
= 0, 𝑥 = ±𝑎,                                                                                                            [3] 

 
where 2𝑎 is the beam length. Periodical solution of [2] is expressed by formulas 

 

𝜂 = 𝑒𝑖𝜔𝑡 ∑ 𝐶𝑗𝑒𝑖𝑘𝑗𝑥4
𝑗=1 + 𝐶. 𝐶.,                                                                                               [4] 

  
where 𝜔 is the frequency, 𝐶𝑗 are constants and 𝑘𝑗 are the roots of the equation 

 

𝜔2 − 𝜔𝑏
2 =

𝐸ℎ3𝑘4

12(𝜌𝑖ℎ+𝑚𝑎𝑑)
, 𝜔𝑏

2 =
𝜌𝑤𝑔

𝜌𝑖ℎ+𝑚𝑎𝑑
.                                                                               [5] 

 
Here 𝜔𝑏  is the frequency of the natural oscillations of the floating ice due to the balance 

between the gravity and buoyancy forces.  

 
The roots of equation (5) are determined by the formulas 

 

𝑘1,2 = ±𝛼, 𝑘3,4 = ±𝑖𝛼, 𝛼 = √
12(𝜔2−𝜔𝑏

2)(𝜌𝑖ℎ+𝑚𝑎𝑑)

𝐸ℎ𝑖
3

4
, 𝜔2 > 𝜔𝑏

2,                                          [6] 

 𝑘1,2 = ±𝛼𝑒𝑖𝜋/4, 𝑘3,4 = ±𝛼𝑒−𝑖𝜋/4, 𝛼 = √
12|𝜔2−𝜔𝑏

2|(𝜌𝑖ℎ+𝑚𝑎𝑑)

𝐸ℎ3

4

, 𝜔2 < 𝜔𝑏
2,                       [7] 

 
Substituting formulas [4] and [6] or [4] and [7] in boundary conditions [3] we find a system of 

linear homogeneous equations for the calculation of constants 𝐶𝑗 . The determinant of the 

system should be zero for the existence of nonzero solution. It is known that there is no nonzero 

solution in static case by 𝜔 = 0. Therefore, nonzero solution is also absent in case 𝜔2 < 𝜔𝑏
2, 

since the solution is expressed through the same eigen function as in the static case. Thus, the 

natural modes have frequencies greater 𝜔𝑏.  
 

The characteristic equation for symmetric mode by 𝜔2 < 𝜔𝑏
2 has the form 

 
tan(𝛼𝑎) + tanh(𝛼𝑎) = 0.                                                                                                      [8] 

 
Since the first root is equal to 𝛼 = 2.365/𝑎 then the first natural frequency is expressed by the 

formula 

 

𝜔1 = √𝜔𝑏
2 +

𝐸ℎ3

12(𝜌𝑖ℎ+𝑚𝑎𝑑)
(

2.365

𝑎
)

4
.                                                                                         [9] 

 
The shape of the first mode is described by the equation 

  
 𝜂/𝜂0 ≈ 0.883 cos(2.365𝑥/𝑎) + 0.117 cosh(2.365𝑥/𝑎); 𝜂 = 𝜂0, 𝑥 = 0.                  [10] 
 
Formula (9) could be used for the calculation of the elastic modulus 𝐸 as follows 

 

 𝐸 =
12(𝜔1

2−𝜔𝑏
2)(𝜌𝑖ℎ+𝑚𝑎𝑑)

ℎ3 (
𝑎

2.365
)

4
.                                                                                [11] 



 

The added mass effect was estimated from the consideration of potential motion of the water 

in the region 𝑧 < −ℎ (Fig. 4a). Normal water velocity at the boundary 𝑧 = −ℎ is specified by 

the formulas 

 

𝑉𝑛 = 𝑉, |𝑥| < 𝑎, |𝑦| < 𝑏; 𝑉𝑛 = 0, |𝑥| > 𝑎 or |𝑦| > 𝑏,                                                 [12] 

 

where the vertical velocity of the ice beam 𝑉 = 𝑉(𝑡) is a function of the time. The velocity 

potential was constructed in analytical form with using of Fourier transform (Grue, 2017). The 

mean added mass per unit area of the beam surface equals 

 

 〈𝑚𝑎𝑑〉 =
4𝜌𝑤𝑏

𝜋2 ∫ ∫
(sin 𝑢)2 (sin 𝑣)2

𝑢𝑣√(𝑢𝑏/𝑎)2+𝑣2
𝑑𝑢

∞

0
𝑑𝑣

∞

0
.                                                                 [13] 

 

The characteristics of ice beams used in the experiments are 𝑎1 = 5 m, 𝑏1 = 0.2 m, ℎ1 = 0.72 

m, 𝑇1 = −6.5  C,  𝑆1 = 4.94  ppt; 𝑎2 = 2.4  m, 𝑏2 = 0.25  m, ℎ2 = 0.515  m, 𝑇2 = −4.2  C,  

𝑆2 = 0.0 ppt. The calculated added masses in the experiments are 〈𝑚𝑎𝑑〉1 = 0.561𝜌𝑤(kg/m2) 

(𝜌𝑤 = 1020 kg/m3) and 〈𝑚𝑎𝑑〉2 = 0.554𝜌𝑤(kg/m2) (𝜌𝑤 = 1000 kg/m3). 

   

 
Figure 7. Examples of the vertical accelerations of the beams recorded in the test 1 in sea ice 

(a) and in the test 2 in lake ice (b). 

 

Examples of the acceleration records are shown in Fig. 7. The frequencies of the beam 

oscillations in the test 1 and 2 are estimated as 𝜔1 ≈ 16𝜋 rad/s (8 Hz) and 𝜔2 ≈ 80𝜋 rad/s (40 

Hz). The elastic moduli calculated with formula [11] are 𝐸1 = 2 GPa annd 𝐸2 = 6 GPa.  

 

Numerical simulations in Comsol Multiphysics 5.4 were performed to calculate natural 

frequency of the plates on elastic foundation. The goal of numerical simulations was to account 

displacements of the fixed-ends beams near their roots. Boundary conditions [3] don’t 

correspond to real situation because the ice near the beam roots may have vertical 

displacements excited by the beam oscillations. Numerical simulations were performed in the 

plate mode, where the thickness of the plate was equal to the beam thickness. The added mass 

was programmed as a property of the beams, while the added mass of the other parts of the 

plate in the computational domain were equal to zero. We adjusted the elastic modulus of the 

frequency of a natural mode with big amplitude of the beam and relatively small amplitudes in 

the rest of the computational domain to the measured frequencies by iterations. Obtained values 

of the elastic moduli in the test 1 and 2 are 𝐸1,𝑓𝑒 = 2.8 GPa and 𝐸2,𝑓𝑒 = 11.0 GPa.    
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4. Tests with vibrating cantilever beams 

Two horizontal beams were made from sea ice collected in the Vallunden lake (lagoon) in the 

Van Mijen fjord in March 2019 and from fresh-water ice in the lake near Longyearbyen in 

November 2019. Their dimensions were 𝑎1 = 8.0 cm,  𝑏1 = 7.25 cm,  𝑙1 = 48 cm and 𝑎2 =
7.0 cm,  𝑏2 = 6.0 cm, 𝑙2 = 50 cm. In the experiments the beams temperature was -12 C. The 

subscripts 1 and 2 are related to sea ice beams and fresh ice beams. The beam shape is shown 

in Fig. 8 (right panel). Two accelerometers Bruel & Kjær DeltaTron Type 8344 are also visible 

in the photograph. The beam oscillations were excited by a finger. The accelerometers 

measured vertical accelerations directed along the axis 𝑧 (left panel in Fig. 8). The optical axes 

of ice were perpendicular the axis 𝑧. This test is further named VCB test.  

       
 

 

Figure 8. Schematic of the test with vibrating cantilever beam (left panel) (VCB test). 

Photograph of the test, the accelerometers are mounted on the top surface of the beam (right 

panel). 

 

The first natural frequency of cantilever beam is calculated with formula (Landau and Lifshitz, 

1965) 

  

𝐸 =
𝜔2𝑙4

3.522

𝜌𝑖𝑆

𝐼𝑦
,  𝑆 = 𝑎𝑏, 𝐼𝑦 =

𝑎𝑏3

12
,                                                                                  [14] 

 

where 𝑙 is the beam length, and 𝑎 and 𝑏 are dimensions of the beam in the transversal direction 

to the axis (left panel in Fig. 8).  

 

 
Figure 9. Example of the acceleration record (a) and spectrums of the vertical accelerations 

(b) in the tests with sea ice beam.  
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Figure 10. Example of the acceleration record (left panel) and spectrums of the vertical 

accelerations (right panel) in the tests with fresh ice beam.  

 

The example of the accelerometer record in the test with sea ice and fresh ice beams are shown 

in the left panel of Fig. 9, and Fig.10. The right panels on the same figures show the Fourier-

spectrum of the acceleration signal. The values of the frequencies in the spectral maxima were  

𝜔1 = 230 𝜋 rad/s (115 Hz) for the sea ice beam, and 𝜔2 = 218 𝜋 rad/s (109 Hz) for the lake 

ice beam. The elastic moduli calculated with formula (25) were 𝐸1 = 4.7 GPa and 𝐸2 = 7.2 

GPa respectively.  

 

Numerical simulations in Comsol Multiphysics 5.4 were performed to calculate natural 

frequencies of the oscillations of the beams with the shapes similar the shapes of the beams 

used in the experiment. The right panel in Fig. 8 shows that the fixed ends of the beams were 

wider than their main body. Simulations were performed in the 3D elastic mode of the program. 

The elastic moduli were adjusted by the iterations approaching the measured natural frequency 

to the calculated natural frequency. Obtained values of the elastic moduli were 𝐸1,𝑓𝑒 = 5.55 

GPa for the sea ice beam and 𝐸2,𝑓𝑒 = 8.25 GPa for the lake ice beam.  

5. Acoustic measurements 

Acoustic measurements were performed on March 9, 2016, in the same location (Van Mijen 

fjord, Vallunden lake). The air temperature was of around -4C, the surface ice temperature was 

-3C, and the bottom ice temperature was at the freezing point of around -1.87C. The ice 

thickness was 60 cm. Sea ice salinity varied from 6 ppt near the bottom to 2 ppt near the surface. 

The mean salinity averaged over the ice thickness was 4.38 ppt. We used a Vallen AMSY-5 to 

send and receive acoustic pulses with peak frequency of 150 kHz through PZT-5H 

compressional crystal transducers. The transducers were frozen onto the surface of an ice core 

taken from the naturally formed sea ice cover. Experiments were conducted within one hour of 

coring. Some brine drainage occurred. The core was 600mm long, covering the full vertical 

extent of the ice, with fragile and mushy ice removed from the bottom. The core was 140mm 

in diameter. The Vallen acoustic processing unit has a calibration setting which allows us to 

send out pulses at one transducer and then detect them at other transducers (AT test). Pulsing 

from transducer 1 to transducer 4, and vice versa, we found travel times of 197µs over a 

distance 600 mm, which corresponds to a speed of sound of 3040ms-1. The elastic modulus 

calculated with the formula 𝐸 = 𝜌𝑖𝑐𝑝
2(1 + 𝜈)(1 − 2𝜈)/(1 − 𝜈) is equal to 5.7 GPa when the 

ice density is 𝜌𝑖 = 917 kg/m3, the speed of p-wave is 𝑐𝑝 = 3040 m/s, and the Poisson’s ratio 

is 𝜈 = 0.33.     

 

0 500 1000 1500 2000 2500 3000

- 0.5

0.0

0.5

1.0

Time, ms

V
e

rt
ic

a
l
a

c
c
e

le
ra

ti
o

n
,

m
/s

2

100 110 120 130 140 150

0

2

4

6

8

10

12

14

Frequency, HzS
p

e
c
tr

u
m

o
f
v
e

rt
ic

a
l
a
c
c
e

le
ra

ti
o

n
,



 
 

Figure 11. Dimensions of the ice core and locations of acoustic transducers in AT test (left). 

Photograph of the AT test on acoustic measurement of p-waves speed (right).  

 

Any errors are most likely to occur in measurement of distance, since the measurements in time 

are software-controlled and highly repeatable. We tried to be careful measuring the distance 

between transducers 1 and 4, but the measurement could be out by as much as 20mm either 

way. This gives a range of 2940ms-1-3140ms-1. Transducers 5 and 6 give results which are 

difficult to interpret, and we suspect they may have had loose wiring. This means we’re not 

able to compare vertical and horizontal sound speeds in the ice. 

6. Conclusions and discussion 

Results of the calculation of the elastic moduli from the experimental data are shown in Fig. 1 

for the tests with fresh-water ice and in Fig. 2 for the tests with sea ice. The liquid brine content 

is calculated according to formula of Frankenstein and Garner (1967).  Most of elastic moduli 

of fresh ice are lower than it is predicted by Sinha’s formulas (1). The value of the elastic 

modulus of 11 GPa obtained by the numerical simulations of the natural frequency of fixed-

ends beam is higher than it is predicted by formula (1). This result can’t be considered as 

reliable because the model of water was simplified to the elastic foundation below the main 

part of the computational domain, and only below the beam the water effect was accounted by 

the added mass. VCB tests showed higher values of the elastic modulus than FCB and VFEB 

tests in the experiments with sea ice and fresh ice. Higher frequencies in VCB tests in 

comparison with VFEB tests may explain higher elastic modulus measured in VCB test.  

 

Frequency response of effective elastic modulus was investigated by Sinha (1978) for 

polycrystalline fresh ice. He explained a reduction of the elastic modulus with frequency 

decrease by the influence of viscous-elastic rheology. The reduction exceeded 50% when the 

frequency changed from 10 Hz to 0.001 Hz, i.e. in the range of very low frequencies. The 

redaction was less than 10% when the frequency changed from 1 MHz to 1 Hz. For fresh 

columnar ice we obtained the reduction of elastic modulus from 7.2 GPa in VCB tests 

performed with the frequency of 109 Hz, to 6 GPa in VFEB tests performed with the frequency 

of 40 Hz, and to 5.7 Hz in FCB tests which frequency is around 1 Hz. It means 20%-reduction 

when frequency changes from 109 Hz to 1 Hz. The ice temperature in VFEB and FCB tests 

was -4 C, and VCB test was performed with ice temperature -12 C. According to formula (1) 

temperature effect on elastic modulus can’t explain this difference.  

 

The frequencies of oscillations of sea ice beams in VCB tests were 115 Hz, and in VFEB tests 

– 8 Hz. Elastic moduli obtained from FCB and VFEB tests on sea ice are well approximated 

by the ISO19906 line described by formula (3). Elastic moduli obtained from VCB tests 
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showed higher values of the elastic modulus than it is predicted by formula (3), The ice 

temperature in the tests was -12 C. Therefore, the liquid brine content of ice and ice porosity 

in VCB tests are lower than in FCB and VFEB tests performed on sea ice with mean 

temperature of -6C. The elastic moduli were found similar and of around 2 GPa in FCB and 

VFEB tests. Acoustic measurements performed on similar ice with the frequency of 150 kHz 

showed the elastic modulus of 5.7 GPa. This result fits well to the measurements of Slesarenko 

and Frolov (1972) performed by ultrasonic method. Seismic measurements performed in 

March 2019 in the same place (Vallunden lake, Van Mijen fjord) in the frequency range of 1-

200 Hz show the elastic modulus of 4.5 GPa (Moreau et al, 2020). The frequency dependence 

of elastic modulus of sea ice seems very significant: it increases from 2 GPa to 5.7 GPa when 

the frequency increases from 1 Hz to 150 kHz.      

 

Strong damping of beams oscillations was observed in VCB and VFEB tests both. In VFEB 

tests damping in the test with fresh ice was stronger than in the test with sea ice, and the 

frequency of beam oscillations in the tests with fresh ice (40 Hz) was higher in 5 times than in 

the test with sea ice (8 Hz). The source of the damping can be related to the viscous processes 

in ice, with vorticity production in the water, and with water-ice friction. The damping time 

was about 5 periods of the beam oscillations in the tests. Damping of the beam oscillations in 

VCB tests was smaller, and the damping time is estimated about 40 periods of the beam 

oscillations. Damping is these tests is related mainly to viscous properties of ice, but the 

interaction of the beam with the air also could be important over relatively long time. Further 

estimates should be performed to quantify physical nature of the damping observed in the tests.    
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