
Oberlin Oberlin

Digital Commons at Oberlin Digital Commons at Oberlin

Honors Papers Student Work

2020

Courcelle's Theorem: Overview and Applications Courcelle's Theorem: Overview and Applications

Samuel Frederic Barr
Oberlin College

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Barr, Samuel Frederic, "Courcelle's Theorem: Overview and Applications" (2020). Honors Papers. 679.
https://digitalcommons.oberlin.edu/honors/679

This Thesis is brought to you for free and open access by the Student Work at Digital Commons at Oberlin. It has
been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at Oberlin. For
more information, please contact megan.mitchell@oberlin.edu.

https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/679?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu

Courcelle’s Theorem: Overview and Applications

Sam Barr
Advisor: Robert Geitz

Contents

I Courcelle’s Theorem 1

1 Parameterized Complexity 2

1.1 Tree Decompositions . 3

2 Algebra 5

2.1 F-Magmas . 5

2.2 Homomorphism and Automata . 7

2.3 Graphs as Algebraic Objects . 8

2.4 Tree Decompositions and Graph Expressions . 10

3 Logic 11

3.1 Graphs as Logical Objects . 11

3.2 Logical Languages . 12

3.2.1 First Order Logic . 12

3.2.2 Second Order Logic . 12

3.2.3 Monadic Second Order Logic . 13

4 Courcelle’s Theorem 14

4.1 Overview of Proof . 14

4.1.1 Preliminaries . 14

4.1.2 The Algorithm . 16

4.2 The Conclusion, or Maybe, the Punchline . 17

II Expressing Graph Properties in Monadic Second Order Logic 18

5 Basic Properties 19

5.1 Vertex Cover of Size K . 19

5.2 Dominating Set of size K . 19

5.3 Domatic Number K . 19

5.4 K-colorability . 20

5.5 Achromatic Number K . 20

5.6 K-edge-colorability . 20

5.7 Minimum Maximal Matching . 20

5.8 Supergraph of H . 21

6 Advanced Techniques 22

6.1 Reflexive, Transitive Closure . 22

6.2 Transductions . 23

ii

CONTENTS iii

7 Advanced Properties 25
7.1 Subgraph with property P . 25
7.2 Partition into K subgraphs with property P . 25
7.3 Supergraph with K extra edges with property P . 26
7.4 Hamiltonian Cycle . 26
7.5 K-connected . 26
7.6 Monochromatic Triangle . 26
7.7 Perfect Graph . 27
7.8 Complement has property P . 28
7.9 Feedback Vertex Set of size K . 28

iv CONTENTS

Part I

Courcelle’s Theorem

1

Chapter 1

Parameterized Complexity

In the study of algorithms, and complexity theory in general, we are primarily concerned with how the time
to compute some property of an input scales with the size of the input. When speaking about graphs, we
want to know how the time it takes to decide whether a graph has a certain property scales with the number
of vertices and edges of the graph. To give a well known example, the Edmonds-Karp algorithm decides
whether a flow network has a maximum flow greater than some integer k in time O(|V ||E|2). In particular,
it can be computed in polynomial time with respect to size of the inputs. Famously, many graph problems
are not known to have polynomial time algorithms. It is still an open question whether deciding if a graph
can be colored with k colors or has a vertex cover of size k can be computed efficiently.

In Parameterized Complexity Theory, we consider how difficult it is to compute a property in terms of
the size of the input, and in terms of some parameter of the input. How does the difficulty of computing a
vertex cover of size k scale as we increase k? How does the difficulty of deciding if a graph can be k-colored
scale as we increase k? From a theoretical standpoint, this allows us to better understand where the difficulty
of a problem is. The problem might not get that much more difficult as the input increases in size, but some
other structural component of the input may be increasing the required time. From a practical point of view,
parameterized complexity theory can help in designing more efficient algorithms for NP hard problems. For
instance, consider the following algorithm for the Vertex Cover problem:

function VC(k,G = (V,E))
if E = ∅ then

return True
else if k = 0 then

return False
else

Arbitrarily pick (u, v) ∈ E
Gu ← (V \ {u}, {e ∈ E : u /∈ e})
Gv ← (V \ {v}, {e ∈ E : v /∈ e})
return VC(k − 1, Gu) or VC(k − 1, Gv)

end if
end function

This algorithm can compute whether a graph G has a vertex cover of size k in time O(2k|E|) (proof is
left as an exercise for the reader). From this algorithm we can see that, for fixed k, vertex cover can be
solved in polynomial time! Have we solved P=NP? Do I get to cash in my million dollar check? Not quite
— the complexity classes P and NP are defined based off running time in terms of the size of the input.
Since our result is dependent on the parameter k, it has no bearing on whether Vertex Cover belongs to the
complexity class P.

In the realm of parameterized complexity, however, this algorithm demonstrates that Vertex Cover, when
parameterized by k, is Fixed Parameter Tractable. A parameterized problem is a problem which, given some
input x, can be decided in time O(f(κ(x))·p(x)), where κ(x) is the parameter of the problem, |x| is the size of
the input, p is some polynomial, and f is some computable function. Referred to as FPT, this parameterized
complexity class contains problems which, from a parameterized point of view, are efficient to compute. In

2

1.1. TREE DECOMPOSITIONS 3

this paper, we will demonstrate how a large class of parameterized graph problems can be shown to be fixed
parameter tractable.

1.1 Tree Decompositions

One particularly powerful way to parameterize a problem is by treewidth. Intuitively, the treewidth of a
graph describes how closely a graph resembles a tree. The treewidth of a graph is determined by the size of
the tree decompositions of a graph, a way to define a graph with a tree structure.

Definition 1.1.1 (Tree Decomposition). Let G be a graph A tree decomposition of G is a pair T :=〈
T, (Bt)t∈V (T)

〉
, where

• T is a tree

• Each Bt is a nonempty subset of V (G) with the following three properties:

– For every v ∈ V (G), there is some t ∈ V (T) such that v ∈ Bt
– For every xy ∈ E(G), there is some t ∈ V (T) such that x, y ∈ V (T)

– Let s, t, u ∈ V (T) such that t is on the unique path between s and u. Then Bt ⊇ Bs ∩Bu.

The subsets Bt are referred to as the bags of the decomposition.

Example 1.1.2. We give an example of a graph and one of its possible tree decompositions. It is easy to
check for yourself that the decomposition follows the three properties.

a

b c

d e f

g h

{a,b,c}

{b,c,e}

{b,d,e} {c,e,f}

{d,e,g} {e,f,h}

Notice how the structure of the tree visually resembles the corresponding graph. In this way, tree
decompositions capture the tree structure of a given graph, and the more a graph “resembles a tree”, the
smaller its treewidth will be. It is worth noting that tree decompositions are not unique. For example, any
graph G has the trivial tree decomposition consisting of a single node whose corresponding bag is V (G). This
would not be a useful decomposition, however, as it would lack any useful structure. From a decomposition
for a graph, we can determine its treewidth.

Definition 1.1.3 (Treewidth). Let T :=
〈
T, (Bt)t∈V (T)

〉
be a tree decomposition. Then the width of T is

maxt∈V (T) |Bt| − 1. Then for any graph G, the treewidth of G is the minimum width of any decomposition
of G, and we denote by twd(G) the treewidth of G.

The tree decomposition shown above demonstrates that the treewidth of the graph is at most two (and
in fact, it is exactly two since a graph has treewidth one exactly when it is a forest). An important fact in
the realm of tree decompositions is that, regardless of the width of the decomposition, the size of the tree
decomposition can be bounded linearly by the size of G. Tree decomposition algorithms wouldn’t be useful
from a parameterized complexity viewpoint if, to get a decomposition of small width, the tree needed to be
exponentially big.

4 CHAPTER 1. PARAMETERIZED COMPLEXITY

Theorem 1.1.4. Let G be a graph with n vertices. Let T be a decomposition of G of width k. Then there
is a decomposition T ′ of G with width k whose tree has at most n vertices, and this decomposition can be
computed efficiently from T .

Proof. We say that a tree decomposition is nice if for every s, t ∈ V (T), Bs 6⊆ Bt. It is clear that if a
decomposition is nice, then |V (T)| ≤ n, since each bag must have one vertex of G not present in any other
bag. We present the following procedure to turn an arbitrary decomposition into a nice decomposition.

procedure MakeNice(T)
if V (T) = ∅ then

return
end if
Pick r ∈ V (T)
for all neighbor s of r do

Ts ← subtree of T rooted at S
MakeNice(Ts)
if Bs ⊆ Br or Br ⊆ Bs then

identify vertices s and r, choosing the larger bag
end if

end for
end procedure

It is clear that this procedure runs in linear time, and that the tree decomposition properties are main-
tained throughout the procedure. It remains to show that this procedure transforms a tree decomposition
into a nice decomposition. Suppose that, after this procedure, there are vertices u, v such that Bu ⊆ Bv.
If u and v are not neighbors, let w be a neighbor of v on the path from u to v. By tree decomposition
properties, we have that Bw ⊇ Bu ∩ Bv = Bv. Therefore, without loss of generality, we assume that u and
v are neighbors.

At some point in the procedure, some neighbor w was identified with v which caused v’s bag to be a
superset of u’s. Then there must have been some vertex x of G such that x ∈ Bu and x ∈ Bw but x /∈ Bv.
This contradicts the tree decomposition properties.

Chapter 2

Algebra

2.1 F-Magmas

In algebra, we often consider some set, and some operations on that set which obey certain laws. We use
this to describe the properties of the set and the properties of the operation. For example, a Group consists
of some set G and an operation (·) : (G×G)→ G which is associative, has an identity, and has an inverse.
A Ring consists of some set R and two operations (+) and (·), which obey the associated Ring laws. While
in some sense Groups and Rings are very different objects, both with rich theories, we can see that they
have a similar structure. To capture this similarity in structure across algebras, we introduce F -Magmas.

Definition 2.1.1 (F-Magma). Let F be a set of signatures of functions, describing a function f which accepts
nf ≥ 0 arguments. An F -Magma is a pair M := 〈M, (fM)f∈F 〉, where fM is some function Mnf →M.

Magmas will prove useful for talking about larger algebras, and demonstrating properties shared by
different algebras. We demonstrate how we can use a Magmas can be used to describe groups:

Example 2.1.2. (Groups) We define FGroup := {(·), inv, e}, where

• n(·) := 2

• ninv := 1

• ne := 0

The (·) signature describes the group operation, the inv signature describes the inverse of each object in the
group, and e is the identity of the (·) operation. The additive group of integers is 〈Z, ((·)Z, invZ, eZ)〉, where

• (a ·Z b) := a+ b

• invZ(a) := −a

• eZ := 0

Another common algebraic object is a vector space, with some set of scalars F over a set of vectors V
and two operations: vector addition: (V × V) → V and scalar multiplication: (F × V) → V . For brevity
we omit identities, zeros, and inverses in this example. If we wanted to describe this with an F -Magma as
we did with groups, we’d run into a bit of an issue. We’d have a set of signatures FV ector containing two
operations (+) and (·) with n(+) = n(·) = 2. Let us try to specify this Magma for the vector space of real

numbers R over R17. As per our definition, we have a pair
〈
R17, ((+)17, (·)17

〉
), where

(+)17 : (R17 × R17)→ R17

as desired. However, we’d also be forced to have

(·)17 : (R17 × R17)→ R17

5

6 CHAPTER 2. ALGEBRA

Our definition of F -Magmas can’t account for an algebra which operates over more than one set. One possible
solution would be to, instead of having a single scalar multiple operator (·), include a scalar multiple operator
(r·) for each r ∈ R. This would work, but could become unwieldy, especially in more complicated Magmas.
Instead, we introduce a slight generalization of an F -Magma which more elegantly solves this problem.

Definition 2.1.3 (Many Sorted Magma). Let S be a set of sorts. An S-signature is a set F , where each
f ∈ F is equipped with

• α(f) ∈ S∗, describing the inputs of f , and

• σ(f) ∈ S, describing the output of f

An S-sorted F -Magma is a pair M := 〈(Ms)s∈S , (fM)f∈F 〉, where

• each Ms 6= ∅ is the domain of sort s

• for f ∈ F with α(f) = (s1, . . . , snf
) and σ(f) = s, fM is a mapping (Ms1 × . . .×Msnf

)→Ms.

We say that M is locally finite if Ms is finite for each s ∈ S.

We demonstrate how a sorted Magma can be used to describe vector spaces. For brevity, we again only
consider scalar multiplication and vector addition.

Example 2.1.4. We let SV ector := {s, v}, FV ector := {(+), (·)}, with

• α(+) := (v, v), σ(+) := v

• α(·) := (s, v), σ(·) := v

Now we can adequately describe our vector field with a Magma. We can define our Magma as the pair
R := 〈(Rs, Rv), ((+)R, (·)R)〉, where

• Rs := R

• Rv := R17

• v +R u := v + u

• c ·R v := cv

When working with some F -Magma M, we can consider each element as an expression written over
the elements in M and F . Considering our description of the additive group of integers, we can write
4 = ((1 ·Z eZ) ·Z 2) ·Z 1. We can conceptualize this expression as an abstract syntax tree, and use it to
perform computations on the elements of a Magma. Certain well behaved operations on the Magma will
act as bottom-up computations on these expression trees, allowing for easy description of these operations
and ensuring that they can be computed efficiently. Here we give one such operation, boolean predicates on
some algebra, whose structure will prove useful in proving Courcelle’s theorem. We fix a set of sorts S.

For some set of signatures F , we can consider the set of expressions written over F as an F -Magma. We
let M(F) be such a Magma. For any other F -Magma A, there is a clear homomorphism from M(F) to A
(Magma homomorphisms are defined in the next section).

Definition 2.1.5 (Family of Predicates). Let M be an F -Magma. A family of predicates on M is a set P ,
where

• Each p ∈ P has a sort σ(p).

• Each p ∈ P has an associated predicate p̂ : Mσ(p) → {true, false}.

For each p ∈ P , we define the subset of Mσ(p) where p̂ is true Lp :=
{
x ∈Mσ(p) : p̂(x) = true

}
. We say that

P is locally finite if {p ∈ P : σ(p) = s} is finite for each s ∈ S.

2.2. HOMOMORPHISM AND AUTOMATA 7

Definition 2.1.6 (Inductive Family of Predicates). Let M be an F -Magma, and P be a family of predicates
on M. We say that P is F -inductive if for each f ∈ F with α(f) = (s1, . . . , sn) and σ(f) = s and p ∈ P
with σ(p) = s, there is

• A sequence of natural numbers m1, . . . ,mn

• A sequence (p1,1, . . . , p1,m1
, p2,1, . . . , p2,m2

, . . . , pn,1, . . . , pn,mn
) in P .

• A boolean expression B which accepts m1 + . . .+mn arguments

such that

• σ(pi,j) = si for each 1 ≤ j ≤ mi

• For every x1 ∈Ms1 , . . . , xn ∈Msn ,

p̂(fM(x1, . . . , xn)) = B(p̂1,1(x1), . . . , p̂n,mn(xn))

Example 2.1.7. We consider the additive groups of integers mod 5. We let P = {equalsn : n ∈ Z[5]}, and
define

̂equalsn(x) = true ⇐⇒ x ≡ n (mod 5)

Here it is not necessary to define a σ(equalsn) for each n, since since we are not working with a many sorted
Magma. We demonstrate that this family of predicates is FGroup-inductive, showing that equals3 can be
calculated inductively.

̂equals3(e) = ̂equals3(0)

= false

̂equals3(−x) = ̂equals2(x)

̂equals3(x+ y) =

4∨
i=0

(êqualsi(x) ∧ ̂equals3−i(y))

Similar constructions can be made for each equalsn, and hence P is a FGroup-inductive family of predicates.

2.2 Homomorphism and Automata

Much like we have Group homomorphisms and Ring homomorphisms, we can discuss homomorphisms be-
tween Magmas. We fix a set of sorts S.

Definition 2.2.1 (Homomorphism). Let M and N be F -Magmas. A homomorphism from M to N is a
family of functions (hs)s∈S such that

• Each hs is a function Ms → Ns

• For each f ∈ F with α(f) = (s1, . . . , sn) and σ(f) = s, xi ∈Msi , we have

hs(fM(x1, . . . , xn)) = fN(hs1(x1), . . . , hsn(xn))

And we write h : M→ N. We omit the subscripts from the family of functions when it is unambiguous.

It is easy to see that Group homomorphisms and Vector Space homomorphisms fit within this definition.
Homomorphisms also exemplify the idea of performing computations over expressions written in the algebra.

Definition 2.2.2 (Automaton). Let M be an F -Magma, s ∈ S, and B ⊆ Ms. Then B is M-recognizable if
there is a locally finite F -Magma A, a homomorphism h : M→ A, and a set C ⊆ As such that h−1(C) = B.
The triple (h,A, C) is called an automaton. Note that since A is locally finite, necessarily C is finite.

8 CHAPTER 2. ALGEBRA

To apply some intuition from deterministic finite automata, we can consider Ms to be the inputs to the
automata, h to be the transition function, As to be the states, C to be the final (accepting) states, and B
to be the accepted inputs. From a computational viewpoint, the elements of B can be recognized in linear
time, since h can be computed by traversing the tree structure of an expression and C is finite. With the
next theorem, we demonstrate how you can show that some set is recognizable. We will see in the proof of
Courcelle’s theorem that this is a very important characterization of recognizable sets.

Theorem 2.2.3. Let M be an F -Magma, s ∈ S, and B ⊆ Ms. Then B is recognizable if and only if there
is an F -inductive, locally finite family of predicates P such that B = Lp for some p ∈ P .

Proof. (⇐) (Sketch) Let P be an F -inductive, locally finite family of predicates with B = Lp for some
p ∈ P . We construct an F -Magma P whose elements are functions P → {true, false}. We define h :
Ms → Ps such that h(m) : Ps → {true, false} is the map h(m)(q) := q̂(m). From this we determine fP
for each f ∈ F such that h is a homomorphism (this is tedious but not exceedingly non-trivial). We define
Q := {x ∈ P : x(p) = true}. It is clear then that (h,P, Q) is an automaton accepting B.

(⇒) Let (h,A, C) be an automaton recognizing B. We define P := {c} ∪
⋃
t∈S At for some c of sort s

with c /∈ As. For each a ∈ At, we define

â(x) = true ⇐⇒ h(x) = a

For f ∈ F with α(f) = (s1, . . . , sn) and σ(f) = s, we define

ĉ(x) = true ⇐⇒ h(x) ∈ C

Since A is locally finite, P must also be locally finite. Moreover, it is clear that B = Lc. It remains to show
that P is F -inductive. Let f ∈ F with α(f) = (s1, . . . , sn) and σ(f) = t. Let a ∈ At.

â(fM(x1, . . . , xn)) =
∨

(a1,...,an)∈f−1
A (a)

(â1(x1) ∧ . . . ∧ ân(xn))

Since A is locally finite, each f−1A can be pre-calculated in finite time. Thus each â can be defined inductively.
Let f ∈ F with α(f) = (s1, . . . , sn) and σ(f) = s.

ĉ(fM(x1, . . . , xn)) =
∨
a∈C

â(fM(x1, . . . , xn))

This latter equations conforms to the definition of F -inductive if we apply our equations for the âs

2.3 Graphs as Algebraic Objects

We consider finite, edge-labeled, directed hypergraphs with a finite sequence of sources. We will simply
call these hypergraphs for sake of brevity. The labels are chosen from some finite alphabet A, where each
a ∈ A has an associated type τ(a) ∈ N0. Note that even though the results included in this paper pertain to
directed hypergraphs, they are also applicable to “regular” graphs.

Definition 2.3.1 (Concrete Hypergraph). Let A be a finite alphabet (with associated types) and n ∈ N0.
A hypergraph of type n over A is a quintuplet G := 〈VG, EG, labG,vertG, srcG〉 such that

• VG is the set of vertices

• EG is the set of hyperedges

• labG : EG → A is assigns a label to each edge of G

• vertEG → V ∗G assigns a sequence of vertices to each hyperedge. We impose that for any e ∈ EG, the
length of vertG(e) is the same as the type of the label of e, τ(labG(e)).

• srcG ∈ V nG is the sequence of sources of G. We allow for repeated sources.

2.3. GRAPHS AS ALGEBRAIC OBJECTS 9

For an edge e ∈ EG, we often write τ(e) := τ(labG(e)). To get the ith source of G, we write srcG(i) (If
n = 0, then the source sequence of G is empty). We refer to these graphs as concrete graphs to distinguish
them from expressions written over the algebra we will define in this section.

Example 2.3.2. Let A := {a, b, c, d} be an alphabet, with τ(a) = 2, τ(b) = 0, τ(c) = 3, and τ(d) = 0. The
following depicts a hypergraph of type 3 over A:

The notion of a tree decomposition (and thus treewidth) can easily be extended to allow for hypergraphs.
One instead uses a rooted tree, adds the condition that the bag associated with the root of the tree must
contain every source of the hypergraph, and modifies the property describing each edges inclusion in the
decomposition to account for hyperedges.

We consider three different operations on graphs, which we will use to form our algebra. We fix an
alphabet A, and let G and H be hypergraphs of type n and m, respectively. Without loss of generality we
assume that G and H’s edge and vertex sets are disjoint. Then we define G⊕H to be the disjoint union of
G and H, with source sequence (srcG(1), . . . , srcG(n), srcH(1), . . . , srcH(m)). Given the definition of the
source sequence, we note that this operation is not commutative. The output of this operation has type
n+m.

Define [n] := {1, . . . , n}, in particular letting [0] := ∅. Let G be a hypergraph of type n, and let R be an
equivalence relation on [n]. Then we let θR(G) be the graph obtained by identifying srcG(i) and srcG(j)
whenever iRj. Often, we wish to only combine the ith and jth sources of G, in which case we write θi,j(G).
The output of this operation has type n.

Let G be a hypergraph of type n, let p ∈ N0, and let c : [p] → [n]. Then we let σc(G) be the graph
obtained by setting the source sequence to (srcG(c(1)), . . . , srcG(c(p))). Often, if we want to choose some
sources i1, . . . , ip, we write σi1,...,ip(G) as shorthand for σc(G) where c(k) = ik. The output of this operation
has type p.

Note that for θ and σ we write σc(G) as opposed to σ(c,G). We consider each σc (likewise each θR) to be
a separate function, rather than considering c to be a parameter of the function. Additionally, we introduce
a constant 0 representing the empty graph, a constant 1 representing a graph of type 1 with a single vertex,
and a constant a for each a ∈ A representing a graph of type τ(a) with a single hyperedge with label a. We
will use these operations and constants to construct a graph algebra.

Let : = N0 be our set of sorts. Then we define the set of signatures

HA : = {0,1}
∪ {a : a ∈ A}
∪ {⊕n,m : n,m ∈ N0}
∪ {θR,n : n ∈ N0, R ∈ Equiv([n])}
∪ {σc,n,p : n, p ∈ N0, c : [p]→ [n]}

10 CHAPTER 2. ALGEBRA

where Equiv(S) is the set of all equivalence relations for a set S, and each of these symbols has the associated
signature

• 0 : 0

• 1 : 1

• a : τ(a)

• ⊕n,m : (n×m)→ (n+m)

• θR,n : n→ n

• σc,n,p : n→ p

We call the elements of M(HA) graph expressions. For some graph expression t, we let val(t) be the unique
concrete graph described by t. We note that val is a homomorphism, and that according to the following
proposition,

Proposition 2.3.3. Let G be a hypergraph of type n. Then there is some graph expression t ∈M(Ha)n such
that val(t) = G.

it is a surjective homomorphism. A proof of this can be found in Bauderon and Courcelle [1]. Note that
it is not injective, since any graph can be described by a number of graph expressions.

2.4 Tree Decompositions and Graph Expressions

Most importantly, describing a graph with a graph expression provides a second way to relate a graph to a
tree-like structure. We show how the tree decompositions of a graph and the graph expressions of a graph
are related. First, much like a tree decomposition, a graph expression has an associated width.

Definition 2.4.1 (Width). The width of a graph expression is the largest type of graph represented within
the expression. We define it inductively.

wd(0) = 0

wd(1) = 1

wd(A) = τ(a), a ∈ A
wd(⊕n,m(t1, t2)) = max{n+m,wd(t1),wd(t2)}

wd(θR,n(t)) = max{n,wd(t)}
wd(σc,n,p(t)) = max{n, p,wd(t)}

Most importantly, the size of the tree decompositions of a graph and the size of the graph expressions of
a graph are linearly related.

Theorem 2.4.2. 1. Let G be a graph. Let T be a tree decomposition of G. Then there is a graph
expression t describing G such that

|T | = O(|t|), twd(T) = O(wd(t))

2. Let t be a graph expression describing G. Then there is a tree decomposition T of G such that

|t| = O(|T |),wd(t) = O(twd(T))

Proof. The constructions required to prove each of these statements can be found in Courcelle [3].

Chapter 3

Logic

3.1 Graphs as Logical Objects

Describing a graph with a logical structure enables us to formulate graph properties with logical formulas,
which is necessary for proving Courcelle’s theorem. Fixing an alphabet A and n ∈ N0, we introduce the
following symbols, which will be used to construct logical formulas:

• edga for each a ∈ A

• si for 1 ≤ i ≤ n

Let G be a hypergraph of type n over A. Using these symbols, we associate with G the following logical
structure:

|G| := 〈VG, EG, (edgaG)a∈A, (si)
n
i=1〉

We take VG and EG to be the domain of discourse for formulas written with this structure. Moreover,
we define the propositions edga and constants si thusly:

edgaG(e, x1, . . . , xτ(a)) ⇐⇒ e ∈ EG, labG(e) = a, and vertG(e) = (x1, . . . , xτ(a))

siG := srcG(i)

In the next section we will go over how, using various logical languages, we can use this structure to define
various graph properties. In the last section of this book, we will primarily be describing graph properties
of simple graphs without edge labels. When describing properties of such graphs, we introduce two more
logical structures:

|G|1 := 〈VG,adjG〉
|G|2 := 〈VG, EG, edgG〉

In the first structure, we restrict the domain of discourse to the vertices of the graph, with the proposition
adjG(x, y) defined by

adjG(x, y) ⇐⇒ there is an edge in G from x to y

In the second structure, our domain of discourse is once again the vertices and edges of the graph, with
the proposition edgG(e, x, y) defined by

edgG(e, x, y) ⇐⇒ e is an edge in G from x to y

Differentiating between these two structures will prove useful later on. Moreover, in this chapter we will
stick to writing formulas with these two structures for simplicities sake.

11

12 CHAPTER 3. LOGIC

3.2 Logical Languages

3.2.1 First Order Logic

First order logic allows for quantification over variables. As an example, here is a formula in first order logic
which expresses that a graph has no isolated vertex:

∀x∃y∃e [edg(e, x, y) ∨ edg(e, y, x)]

Any formula which can be expressed in first order logic can be decided in polynomial time. If a formula
has q quantifications, then a naive algorithm (i.e a for-loop for each quantification) can determine whether the
formula holds in the graph in time O(nq). This convenience, however, limits its expressive power. Properties
in first order logic are constrained to defining local properties of vertices. More formally, a theorem found
in Gaifman [6] states

Theorem 3.2.1. Let P be a property of graphs. Then P is expressible in first order logic if and only if P
can be expressed as a boolean combination of formulas of the following form:

∃v1, . . . , vs

 s∧
i=1

Q(N(vi, r)) ∧
∧
i 6=j

d(vi, vj) > 2r


where

• r, s ≥ 0

• Q is a first-order expressible property of graphs

• N(v, r) is the induced subgraph of vertices at most r steps away from v

• d(vi, vj) > 2r denotes that the shortest path between vi and vj has more than 2r vertices.

More “global” properties of graphs, such as k-colorability and connectivity, evade the bounds of this
theorem. Thus, an extension of first order logic is necessary to describe more complex properties of graphs.

3.2.2 Second Order Logic

Second order logic is an extension of first order logic which allows for quantification over arbitrary predicates,
not just variables. This added expressiveness allows for the ability to express properties you couldn’t express
in first order logic. For example, the following formula

∀P [(ϕ ∧ ψ)→ ρ]

ϕ := ∀x∃y [P (x, y)] ∧ ∀x∀y∀z [P (x, y) ∧ P (x, z)→ y = z]

ψ := ∀x∃y [P (y, x)]

ρ := ∀x∀y∀z [P (y, x) ∧ P (z, x) =⇒ y = z]

expresses that the domain of discourse is finite. The formula ϕ expresses that P is a function, ψ expresses
that P is surjective, and ρ expresses that P is injective. So the top formula says “if a function from a set
to itself is surjective, then it is injective”, which implies that the domain is finite. Notably, this cannot be
expressed in first order logic (this is easy to see from Theorem 3.2.1). The added expressiveness of second
order logic comes at a cost, however, in regards to decidability. A naive algorithm for the above formula

would run in time O
(

2n
2

n3
)

, and in general finding efficient algorithms for second order formulas is difficult.

3.2. LOGICAL LANGUAGES 13

3.2.3 Monadic Second Order Logic

To maintain some of the expressiveness of second order logic, while retaining the ease of decidability of
first order logic, we introduce monadic second order logic. In monadic second order logic, we allow for
quantification over variables and sets of variables. Monadic here refers to the ability to quantify over
predicates of a single variable (monadic predicates), which is exactly equivalent to quantifying over sets.
This added expressiveness allows us to express properties we couldn’t in first order logic. For instance,
k-colorability can be stated in monadic second order logic (here we show 2-colorability):

∃X∀x∀y [adj(x, y) =⇒ (x ∈ X ∧ y /∈ X) ∨ (x /∈ X ∧ y ∈ X)]

In the next chapter, we will demonstrate how a monadic second order formula of graphs can be efficiently
decided. In the last section of this paper, where we list properties which are expressible in monadic second
order logic, it will be necessary to distinguish between formulas written in the structure |G|1 and |G|2. We
will refer to the former as MS1 and the latter as MS2. It is easy to see that MS2 is strictly more powerful
than MS1. The domain of discourse for MS1 is a strict subset of the domain for MS2, and moreover adj can
be expressed in terms of edg:

adjG(x, y) ⇐⇒ ∃e [edgG(e, x, y)]

Moreover, it is should also be clear that the structures |G|1 and |G|2 are strictly weaker than |G|, and
therefore any results pertaining to add are applicable to the former two logical structures. In his paper,
Courcelle adds to his monadic second order logic another predicate Cardp,n, given by

Cardp,n(X) ⇐⇒ |X| ≡ p (mod n)

This further adds to the increased expressiveness, but still permits the main result in the next chapter,
where we show how combining these ideas in logic and algebra allow for a beautiful complexity result about
graphs.

Chapter 4

Courcelle’s Theorem

4.1 Overview of Proof

4.1.1 Preliminaries

Courcelle’s theorem states

Theorem 4.1.1. Let ϕ be a statement about hypergraphs written in monadic second order logic. Then there
is an algorithm which, for any hypergraph G with n vertices of treewidth k, decides whether ϕ holds in G in
time O(f(|ϕ| , k) · n), for some computable function f .

Using theorems and ideas we’ve gone over in earlier chapters, we will provide a sketch proof of this
theorem. We fix a formula ϕ in monadic second order logic for hypergraphs of type n over a finite alphabet
A which uses h quantifications. Our first course of action is to construct a tree automaton from ϕ which
operates over expressions written with the set of signatures HA. We will use Theorem 2.2.3 to accomplish
this. Thus, we need a locally finite family of predicates P with ϕ ∈ P which is HA-inductive. We let L h

be the set of all monadic second order formulas which use at most h quantifications, and take this to be our
family of predicates, where for each formula ψ ∈ L h

• the sort σ(ψ) ∈ N is the type of hypergraph over which ψ operates, and

• the associated predicate ψ̂ is true for a hypergraph of type n G if and only if ψ is true in G.

It should not be immediately clear whether L h satisfies the hypothesis of Theorem 2.2.3. We will first
argue that it is locally finite. Let L h

q be the set of formulas for hypergraphs of type q which use at most h
quantifications — it suffices to convince ourselves that this set is (more or less) finite. Taken at face value,
this set isn’t necessarily finite. For example, we can generate formulas like

∃x [x = x ∧ x = x ∧ . . . ∧ x = x]

ad infinitum. However, any sentence of such form is tautologically equivalent to ∃x [x = x]. If we consider
the elements of L h

q up to tautological equivalence, however, then the set is in fact finite, and this can be
proved by induction on h.

Lemma 4.1.2. The set L h
q is finite, up to tautological equivalence

Proof. (Sketch) As a base case, we consider formulas with no quantification. If we only have access to a
finite number of variables with which to write our formulas, then it is not difficult to see that we can only
write a finite number of tautologically distinct formulas.

Now consider formulas which use h + 1 quantifications. Specifically, we considers formulas of the form
∀x[ψ] (similarly ∃x[ψ]). Since ψ can only use h quantifications, by the inductive hypothesis there are only
finitely many tautologically distinct choices for ψ. Then, quantifying over ψ, we can only construct finitely
many distinct formulas.

14

4.1. OVERVIEW OF PROOF 15

It remains to show that L h is HA-inductive. This is shown in Lemmas 4.5 - 4.7 in Courcelle [2], and is
done by case analysis on expressions written over HA and formulas in monadic second order logic. Here, we
show how a monadic second order formula can be computed inductively over the θ operator.

First we must go over a bit of terminology. For a logical formula, a free variable is a variable which is
not bound by some quantifier. For example, the variable x is free in ∀y [y = x], while y is not free. We can
consider the set of free variables for a formula, for example the set of free variables for ∃x [x = y ∨ x ∈ X] is
{y,X}. If we were to evaluate this formula over some hypergraph G, we would need to assign these variables
accordingly to elements of G. For some set of free variables W, an assignment ν of W in G assigns each
variable of W to a vertex or edge in G, and assigns each set variable of W to a set of vertices or edges in G.
For a monadic second order formula ψ with free variable setW and some assignment ν ofW in a hypergraph
G, we write (G, ν) |= ϕ to mean “ϕ is true in G with respect to ν”.

Let H be a hypergraph of type n, W a set of free variables, ν an assignment of W in H, and i, j ∈ [n].
Then we define θi,j(ν), an assignment of W in θi,j(H), as follows:

θi,j(ν)(e) := ν(e) where e is an edge variable

θi,j(ν)(U) = ν(U) where U is an edge set variable

θi,j(ν)(x) =

{
srci(H) ν(x) = srcj(H)

ν(x) otherwise
where x is a vertex variable

θi,j(ν)(X) =

{
(ν(X) \ {srcj(H)}) ∪ {srci(H)} srci(H) ∈ ν(X)

ν(X) otherwise
where X is a vertex set variable

Lemma 4.1.3. Let ϕ be a formula in monadic second order logic for hypergraphs of type n with free variable
set W. Then for any i, j ∈ [n], there is a monadic second order formula ϕ′ such that for any hypergraph G
and assignment ν of W in G,

(G, ν) |= ϕ′ ⇐⇒ (θi,j(G), θi,j(ν)) |= ϕ

Proof. We perform this by structural induction on ϕ. We first examine the cases where ϕ has no quantifi-
cations:

(1) ϕ is the formula x = y. When writing ϕ′, we need to account for when x or y are the ith or jth source
of G. With this in mind, we define ϕ′:

x = y ∨ (x = si ∧y = sj) ∨ (x = sj ∧y = si)

In the case where x and y are edge variables, no change is needed.
(2) ϕ is the formula x ∈ X. Similar to above, we write

x ∈ X ∨ (x = si ∧ sj ∈ X) ∨ (x = sj ∧ si ∈ X)

And in the case where x is an edge variable and X is an edge set variable, no change is needed.
(3) ϕ is the formula edga(e, x, y). Here we assume that τ(a) = 2, but the construction is analogous for

other edge types. Noting that θ does not change the type of any edges, we simply account for when e passes
through the sources of concern. We define ϕ′ to be the disjunction of the following formulas:

edga(e, x, y)

x = si ∧ edga(e, sj , y)

x = sj ∧ edga(e, si, y)

y = si ∧ edga(e, x, sj)

y = sj ∧ edga(e, x, si)

x = si ∧y = sj ∧ edga(e, sj , si)

x = sj ∧y = si ∧ edga(e, si, sj)

16 CHAPTER 4. COURCELLE’S THEOREM

(4) ϕ is the formula Cardn,p(U). If U is an edge set, then the formula is unchanged (since θ neither adds
nor removes edges). If U is a vertex set, then we need to account for when the ith and jth sources are both
in U and these two sources are distinct vertices, and define ϕ′:

(Cardn,p(U) ∧ ψ) ∨ (Cardn+1,p(U) ∧ ¬ψ)

where ψ is the formula
si ∈ U ∧ sj ∈ U ∧ si 6= sj

(5-8) ϕ is one of ψ1 ∧ψ2, ψ1 ∨ψ2, or ¬ψ. Inductively, we construct formulas ψ′1 and ψ′2 or ψ′ (whichever
applies). Then we let ϕ′ be either ψ′1∧ψ′2, ψ′1∨ψ′2, or ¬ψ′ (respectively). It is easy to see that the constructed
ϕ′ is correct.

(7-10) ϕ is one of ∃x[ψ],∀x[ψ],∃X[ψ], or ∀X[ψ]. By the inductive hypothesis, we construct formula ψ′. If
x is an edge variable or X is an edge set variable, then it is clear that replacing ψ with ψ′ suffices. We argue
that this same construction works for vertex variables and vertex set variables (we only show for existential
quantification over set variables, and the argument for the other cases is analogous). We define νV to be a
W ∪ {X} assignment in G, extended to assign X to some vertex set V .

∃X[ψ] is true for G with respect to ν
⇐⇒

There is some V ⊆ V (G) such that ψ is true for G with respect to νV
⇐⇒

There is some V ⊆ V (θi,j(G)) such that ψ′ is true for θi,j(G) with respect to θi,j(v)V
⇐⇒

∃X[ψ′] is true for θi,j(G) with respect to θi,j(ν)

Therefore, we define ϕ′ to be ∃X[ϕ′] (an analogously for other quantifications).

As mentioned above, the proofs for the other operators in HA, as well as the constants in HA, can be
found in Courcelle [2]. Note that, if you wish to read Courcelle’s proof, that he proves it for an equivalent
variant of monadic second order logic which only has set variables.

Thus, L h satisfies the hypothesis of Theorem 2.2.3, and therefore Lϕ (the set of hypergraphs which
satisfy ϕ) is recognizable. Therefore, from ϕ, we can construct an automata which recognizes hypergraphs
which satisfy ϕ. This automata is a tree automata which operates over hypergraph expressions written in
HA. This automata, however, would be infinitely large, and this is precisely because HA has infinitely many

symbols. To accommodate for this, we restrict the algebra to H
(k)
A , the set of symbols in HA with sort less

than or equal to k. This is a finite set of symbols, and thus the generated automata will also be finite. In
particular, the size of the automata depends only on |ϕ| and k.

4.1.2 The Algorithm

We present the following algorithm which proves Courcelle’s Theorem. Let G be a hypergraph with n vertices
with a tree decomposition T :=

〈
T, (Bt)t∈V (T)

〉
of width k, and let ϕ be a formula in monadic second order

logic. First, using Theorem 1.1.4 we construct (in linear time) a decomposition T ′ of width k whose tree has
at most n vertices. Using Theorem 2.4.2, from T ′ we construct (in linear time) a hypergraph expression t
defining G, whose size and with are linearly bounded by the size and width of T ′. Let k′ := wd(t). From ϕ,
we construct an automata A which recognizes elements of Lϕ which have a hypergraph expression of width
at most k′. The size of this automata, and the time it takes to construct it, depend only on |ϕ| and k′. We
then run this automata on the expression t in time |A| · |t|.

We now convince ourselves that the running time of this algorithm is that which is stated in Courcelle’s
Theorem. There are functions f, g such that A can be constructed in time f(|ϕ|, k′), and |A| = g(|ϕ|, k′).
Therefore, including construction time, the algorithm runs in

f(|ϕ|, k′) + g(|ϕ, k′) · |t| ≤ f(|ϕ|, k′) + g(|ϕ|, k′) · n
≤ (f(|ϕ| , k′) + g(|ϕ| k′)) · n
≤ (f(|ϕ| , O(k)) + g(|ϕ| , O(k))) · n
= O((f(|ϕ| , k) + g(|ϕ| , k)) · n)

4.2. THE CONCLUSION, OR MAYBE, THE PUNCHLINE 17

as desired.

4.2 The Conclusion, or Maybe, the Punchline

As an immediate corollary, we have that any graph property which can be expressed in monadic second order
logic is fixed parameter tractable when parameterized by treewidth. One may be curious, understandably,
about the running time of this algorithm. What is the behavior of the function f in the statement of
the theorem? If you’ve been thinking that this theorem is too good to be true, then this is where your
suspicions may be confirmed. The unfortunate truth of Courcelle’s theorem is that the generated algorithm
is much too inefficient to be used in practice. A result which can be found in Frick and Grohe [5] states
that this function f cannot be bounded by an elementary function. In particular, f cannot be bounded by
an iterated exponential whose height is bounded by |ϕ| and k. Which is a lot of words to say that, even
for small sentences such like ∀X∃x [x ∈ X], the algorithm that Courcelle’s theorem generates, while linear,
would likely have a constant so large as to be rendered useless. Which is not to say all hope is lost. For
instance, we can use Courcelle’s theorem to show that Independent Set is fixed parameter tractable when
parameterized by treewidth and the desired size of the independent set:

∃x1, . . . , xM

∧
i6=j

(xi 6= xj ∧ ¬adj(xi, xj))


The parameterization by the size of the independent set occurs because |ϕ| = O(M2), where M is the
size of the desired set. However, there also exists a dynamic programming algorithm which, given a tree
decomposition of width k, solves the maximum independent set problem in time O(2k ·n). Though Courcelle’s
theorem may have a poor lower bound, it still provides a strict upper bound on any fixed parameter tractable
algorithm. The existence of a monadic second order formula describing a graph property is reason to believe
that a better, more efficient algorithm may exist.

Part II

Expressing Graph Properties in
Monadic Second Order Logic

18

Chapter 5

Basic Properties

We begin our exploration of which graph properties are expressible in monadic second order logic by first
demonstrating properties which are easy to express. We present most of these without comment, but will
expand further if there something needs further explaining. Also note that any part of a formula written
in quotation marks is not an actual MS formula, but can easily easily be expressed as one. We will be
working with undirected, unlabeled graphs without any source vertices. It is easy to see that Courcelle’s
theorem applies here, if we consider graphs of type 0 with alphabet A = {a} with τ(a) = 2. Moreover, while
Courcelle’s theorem is proved for directed graphs, to get around this we can imagine replacing every instance
of adj(x, y) or edg(e, x, y) with adj(x, y) ∨ adj(y, x) and edg(e, x, y) ∨ edg(e, y, x), respectively. Complete
definitions for most of these problems can be found in Garey and Johnson [7].

By convention, we use uppercase letters for set variables and lowercase letters for set variables. Moreover,
we will generally use X for vertex sets, U for edge sets, x for vertices, and e for edges, though what each
variable represents should be clear from context.

Due to the poor running time of any algorithm generated by some logical formula, we do not take care
to minimize the length of expressions, and instead put more care to make the formulas easily understood.

5.1 Vertex Cover of Size K

∃x1, . . . , xK∀e

[
k∨
i=1

inc(e, xi)

]

We define inc(e, x) := ∃y[edg(e, y, xi)], expressing that an edge e is incident to some vertex x. Notice that
the length of the expression depends on K, we will see this with graph properties which are parameterized
by some positive integer.

5.2 Dominating Set of size K

∃x1, . . . , xK∀y

[
K∨
i=1

(y = xi ∨ adj(y, xi))

]

5.3 Domatic Number K

∃X1, . . . , XK

[
partition(X1, . . . , XK) ∧

K∧
i=1

“Xi is a dominating set”

]

The formula partition(X1, . . . , XK) states that the vertex sets X1, . . . , XK form a partition of the vertices,

19

20 CHAPTER 5. BASIC PROPERTIES

and is defined as

partition(X1, . . . , XK) := ∀x

[
K∨
i=1

x ∈ Xi

]
∧ ¬∃x

 K∨
i6=j

(x ∈ Xi ∧ x ∈ Xj)


The sentence “Xi is a dominating set” can be easily constructed by modifying the formula for dominating
set shown above. Its also worth noting that this is the first formula where we’ve used set quantifications
(the previous formulas were all first order formulas). Here it is necessary, since we don’t know the size of
the dominating sets that form the partition of the graph.

5.4 K-colorability

∃X1, . . . , XK

[
partition(X1, . . . , XK) ∧ ∀x, y

[
adj(x, y)→

K∧
i=1

¬(x ∈ Xi ∧ y ∈ Xi)

]]

5.5 Achromatic Number K

∃X1, . . . , XK

“X1, . . . , XK is a K-coloring” ∧
K∧
i6=j

“Xi ∪Xj is not an independent set”


“X ∪ Y is not an independent set” := ∃x, y [x ∈ X ∧ y ∈ Y ∧ adj(x, y)]

5.6 K-edge-colorability

∃U1, . . . , UK

[
partition(U1, . . . , UK) ∧ ∀e1, e2

[
∃x [inc(e1, x) ∧ inc(e2, x)]→

K∧
i=1

¬(e1 ∈ Ui ∧ e2 ∈ Ui)

]]

5.7 Minimum Maximal Matching

∃U [“|U | ≤ K ′′ ∧ “U is a matching” ∧ ∀U ′ [“U ′ ⊇ U ′′ → ¬“U ′ is a matching”]]

There are several sentences that need defining here, but none are too complicated.

“|U | ≤ K ′′ := ∀e1, . . . , eK+1

K+1∧
i=1

ei ∈ U →
K+1∨
i 6=j

ei = ej


“U is a matching” := ∀e1, e2 [e1, e2 ∈ U ∧ e1 6= e2 → ¬∃x [inc(e1, x) ∧ inc(d2, x)]]

“U ′ ⊇ U ′′ := ∀e [e ∈ U → e ∈ U ′]

Note how we denoted that the edge set U was a maximal matching — this is a useful pattern that will be
used elsewhere. We also show how to lower bound the size of the set, and check equality on the size of a set:

“|U | ≥ K ′′ := ∃e1, . . . , eK

 K∧
i 6=j

ei 6= ej ∧
K∧
i=1

ei ∈ U


“|U | = K ′′ := “|U | ≤ K ′′ ∧ “|U | ≥ K ′′

We cannot in general check that two sets have the same size — there is no monadic second order formula
for “|X| = |U |′′, second order logic is necessary to describe bijections between sets.

5.8. SUPERGRAPH OF H 21

5.8 Supergraph of H

We fix some graph H, with V (H) = {v1, . . . , vn} and E(H) = {e1, . . . , em}.

∃x1, . . . , xn, u1, . . . , um

 n∧
i 6=j

xi 6= xj ∧
m∧
i6=j

ui 6= uj

n∧
i=1

n∧
j=1

m∧
k=1

“ edg(uk, xi, xj) ⇐⇒ edg(ek, vi, vj)
′′



“ edg(uk, xi, xj) ⇐⇒ edg(ek, vi, vj)
′′ :=

{
edg(uk, xi, xj) if ek is an edge in H from vi to vj

¬ edg(ek, xi, xj) otherwise

In this way, we find a group of distinct vertices and edges in our graph which, when taken as a subgraph,
are isomorphic to H. Notice that the length of the formula depends on the size of H.

Chapter 6

Advanced Techniques

6.1 Reflexive, Transitive Closure

An important fact about monadic second order logic is that if we can express some binary relation of variables
in monadic second order logic, then we can also express the reflexive, transitive closure of that relation. We
will see that this is made possible by the ability to quantify over sets, and thus cannot be expressed in first
order logic.

Theorem 6.1.1. Let R be a binary relation on a set D. Then if R is expressible in monadic second order
logic then so is the transitive, reflexive closure of R.

Proof. Let R+ denote the transitive reflexive closure of R. We say a set X ⊆ D is R-closed if for any x, y ∈ D
such that x ∈ X and xRy, we have y ∈ X.

Claim: Let x ∈ D and let X ⊆ be an R-closed set such that x ∈ X. Further suppose that X is minimal
with respect to these properties. Then y ∈ X ⇐⇒ (x, y) ∈ R+.
(⇒) Suppose not. Then the set X \ {z ∈ D : yR+z} would also be R closed and contain x. But X was
assumed to be minimal with respect to these properties, and so this is a contradiction.
(⇐) If xR+y, either x = y, xRy, or there is some chain z1, . . . , zn such that xRz1, ziRzi+1, and znRy. In
the first case, trivially y ∈ X. In the second case y ∈ X since X is R-closed. In the third case, inductively
we have zi ∈ X =⇒ y ∈ X since X is R-closed.

Let ϕ(·, ·) be a monadic second order logic formula which defines R. First, we write a formula which
expresses that that a set X is R-closed.

ψ(X) := ∀x [x ∈ X → ∀y [ϕ(x, y)→ y ∈ X]]

Using the above claim, we write a formula defining the transitive, reflexive closure of R:

ϕ+(x, y) := ∀X [(ψ(X) ∧ x ∈ X ∧ ∀Y [a ∈ Y ∧ ψ(Y)→ “X ⊆ Y ′′])→ y ∈ X]

As far as we are concerned, the main application of this theorem is to describe connectivity in graphs.
Two vertices are connected if there is some chain of vertices between the two which are all adjacent. And
any vertex is trivially connected to itself. In other words, connectedness is the transitive, reflexive closure
of the adjacency relation.

Corollary 6.1.2. The following properties are expressible in monadic second order logic:

1. Two vertices x and y are connected by a path

2. A graph is connected

22

6.2. TRANSDUCTIONS 23

3. An edge set U forms a path between vertices x and y

4. An edge set C forms a cycle

Proof. 1. This follows immediately from our discussion above.

2. This is easily described with the formula ∀x, y[“x and y are connected”]

3. We observe that a set U forms a path between x and y if you can get from x to y using only edges in
U , and that U is minimal with respect to this property. That x and y are connected with edges in U
is the transitive, reflexive closure of the following formula:

ψJ(a, b) := ∃e [e ∈ J ∧ edg(e, a, b)]

Then the path property can be written as

ψ+
U (x, y) ∧ ∀J

[(
“J ⊆ U ′′ ∧ ψ+

J (x, y)
)
→ “J = U ′′

]
where ψ+

U denotes the transitive, reflexive closure. The second half of the formula asserts that U doesn’t
contain any extraneous edges not in the path and that the path described doesn’t contain any loops.

4. We first note that a graph is a cycle if and only if it is 2-regular and connected. It suffices then to
express these properties when restricted to the edges in a set C. First, we need to ignore vertices which
are not incident to any edge in C. We define ϕ(x) := ∃e[e ∈ C ∧ inc(e, x)], expressing that a vertex x
is incident to an edge in C. Then, to describe that C induces a 2-regular graph, we write

“dC(x) ≤ 2′′ := ∀e1, e2, e3

(3∧
i=1

ei ∈ C ∧
3∧
i=1

inc(x, ei)

)
→

3∨
i 6=j

ei = ej


“dC(x) ≥ 2′′ := ∃e1, e2 [e1 6= e2 ∧ e1, e2 ∈ C ∧ inc(e1, x) ∧ inc(e2, x)]

θ(C) := ∀x [ϕ(x)→ (“dC(x) ≤ 2′′ ∧ “dC(x) ≥ 2′′)]

That the edge set C induces a connected graph is easier to express, using the formula ψ defined above:

η(C) := ∀x, y
[
¬ϕ(x) ∨ ¬ϕ(y) ∨ ψ+

C (x, y)
]

Then the formula θ(C) ∧ η(C) describes that the edge set C forms a cycle.

For ease of notation, we introduce new operators cycle and path, given by

cycle(U) := “The edge set U forms a cycle”

path(U, x, y) := “The edge set U forms a path from x to y”

6.2 Transductions

One of the most powerful tools in writing logical formulas is that of transductions. Broadly, transductions
allow you to describe a graph within (N disjoint copies of) a different graph. Transductions can be used to
describe properties of subgraphs, supergraphs, and various graph transformations.

Definition 6.2.1 (Transduction Definition Scheme). Let N > 0 andW be a set of variables. A transduction

definition scheme is a triple ∆ =
〈
ϕ, (ψi)

3
i=1, (edgi,j,k)3i,j,k=1

〉
, where

• An monadic second order formula ϕ with free variables in W

• monadic second order formulas ψi with free variables in W ∪ {x}

24 CHAPTER 6. ADVANCED TECHNIQUES

• monadic second order formulas edgi,j,k with free variables in W ∪ {x1, x2, x3}

Definition 6.2.2. Let ∆ be a transduction definition scheme, G be a graph, and γ be a definition of W in
G, i.e a function W → V (G) ∪ E(G). We say the domain of the transduction is

D := {(x, i) : x ∈ V (G) ∪ E(G), 1 ≤ i ≤ N, (G, γ, x) |= ψi}

Moreover, we say a graph H is defined by G, γ, and ∆ if

• (G, γ) |= ϕ

• There is a bijective map δ : D → (V (H) ∪ E(H))

• For any (x1, i), (x2, j), (x3, k) ∈ D, we have that (G, γ, x1, x2, x3) |= edgi,j,k ⇐⇒ δ(x1, i) is an edge
in H going from δ(x2, j) to δ(x3, k).

Intuitively, ϕ checks that your variable assignment is valid for the purpose of the transduction, each ψi
defines the domain of the ith copy of the graph, and edgi,j,k defines the edge relation between the ith, jth,

and kth copy of the graph.

Example 6.2.3. We demonstrate how we can use a transduction to describe the supergraphs of a graph
obtained by adding K ≤ |V | edges. We define this transduction with 2 copies of the original graph thusly:

• W := {u1, . . . , uK , v1, . . . , vK , t1, . . . , tK}

• ϕ :=
∧K
i=1(ui 6= vi) ∧

∧K
i 6=j(ti 6= tj)

• ψ1(x) := true

• ψ2(x) :=
∨K
i=1(x = ti)

– edg1,1,1(e, x, y) := edg(e, x, y)

– edg2,1,1(e, x, y) :=
∨K
i=1(e = ti ∧ x = ui ∧ y = vi)

– edgi,j,k(e, x, y) := false

In this way, the first copy of the graph behaves normally with regard to logical formulas. With the second
copy, we choose K distinct vertices and have them act as the new edges we are adding.

More specifically, what we have defined here is an MS2 transduction. We can similarly define an MS1

transduction, where instead of defining formulas edgi,j,k for 1 ≤ i, j, k ≤ N , we define formulas adji,j for
1 ≤ i, j ≤ N . These will be useful when its difficult to bound the size of the edge set of the graph we’re
transducing to.

In order for a transduction scheme to be useful, we need to be able to write formulas for the graph we
are transducing to. The fundamental property of transductions states that this is possible.

Theorem 6.2.4. Let ∆ be a transduction definition scheme with free variable set W. Then for any monadic
second order formula ϕ, you can construct a monadic second order formula ϕ′ with free variables in W such
that, for any graph H which is defined by G, γ,∆ (where G is a graph and γ is an assignment of W in G),
we have

H |= ϕ ⇐⇒ (G, γ) |= ϕ′

Proof. The proof is done by induction on the structure of ϕ, and can be found in Courcelle [4].

Chapter 7

Advanced Properties

7.1 Subgraph with property P

Suppose that P is some property which can be expressed in monadic second order logic. We can describe
arbitrary subgraphs with the following transduction definition scheme:

• W := {V,E}

• ϕ := ∀e [e ∈ E → ∃x, y [x, y ∈ V ∧ edg(e, x, y)]]

• ψ1(x) := x ∈ V ∨ x ∈ E

• edg1,1,1(e, x, y) := edg(e, x, y)

With this, we can quantify over all subgraphs of a graph and determine whether any have property P

∃X,U [“(X, U) is a subgraph with property P”]

Examples of properties which can be described in monadic second order logic and whose corresponding
subgraph problem is NP-complete include:

• Bipartite

• Maximum degree less than d

• Planar: Planar graphs can be characterized by forbidden minors according to Kuratowski’s theorem,
and graph minors can be expressed in monadic second order logic (see Courcelle [3] for how to do this)

• Edge graph (edge graphs can be characterized by forbidden subgraphs, as demonstrated in Harary [8])

• Transative: ∀x, y, z[adj(x, y) ∧ adj(y, z)→ adj(x, z)]

• 1-connected

Many of these problems require some extra constraint on the subgraph in order to be NP-complete, like
constraining some minimum size for the subgraph. More detail can be found in Garey and Johnson [7], but
in every case this extra constraint is easy to add in the monadic second order formula.

7.2 Partition into K subgraphs with property P

Suppose that P is some monadic second order expressible property. We can describe an induced subgraph
with the following transduction definition scheme:

• W := {V }

25

26 CHAPTER 7. ADVANCED PROPERTIES

• ϕ := true

• ψi(x) := x ∈ V ∨ ∃y, z [y, z ∈ V ∧ edg(x, y, z)]

• edg1,1,1(e, x, y) := edg(e, x, y)

With this, we can quantify over all partitions of a graph into K subgraphs and determine whether any are
such that each of the partitions have property P .

∃X1, . . . , XK

[
partition(X1, . . . XK) ∧

K∧
i=1

“Xi induces a graph with property P”

]

Examples of P which are expressible in monadic second order logic, and whose corresponding partition
problem is NP-complete, include:

• Hamiltonicity

• Acyclic (see Feedback Vertex Set)

• Complete: ∀x, y [adj(x, y)]

• Perfect Matching. A graph is a perfect matching if it is 1-regular, which we have shown can be described
in monadic second order logic.

7.3 Supergraph with K extra edges with property P

In the previous section we showed how to describe the supergraph of a graph obtained by adding K edges.
We then need to quantify over all possible edges to add and check if any such supergraph has property P .
Note that by the construction of the transduction we require that the graph has at least K vertices.

7.4 Hamiltonian Cycle

∃C [cycle(C) ∧ ∀x∃e [e ∈ C ∧ inc(e, x)]]

7.5 K-connected

We use the characterization that in any K-connected graphs, there are at least K disjoint paths between
any two vertices.

∀x, y∃P1, . . . , PK

 K∧
i=1

path(Pi, x, y) ∧
K∧
i 6=j

“Pi ∩ Pj = ∅′′


7.6 Monochromatic Triangle

We first write a monadic second order formula which describes a triangle in a graph:

∃x, y, z [adj(x, y) ∧ adj(y, z) ∧ adj(z, x)]

Next, we define a transduction for the graph induced by an edge set:

• W := {U}

• ϕ := true

• ψi(x) := x ∈ U ∨ ∃e [e ∈ U ∧ inc(e, x)]

7.7. PERFECT GRAPH 27

• edg1,1,1(x, y, z) := edg(x, y, z)

Then we can quantify over all partitions of the edge set of a graph, and check whether any such partition
does not contain a triangle.

∃U1, U2

[
partition(U1, U2) ∧

2∧
i=1

“Ui induces a graph without a triangle”

]

7.7 Perfect Graph

First, it should be noted that this result isn’t terribly important from a complexity point of view, since a
polynomial time algorithm exists to determine whether a graph is perfect. However, I felt it interesting to
include it since it makes use of much of the machinery we have at hand for writing properties in monadic
second order logic. Also, as far as I know, no one else has shown that determining whether a graph is perfect
is FPT when parameterized by treewidth.

A graph G is perfect if, for any set X ⊆ V (G), the chromatic number and max clique size of the induced
subgraph G[X] are equal. This characterization will not help us in writing a formula, since monadic second
order logic is unable to do arithmetic (specifically equality of size of sets). There is another characterization
of perfect graphs, however, which will prove useful to us. We recall that the complement of a graph G is the
graph whose edge set consists of edges not in G.

Theorem 7.7.1 (Strong Perfect Graph Theorem). Let G be a graph. Then G is perfect if and only if G
contains neither C2k+1 nor C2k+1 as an induced subgraph for k ≥ 2.

We first write a formula which describes graphs which are odd cycles of length at least 5:

“connected” ∧ “2-regular” ∧ ∀X [(∀x [x ∈ X])→ Card1,2(X) ∧ “|X| ≥ 5′′]

We’ve previously established that all the expressions written in quotes above can be expressed in monadic
second order logic. Then using the transduction used in section 7.2, we can write the formula

∀X [“X does not induce C2k+1 for k ≥ 2”]

It remains to show that we can express that a graph does not contain C2k+1 as an induced subgraph. If
we can define a transduction definition scheme for the complement of a graph, then we are done. We have
to be careful when defining this transduction. How many copies are necessary to describe the edges we are

adding? Consider a totally disconnected graph with n vertices — the complement would have n2−n
2 edges.

In the worse case scenario, we would need n copies of the graph to perform the transduction. In other words,
the size of the formula would depend on the size of the graph, rendering moot any potential complexity
results.

Instead we use an MS1 transduction. Since the complement of the graph has the same number of vertices
as the original graph, we only require one copy of the graph to perform the transduction. We define the
following transduction scheme to describe the complement of a graph:

• W := ∅

• ϕ := true

• ψ1(x) := true

• adj1,1(x, y) := ¬∃e[edg(e, x, y)]

Lastly, we need to confirm that we can apply this transduction to the above formula; that the above formula
does not require quantification over edges or edge sets. Connectedness is the transitive closure of the adj
operator, so it MS1 expressible. That a graph is 2-regular can be written without edge quantifications thusly:

“d(x) ≤ 2′′ := ∀y1, y2, y3

 3∧
i=1

adj(x, yi)→
3∨
i 6=j

yi = yj



28 CHAPTER 7. ADVANCED PROPERTIES

“d(x) ≥ 2′′ := ∃y1, y2 [adj(x, y1) ∧ adj(x, y2) ∧ y1 6= y2]

“2-regular” := ∀x [“d(x) ≤ 2′′ ∧ “d(x) ≥ 2′′]

The rest of the formula trivially does not require edge quantification. Therefore, that a graph induces
C2k+1 for k ≥ 2 can be described in monadic second order logic. Then with the strong perfect graph theorem
we can write a formula which describes that a graph is perfect:

∀X
[
“X does not induce C2k+1, k ≥ 2” ∧ “X does not induce C2k+1, k ≥ 2”

]
7.8 Complement has property P

Suppose that P is some monadic second order expressible property which can be written in MS1, i.e only using
the adj operator and without edge quantifications. As we discussed above, we can then use a transduction to
describe if the complement of a graph has property P . An important example of a property which requires
edge quantifications is hamiltonicity.

7.9 Feedback Vertex Set of size K

We first define a transduction scheme for a graph resulting from removing K vertices.

• W := {v1, . . . , vK}

• ϕ := true

• ψi(x) :=
∧K
i=1 x 6= vi

• edg1,1,1(x, y, z) := edg(x, y, z)

Using our formula for whether a set of edges describes a cycle we defined in the previous chapter, we can
write a formula describing that a graph is acyclic:

“acyclic” := ∀U [¬ cycle(U)]

Then using the above transduction, we can quantify over all groups of K edges and determine whether the
removal of some group of K vertices makes the graph acyclic. In the same fashion, we can also describe that
a set has a feedback edge set of size K in monadic second order logic.

Bibliography

[1] Michel Bauderon and Bruno Courcelle. “Graph Expressions and Graph Rewritings”. In: Mathematical
Systems Theory 20 (1987), pp. 83–127.

[2] Bruno Courcelle. “The Monadic Second-order Logic of Graphs I: Recognizable Sets of Finite Graphs”.
In: Inf. Comput. 85.1 (Mar. 1990), pp. 12–75. issn: 0890-5401.

[3] Bruno Courcelle. “The monadic second-order logic of graphs III: tree-decompositions, minors and com-
plexity issues”. In: RAIRO - Theoretical Informatics and Applications - Informatique Théorique et
Applications 26.3 (1992), pp. 257–286.

[4] Bruno Courcelle. “The monadic second-order logic of graphs V: on closing the gap between definability
and recognizability”. In: Theor. Comput. Sci. 80 (1991), pp. 153–202.

[5] Markus Frick and Martin Grohe. “The complexity of first-order and monadic second-order logic revis-
ited”. In: Annals of Pure and Applied Logic 130 (2004), pp. 3–31.

[6] Haim Gaifman. “On local and non local properties”. In: Proceedings of the herbrand symposium, logic
colloquium 81 (1982), pp. 105–135.

[7] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-
Completeness. USA: W. H. Freeman & Co., 1990. isbn: 0716710455.

[8] Frank Harary. Graph Theory. CRC Press, 1994. isbn: 0201410338.

29

	Courcelle's Theorem: Overview and Applications
	Repository Citation

	tmp.1594925417.pdf.6oK6h

