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Abstract. Based on the long-term series of satellite-retrieved PM2.5 

concentrations, this study explored the spatiotemporal variation and aggregation 

characteristics of PM2.5 concentrations in Xinjiang from 2001 to 2016 by using 

standard deviational ellipse analysis and spatial autocorrelation statistics method. The 

result showed that the annual average PM2.5 concentrations was high in the north 

slope of Tianshan mountain and the western Tarim desert where High-High clusters 

mainly distribute. Furthermore, PM2.5 concentrations in the north slope of Tianshan 

mountain increased significantly from 2001 to 2016. Based on the result of 

GeoDetector model, population density was the most dominant factor of PM2.5 

concentrations (q=0.55). With the rapid urbanization and expansion of oasis, the 

driving force of population density on PM2.5 concentrations are gradually decreasing. 

However, DEM, NSL, LCT and NDVI show the increased trend on the driving forces 

of PM2.5 concentrations. 
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1 Introduction  

The atmospheric particulate matter with a diameter of 2.5 μm or less (PM2.5) is 

the common indicator of air quality both indoor and outdoor. Most of PM2.5 is 

emitted from power plants, industries, automobiles constructions sites, fires and so 

on. WHO estimates that 90% people worldwide breath air containing high levels of 

PM2.5. Numerous epidemiological studies have shown that long-term PM2.5 exposure 



 

can increase the incidence of cardiovascular and respiratory diseases, as well as lung 

cancer [1,2]. 

With the fast industrialization and urbanization process over the past three 

decades, atmospheric pollution is become a ubiquitous and serious problem in China. 

A growing number of researches have dedicated enormous efforts focused on PM2.5 

problems in eastern coastal China, such as Beijing, Tianjin, Hebei, Nanjing, 

Shanghai[3-5]. However, few studies explored the spatiotemporal variations of PM2.5 

constrictions and its driving factors in northwest of China, especially Xinjiang. In the 

northern part of the Tianshan Mountains and the western margin of the Tarim Basin, 

about 10 million people have suffered from serious air pollution in the past 

decade[6].  

Xinjiang is the largest administrative region as well as the largest arid land in 

China which means less precipitation and vegetation distribution which has strong 

removal and absorption capacity for PM2.5[7,8]. Thus, harsh climate and environment 

are more likely to cause accumulation of atmospheric pollutants. The spatial pattern 

and variations of PM2.5 concentrations, especially spatial autocorrelation and 

heterogeneity, in arid land is worthy of study and discussion. Meanwhile, identifying 

the natural and socio-economic determinants of PM2.5 concentrations contribute to 

effectively solve air pollution problems in this region. Therefore, the purposes of this 

study were (1) exploring the spatiotemporal characteristics of PM2.5 concentrations by 

spatial autocorrelation analysis. (2) identifying the dominant factors responsible for 

spatiotemporal variations, especially the socio-economic factors. (3) quantitatively 

analysing the interannual variations of the dominant power of PM2.5 driving factors.  

2 Materials and Methods 

1.1 Data Source 

This study used the global annual mean surface PM2.5 concentrations grids 

which estimated by Aerosol Optical Depth (AOD) retrievals from multiple satellite 

products (MISR, MODIS-DT, MODIS-DB, MODIS-MAIAC, and SeaWiFS-DB)[9]. 

The satellite based gridded PM2.5 dataset has a spatial resolution of 0.01x0.01 degree, 



 

and it was combined with simulation (GEOS-Chem model) based on the ground 

photometer observations from 1998-2016. Other dataset and sources we used on this 

study shown in Table 1. 

 

 Table1 Data source 

Dataset Data Sources 

Land Cover type (LCT) MODIS MCD12Q1 (2001-2016) [10] 
Albedo  MODIS MCD43A3 (2001-2016) [11] 
Land Surface Temperature (LST)  MODIS MOD11A2 (2001-2016) [12] 
Normalized Difference Vegetation Index (NDVI) MODIS MOD13Q1 (2001-2016) [13] 
Nighttime Stable Light (NSL) National Geophysical Data Center DMSP-OLS (2001-2013) /NPP-VIIRS (2013-

2016) [14,15] 
Digital Elevation Model (DEM) NASA Shuttle Radar Topographic Mission 90m [16] 
Climate Zone (CZ) Köppen-Geiger climate classification maps (2000-2015) [17] 
Population Data (POP) Asia Continental Population Dataset (2000, 2005, 2010, 2015, 2020) [18] and 

2017 Xinjiang Statistical Year book  

Gross Domestic Product in 2016(GDP) 2017 Xinjiang Statistical Year book  

Industrial GDP 2016 (INGDP) 2017 Xinjiang Statistical Year book 

Road Network Length in 2016 (Road_L) OpenStreetMap historical dataset (https://www.openstreetmap.org/) 

River Network Length in 2016 (River_L) OpenStreetMap historical dataset (https://www.openstreetmap.org/) 

2.2 Method 

2.2.1 Standard deviational ellipse analysis 

The standard deviational ellipse (SDE) analysis can delineates the geographical 

distribution trend of concerned features. SDE is calculated based on the average 

center of discrete points and the standard distance of other points away from the 

mean center. The calculated major and minor axes of the ellipse indicate the direction 

and data distribution range. Based on this, SDE also known as the directional 

distribution analysis. In this study, the spatial characteristics and the annual moving 

trace of PM2.5 concentrations can revealed by the spatial extent, spatial orientation, 

spatial shape and spatial center of the standard deviational ellipse [19].  

2.2.2 Spatial autocorrelation statistics 

Spatial autocorrelation statistics included global spatial autocorrelation and local 

spatial autocorrelation. Based on the Tobler’s First Law of Geography, Patrick Moran 

invented the global Moran’s I which can examine the spatial autocorrelation patterns 

of PM2.5 concentration [20]. The global Moran’s I and ZI-score was calculated as 

follows: 



 

,

1 1

20

1

n
=

n n

i j i j

i j

n

i

i

w z z

I
S

z

 






 (1) 

2 2

[ ]

[ ] [ ]
I

I E I
Z

E I E I





 (2) 

Where n is the number of sample regions, zi is the deviation of an attribute for 

feature i from its mean (xi-   ),     is the mean of corresponding attribute, wi,j is the 

spatial weight matrix; S0 is the aggregate of all the spatial weights. E[I] is computed 

as -1/(n-1). The value of global Moran’s I range from -1 to 1. The value less than 0, 

greater than 0, equal to 0 indicates negative correlation, positive correlation, no 

correlation, respectively. The reliability of Moran’s I (existence of spatial 

autocorrelation) are tested by using the standardized statistic ZI-score. 

  Local Indicators of Spatial Association (LISA) was introduced to interpret the 

local pockets of nonstationary and location of hot spots [21].It can also be used to 

assess the impact of individual region on the global statistics. Here we use local 

Moran’s I which is computed as: 
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Where xi is an attribute for feature i,     and wij are the same as in Equ.(1). 

2.2.3 GeoDetector model 

Based on the spatially stratified heterogeneity, which refers to the phenomena 

that within strata are more similar than between strata, the fundamental theory of the 

GeoDetector model was first proposed by Wang, et al. [22]. The GeoDetector model 

applies q value to quantitatively measure the heterogeneity and autocorrelation of the 

dependent variable and detects the association between the dependent variable and its 

influencing factors. 
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where N refers to the total number of sample units in the entire study area, and 

represents the global variance in Y in the entire study area. the study area was 

stratified into L zones (h=1, …, L), and the stratification depends on the 

characteristics of the explanatory variables or determinant factors (X).  and   

represent the number of sample units and the variance in Y within zone h considering 

fact X, respectively. The model consists of the following four modules:  

1) The factor detector calculates the determinant power of an explanatory 

variable X of Y.  

2) The risk detector maps the average value of response variable in each strata.  

3) The interaction detector can reveal the interactive influence of X1 and X2 on 

Y. 

4) The ecological detector identifies the difference of the impacts between X1 

and X2 

3 Results  

3.1 Spatiotemporal characteristics of PM2.5 concentrations 

Figure1 shows that the significant spatial differences of PM2.5 concentrations 

exited in Xinjiang. PM2.5 concentrations were higher in urban agglomeration which 

located in northern Tianshan and western Tarim Basin, especially in 

Shihezi(19.96μg/m3), Kashi(19.67μg/m3), Shule(18.09μg/m3), Yining(17.51μg/m3), 

Kuitun(17.42μg/m3), Dushanzi(16.50μg/m3). However, it was lower in sparsely-

populated area in eastern and southern Xinjiang.  Furthermore, an exception was 

found in northern Tianshan, where PM2.5 concentrations was increased at an annual 

rate of 1.1-1.7μg/m3/yr. While in the southern Tianshan, PM2.5 concentrations were 

decreased with the rates ranging from -0.1-0.7μg/m3/yr. Based on SDE analysis, 

Figure 2 shows that the main distribution of PM2.5 concentrations was aligned in the 

southwest-northeast direction. And the median center made a clear but gradual shift 

from southwest to northeast. This movement mainly caused by rapid increase of the 

high PM2.5 concentrations in the northern slope of Tianshan Mountain. 



 

 

Fig. 1. Spatial distributions of average annual PM2.5 (a)(c) concentrations and its 

interannual trends (b)(d) 

 

Fig. 2. Spatial changes of the median center and standard deviation ellipses of 

PM2.5 concentrations 

As shown in Figure 2, there are 85 county and 106 populated places (more than 

200 persons per square kilometers) in Xinjiang. Figure 3 showed the global Moran’s I 

of PM2.5 concentrations with maximum value of 0.5733 and minimum 0.4719, which 

are all positive and significant (p<0.01). Most of dots concentrated in the first and 

third quadrants, meaning that most of country shows the positive spatial 



 

autocorrelations of PM2.5 concentrations. Similarity, LISA map showed that high 

PM2.5 concentrations cluster in the northern slope of Tianshan Mountain and western 

Tarim basin and a low PM2.5 concentrations cluster in the southern and eastern of 

Xinjiang. 

 

Fig. 3. Global Moran’s I scatterplots of PM2.5 concentrations (2001-2016) 

 

Fig. 4. Spatial agglomeration diagram (LISA map) of PM2.5 concentrations 

(2001-2016) 

3.2 The effect of socio-economic factors on PM2.5 from the prospective of 

county scale  



 

Due to the input variable of the GeoDetector model must be the categorial 

variable, here we used the Quantile method as the discretization method to transform 

the numerical variables into categorial variables (Fig.5). The dependent variable are 

as follows, GDP density (GDP_D), GDP per capita (GDPPC), INGDP density 

(INGDP_D), INGDP per capita (INGDPPC), POP, POP density (POP_D), Road_L, 

Road network density (Road_D), River network density (River_D). The factor 

detector show population density was the dominant factor on the distribution of PM2.5 

concentrations (q=0.550), followed by River network density (q=0.423), GDP density 

(q=0.413), INGDP density (q=0.212), GDP per capita (q=0.161). The results of other 

factors were not significant at the 0.05 level. According to the risk detector module of 

the GeoDetector model, the average PM2.5 concentrations in each stratum of different 

factors were calculated (Fig.6b). As shown in Figure 6c, the interaction between any 

two factors can enhance their explanatory power for the spatial distribution in PM2.5 

concentrations. The dominant interactions between GDPPC and Road_D show the 

highest q values (q=0.785), and it belonged to the bivariate enhancement interaction 

(q(X1∩X2)>q(X1) +q(X2)). The ecological detector result showed that the POP_D 

has a significantly stronger effect on PM2.5 than other factors except GDP_D (Fig.6d).  

 

Fig. 5. Spatial distributions of discretization result for 9 continuous variables 

based on Quantile method 



 

 

Fig. 6. The result of GeoDetector model: Factor detector(a), Risk detector(b), 

Interaction detector(c), Ecological detector(d) 

3.3 The interannual variation of potential driving factors for PM2.5 

concentrations   

Due to the lack of continuous and reliable long time series of socio-economic 

data, night time stable light with high spatial resolution data was used to instead of 

these in this study. However, National Geophysical Data Center stopped producing 

monthly composites of DMSP_OLS data after February 2013, while NPP/VIIRS, 

which was supplied in April 2012, is a follow-up to DMSP_OLS. In this study, an 

exponential model was used to fit the two data sources which were desaturated and 

resampled to 1km. The Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), R2 and the Pearson Correlation Coefficient R between two data sources 

were calculated to evaluate model fitting effects (Fig.7b), and a good fit was shown. 

The more intuitive night light image fitting results are shown in Figure 7cd.  

As descried in the section 3.1, PM2.5 concentrations gradually changed in the 

terms of the spatiotemporal distribution. In this research, the q-value was used to 

describe the interannual variation of PM2.5 potential driving factors, during the study 

period of 2001-2016. As shown in Figue.8, the explanatory power of population 



 

density decreased significantly. Conversely, DEM, NSL, LCT and NDVI show the 

increased trend on the driving forces of PM2.5 concentrations. 

  

Fig. 7. The relationship between DMSP_OLS NSL and before and after 

NPP_VIIRS NSL Fitted in 2013 (a)(b), and the spatial distribution of DMSP_OLS 

NSL(c) and NPP_VIIRS NSL Fitted in 2013(d). 

 

 

Fig. 8. The q value of each driving factors and their tendency (2001-2016). 

4 Discussion and conclusion 

Given the paucity of comprehensive studies about the spatiotemporal variations 

in PM2.5 concentrations and its determinants in the whole Xinjiang, we have 

systematically analysed spatiotemporal characteristics of PM2.5 concentrations and its 



 

natural social economy determinants. Xinjiang is situated in the northwest of China 

and the center of Eurasian continents. The fundamental characteristics of oasis-desert 

ecological environment in Xinjiang determine the unique spatiotemporal aggregation 

pattern and environment driven mechanism of PM2.5 concentrations. The spatial 

distribution of PM2.5 concentrations show that the north slope of Tianshan mountain 

and the western Tarim desert have the highest PM2.5 concentrations. Meanwhile, we 

found that there are global and local spatial autocorrelation in the study area and 

High-High clusters are mainly distributed in the two areas we mentioned above. From 

2001 to 2015, the mean center of PM2.5 concentrations in Xinjiang showed a notably 

moved to the northeast by reason of the rise of PM2.5 concentrations in the north slope 

of Tianshan mountain and the lower of PM2.5 concentrations in the northwest of the 

western Tarim desert. By the means of GeoDetector model, we found that population 

density was still the greatest power of determinant on PM2.5 concentrations. 

Moreover, GDP per capita and road network density show the strongest interaction 

effects in 2016. Due to the Rapid urbanization and the development of heavy 

industry, the impact of population density showed a fall trend. Indeed, some factor 

like NSL which can represent the urban size and the level of economic activity, has 

the significant upward trend along the study period. Furthermore, the explanatory 

power of DEM NDVI, LCT increased by a significant trend. With the increase of the 

area of artificial oasis in the edge of Tarim desert for the last 16 years, this improves 

the ecological environment of the desert edge cities and increases the absorption 

capacity of farmland for PM2.5. 

As we all known, dust play a vital role in some region of Xinjiang[23,24]. The 

raw data of PM2.5 were estimated with dust removed by AOD product. The dust and 

interactions between dust and other factors was not be considered in this study. The 

second limitation of this study is that climate factors are not considered, which also 

creates some uncertainty about the results. 
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