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The Jormungand Climate Model

By Christopher V. Rackauckas

Abstract

The geological and paleomagnetic record indicate that around 750 million and 580 millions years ago
glaciers grew near the equator, though as of yet we do not fully understand the nature of these glacia-
tions. The well-known Snowball Earth Hypothesis states that the Earth was covered entirely by glaciers.
However, it is hard for this hypothesis to account for certain aspects of the biological evidence such as the
survival of photosynthetic eukaryotes. Thus the Jormungand Hypothesis was developed as an alternative
to the Snowball Earth Hypothesis. In this paper we investigate previous models of the Jormungand
state and look at the dynamics of the Hadley cells to develop a new model to represent the Jormungand
Hypothesis. We end by solving for an analytical approximation to the model using a �nite Legendre
expansion and geometric singular perturbation theory. The resultant model gives a stable equilibrium
point near the equator with strong hysteresis that satis�es the Jormungand Hypothesis.

1 Introduction

Geological and paleomagnetic evidence indicates that glaciers grew near the equator during at least two time
periods between 750 million and 580 million years ago in what is known as the Neoproterozoic era [3, 4]. To
explain these �ndings, the Snowball Earth Hypothesis was proposed. The Snowball Earth hypothesis states
the the Earth's surface was covered entirely by glaciers. However, biological evidence such as the survival
of photosynthetic eukaryotes has lead some researchers to support alternative hypotheses [1]. Many of these
alternatives are unable to satisfy the strong hysteresis of CO2 seen in the data (which is the existence of
two stable states over a large range of CO2 values). One alternative which has shown promise in its ability
to show strong hysteresis is the Jormungand Hypothesis. The Jormungand Hypothesis agrees with the
Snowball Earth Hypothesis about the existance of a large glaciation but disagrees about the exact nature
of this glaciation near the equator. The Jormungand Hypothesis instead asserts that the ice sheets near the
equator were devoid of snow cover and that there was a belt of open water. The purpose of this paper is to
present and augment the models which are used to understand these large glaciations.

The paper is outlined as follows. Section 2 will introduce the models and walk through previous research
that has been done with the models. Section 3 will introduce a new version of the model which will then be
analyzed. Section 4 will give concluding remarks.

2 The Budyko-Widiasih Model

2.1 Introduction to the Budyko-Widiasih Model

The models in this paper are what are known as Energy Balance Models (EBMs), which are conceptual
lower-order models used to show the general interactions between important system variables [9]. They
focus on the Earth's �energy diet,� relating the important factors that cause energy to enter, exit, and

1



�ow through the Earth's system. Due to the simplicity of these models, one can more readily extrapolate
important information about the relations between system variables. This is not to be confused with the
General Circulation Models (GCMs) which include a multitude of scienti�c processes and are analyzed
computationally to understand the Earth's system.

We wish to model the Earth's ice-albedo feedback system. The albedo of an object is the percentage of
incident light that it re�ects. It is known that the albedo of ice is higher than the albedo of land and water,
which in turn decreases the insolation (incoming solar radiation) that is absorbed by the Earth's system in
areas covered in glaciers.

To model this system, our variable of interest is the annual mean surface temperature T = T (y, t) as a
function of latitude and time. The spatial variable is denoted by y which is the sine of the latitude. Note
that by writing y in this manner, y ∈ [−1, 1] where −1 is the South Pole and 1 is the North Pole. We will
assume that the Earth is symmetric about the equator and thus take y ∈ [0, 1]. Thus the Budyko model can
be written as follows [6]:

R
∂T

∂t
= Ein − Eout −M. (2.1)

The parameter R is known as the heat capacity of the Earth's system which we will approximate to be the

constant R = 4× 108 J/m
2

◦C [8]. The term Ein can be expressed by the formula

Ein = Solar Insolation× Absorption Percentage = Qs(y)(1− α(y, η)). (2.2)

The parameter Q = 343W/m2 is the global average insolation. The function s = s(y) is the distribution of
insolation as a function of latitude. The function s satis�es the normalization requirement

ˆ 1

0

s(y)dy = 1. (2.3)

North pointed out that s is uniformly approximated to within 2% by the quadratic function s(y) = 1.241−
.0723y2 [13]. We will use this approximation for the rest of the paper. Recall that the albedo α describes
the percentage of the Sun's energy re�ected by the Earth. We de�ne the variable η to be the ice line, the
furthest extent of the Earth's glaciers. Given the relation between albedo and the presence of glaciers on
the Earth's surface, we let α = α(y, η). The Budyko model takes the albedo function to be de�ned by the
Budyko Albedo Function

α(y, η) =


αs y > η
1
2 (αs + αw) y = η

αw y < η

. (2.4)

This function simply states that the albedo is that of snow covered ice αs = .62 above the ice line and that
of water αw = .32 below the ice line (where αs > αw). The process through which the Earth radiates energy
is complicated by the Earth's atmosphere. The Budyko model uses a linear approximation for the outgoing
radiation

Eout = A+BT, (2.5)

where A = 202W/m2 and B = 1.9 W/m2

◦C are determined by satellite data. The last part of the Budyko
model describes the transport of energy between latitudes, also known as the meridional heat transport.
This process is complex and involves winds and ocean currents but its e�ects can be approximated by a
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simple linear relation to the mean1. We de�ne T as the mean Earth temperature:

T̄ =

ˆ 1

0

T (y, t)dy, (2.6)

and de�ne the meridional heat transport as

M = C(T − T̄ ), (2.7)

where the parameter C = 3.04 W/m2

◦C is determined from data.
As stated, the model describes how the termperature distributions change over time for a constant ice

line η. However, we would expect that the ice line would be variable since warmer temperatures should
melt the glaciers while cooler temperatures should cause the glaciers to grow. The ice line dynamics are
introduced into this model by Widiasih's Ice Line Condition [8] which models the change in the ice line as
a function of the temperature at the ice line

dη

dt
= ε(T (η, η)− Tc), (2.8)

where ε > 0. T (η, η) is de�ned as the average of the temperatures just above and just below the ice line, or
more rigorously

T (η, η) =
1

2
( lim
y→η−

T (y, t) + lim
y→η+

T (y, t)). (2.9)

The constant Tc = −10◦C denotes the critical temperature for melting glaciers and is based on observations
of the modern climate [1]. Thus this condition simply states the the ice line increases toward the pole if the
temperature at the ice line is high enough to melt glaciers and that the ice line grows towards the equator
if the temperature at the ice line is lower than the temperature to melt glaciers.

Thus the Budyko-Widiasih model's de�ning equations are

R
∂T

∂t
= Qs(y)(1− α(y, η))− (A+BT )− C(T − T ), (2.10)

∂η

∂t
= ε(T (η, η)− Tc).

2.2 Previous Research on the Budyko-Widiasih Model

The Budyko-Widiasih model is used to try to understand the behavior of (T (y, η), η) pairs over time. Denote
the equilibrium temperature distribution T ∗(y, η) to be the distribution for a constant ice line η (i.e. ε = 0)
that satis�es

R
∂T ∗

∂t
= Qs(y)(1− α(y, η))− (A+BT ∗)− C(T ∗ − T ∗) = 0. (2.11)

We can solve for the average global annual temperature for a constant ice line as

T ∗(η) =

ˆ 1

0

T ∗(y, η)dy =
1

B
(Q(1− ᾱ(η)−A) (2.12)

1This approximation can also be expressed by the assumption that all latitudes of the Earth are su�ciently �close� for heat
transport or that heat can transport su�ciently quickly to any given latitude. This would imply that the entirety of the Earth
is the �environment� for a given latitude and thus Newton's Law of Cooling would result in a relaxation towards the mean.
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where

ᾱ(η) =

ˆ 1

0

s(y)α(y, η)dy. (2.13)

Thus we can solve for the annual surface temperature at equilibrium to be

T ∗(y, η) =
1

B + C
(Qs(y)(1−α(y, η))−A+CT ∗) =

Q

B + C

(
s(y)(1− α(y, η)) +

C

B
(1− ᾱ(η))

)
− A
B
. (2.14)

It is generally assumed that over time the temperature distributions T converge towards the equilibrium
temperature distributions T ∗. Thus for ε su�ciently small, the temperature distributions functions will
approximately be the equilibrium temperature distribution functions for a given η. Let h be the function
that satis�es the relation

∂η

∂t
= εh(η). (2.15)

Notice this implies that h(η) = T ∗(η, η) − Tc where T ∗(η, η) is the equilibrium temperature at the ice line.
We can substitute in T ∗(η, η) to see that for solutions to the Budyko-Widiasih model:

h(η) =
Q

B + C

(
s(η)(1− α(η, η)) +

C

B
(1− α(η))

)
− A

B
− Tc. (2.16)

The function h is used to approximate the behavior of the ice line η in system (2.10) over time . Since
this derivation was independent of the chosen albedo function (although the result from [15] places certain
restrictions on the albedo function), this equation can be solved numerically for any albedo function speci�ed.
The h function using the albedo function (2.4) is graphed using MATLAB in Figure 2.1. From this picture
we can begin to understand the dynamics of the model. The ice line is at an equilibrium when h(η) = 0.
Thus there are two equilibrium points: η1 ≈ .95 and η2 ≈ .25. Notice that when h(η) > 0, T ∗(η, η) > Tc
and thus the ice at the ice line will melt, resulting in an increasing η (and vice-versa). Thus we see that if
η ∈ (.25, 1], the ice line will converge over time to the equilibrium η2. If η ∈ [0, .25), the ice line will continue
to grow until it reaches the boundary η = 0. Thus, since there is a region around the equilibrium point
η2 such that the long-term solutions converge to η2, we would expect η2 to be a stable equilibrium point.
Since there is no region around the equilibrium point η1 such that the long-term solutions converge to η1, we
would expect η1 to be an unstable equilibrium point. Likewise, we would expect the boundary point η = 0
to be stable and η = 1 to be unstable. Thus this model gives two stable ice caps, one that corresponds to an
ice cap like what we see today and one such that the entire Earth is covered by glaciers which corresponds
to the Snowball Earth state. McGehee and Widiasih solve for an approximation to the model to show that
these equilibrium points have the stability we would expect from the analysis above [8].

Notice that as stated this model follows the hypothesis of the Snowball Earth in that there is no condition
for the thinning of the ice as it approaches the equator. Abbot et al. argue that when the ice line enters
the area of the Earth's surface under which the Hadley cell circulation occurs, the Hadley cell zone, the
evaporation exceeds the precipitation and thus the albedo of the glaciers below the ice line becomes the
albedo of non-snow covered ice αs > αi > αw [1]. Thus they instead use the albedo function

α(y, η) =


α2(y), y > η
1
2 (αw + α2(η)), y = η

αw, y < η

(2.17)

where

α2(y) =
1

2
(αs + αi) +

1

2
(αs − αi) tanhS(y − ρ), (2.18)
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Figure 2.1: The h function for the Budyko-Widiasih Albedo Function .

η < ρ η > ρ

α(y, η) =


αs, y > ρ

αi, η < y < ρ

αw, y < η

α(y, η) =

{
αs, y > η

αw, y < η

Table 1: The Jormungand Instant Albedo Function

ρ = .35, a region under the descending branch of the Hadley circulation, αi = .45, and S is a constant.
We can understand this albedo function by analogy to what we can call the Instant Jormungand Albedo
Function,

Notice that this albedo function says that if the ice line is above the Hadley cell zone then the albedo
function is the Budyko Albedo Function. However, if the ice-line falls below the latitude of furthest extent
for the Hadley cell zone, then a third step in the albedo function is introduced where between η and ρ the
ice is non-snow covered ice. Abbot's Albedo Function follows the same logic but instead uses a hyperbolic
tangent function to do a continuous change between the middle and highest steps of the albedo function
where the steepness of the change is controlled by the constant S (where increasing S increases the steepness
of the change).

The parameter values are also adjusted in Abbot's model to account for the di�erent atmospheric makeup
that occurred during the Neoproterozoic era. These values are shown in Table 2. We can solve for the h
function with Abbot's albedo function using equation (2.16). This was done numerically using MATLAB
and is graphed in Figure 2.2. Doing the same analysis as before, we see that there should be two stable
equilibrium points, η1 ≈ .35 and η3 ≈ .95, an unstable equilibrium point η2 ≈ .70, with the boundaries also
unstable. The small stable ice cap is much like the ice cap from the Budyko-Widiasih model, however the
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Figure 2.2: The h function for Abbot's Albedo Function.

Parameter Value

Q 321W/m2

A 170W/m2

B 1.5 W/m2

◦C

C 2.25 W/m2

◦C

αs .8
αw .35

Table 2: Parameter values for Abbot's model.
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(a) A picture of the primary circulation cells [2]. (b) A diagram of the Hadley Cell's interaction with the ice line [1].

Figure 3.1: The Hadley Cells

stable large ice cap solution now includes a belt of open water and a small area where non-snow covered ice
exists. Thus this stable large ice cap represents a Jormungand state. Abbot et al. analyze the strength of
the hysteresis for the Jormungand state and concludes that this model shows the possibility of a Jormungand
solution (further discussion on hysteresis analysis is presented in Section 3.3.4).

3 The Budyko-Widiasih Model with the Linear Jormungand Albedo

Function

3.1 More Information on the Hadley Cells

The driving force that causes the bare sea ice in Abbot's albedo function are the Hadley cells. The Hadley
cells are one of the Earth's three primary circulation cells and the closest primary circulation cell to the
equator. It is depicted in Figure 3.1a. It spans from the equator to about 30◦N [14], though its range is
dependent on many factors [7]. Abbot et al. found in general circulation models that the furthest extent
of the Hadley cells in a condition that gave rise to a stable Jormungand state was 20◦N , or ρ ≈ .35. The
Hadley cells cause well-known e�ects such as trade winds, tropical rain-belts, hurricanes, subtropical deserts
(such as the Sahara Desert), and jet streams. The purpose for the introduction of the Hadley cells into the
model is the e�ect on subtropical precipitation and evaporation depicted in Figure 3.1b. Notice that as the
air gets closer to the equator it begins to warm up. This warming causes the air to rise and decrease in
pressure. This decrease in pressure decreases the air's ability to hold water vapor and as a result there is a
net precipitation near the equator. When the air falls at the furthest edges of the Hadley Cell zone, it has a
low water vapor concentration which causes a net evaporation.

Abbot et al. show the existence of this e�ect using simulations with general circulation models. Figure
3.2a shows that in the ice-free state there is a net evaporation at most latitudes in the Hadley cell zone and
the same (but decreased e�ect) is seen in the Jormungand state. This suggests that during the onset of a
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(a) Annual and zonal mean precipitation minus evaporation
for the ice-free state (red dashed) and the Jormungand state
(blue) with pCO2 = 5000 ppm [1].

(b) Maximum intensity of the Hadley cells circulation. The dif-
ferent lines indicate di�erent processes turned on/o�. These
show an intensi�cation of the Hadley cells as the sea ice ad-
vances into lower latitudes and an abrupt weakening just prior
to complete freezing. Some simulations result in an instant in-
tensi�cation while others result in a more gradual intensi�cation.
[12] .

Figure 3.2: Global climate model results for Hadley Cell dynamics.

Jormungand state (as the ice line approaches the stable Jormungand condition) there is a net evaporation
over much of the Hadley cell zone. Additionally Paulson and Jacob examined the intensity of the Hadley
cells circulation at the onset of Snowball Earth in general circulation models [12]. They found that as the
Earth's state approaches Snowball Earth the Hadley cells intensify as shown in Figure 3.2b.

3.2 The Linear Jormungand Albedo Function

These results show that as the ice line enters the Hadley cell zone the albedo becomes closer to that of
bare sea ice due to a net evaporation. However, since we are looking at the annual averages, this does not
imply that the albedo of the glaciers in the Hadley cell zone instantly becomes αi. An example to help one
understand this is to know that Tuscon, Arizona, a place with a net evaporation (i.e. a desert), received
a freak snow storm in the winter of 2013. However, being a desert with a high net evaporation, the snow
evaporated quickly and was gone in less than a day. Thus even though there is a net evaporation for a given
year, the ice sheets would still be covered in snow at various times in the year. As the Hadley cells ramp
up, there would be a larger net evaporation in most of the Hadley cell area and thus we would expect the
albedo of the ice in the Hadley cell zone to fall closer to αi.

When the ice is at the edge of the Hadley cell zone η = ρ the albedo of the ice in the Hadley cell zone
should be close to αs and as the ice line approaches the equator the Hadley cell should be in full force making
the albedo of the ice in the Hadley cell zone close to αi. We can approximate this process linearly with the
Linear Jormungand Albedo Function shown in Table 3.

Pictures of the Linear Jormungand Albedo Function displayed as Figure 3.3.
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η < ρ η > ρ

α(y, η) =


αs, y > ρ

αb(η), η < y < ρ

αw, y < η

α(y, η) =

{
αs, y > η

αw, y < η

αb(η) =
αs − αi

ρ
η + αi. (3.1)

Table 3: The Jormungand Linear Albedo Function.

(a) η = .15 (b) η = .25

Figure 3.3: Linear Jormungand Albedo Function graphs.
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Figure 3.4: The h function for the Linear Jormungand Albedo Function.

η < ρ η > ρ

α(y, η) =


αs, y > ρ

αb(η), η < y < ρ

αw, y < η

α(y, η) =

{
αs, y > η

αw, y < η

Table 4: The general albedo function.

We can solve for h using equation (2.16). This was done numerically using MATLAB and can be seen in
Figure 3.4. Using the analysis from before, this graph suggests that there should be two stable equilibrium
points, η1 ≈ .1 and η3 ≈ .95, an unstable equilibrium point, η2 ≈ .7, and the boundaries are unstable. The
large stable ice cap η1 corresponds to a Jormungand state like the one from Figure 2.2, however in this model
it is much closer to the equator. The reason it is closer to the equator is because αb > αi for η > 0 and
thus with a larger albedo we would expect a colder overall climate which results in a solution that stabilizes
closer to the equator.

3.3 Analytical Approximation

In order to verify the existence and stability of the large ice cap solution we will solve for an analytical
approximation to the h function. We will solve for the function h piecewise for the more general albedo
function depicted in Table 4 where αb(η) ∈ C∞. When η > ρ the albedo function is equivalent to the
Budyko albedo function (2.4). Previous research solved for an approximation to the h function for the
Budyko albedo function [8]. Thus our focus is on the case where η < ρ.
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When η < ρ, the albedo function is the three step function

α(y, η) =


αs, y > ρ

αb(η), η < y < ρ

αw, y < η

(3.2)

We can write

T (y, t) =


U(y, t), y < η

V (y, t), η < y < ρ

W (y, t), y ≥ ρ
1
2 (U(η, t) + V (η, t)), y = η.

. (3.3)

Thus our equations become

R
∂U

∂t
= Qs(y)(1− αs)− (A+BU)− C(U − T ),

R
∂V

∂t
= Qs(y)(1− αb(η))− (A+BV )− C(V − T ), (3.4)

R
∂W

∂t
= Qs(y)(1− αw)− (A+BW )− C(W − T ),

∂η

∂t
= ε(T (η, η)− Tc).

3.3.1 Legendre Expansion

Since the insolation distribution function s is quadratic in y, we will assume that the temperature distribution
functions U , V , andW are quadratic in y. Since the model is symmetric about y = 0, we will assume that U ,
V , and W are even functions. We can write these functions using the Legendre polynomials. The Legendre
polynomials form an orthogonal basis for the set of polynomial functions. Denote pi(y) to be the ith order
Legendre polynomial. Any polynomial function f(y) can be written as

f(y) = c0po(y) + c1p1(y) + . . . (3.5)

The reason such an expansion can be more helpful than a Taylor series expansion is due to the orthogonality
property ˆ 1

0

pi(y)pj(y)dy = 0 (3.6)

for i 6= j and that these polynomials satisfy the eigenvalue equation for the di�usion equation which is often
used in such models. Since our function is quadratic and even, our expansion requires only the �rst two even
Legendre polynomials

p0(y) = 1, (3.7)

p2(y) =
1

2
(3y2 − 1).
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Thus we can write

U(y, t) = u0(t)p0(y) + u2(t)p2(y),

V (y, t) = v0(t)p0(y) + v2(t)p2(y), (3.8)

W (y, t) = w0(t)p0(y) + w2(t)p2(y).

For the simplicity of further calculations and formulas, de�ne the equations

P0(x) =

ˆ x

0

p0(y)dy = x, (3.9)

P2(x) =

ˆ x

0

p2(y)dy =
1

2
(x3 − x).

Notice that by solving for the Legendre expansion coe�cients one solves for the temperature distribution
functions themselves. Thus we wish to write the model in terms of these Legendre expansion coe�cients.
First, notice that

T (η, η) =
1

2
(U(η, t) + V (η, t)) =

1

2
(u0 + v0) +

1

2
(u2 + v2)p2(η). (3.10)

Now we will rewrite the global average annual temperature in terms of the Legendre coe�cients

T (η) =

ˆ η

0

U(y, t)dy +

ˆ ρ

η

V (y, t)dy +

ˆ 1

ρ

W (y, t)dy,

=

ˆ η

0

(u0p0 + u2p2)dy +

ˆ ρ

η

(v0p0 + v2p2)dy +

ˆ 1

ρ

(w0p0 + w2p2)dy,

= u0P0(η) + u2P2(η) + v0(P0(ρ)− P0(η)) + v2(P2(ρ)− P2(η)) + w0(P0(1)− P0(ρ)) + w2(P2(1)− P2(ρ)),

= u0η + u2P2(η) + v0(P0(ρ)− P0(η)) + v2(P2(ρ)− P2(η)) + w0(1− ρ) + w2P2(ρ).

We wish to rewrite s in its Legendre expansion

s(y) = 1.241− .0723y2 = s0p0(y) + s2p2(y). (3.11)

Notice that due to the normality of s,

ˆ 1

0

s(y)dy = 1 =

ˆ 1

0

(s0p0(y) + s2p2(y))dy = s0P0(1) + s2P2(1) = s0 (3.12)

and thus s0 = 1. Therefore we see that to receive the right constant term for s, − 1
2s2 + 1 = 1.241 which

implies s2 = −.482. Remembering p0 = 1, we can write out our equations as

u̇0p0 + u̇2p2 =
1

R
(Q(p0 + s2p2)(1− αs)−Ap0 +B(u0p0 + u2p2)− C(u0p0 + u2p2)− CTp0),

v̇0p0 + v̇2p2 =
1

R
(Q(p0 + s2p2)(1− αb(η))−Ap0 +B(v0p0 + v2p2)− C(v0p0 + v2p2)− CTp0),

ẇ0p0 + ẇ2p2 =
1

R
(Q(p0 + s2p2)(1− αw)−Ap0 +B(w0p0 + w2p2)− C(w0p0 + w2p2)− CTp0),

where ḟ means the time derivative of f . We can expand out these equations and write them in the form

ḟ0p0 + ḟ2p2 = c0p0 + c2p2 (3.13)
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from which it follows

ḟ0 = c0, (3.14)

ḟ2 = c2.

Thus we can rewrite our model in the following form:

η̇ = ε(T (η, η)− Tc),

u̇0 =
1

R
(Q(1− αw)−A− (B + C)u0 + CT (η)),

v̇0 =
1

R
(Q(1− αb(η))−A− (B + C)v0 + CT (η)),

ẇ0 =
1

R
(Q(1− αs)−A− (B + C)w0 + CT (η)), (3.15)

u̇2 =
1

R
(Qs2(1− αw)− (B + C)u2),

v̇2 =
1

R
(Qs2(1− αb(η))− (B + C)v2),

ẇ2 =
1

R
(Qs2(1− αs)− (B + C)w2).

where

T (η, η) =
1

2
(u0 + v0) +

1

2
(u2 + v2)p2(η), (3.16)

T (η) = u0η + u2P2(η) + v0(P0(ρ)− P0(η)) + v2(P2(ρ)− P2(η)) + w0(1− ρ) + w2P2(ρ).

3.3.2 Substitutions

Notice that the equations for u2 and w2 are simple linear equations that are decoupled from the other
variables. Therefore we can solve these equations independently from the rest of the system. If u2 >
Qs2(1−αw)

B+C then u̇2 < 0 and that if u2 <
Qs2(1−αw)

B+C then u̇2 > 0. Thus as t→∞, u2 → Qs2(1−αw)
B+C . The same

reasoning shows w2 → Qs2(1−αs)
B+C as t→∞. Thus we have reduced the number of variables in our model to

make our system

η̇ = ε(T (η, η)− Tc),

u̇0 =
1

R
(Q(1− αw)−A− (B + C)u0 + CT (η)),

v̇0 =
1

R
(Q(1− αb(η))−A− (B + C)v0 + CT (η)), (3.17)

ẇ0 =
1

R
(Q(1− αs)−A− (B + C)w0 + CT (η)),

v̇2 =
1

R
(Qs2(1− αb(η))− (B + C)v2),

What we wish to do is �nd substitutions to further reduce the dimensionality of the model in a similar
manner.
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First Substitution: Let x = 1
2 (u0 + v0), z = u0 − v0. The system becomes

η̇ = ε(T (η, η)− Tc),

ẋ =
1

R
(Q(1− 1

2
(αw + αb(η)))−A− (B + C)x+ CT (η)),

ż =
1

R
(Q(αb(η)− αw)− (B + C)z), (3.18)

ẇ0 =
1

R
(Q(1− αs)−A− (B + C)w0 + CT (η)),

v̇2 =
1

R
(Qs2(1− αb(η))− (B + C)v2),

where

T (η, η) = x+
1

2
(u2 + v2)p2(η), (3.19)

T (η) = (η − ρ

2
)z + ρx+ u2P2(η)− v2(P2(η)− P2(ρ)) + (1− ρ)w0 − P2(ρ)w2.

Second Substitution: Let a = 1
2 (x+ w0), b = x− w0. The system becomes

η̇ = ε(T (η, η)− Tc),

ȧ =
1

R
(Q(1− 1

2
(αs +

1

2
(αw + αb(η))))−A− (B + C)a+ CT (η)),

ḃ =
1

R
(Q(αs −

1

2
(αw + αb(η)))− (B + C)b), (3.20)

ż =
1

R
(Q(αb(η)− αw)− (B + C)z),

v̇2 =
1

R
(Qs2(1− αb(η))− (B + C)v2),

where

T (η, η) = a+
b

2
+

1

2
(u2 + v2)p2(η), (3.21)

T (η) = (η − ρ

2
)z + u2P2(η)− v2(P2(η)− P2(ρ)) + a+ b(ρ− 1

2
)− P2(ρ)w2.

Third Substitution: d = s2z + v2. The system becomes

η̇ = ε(T (η, η)− Tc),

ȧ =
1

R
(Q(1− 1

2
(αs +

1

2
(αw + αb(η))))−A− (B + C)a+ CT (η)),

ḃ =
1

R
(Q(αs −

1

2
(αw + αb(η)))− (B + C)b), (3.22)

ż =
1

R
(Q(αb(η)− αw)− (B + C)z),

ḋ =
1

R
(Qs2(1− αw)− (B + C)d),
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where

T (η, η) = a+
b

2
+

1

2
(u2 + d− s2z)p2(η), (3.23)

T (η) = (η − ρ

2
+ s2(P2(η)− P2(ρ)))z + u2P2(η)− d(P2(η)− P2(ρ)) + a+ b(ρ− 1

2
)− P2(ρ)w2.

Notice d is decoupled from the rest of the system variables and thus

d→ Qs2(1− αw)

B + C
as t→∞. (3.24)

Fourth Substitution: e = 2b+ z. The system becomes

η̇ = ε(T (η, η)− Tc),

ȧ =
1

R
(Q(1− 1

2
(αs +

1

2
(αw + αb(η))))−A− (B + C)a+ CT (η)),

ė =
1

R
(2Q(αs − αw))− (B + C)e), (3.25)

ż =
1

R
(Q(αb(η)− αw)− (B + C)z),

where

T (η, η) = a+
1

4
(e− z) +

1

2
(u2 + d− s2z)p2(η), (3.26)

T (η) = (η − ρ+
1

4
+ s2(P2(η)− P2(ρ)))z + u2P2(η)− d(P2(η)− P2(ρ)) + a+

1

2
e(ρ− 1

2
)− P2(ρ)w2.

Notice e is decoupled from the rest of the system variables making

e =
2Q(αs − αw)

B + C
as t→∞. (3.27)

making our system

η̇ = ε(T (η, η)− Tc),

ȧ =
1

R
(Q(1− 1

2
(αs +

1

2
(αw + αb(η))))−A− (B + C)a+ CT (η)), (3.28)

ż =
1

R
(Q(αb(η)− αw)− (B + C)z).

3.3.3 Geometric Singular Perturbation Theory Approximation

McGehee and Widiasih estimated that ε ≈ 3.9× 10−13 [8]. Thus the changes in η for a given change in time
are much smaller than those for the other variables. Therefore we denote η as the slow variable and a and z
as the fast variables. We will use the theorems from geometric singular perturbation theory to understand
the solution to the model [5].

We can write our system as

Ẋ = f(X,Y, ε), (3.29)

Ẏ = εg(X,Y, ε),
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where X is the vector of the fast variables (a, z) and Y is the vector of the slow variables (η). Alternatively,
we can rewrite the equation in the slow time frame τ = εt to get

εẊ = f(X,Y, ε), (3.30)

Ẏ = g(X,Y, ε).

Notice that since η̇, ȧ, and ż are polynomials in the variables and αb(η) ∈ C∞, it follows that f, g ∈ C∞.
LetM0 be any compact subset of {(X,Y ) : f(X,Y, 0) = 0}, the manifold de�ned by parameters that satisfy
the model when ε = 0. We can write the manifold

M0 = {(X,Y ) : X = h0(Y )} (3.31)

where h0(Y ) is de�ned for Y ∈ K, a compact domain of R. Fenichel's Theorems assert that there exists a
manifold Mε that lies O(ε) from M0 and is di�eomorphic to M0 [5]. Moreover, it is locally invariant under
the �ow de�ned by our system. Thus we can write

Mε = {(X,Y ) : X = hε(Y )}, (3.32)

where
hε(Y ) = h0(Y ) +O(ε). (3.33)

The big result is that in the �ow of the slow variables on the Mε manifold can be written in the slow time
scale as

Ẏ = g(hε(Y ), Y, ε) = g(h0(Y ), Y, 0) +O(ε). (3.34)

This means that the �ows of the slow variables are well-approximated by the �ow on the M0 manifold.
Since Y is simply the vector with the variable η, g(hε(Y ), Y, ε) is the function that we called in earlier

sections h. To �nd this function h, we need to �rst solve for the manifoldM0 and the graph of the parameters
on this manifold h0(η). Recall that M0 is the manifold where f(X,Y, 0) = 0, and thus it corresponds to the
points which satisfy what is known as the Fast Subsystem, the fast time system where ε = 0:

η̇ = 0,

ȧ =
1

R
(Q(1− 1

2
(αs +

1

2
(αw + αb(η))))−A− (B + C)a+ CT (η)), (3.35)

ż =
1

R
(Q(αb(η)− αw)− (B + C)z).

Since η̇ = 0, we can treat η as a parameter and thus we see that over time a and z will converge to values
that are functions of η. Thus M0 is the manifold de�ned by the set of points that satisfy

a0(η) =
Q(1− 1

2 (αs + 1
2 (αw + αb(η))))−A+ Cψ(η)

B
, (3.36)

z0(η) =
Q(αb(η)− αw)

B + C
,

where
ψ(η) = T (η)− a. (3.37)
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Figure 3.5: The analytical approximation to the h function for the Linear Jormungand Albedo Function.

Thus we have solved for h0(η) = (a0(η), z0(η)). Since

g(hε(Y ), Y, ε) = T (η, η)− Tc, (3.38)

we see that g(h0(Y ), Y, 0) is simply the function where we plug in a0(η) and z0(η) for a and z respectively
in T (η, η)− Tc, and thus

g(h0(Y ), Y, 0) = a0(η) +
1

4
(e− z0(η)) +

1

2
(u2 + d− s2z)p2(η). (3.39)

Therefore we can solve for the function h as

h(η) = g(hε(Y ), Y, ε) = g(h0(Y ), Y, 0) +O(ε) ≈ a0(η) +
1

4
(e− z0(η)) +

1

2
(u2 + d− s2z)p2(η). (3.40)

Putting together this solution piecewise from the solution for η > ρ from McGehee-Widiasih [8] we can
graph our approximation to h as seen in Figure 3.5. Notice that this solution looks virtually identical to
Figure 3.4 and thus the function h is well-approximated by the function found by this approximation.

3.3.4 Stability and Hysteresis

We wish to understand the stability and the hysteresis associated with the large ice cap equilibrium. To
understand the stability of the equilibrium, we must look at the eigenvalues of the Jacobin matrix

∂η̇
∂η

∂η̇
∂a

∂η̇
∂z

∂ȧ
∂η

∂ȧ
∂a

∂ȧ
∂z

∂ż
∂η

∂ż
∂a

∂ż
∂z

 . (3.41)
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Figure 3.6: Bifurcation plot for the parameter A for the Linear Jormungand model.

This was done in Mathematica and for the equilibrium point η ≈ .1 the eigenvalues are −3.75, −1.5, and
−3 × 10−11. Since all of the eigenvalues are negative, by the Hartman-Grobman Theorem the equilibrium
at η ≈ .1 is stable.

Recall that A is a constant which corresponds to the amount of energy that leaves the Earth's system.
Increasing A results in increases in the energy that is released from the Earth's system and thus acts in the
same manner as a decrease in the CO2 content of the atmosphere. We can understand the hysteresis of
CO2, the range of CO2 concentrations where both the Jormungand and the small ice cap states are stable,
by plotting the bifurcation diagram of the equilibrium η vs A as shown in Figure 3.6. Thus we see that there
is a large range of A, from around A ≈ 153 to A ≈ 171, such that two stable states exist. This shows the
strong hysteresis of the Linear Jormungand model.

4 Conclusions

The geological record indicates that there have been times where glaciers have grown near the equator,
though as of yet we do not fully understand the nature of these glaciations. The Snowball Earth Hypothesis
states that the Earth was covered entirely by glaciers. However, it is hard for this hypothesis to account for
some biological evidence such as the survival of photosynthetic eukaryotes. Thus the Jormungand Hypothesis
was developed as an alternative. We have altered the albedo function for the Budyko-Widiasih model to
match the thin-ice claims of the Jormungand model in a way that corresponds to the Hadley Cell dynamics.
The resultant model gives a stable equilibrium point of η ≈ .1 which we take to be the Jormungand state.
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