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LARGE CARDINALS

OLIVER PECHENIK

Abstract. Infinite sets are a fundamental object of modern mathematics. Surprisingly, the

existence of infinite sets cannot be proven within mathematics. Their existence, or even the

consistency of their possible existence, must be justified extra-mathematically or taken as

an article of faith. We describe here several varieties of large infinite set that have a similar

status in mathematics to that of infinite sets, i.e. their existence cannot be proven, but they

seem both reasonable and useful. These large sets are known as large cardinals. We focus on

two types of large cardinal: inaccessible cardinals and measurable cardinals. Assuming the

existence of a measurable cardinal allows us to disprove a questionable statement known as

the Axiom of Constructibility (V = L).
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2 OLIVER PECHENIK

1. Introduction

The Ancient Greeks were very wary of infinite sets. With only one extant clear exception,

all of their mathematics was developed using only finite objects and finite processes.1 For

modern mathematics, such an approach is no longer tenable. We necessarily use infinite sets

all the time, especially given our set-based approach to continuous objects in geometry and

topology.

Yet it is not possible to prove the existence of an infinite set. If there were to be a proof that

such a set exists, it would be in the branch of mathematics known as set theory. However,

in the most widely used axiomatization of set theory, the Zermelo-Fraenkel set theory with

the Axiom of Choice (ZFC), infinite sets are created by dictum: ZFC contains a statement

known as the Axiom of Infinity (Inf), which postulates nothing more than the existence of

an infinite set. Our first goal in this paper will be to see that the remaining axioms, in the

absence of Inf, do not allow us to prove that there are any infinite sets.

The remainder of this paper is devoted to considering stronger axioms of infinity. Like Inf,

each axiom will postulate the existence of sets larger than can be demonstrated without the

axiom. Again like Inf, none of these axioms will be statements we can prove from the other

axioms. We must accept or reject these stronger axioms according to our intuitions about the

shape of the mathematical universe and our intuitions about the validity of results obtained

from them.2

Just as the Ancient Greeks rejected infinite sets and carried out all their mathematics in a

finitist framework, we can choose to reject these large infinities and perform our mathematics

without them. Indeed, nearly all of contemporary mathematics outside of set theory proper

is built without the use of these large sets. However, developing comfort with these large sets

may allow us to enrich the edifice of mathematics in wonderful ways, just as the Greeks might

well have developed true differential and integral calculus, if only they had been willing to

work with infinity in a more open way.

1A decade ago, I could have safely written this sentence without the concession at front. Recently, however,
it has been discovered that Archimedes explicitly used infinite sets in his work. In particular, he is known to
have considered the set of all cross-sections of a geometric object, and further to have considered performing
an operation on each section. See the popular accounts [17], [18], and the academic paper [19] for a reinter-
pretation of Archimedes’ work in light of these newly discovered techniques. It seems, however, that the use
of infinite sets died with Archimedes in the Siege of Syracuse, not to reappear for over a thousand years.
2The philosophical considerations governing our acceptance or rejection of these axioms are covered at length
in [14], [15], and [21]
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2. Basic Objects of Set Theory

Set theory is the branch of mathematics that focuses on working rigorously with infinite

sets. Set theory developed gradually out of analysis, where such concerns first became promi-

nent, until eventually becoming a mathematical field in its own right. Because infinite sets

now pervade mathematics, set theory now has applications to all other fields of mathematics.

The first important results of set theory are the following theorems, now well-known.

Theorem 2.1 (Cantor). There is no injection f : R → N.

Theorem 2.2 (Cantor). There is no injection g : P (X) → X for any set X, where P (X)

represents the set of all subsets of X.

These results showed that infinite sets come in different sizes. Indeed, since every set has

more subsets than elements, there are infinitely many different sizes of infinite set and there

is no largest size a set can have. The structure of this infinite class of sizes is a central object

of study in set theory. The sizes are called cardinal numbers or just cardinals.

Cantor thought of cardinals as being abstracted properties of infinite sets with a different

sort of existence from the underlying sets.3 It is more useful however to define a cardinal to be

a particular set of that cardinality. To determine which set should represent the cardinality

of a class of equinumerous sets, we need first to look at a class of objects called ordinals.

Definition 1. A set α is an ordinal if

(1) elements of elements of α are always elements themselves of α, and

(2) α is well-ordered by ∈ (set membership).

Sets with property (1) are called transitive. If we write this property of α as (y ∈ x and

x ∈ α) =⇒ y ∈ α, then the name ‘transitive’ makes a lot of sense. We will see transitivity

in a different context later.

The class of ordinals is linearly-ordered, indeed well-ordered, by set membership: every

ordinal is the set of all smaller ordinals. For example, the smallest ordinals are ∅, {∅}, {∅, {∅}},

{∅, {∅}, {∅, {∅}}}, and {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}. We identify these ordinals with

the natural numbers 0, 1, 2, 3, and 4, respectively. Similarly, there is an ordinal corresponding

to every natural number n; we call the corresponding ordinal n as well. If we want to

build arithmetic out of set theory, we can define the natural numbers to be these ordinals.

Alternately, we can assume that we already know what the natural numbers are, and merely

note that these ordinals can function isomorphically. For our purposes, it does not matter

whether these ordinals actually are the natural numbers or whether they just behave like

3Both [16] and the introduction to [10] have interesting material about Cantor’s mathematical philosophy.



4 OLIVER PECHENIK

the natural numbers; the important point is that we can use them in place of the natural

numbers whenever convenient.

If we take the union

ω =
⋃

n∈N

n,

we obtain another ordinal. This ordinal ω functions like the set of all natural numbers N.4

Unlike the natural numbers however, the ordinals do not stop at ω. For example, we may

take {ω, {ω}} to form the ordinal ω + 1. Indeed, it is clear that for every ordinal α, there is

a larger successor ordinal {α, {α}} = α + 1. Also, a union of ordinals is itself an ordinal, at

least as large as any of the ordinals in the union. Ordinals, such as ω, that are not successor

ordinals, are called limit ordinals.

When we were looking at finite ordinals, each one had more elements than the one before;

the ordinal n was a set with n elements. This is no longer the case with infinite ordinals. It

is easy to find a bijection, for example, from ω to ω + 1 (send 0 to ω, and all other n ∈ ω to

n− 1). Every infinite ordinal is equinumerous with its successor. However, limit ordinals can

be equinumerous with each other as well. The ordinal

2ω =
⋃

n∈N

(ω + n)

is a limit ordinal, but it is equinumerous with ω since it looks just like two copies of ω. If we

take, however, the union

ω1 =
⋃

α is countable

α,

then we get a limit ordinal with uncountably many elements. (If ω1 were countable, it would

have to be an element of itself, which is not the case for any ordinal.) This fact inspires our

definition of cardinals as the least ordinals of each size.

Definition 2 (von Neumann). A set κ is a cardinal if κ is an ordinal that cannot be injected

into any of its elements.

Every finite ordinal is a cardinal. The cardinality of all countable sets is ω, which goes by

the name of ℵ0 when we are thinking of it as a cardinal. The cardinals are well-ordered by

∈, just like the ordinals. The next largest cardinal after ω = ℵ0 is ω1, which we also call ℵ1.

Similarly, every infinite cardinal κ has a successor cardinal

κ+ =
⋃

|α|=κ

α.

4The n’s in the union are ordinals, whereas the indexing n’s are natural numbers, which are possibly onto-
logically different. However, as we said before, this distinction has no significance for us. Similarly, we may
identify N with ω as convenient.
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Note that the successor cardinal of ℵ0(= ω) is ℵ1, which is not the same as ω + 1, the

successor ordinal of ω(= ℵ0). Indeed, every infinite cardinal is a limit ordinal. However, not

every cardinal is a successor cardinal. Cardinals, such as

ℵω =
⋃

n∈N

ℵn,

that are not successor cardinals are called limit cardinals. The limit cardinals are precisely

the cardinals ℵα, where α is a limit ordinal.

We write 2ℵα for the number of subsets of a cardinal ℵα. Cantor’s Theorem 2.2 says that

2ℵα > ℵα, so 2ℵα ≥ ℵα+1. The Generalized Continuum Hypothesis (GCH) is that this second

inequality is always actually an equality. We will remain agnostic about the truth of GCH.5

Definition 3. A cardinal κ is a strong limit cardinal if 2λ < κ for all λ < κ.

Every strong limit cardinal is a limit cardinal. If in fact GCH holds, then the two concepts

are not distinct.

The distinction between successor and limit cardinals is very important. Equally important

is the related distinction between regular and singular cardinals.

Definition 4. A infinite cardinal κ is singular if it can be written as
⋃

α<λ ξα, where λ < κ

and every ξα < κ. That is to say that singular cardinals are those that can be built out of a

smaller number of smaller sets. If κ is not singular, then we say it is regular.

All singular cardinals are limit cardinals and all successor cardinals are regular cardinals.

However, limit cardinals need not be singular. The cardinal

ℵω =
⋃

n∈N

ℵn

is an example of a singular limit cardinal, while ℵ0 is an example of a regular limit cardinal.

Successor Limit
Regular ℵ1,ℵω+2 ℵ0

Singular none ℵω,ℵ2ω4

Table 1. Examples of cardinals that are regular successors, regular limits, and

singular limits. Singular successor cardinals do not exist.

5By work of Gödel and Cohen, GCH is independent of ZFC: it can neither be proven nor disproven from the
ZFC axioms. Later, we will discuss additional axioms that can be added to ZFC. Large cardinal axioms will
leave GCH independent, while the Axiom of Constructibility allows GCH to be proved. It is also possible to
add GCH itself as an axiom. If we assume all the axioms of ZFC except for Choice, and also assume GCH,
then it is possible to prove the Axiom of Choice. However, from the assumptions ZFC + GCH, it is not
possible to prove any of the large cardinal axioms or the Axiom of Constructibility.
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3. Zermelo-Fraenkel-Choice Set Theory

Although the axioms of ZFC continued to be tweaked for about 50 years, the core of the

axiomatization was developed by Zermelo in 1908. Zermelo’s goal at the time was, not to give

a foundation to all of set theory, but rather to isolate the assumptions he was using in the

proof of one particular theorem.6 Nonetheless, with slight modifications, his axiomatization

became accepted as the canonical one for the general theory of sets.

Below, I describe the axioms of ZFC in informal language. For a more formal but still

elementary exposition, see [13] or [16]. The historical circumstances and philosophical moti-

vations underlying the acceptance of each axiom are admirably discussed in [14].

Axioms of ZFC:

• Extensionality A set is determined by its elements.

• Pairing Any two objects can be collected together into a set.

• Separation Given any set X and any property, the elements of X that have that

property form a subset of X.7

• Union If X is a set of sets, then the elements of X may be unioned together to form

a set.

• Power Set For any set X, there is a set P (X) containing precisely the subsets of X.

• Replacement For any operation O and set X, there is a set O(X) = {O(x) : x ∈ X}.8

• Choice The Cartesian product of non-empty sets is non-empty.

• Regularity All objects are sets. Sets form a hierarchy of complexity where every set

is more complex than any of its elements. In particular, no set contains itself as a

member.

• Infinity There is a set that can be injected into a proper subset of itself.

All these axioms are patently true to the majority of contemporary mathematicians, though

they haven’t all been thought obvious in the past. The sole possible exception to this is the

Axiom of Regularity, which is probably false. There are certainly interesting models of the

6Specifically, Zermelo was interested in Cantor’s Well-Ordering Conjecture, which claimed that every set can
be put in one to one correspondence with some ordinal. This would assure that every set has a cardinality
according to our definitions. Zermelo’s proof of the Well-Ordering Conjecture is valid, but marred by the
later discovery that one of his axioms (the Axiom of Choice) is actually equivalent to the Well-Ordering
Conjecture.
7The question of what exactly we mean by “property” was a contentious issue for many years. The modern
understanding of a “property” is that it is a unary relation defined in the first-order language of set theory.
Fraenkel himself thought that second-order language should be allowed. The history of this axiom can be
found in [14]. Note that we cannot formalize Separation as a single axiom because we cannot formally say “for
all properties P .” Rather, we must view Separation as an infinite collection of axioms (an axiom schema),
one for each property.
8As with Separation, formalizing Replacement requires understanding “operations” to be functions describable
in the first-order language of set theory and making a schema of axioms, one for each operation.



LARGE CARDINALS 7

rest of ZFC where Regularity fails spectacularly (for example, Aczel’s antifounded universes

described in [1] and [16]). There are few compelling reasons to believe that sets cannot contain

themselves. There are also interesting models with objects that are not sets, and good reasons

to think that there are such objects.9 Our justifications for assuming Regularity are that (1)

it makes our lives a lot easier, (2) it is true for sets as applied almost everywhere outside of

set theory, and (3) in a well-defined sense, we will not get into trouble by assuming it. We

use the Axiom of Regularity as a matter of convenience.

Using Regularity, we can construct the set theoretic universe recursively, adding sets in

order of their complexity. Level zero of the universe, V0, is just the empty set. Recur-

sively, we define Vn+1 to be the power set of Vn. So, V1 = {∅}, V2 = {∅, {∅}}, V3 =

{∅, {∅}, {{∅}}, {∅, {∅}}}, etc. Once we have constructed Vn for every n, we can define Vω

as the union
⋃

n∈N
Vn, and continue the process with Vω+1 = P (Vω), Vω+2 = P (Vω+1), etc.,

taking power sets or unions as necessary forever. Note that if α ≤ β, then Vα ⊆ Vβ. By the

Axiom of Regularity, the union of all of these transfinitely many levels is precisely the set

theoretic universe V .10

4. ZFC without Infinite Sets

Now imagine we’ve built a time machine and gone to visit Euclid in 300 BCE. We’d like to

speed the history of mathematics by convincing him to consider a line segment as a infinite set

of points. He, of course, finds this idea very problematic because of the infinite set involved.

How are we to convince him that infinite sets exist?

Let us consider the axiomatic system ZFC – Inf, where we accept all the axioms of ZFC,

except for failing to postulate the existence of infinite sets. We can think of ZFC – Inf as

a formalized version of “Ancient Greek set theory.” If we are lucky, the Axiom of Infinity

will prove to be redundant in ZFC, i.e. we will be able to prove Inf from the other axioms.

Then we can show Euclid a proof that infinite sets exist, using only ideas that he believes.

Unfortunately, as we will see, this is not possible. Without postulating infinite sets, we cannot

prove that they exist!

The easiest way to show that a statement φ is not a consequence of a certain set of axioms,

is to find an object that satisfies the axioms, but where φ is false. For example, we can show

that Euclid’s Parallel Postulate is not a consequence of his other four axioms by exhibiting

9Set theoretic objects that are not sets are known equivalently as atoms, individuals, or urelements. Sometimes
we talk about proper classes as if they were objects too large to be sets. This is just a linguistic convention.
Proper classes are not actually objects, although it is sometimes convenient to pretend in English that they
are. The existence of proper classes does not violate the Axiom of Regularity.
10That is to say,

V =
⋃

α is an ordinal

Vα.
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spherical geometry. Under a suitable interpretation of “point” and “line,” spherical geometry

violates the Parallel Postulate while satisfying the other axioms. Therefore, we cannot prove

the Parallel Postulate from the others.

Theorem 4.1. The existence of infinite sets cannot be proven from the axioms of ZFC – Inf.

Proof. We will exhibit an object that satisfies all the axioms, but does not have any infinite

sets. In fact, we have already made such an object. All we need is Vω!

We need to check that Vω satisfies all the axioms of ZFC – Inf.

• Extensionality Holds in V , so holds in Vω. X

• Pairing If X, Y ∈ Vω, then X, Y ∈ Vn for some n. So then {X, Y } ∈ Vn+1 ⊂ Vω. X

• Separation If X ∈ Vn, then the elements of X are also in Vn. Therefore the set

{x ∈ X : x has some particular property φ} is an element of Vn+1. X

• Union If X ∈ Vn, then the elements of X are also in Vn, as are the elements of the

elements of X. Hence,
⋃

X ∈ Vn+1. X

• Power Set If X ∈ Vn, then again the elements of X are in Vn. So every subset of X

is in Vn+1. The power set of X is in Vn+2. X

• Replacement Let X ∈ Vω and let F be a function X → Vω. Like all sets in Vω, X is

finite, while |Vω| = |N|. Therefore, |F (X)| is also finite, and so F (X) ⊂ Vn for some

n. Hence, F ∈ Vω and so the range of F is also an element of Vω. X

• Choice The Cartesian product of finitely many non-empty finite sets is always it-

self non-empty and finite. Non-emptiness of the product can be shown by induc-

tion. To show the product is finite, suppose our finitely many non-empty finite

sets, S1, S2, . . . , Sn, are in Vα1
, Vα2

, . . . , Vαn
respectively. Then, they are all in Vβ =

Vmax{αi}1≤i≤n
. Now, note that if a, b ∈ Vα, for some α, then {a, b} ∈ Vα+1, so (a, b) =

{a, {a, b}} ∈ Vα+2. Therefore, the Cartesian product lies in Vβ+2n+1.X
11

• Regularity By construction. X

On the other hand, as we noticed when considering Replacement, every element of Vω is

finite. If the existence of an infinite set could be proven from ZFC – Inf, then infinite sets

would have to exist in every object satisfying ZFC – Inf, and in particular in Vω. Since Vω

has no infinite sets, their existence cannot be proven! �

We aren’t going to let this problem stop us from believing in infinite sets, but it does make

it difficult for us to convince Euclid to believe in them. Perhaps, though, Euclid’s fears would

be allayed if we could show him that ZFC – Inf is consistent with the existence of infinite

sets, i.e. that ZFC is consistent. Unfortunately, this is not possible either.

11The definition of the ordered pair (a, b) as {a, {a, b}} is due to Kuratowski. It is not the only possible way
to define ordered pairs in term of unordered sets, but it is perhaps the simplest and has become standard.
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Theorem 4.2. If ZFC – Inf is consistent, then the consistency of infinite sets cannot be

shown in ZFC – Inf.

Proof. By constructing Vω, we can show in ZFC that ZFC – Inf is consistent. So if we could

prove from ZFC – Inf that ZFC was consistent, then we could put these two proofs together to

show in ZFC that ZFC is consistent. However, by Gödel’s Second Incompleteness Theorem,

this is not something we can do, unless in fact ZFC is inconsistent.12 But we supposed we

could prove from ZFC – Inf that ZFC was consistent, so that would mean that ZFC – Inf

was itself inconsistent. Certainly we don’t believe that, and Euclid won’t believe it either. So

our assumption must have been invalid, that we could prove from ZFC – Inf that ZFC was

consistent. �

So, we can’t show that infinite sets exist, and we can’t show that infinite sets might exist!

Euclid is not very impressed, and we go home, leaving the past unchanged.

5. Large Cardinals

Going back in time was not a great success. But maybe going forward in time would work

better. We decide to visit the great Martian mathematician Zftdctad in the year 4321. He

doesn’t seem very interested in talking to us, but he does say, before sending us back home,

that our mathematics would be a lot better if we were smart enough to believe in “large

cardinals.”

Well, what are large cardinals? There is no general formal definition of a large cardinal.

Essentially, we say that a cardinality is large, if it is bigger than anything whose existence

can be proven in ZFC. The first large cardinals were introduced by Hausdorff in 1908. Since

then, large cardinals of diverse types have become an important part of set theory, without

finding much acceptance in the wider realm of mathematics.

We begin our investigation by considering inaccessible cardinals, which are one of the

smaller types of large cardinal.

Definition 5. An uncountable cardinal κ is inaccessible if it is a regular strong limit cardinal.

We call such cardinals inaccessible because they cannot be reached from below. ZFC

provides us with two tools to obtain larger sets from smaller sets: Union and Power Set. If κ

is a regular cardinal, then any union of fewer than κ sets of cardinality less than κ, is itself

smaller than κ. Hence, we cannot build any regular cardinal out of smaller sets by using the

Axiom of Union. If κ is a strong limit cardinal, then 2λ < κ for all λ < κ. Hence, we cannot

get any strong limit cardinal from a smaller set by using the Axiom of Power Set. Therefore,

12The background for Gödel’s Incompleteness Theorems appears in Appendix A.
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inaccessible cardinals cannot be constructed from smaller sets by using either of the tools at

our disposal. We can postulate their existence, but we cannot find them otherwise.

Notice that if we had not required inaccessible cardinals to be uncountable, then ℵ0 would

count as an inaccessible: a union of finitely-many finite sets is finite, and the power set of a

finite set is finite. Hence postulating the existence of an inaccessible cardinal is analogous to

postulating the existence of infinite sets. To postulate the existence of infinite sets is precisely

to claim the existence of a regular strong limit cardinal. To postulate the existence of an

inaccessible is merely to claim the existence of more than one regular strong limit cardinal.

Just as in ZFC – Inf it was impossible to show that infinite cardinals existed or even that

their existence was consistent, we cannot show in ZFC that inaccessibles exist, nor that their

existence is consistent with ZFC. Our arguments for or against inaccessibles must be based

on intuition about the mathematical universe, just like our arguments in favor of infinite sets.

Theorem 5.1. The existence of an inaccessible cardinal is not provable in ZFC.

Proof. If inaccessible cardinals do not exist, then we certainly cannot prove their existence.

Therefore, suppose there exists an inaccessible cardinal κ. We may assume that κ is the

smallest inaccessible cardinal. We will use κ to find a model of ZFC where there are no

inaccessibles. Instead of Vω as before, we want to look at Vκ.

Except for Choice and Replacement, the proof that the axioms of ZFC – Inf are true in Vκ

is exactly the same as the proof that they are true in Vω. To prove that Choice holds in Vκ,

let Z ∈ Vκ be a collection of non-empty sets and let ζ = |Z|. By the Axiom of Choice, we

know that there is some x in the Cartesian product
∏

Z. All we need to show is that x ∈ Vκ.

Certainly, every coordinate of x is in Vαi
for some αi < κ. Therefore, all the coordinates of

x lie in Vλ =
⋃

i Vαi
. Since κ is regular and there are ζ(< κ) sets in the union, we have λ < κ.

Now, note that if a, b ∈ Vα, for some α, then {a, b} ∈ Vα+1, so (a, b) = {a, {a, b}} ∈ Vα+2.

In our situation, we had ζ coordinates all lying in Vλ. Therefore, x ∈ Vλ+2ζ . Since

Vλ+2ζ ⊂ Vκ, Choice holds in Vκ.

For Replacement, we can adapt the proof for Vω. Let X ∈ Vκ and let F be a function

X → Vκ. Like all sets in Vκ, |X| < κ, since κ is an inaccessible cardinal. On the other hand,

|Vκ| = κ. Therefore, |F (X)| < κ as well. Every element of F (X) lies in some Vαi
with αi < κ,

so since κ is regular, F (X) ⊂ Vα for some α < κ. Hence, F ∈ Vκ and so the range of F is

also an element of Vκ.

Since κ > ℵ0, it is clear that Vκ satisfies the Axiom of Infinity. So all of the axioms of ZFC

are true in Vκ.

However, as κ is the least inaccessible cardinal, and κ /∈ Vκ, Vκ is a model of ZFC where

there are no inaccessibles. �
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Theorem 5.2. The consistency of inaccessible cardinals cannot be shown in ZFC.

Proof. Let ZFC + I be the axioms of ZFC plus the assumption that at least one inaccessible

cardinal exists. By constructing Vκ where κ is inaccessible, we can show in ZFC + I that ZFC

is consistent. So if we could prove from ZFC that ZFC + I was consistent, then we could

put these two proofs together to show in ZFC + I that ZFC + I is consistent. By Gödel’s

Second Incompleteness Theorem, we cannot do this, unless ZFC + I is inconsistent. But we

supposed we could prove from ZFC that ZFC + I was consistent, so that would mean that

ZFC was itself inconsistent. We may take that as a contradiction, so our assumption must

have been invalid, that we could prove from ZFC that ZFC + I was consistent. �

These results should not prevent us from using inaccessible cardinals any more than the

analogous results should prevent us from using infinite sets. On the other hand, they don’t

give us a lot of reason to believe in inaccessible cardinals.

There are a few quick arguments for why inaccessibles should exist.13 The first is that the

mathematical universe ought to contain all the objects we can reason about mathematically.

Since, as we will see, lots of beautiful, intricate mathematics can be constructed around

inaccessible cardinals, they should exist in the same way that other mathematical objects

do. A second argument is that union and power set are fairly weak operations. It would

seem strange if we could build all mathematical objects out of small sets, using only such

weak tools. A third argument is that, if inaccessible cardinals did not exist, then ℵ0 would

be the unique regular strong limit cardinal. Perhaps this is so. However, it seems intuitively

more plausible that if P is a “generic” and “natural” property sets can have, there should

be arbitrarily large sets with property P .14 The best argument, however, for working with

large cardinals is that they are mathematically useful, just like infinite sets. This utility is

the topic of the next section.

6. An Application for Large Cardinals

We will now embark on a whirlwind tour of a small area of the large cardinal landscape.

Hopefully, this tour will give us a sense of the diversity and intricacy of large cardinal tech-

niques. It will also show us how large cardinals can resolve other sorts of mathematical

problems. Even more than before, we will gloss over technical details as we sketch a brief

intuitive map of this small region of mathematics.

13These are covered at greater length in [14], [15], and [21].
14Certainly, we cannot expect this of every property. For example, if P is the property of being the least
infinite cardinal, then P uniquely picks out ℵ0. I would say that such a property, however, is not “generic.”
Undoubtably, there are similar examples of properties that less obviously pick out a small number of cardinals.
However, there does not seem to be a compelling reason why being a regular strong limit cardinal should be
such a property.
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Ideally, we would like to see large cardinals resolve a known problem that does not in-

volve large cardinals in its statement. There are many examples of large cardinals doing

exactly that. Many questions of infinitary combinatorics and model theory, in particular,

are resolved by assuming sufficiently strong large cardinal axioms. Even in intuitively more

distant branches of mathematics, such as braid theory, large cardinals can be used to answer

questions.15

Unfortunately, the resolutions of these problems do not lend themselves to the sort of

whirlwind explication that is appropriate here. Therefore, we will turn to a problem that is

probably unfamiliar, although it is classical within set theory.

Recall that the Generalized Continuum Hypothesis (GCH) is the statement that 2ℵα = ℵα+1

for all α. Many mathematicians in the early 20th century struggled to either prove or disprove

GCH, but no real progress was made until the work of Kurt Gödel in the late ’30s.16 In similar

fashion to things we have done before, Gödel built a construct, L, that satisfies the axioms

of ZFC and also satisfies GCH. Thus, he showed that GCH cannot be disproven from the

axioms of ZFC.17 In fact, Gödel proved rather more than this. His construction of L does not

use the Axiom of Choice, but in L it is very clear that the Axiom of Choice is true. Hence,

Gödel also demonstrated that the Axiom of Choice is consistent with the other axioms of

ZFC.

The class L is an example of what is called an inner model. An inner model is a subclass

of the universe V that contains all the ordinals and is also transitive. Not only is L an inner

model of the universe, but it is the smallest inner model, in the sense that every inner model

contains L as a subclass.

Gödel built L by analogy to our earlier construction of V as a sequence of levels. Naturally,

we take L0 = ∅. And at limit ordinals α, we set Lα =
⋃

β<α Lβ , analogously to the limit step

in the construction of V . The difference between V and L takes place at successor steps.

Rather than let Lα+1 be the power set of Lα, we only allow into Lα+1 those subsets of Lα

15I am thinking here of [12], where a very strong large cardinal axiom is used to prove a braid theoretic
result. In [4], it was shown that this proof can be modified so as to eliminate the large cardinal assumption,
i.e. the theorem is in fact a theorem of ZFC. However, even the author of [4] admits that this proof would
probably never have been discovered without consideration of large cardinals. He writes, “The point here
is that considerations of highly infinite objects . . . have led to an intuition that ended in results of the most
constructive spirit . . . The fact that the set-theoretical assumption has been subsequently eliminated does not
diminish its role in the matter: there would have been probably little chance to embark on the proof . . . if
some ‘exotic’ axiom of set theory had not given previously some evidence that the involved property could
be true.”
16Gödel announced his results on GCH in 1938, but a detailed proof did not appear until 1940.
17The reverse, that GCH cannot be proven from ZFC, was eventually demonstrated as well, through Paul
Cohen’s 1963 method of forcing.
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that can be uniquely defined by a first-order formula. We can think of L as a “narrower”

version of V , and we call it the Constructible Universe.

On the other hand, if we repeat this construction inside L to get a “narrower” L′, we

find that in fact L = L′, so L′ is not any narrower. This leads us to wonder if perhaps L

was not actually any narrower than V either. The statement L = V is called the Axiom of

Constructibility, although very few people would claim it is a self-evident truth. The status

of the Axiom of Constructibility is the problem that we will be considering.18

In fact, the consensus of set theorists is that L = V is false.19 Why do they think that,

when L has such nice properties (e.g. GCH and obvious satisfaction of Choice)?20 Well, the

problem is that L is rather too nice. There is no compelling reason why every set should be

definable from simpler sets by a first-order formula. Indeed, given the weakness of first-order

languages, this seems an unlikely prospect. Furthermore, while the Axiom of Choice is true

in L, it is true for the wrong reasons. Choice is true in constructible universes because we

can well-order the entire universe!21 We want Choice to be a statement of the richness of the

universe; given an infinite collection of non-empty sets, there is some exotic object in their

direct product. However, in constructible universes Choice turns into a statement of poverty;

the universe is so impoverished that we can well-order the entire thing!

We are not going to be able to prove from the axioms of ZFC that L 6= V . This is because L

is a model of ZFC where all sets are in fact constructible. However, if we assume the existence

of a sufficiently large cardinal, we will be able to disprove the Axiom of Constructibility.

7. Measurable Cardinals

The large cardinals we wish to consider are called measurable cardinals.22 They come

naturally out of consideration of measures, in the analysis sense. Once we have figured out

what measurable cardinals are, we will use one to construct an inner model M that is a proper

18Notice that if L = V , then there are no proper inner models. (All inner models contain L and are contained
in V .)
19One of the few advocates for belief in L = V was the philosopher Quine, who based his position on his
inability to think up scientific applications for L 6= V . See [14] and [15] for further discussion of Quine’s views
on set theory.
20To see that the Axiom of Choice holds in L, we need merely see that L can be well-ordered. Start by
ordering L according to which level Lα each element first appears in. Many elements will appear for the
first time at the same level, so we need some way to break ties. But each element is named by a first-order
formula, and it is very easy to well-order the relevant set of formulas, so we can well-order L by carrying over
this well-ordering on formulas.
21This property is known as the Axiom of Global Choice.
22Measurable cardinals were proposed in 1930 by the young Stanislaw Ulam. In fact, we can disprove Con-
structibility from somewhat weaker large cardinal axioms, but it is less convenient. When we are feeling a
bit impudent, we like to refer to those large cardinals that don’t contradict V = L as small large cardinals.
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subclass of V . Since L is a subclass of every inner model, it will follow that L is a proper

subclass of V , and hence V 6= L.

It is well-known that there is no non-trivial σ-additive translation-invariant measure defined

on all subsets of [0, 1]. However, in some situations we could dispense with the translation

invariance. Hence, it is natural to ask whether there is any non-trivial σ-additive measure on

all subsets of [0, 1] at all. Since we no longer care about translation-invariance, we quickly

see that the only relevant feature of [0, 1] is its cardinality. This motivates the more general

question: Is there any cardinal κ with a non-trivial σ-additive measure defined on all subsets

of κ?

This question is equivalent to the existence of some sort of large cardinal, and hence it is

not resolvable in ZFC. The particular sort of large cardinal implied by the existence of such

a measure depends on more specific properties of the measure. One such potential property

of a measure is only taking on the values 0 and 1. We call such a measure two-valued.

Theorem 7.1. There exists a set S with a non-trivial σ-additive two-valued measure defined

on all subsets of S if and only if there exists a measurable cardinal.

Unfortunately, we don’t yet know what a measurable cardinal is. To define them, we must

first discuss ultrafilters.

Definition 6. An ultrafilter on a set S is a subset U of P (S) such that

(1) ∅ /∈ U ,

(2) S ∈ U ,

(3) if A ∈ U and A ⊂ B, then B ∈ U ,

(4) if A, B ∈ U , then A ∩ B ∈ U ,

(5) if A ⊂ S and A /∈ U , then S\A ∈ U .

If further
⋂

U is non-empty, then we say U is a principal ultrafilter. Principal ultrafilters

are uninteresting. We will be concerned entirely with non-principal ultrafilters.

Property (4) implies that U is closed under finite intersections. If U is closed under inter-

sections of less than λ-many elements of U , then we say that U is λ-complete.

The correct intuitive picture of an ultrafilter is that it consists of the “large” subsets of

S. Since the word “large” describes a rather fuzzy concept, it may be possible to define

several distinct ultrafilters on S, in which different sets are counted as “large.” However, all

ultrafilters on S have much in common, and they all line up reasonably well with our fuzzy

idea of the “large” subsets of S.
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Now, if we had a measure on S, there would be another canonical interpretation of a subset

of S being “large”: we could say that the large subsets are those of full measure. These two

meanings of “large” are not unrelated. If I have an ultrafilter U on S, I can turn it into a

two-valued measure on S by assigning measure 1 to all subsets in U and measure 0 to all

subsets not in U . Conversely, the full measure sets in any non-trivial two-valued measure

form an ultrafilter. So, although we define measurable cardinals in terms of ultrafilters, the

resulting cardinals will turn out to be closely connected by the above correspondence to the

existence of two-valued measures, thereby justifying the name ‘measurable.’

Definition 7. An uncountable cardinal κ is measurable if there exists a κ-complete non-

principal ultrafilter on κ.

So, now we know what measurable cardinals are. However, it is not clear how large these

measurable cardinals are. And it is certainly not apparent what they have to do with the

Axiom of Constructibility.

When Stanislaw Ulam introduced measurable cardinals in 1930, he demonstrated that they

are also inaccessible.23 However, until 1963 it was unknown whether the least inaccessible

cardinal could be measurable. It cannot. In fact, there is a large hierarchy of inaccessible

cardinals below the least measurable cardinal.24 If κ is measurable, then κ is the κth inacces-

sible cardinal. Indeed, κ must be the κth cardinal with this property. Inaccessible cardinals

are large, but they are very small in comparison to measurable cardinals!

In order to show that measurable cardinals contradict the Axiom of Constructibility we

will have to put their ultrafilters to good use. We will use the ultrafilter on a measurable

cardinal to construct an ultrapower of the universe.

Ultrapowers are perhaps most familiar from their use in the development of nonstandard

analysis.25 To rigorously introduce infinitesimals into analysis we use a non-principal ultrafil-

ter U on N and consider the set of functions f : N → R. We put an equivalence class on this

set by equating any two functions that agree on a element of U . The equivalence classes are

the hyperreal numbers ∗R, the fundamental objects of nonstandard analysis. Every r ∈ R

is canonically embedded in ∗R as r̂ = (r, r, r, r, . . . ). However, ∗R also contains many new

elements. For example, (1, 1

2
, 1

3
, 1

4
, . . . ) is a rational infinitesimal in ∗R.

23This result requires the Axiom of Choice. Without Choice, it is possible for ℵ1 (and many others) to be
measurable!
24The first work in this direction was by William Hanf, with various pieces of the picture quickly added by
Tarski, Erdős, Keisler, and Hajnal. Some of the history of this discovery may be found on page 39 of [10].
25[8] is a very friendly introduction to ultrapowers in nonstandard analysis. [7] and [20] are more sophisticated
but still readable accounts.
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Theorem 7.2 ( Loś). If U is an ultrapower of any mathematical structure S, then U and S

satisfy the same first-order sentences.26

Corollary 7.3. Every first-order sentence is true in R if and only if it is true in ∗R.

 Loś’s Theorem is what makes nonstandard analysis effective. Instead of proving something

directly in R, we can prove it in ∗R, where it is often easier to prove, and then apply Corollary

7.3.

We are now ready to show that the existence of a measurable cardinal contradicts the

Axiom of Constructibility. Let U be a κ-complete non-principal ultrafilter on a measurable

cardinal κ. Instead of functions f : N → R, we want to look at functions g : κ → V . As

before, we equate functions that agree on an element of U .27 The set of equivalence classes

is an ultrapower of the universe; call it M . Since we built M inside the universe, M is a

subclass of V . In fact, it is not hard to show that M is an inner model of V .28 However, just

as we embedded R in ∗R, we can embed V inside M by sending every x ∈ V to the constant

function fx : κ → V with value x. We will write j for this map x 7→ fx.

 Loś’s Theorem applies in this context as well, so the first-order sentences true in V are the

first-order sentences true in j(V )(= M). Therefore, if α is an ordinal in V , then j(α) is an

ordinal in j(V ). But j(V ) ⊆ V , so in fact j(α) is an ordinal in V too.29 Also, if α < β then

j(α) < j(β). Putting these two facts together, we have by an easy induction that α ≤ j(α)

for every ordinal α. In fact, since U is κ-complete, we have equality for all α < κ, i.e. j fixes

all the ordinals below κ.30

26 Loś actually proved a stronger result about a more general kind of construction, known as an ultraproduct
construction. An ultrapower is a special ultraproduct where all factors are equal.
27There are technical issues here coming from the fact that V is a proper class. However, they can all be
resolved unproblematically.
28Actually, M might not be transitive, but if it isn’t, we can just apply a simple technique called the Mostowski
collapse to produce an isomorphic model that is transitive.
29Properties that carry over in this fashion are called upwards absolute. It is not difficult to show that being
an ordinal is upwards absolute. It is also easily shown to be downwards absolute, meaning that it carries over
from V to all inner models. Such properties that are both upwards absolute and downwards absolute are
called merely absolute.
30Suppose α < κ and some m ∈ M is less than α. Remember m is an equivalence class of functions f . Since
m < α, each function f takes on values less than α over a subset of the domain that is in U . Note that this
subset can be written as

⋃
β<α f−1(β). Since this union is in U and U is κ-complete, one of the terms of the

union must be in U . But this means that there is some β < α such that f takes on the value β on a set in
U , and hence f and j(β) are both in the same equivalence class m.
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We would like to know what j does with κ. To determine this, we focus instead on the

identity function i ∈ M defined by i(α) = α for all α. Since every coordinate of i is an ordinal,

i certainly represents some ordinal in M . Since every coordinate is less than κ, i < j(κ).

However, for every γ < κ, i is greater than γ on a set of coordinates in U . (This comes from

κ-completeness.) Therefore, i ≥ κ.

For our purposes, we now know all about i that we need to. The important thing to note

is that κ ≤ i < j(κ), and therefore κ < j(κ).31

Theorem 7.4. If measurable cardinals exists, then V 6= L.

Proof. Let κ be the least measurable cardinal. Use a nonprincipal κ-complete ultrafilter on

κ to construct the inner model M = j(V ). Since L is the smallest inner model, L ⊆ M ⊆ V .

By assumption, κ is the least measurable cardinal in V . And j(κ) satisfies the same

sentences in M as κ does in V , so j(κ) must be the least measurable cardinal in M .

Now suppose, by way of contradiction, that L = V . Then M is equal to both, since it

is sandwiched in between. Then, since κ is the least measurable cardinal in V (= M) and

j(κ) is the least measurable cardinal in M(= V ), it must be that κ = j(κ). But this is a

contradiction, since we know κ < j(κ). �

So, there we have it. Belief in measurable cardinals is sufficient to disprove the silly property

of Constructibility. This is good news for the richness of our mathematical universe!

To the extent that set theory is a foundational subject, its goal should be to provide as rich

a foundation for the rest of mathematics as possible. Large cardinals are certainly helpful

towards that goal. If a topologist wants to study a topology where all sets are constructible,

she can work inside L. And if she wants to allow more complicated sets, she can work outside

of L in a universe that contains measurable cardinals. The point is that large cardinals aren’t

only useful when we wish to study extraordinarily large sets. No, just as belief in infinite

sets helps us develop finitist results, large cardinals help us in the study of classical areas of

mathematics. Belief in such sets will guide us to a richer and more powerful mathematics for

the third millennium. Plus, our time travel will have paid off. Won’t Zftdctad be proud!

31This is strange. Do not expect this to seem natural.
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Appendices

Appendix A. Gödel’s Incompleteness Theorems

Anything can be proven from an inconsistent set of axioms. Gödel’s First Incompleteness

Theorem (1931) says that if an axiomatic system is consistent and sufficiently powerful, then

there are sentences that are undecidable, i.e. sentences σ such that neither σ nor ∼σ can be

proven from the axioms.32 By ‘sufficiently powerful,’ we mean that it is possible to model

Peano arithmetic inside the system.33 For example, ZFC is necessarily incomplete, unless of

course it is inconsistent (in which case we have bigger problems). Since ZFC is incomplete,

there must be statements that we can consistently add as axioms, but that we can not prove.

Candidates for such new axioms include the Generalized Continuum Hypothesis (§2), the

large cardinal axioms (§5), and the Axiom of Constructibility (§6).

Gödel’s Second Incompleteness Theorem (also 1931) names a particular sentence that is

undecidable in sufficiently powerful axiomatic systems.34

Theorem A.1 (Gödel’s Second Incompleteness Theorem, 1931). If T is a consistent and

sufficiently powerful set of axioms, then the statement that T is consistent can neither be

proven nor disproven from the axioms.

The statement that a theory T is consistent is usually written as Con(T ). The immediate

effect of this theorem was to crush Hilbert’s dream of proving via mathematics that math-

ematics itself is consistent. However, as shown in §4 and §5, it is also useful as a lemma in

proving other results.

Theorems such as Theorem 5.2 (‘The consistency of inaccessible cardinals cannot be shown

in ZFC’) are relative consistency results. We tacitly assume that ZFC is consistent. If ZFC

is not consistent, then we can both prove and disprove the existence of inaccessible cardinals

in ZFC. This sort of result is the best that we can hope for. We can only show that a

mathematical theory is consistent relative to the theory that we are using in the proof. For

32If σ is a undecidable sentence of the form “for all x, φ,” then σ is in some sense true, since it must be
impossible to find a counterexample to φ. On the other hand, it is possible that φ has counterexamples, but
that these counterexamples cannot be constructed in the axiomatic system. For example, in ZFC − Choice
the statement “All sets of real numbers are Lebesgue integrable” is undecidable. This means it is not possible
to construct a non-Lebesgue measurable set without using the Axiom of Choice. However, most mainstream
mathematicians accept Choice and claim that the sentence “All sets of real numbers are Lebesgue integrable”
is false.
33The theory of the natural numbers under addition alone is not ‘sufficiently powerful.’ In this simple
mathematical theory, known as Presburger arithmetic, every statement can either be proven or disproven.
34The Second Incompleteness Theorem was independently discovered by von Neumann in the brief interval
between Gödel’s announcements of the two theorems.
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example, the construction of L in §6 demonstrates

Con(ZFC − Choice) =⇒ Con(ZFC + GCH).

Both [22] and [23] contain excellent expositions of the Incompleteness Theorems. English

translations (along with the original German versions) of Gödel’s original papers may be

found in [6].

Appendix B. Sources for Proofs

All the proofs given in this paper are standard material. My formulations of the proofs are

amalgamations based primarily on my readings of [9], [10], and [11].

References

1. Peter Aczel, Non-Well-Founded Sets, Center for the Study of Language and Information, Stanford, CA,

1988.

2. J. L. Bell, Boolean-Valued Models and Independence Proofs in Set Theory, 2nd ed., Oxford University

Press, Oxford, 1985.

3. Timothy Y. Chow, A beginner’s guide to forcing., Chow, Timothy Y. (ed.) et al., Communicating mathe-

matics. A conference in honor of Joseph A. Gallian’s 65th birthday, Duluth, MN, USA, July 16–19, 2007.

Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 479, 25-40 (2009).,

2009.

4. Patrick Dehornoy, From large cardinals to braids via distributive algebra, Journal of Knot Theory and Its

Ramifications 4 (1995), 33–79.

5. Keith Devlin, The joy of sets: Fundamentals of contemporary set theory, 2nd ed., Springer, New York,

1993.
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