
NORMAL AND ∆-NORMAL CONFIGURATIONS IN TORIC ALGEBRA
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Abstract. Toric algebra is a field of study that lies at the intersection of algebra, geometry,
and combinatorics. Thus, the algebraic properties of the toric ideal IA defined by the vector
configuration A are often characterizable via the geometric and combinatorial properties
of its corresponding toric variety and A, respectively. Here, we focus on the property
of normality of A. A normal vector configuration defines the toric ideal of a normal toric
variety. However, the definition of normality ofA is based entirely on the algebraic structures
associated with A without regard to any of its combinatorial properties. In this paper,
we discuss two attempts to provide a combinatorial characterization of normality of A.
Particularly, we show that the properties “the convex hull of A possesses a unimodular
covering” and “A is a ∆-normal configuration” are both sufficient conditions for normality
of A, but neither is necessary. This suggests that another combinatorial property is required
to provide the desired characterization of normality of A.

1. Introduction

Toric ideals form a special class of ideals in multivariate polynomial rings, the study of
which lies at the intersection of algebra, geometry, and combinatorics. For this reason, toric
ideals have proven to be quite useful for testing general theories in these areas of mathematics.
This quality of toric ideals is inherent in their definition, which begins with a combinatorial
object, transforms it into an algebraic one, and then uses a classical correspondence to draw
geometric connections.

Let k be an algebraically closed field, and let k[x] := k[x1, . . . , xn] be a polynomial ring
in n variables. To construct a toric ideal, we first pick a finite set of integer vectors A =
{a1, . . . , an} ⊂ Zd. Then let A ∈ Zdxn be the integer matrix with column i equal to ai for
i = 1, . . . , n. Consider the following semigroup homomorphism

π : Nn −→ Zd, π : u = (u1, . . . , un) 7−→ u1a1 + · · ·+ unan = Au.

Here N denotes the set of natural numbers (including 0). The image of π is the semigroup

NA = {λ1a1 + · · ·+ λnan : λ1, . . . , λn ∈ N} = {Au : u ∈ Nn}.

We can identify each vector ai with the monomial tai = ta1i1 ta2i2 . . . t
adj
d in the Laurent poly-

nomial ring k[t±1] := k[t1, . . . , td, t
−1
1 , . . . , t−1

d ]. Given this identification, the map π lifts to a
homomorphism of the semigroup algebras:

π̂ : k[x] −→ k[t±1], xi 7−→ tai = ta1i1 ta2i2 . . . t
adj
d .

Definition 1.1. The toric ideal of A, denoted IA, is the kernel of the map π̂.

Date: 4 April 2011.
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons at Oberlin (Oberlin College)

https://core.ac.uk/display/354496853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For example, consider the set of integer vectors corresponding to the columns of the matrix

A =

(
1 0 1

0 1 1

)
.

Then the map π̂ : C[x, y, z] −→ C[t−1
1 , t−1

2 , t1, t2] sends π̂(x) = t1, π̂(y) = t2, and π̂(z) = t1t2.
Thus, IA = ker(π̂) = 〈xy − z〉, the ideal generated by xy − z in C[x, y, z].

The finite set of vectors A is interesting in its own right as a combinatorial object. For
example, we will be particularly interested in examining triangulations of A. Moreover, we
can use the ideal-variety correspondence of classical algebraic geometry to associate with
each toric ideal IA an affine toric variety VA, consisting of the set of all zeros shared by
all polynomials in IA. Thus, we now have a geometric structure associated with the set
of integer vectors A, which we can use to study the geometric properties of A from an
algebro-geometric point of view.

In this way, the definition of toric ideals and their associated structures places the study
of toric ideals at the intersection algebra, geometry, and combinatorics, and provides useful
correspondences between these fields of study. Thus, the natural type of question to ask is,
given, for example, an algebraic property P of IA, what can be said about the geometric
and combinatorial properties of VA and A, respectively? Can we find a geometric property
G of VA and/or a combinatorial property C of A such that G of VA guarantees P of IA, and
similarly for C of A? If so, are either of these conditions necessary and sufficient for P of
IA? In other words, can we find a geometric and/or combinatorial characterization of P of
IA via properties of VA and A, respectively?

In the following, we explore a question of this type in relation to the property that the
semigroup NA associated with the toric ideal IA is normal. In other words, we are interested
in defining geometric and combinatorial characterizations of normality of NA via properties
of VA and A, respectively. In Section 4, we demonstrate that such a geometric characteri-
zation has been found. Namely, the semigroup NA is normal if and only if the affine toric
variety VA is a normal variety. In this way, the property of normality spans the algebro-
geometric correspondence for toric varieties as nicely as we could desire. On the other hand,
no such combinatorial characterization of the normality of NA is known. In Section 5, we
discuss problems related to attempts to provide such a characterization, as well as those
related to the best known combinatorial approximation of normality of NA. In Section 2
we give a brief introduction to the theory of Gröbner bases with a focus on the material
necessary for our discussion in Section 4. Then in Section 3, we provide the details of convex
polytopal geometry and triangulations that will be critical in the analysis given in Sections
4 and 5.

2. Gröbner Basis Theory

The Division Algorithm for polynomials in one variable is well-known, and its simplicity
has consequences for the polynomial ring k[x]. In particular, the polynomial ring k[x] is a
principal ideal domain, and the polynomial f ∈ k[x] is in the ideal I ⊂ k[x] generated by the
polynomial g if and only if the remainder of f upon division by g is 0. What if we consider
division of polynomials in more than one variable? The polynomial ring k[x1, . . . , xn] is not
a principal ideal domain. However, one might hope that to see if f ∈ k[x1, . . . , xn] is in
I = 〈g1, . . . , gt〉 (the ideal generated by g1, . . . , gt ∈ k[x1, . . . , xn]) we simply need to check
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that the remainder of f upon division by all of g1, . . . , gt equals 0. For example, say we
wanted to see if the polynomial x2y2 +x2y+ y5 is in the ideal I = 〈y2 + 1, x2y+x〉 ⊂ k[x, y].
Intuitively, we can try to mimic the process of the univariate division algorithm in two ways.
First, we try dividing by y2 + 1 and then x2y + x:

(1)

x2 + y3 − y

y2 + 1
)
x2y2 + x2y + y5

x2y2 + x2

y5 + x2y − x2

y5 + y3

− y3 + x2y − x2

− y3 − y

x2y − x2 + y

Since no term in x2y − x2 + y is divisible by y2 we now divide this remainder by x2y + x:

(2)

1

x2y + x
)
x2y − x2 + y

x2y + x

− x2 − x+ y

We can check that

x2y2 + x2y + y5 = (y2 + 1)(x2 + y3 − y) + (x2y + x)(1)− (x2 + x+ y),

and so we think of r = −(x2 + x+ y) as our remainder upon division of x2y2 + x2y + y5 by
the ordered pair (y2 + 1, x2y+x). Now, if we try dividing first by x2y+x and then by y2 + 1
we see that

x2y2 + x2y + y5 = (x2y + x)(y + 1) + (y2 + 1)(y3 − y) + (y − xy − x),

and so our remainder in this case is y − xy − x. At this point we should be both confused
and frustrated. First, in our intuition-based attempt to perform the division, what prompted
us to divide with respect to the terms x2y and y2? Why not divide with respect to x and
1? Second, what determined when we stopped dividing by a given divisor? For example,
in (2), why didn’t we try to divide −x2 − x + y by x once we had finished dividing by
x2y? Third, why does switching the order of our divisors result in two distinct remainders?
Moreover, the above equalities indicate that the difference between the two remainders,
(y − xy − x) + (x2 + x + y), is in the ideal 〈y2 + 1, x2y + x〉, but the division we just
performed has no way of determining this, since this difference is not divisible by either of the
generators. In this section, we will develop some of the fundamental concepts of the theory
of Gröbner bases. In doing so, we will provide a well structured multivariate polynomial
division algorithm, along with special sets of divisors, called Gröbner bases, that will give
unique remainders regardless of the order of division. This work will play an important role
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in our discussion of toric ideals and their associated affine varieties. The following material
is based mostly on Chapter 1 of [9] with some additional material drawn from [3] and [5].

Let k be a field and let k[x] := k[x1, . . . , xn] be a polynomial ring in n variables over
k. We say that an ideal I ⊂ k[x] is finitely generated if there exists a finite subset B =
{f1, . . . , ft} ⊂ I such that I = {

∑t
i=1 hifi : hi ∈ k[x]}. We call B a basis of I and write

I = 〈f1, . . . , ft〉 to indicate that I is generated by B. By the Hilbert Basis Theorem, given
in [5, §1.5], every ideal I in k[x] is finitely generated.

A monomial in k[x] is a product xa11 x
a2
2 · · ·xann ∈ k[x], where a = (a1, a2, . . . , an) ∈ Nn.

We denote the monomial xa11 x
a2
2 · · ·xann by xa. If c ∈ k and xa is a monomial in k[x], then we

call the product cxa a term in k[x]. A polynomial in k[x] is finite sum of terms in k[x]. The
support of a polynomial f =

∑
cax

a ∈ k[x] is the set supp(f) = {a ∈ Nn : f =
∑
cax

a, ca 6=
0}.

Example 2.1. Let k = Q, and f = x2y + 3y5 + 1
9
y3 + 3

4
x7y4 ∈ Q[x, y]. The terms of f are

x2y, 3y5, 1
9
y3, and 3

4
x7y4. Moreover, supp(f) = {(2, 1), (0, 5), (0, 3), (7, 4)}.

Let kn denote the Cartesian product of k with itself n times. We refer to kn as affine n-space
over k, and we call any p = (p1, . . . , pn) ∈ kn a point in kn. If a point p = (p1, . . . , pn) ∈ kn
satisfies a polynomial f =

∑
cax

a ∈ k[x], i.e. f(p1, . . . , pn) =
∑
cap

a = 0, then we say that
p is a zero of f . The affine variety of a set of polynomials S ⊂ k[x], denoted V(S), is the
set of all zeros shared by the polynomials in S. More precisely,

V(S) = {p ∈ kn : f(p) = 0 for all f ∈ S}.

It is well known that if I = 〈f1, . . . , ft〉 ⊂ k[x] then V(I) = V(f1, . . . , ft). If W and V are
varieties in kn such that W ⊂ V then we call V\W = {p ∈ kn : p ∈ V ,p /∈ W} a Zariski
open subset of V . The smallest variety containing V\W is called the Zariski closure of V\W .

Our goal in this section is to determine a finite basis B for a given ideal I ⊂ k[x] such
that the elements of B can be used to determine if a given polynomial f ∈ k[x] is indeed an
element of I. In order to do this, we must define a method for ordering the monomials in
k[x] so that the polynomial f ∈ k[x] always has a greatest term.

Definition 2.2. A term order � on k[x] is a total order on the monomials of k[x] such
that

(1) xb � xa implies that xbxc � xaxc for all c ∈ Nn, and
(2) xa � x0 = 1 for all a ∈ Nn\{0}.

It then follows from the Gordan-Dickson Lemma [3, §4.2] and (2) of Definition 2.2 that
every term order on k[x] is a well-ordering. More precisely, every subset of k[x] has a smallest
element in relation to �.

Example 2.3. Consider the the polynomial ring in n-variables, k[x] = k[x1, . . . , xn], and fix
an ordering of the variables such that x1 � x2 � · · · � xn. Two commonly used term orders
on k[x] are called the lexicographic (lex) order and graded reverse lexicographic (grevlex)
order.

In the lex ordering on k[x], xa � xb if and only if the left-most nonzero term in a− b is
positive. For example, if x � y, then

x7y4 � x2y � y5 � y3.
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In the grevlex ordering on k[x], xa � xb if and only if either deg(xa) > deg(xb) or
deg(xa) = deg(xb) and the right-most nonzero term in a − b is negative. Thus, if x � y,
then

x7y4 � y5 � x2y � y3.

Notice that the lex and grevlex orders have thus given us two different orderings for the
terms in f ∈ Q[x, y] from Example 2.1.

Fix a term order � on k[x]. Given a polynomial f =
∑
cax

a ∈ k[x], the initial term
or leading term of f is the term cax

a such that xa � xa′ for all terms ca′x
a′ 6= cax

a of f .
We denote the initial term of f with respect to � by in�(f). We call the monomial xa the
initial monomial of f . Now that we have established a method for ordering the monomials
in k[x], we use this method to generalize the division algorithm for univariate polynomials
to a division algorithm for multivariate polynomials.

Algorithm 2.4 ([3] Theorem 3). A Division Algorithm for Multivariate Polynomials.
Input: A dividend f ∈ k[x], an ordered set of divisors (f1, . . . , ft) ⊂ k[x], and a term order
�.
Output: A set of polynomials {a1, . . . , as, r} ⊂ k[x] such that f =

∑s
i=1 aifi+r, where either

r = 0 or no term in r is divisible by any of in�(f1), . . . , in�(ft).
Do exactly what we did in the example at the beginning of the section. Starting with

i = 1 and running through i = t, divide in�(fi) into the remaining terms of f until the
remainder is equal to zero, or until there is no i ∈ {1, . . . , t} such that in�(fi) divides any
of the remaining terms.

Example 2.5. Consider the polynomial f = x2y2 +x2 + y5 ∈ Q[x, y], and the set of divisors
{f1 = y2 + 1, f2 = x2y + x} ⊂ Q[x, y] discussed at the beginning of this section. If we fix
the ordering x � y then the lex order applied to Q[x, y] gives in�(f) = x2y2, in�(f1) = y2,
in�(f2) = x2y. Thus, we see that the division performed in equations (1) and (2) is an
example of dividing f by the ordered set of divisors (f1, f2) with respect to the lex ordering
on Q[x, y].

However, recall that dividing f by (f1, f2) gives r = −(x2+x+y), and dividing f by (f2, f1)
gives r = y− xy− x. Therefore, our division algorithm alone does not guarantee uniqueness
of remainders. Thus, we need to define nice sets of divisors for which the remainder produced
is dependent only on the dividend.

A monomial ideal is an ideal in k[x] generated by monomials. For an ideal I ⊂ k[x] we
call the monomial ideal

in�(I) := 〈in�(f) : f ∈ I, f 6= 0〉 ⊂ k[x]

the initial ideal of I with respect to �. It follows from the Gordan-Dickson Lemma [3] §4.2
that all monomial ideals have a unique minimal finite basis consisting only of monomials.
Thus, there exist g1, . . . , gs ∈ I such that in�(I) = 〈in�(g1), . . . , in�(gs)〉.

Definition 2.6. (1) A finite subset of polynomials G�(I) = {g1, . . . , gs} ⊂ I is a Gröbner
basis of I with respect to � if in�(I) = 〈in�(g1), . . . , in�(gs)〉. We may assume that
in�(gi) is a monomial for i = 1, . . . , s.

(2) If G�(I) is the unique minimal generating set for in�(I), we say that G�(I) is a
minimal Gröbner basis of I with respect to �.
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(3) We say that a minimal Gröbner basis G�(I) of I is reduced if no non-initial term of
any gi ∈ G�(I) is divisible by any of in�(g1), . . . , in�(gs).

(4) The monomial of k[x] that do not belong to in�(I) are called the standard mono-
mials of in�(I).

Theorem 2.7. For a given term order � and ideal I ⊂ k[x], the reduced Gröbner basis
G�(I) is unique.

Proof. To see the theorem holds, assume otherwise. Then there exists a term order on �
such that for some ideal I ⊂ k[x], G�(I) = {g1, . . . , gt} and G ′�(I) = {f1, . . . , fs} are both
reduced Gröbner bases for I with respect to �, and there exists some gi ∈ G�(I) such that
gi 6= fj, for all j = 1, . . . , s. Since G ′�(I) generates in�(I), there exists an fj ∈ G ′�(I)
such that in�(gi) = xain�(fj) for some monomial xa ∈ k[x]. However, since G�(I) also
generates in�(I) there exists some gk ∈ G�(I) such that in�(fj) = xbin�(gk), and so
in�(gi) = xaxbin�(gk). Thus, the minimality of G�(I) implies that in�(gi) = in�(gk). So,
by the uniqueness of the minimal generating set for in�(I), it must be that in�(gi) = in�(fj).
Then, since gi−fj 6= 0 and gi−fj ∈ I, it must be that in�(gi−fj) ∈ in�(I). This contradicts
the assumption that G�(I) and G ′�(I) are reduced, since no term in gi−fj is divisible by any
of the elements in the unique generating set for in�(I). Therefore, it must be that gi = fj,
and so G�(I) = G ′�(I). �

Lemma 2.8 ([9] Lemma 1.3.8). If G�(I) is a reduced Gröbner basis of I with respect to
the term order � on k[x], then the remainder of any polynomial after division by G�(I) is
unique.

Proof. Let f ∈ k[x] and let G�(I) = {g1, . . . , gs} ⊂ I, and assume that we can divide f by
G�(I) to obtain two distinct remainders r1, r2 ∈ k[x]. The division algorithm then implies
that

f =
∑

aigi + r1 =
∑

a′igi + r2.

It then follows that

r1 − r2 =
∑

a′igi −
∑

aigi ∈ I.

Now, if r1 − r2 6= 0, then in�(r1 − r2) ∈ in�(I) and so there exists some i ∈ {1, . . . , s} such
that in�(gi) divides in�(r1− r2). This gives us a contradiction since the Division Algorithm
assures that no term in r1 − r2 is divisible by any in�(gi) for i = 1, . . . , s. Thus, it must be
that r1 − r2 = 0, and so r1 = r2. �

Corollary 2.9 ([9] Corollary 1.3.9). If G�(I) = {g1, . . . , gs} ⊂ I is a Gröbner basis for I
with respect to �, then I is finitely generated by G�(I).

Corollary 2.10 ([9] Corollary 1.3.10). If G�(I) = {g1, . . . , gs} ⊂ I is a Gröbner basis for I
with respect to �, and f ∈ k[x], then the remainder of f upon division by G�(I) equals 0 if
and only if f ∈ I.

Now that we have found a basis for I with the nice properties described in Lemma 2.8
and Corollary 2.10, we provide an algorithm developed to compute a reduced Gröbner basis
of an ideal I = 〈f1, . . . , ft〉 ⊂ k[x] with respect to any term order � on k[x]. The algorithm
requires that we first compute a certain type of polynomial for each pair of generators of I.
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Given two generators f and g of I, we compute the S-pair of f and g, denoted S-pair(f, g).
Let lcm(in�(f), in�(g)) be the least common multiple of in�(f) and in�(g). Then

S-pair(f, g) =
lcm(in�(f), in�(g))

in�(f)
f − lcm(in�(f), in�(g))

in�(g)
g.

Notice that S-pair(f, g) is the simplest way to cancel the initial terms of f and g. In the

following, we let f
G

denote the remainder of f upon division by G. It is well known that a set

of polynomials G in k[x] form a Gröbner basis with respect to� if and only if S-pair(f, g)
G

= 0
for every pair f, g ∈ G [3]. This fact is critical to the validity of the following algorithm.

Algorithm 2.11 ([3] Theorem 2). Buchberger’s Algorithm
Input: F = {f1, . . . , ft} a basis of the ideal I ⊂ k[x] and a term order � on k[x].
Output: The reduced Gröbner basis G�(I) of I with respect to �.

(1) Start by setting G := F and G ′ := G.
(2) For each pair {f, g} ⊂ G ′ for which f 6= g compute the remainder of S-pair(f, g) upon

division by G ′, and label it S. If S 6= 0, then set G := G ∪ {S}.
(3) Continue this process until S = 0 for all such pairs in G ′. At this point G is a Gröbner

basis for I.

Producing a minimal Gröbner basis with respect to �.
Let G�(I) be a Gröbner basis of I with respect to �. Make all the elements of G�(I) monic
by dividing each element by its leading coefficient. For each g ∈ G�(I) remove it from G�(I)
if its leading term is divisible by another element f ∈ G�(I).

Producing the reduced Gröbner basis with respect to �.
Set G ′ := G where G is a minimal Gröbner basis of I with respect to �. Set G�(I) := ∅.
Then for each g ∈ G do g′ = gG\g. The set G�(I) = G�(I) ∪ {g′} and G ′ = G ′\{g} ∪ {g′}.

Example 2.12. Let I = 〈f1 = x2 + xy + y2, f2 = x + z〉 ⊂ Q[x, y, z] and let � be the lex
ordering on Q[x, y, z] with respect to the fixed variable ordering x � y � z. Notice that
in�(f1) = x2 and in�(f2) = x. We want to compute a reduced Gröbner basis, G�(I) for I
with respect to �. So we first compute

S-pair(f1, f2) =
x2

x2
f1 −

x2

x
f2,

= (x2 + xy + y2)− x(x+ z),

= xy − xz + y2.

Applying the division algorithm to S-pair(f1, f2) for G = {f1, f2} gives S-pair(f1, f2) =

xy − xz + y2 = (y − z)(x + z) + (y2 − yz + z2), and so S-pair(f1, f2)
G

= y2 − yz + z2 6= 0.
Thus, we set G = {f1, f2, f3 = y2 − yz + z2}. Now, using the division algorithm, it is easy
to verify that

S-pair(f1, f2)
G

= S-pair(f1, f3)
G

= S-pair(f2, f3)
G

= 0,

and so G is a Gröbner basis for I with respect to �. However, G is not minimal since in�(f2)
divides in�(f1). So we set

G�(I) = {f2 = x+ z, f3 = y2 − yz + z2}.
7



Notice that G�(I) is in fact the reduced Gröbner basis for I with respect to � since

f1
G�(I)\f1

= f1, and f2
G�(I)\f2

= f2.

3. Convex Polytopes and Triangulations

Consider the set of points A = {a1, . . . , a6} ⊂ R2 where ai is the point given by column i
of the matrix

A =

(
0 1 2 3 4 2

0 1 2 1 0 0

)
.

These points form the diagram

0 1 2 3 4

1

2

2

3

4

561

If we refer to the point ai simply by the index i, then the collection of subsets of A
T = {{126}, {234}, {456}, {246}},

divides A into a set of triangles, none of which overlap, and together, completely cover all
the points in and between the points of A (and nothing more).

0 1 2 3 4

1

2

{126}

{234}

{456}

{246}

For this reason, we call the set T a triangulation of P (and of A). The generation of
triangulations of such finite sets of points like A will be the focus of this section, and critical
to our construction of toric ideals and their corresponding affine varieties. The following
material is drawn from Section 2.3 of [9] and Chapter 2 of [4].

A convex combination of a finite set of points {x1, . . . ,xk} ⊂ Rm is any x ∈ Rm that can

be expressed as
∑k

i=1 λixi with λi ∈ R being nonnegative for i = 1, . . . , k, and
∑k

i=1 λi = 1.
If we do not require nonnegativity, we call x an affine combination. The convex hull of a
set X ⊂ Rm, denoted conv(X), is the set of all points in Rm that are convex combinations
of a subset of the elements of X. Similarly, the affine span of X is the set of all affine
combinations of X. In the following discussion, we think of the points in Rn as column
vectors, but often write them as row vectors to save space.
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Example 3.1. The point x = (1, 1) ∈ R2 can be written as a convex combination of the
finite set of points A = {a1 = (0, 0), a2 = (2, 0), a3 = (2, 2), a4 = (0, 2)} ⊂ R2. For example,(

1

1

)
=

1

2
a3 +

1

2
a1 =

1

2
a2 +

1

2
a4.

Moreover, conv(A) is the square

2

0 2

1 2

34

Also notice that (−1, 0) and (0,−1) are affine combinations of A since (−1, 0) = −1
2
a2 +

3
2
a1, and (0,−1) = −1

2
a4 + 3

2
a1. From this, it is easy to see that the affine span of A is all

of R2.

The convex hull of a finite set of points {x1, . . . ,xk} ⊂ Rm is called a (convex) polytope. A
face of a polytope P is a subset of Rm of the form Fc(P) = {x ∈ P : c ·x ≥ c ·y, for all y ∈
P}. The dimension of a polytope, or a face of a polytope, is the dimension of its affine span.
If P is a d-dimensional polytope we call the (d− 1)-dimensional faces of P the facets of P .
The zero dimensional and one dimensional faces of P are called the vertices and edges of P ,
respectively. The boundary of P is the union of all facets of P . The relative interior of P ,
denoted rel(P), is the set all points in P that do not lie on the boundary of P .

Example 3.2. Consider the finite set of points A ⊂ R2 from Example 3.1. The polytope
P = conv(A) is a 2-dimensional polytope, since the affine span of A is all of R2. The facets
of P are F(0,−1)(P), F(1,0)(P), F(0,1)(P), and F(0,−1)(P), which correspond to the four line
segments defining conv(A), depicted in Example 3.1, starting at the origin and traveling
counterclockwise about the square. Since P is 2-dimensional then the facets of P are also
the edges of P , and the vertices are the set of points {a1, a2, a3, a4}. The boundary of P is
the empty square given by the set of points F(0,−1)(P) ∪ F(1,0)(P) ∪ F(0,1)(P) ∪ F(0,−1)(P),
and so the relative interior of P is the open square

2

0 2

1 2

34
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Given a d-dimensional polytope P ⊂ Rm, we may always find a projection Rm −→ Rd that
embeds P in Rd and preserves many of the properties that will be important to us, including
triangulations and volume. We will see that it is often helpful to find such an embedding of
P in Rd and then think of P as lying in a hyperplane of Rd+1.

We say that a set of points is affinely independent if no point in the set is an affine
combination of the rest. Otherwise, the set is called affinely dependent. Equivalently, a set
of k points is affinely independent if the dimension of its convex hull is k − 1. We call an
affinely independent set a basis of its affine span. A k-simplex is the convex hull of an affinely
independent set of k + 1 points.

Let V = {v1, . . . ,vk} ⊂ Rm be a finite set of vectors. Then the positive hull of V is the
set

cone(V) =

{∑
v∈V

λvv : λv ≥ 0, for all v ∈ V

}
.

Sets of the form cone(V) are commonly referred to as convex polyhedral cones, or more
simply, cones. The dimension of a cone is the dimension of the linear subspace spanned by
the elements of V , and the lineality space of cone(V) is the largest linear subspace contained
in the cone. For example, consider cone{1,−1} ⊂ R. Since cone{1,−1} = R, the lineality
space of cone{1,−1} is the entire real line. A cone is called pointed if its lineality space is
the zero subspace. Just as for polytopes, we define a face of a cone C to be a set of the form
Fc(C) = {x ∈ C : c · x ≥ c · y, for all y ∈ C}. Similarly, if C is a d-dimensional cone, then
the (d− 1)-dimensional faces of C are called the facets of C, and the relative interior of C
is the set of all points in C that do not lie on a facet of C.

Example 3.3. The set of vectors V = {v1 = (1, 3, 3),v2 = (1, 4, 2),v3 = (0, 4, 2),v4 =
(0, 3, 3)} ⊂ R3 form the convex polyhedral cone

Since (1, 0, 0) = v1 − v4, (0, 1, 0) = 1
2
v2 − 1

2
v1 − 5

6
v4, and (0, 0, 1) = 2

3
v4 − 1

2
v3, cone(V)

spans a 3-dimensional linear subspace, and so cone(V) is 3-dimensional. It is easy to see that
cone(V) is contained in the positive orthant of R3, and therefore the largest linear subspace
contained in cone(V) must be the zero subspace. Thus, cone(V) is pointed.

We are now ready to define a point configuration in Rm and triangulations of point con-
figurations. We do so in such a way that the following definitions and properties are easily
generalized to a set of vectors in Rm. Both of these perspectives are useful in the study of
triangulations of polytopes.
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Definition 3.4 ([4] Definition 2.1.10/2.1.11). A point configuration in Rm is a finite set
of (perhaps repeated) points with (non-repeated) labels from a selected index set. More
precisely, a point configuration A in Rm with a finite set of labels J is a map A : J −→ Rm.
The dimension of a point configuration is the dimension of its convex hull. The rank of a
point configuration is equal to the dimension plus one.

Notice that if A ⊂ Rm, then we can consider the convex polytope P = conv(A), and thus
all of the affine geometry of polytopes described previously may be applied directly to the
configuration A.

Let A ⊂ Rm be a point configuration with label set J , and C ⊂ J . We let conv(C)
denote the convex hull of all elements in A whose labels lie in C. We say that C is spanning
if conv(C) has the same dimension as conv(J ). We say that an element j ∈ J is extremal in
A if the corresponding point pj in A is not repeated and is a vertex of conv(J ) = conv(A).
We are now ready to define triangulations for point configurations.

Definition 3.5 ([4] Definition 2.3.1). Let A be a point configuration in Rm, with label set
J . A collection T of subsets of J is a polyhedral subdivision of A if it satisfies the
following conditions:

(1) (Closure Property) If C ∈ T and F is a face of C, then F ∈ T .
(2) (Union Property) conv(J ) ⊆

⋃
C∈T conv(C).

(3) (Intersection Property) If C 6= C ′ are two cells in T , then rel(C) ∩ rel(C ′) = ∅.
The elements of a polyhedral subdivision are called cells. A cell C is called maximal if the
dimension of C equals the dimension of A. A triangulation of A is a polyhedral subdivision
in which all maximal cells are d-simplices, where d is the dimension of A.

Example 3.6. The set T described at the beginning of the section qualifies as a triangu-
lation of the configuration {(0, 0), (1, 1), (2, 2), (3, 1), (4, 0), (2, 0)} ⊂ R2. We can also define
triangulations for the configuration A = {1, 2, 4, 6} ⊂ R given in Example 3.10. We will
refer to the points of A by their corresponding indices in the matrix A given in Example
3.10.

T1 = {{14}} 1 2 3 4

T2 = {{12}, {24}} 1 2 3 4

T3 = {{12}, {23}, {34}} 1 2 3 4

T4 = {{13}, {34}} 1 2 3 4

We will be particularly interested in working with regular triangulations of point configu-
rations.

Definition 3.7. Let A ⊂ Rd be a d-dimensional point configuration with n elements and
let ω : J −→ R be a “height vector.” We let ω(j) = ωj, and define the lifted point
configuration Aω = {(pj, ωj) ∈ Rd+1 : j ∈ J }. A lower face of Aω is any face of
conv(Aω) that lies in the direction of a linear functional with positive last coordinate. A
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regular subdivision of A is a polyhedral subdivision consisting of the set of lower faces of
Aω for some height vector ω. A regular triangulation of A is a regular subdivision of A
whose maximal cells consist only of d-simplices.

Example 3.8. First consider the configurationA = {1, 2, 4, 6} ⊂ R2 given in Example 3.6. It
is a simple task to find height vectors corresponding to all four triangulations T1, T2, T3, T4. In
doing so, we show that all triangulations of A are regular triangulations. For example, define
the height vector ω : J −→ R such that ω(1) = ω(4) = 1 and ω(2) = ω(3) = 0. This gives
the lifted configuration Aω = {(1, 1), (2, 0), (4, 0), (6, 1)} ⊂ R2. Moreover, P = conv(Aω) is
the polytope

1 2 3 4

1

The lower faces of P are the red, green, and blue edges as well as all the points in Aω.
Thus, ω gives the regular triangulation T3 = {{12}, {23}, {34}} of A. Similar liftings can be
defined to produce T1, T2, and T4.

Also notice that the triangulation T = {{126}, {234}, {456}, {246}} of the configuration
A = {(0, 0), (1, 1), (2, 2), (3, 1), (4, 0), (2, 0)} ⊂ R2 presented at the beginning of this section
is a regular triangulation induced by the height vector ω : J −→ R such that ω(1) = ω(3) =
ω(5) = 1 and ω(2) = ω(4) = ω(6) = 0 .

We may now consider the straight-forward generalization of point configurations to vector
configurations.

Definition 3.9 (Del, Definition 2.5.1). A vector configuration in Rm is a finite set A =
(pj : j ∈ J ) of labeled vectors pj ∈ Rm. Its rank is its rank as a matrix of vectors. A
subconfiguration is any labeled subset of the configuration.

It is often easiest to refer to the elements of a vector configurationA by their corresponding
labels in J . We will usually depict A as the set of columns of a matrix A. Moreover, it is
convenient to represent the point configuration A ⊂ Rd by adding a row of ones to the matrix
A. This allows us to consider the affine geometry of A as a special case of linear algebra
without sacrificing many of the geometric properties in question, such as the triangulations of
A. We will see that this process, referred to as homogenization, of adding an extra coordinate
provides a natural way of viewing a point configuration in Rm as a vector configuration in
Rm+1.

Example 3.10. We represent the point configuration A = {1, 2, 4, 6} ⊂ R with the matrix

A =
(

1 2 4 6
)
.

The convex hull of A is the line segment defined by the real closed interval [1, 6] ⊂ R.
Embedding A in the hyperplane x2 = 1 in R2 via the homogeneous matrix

A =

(
1 2 4 6

1 1 1 1

)
.

allows us to think about the affine set of points A as a set of vectors in R2.
12



1 2 3 4 5 6 1 2 3 4 5 6

1

2

Homogenization

We refer to the homogenization of A as representing A in homogeneous coordinates. Notice
that this process is simply identifying A ⊂ Rd as a configuration lying in the hyperplane
xd+1 = 1 of Rd+1. Thus, we more generally refer to a matrix A (and its corresponding point
configuration) as homogeneous if all of its columns lie in the same hyperplane.

Notice that this homogenization technique allows us to view any point configuration as a
vector configuration. Thus, it is easy to see that all of the properties and constructions we
have described for point configurations extend naturally to vector configurations simply by
using cones instead of simplices.

Example 3.11. The vector configuration V = {v1 = (1, 3, 3),v2 = (1, 4, 2),v3 = (0, 4, 2),v4 =
(0, 3, 3)} ⊂ R3 has exactly two triangulations.

T1 = {{123}, {134}}, T2 = {{124}, {234}}.

4. The Algebra of Normal Toric Varieties

In this section, we take a closer look at the toric ideal as defined in Definition 1.1 generated
by the vector configuration A ⊂ Zd and its corresponding zero set, which we will call the
affine toric variety associated with A. Here, we let k be an algebraically closed field, and
let k[x] := k[x1, . . . , xn]. This definition of a toric variety differs from the standard algebraic
geometry definition, which defines a toric variety as an irreducible, normal variety V in affine
d-space that contains a d-dimensional algebraic torus (k∗)d as a Zariski open subset such that
the action of (k∗)d on itself extends to an action of (k∗)d on V . We will first show that the
only property our definition is lacking with regard to the classical definition is normality of
V . We then demonstrate exactly when this variety is normal. The following discussion is
based on Chapter 3 of [9] and Chapters 4, 7, and 13 of [11]. We begin with a Proposition
that guarantees a nice correspondence between the toric ideals, and their associated affine
varieties.

Proposition 4.1. Let A ⊂ Zd be a finite vector configuration. Then the toric ideal IA is a
prime ideal in k[x].
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Proof. Notice that the first isomorphism theorem of rings implies that k[x]/IA ∼= π̂(k[x]) =
k[ta1 , . . . , tan ]. Since k[ta1 , . . . , tan ] is an integral domain, then IA is a prime ideal. �

Notice that Proposition 4.1 together with Hilbert’s Nullstellensatz (given in [5]), guaran-
tees that the affine toric variety VA is irreducible for all finite vector configurations A ⊂ Zd.
We now define a first basis for an arbitrary toric ideal.

Lemma 4.2 ([11] Lemma 4.1). The toric ideal IA is spanned as a k-vector space by the set
of binomials

{xu − xv|u,v ∈ Nn with π(u) = π(v)}.

Proof. A binomial xu−xv lies in IA if and only if π(u) = π(v). Thus, it suffices to show that
if f ∈ IA, then f is a k-linear combination of these binomials. For the sake of contradiction,
assume that f ∈ IA cannot be written as a k-linear combination of these binomials. We
choose f ∈ IA such that in�(f) = xu is minimal with respect to the term order � on k[x].
Since f ∈ IA = ker(π̂), then when we expand f(ta1 , . . . , tan) we get zero. This implies that
π̂(xu) cancels in this expansion, and so there exists some monomial xv ≺ xu appearing in
f such that π(u) = π(v). It follows that the polynomial f ′ = f − xu + xv also cannot be
written as a k-linear combination of the binomials in IA. However, in�(f ′) ≺ in�(f), which
contradicts the minimality of in�(f). �

Let u ∈ Zn, and define the vectors u+,u− ∈ Zn such that u+
i = ui if ui > 0, otherwise

u+
i = 0; and u−i = |ui| if ui < 0, otherwise u−i = 0. Then every vector u ∈ Zn can be written

uniquely as u = u+−u−, where both u+ and u− are nonnegative and have disjoint support.
If we let ker(π) denote the sublattice of Zn containing all vectors u such that π(u+) = π(u−),
then we have the following corollary.

Corollary 4.3 ([11] Corollaries 4.3 and 4.4). IA = 〈xu+−xu−|u ∈ ker(π)〉. Moreover, For
every term order � on k[x], there is a finite set of vectors G� ⊂ ker(π) such that the reduced
Gröbner basis of IA is equal to {xu+−xu− |u ∈ G�}.

Proof. First let xu − xv ∈ {xu − xv|u,v ∈ Nn with π(u) = π(v)} ⊂ IA. We will show that
there exists a binomial xu+−xu− ∈ {xu−xv|u,v ∈ Nn with π(u) = π(v)} where u ∈ ker(π)
and xu − xv = xa(xu+−xu−) for some monomial xa. If u and v have disjoint support, then
we are done, since xu−xv ∈ {xu+−xu− |u ∈ ker(π)}. If u and v do not have disjoint support
then there exists a monomial xa such that xu = xaxu′ and xv = xaxv′ , where u′ and v′ do
have disjoint support. Thus, xu−xv = xa(xu′−xv′), u = a+u′, and v = a+v′. Therefore,

π(u) = π(v),

Au = Av,

A(a + u′) = A(a + v′),

Aa + Au′ = Aa + Av′,

π(u′) = π(v′).

Thus, since, u′ − v′ ∈ ker(π), and u′,v′ ∈ Nn and have disjoint support, it follows that
u′ − v′ ∈ {xu+−xu− |u ∈ ker(π)}. Therefore, IA = 〈xu+−xu−|u ∈ ker(π)〉.

To see that the second part of the corollary holds, recall that the Hilbert Basis Theorem
allows us to find a finite subset of binomials G in {xu+−xu−|u ∈ ker(π)} that generate
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IA. Since the operations of reduction and forming S-pairs preserve the binomial structure
when applied to elements of G, applying the Buchberger Algorithm to G, with respect to
some term order �, will result in the reduced Gröbner basis G� consisting only of binomials.
Moreover, any binomial produced in this process must lie in {xu+−xu−|u ∈ ker(π)} or the
resulting Gröbner basis would not be reduced. To see this, assume that xu − xv ∈ G� and
xu − xv /∈ {xu+−xu− |u ∈ ker(π)}. Then it must be that xu − xv = xa(xu+ − xu−) for
some u ∈ ker(π). Thus, either xu or xv is divisible by in�(xu+ − xu−), contradicting the
reducedness of G�. �

The following algorithm is a special case of Theorem 3.3.2 of [3]. Given a toric ideal
IA ⊂ k[x] and a term order � on k[x], we can compute the reduced Gröbner basis for IA
with respect to �, which we will denote G�.

Algorithm 4.4 ([11] Algorithm 4.5). Computing a reduced Gröbner basis of a toric ideal.

(1) Introduce n + d + 1 indeterminates t0, t1, . . . , td, x1, x2, . . . , xn. Let � be any term
order with ti � xj, for all 1 ≤ i ≤ d and 1 ≤ j ≤ n.

(2) Compute the reduced Gröbner basis G for the ideal

〈t0t1 · · · td − 1, x1t
a−1 − ta

+
1 , . . . , xnt

a−n − ta
+
n 〉.

(3) Output: The set G ∩ k[x] is the reduced Gröbner basis for IA with respect to �.

The correctness of Algorithm 4.4 follows from [3] Theorem 3.3.2. There do exist many
faster algorithms, two of which are given in §3.3 of [9].

Example 4.5. Let A = {(1, 1), (2,−2), (−3, 1), (2, 0)} ⊂ Z2. Use the indeterminants
t0, t1, t2, x1, x2, x3, x4, and choose a term order such that ti � xj for all i = 0, 1, 2 and
j = 1, 2, 3, 4. We first compute a reduced Gröbner basis G�(I) of

I = 〈t0t1t2 − 1, x1 − t1t2, x2t
2
2 − t21, x3t

3
1 − t2, x4 − t21〉 ⊂ k[t0, t1, t2, x1, x2, x3, x4]

with respect to the lex ordering on k[t0, t1, t2, x1, x2, x3, x4]. Using the Buchberger Algorithm,
we find that

G�(I) = {x2x
2
3x

2
4 − 1,−x3x

2
4 + x1,−x2

3x
3
4 + t22,−t2x2x3x4 + t1,−x2x3 + t0}.

Thus, G = G�(I) ∩ k[x1, x2, x3] = {x2x
2
3x

2
4 − 1,−x3x

2
4 + x1} is a reduced Gröbner basis for

IA with respect to the lex ordering on k[x1, x2, x3].

Definition 4.6. (a) The universal Gröbner basis of A, denoted UA, is the union of all
reduced Gröbner bases G� of the toric ideal IA as � runs through all possible term
orders on k[x].

(b) A binomial xu+−xu− in IA is called primitive if there exists no other binomial xv+−xv−

in IA such that xv+
divides xu+

and xv− divides xu− .
(c) The Graver Basis of A, denoted GrA, is the set of all primitive binomials in IA.

Proposition 4.7 ([11] Lemma 4.6). Let A ⊂ Zd be a finite vector configuration. Then
UA ⊆ GrA.

Proof. Fix a term order � on k[x] and let xu+−xu− be any binomial in the reduced Gröbner
basis G�. We assume, without loss of generality, that u+ � u−. Since G� is also a minimal
Gröbner basis, then xu+

is a minimal generator for in�(IA), and so xu− must be a standard
15



monomial. Assume for the sake of contradiction that xu+−xu− is not primitive. Then there
exists xv+ − xv− with v 6= u such that xv+

divides xu+
and xv− divides xu− . If v+ � v−

then xu+
is not a minimal generator, a contradiction. So it must be that v− � v+, which

implies that xu− is not standard, another contradiction. �

For a given A ⊂ Zd the Lawrence Lifting of A is the set of column vectors of the enlarged
matrix

Λ(A) =

(
A 0

In In

)
,

where In is the n × n identity matrix and 0 is the d × n zero matrix. Notice that A and
Λ(A) have isomorphic kernels since ker(Λ(A)) = {(u,−u)|u ∈ ker(π)}. This isomorphism
indicates that

IΛ(A) = 〈xu+

yu− − xu−yu+|u ∈ ker(π)〉 ⊂ k[x,y],

where k[x,y] := k[x1, . . . , xn, y1, . . . , yn], a polynomial ring in 2n variables.

Theorem 4.8 ([11] Theorem 7.1). Let A ⊂ Zd. Then for Λ(A) the following sets of bino-
mials coincide:

(i) the Graver Basis of Λ(A),
(ii) the universal Gröbner basis of Λ(A),

(iii) any reduced Gröbner basis of IΛ(A),
(iv) any minimal generating set of IΛ(A) (up to scalar multiples).

As a corollary to Theorem 4.8, we have the following algorithm for computing the Graver
basis of a given integer vector configuration.

Algorithm 4.9 ([11] Algorithm 7.2). Computing the Graver basis of an integer vector
configuration A.

(1) Fix a term order � on k[x,y]. Compute the reduced Gröbner basis G� of IΛ(A).
(2) Substitute y1, . . . , yn 7→ 1 in G�. The resulting subset of k[x] is the Graver basis GrA.

Example 4.10. Recall the configuration A = {(1, 1), (2,−2), (−3, 1), (2,−1)} ⊂ Z2 from
Example 4.5. The Lawrence Lifting of A is the matrix

Λ(A) =

(
A 02×4

I4 I4

)
=



1 2 −3 2 0 0 0 0

1 −2 1 −1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1


.

Let a = (a, b, c, d, e, f, g), x = (x, y, z, w) and y = (u, v, q, r). Then, following the steps of
Algorithm 4.4, we pick a term order � such that a � b � c � d � e � f � g � x � y � z �
w � u � v � q � r, and compute a reduced Gröbner basis G�(J) for the ideal

J = 〈abcdefg − 1, x− bcd, yc2 − b2e, zb3 − cf, wc− b2g, u− d, v − e, q − f, r − g〉 ⊂ k[a,x,y]

with respect to the lex ordering on k[a,x,y]. Using the Buchberger Algorithm we find that
G�(J) contains 61 elements such that G = G�(J) ∩ k[x,y] = {−z2w4v + yq2r4, xz3w4 −
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uq3r4, xyz−uvq,−zw4uv2 +xy2qr4,−w4u2v3 +x2y3r4} is a reduced Gröbner basis for Λ(A)
with respect to the lex ordering on k[x,y]. We then make the substitution u, v, q, r 7→ 1 in
G. This gives

GrA = {−z2w4 + y, xz3w4 − 1, xyz − 1,−zw4 + xy2,−w4 + x2y3}.

Throughout this discussion we have been regarding a toric variety as the set of zeros of
a toric ideal IA for some configuration A. We now demonstrate that this definition does
give a (not necessarily normal) irreducible variety V in affine d-space that contains a d-
dimensional algebraic torus (k∗)d as a Zariski open subset, such that the action of (k∗)d on
itself extends to an action of (k∗)d on V . This implies that our definition differs from the
standard algebraic geometry definition only on the requirement of normality. We then show
exactly when normality arises in toric varieties that satisfy our original definition.

Let σ be a pointed rational polyhedral cone in the vector space Qd. Then the dual cone
to σ,

σ∨ = {u ∈ Qd|u · v ≥ 0 for all v ∈ σ},
is a d-dimensional cone in Qd. We then have that the associated semigroup

Sσ := σ∨ ∩ Zd = {u ∈ Zd|u · v ≥ 0 for all v ∈ σ}

is finitely generated. It follows that the semigroup algebra k[Sσ] is also finitely generated.

Lemma 4.11 ([11] Lemma 13.1). The cone σ is d-dimensional if and only if its dual cone
σ∨ is pointed. In this case, the semigroup Sσ has a unique minimal generating set A ⊂ Zd.

Definition 4.12. The unique minimal generating set A ⊂ Zd of the semigroup Sσ associated
with a d-dimensional, pointed rational polyhedral cone σ is called the Hilbert basis of Sσ.

The following algorithm uses Gröbner basis techniques to compute Hilbert bases.

Algorithm 4.13 ([11] Algorithm 13.2). Computing the Hilbert basis for an affine toric
variety.

Input: A spanning set for a d-dimensional convex polyhedral cone σ ⊂ Zd.
Output: The Hilbert Basis A of the semigroup Sσ ⊂ Zd.
(1) Replace the given generators of the cone σ by a new generating set {v1, . . . ,vd,vd+1, . . . ,vm}

consisting only of lattice points and such that {v1, . . . ,vd} is a lattice basis of Zd.
Let V denote the m× d matrix whose rows are the vectors v1, . . . ,vd,vd+1, . . . ,vm.

(2) The image of V in Zm is a saturated sublattice, i.e. Zm/ imZ(V) is free abelian.
Compute an (m− d)×m integer matrix B such that ker(B) = imZ(V).

(3) Compute the Graver Basis GrB of the vector configuration consisting of the columns
of B.

(4) For each nonnegative vector s = (s1, . . . , sm) in GrB determine and output the unique
vector u ∈ Zd such that u · vi = si for i = 1, . . . , d.

Example 4.14. Let σ be the convex polyhedral cone spanned by (1, 1) and (1, 3) in rational
affine 2-space. We wish to compute the Hilbert basis A for Sσ = N{(1, 1), (1, 3)}. Since (1, 1)
and (1, 3) do not form a lattice basis for Z2, we include the vector (1, 2) = 1

2
(1, 1) + 1

2
(1, 3).
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Now, {(1, 1), (1, 2)} is a lattice basis for Z2 contained in our spanning set for σ. The desired
matrices from steps (1) and (2) of Algorithm 4.13 are

V =

1 1

1 2

1 3

 , and B =
(

1 −2 1
)
.

We now compute the Graver basis GrB of the matrix B using Algorithm 4.9, and find that

GrB = {yz2 − 1, x− z, xyz − 1, x2y − 1}.
Thus, supp(GrB) = {(0, 1, 2), (1, 0,−1), (1, 1, 1), (2, 1, 0)}. We then compute the unique
preimages under V of the three nonnegative vectors in supp(GrB), and the resulting three
vectors are the desired Hilbert basis of the semigroup Sσ:

A = {(−1, 1), (1, 0), (3,−1)} ⊂ Z2.

Consider the variety Xσ = Spec(k[Sσ]). This implies that Xσ is the spectrum of the
semigroup algebra k[Sσ] = k[A] = k[ta1 , . . . , tan ] = π̂(k[x]) ∼= k[x]/IA. Therefore, Xσ is
embedded in affine d-space as as the zero set of the toric ideal IA. To see that Xσ contains
an algebraic torus (k∗)d, consider the following lemma.

Lemma 4.15 ([11] Lemma 13.4). Suppose dim(A) = d. Then the set Xσ ∩ (k∗)n is an
algebraic group under coordinate-wise multiplication, and this group is isomorphic to the
algebraic torus (k∗)d.

Proof. For any n-element subset of A ⊂ Zd, the map

(k∗)d 7−→ Xσ ∩ (k∗)n, t = (t1, . . . , td) 7−→ (ta1 , ta2 , . . . , tan)

is an injective group homomorphism . Since, dim(A) = d implies that this map is onto, it
follows that this is an isomorphism of groups. �

It now remains to consider the issue of normality of Xσ.

Definition 4.16. (a) Let S be an affine semigroup. The group of differences of S, denoted
gp(S), is the smallest group (up to isomorphism) which contains S.

(b) An affine semigroup S is called normal if every element x ∈ gp(S) such that cx ∈ S (for
some c ∈ N) belongs to S.

(c) A variety X is normal if its local rings are integrally closed in its field of fractions.

Definition (b) indicates that for a given semigroup S, the semigroup algebra k[S] is normal
if it is integrally closed in its field of fractions. It is well-known that S is a normal semigroup
if and only if k[S] is a normal variety (see [1]).

Proposition 4.17. Let A = {a1, . . . , an} ⊂ Zd be a finite vector configuration. Then the
semigroup NA is normal if and only if NA = cone(A) ∩ ZA.

Proof. First let NA be a normal semigroup. We will show that NA = cone(A) ∩ ZA by
showing containment in both directions. If x ∈ NA, then x = λ1a1 + · · · + λnan for some
λ1, . . . , λn ∈ N. Since λ1, . . . , λn ≥ 0, then x ∈ cone(A). Thus, since x ∈ NA ⊂ ZA, we have
that x ∈ cone(A) ∩ ZA, and so NA ⊆ cone(A) ∩ ZA.

If x ∈ cone(A)∩ZA, then x ∈ cone(A), and so x = λ1a1 + · · ·+λnan for some λ1, . . . , λn ∈
Q≥0. If we let λi = pi

qi
with pi and qi in lowest terms for i = 1, . . . , n, then cx ∈ NA, where
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c = q1q2 · · · qn ∈ N. Since x ∈ ZA, and NA is normal, it follows that x ∈ NA also. Thus,
cone(A) ∩ ZA ⊆ NA, and we conclude that NA = cone(A) ∩ ZA.

Conversely, assume that NA = cone(A) ∩ ZA. Then if x ∈ ZA such that cx ∈ NA for
some c ∈ N, then cx ∈ cone(A), and so x = 1

c
cx ∈ cone(A). Thus, x ∈ cone(A)∩ZA = NA,

and so NA is normal. �

The following proposition of [11] tells us exactly when the toric variety Xσ is normal.

Proposition 4.18. For a finite vector configuration A ⊂ Zd the following are equivalent:

(1) The affine toric variety XA is normal.
(2) The affine toric variety XA is isomorphic to Xσ for some rational polyhedral cone σ

in Qd.
(3) The integral domain k[A] ∼= k[x]/IA is integrally closed in its field of fractions.
(4) The semigroup NA is normal.

5. Normal and ∆-Normal Vector Configurations

Definition 5.1. The finite vector configuration A is normal if NA = cone(A)∩ZA. More-
over, conv(A) is normal if A is normal.

Thus, Proposition 4.18 indicates that the configuration A is normal if and only if its
associated algebraic structures are normal. While this definition assures that A is normal
exactly when its associated affine toric variety is normal, it does not provide any immediate
connections between these algebraic and geometric properties of A and the combinatorial
properties of A as a vector or lattice point configuration in Zd. Therefore, it is natural to
consider what combinatorial properties of A characterize, approximate, or at the very least,
guarantee the normality of A. In particular, we will define a concept called ∆-normality for
a configuration A that is combinatorial, and investigate its relationship with normality of
A. We will show that ∆-normality of A implies A is indeed normal. However, the converse
does not hold, indicating that more work is required to identify the correct combinatorial
characterization of normality of A.

Currently, the best combinatorial approximation for the normality of A is the existence
of a unimodular covering of conv(A). A d-simplex in Rd is called unimodular if its standard
Euclidean volume has the smallest possible value, 1

d!
(or normalized volume 1). A collection of

unimodular simplices covering conv(A) is called a unimodular covering of conv(A). Similarly,
a triangulation of conv(A) is called a unimodular triangulation if each of its simplices is
unimodular. In an effort to decipher further connections between unimodular coverings
of A and normality, specific types of unimodular coverings, such as regular unimodular
triangulations, of conv(A) have been considered. In particular, if we let

(1) conv(A) possesses a unimodular regular triangulation,
(2) conv(A) possesses a unimodular triangulation,
(3) conv(A) possesses a unimodular covering, and
(4) conv(A) is normal,

then (1) ⇒ (2) ⇒ (3) ⇒ (4). The implications (1) ⇒ (2) ⇒ (3) follow from the definitions
of regular triangulation and unimodular covering, respectively. The details of (3)⇒ (4) are
specified in [1].

Unfortunately, this examination has failed to yield a characterization of the normality of
A via unimodularity. In fact, there exist counterexamples to the converses of all three of
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the above implications. We first present one of many counterexamples to the converse of
(2)⇒ (3).

Example 5.2. Consider the homogeneous configurationA = {a1 = (2, 0, 1), a2 = (2, 2, 1), a3 =
(4, 1, 1)} ⊂ Z3. We can define a unimodular covering of conv(A) by considering the configu-
ration A′ = A∪ {a4 = (2, 1, 1), a5 = (3, 1, 1)}, and the triangulation ∆ = {σ1 = {245}, σ2 =
{235}, σ3 = {135}, σ4 = {145}} of A′. Since all the points in A′ lie in the same hyperplane,
we can represent this triangulation in Z2.

1 2 3 400

0

1

2

1

2

34
5

The points in A are labeled with red indices. It is easy to see that conv(A) is a 2-simplex.
Moreover, we have that

Vol(σ1) = Vol(σ2) = Vol(σ3) = Vol(σ4) = 1,

and so ∆ defines a unimodular covering of conv(A). However, since A is a 2-simplex, it
has the unique triangulation ∆ = {{123}}. If we let Vol(A) be the normalized volume of
conv(A), then

Vol(A) =
1

d!
|Det(A)| = 1

2!

∣∣∣∣∣∣∣Det
2 2 4

0 2 1

1 1 1


∣∣∣∣∣∣∣ = 2 6= 1.

Thus, A is not a unimodular simplex, and therefore does not possess a unimodular triangu-
lation.

Second, the configuration defined by Ohsugi and Hibi [7] verified that (2) ; (1) and
(4) ; (1). Third, Firla-Ziegler configurations [10] provide counterexamples for the con-
verse of (2) ⇒ (4). Finally, Bruns and Gubeladze [2] discovered multiple tight cones to be
counterexamples to (4)⇒ (3). Therefore, we also have the hierarchy:

(1) : (2) : (3) : (4).

The combinatorial properties of these counterexamples will be central to the following dis-
cussion, and each will be considered in more detail as the necessity to do so arises. As
a result of these counterexamples, even though the existence of a unimodular covering of
conv(A) provides the best known approximation for the normality of A, it does not provide
a characterization of normality of A in terms of its combinatorial properties.

Another approach to this problem is to formally define a concept of combinatorial normal-
ity for A and study the relationship of this property with the normality and unimodularity
of A. In doing so, it would be nice if the combinatorial normality of A guaranteed that A is
in fact normal.
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Definition 5.3. Let max ∆ denote the set of all facets of a triangulation ∆. A configuration
A is ∆-normal if it has a regular triangulation ∆ such that for each σ ∈ max ∆, A∩cone(Aσ)
is a Hilbert basis of cone(Aσ) ∩ ZA.

Example 5.4. Recall the triangulation ∆ = {{126}, {234}, {456}, {246}} of the configu-
ration A = {(0, 0), (1, 1), (2, 2), (3, 1), (4, 0), (2, 0)} ⊂ R2 from the beginning of section 3.
In Example 3.8 we showed that ∆ is in fact a regular triangulation of A. In this case,
max ∆ = {{126}, {234}, {456}, {246}}, all of which are unimodular. Therefore, for a given
σ ∈ max ∆, A ∩ cone(Aσ) = Aσ is a Hilbert basis of cone(Aσ) ∩ ZA.

The definition of ∆-normality is rooted in highly studied combinatorial properties of A, as
it depends on the existence of a special type of regular triangulation of A. This is in sharp
contrast to the definition of normality, which depends solely on properties of algebraic objects
associated with A – namely, the normality of the semigroup generated by A. Now that we
have established a concept of combinatorial normality, we must investigate its associations
with normality.

Theorem 5.5. All ∆-normal configurations are normal.

Proof. Let A ⊂ Zd be a ∆-normal configuration with respect to the regular triangulation
∆. Then for each σ ∈ max ∆, A ∩ cone(Aσ) is a Hilbert basis of cone(Aσ) ∩ ZA, where
Aσ = {ai ∈ A|i ∈ σ}. Since ∆ is a simplicial complex of A it follows that

conv(A) =
⋃

σ∈max(∆)

conv(Aσ),

and so
cone(A) =

⋃
σ∈max(∆)

cone(Aσ).

Since A ∩ cone(Aσ) is a Hilbert basis of cone(Aσ) ∩ ZA, then NAσ = cone(Aσ) ∩ ZA.
Therefore,

cone(A) ∩ ZA =

 ⋃
σ∈max(∆)

cone(Aσ)

 ∩ ZA,

=
⋃

σ∈max(∆)

[cone(Aσ) ∩ ZA] ,

=
⋃

σ∈max(∆)

NAσ,

= NA.
�

Remark 5.6. All finite vector configurations are ∆-normal with respect to their regular
unimodular triangulations. This follows directly from the definition of a unimodular simplex.
Therefore, the ∆-normal property for A is a generalization of the existence of a regular
unimodular triangulation of A [8].

Notice that this does not imply that the ∆-normal property is a generalization of the
existence of a unimodular triangulation or unimodular covering of conv(A). In fact, the set
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of all configurations possessing a regular unimodular triangulation is a proper subset of the
set of all configurations possessing a unimodular triangulation. For example, in [7], Hibi
and Ohsugi demonstrated the existence of a normal (0,1)-polytope that possesses no regular
unimodular triangulations, but does possess a non-regular unimodular triangulation.

The combined works of [8], [10], and Firla and Ziegler (See [10]) have done well to catego-
rize the different types of ∆-normal configurations. The first of these categories we noted in
Remark 5.6. The next category described in [8] consists of all normal configurations A such
that cone(A) is simplicial. Such a configuration is ∆-normal with respect to its coarsest reg-
ular triangulation, ∆ = {{1, . . . , d}}, where we assume that cone(A) = cone({a1, . . . , ad}).
In [10], O’Shea and Thomas construct a collection of ∆-normal configurations that are non-
simplicial and possess no unimodular triangulations. These configurations are generated
as an extension of a collection of normal simplicial configurations known as Firla-Ziegler
configurations (defined in [10]).

Definition 5.7. A N4-Firla-Ziegler configuration is a normal, simplicial vector configura-
tionA ⊂ N4 without unimodular triangulations that is the Hilbert basis of the cone generated
by the first three standard basis vectors of R4, e1, e2, e3, and a vector v = (a, b, c, d) ∈ N4

with 0 < a < b < d.

The set of N4-Firla-Ziegler configurations is in fact nonempty. Firla and Ziegler were able
to generate hundreds of such configurations via computer search [10].

Example 5.8. The configuration A4 consisting of the columns of the matrix

A4 =


1 0 0 1 1 1 1 1

0 1 0 2 1 1 2 2

0 0 1 3 1 2 2 3

0 0 0 5 1 2 3 4

 .

is the first N4-Firla-Ziegler configuration. It is the Hilbert basis of the configuration A4
ext

consisting of the columns of the matrix

A4
ext =


1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 5

 .

The configuration A4 is normal since it is the Hilbert basis for cone(A4)∩ZA4 = cone(A4
ext)∩

ZA4. To see that A4 is simplicial, notice that v /∈ cone({e1, e2, e3}). Thus, cone(A4) is
a 4-dimensional cone in R4. One can also verify that cone(A4) possesses no unimodular
triangulations.

O’Shea and Thomas recursively construct ∆-normal configurations, Ad ⊂ Nd for each
d ≥ 5, that are non-simplicial and possess no unimodular triangulations via the following
steps [10]. First, choose a N4-Firla-Ziegler configuration, A4, and let A4

ext = {e1, e2, e3,v}
be the set of defining vectors for A. Also let {e1, . . . , ed} be the standard basis for Rd. Then
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for each d ≥ 5 define the integer vectors

pd = e1 + e2 + e3 + e4,

p+
d = pd + ed,

p−d = pd − ed.

Now, recursively define Ad−1′ := {(a, 0) : a ∈ Ad−1}, Ad−1′

ext := {(a, 0) : a ∈ Ad−1
ext }, and

Ad := {p+
d ,p

−
d }∪Ad−1′ . Assuming that p+

d and p−d are always the first and second elements

of Ad and that σ is the index set of Ad−1′

ext in Ad, let σ1 = {1} ∪ σ and σ2 = {2} ∪ σ. Then
cone(Ad) has the triangulation ∆d consisting of the maximal subcones K1 = cone(Adσ1) and
K2 = cone(Adσ2).

Example 5.9. Consider the N4-Firla-Ziegler configuration A4 from Example 5.8. For d = 5,
we have

p5 = (1, 1, 1, 1, 0), p+
5 = (1, 1, 1, 1, 1), p−5 = (1, 1, 1, 1,−1).

We then define A4′ as the columns of the matrix

A4′ =


1 0 0 1 1 1 1 1

0 1 0 2 1 1 2 2

0 0 1 3 1 2 2 3

0 0 0 5 1 2 3 4

0 0 0 0 0 0 0 0

 ,

and A4′
ext as the columns of the matrix

A4′

ext =


1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 5

0 0 0 0

 .

So A5 consists of the columns of the matrix

A5 =


1 1 1 0 0 1 1 1 1 1

1 1 0 1 0 2 1 1 2 2

1 1 0 0 1 3 1 2 2 3

1 1 0 0 0 5 1 2 3 4

1 −1 0 0 0 0 0 0 0 0

 ,

which has the regular triangulation ∆5 = {{13456}}, {23456}}, where we are indexing the
columns of A5 with the index set {1, . . . , 9} going from left to right.

Continuing this recursive process we construct a collection of vector configurations about
A4 for which we have the following theorem.

Theorem 5.10 ([10] Theorem 5.4). For each d ≥ 5, the configuration Ad has the following
properties:
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(1) Z(Ad ∩K1) = Z(Ad ∩K2) = Zd,
(2) Ad is non-simplicial,
(3) Ad is ∆d-normal, and
(4) Ad admits no unimodular triangulations.

We have now established three distinct categories of vector configurations that are guar-
anteed to be ∆-normal for some regular triangulation. However, we have yet to consider
the existence of a normal configuration A that is not ∆-normal for any regular triangula-
tion of A. Both [8] and [10] give examples of such configurations, the existence of which
indicates that the set of all ∆-normal configurations is a proper subset of the set of normal
configurations. The following is a class of such configurations constructed in [10] about the
Hibi-Ohsugi Configuration [7].

Let HO be the finite, connected graph depicted below, and let E(HO) denote the edge
set of HO.

1 2

3

4

5

6

7

89
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The Hibi-Ohsugi Edge Polytope

The Hibi-Ohsugi configuration is the defined as

AHO = {ρ(e) = ei + ej ∈ R10 : e = {i, j} ∈ E(HO)}.
More generally, if G is a finite connected graph with d vertices and edge set E(G), we call
AG = {ρ(e) = ei + ej ∈ Rd : e = {i, j} ∈ E(G)} the edge polytope configuration of G. Hibi
and Ohsugi show in [6] that AG is normal if and only if, for two arbitrary odd cycles C and
C ′ in G having no common vertex, there exists an edge of G joining a vertex of C with a
vertex of C ′. It is then clear from the figure above that AHO is normal. Hibi and Ohsugi then
used a Gröbner basis approach based on Corollary 8.9 of [11] to show that AHO possesses
no regular unimodular triangulations [7]. It is also noted in [7] that AHO does possess a
nonregular unimodular triangulation.

O’Shea and Thomas defined the homogenized (and therefore graded) Hibi-Ohsugi config-
uration

A′HO = {ρ(e) = e1 + ei + ej : e = {i, j} ∈ E(HO), 1 /∈ e} ∪ {e1 + ei : {1, i} ∈ E(HO)}.
It follows from the main result of [7] that A′HO is also a normal configuration that possesses
no regular unimodular triangulation, although it does possess a nonregular unimodular tri-
angulation. As well, conv(A′HO) is a (0,1)-polytope in R10, and is consequently contained
in the 10-cube. Thus, conv(A′HO) contains no interior lattice points, and so is referred to
as empty. Finally, conv(A′HO) has all 15 vectors in A′HO as extreme rays, and is therefore
nonsimplicial. O’Shea and Thomas then use the following lemma to prove that A′HO is not
∆-normal for any regular triangulation ∆ [10].
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Lemma 5.11 ([10] Lemma 5.5). Let A ⊂ Zd be a normal graded nonsimplicial configuration
in {x ∈ Rd : x1 = 1} such that conv(A) is empty. If A does not have a regular unimodular
triangulation then A is not ∆-normal for any regular triangulation ∆.

Let A10 = A′HO, and for each d ≥ 11 let pd = e1 + ed ∈ Zd. O’Shea and Thomas [10]
recursively define the configurations

Ad−1′ :=

{(
a

0

)
: a ∈ Ad−1

}
and Ad := {pd} ∪ Ad−1′ .

Theorem 5.12 ([10] Theorem 5.7). For each d ≥ 11, the configuration Ad is normal and
graded but not ∆-normal for any regular triangulation ∆.

This analysis has provided many nice examples to help describe the relationship between
the ∆-normal property of a given configuration A, and the normality and existence of uni-
modular triangulations for A. However, these relationships have not been explored to their
fullest extent. In particular, these works could be expanded upon by considering the rela-
tionship between the ∆-normal property for A, and the existence of a unimodular covering
of A. Answers to the following questions could further refine our understanding of this
relationship.

Question 5.13. If A is ∆-normal for some regular triangulation ∆, does A possess a uni-
modular covering?

Question 5.14. Does there exist a normal configuration A that is not ∆-normal for any
regular triangulation ∆ and possesses no unimodular covering?

Question 5.14 is critical since a negative answer would imply that the union of the set of all
∆-normal configurations with the set of all configurations possessing a unimodular covering
equals the set of all normal configurations. In which case, these two properties combined
would provide a combinatorial characterization of normality. However, we now present an
example of a configuration derived from [2] that answers Question 5.14 positively, and thus
suggests further work is needed to develop such a characterization.

In [2], Bruns and Gubeladze show that the configuration C6 with Hilbert basis consisting
of the 10 vectors:

z1 = (0, 1, 0, 0, 0, 0), z6 = (1, 0, 2, 1, 1, 2),

z2 = (0, 0, 1, 0, 0, 0), z7 = (1, 2, 0, 2, 1, 1),

z3 = (0, 0, 0, 1, 0, 0), z8 = (1, 1, 2, 0, 2, 1),

z4 = (0, 0, 0, 0, 1, 0), z9 = (1, 1, 1, 2, 0, 2),

z5 = (0, 0, 0, 0, 0, 1), z10 = (1, 2, 1, 1, 2, 0),

is isomorphic to the configuration CQ, the set of vertices of a 5-dimensional normal lattice
polytope Q. Moreover, they verified that C6 does not satisfy the Unimodular Hilbert Cover
condition, and so Q does not possess a unimodular covering. Among several other properties,
[2] points out that

(1) C6 has 27 facets, of which 5 are not simplicial.
(2) The Hilbert Basis for C6 is contained in the hyperplane H given by the equation
−5α1 + α2 + α3 + α4 + α5 + α6 = 1. Thus, z1, . . . , z10 are the vertices of a normal
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5-dimensional lattice polytope P6 (isomorphic to the polytope Q) that possesses no
unimodular covering and contains no other lattice points.

It follows immediately from (1) and (2) that C6 is a normal, nonsimplicial configuration
such that P6 = conv(C6) is empty and possesses no unimodular covering. We now prove a
slightly more general version of Lemma 5.11.

Lemma 5.15 ([10] Lemma 5.5). Let A ⊂ Zd+1 be a normal nonsimplicial configuration such
that conv(A) is empty. If A does not have a regular unimodular triangulation then A is not
∆-normal for any regular triangulation ∆.

Proof. Let ∆ be a regular triangulation of A. Since A has no regular unimodular trian-
gulations, then there exists some σ ∈ max(∆) such that Vol(Aσ) ≥ 2. It follows that the
Hilbert basis of Aσ contains at least one vector x ∈ Zd+1 that is not in Aσ. Since conv(A)
is empty, then all the vectors in A are extreme rays of cone(A), and so none of them lie in
cone(Aσ) unless they are in Aσ. Since A is normal, we have that A is the Hilbert basis for
NA. Moreover, since Aσ ⊂ A, it follows that the Hilbert basis of Aσ is contained in the
Hilbert basis of A. Therefore, A∩ cone(Aσ) is not a Hilbert basis for cone(Aσ)∩ZA, and so
A is not ∆-normal. Notice that the requirement of nonsimpliciality is also necessary, since
otherwise A would be ∆-normal with respect to its coarsest triangulation. �

Corollary 5.16. C6 is a normal configuration that possesses no unimodular covering and is
not ∆-normal for any regular triangulation ∆.

Thus, we see that there exist normal configurations that possess neither of the two com-
binatorial properties in question, and so these properties considered together still fail to
provide a combinatorial characterization of normality. The following question is prompted
by the Hibi-Ohsugi configuration and Remark 5.6, in which it is demonstrated that the ∆-
normal property is a generalization of the existence of a regular unimodular triangulation.
A negative answer to this question would indicate that the ∆-normal property is in fact a
generalization of the existence of a unimodular triangulation.

Question 5.17. Does there exist a normal configuration A that is not ∆-normal for any
regular triangulation, and possesses no non-regular unimodular triangulations?

More generally, Question 5.13 asks the same question with regard to unimodular coverings.
Recall the hierarchy (1) ⇒ (2) ⇒ (3) ⇒ (4) from the beginning of this section. It has

been demonstrated that no converse holds for any implication in this hierarchy. We have
also seen that (1) ⇒(∆-normal)⇒ (4), and that the converse of (∆-normal)⇒ (4) does not
hold. The validity of the converses of the implications (∆-normal)⇒ (1), (∆-normal)⇒ (2),
and (∆-normal)⇒ (3) are all open questions that we have posed in this paper. Answers to
these questions would provide us with a much improved understanding of the relationship
between ∆-normality of A and conv(A) possessing a unimodular covering. An improved
understanding of this relationship may give us more insight into what is missing in terms of
our attempts to define a combinatorial characterization of normality of A.
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