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Assessing the Feasibility of Machine Learning To Predict Chronic Pain in Adolescence 

 
ABSTRACT 

 
"Chronic pain affects between 15 to 40% of adolescents worldwide. The impact and prevalence of 
chronic pain can be felt every day in terms of missed school days, strained familial relationships, and 
financial stress. While rehabilitation programs specifically designed for chronic pain management exist, 
they cannot always adapt to the idiosyncratic nature of chronic pain. Machine learning presents a 
framework to use diary data from individuals in pain and make predictions about the trajectories of their 
pain and related functioning. This study's goal is to assess the feasibility of using machine learning to 
predict pain and functioning by constructing, training, and evaluating multiple models that take a 
variable-centered approach to chronic pain.” 
  

INTRODUCTION 
IMPETUS/CP BACKGROUND 
 

Chronic pain is defined as pain that persists for over six months. Chronic pain differs from acute 
pain in that it is not caused by physical tissue damage, but rather a failure of the nervous system. Chronic 
pain can even occur in the absence of precipitating tissue damage. A problem facing rehabilitation efforts 
is that chronic pain is that it cannot be effectively managed with medication. This understanding led to 
many chronic pain rehabilitation programs to focus on an alternate method of treatment - lifestyle 
changes. The reality for many in chronic pain is that their pain may never go away. In these 
circumstances, the treatment priority changes from curing the condition to managing it. Lifestyle based 
chronic pain rehabilitation focuses on a wide range of targets such as sleep quality, proper diet and 
hydration, and daily habits. Chronic pain rehabilitation focuses on restoring function, which serves two 
purposes. Increasing functioning reduces functional decline due to inactivity and long term bed rest and 
retrains the nervous system to no longer interpret normal stimuli as pain. Current research shows that 
restoring function precedes a reduction in pain, rather than vice versa (Benore et al, 2018).  
 
ADOLESCENTS IN CHRONIC PAIN 
 

It is estimated that five percent of adolescents are living with life-changing chronic pain. The 
initial surveys of chronic pain prevalence in adolescents demonstrated strong relationships between 
prevalence and both age and sex. Girls were more likely to be in chronic pain than boys, and increasing 
age was associated with higher prevalence rates (Perquin et al., 2000). These studies also examined the 
prevalence across different chronic pain conditions. While migraine headaches are the most common 
chronic pain condition, there were also high incidence rates for abdominal pain, back pain, and other 
musculoskeletal pain conditions. Comorbidity of chronic pain conditions is standard, with a large portion 
of those in pain having multiple diagnoses (King et al., 2011). 
 

1 



Max Kramer 
Oberlin College ‘20 

Adolescents are particularly susceptible to the debilitating effects of chronic pain, primarily due 
to psychosocial and neurological development that occurs during the adolescent developmental stage. A 
2001 study suggested that heightened neuroticism, fear of failure, and desire for social acceptance leaves 
adolescents particularly vulnerable to the effects of chronic pain on daily functioning (Merlijn et al., 
2001).  
 
IMPACT OF CP ON ADOLESCENCE 
 

Adolescents in chronic pain feel the effects of their pain far beyond any physical sensation. The 
detrimental effects of pain can be seen in school, at home, and in the family dynamics of those in pain. A 
2008 sample of adolescents in pain missed an average of five of the past 20 days of school. 47% of the 
sample showed a reduced academic performance that worsened over time (Logan et al., 2008). The 
snowball effect of short term school absences can result in missing entire school years or potentially even 
a complete withdrawal from school for some. The effects of chronic pain in adolescents expands beyond 
the teen into their families. A meta-analysis of families with adolescent children in pain revealed a strong 
association between family functioning indices and pain-related disability rather than the pain itself 
(Lewandowski et al, 2010). Recently, chronic pain rehabilitation programs have begun to focus on 
mitigating the impact of pain on these factors (Benore et al, 2018).  
  
 
PROBLEM STATEMENT  
 

Designing lifestyle change based treatments for adolescents is not an easy process. Adolescence 
is a developmental stage where making lifestyle changes now in the hope of managing pain later is a 
particularly tough sell. The dual systems development model proposed by Laurence Steinberg shows that 
differences in neuronal growth rates between reward-seeking and cognitive control areas of the brain 
predispose teens to desire short term gratification (Steinberg, 2010, Albert & Steinberg, 2011). In terms of 
chronic pain management, it is particularly difficult for teens to see a connection between decisions made 
in the short term and their long term results. One can imagine the difficulty of trying to convince a 
teenager to exercise six days a week by explaining that they may feel better three months later. 
 

Albert Bandura's Social Learning theory provides a useful framework for understanding how to 
convince a teen to achieve a long term goal. The theoretical model explains that in order to reach a long 
term outcome, the teen must want that outcome, believe that they want that outcome, see that the outcome 
works for them, and see that the outcome is achievable (Bandura, 1977). Simply put, claiming that 
immediate lifestyle changes will result in future improvements in functioning is not a convincing 
argument for many adolescents living with chronic pain. 
 

While rehabilitation programs geared to adolescent chronic pain exist, they are not always 
capable of taking a teen through the stages of Bandura's model. The main difficulty lies in the stages 
where the teen sees the outcome works for them and is achievable. Simply explaining to teens that 
lifestyle changes will result in future reductions in pain does not demonstrate the value of making those 
changes in the short term. Some inpatient rehabilitation programs exist that help teens make changes 
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gradually and then examine pain severity reports after discharge, but these programs are limited by their 
immense costs (over $40,000 for three-week programs) and their lack of follow up programming. 
Additionally, chronic pain is highly idiosyncratic, and programs that use group paradigms may not be able 
to utilize individual information to its fullest extent.  
 
MACHINE LEARNING AS A SOLUTION 
 

Designing a solution that takes a teen from wanting a goal to achieving it requires the use of large 
amounts of individual data collected regularly in order to make predictions of trends of pain and related 
functioning. Machine learning provides an efficient framework for drawing on large quantities of 
individual data in order to make sophisticated predictions about each individuals' future.  
 

Machine learning is a field combining statistical modeling, mathematics, and computer science to 
complete prediction and inference tasks on large scale datasets. Machine learning differs from traditional 
statistical modeling in terms of the machinery employed to test hypotheses. Traditional statistical 
modeling tests a single hypothesis by fitting a given model to a set of data, while machine learning 
constantly iterates through models and eventually converges to a final model.  

 
 This study employs a form of machine learning called supervised machine learning. In 

supervised machine learning, a dataset is collected that contains a dependent variable (called a label) and 
independent variables (called attributes or features). The dataset is then split into training and test sets. 
The training set is supplied to the model in order to learn a prediction function that best fits that training 
data. The model can then be evaluated by supplying the test set and generating predictions. The 
percentage of correct predictions across the test set is the accuracy of the model.  

 
In order to design a machine learning model to answer a question, three key components are 

required: a task, a set of metrics, and experience. The task to complete determines the nature of the 
machine learning model. Many supervised machine learning tasks fall under two categories: classification 
and regression. In this study, prediction of pain severity ratings (on a 1 to 5 scale) is the primary goal. We 
want a model that is capable of classifying pain ratings given a set of diary data as accurately as possible, 
so we will utilize the classification framework as it measures accuracy in terms of whether the prediction 
is exactly correct or not. This type of task is referred to as a multinomial classification task, where the 
model will generate a prediction of either 1,2,3,4 or 5 for each input. Performance metrics allow for the 
evaluation of a model's performance on a task. In this case, classification accuracy (the number of correct 
predictions made by the model out of total predictions made) given various conditions serves as the 
primary metric. Finally, the experience required is a large scale dataset of individual-level pain and 
related functioning data collected regularly.  
 
RESEARCH QUESTIONS 
 

The goal of this study is to design a machine learning model that uses regularly collected pain and 
related function data to make predictions about future trends in pain severity ratings. More specifically, 
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this study aims to use a machine learning model to examine the relationship between the amount of past 
data input into the model and the prediction accuracy of the model at various points in time.  
 

To quantify the past and future, we denote the number of past days of data input into the model as 
k and the number of days into the future to predict as N. For example, if k = 2 and N = 0, the question is, 
"what is the accuracy of the model predicting today's pain rating from 2 days of past information?". By 
varying k and N, a table of prediction accuracies arises that can then be analyzed in order to determine 
trends.  

 
Before analyzing any longitudinal relationship within the data, the data needs to be tested for 

fitness to the task. If the data on a given day does not predict the concurrent pain rating, the remainder of 
the analysis would not yield any useful information. If the data is predictive of concurrent ratings, there 
are two immediate longitudinal relationships that can be tested. The predictive power of a single day of 
diary data can be tested by holding k constant and increasing N, while the predictive power of additional 
past information to predict a current day can be tested by holding N constant while increasing k.  

 
PLAN OF ANALYSIS 
 

With a defined task (classifying pain ratings) and a metric (prediction accuracy), only one 
component remains - experience. In order to design a dataset for this task, we need pain severity ratings 
and several indices of functioning. A review of the literature on the detrimental effects of chronic pain on 
adolescents suggests that sleep (Tham et al, 2019), diet and hydration (Brain et al, 2019, Bear et al, 2016), 
exercise (Kichline & Cushing, 2019), stress reduction (Benore et al, 2015), and daily functioning such as 
getting out of bed or taking a shower (Benore et al, 2018) are all impacted. By collecting data on these 
functioning types and pain ratings on a daily basis for a period of 28 days, we construct a dataset that fits 
the parameters for supervised machine learning.  
 

The reason for collecting our own data is that there is no dataset currently available on 
adolescents in pain with the parameters described above. While it was not possible to collect thousands of 
adolescents’ data over a 28 day period, it is possible to use the collected data as a seed for the generation 
of a synthetic dataset. By employing joint distribution roulette wheel sampling, a synthetic dataset can be 
generated with a much larger number of participants while preserving the longitudinal nature of the 
original seed data.  
 

After collecting the seed data and generating the synthetic dataset, an algorithm will then 
constantly reconstruct the synthetic data to test different pairings of k and N using several supervised 
machine learning architectures. These architectures were selected as they span the 
performance-interpretability tradeoff in machine learning, with some architectures having very human 
interpretable output but weaker raw performance, while other architectures have unintelligible output 
while demonstrating very strong classification performance. Key features of the model architectures are 
summarized in table 1.  
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Table 1 
Summary of Model Architectures 

 
 

The models described in table 1 use different methodologies to arrive at their predictions. Naive 
Bayes uses Bayesian estimation to find the most likely label given a set of attributes. This algorithm 
assumes that every attribute in the dataset is independent of all other attributes and that all variables are 
equally important in predicting the label.  
 

Logistic Regression serves as a baseline against all other models, as it is most similar to standard 
statistical modeling. This study employs multinomial logistic regression, different from standard binary 
logistic regression as the label has 5 classes rather than 2. The key difference is the use of a function 
known as the softmax that outputs a vector of probabilities for each label based on the model parameters 
and then selects the highest probability as the final prediction.  

 
Artificial Neural Networks (ANNs) are a natural expansion of the logistic regression algorithm, 

with the advantage of being able to plot nonlinear decision boundaries. Logistic regression is the simplest 
case of a neural network, and the ability for many logistic regression “units” to be aggregated together 
allows for the plotting of more complex decision boundaries. Additionally, different hyperparameter 
tweaks (changes to dimensions of the network, learning rate, epochs of training) can vastly affect the 
performance of the network.  

 
Decision trees fall under the higher interpretability section of the performance interpretability 

tradeoff, primarily as they employ rule-based learning. A classic decision tree outputs a set of rules that, 
when followed for an instance, produce a prediction for the label. Decision trees also allow for individual 
importance ratings to be attached to each attribute, rather than assuming equal importance among all 
attributes. 
 

Random Forest is unique among these models as it is the only one to employ ensemble-based 
learning. Ensemble methods use multiple models and aggregate the information in order to make a final 
prediction. In this case, the random forest is constructed of 100 decision trees that are all initialized with 
random starting values. Each tree generates a prediction for the given test example, and then the mode of 
the distribution of decisions is taken as the final prediction. This construction defends the model from 
overfitting to their training data and having predictions based on a single process. Like the single decision 
tree, the random forest assigns individual importances to each attribute in the dataset.  
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METHODS 
 
SURVEY DESIGN 
 

Two Qualtrics surveys formed the basis for data collection. The intake survey collected both 
demographic information and brief pain history. The demographic section of the intake survey asked for 
information on participant age, gender identity, racial background, and diagnoses of chronic pain 
conditions, including migraines, fibromyalgia, and other sources. The goal of the pain history was to 
establish a baseline level of both pain intensity and functioning, specifically targeting non-medicinal 
aspects of rehabilitation. Questions in this section assessed the severity of disruption to sleep, diet, 
exercise, mood, and daily routine from pain.  
 
RECRUITMENT/COMPENSATION 
 

The criterion for inclusion in the study was college-aged (18-25) and living with chronic pain for 
more than six months. Recruitment was conducted at Oberlin College, targeting undergraduate students 
living with chronic pain. Each participant was contacted by the principal investigator through email and 
asked if they would participate in a data collection study regarding chronic pain and adolescence. The 
students were then informed that the base compensation for participating in the study was $35, and they 
stood to make a $5 bonus each week if they completed all seven surveys given that week. The maximum 
potential compensation for each participant was precisely $50. Those students who agreed to participate 
(N=8) were then added to an anonymous email list to receive the intake and daily surveys.  
 
DEMOGRAPHICS 
 

All participants were between 20 and 25 years old (M = 21.375, SD = 1.3), with 37.5% 
self-identifying as male, 37.% as female, and 25% as gender non conforming. 87.5% of participants 
identified as White, while 12.5% of participants identified as Hispanic/LatinX. All participants reported 
an average pain level between 2 and 6 out of a possible 10 (M = 4.75, SD = 1.48). 62.5% of participants 
supplied a diagnosis for at least one chronic pain condition, with 37.5% indicating diagnoses of multiple 
conditions.  
 

All participants reported an impact of chronic pain on their ability to engage in leisure, family, 
and work activities due to their pain. Multiple participants noted that remaining still for extended periods 
or specific activities, including eating and walking, caused them the most pain. 75% of participants 
reported fair sleep quality, while the remaining 25% reported poor sleep quality. 75% of participants also 
reported feeling fatigued regularly over the past month. 87.5% of participants reported some disruption to 
their day to day activities, and 75% reported some disruption to their social activities. All participants 
reported at least an 8 out of 10 when asked to indicate their ability to tolerate moderate pain. 
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COLLECTION PROCEDURE 
 

Each participant was emailed a link to the intake survey where they read and electronically signed 
an informed consent form. Those who consented then provided an email address for receiving the daily 
surveys and were given a unique identification code generated by Qualtrics for use in place of personal 
information for the remaining surveys. For the next 28 days after filling out the intake survey, each 
participant was emailed a link to a daily survey at 3:30 pm EDT and asked to complete the survey. No 
pain severity readings were recorded until seven days in data collection due to a data entry error during 
the survey creation process. After the 28 day collection period, participants were compensated through the 
TANGO platform for amounts between $35 and $50 based on their completion rate. After destroying all 
identifying information, the data is then exported from Qualtrics and loaded into Rstudio to serve as the 
seed for generating the synthetic dataset. 
 
DATASET SYNTHESIS 
 

Using RStudio, a Joint distribution roulette wheel sampling of the seed data produced the 
synthetic dataset. The first step was to remove metadata and identify columns in the dataset that 
corresponded to each scale assessed in the surveys. The dataset generation function took a number of 
participants as an argument and generated 28 days of data for each participant.  

 
In roulette wheel sampling, a "wheel" is created from the proportion of each response to a given 

question. For example, if 25% of participants answered yes to a question, 35% answered no, and the 
remaining 40% refused to answer. In this case, the values 0-0.25 represent yes, 0.25-0.6 represent no, and 
0.6-1.0 represents a refusal to answer. When the algorithm needs to synthesize a value for a given 
instance, the function draws a random uniform value and tests it against the wheel. If the value falls 
within one of these ranges, then that response is selected for the synthetic instance.  
 

The resulting dataset had an intraclass correlation coefficient of 0.789 for pain ratings (see table 
2). This demonstrates that 80% of the variance in pain ratings are attributable to between-person 
differences, while the remaining 20% is attributable to within-person differences and error. This 
demonstrates two fundamental features of the synthetic dataset: that attributes are not independent of one 
another, and that the predictive power of our models will be limited as we are examining the 
within-person component of the variance in pain ratings. It is also worthy of note that there is a recency 
effect present in the inter-item correlation matrix (see appendix). While each day’s pain is correlated 
strongly with the next and previous days’ ratings, the correlations drop off quickly after several days and 
begin to vary about 0 after 12 days.  

 
Table 2 
Intraclass Correlation Analysis on Pain Ratings 
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ML ANALYSIS 
 

At this point, the synthetic data is read into a python script that handles the actual machine 
learning model construction. The first function in the script solves the problem of testing different values 
of k and N from the same data. Normally, the instances are not modified in this manner during a 
supervised machine learning analysis, but the data is not presently in a format to answer questions like 
“how accurately can I predict N days into the future given k days of past data?”. For example, in order to 
test if five days of past data is enough to predict the next day's pain rating, an instance needs to use the 
next day's pain rating as a label and the entire instance of the past five days for a given participant as the 
factors. A python function that takes in a value k for past days and a value N for the prediction day 
accomplishes this task. At this point, the script splits the prepared synthetic dataset into a training set and 
a test set based on a given proportion.  
 

After splitting the training and test set, the script runs through a loop that tests every pairing of k 
and N up to k = 7, N = 7. Each time through the loop, the script reorganizes the dataset to test a specific k 
N pairing and then runs all 5 models on the data. Each model is trained on the training set, tested on the 
test set, and then produces an accuracy rating for that pairing, alongside other performance metrics. 
During this iterative process, the accuracies for each model, and each pairing are stored in tables. These 
tables are exported in .CSV format at the conclusion of the script alongside confusion matrices for each 
model and each pairing (see appendix). 

 
Many of the models employed require hyperparameters to be set before conducting any analyses. 

For many of the models, a random seed was required, which was set as a command-line argument to the 
python script. The neural network’s hyperparameters were tuned via grid search to arrive at a construction 
with two hidden layers of 150 neurons each, the ADAM optimization algorithm, a learning rate of 0.001, 
and 5000 epochs of training time. The random forest model utilized 100 estimators that were each 
initialized randomly based on the supplied seed. 

 
RESULTS 

 
Predicting Pain from Diary Data 
 

Our first step was to validate that the survey data could accurately predict concurrent pain ratings 
using traditional statistical methods. Logistic regression serves as a baseline statistical model both for its 
similarity to non-machine learning statistical modeling and ease of interpretability. Analyzing the output 
of the regression when k = 1 and N = 0 gives us critical insight: some variables are more predictive of 
pain than others. (It should be noted that the logistic regression assumes that each day’s data is 
independent of the others, which is violated by the nested nature of the dataset.). The subsection of table 3 
summarizes the output of the regression model. The entries in each row represent the log odds ratio for 
the given attribute. Each entry corresponds to how much more likely each label value is than 1 given a 
unit increase in the attribute. It is clear from the table that some attributes, like reporting feeling 
distressed, have much greater influence on these odds ratios than others (like whether or not someone 
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played music). Overall, the regression model’s 90.4% accuracy demonstrates that standard statistical 
methods can predict pain from the given data. 
 
Table 3 
 
Snippet of Logistic Regression Model Output for k = 1, N = 0 

Note: * = p < .05, ** = p < .01, *** =  p < .001 
 

From here, the question becomes whether or not more sophisticated machine learning models can 
outperform the baseline logistic regression in terms of classification performance.  Figure 1 displays the 
prediction accuracies of each model architecture tested when k is 1 (only the current day's pain data is 
supplied), and N is 0 (predicting the label attached to that day's data).The figure demonstrates that some 
models outperform the baseline set by the regression while other architectures fall flat. This observation 
demonstrates not only that machine learning is a potentially suitable framework for the problem, but also 
that there is added value in selecting an appropriate model for a given task. 

 

 
Figure 1. Bar graph of prediction accuracies of models given k = 1, N = 0.  
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Organization 
 

The model results are presented from the simplest to the most complex. The naive Bayes 
classifier serves as the most simple example of machine learning based classification, followed by an 
artificial neural network (a natural extension of the logistic regression model). From there, a single 
decision tree shows a single permutation of rule-based learning. Finally, the random forest model 
demonstrates ensemble rule-based learning. The overall performance on all k N pairings for each 
architecture is summarized in annotated heatmaps (see appendix). 

 
Naive Bayes 
 

The naive Bayes classifier had by far the worst performance of all models tested, reaching an 
accuracy of only 51.4% when k = 1, N = 0. The explanation for the sub-par performance is that a 
fundamental assumption of naive Bayes is violated in this dataset. Naive Bayes rests on the naive 
assumption - the assumption of complete independence of attributes. Naive Bayes assumes that all of the 
predictor variables are independent of one another, and assigns equal weight to each attribute when 
making a prediction. This assumption is contrary to the entire methodology of this study, as the dataset is 
constructed from scales of chronic pain-related function, each in turn composed of related questions. 
These relationships between predictors are demonstrated in the poor performance of naive Bayes relative 
to the other models. If the Naive classifier had performed better than other architectures, it would 
demonstrate a fundamental flaw in the survey design.  

 
Neural Network 
 

The neural network performed slightly better than the logistic regression baseline, reaching an 
accuracy of 97.3% for k = 1, N = 0. The primary concerns with the neural network model are both the 
assumption of equal importance among attributes as well as a significant class imbalance in the training 
data. The class percentages - the percentage of each pain rating label out of total instances - are 
summarized in table 4. The overwhelming majority of instances have either 2 or 4 as the label. This 
imbalance is a bias in the training data that will affect the model's classification performance. The 
confusion matrices (see appendix) for the neural network models show a clear bias in favor of predicting 
2 and 4. Additional training data may alleviate this bias and, in turn, improve the network's classification 
performance.  

 
Table 4 
 
Frequencies of instance labels in training data 
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Decision Tree 
 

The single decision tree performed similarly to the baseline, reaching an accuracy of 90%. While 
the decision tree has a natural advantage in the ability to assign importance to each attribute in the dataset, 
a single decision tree is not always capable of defining a set of rules that capture every nuance present in 
the training set. The fact that the single tree is outperformed by the random forest model suggests that rule 
based learning seems effective, though the additional power from ensemble learning provides additional 
benefit on this task.  
 
Random Forest 
 

Of all architectures tested, random forest had the most impressive classification performance, 
reaching an accuracy of 97.6%. Random forest has both the ability to assign importance to each predictor 
variable or attribute like a decision tree, but also benefits from its nature as an ensemble learning method. 
All other architectures tested utilize a single converged model to make predictions, but random forest 
utilizes multiple decision trees to generate a distribution of predictions, and then selects the mode of that 
distribution to be the final prediction. This provides additional robustness to the predictions generated. In 
terms of assigning importance, random forest generates an importance rating (see table 5) to each 
attribute. These ratings suggest that some scales, such as the mood scale (Q_4), were more predictive of 
pain ratings than others.  

 
Table 5 
 
Importance Ratings of Attributes Assigned by Random Forest 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11 



Max Kramer 
Oberlin College ‘20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Note: importance table generated with k = 1, N = 0 
 
Using Today to Predict the Future 
 

The k N pairing framework allows for the examination of the predictive power of a single day of 
diary data. Determining the predictive power of today'Tods diary data involves testing what happens to 
the predictive accuracy, holding k = 1 as N increases. Figure 2 demonstrates the predictive accuracy of 
each model holding k = 1.

 
 
Figure 2. Prediction Accuracies of Model Architectures at k = 1, N increases from 0 to 7.  
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Across all models, we see a precipitous drop in classification performance between N = 0 and N = 
1, which only drops further out until N = 7. This effect is most likely due to the dataset's relatively weak 
signal to noise ratio. Holding k constant and increasing N attempts to use a tiny segment of time to make 
accurate predictions about distant outcomes. This pattern of results indicates that today's diary data is 
more predictive of today's pain ratings than later pain ratings.  
 

It is worthy of note that despite decoupling the prediction day and the diary data, the random 
forest and logistic regression models still manage to perform better than chance accuracy (20%). The 
random forest managed to maintain an accuracy of over 33% at all values of N tested. The robustness of 
random forest against irrelevant attributes and the power of ensemble learning are likely causes for the 
ability to extract more meaningful information out of a relatively small dataset. 
 
Augmenting Predictions with Past Data 
 

The longitudinal nature of the dataset naturally begs the question of whether or not a prediction 
can be improved given additional past data. This question can be answered by examining the behavior of 
a fixed N and increasing k. Figure 3 compares the various models with a fixed N of 0 and increasing the 
value of k.  
 

 
Figure 3. Prediction Accuracies of Model Architectures at N = 0, k increases from 1 to 7.  
 

Across all models, the effect of increasing k was a significant drop in classification accuracy. This 
effect is the net result of irrelevant attributes drowning the signal in increasing amounts of noise as k 
increases. When several questions are not predictive of pain on the same day, aggregating those same 
questions over multiple days results in a large proportion of attributes not having much predictive power. 
For architectures that do not assign importance to attributes, this results in extreme performance 
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degradation. Even architectures that can distinguish irrelevant attributes demonstrate appreciable losses, 
as their robustness has a threshold. The aggregation of noise is exemplified in analyzing the differences in 
performance between the models at k = 1 N = 0 and k = 7 N = 0 (see figure 4). The only model to not 
have a marked drop in classification performance is naive Bayes, which is already performing 50% worse 
than all other architectures. The assumption of independence shields naive Bayes from the noise 
generated by additional past data but does not improve prediction accuracy in any meaningful way. 
 
 
 

Figure 4. Performance Differences For All Models Between k = 1 and k = 7 (N = 0 constant) 
 
 

 CONCLUSION 
DISCUSSION/LIMITATIONS  
 

This study aimed to use different machine learning models to examine relationships between the 
amount of past data input into the model and prediction accuracies at various time points. Previously, 
machine learning has been used to examine acute pain, primarily in hospital contexts (Lötsch & Ultsch, 
2018). This study is the first to use lifestyle based rehabilitation data to predict pain severity. Overall, the 
analysis determined that machine learning is a useful framework in which to analyze regularly collected 
diary data in order to predict pain severity ratings in the short term. However, the limitations of the 
dataset demonstrate a need for additional research to examine long term trends in pain using machine 
learning.  
 

 The initial testing determined that functioning data can be effectively utilized to predict 
self-report pain severity ratings. First, the results of the naive Bayes model supported the assumptions of 
non independence in the dataset. Second, the fact that random forest outperformed the logistic regression 
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baseline demonstrated that machine learning could be a more effective framework for this prediction task 
than traditional statistical learning methods. The importance table generated by the random forest model 
demonstrated a large number of irrelevant attributes, but the robustness of random forest to irrelevant 
attributes and the ensemble prediction method resulted in strong classification performance. While the 
neural network and decision tree models performed on par with logistic regression, these models will 
likely benefit from additional training data and tweaks to the hyperparameters.  
 

The classification results also suggested that today's diary data is predictive of future days pain 
ratings to a certain degree. While all model architectures tested demonstrated reduced performance as N 
increased, the logistic regression and random forest models still predicted pain above chance accuracy up 
to 7 days in the future. It is worthy of note that this does not necessarily mean that the models have 
successfully determined a long term trend from a single day of data. It is clear that the weak signal to 
noise ratio of the data has a detrimental effect on classification performance, and the higher than chance 
accuracies of the models may suggest that they are detecting a "baseline" - a stable state of pain that does 
not necessarily reflect changes in pain trajectories. This question can be examined in a further study using 
a larger dataset and broader ranges of k and N.  
 

Finally, the data suggest that simple models are not able to improve a given day's prediction 
based on additional past data. While this may seem disheartening, it is crucial to understand that the 
qualities of the dataset are such that additional steps are required to achieve maximum performance from 
these models. A standard stage in the machine learning pipeline after collecting data but before analysis is 
feature selection. Feature selection in the context of this thesis is the process of attempting a priori to 
determine which attributes are most likely to be predictive of pain. Feature selection is usually 
accomplished by correlating attributes with either the pain severity ratings directly or by the importance 
metric discussed during the random forest analysis. The process can increase classification accuracy and 
reduce model overfit.  
 
IMPLICATIONS/FUTURE DIRECTIONS 
 

The results of the analysis show promise for machine learning as the solution to analyzing diary 
data in order to make predictions about future pain levels. While far from a finished product that 
adolescents in chronic pain can utilize directly, these models have the potential to demonstrate that what 
one does now affects how they will feel in the future. The current infrastructure for caring for adolescents 
in pain is costly, both in terms of dollars lost and emotional cost to teens and their families. These models 
could form the basis for a new rehabilitation aid that does not require extended hospital stays or other 
costly measures.  
 

Further research on using machine learning to examine diary data and predicting pain ratings 
should utilize a more extensive dataset collected over a more extended period. With sufficient signal to 
counteract the noise, it may be possible to determine long term trends from sufficient past data. If this is 
the case, it may be that an optimal k N pairing exists such that k number of previous days consistently 
produces highly accurate predictions N days into the future. If that optimal pairing is discovered, the 
model could serve as a basis for educational tools that show adolescents in pain that making changes over 
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some time will have tangible changes in their future pain trends. While it may not instantly solve the 
problems of teens refusing to make lifestyle changes, these models could lend weight to the arguments in 
favor of lifestyle change as a method for chronic pain rehabilitation.  
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APPENDIX 
 

GitHub Repository (Contains all analysis materials): https://github.com/MkramerPsych/Honors 
 
 
Prediction Accuracy Heatmaps for all Model Architectures Tested 
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Consent Form

Thank you for visiting!
 
This is a study to collect initial data for a project that aims to create a model of chronic pain in
adolescents. We hope to use the data you and others provide to help develop a model that can
aid in identifying more effective methods of treating adolescents in chronic pain,
 
What will you be asked to do?
On the intake questionnaire, you will be asked to enter your email (and phone number if you
would like text reminders) as well as a few demographic questions. After that, you will be
asked to provide some background on your pain history.

After the initial questionnaire, you will be asked to complete a brief survey every day for a
period of 28 days. The questionnaire should only take approximately 5 minutes per day. The
daily questionnaire asks questions about mood, pain, and functioning. 
 
The whole study will occur over a 28 day period.
 
What are the risks and benefits of participating?
This study is classified as having ‘minimal risk’ – in other words, it is no more risky than
things you might experience in everyday life. 

You will receive $7.50 for each week you remain in the study. Every week in which you
complete a survey every day will earn you a $5 bonus. You stand to make $50 for completing
28 surveys.

Your end reward will be sent via Tango, where you have the option of having a check mailed to
your address, certain gift cards, or a donation to charity. 

Beyond the financial compensation, your data can help in the creation of models that will help identify
the best courses of treatment for adolescents in chronic pain. 
 
Is my information confidential?

Yes. Your ID codes are generated by Qualtrics and your emails/phone numbers will be stored
on a secure server.
 
 What will happen to my data?
At the conclusion of the study, all identifying information about you (email/cellphone number) will be
destroyed. While your data will become part of a validation set for a model, you will have the option to
submit or withhold data during the final survey. 
 
Still interested? Thank you!
 
By clicking here you are affirming that (a) you are 18 years old or older and (b) you have read
the study description above and (c) you are voluntarily participating in this study.
 
More Questions?
If you have questions about the study, please contact Max Kramer (mkramer@oberlin.edu or
773-318-5225)
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YES! I affirm I am 18 years old or older, have read the study description, and am participating voluntarily.

No, I don't want to participate.

If you have questions about your rights as a research participant, please contact Associate
Dean Daphne John, Office of the Dean of Arts and Sciences, Cox 101 (djohn@oberlin.edu or
440-775-8410).
 
 
 
 

Default Question Block

Welcome to the intake questionnaire! Over the next four weeks, you will be asked to take a short survey
each day. 

At the end of each week, if you complete a survey every day of that week you will get a $5 bonus!

If you enter your cellphone number, you can get text reminders and take the survey straight from your
phone! Otherwise, you will receive notifications via email. 

Block 1

Enter your cellphone number (or leave blank to only get email alerts).

Block 2

Please enter your email address below.

Block 3

Demographic Information

How old are you?

What is your gender identity? You may select more than one option.
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Female

Male

Gender non-conforming

Transgender

Other: I identify as

Prefer not to respond

American Indian or Alaska Native (e.g., Navajo Nation, Blackfeet Tribe, Mayan, Aztec, Nome Eskimo Community, etc.)

Asian (e.g., Chinese, Filipino, Asian Indian, Vietnamese, Korean, etc.)

Black (e.g. African American, Jamaican, Haitian, Nigerian, Ethiopian, Somalian, etc.)

Latinx, Hispanic, or Spanish origin (e.g., Mexican, Mexican American, Puerto Rican, Cuban, Salvadorian, Dominican,
Colombian, etc.)

Middle Eastern or North African (e.g., Lebanese, Iranian, Egyptian, Syrian, Moroccan, Algerian, etc.)

Native Hawaiian or Pacific Islander (e.g., Samoan, Chamorro, Tongan, Fijan, Marshallese, etc.)

White (e.g., German, Irish, English, Italian, Polish, French, etc.)

Other: I identify as

Prefer not to respond

How would you describe your ethnicity and/or racial background? You may select more than one option.

Pain History

In the past month, how would you rate your pain on average?

No pain Worst imaginable pain
0 1 2 3 4 5 6 7 8 9 10

Last semester, about how many times did you experience:

   Never Rarely
Once or Twice

a Month
Almost Every

Week
Almost Every

Day

I choose note
to answer this

question

Mild Pain   

Moderate Pain   

Severe Pain   

How often did you experience pain due to behaviors like engaging in sports, playing an instrument,
hangovers, or another specific activity you enjoyed?
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   Never Rarely
Once or Twice

a Month
Almost Every

Week
Almost Every

Day

I choose not to
answer this

question

Mild Pain   

Moderate Pain   

Severe Pain   

How often did you experience pain due to a chronic condition such as migraines, fibromyalgia, PID,
arthritis, a back injury, or joint inflammation? 

   Never Rarely
Once or Twice

a Month
Almost Every

Week
Almost Every

Day

I choose not to
answer this

question

Migranes   

Fibromyalgia   

PID   

Arthriris   

Back Injury   

Joint Inflammation   

Please respond to each question or statement by marking one box per row.

   
Without any

difficulty
With a little

difficulty
With some

difficulty
With much

difficulty Unable to do

I choose not to
answer this

question

Are you able to do chores such
as vacuuming or yard work?   

Are you able to go up and
down stairs at a normal pace?   

Are you able to go for a walk of
at least 15 minutes?   

Are you able to run errands
and shop?   

Please respond to each question or statement by marking one box per row.

   Never Rarely Sometimes Usually Always

I choose not to
answer this

question

I have trouble doing all of my
regular leisure activities with
others

  

I have trouble doing all of the
family activities that I want to
do

  

I have trouble doing all of my
usual work (include work at
home)
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   Never Rarely Sometimes Usually Always

I choose not to
answer this

question

I have trouble doing all of the
activities with friends that I
want to do

  

What activity caused you pain most frequently?

In the past month...

   Very poor Poor Fair Good Very good

I choose not to
answer this

question

My sleep quality was   

Please respond to each question or statement by marking one box per row.

In the past month...

   Not at all A little Bit Somewhat Quite a bit Very much

I choose not to
answer this

question

I feel fatigued   

I have trouble starting things
because I am tired   

How run-down did you feel on
average?   

How fatigued were you on
average?   

Please respond to each question or statement by marking one box per row.

In the past month...

   Never Rarely Sometimes Often Always

I choose not to
answer this

question

I felt fearful   

I found it hard to focus on
anything other than my anxiety   

My worries overwhelmed me   

I felt uneasy   
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Please respond to each question or statement by marking one box per row.

In the past month...

   Never Rarely Sometimes Often Always

I choose not to
answer this

question

I felt worthless   

I felt helpless   

I felt depressed   

I felt hopeless   

Please respond to each question or statement by marking one box per row.

In the past month...

   Not at all A little bit Somewhat Quite a bit Very much

I choose not to
answer this

question

My sleep was refreshing   

I had a problem with my sleep   

I had difficulty falling alseep   

Please respond to each question or statement by marking one box per row.

In the past month...

   Not at all A little bit Somewhat Quite a bit Very much

I choose not to
answer this

question

How much did pain interfere
with your day to day activities?   

How much did pain interfere
with work around home?   

How much did pain interfere
with your ability to participate in
social activities?

  

How much did pain interfere
with your household chores?   

Please respond to each question or statement by marking one box per row.

   
Strongly
disagree

Somewhat
disagree

Neither agree
nor disagree

Somewhat
agree Strongly agree

I choose not to
answer this

question

No one's been able to tell me
exactly why I'm in pain.   

My pain is confusing me.   

I don't know enough about my
pain.   
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Strongly
disagree

Somewhat
disagree

Neither agree
nor disagree

Somewhat
agree Strongly agree

I choose not to
answer this

question

I can't figure out why I am in
pain.   

In general, how would you rate your ability to tolerate moderate pain? 

Worse than most people Better than most people
0 1 2 3 4 5 6 7 8 9 10
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Default Question Block

Welcome Back!

This is the daily questionnaire for 4/27/2020 !

You will first be asked to enter the ID you were provided by email, then you will be asked to complete a
short survey about your mood, pain intensity, and other factors. 

Voluntary Participation.
 
Your participation is completely voluntary and you are free to withdraw at any time. If you
choose to participate, you may skip any other questions without penalty. In addition, on the
last day of the survey, we will ask you to confirm that we may use your data.  

Questions?

If you have questions about the study, please contact Nancy Darling (ndarling@oberlin.edu or
440-775-8363) Max Kramer (mkramer@oberlin.edu or 773-318-5225).
 
If you have questions about your rights as a research participant, please contact Associate
Dean Daphne John, Office of the Dean of Arts and Sciences, Cox 101 (ocirb@oberlin.edu. or 440-
775-8410).

Block 9

Please Enter your ID code from the Intake Survey

Mood Scale

Indicate if you felt each of the following since your last survey

   No Yes

Interested   

Distressed   

Excited   

Upset   

Strong   

Guilty   

Scared   

Hostile   

Enthusiastic   

Proud   
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   No Yes

Irritable   

Alert   

Ashamed   

Inspired   

Nervous   

Determined   

Attentive   

Jittery   

Active   

Afraid   

Morning routine

Indicate if you did any of the following since your last survey

   No Yes

Got out of bed   

Got dressed   

Left for school/class   

Ran errands   

Prepared food   

Brushed teeth   

Showered   

Brushed hair   

Took medications   

Washed up   

Activity checklist

Indicate if you did any of the following since your last survey

   No Yes

Read a book   

Created art   

Played a game   

Watched TV   

Wrote in a journal   

Played music   

Played with pets   
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   No Yes

Enjoyed my hobbies   

Played Sports   

Helping others

Indicate if you did any of the following since your last survey

   No Yes

Was supportive to a friend   

Did homework   

Helped out family/friends   

Volunteered   

Fed pets   

Diet/Hydration

Indicate if you did any of the following since your last survey

   No Yes

Ate healthy   

Followed diet   

Stayed hydrated   

Exercise

Indicate if you did any of the following since your last survey

   No Yes

Exercised   

Took a stroll   

Got my heart rate up   

Mindfulness/Stress Reductions

Indicate if you did any of the following since your last survey

   No Yes

Was thankful   
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   No Yes

Mindfulness   

Meditated   

Yoga/Tai Chi   

Prayed   

Biofeedback   

Sleep

Indicate if you did any of the following since your last survey

   No Yes

Went to bed on time   

Rested during the day   

Got up on time   

Got to sleep   

Pain

How is your pain today?

Contact

More Questions?
If you have questions about the study, please contact Nancy Darling (ndarling@oberlin.edu or
440-775-8363) Max Kramer (mkramer@oberlin.edu or 773-318-5225).
 
If you have questions about your rights as a research participant, please contact Associate
Dean Daphne John, Office of the Dean of Arts and Sciences, Cox 101 (djohn@oberlin.edu or
440-775-8410).

Closing



MK Honors Thesis Dataset Generation

1.0 Setup

In order to synthesize an artificial dataset, we must first load our seed data into R.

require(readxl)

## Loading required package: readxl

library(readxl)
library(descr)

## Warning: package 'descr' was built under R version 3.6.3

Intake <- read_excel("Intake+Questionnaire+for+MK+Honors+Thesis_December+3,+2019_12.02.xlsx")
Daily <- read_excel("Daily+Questionnaire+for+MK+Honors+Thesis_December+3,+2019_11.54.xlsx")

The data are read in as character vectors by default rather than categorical factors. We must convert the
data typing of each variable to factor before proceeding.

Intake2 <- as.data.frame(unclass(Intake))
Daily2 <- as.data.frame(unclass(Daily))

Finally, labels and metadata should be stripped from the dataframe. For convenience, we also relabel the
Intake2 and Daily2 datasets to i and d respectively.

i <- Intake2[-1,] # renaming and parsing factor labels
d <- Daily2[-1,] # renaming and parsing factor labels

Daily2$Q15[Daily2$Q15 == 4869] <- 4689

freqlist <- freq(Daily2$Q15)

1



1111 2976 4869 6273 7560 8730

0
5

10
15

20
25

f <- which(freqlist[,1] > 1)
f <- names(f)[1:(length(f)-2)]

d <- Daily2[as.character(Daily2$Q15) %in% f,]
d <- d[d$Finished == "True",]

d_drop <- d[!is.na(d$Q17),] # removing NA values

freqlist <- freq(d_drop$Q15)

2
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10
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f <- which(freqlist[,1] > 1)
f <- names(f)[1:(length(f)-1)]
d_drop <- d_drop[as.character(d_drop$Q15) %in% f,]
d_main <- d_drop[,19:79] # parse metadata
d_main <- na.omit(d_main) ## THIS LINE REMOVES ALL INCOMPLETE CASES ##
d_label <- d_main[,61] # label vector

l_counts <- matrix(0,ncol=5,nrow=5)
for (i in f){

d_sub <- d_drop[d_drop$Q15 == i,]
for (row in 2:nrow(d_sub)){

pastL <- d_sub$Q17[row-1]
L <- d_sub$Q17[row]
l_counts[pastL,L] <- l_counts[pastL,L] + 1
#print(paste(i,row,pastL,L,nrow(d_sub)))
}

}
roulette_l <- prop.table(l_counts,1)

1.1 Artificial Dataset Synthesis

3



The artificial dataset will be generated using joint distribution roulette wheel sampling.

Variables on daily: 19:78

MOOD: 1 - 20 DAILY FXN: 21 - 30 ACTIVITY FXN: 31 - 39 RELIABILITY FXN: 40 - 44 DIET/HYD
FXN: 45 - 47 EXERCISE FXN: 48 - 50 MINDFULNESS/BIOFEED FXN: 51 - 56 SLEEP FXN: 57 - 60
PAIN LVL: 61

sampleLabel <- function(day,pastL,d_label,roulette_l){
if (day == 1){

rand <- sample(1:length(d_label),1) # randomly sample a label from labels
L <- d_label[rand] # sample that entry of d_label
return(L)

}
else{

probs <- roulette_l[pastL,]
rand <- runif(1)
for (L in 1:length(probs)){

if (probs[L] >= rand){
return(L)

}
else{

rand <- rand - probs[L]
}

}
return(length(probs))

}
}

createDay <- function(L, d_main, scales, nscales) {
inst <- c(L) # create new artificial instance with label L
d_subset <- d_main[d_main$Q17 == L,] # only select cases with label
for (s_i in 1:nscales){ # instance generation

start = scales[2*s_i-1]
end = scales[2*s_i]
rand <- sample(1:nrow(d_subset),1)
for(att in start:end){

inst <- c(inst,as.integer(d_subset[rand,att]) - 2)
}

}
return(inst)

}

rouletteWheelSampling <- function(n)
{

#Variables
art <- data.frame()
scales <- c(c(1,20),c(21,30),c(31,39),c(40,44),c(45,47),c(48,50),c(51,56),c(57,60))
nscales <- length(scales)/2

paste('Now Generating',n,'samples',sep=" ")

for (person in 1:n) {
L <- 1 # arbitrary
for (day in 1:28) {
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L <- sampleLabel(day,L,d_label,roulette_l)
meas <- createDay(L, d_main, scales, nscales)
inst <- c(person, day, meas)
art <- rbind(art, inst)

}
}
my_names <- names(Daily)

for (i in 1:ncol(Daily)) {
my_names[i] <- paste0(my_names[i], ": ", Daily[1, i])

}
my_names <- my_names[19:79]

names(art) <- c("participant","day","label",my_names[1:60])
return(art)

}

art <- rouletteWheelSampling(100)
write.csv(art,'HonorsData.csv',row.names = FALSE)
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"""
Developing a Machine Learning Algorithm to Predict Daily Functioning in a Population
of Adolescents Living With Chronic Pain

Psychology Honors Thesis
Max Kramer, Oberlin College Class of 2020

This code is designed to be run after the R markdown file generates the dataset
"""

#
# EXTERNAL LIBRARY IMPORTATION
#

import sys
import csv
from math import sqrt
import pandas as pd
import numpy as np
import matplotlib.pyplot
from sklearn import preprocessing, metrics, model_selection

#
# MODELS
#

from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.neural_network import MLPRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression

#
# Helper Functions
#

def readin(path, verbose=False): # takes verbose flag
    dataset = pd.read_csv(path) # read csv from supplied filepath
    if verbose:  # for diagnostics
            print('dataset contains {} instances and {} attributes'.format(dataset.shape[0], dataset.shape[1] - 1))
    return dataset

def instanceFormat(dataset,k,n):
    X = []
    y = []
    participants = np.arange(1,101)
    for participant in participants:
        for label_day in range(k+n,29):
            label = (dataset.label)[(dataset.participant == participant) & (dataset.day == label_day)].to_numpy()[0]
            y.append(label)
            inst = []
            for day_offset in range(k-1,-1,-1):
                attribute_day = label_day - n - day_offset
                original_row = dataset[(dataset.participant == participant) & (dataset.day == attribute_day)].to_numpy()[0].tolist()
                if day_offset == 0 and n == 0:
                    inst.extend(original_row[3:])
                else:
                    inst.extend(original_row[2:])
            X.append(inst)
    return np.asarray(X),np.asarray(y)



def split(X, y, train_percent, seed, verbose=False):  # Split dataset
    X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, train_size=train_percent,
                                                                        random_state=seed)  # creates test and train set
    if verbose:  # for diagnostics
        print('training set contains {} instances'.format(X_train.shape[0]))
        print('test set contains {} instances'.format(X_test.shape[0]))
        print('split complete')
    return X_test.shape[0], X_train, X_test, y_train, y_test

def ConfidenceInterval(acc, testset_size):  # generate 95% CI with Bonferroni Correction for 4 comparisons per dataset
    CI = 2.39 * sqrt((acc * (1 - acc)) / testset_size)
    return CI

############## CLASSIFICATION MODELS ################

#
# ASSUMPTIONS TEST: Naive Bayes
#

def NaiveBayes(k,N,testset_size, dataset, X_train, X_test, y_train, y_test):
    clf = GaussianNB()
    clf.fit(X_train, y_train)
    acc = clf.score(X_test, y_test)
    predicted = clf.predict(X_test)
    summary = metrics.classification_report(y_test, predicted)
    conmat = metrics.confusion_matrix(y_test, predicted)
    with open('results_NB_{}_{}.csv'.format(k,N), mode='w') as csvout:
        writer = csv.writer(csvout, delimiter=',')
        writer.writerows(conmat)
    CI = ConfidenceInterval(acc, testset_size)
    print('Naive Bayes: {} accuracy  95% CI : [{} , {}]'.format('%.3f' % acc, '%.3f' % (acc - CI), '%.3f' % (acc + CI)))
    print()
    print(summary)
    return acc

#
# BASELINE: Logistic Regression
#

def LR(k,N,testset_size, dataset, X_train, X_test, y_train, y_test,seed):
    clf = LogisticRegression(random_state=seed)
    clf.fit(X_train, y_train)
    acc = clf.score(X_test, y_test)
    predicted = clf.predict(X_test)
    summary = metrics.classification_report(y_test, predicted)
    conmat = metrics.confusion_matrix(y_test, predicted)
    with open('results_LR_{}_{}.csv'.format(k,N), mode='w') as csvout:
        writer = csv.writer(csvout, delimiter=',')
        writer.writerows(conmat)
    CI = ConfidenceInterval(acc, testset_size)
    print('LR: {} accuracy  95% CI : [{} , {}]'.format('%.3f' % acc, '%.3f' % (acc - CI), '%.3f' % (acc + CI)))
    print()
    #debug = 1
        #if debug:
            #print(clf.intercept_)
            #print(clf.coef_[0].size)
            #print(clf.coef_)
            #print()
    print(summary)
    return acc

#
# Decision Tree
#

def DecisionTree(k,N,testset_size, dataset, X_train, X_test, y_train, y_test, seed):



    clf = DecisionTreeClassifier(random_state=seed)
    clf.fit(X_train, y_train)  # fit model to data
    acc = clf.score(X_test, y_test)
    predicted = clf.predict(X_test)
    summary = metrics.classification_report(y_test, predicted)
    conmat = metrics.confusion_matrix(y_test, predicted)
    with open('results_DT_{}_{}.csv'.format(k,N), mode='w') as csvout:
        writer = csv.writer(csvout, delimiter=',')
        writer.writerows(conmat)
    CI = ConfidenceInterval(acc, testset_size)
    print(
        'Decision Tree: {} accuracy  95% CI : [{} , {}]'.format('%.3f' % acc, '%.3f' % (acc - CI), '%.3f' % (acc + CI)))
    print()
    print(summary)
    return acc

#
# Random Forest
#

def RandomForest(k,N,testset_size, D, dataset, X_train, X_test, y_train, y_test, seed):
    clf = RandomForestClassifier(n_estimators=100, random_state=seed)
    clf.fit(X_train, y_train)  # fit model to data
    acc = clf.score(X_test, y_test)
    predicted = clf.predict(X_test)
    summary = metrics.classification_report(y_test, predicted)
    conmat = metrics.confusion_matrix(y_test, predicted)
    with open('results_Forest_{}_{}.csv'.format(k,N), mode='w') as csvout:
        writer = csv.writer(csvout, delimiter=',')
        writer.writerows(conmat)
    CI = ConfidenceInterval(acc, testset_size)
    print(
        'Random Forest: {} accuracy  95% CI : [{} , {}]'.format('%.3f' % acc, '%.3f' % (acc - CI), '%.3f' % (acc + CI)))
    if k == 1 and N == 0:
        importance = pd.DataFrame(clf.feature_importances_, index = D.columns[3:] , 
columns=['importance']).sort_values('importance', ascending=False)
        #debug = 1
        #if debug:
            #print(importance)
        importance.to_csv('importance_RF.csv')
        print()
    print(summary)
    return acc

#
# Neural Network
#

def shallowNN(k,N,testset_size, dataset, X_train, X_test, y_train, y_test, seed):
    clf = MLPClassifier(hidden_layer_sizes=(150,150),solver='adam', max_iter=5000, learning_rate_init=0.001, 
random_state=seed)
    clf.fit(X_train, y_train)
    acc = clf.score(X_test, y_test)
    predicted = clf.predict(X_test)
    summary = metrics.classification_report(y_test, predicted)
    conmat = metrics.confusion_matrix(y_test, predicted)
    with open('results_NN_{}_{}.csv'.format(k,N), mode='w') as csvout:
        writer = csv.writer(csvout, delimiter=',')
        writer.writerows(conmat)
    CI = ConfidenceInterval(acc, testset_size)
    print('Shallow NN: {} accuracy  95% CI : [{} , {}]'.format('%.3f' % acc, '%.3f' % (acc - CI), '%.3f' % (acc + CI)))
    print()
    print(summary)
    return acc

############## REGRESSION MODELS ################



#
# BASELINE: Linear Regression
#

def LinReg(testset_size, dataset, X_train, X_test, y_train, y_test):
    reg = LinearRegression()
    reg.fit(X_train, y_train)
    R2 = reg.score(X_test, y_test)
    predicted = reg.predict(X_test)
    MSE = metrics.mean_squared_error(y_test, predicted)
    #CI = ConfidenceInterval(acc, testset_size)
    print('Linear Regression: R^2 = {} MSE = {}'.format('%.3f' % R2, '%.3f' % MSE))
    print()
    return R2, MSE

#
# Decision Tree Regressor
#

def DecisionTreereg(testset_size, dataset, X_train, X_test, y_train, y_test, seed):
    reg = DecisionTreeRegressor(random_state=seed)
    reg.fit(X_train, y_train)  # fit model to data
    R2 = reg.score(X_test, y_test)
    predicted = reg.predict(X_test)
    MSE = metrics.mean_squared_error(y_test, predicted)
    #CI = ConfidenceInterval(MSE, testset_size)
    print(
        'Decision Tree: R^2 = {} MSE = {}'.format('%.3f' % R2,'%.3f' % MSE))
    print()
    return R2, MSE

#
# Random Forest Regressor
#

def RandomForestreg(testset_size, dataset, X_train, X_test, y_train, y_test, seed):
    reg = RandomForestRegressor(n_estimators=100, random_state=seed)
    reg.fit(X_train, y_train)  # fit model to data
    R2 = reg.score(X_test, y_test)
    predicted = reg.predict(X_test)
    MSE = metrics.mean_squared_error(y_test, predicted)
    #CI = ConfidenceInterval(acc, testset_size)
    print(
        'Random Forest: R^2 = {} MSE = {}'.format('%.3f' % R2, '%.3f' % MSE))
    print()
    return R2, MSE

#
# Neural Network Regressor
#

def shallowNNreg(testset_size, dataset, X_train, X_test, y_train, y_test, seed):
    reg = MLPRegressor(solver='adam', max_iter=1000, alpha=1e-3, random_state=seed)
    reg.fit(X_train, y_train)
    R2 = reg.score(X_test, y_test)
    predicted = reg.predict(X_test)
    MSE = metrics.mean_squared_error(y_test, predicted)
    #CI = ConfidenceInterval(acc, testset_size)
    print('Shallow NN: R^2 = {} MSE = {}'.format('%.3f' % R2, '%.3f' % MSE))
    print()
    return R2, MSE

########### MAIN ############

def main():



    seed = int(sys.argv[1])
    LR_table = np.zeros((7,8))
    NB_table = np.zeros((7,8))
    DT_table = np.zeros((7,8))
    RF_table = np.zeros((7,8))
    NN_table = np.zeros((7,8))
    # Linreg_R2_table = np.zeros((7,8))
    # DTreg_R2_table = np.zeros((7,8))
    # RFreg_R2_table = np.zeros((7,8))
    # NNreg_R2_table = np.zeros((7,8))
    # Linreg_MSE_table = np.zeros((7,8))
    # DTreg_MSE_table = np.zeros((7,8))
    # RFreg_MSE_table = np.zeros((7,8))
    # NNreg_MSE_table = np.zeros((7,8))
    Dataset = 'Honors'
    dataset = readin('./HonorsData.csv')
    for k in range(1,8):
        for N in range(8):
            X , y = instanceFormat(dataset,k,N)
            testset_size, X_train, X_test, y_train, y_test = split(X,y,0.85,seed)
            # print('K is {}, N is {}'.format(k,N))
            # R2_LR, MSE_LR = LinReg(testset_size, dataset, X_train, X_test, y_train, y_test)
            # Linreg_R2_table[k-1,N] = R2_LR
            # Linreg_MSE_table[k-1,N] = MSE_LR
            # print('K is {}, N is {}'.format(k,N))
            # R2_DT , MSE_DT =  DecisionTreereg(testset_size, Dataset, X_train, X_test, y_train, y_test, seed)
            # DTreg_R2_table[k-1,N] = R2_DT
            # DTreg_MSE_table[k-1,N] = MSE_DT
            # print('K is {}, N is {}'.format(k,N))
            # R2_RF , MSE_RF = RandomForestreg(testset_size, dataset, X_train, X_test, y_train, y_test, seed)
            # RFreg_R2_table[k-1,N] = R2_RF
            # RFreg_MSE_table[k-1,N] = MSE_RF
            # print('K is {}, N is {}'.format(k,N))
            # R2_NN, MSE_NN = shallowNNreg(testset_size, dataset, X_train, X_test, y_train, y_test, seed)
            # NNreg_R2_table[k-1,N] = R2_NN
            # NNreg_MSE_table[k-1,N] = MSE_NN

            print('K is {}, N is {}'.format(k,N))
            LR_acc = LR(k,N,testset_size, Dataset, X_train, X_test, y_train, y_test,seed)
            LR_table[k-1,N] = LR_acc
            print('K is {}, N is {}'.format(k,N))
            NB_acc = NaiveBayes(k,N,testset_size, Dataset, X_train, X_test, y_train, y_test)
            NB_table[k-1,N] = NB_acc
            print('K is {}, N is {}'.format(k,N))
            DT_acc = DecisionTree(k,N,testset_size, Dataset, X_train, X_test, y_train, y_test, seed)
            DT_table[k-1,N] = DT_acc
            print('K is {}, N is {}'.format(k,N))
            RF_acc = RandomForest(k,N,testset_size, dataset, Dataset, X_train, X_test, y_train, y_test, seed)
            RF_table[k-1,N] = RF_acc
            print('K is {}, N is {}'.format(k,N))
            NN_acc = shallowNN(k,N,testset_size, Dataset, X_train, X_test, y_train, y_test, seed)
            NN_table[k-1,N] = NN_acc
            print("-------------------------------")

    # np.savetxt('Linreg_R2.csv',Linreg_R2_table,delimiter=',',fmt='%f')
    # np.savetxt('Linreg_MSE.csv',Linreg_MSE_table,delimiter=',',fmt='%f')
    # np.savetxt('DTreg_R2.csv',DTreg_R2_table,delimiter=',',fmt='%f')
    # np.savetxt('DTreg_MSE.csv',DTreg_MSE_table,delimiter=',',fmt='%f')
    # np.savetxt('RFreg_R2.csv',RFreg_R2_table,delimiter=',',fmt='%f')
    # np.savetxt('RFreg_MSE.csv',RFreg_MSE_table,delimiter=',',fmt='%f')
    # np.savetxt('NNreg_R2.csv',NNreg_R2_table,delimiter=',',fmt='%f')
    # np.savetxt('NNreg_MSE.csv',NNreg_MSE_table,delimiter=',',fmt='%f')

    np.savetxt('LR.csv',LR_table,delimiter=',',fmt='%f')
    np.savetxt('NB.csv',NB_table,delimiter=',',fmt='%f')
    np.savetxt('DT.csv',DT_table,delimiter=',',fmt='%f')



    np.savetxt('RF.csv',RF_table,delimiter=',',fmt='%f')
    np.savetxt('NN.csv',NN_table,delimiter=',',fmt='%f')

if __name__ == '__main__':
    main()
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