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INTERSECTION NUMBER OF PLANE CURVES

MARGARET E. NICHOLS

1. Introduction

One of the most familiar objects in algebraic geometry is the plane curve. A plane
curve is the vanishing set of a polynomial in two variables. One of the goals in algebraic
geometry is to describe properties of geometric objects such as these curves in algebraic
terms. Intersection theory is a branch of algebraic geometry motivated by the following
geometric and topological question:

Given a space X and a collection of subspaces X1, . . . , Xn ⊆ X, how
many points lie in the intersection ∩nk=1Xk?

In this paper we highlight the special case where X has dimension 2, and the subspaces
in question are two plane curves F and G. We are also concerned with counting how
many times F and G intersect at a given point P , which is called the intersection number
of F and G at P . Intuitively, the intersection number should be the product of the
multiplicities of the curves at P , but this is only true in the simplest of cases. Examining
the more complicated situations, we can produce a list of additional geometrically-
motivated properties the intersection number should satisfy. Given the rich and delicate
geometry at play here, it is perhaps unexpected that we can state the intersection
number of two curves as an explicit, simple algebraic quantity.

In order to answer the questions above, we must specify our ambient space X. We
have stated that it should have dimension 2, but that is all. Different spaces can yield
significantly different answers. The distinction between affine and projective spaces is
particularly important. Projective n-space over a field k is a completion of affine n-space
to include a set of points at infinity. The inclusion of these points gives projective space
a nicer geometry than affine space, and in some cases includes intersection points that
may have been “missed” in affine space. The choice of k is also important. While it is
often convenient to visualize a curve in R2, many important results only hold over an
algebraically closed field such as C.

For this reason, throughout this paper we will always be working over an algebraically
closed field. Nevertheless, many interesting and important results are true over fields
which are not algebraically closed. For instance, working over the rationals has many
important applications to algebraic number theory.

Date: May 22, 2013.
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2 M. NICHOLS

We begin this paper by developing the algebraic background needed to understand
the intersection number. In Section 3, we introduce projective n-space. Section 4 brings
us to the main focus of this paper, the intersection number of two algebraic curves at
a point. In it, we formally define the multiplicity of a curve at a point, followed by the
intersection number. Finally, we will move to a central application of the intersection
number — Bézout’s Theorem. This theorem gives the exact number of intersections of
two projective curves over an algebraically closed field. In the case that they have a
common component, the two curves have infinitely many points in common, and the
intersection number is infinite. Otherwise, the intersection number is finite, and it is
simply the product of the degrees of the polynomials defining the curves. Much of the
approach here follows Fulton’s Algebraic Curves [3], especially Chapters 3 and 5.

2. Algebraic Background

We begin by introducing the algebraic objects and ideas we require throughout the
rest of the paper. For the purposes of this paper, we shall always assume our field
k is algebraically closed. For now we will be working over affine n-space, An(k), the
cartesian product of n copies of k. When unambiguous, we omit k and simply write An.
We denote the set of polynomials over k in the n variables X1, . . . , Xn by k[X1, . . . , Xn].
This set forms a ring in the expected way. We will mainly be working in the affine plane,
A2, and in the polynomial ring k[X, Y ]. While all algebraic notation we use is introduced
in this section, we assume some knowledge of commutative algebra and, in particular,
ring theory. Atiyah and MacDonald provide a concise account of the requisite material
(and much more) in [1].

Our main object of study is a plane curve, or, more simply, a curve. A curve is
the zero locus in A2 of a polynomial in two variables — the set of points at which the
polynomial is zero. Given a polynomial F ∈ k[X, Y ], we denote this set by V(F ). When
we speak of a curve we will often refer to the polynomial F and not the set V(F ); it will
be clear from context what is meant.

The set V(F ) above is an example of an affine algebraic set. For any subset S ⊆
k[X1, . . . , Xn], we define V(S) = {P ∈ An | F (P ) = 0 for all F ∈ S}. Then an affine
algebraic set is any set X ⊆ An such that X = V(S) for some S ⊆ k[X1, . . . , Xn]. It
is easy to check that if I is the ideal generated by S, then V(S) = V(I). Although
there is no restriction on the size of such a set S, the Hilbert Basis Theorem tells us
that k[X1, . . . , Xn] is Noetherian, so every ideal of k[X1, . . . , Xn] is finitely generated.1

It follows that every affine algebraic set is the zero locus of a finite set of polynomials.
Given an affine algebraic set X, we define the ideal of X, denoted I(X), to be the set
of polynomials that vanish on all points of X.

We are particularly interested in irreducible affine algebraic sets, which are affine
algebraic sets that cannot be written as the union of two smaller affine algebraic sets.

1There are several equivalent statements of the Hilbert Basis Theorem. See [3], p. 7, for the statement
we use here.
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Figure 1. The curve V = V(X3 +X2 − Y 2).

That is, if X is irreducible and X = U ∪ V , then X = U or X = V . We call such an
algebraic set an affine variety. Affine varieties have the following nice algebraic property.
The proof here is the one given to Proposition 3, p. 198, of [2].

Proposition 2.1. An algebraic set V is irreducible if and only if I(V ) is prime.

Proof. Suppose V is irreducible, and FG ∈ I(V ). Let V1 = V ∩V(F ) and V2 = V ∩V(G).
Since FG ∈ I(V ), then V = V1∪V2. Well, V is irreducible, so without loss of generality,
suppose V = V1. Then F (P ) = 0 for all P ∈ V , so F ∈ I(V ).

Conversely, suppose I(V ) is prime and that V = V1∪V2, where V 6= V1. Since V2 ⊆ V ,
it is easy to see that I(V ) ⊆ I(V2). Additionally, since V1 ( V , I(V ) ( I(V1), so we can
pick F ∈ I(V1)− I(V ). Let G ∈ I(V2). Then F vanishes on V1 and G vanishes on V2, so
FG vanishes on V = V1 ∪ V2. Thus FG ∈ I(V ). This ideal is prime, so either F ∈ I(V )
or G ∈ I(V ). By our choice of F , we must have G ∈ I(V ). Hence I(V ) = I(V2). But
this is only true if V = V2, so V is irreducible. �

This establishes a one-to-one correspondence between affine varieties and prime ideals
of k[X1, . . . , Xn]. This correspondence is one example illustrating the close relationship
between algebraic sets and ideals of k[X1, . . . , Xn].

We will often be interested in two curves whose defining polynomials have no common
factors. We say that two such curves have no common components. In the case that
these are plane curves, this condition allows us to say something quite strong about
their intersection — it must be finite.
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Proposition 2.2. Let F and G be polynomials in k[X, Y ] with no common factors.
Then V(F,G) = V(F ) ∩ V(G) is a finite set of points.

Proof. We first note that k[X, Y ] ∼= k[X][Y ]. If F and G have no common factors
in k[X, Y ], then they gain no common factor when we pass to the ring k(X)[Y ], which
allows coefficients to be rational functions in X. Since F and G are coprime and k(X)[Y ]
is a principal ideal domain, that is, a ring in which every ideal is generated by a single
element, it follows that (F,G) = (1). Then we can write RF + SG = 1 for some
R, S ∈ k(X)[Y ]. We can choose a polynomial D ∈ k[X] such that A = RD and B = SD
are polynomials in k[X, Y ]. Then AF + BG = D. But notice for any (a, b) ∈ V(F,G),
we have AF + BG = 0, so a must be a root of D. D has finitely many roots, so there
are only finitely many such a values. By a similar argument, instead considering F and
G in k(Y )[X], we also have finitely many b values for (a, b) ∈ V(F,G). Thus V(F,G) is
finite. �

We now define some of the key objects with which we will be working. Given an affine
variety V , let Γ(V ) = k[X1, . . . , Xn]/I(V ). We call Γ(V ) the coordinate ring of V . Since
I(V ) is prime, Γ(V ) is an integral domain. This allows us to form its quotient field,
which we denote k(V ). This is called the field of rational functions on V . Given any
P ∈ V , we say that f ∈ k(V ) is defined at P if we can write f = g/h, where g, h ∈ Γ(V )
and h(P ) 6= 0. We define OP (V ) to be the subset of k(V ) of rational functions defined
at P . This subset is a subring of k(V ) which contains Γ(V ) and is called the local ring of
V at P . If V = An, then I(V ) = {0}, so Γ(An) = k[X1, . . . , Xn]. Thus OP (An) consists
of all rational functions defined at P .

Recall that a ring is local if it has a unique maximal ideal. True to its name, our ring
OP (V ) is a local ring whose maximal ideal is mP (V ) = {g/h | g(P ) = 0, h(P ) 6= 0}.
This consists of exactly the non-units in OP (V ), as any g/h 6∈ mP (V ) satisfies g(P ) 6= 0,
so h/g ∈ OP (V ).

One of the most important and useful tools for studying the relationship between
affine algebraic sets and ideals is the following theorem, known as the Nullstellensatz.
Recall that the radical of an ideal I in a commutative ring R is the ideal r(I) = {a ∈
R | an ∈ I for some n > 0}.

Theorem 2.3 (Hilbert’s Nullstellensatz). Let I be an ideal in k[X1, . . . , Xn], where k
is algebraically closed. Then I(V(I)) = r(I).

The proof of this theorem relies on what is known as the Weak Nullstellensatz, which
states that V(I) is nonempty if I is a proper ideal in k[X1, . . . , Xn]. This result is only
true over algebraically closed fields: if we take k = R and I = (X2 + 1), then V(I) = ∅,
but I 6= R[X]. A proof of the both theorems can be found in Chapter 4 of [2].

Recall that k[X1, . . . , Xn] can be realized as an infinite-dimensional vector space over
k whose basis is the set of all monomials in X1, . . . , Xn. If I is an ideal of k[X1, . . . , Xn],
then k[X1, . . . , Xn]/I is also a vector space. In this case a basis consists of the residues
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the monomials from k[X1, . . . , Xn]. The following is an important corollary to the
Nullstellensatz.

Corollary 2.4. Let I be an ideal in k[X1, . . . , Xn]. Then V(I) is a finite set if and only
if k[X1, . . . , Xn]/I is a finite-dimensional vector space over k. In this case, the size of
V(I) is at most dimk(k[X1, . . . , Xn]/I).

We illustrate this corollary with the following example. A proof of the corollary is
given in [3] (proof of Corollary 4, p. 11).

Example 2.5. Let F (X, Y ) = X3 +X2 − Y 2, as in Figure 1. Then V(F ) is an infinite
set. By Corollary 2.4, k[X, Y ]/(F ) should be infinite-dimensional. To see why this is
the case, note that in k[X, Y ]/(F ), we have Y 2 = X3 + X2. Given any polynomial
G ∈ k[X, Y ]/(F ), we can express G as a polynomial of the from G(X, Y ) = G1(X) +
Y G2(X), by reducing any term of G containing Y 2. Then it’s clear k[X, Y ]/(F ) is
infinite dimensional, since (the residues of) 1, X,X2, . . . are linearly independent.

Let H(X, Y ) = X − Y + 1. It’s clear from the figure below that V(F,H) consists of
three points. A little algebra shows that these points are (−1, 0), (1

2
(1−
√

5), 1
2
(3−
√

5)),
and (1

2
(1 +

√
5), 1

2
(3 +

√
5)), which are the roots of the polynomial F (X,X + 1) =

X3 − 2X − 1. Notice also that k[X, Y ]/(F,H) ∼= k[X]/(F (X,X + 1)). We can use the
identification X3 = 2X − 1 to reduce any polynomial in this ring to one with degree at
most 2, so as a vector space, this ring has dimension 3.

-2 -1 1 2
x

-1

1

2

3

y

Figure 2. The curves V = V(X3 +X2 − Y 2) and V ′ = V(X − Y + 1).
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In the same vein, in the case that V(I) is finite, we are able to relate the ideal
k[X1, . . . , Xn]/I to the local rings of the points of V(I).

Proposition 2.6. Let I be an ideal in k[X1, . . . , Xn], and suppose V(I) = {P1, . . . , PN}
is a finite set. Then there is a natural isomorphism between k[X1, . . . , Xn]/I and∏N

i=1OPi
(An)/IOPi

(An).

The isomorphism here is straightforward to define. Since there is a natural in-
jection of k[X1, . . . , Xn] into OPi

(An), there’s a natural map ϕi : k[X1, . . . , Xn]/I →
OPi

(An)/IOPi
(An) for each i. Then we can define a homomorphism ϕ : k[X1, . . . , Xn]/I →∏N

i=1OPi
(An)/IOPi

(An) such that ϕ(F ) = (ϕ1(F ), . . . , ϕN(F )). The real work here is
in showing the map ϕ is an isomorphism; full details may be found in the proof of
Proposition 6, p. 26, of [3].

There are two immediate consequences of this proposition.

Corollary 2.7. If V(I) = {P1, . . . , PN}, then

dimk(k[X1, . . . , Xn]/I) =
N∑
i=1

dimk(OPi
(An)/IOPi

(An)).

Corollary 2.8. If V(I) = {P}, then there is an isomorphism between k[X1, . . . , Xn]/I
and OP (An)/IOP (An).

Given an ideal I, Proposition 2.6 relates k[X1, . . . , Xn]/I to the local rings of An at
the points in V(I). However, we are often more interested in the local rings of some
affine variety V at these points. If I = I(V ) for some affine variety V , then these rings
are related in the following way.

Proposition 2.9. Let V be a variety in An, let I = I(V ) ⊆ k[X1, . . . , Xn], let P ∈ V ,
and let J be an ideal of k[X1, . . . , Xn] that contains I. Let J ′ be the image of J in Γ(V ).
Then there is a natural isomorphism ϕ from OP (An)/JOP (An) to OP (V )/J ′OP (V ).

Proof. Consider the following diagram

OP (An)

q1
��

α // OP (V )

q2
��

OP (An)/JOP (An)
ϕ // OP (V )/J ′OP (V ).

Here α(f/g) = f/g, where f and g are the residues of f and g in Γ(V ), and q1 and q2
are the natural quotient maps. We then define ϕ so the diagram commutes, that is, so
that ϕ(f/g) = q2(α(f/g)).

Since α and q2 are surjective, it follows that ϕ is surjective. We then check ϕ is
injective. If ϕ(f/g) = 0, then q2(α(f/g)) = 0, so α(f/g) ∈ J ′OP (V ). However, because
kerα = IOP (An) ⊆ JOP (An), we have α−1(J ′OP (V )) = JOP (An), so f/g ∈ ker q1.

Hence f/g = 0. Thus ϕ is an isomorphism. �
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It follows from this result that OP (An)/IOP (An) ∼= OP (V ), since in the case that
J = I, then J ′ = 0.

We saw earlier that we can realize k[X1, . . . , Xn]/I as a vector space; treating this
ring and OP (V ) as vector spaces will prove to be a useful tool for understanding the
intersection number of curves. For this reason, we recall the rank-nullity theorem, a
standard fact from linear algebra.

Theorem 2.10. If ϕ : U → V is a linear transformation, then

dim(Imϕ) + dim(kerϕ) = dimU.

This theorem has an important and useful corollary pertaining to short exact se-
quences.

Corollary 2.11. If

0 −−−→ U
ψ−−−→ V

ϕ−−−→ W −−−→ 0

is an exact sequence of vector spaces, then dimU + dimW = dimV .

Proof. Consider the map ϕ : V → W . By Theorem 2.10, dim(Imϕ) + dim(kerϕ) =
dimV . Since the sequence is exact, ϕ is surjective, ψ is injective, and kerϕ = Imψ. Then
Imϕ = W and kerϕ = U , so dimU + dimW = dim(kerϕ) + dim(Imϕ) = dimV . �

We conclude this section with a quick discussion of affine changes of coordinates. We
will often be examining the behavior of one or more polynomials at a particular point
P ∈ A2. For many reasons, it is convenient to assume P is the origin. We are able to
do this due to the homogeneity of affine space,2 however we must give special care to
how we transform the polynomials in question. Although we will only deal with affine
changes of coordinates on A2, we introduce it here in arbitrary dimension.

An affine change of coordinates on An is a map T = (T1, . . . Tn) : An → An, where each
Ti is linear and T is bijective. In particular, we can always write T as the composition
of a linear map and a translation; it follows that T is a bijection if and only if the linear
map is invertible. We apply our change of coordinates T to a polynomial F by defining
F T = F (T1, . . . , Tn). This allows us define a map T̃ : k[X1, . . . , Xn] → k[X1, . . . , Xn]
by T̃ (F ) = F T . Notice that for all P ∈ An, we have F (T (P )) = F T (P ). We can also
apply T to ideals and affine algebraic sets, where we let IT be the ideal generated by
{F T | F ∈ I} and V T = T−1(V ) = V(IT ).

3. Projective Space

Although much can be said about algebraic curves in the affine plane, at some point
the limitations of affine space become apparent. Consider the number of intersections

2Imprecisely, a space is homogeneous if it “looks the same” everywhere. With regard to the study
of curves, this means that the relevant behavior of one or more curves is invariant under translation or
other isometries.
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of two distinct lines in A2. Ideally, we’d like to say any two lines meet in a single point;
however, this isn’t the case if the two lines are parallel. For another example, consider
the intersection of the hyperbola F (X, Y ) = X2−Y 2−1 and the line G(X, Y ) = Y −aX
for any a ∈ k, where k is algebraically closed. In most cases, the intersection F ∩ G
consists of two points. However, if a = ±1, F and G do not intersect at all, as G is an
asymptote of F .

These two examples illustrate an incompleteness to the affine plane. We would like
to give a uniform answer, one which does not depend on the position of the line or lines
in question. In order to complete the plane, we add the missing intersection points as
points at infinity, where parallel or asymptotic lines meet. With this in mind, we give
the formal definition of this larger space.

Definition 3.1. Projective n-space over a field k, written Pn(k), is the set of lines
through the origin in An+1(k).

Each point in An+1(k) − {0} determines a line through the origin, with two points
describing the same line if and only if one is a nonzero scalar multiple of the other.
Then we can identify Pn(k) with the space (An+1(k)− {0})/∼, where x ∼ y if x = λy
for some nonzero λ ∈ k. This gives us a more natural way to talk about the space. We
write a point P ∈ Pn(k) as P = [x1 : . . . : xn+1]; any specific coordinates x1, . . . , xn+1

are called homogeneous coordinates for P .
In general, a coordinate xi of P is not well-defined, since by our equivalence relation,

[x1 : . . . : xn+1] = [λx1 : . . . : λxn+1] for all λ 6= 0. The exception is when xi = 0.
Notice that the set of points {[x1 : . . . : xn+1] | xi = 0} is in one-to-one correspondence
with Pn−1(k) via deletion of the ith coordinate. When i = n + 1 we call this set the
hyperplane at infinity, written H∞. On the other hand, if we fix xi = 1, then all n-tuples
(x1, . . . , xi−1, xi+1, . . . , xn+1) determine a point [x1 : . . . : xi−1 : 1 : xi+1 : . . . : xn+1] of
Pn(k). In this way we can identify n + 1 copies of An(k) with subsets of Pn(k). We
let Ui denote the set of all points of Pn(k) with a nonzero ith coordinate. Thus we can
write Pn(k) = Un+1 ∪H∞ = An(k) ∪ Pn−1(k).

Example 3.2. If k = C and n = 1, then the complex projective line P1(C) is the set of
lines through the origin in C2. Here we can identify C with the points [z : 1] ∈ P1(C).
There is a single point in P1(C) which this map misses, [1 : 0], which is the point at
infinity. This space is known as the extended complex plane or the Riemann sphere.

At this point, as with affine n-space, we will write Pn instead of Pn(k) when k is clear
from context.

Returning to our earlier examples, we see that the projective versions of these curves
now intersect the expected number of times. The missing intersection points from
the affine case lie in the hyperplane at infinity. Suppose we have two parallel lines
F (X, Y ) = aX + bY + c and G(X, Y ) = aX + bY + d. Each point (X, Y ) on F
corresponds to a point [X : Y : 1] which satisfies the equation aX + bY + cZ = 0,
and similarly each point (X ′, Y ′) on G corresponds to a point [X ′ : Y ′ : 1] such that
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aX ′ + bY ′ + dZ ′ = 0. These two equations define projective lines containing F and G.
The point [b : −a : 0] lies on both projective lines, and is the point at infinity at which
the two lines intersect.

Similarly, in our example with the hyperbola F (X, Y ) = X2 − Y 2 − 1 and a line
G(X, Y ) = Y − aX, the zero locus of F is contained in the projective curve defined by
F ′(X, Y, Z) = X2 − Y 2 − Z2 = 0. This intersects the line Z = 0 at the points [1 : 1 : 0]
and [1 : −1 : 0], which also lie on the projective lines Y = ±X.

In these two examples, we had to alter our curves when we moved from affine space to
projective space. For a general polynomial F ∈ k[X1, . . . , Xn+1], if F (x1, . . . , xn+1) = 0,
it is not necessarily the case that F (λx1, . . . , λxn+1) = 0 as well, although [x1 : . . . : xn+1]
and [λx1 : . . . : λxn+1] define the same point in Pn. Only when F is a form, a polynomial
in which every term has the same degree, does F vanish on a well-defined subset of Pn.
We say that a point P ∈ Pn is a zero of F if F vanishes for all homogeneous coordinates
for P .

This allows us to define the projective analogue of an affine algebraic set.

Definition 3.3. Let S ⊆ k[X1, . . . , Xn+1]. Let V(S) = {P | P is a zero of each F ∈ S}.
Then a set X ⊆ Pn is a projective algebraic set if X = V(S) for some set of polynomials
S ⊆ k[X1, . . . , Xn+1].

As in the affine case, we define a projective variety to be an irreducible projective
algebraic set.

We can also give analogous projective definitions for the objects Γ(V ), k(V ), OP (V ),
and mP (V ) for a projective variety V . If we let V be a nonempty projective variety, then,
as in the affine case, I(V ) is prime. Then Γ(V ) = k[X1, . . . , Xn+1]/I(V ) is an integral
domain; we call this the homogeneous coordinate ring of V . We say that f ∈ Γ(V ) is
a form if there is a form in k[X1, . . . , Xn] whose residue is f . Since Γ(V ) is a domain,
we can define its quotient field. However, most elements of this quotient field will not
be well-defined as functions, since different homogeneous coordinates for the same point
may give different values for the rational function. By restricting to only quotients of
forms of the same degree, we resolve this problem, since if f and g are both forms
of degree d, then f(λx)/g(λx) = λdf(x)/λdg(x) = f(x)/g(x). This motivates our
definition of the function field of V , k(V ), to be the set of rational functions f/g such
that f and g are forms of the same degree. Then we let the local ring of V at a point
P , OP (V ), be the set of rational functions in k(V ) which are defined at P . As in the
affine case, we let mP (V ) denote its unique maximal ideal.

We finish this section by describing a useful way we can move between forms in
k[X1, . . . , Xn+1] and polynomials in k[X1, . . . , Xn]. Given a polynomial F ∈ k[X1, . . . , Xn],
we may decompose F into a sum of forms F =

∑m
i=0 Fi, where every term in Fi has

degree i. Then the polynomial F ∗ =
∑m

i=0X
m−i
n+1 Fi is a form in k[X1, . . . , Xn+1]. This

process is known as homogenization, and F ∗ is the homogenization of F . Note that if
(x1, . . . , xn) ∈ V(F ), then [x1 : . . . : xn : 1] ∈ V(F ∗).
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We may reverse this process to take a form F in k[X1, . . . , Xn+1] to a polynomial in
k[X1, . . . , Xn], by letting F∗(X1, . . . , Xn) = F (X1, . . . , Xn, 1); F∗ is called the dehomog-
enization of F . If F is a form of degree m, then F∗ will be a polynomial of degree at
most m.

This process of homogenization and dehomogenization may also be applied to ideals
and varieties. Given an ideal in I ∈ k[X1, . . . , Xn], we define I∗ = {F ∗ | F ∈ I}; if
I = I(V ) for some affine variety V , then we define V ∗ = V(I∗). We call V ∗ the projective
closure of V , as it is the smallest projective variety containing V . Conversely, if I lives in
k[X1, . . . , Xn+1], then I∗ = {F∗ | F ∈ I}. If V is a projective variety such that I = I(V ),
then we define V∗ = V(I∗).

4. Intersection Number

Before discussing intersection number, we will introduce a related concept, the mul-
tiplicity of a curve F at a point P . If P = (0, 0), the multiplicity of F at P can be
found by writing the polynomial F = Fm + Fm+1 + . . . + Fn, where Fk is a form of
degree k in k[X, Y ], Fm 6= 0, and n = degF . Then F has multiplicity mP (F ) = m.
If P = (a, b) 6= (0, 0), we can compute mP (F ) by applying the affine change of co-
ordinates given by T (X, Y ) = (X + a, Y + b), which takes the origin to P . Then
mP (F ) = m(0,0)(F

T ).
Geometrically, mP (F ) is the number of tangents to F at P , counting with multiplicity.

In the case that P = (0, 0), the form Fm is the product of the tangent lines to F at
P . The following theorem shows that the multiplicity only depends on the local ring
OP (F ), and in particular, the dimension of a particular quotient ring determined by
OP (F ). Though more cumbersome to actually compute, this illustrates the relationship
between the curve F and the algebraic structures introduced in Section 2.

Theorem 4.1. Let P be a point on an irreducible curve F . Then for all sufficiently
large n,

mP (F ) = dimk(mP (F )n/mP (F )n+1).

Proof. For this proof, we shall write O for OP (F ) and m for mP (F ). We begin by
considering the sequence

0 −−−→ mn/mn+1 −−−→ O/mn+1 −−−→ O/mn −−−→ 0, (4.2)

which is exact since mn ⊆ O and (O/mn+1)/(mn/mn+1) ∼= O/mn by the isomorphism
theorems of rings. Each of the rings in (4.2) is a finite dimensional vector space,
so by Corollary 2.11, dimk(O/mn+1) = dimk(m

n/mn+1) + dimk(O/mn). Note that if
dimk(O/mn) = nmP (F ) + s for a constant s, then

dimk(m
n/mn+1) = dimk(O/mn+1)− dimk(O/mn),

= (n+ 1)mP (F ) + s− (nmP (F ) + s),

= mP (F ).
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Thus it suffices to show dimk(O/mn) = nmP (F ) + s for sufficiently large n; it turns out
that n ≥ mP (F ) suffices.

We may assume P = (0, 0) by applying an affine change of coordinates to P and F .
Let I = (X, Y ) ⊆ k[X, Y ]. We claim then that mn = InO. Note that mn is generated

by products of n rational functions fi/gi ∈ m. Then each fi vanishes at P and therefore
is in I, so f = f1 · · · fn ∈ In. Each gi is nonzero at P , so their product doesn’t vanish at
P , either. Thus the reciprocal of g1 · · · gn is in O, and therefore mn ⊆ InO. Conversely,
In is generated by products of n polynomials fi which vanish at P . Consider any
h/g ∈ O. Then g(P ) 6= 0, so fnh/g ∈ m. For i < n, we can take the rational functions
fi/1 ∈ m, so (f1/1) · · · (fnh/g) ∈ mn. Thus InO ⊆ mn.

Since V (In, F ) = {P}, by Corollary 2.8 and Proposition 2.9,

k[X, Y ]/(In, F ) ∼= OP (A2)/(In, F )OP (A2) ∼= OP (F )/InOP (F ).

As we just showed, OP (F )/InOP (F ) = O/mn, so it suffices to compute the dimension
of k[X, Y ]/(In, F ). As above, we compute this by constructing an exact sequence of
vector spaces. Let m = mP (F ). Then F ∈ Im, so FG ∈ In whenever G ∈ In−m, for
n ≥ m. We then define ψ : k[X, Y ]/In−m → k[X, Y ]/In by ψ(G) = FG, the residue
of FG modulo In. We similarly define ϕ : k[X, Y ]/In → k[X, Y ]/(In, F ) by mapping
ϕ(H) to the residue of H modulo F . Then the sequence

0 −−−→ k[X, Y ]/In−m
ψ−−−→ k[X, Y ]/In

ϕ−−−→ k[X, Y ]/(In, F ) −−−→ 0

is exact; it’s clear ψ is injective and ϕ is surjective, and moreover by the construction
of ψ, kerϕ = Imψ. Thus

dimk(k[X, Y ]/(In, F )) = dimk(k[X, Y ]/In)− dimk(k[X, Y ]/In−m),

=
n(n+ 1)

2
− (n−m)(n−m+ 1)

2
,

= nm− m(m− 1)

2
.

Since −m(m−1)
2

does not depend on n, it is the constant s such that dimk(O/mn) =
nmP (F ) + s. Hence whenever n ≥ m, we have m = dimk(mP (F )n/mP (F )n+1). �

For the remainder of this section, we will denote OP (A2) by O and mP (A2) by m
when P is clear, unless otherwise noted.

The following properties describe properties we want the intersection number of two
curves to satisfy. They begin broadly, specifying generally when the intersection number
should be infinite or zero. We also want the intersection number to be independent of
where in the affine plane our curves are located, and therefore it should be invariant
under affine changes of coordinates. The fourth property describes the symmetry of the
intersection number, in a sense: since F ∩ G = G ∩ F , we desire that the intersection
number of these be equal. The last three properties specify how the intersection number
can be calculated, and suggest a method for doing so.
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(1) I(P, F ∩ G) is a nonnegative integer for any F , G, and P such that F and G
share no common component which passes through P (in which case we say F
and G intersect properly at P ). I(P, F ∩ G) = ∞ if F and G do not intersect
properly at P .

(2) I(P, F ∩ G) = 0 if and only if P 6∈ F ∩ G. I(P, F ∩ G) depends only on the
components of F and G that pass through P . And I(P, F ∩G) = 0 if F or G is
a nonzero constant.

(3) If T is an affine change of coordinates on A2, and T (Q) = P , then I(P, F ∩G) =
I(Q,F T ∩GT ).

(4) I(P, F ∩G) = I(P,G ∩ F ).
(5) If F =

∏
F ri
i and G =

∏
G
sj
j , then I(P, F ∩G) =

∑
i,j risjI(P, Fi ∩Gj), that is,

intersection number is additive over unions.
(6) I(P, F ∩G) = I(P, F ∩ (G+ AF )) for any A ∈ k[X, Y ].
(7) I(P, F ∩ G) ≥ mP (F )mP (G), with equality if and only if F and G have no

tangent lines in common at P .

Many of these properties are intuitive, and they also give us a straightforward method
for computing the intersection number of two curves, which ultimately relies on com-
puting the multiplicity of certain curves at the given point. The following example
illustrates how this can be done.

Example 4.3. Consider the two curves

E = (X2 + Y 2)2 + 3X2Y − Y 3,

F = (X2 + Y 2)3 − 4X2Y 2,

and the point P = (0, 0). We want to compute I(P,E∩F ), using the properties above to
simplify E and F . Consider F−(X2+Y 2)E = −4X2Y 2−(X2+Y 2)(3X2Y−Y 3). Since Y
divides this, we may write F−(X2+Y 2)E = Y G for the appropriate polynomial G. Now
we may replace G with G+3E to get the polynomial 4X2Y 2+4Y 4+5X2Y −3Y 3 = Y H
for another polynomial H. Using properties (6) and (7), then

I(P,E ∩ F ) = I(P,E ∩ Y G),

= I(P,E ∩ Y ) + I(P,E ∩G),

= I(P,E ∩ Y ) + I(P,E ∩ Y H),

= 2I(P,E ∩ Y ) + I(P,E ∩H).

Note that E−(2X2Y +Y 3+3X2−Y 2)Y = X4, so I(P,E∩Y ) = I(P,X4∩Y ), again by
property (7), and property (4). Since X4 and Y clearly share no tangent lines at P , we
may use property (5) to compute I(P,X4 ∩ Y ) = mP (X4)mP (Y ) = 4. We can also use
property (5) to compute I(P,E ∩H), since the tangent lines of each at P = (0, 0) are
simply the linear factors of the lowest degree form in the homogeneous decomposition
of each curve. For E, this form is 3X2Y −Y 3 = Y (

√
3X−Y )(

√
3X+Y ), and for H it’s
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5X2−3Y 2 = (
√

5X−
√

3Y )(
√

5X+
√

3Y ), thus E and F do not share tangent lines at P .
Hence by property (5), I(P,E∩H) = mP (E)mP (H) = 6, so I(P,E∩F ) = 2 ·4+6 = 14.

This example suggests a systematic method for computing the intersection number of
two curves at a given point, but it’s not immediate that this process always works, nor
that it determines a unique number. In fact this is the case, as we prove below. We are
also able to write down an explicit expression for the intersection number in terms of
the dimension of a particular quotient ring. The approach here is an expanded version
of the proof given in [3].

Theorem 4.4. Given any two curves F,G ∈ k[X, Y ] and any point P ∈ A2, properties
(1)–(7) uniquely determine their intersection number,

I(P, F ∩G) = dimk(OP (A2)/(F,G)).

There are two parts to this proof; the first formalizes the process used in the ex-
ample above to show the seven properties give a unique intersection number, and
the second part shows the intersection number is the quantity claimed, that is, that
dimk(OP (A2)/(F,G)) satisfies the seven properties given. Roughly, these are unique-
ness and existence proofs, respectively. We begin with the proof of uniqueness.

Proof of Uniqueness. By property (3), we may assume P = (0, 0). If F and G share a
common component, then by property (1), I(P, F ∩ G) = ∞, so we may assume they
share no component, and I(P, F ∩ G) < ∞. We then proceed by induction on the
intersection number. For the base case, property (2) tells us that I(P, F ∩G) = 0 if and
only if P 6∈ F ∩G.

Now suppose I(P, F ∩ G) = n > 0, and for all curves A and B such that I(P,A ∩
B) < n, we have a method to compute I(P,A ∩ B) from properties (1)–(7). Let r =
deg(F (X, 0)) and s = deg(G(X, 0)), where we take either to be 0 if the corresponding
polynomial is zero. By property (4), I(P, F ∩ G) = I(P,G ∩ F ), so we may assume
r ≤ s. We consider two cases, based on r.

Case 1: r = 0. Then F (X, 0) = 0, so Y | F . Then we can write F = Y H, and
by property (6), I(P, F ∩ G) = I(P, Y ∩ G) + I(P,H ∩ G). Now consider writing
G(X, 0) = Xm(a0 + a1X + . . . + as−mX

s−m). Note that since I(P, F ∩ G) < ∞, by
property (1), F and G cannot share a common component. In particular, Y does not
divide G, so m > 0. Note that I(P, Y ∩G) = I(P, Y ∩G(X, 0)) by property (7), which
allows us to subtract off all terms containing Y from G without changing the intersection
number. Then

I(P, Y ∩G) = I(P, Y ∩G(X, 0)),

= I(P, Y ∩Xm) + I(P, Y ∩ (a0 + a1X + . . .+ as−mX
s−m)),

= m+ 0 = m,
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by properties (2), (5), and (6). Since m is positive, I(P,H ∩G) < n, so by our inductive
hypothesis we have a method to compute I(P,H ∩ G), and therefore we can compute
I(P, F ∩G).

Case 2: r > 0. Multiplying by constants if necessary, we may assume both F (X, 0)
and G(X, 0) are monic. Let H = G−Xs−rF . By property (7), I(P, F∩G) = I(P, F∩H),
and degH(X, 0) = t < s, since the leading terms of G and Xs−rF cancel. We may repeat
this process, using property (4) whenever the degree of the first polynomial exceeds that
of the second, until we reach two curves A and B such that A(X, 0) = 0. This process
preserves intersection number, so I(P, F ∩G) = I(P,A ∩B), and so by Case 1, we can
compute I(P, F ∩G). �

Proof of Existence. Let I(P, F ∩ G) = dimk(OP (A2)/(F,G)). We show I(P, F ∩ G)
satisfies properties (1)–(7).

(1): By Corollary 2.7, if F and G intersect properly at P , then I(P, F ∩ G) =
dimk(O/(F,G)) is finite. Now suppose F and G have a common component H, and
therefore do not intersect properly. Then (F,G) ⊆ (H). We can then define a natural
ring homomorphism from O/(F,G) onto O/(H). Thus I(P, F ∩G) = dimk(O/(F,G)) ≥
dimk(O/(H)), so it is enough to show O/(H) is infinite-dimensional. Well, by Propo-
sition 2.9, O/(H) ∼= OP (H). By construction, this latter ring contains Γ(H), so
dimk(O/(H)) ≥ dimk(Γ(H)). Since V(H) is infinite, by Corollary 2.4, Γ(H) is infinite-
dimensional. Thus I(P, F ∩G) =∞.

(2): Suppose I(P, F ∩ G) = 0. Then dimk(O/(F,G)) = 0, so (F,G) = O. Then for
some A,B ∈ O, AF +BG = 1. But then either F (P ) 6= 0 or G(P ) 6= 0, so P 6∈ F ∩G.
On the other hand, if P 6∈ F ∩G, then without loss of generality assume that F (P ) 6= 0.
Then 1

F
∈ O, so 1 = 1

F
· F ∈ (F,G), and thus I(P, F ∩ G) = 0. The second statement

follows because I(P, F ∩G) only depends on (F,G) ⊆ O and 1
H
∈ O for any component

H of F or G which does not contain P . Lastly, if, say, F = a 6= 0, then (F,G) = O, so
I(P, F ∩G) = 0.

(3): Consider the change of coordinates T (X, Y ) = (aX + b, cY + d), for a, b, c, d ∈ k.
T induces the map T̃ : OP (A2)→ OQ(A2) given by T̃ (F ) = F T , where Q = T (P ). Since
T is an isomorphism, T̃ is as well. But then

I(P, F ∩G) = dimk(OP (A2)/(F,G)) = dimk(OQ(A2)/(F T , GT )) = I(Q,F T ∩GT ).

(4): The fourth property is perhaps the simplest. Note that (F,G) = (G,F ), so

I(P, F ∩G) = dimk(O/(F,G)) = dimk(O/(G,F )) = I(P,G ∩ F ).

(5): It suffices to show I(P, F ∩GH) = I(P, F ∩G) + I(P, F ∩H), since we may then
extend to any finite product by induction. If F and GH have a common component,
F and either G or H must also have a common component, so I(P, F ∩ GH) = ∞ =
I(P, F ∩ G) + I(P, F ∩ H) by property (1). Then we may assume F and GH do not
have a common component. Define ϕ : O/(F,GH) → O/(F,G) which takes z to its
residue modulo G. Then define ψ : O/(F,H) → O/(F,GH) by ψ(z) = Gz. Consider
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the sequence

0 −−−→ O/(F,H)
ψ−−−→ O/(F,GH)

ϕ−−−→ O/(F,G) −−−→ 0.

We first see that ψ is injective. Suppose ψ(z) = Gz = 0. Then we can write
Gz = uF + vGH for some u, v ∈ O. Choose a polynomial S ∈ k[X, Y ] such that
S(P ) 6= 0. Let A = Su, B = Sv, and C = Sz. Then GC = AF + BGH, so G(C −
BH) = AF . By assumption, F and G have no common component, so F must divide
C − BH, say C − BH = DF . But then C = BH + DF , so, dividing through by S,
z = (B/S)H + (D/S)F . Since S(P ) 6= 0, B/S and D/S are in O, so z = 0.

Note that ϕ(Gz) = 0 for all z ∈ O, and if ϕ(z) = 0, then z = Gy = Gy for some
y ∈ O, so z = ψ(y). Hence Imψ = kerϕ. Finally, it’s clear that ϕ is surjective, so the
above sequence is exact. Since the three rings in our sequence are finite-dimensional
vector spaces, two applications of Corollary 2.11 tell us

I(P, F ∩GH) = dimk(O/(F,GH)),

= dimk(O/(F,G)) + dimk(O/(F,H)) = I(P, F ∩G) + I(P, F ∩H).

(6): Like property (4), property (6) follows from the fact that I(P, F ∩ G) depends
only on the ideal generated by F and G. Since (F,G) = (F,G+AF ) for any A ∈ k[X, Y ],
it follows that

I(P, F ∩G) = dimk(O/(F,G)),

= dimk(O/(F,G+ AF )) = I(P, F ∩ (G+ AF )).

(7): This proof relies heavily on computing the dimensions of different vector spaces.
Let m = mP (F ) and n = mP (G). We wish to show I(P, F ∩ G) ≥ mn. Property (3)
allows us to apply an affine change of coordinates without changing the intersection
number, so we may assume P = (0, 0). Recall that I = (X, Y ) ⊆ k[X, Y ]. Consider the
commutative diagram

k[X, Y ]/In × k[X, Y ]/Im
ψ // k[X, Y ]/Im+n ϕ // k[X, Y ]/(Im+n, F,G)

α

��

// 0

O/(F,G)
π // O/(Im+n, F,G) // 0,

where ϕ and π are the natural surjections, and α is the map induced by the map from
k[X, Y ] to O. Note that the top row is exact: ϕ is surjective and ϕ(C) = 0 if and only
if C = AF + BG for some A ∈ k[X, Y ]/In and B ∈ k[X, Y ]/Im, which is true if and
only if C = ψ(A,B), so Imψ = kerϕ. Then

dimk(k[X, Y ]/In) + dim(k[X, Y ]/Im) = dim(k[X, Y ]/In × k[X, Y ]/Im),

≥ dimk(Imψ) = dimk(kerϕ).
(4.5)
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By Theorem 2.10,

dimk(k[X, Y ]/(Im+n, F,G)) + dimk(kerϕ) = dimk(k[X, Y ]/Im+n). (4.6)

Additionally, since V(Im+n, F,G) ⊆ {P}, by Corollary 2.8, α is an isomorphism. Com-
bining all of these facts, we have that

I(P, F ∩G) = dimk(O/(F,G)),

≥ dimk(O/(Im+n, F,G)) since π is surjective,

= dimk(k[X, Y ]/(Im+n, F,G)) since α is an isomorphism,

= dimk(k[X, Y ]/Im+n)− dimk(kerϕ) by (4.6),

≥ dimk(k[X, Y ]/Im+n)− dimk(k[X, Y ]/In)

− dimk(k[X, Y ]/Im) by (4.5).

Lastly, since dimk(k[X, Y ]/Ik) =
(
k
2

)
, we have that

I(P, F ∩G) ≥
(
m+ n

2

)
−
(
m

2

)
−
(
n

2

)
= mn.

Then we have that I(P, F ∩G) = mn if and only if the two inequalities in the previous
equation hold at equality. The first inequality holds if Im+n ⊆ (F,G)O, in which case
π is the identity map. The second holds when (4.5) is equality, that is, if and only if ψ
is injective. By Lemmas 4.7 and 4.8 below, both are equalities exactly when F and G
have no common tangents at P , as desired. �

As in the proof above, let F and G be curves with multiplicities m and n, respectively,
at the point P = (0, 0).

Lemma 4.7. If F and G have no common tangents at P , then I t ⊆ (F,G)O for
t ≥ m+ n− 1.

Proof. Let L1, . . . , Lm denote the tangents to F at P , and similarly M1, . . . ,Mn denote
the tangents to G at P ; let Li = Lm when i > m and Mj = Mn when j > n. Lastly, let
Aij = L1 · · ·LiM1 · · ·Mj for all i, j ≥ 0, with A00 = 1.

We claim that the set {Aij | i+ j = t} is a basis for forms of degree t in k[X, Y ]. Note
that this vector space has dimension t + 1, since the monomials X iY t−i, for 0 ≤ i ≤ t,
form a basis for it. Since there are t + 1 forms Aij with i + j = t, it suffices to show
the Aij’s are linearly independent. Suppose they are not, so for some `, we can write
A` t−` =

∑`−1
i=0 λiAi t−i for λi ∈ k. But by construction, the form Mt−`+1 divides Ai t−i

for i < `, but does not divide A` t−`, a contradiction. Thus {Aij | i + j = t} is a basis.
It follows then that I t is generated by the forms Aij where i + j ≥ t, so we are done if
we can show Aij ∈ (F,G)O for i+ j ≥ m+ n− 1.

Note that if i + j ≥ m + n − 1, then we must have i ≥ m or j ≥ n. Without loss
of generality, suppose i ≥ m. Then Aij = Am0B, where the degree of B is i + j −m.
Since Am0 = Fm, we can write F = Am0 + F ′, where F ′ is a polynomial in Im+1. Then
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Aij = Am0B = FB−F ′B, and each term in F ′B has degree at least (i+j−m)+(m+1) =
i+ j + 1.

It now suffices to show that F ′B ∈ (F,G)O, as then Aij ∈ (F,G)O whenever i+ j ≥
m+ n− 1. We can do this by repeating the argument above for each form FiB of F ′B,
i > m. Then if I t ⊆ (F,G)O for some sufficiently large t, then we can work backwards
to see F ′B ∈ (F,G)O.

To see why such a t exists, let V(F,G) = {P,Q1, . . . , Qs}. We can then find a
polynomial H that vanishes at each Qi, but H(P ) 6= 0. Consider the polynomials
HX and HY . Since P = (0, 0), both vanish at P , so HX,HY ∈ I(V(F,G)). By the
Nullstellensatz, for some N , (HX)N , (HY )N ∈ (F,G). Additionally, since H(P ) 6= 0,
1
H
∈ O, so 1

HN (HX)N = XN ∈ (F,G)O, and similarly Y N ∈ (F,G)O. Lastly, note

that I2N ⊆ (XN , Y N) ⊆ (F,G)O, since if XaY b ∈ I2N , then a + b ≥ 2N , so a ≥ N or
b ≥ N . �

Lemma 4.8. Let

ψ : k[X, Y ]/In × k[X, Y ]/Im → k[X, Y ]/Im+n

be defined by ψ(A,B) = AF +BG, as above. Then ψ is one-to-one if and only if F and
G have distinct tangents at P .

Proof. (⇐) Suppose F andG have distinct tangents at P , and ψ(A,B) = AF −BG = 0.
Then every term of AF + BG must have degree at least m + n. Let r = mP (A) and
s = mP (B). Then AF + BG = ArFm + BsGn + . . .. Suppose r < n or s < m. Then
ArFm or BsGn has degree less than m + n. In fact, we see that both must have the
same degree, and ArFm + BsGn = 0. Then ArFm = −BsGn, however since F and G
have distinct tangents, Fm and Gn share no common factors. Thus Fm divides Bs and
Gn divides Ar. But then r ≥ n and s ≥ m, a contradiction. Hence (A,B) = (0, 0).

(⇒) Suppose L were a common tangent to F and G, so Fm = LF ′m−1 and Gn = LG′n−1
for some forms F ′m−1 and G′n−1. Then ψ(G′n−1,−F ′m−1) = FG′n−1 − F ′m−1G. The lowest
degree terms here cancel, since FmG

′
n−1 = F ′m−1LG

′
n−1 = F ′m−1Gn. Thus every term has

degree at least m+ n, so ψ(G′n−1,−F ′m−1) = 0, and ψ is not one-to-one. �

Example 4.9. Consider the intersection number of F = X2 and G = Y 2 at P = (0, 0).
Since F and G share no tangent lines at the origin, by property (5), I(P, F ∩ G) =
mP (F )mP (G) = 2 · 2 = 4. On the other hand, we may compute I(P, F ∩ G) as the
dimension of OP (A2)/(F,G). Note that in this space, any polynomial can have terms
with degree at most 1 in each X and Y , since X2 = 0 = Y 2. Then {1, X, Y,XY } forms
a basis for OP (A2)/(F,G), so I(P, F ∩ G) = dimk(OP (A2)/(F,G)) = 4, which agrees
with our first calculation.

We end this section with one last property of the intersection number, which follows
as a corollary.
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Corollary 4.10. If F and G have no common components, then∑
P

I(P, F ∩G) = dimk(k[X, Y ]/(F,G)).

Proof. Since V(F,G) is finite, by Corollary 2.7,

dimk(k[X, Y ]/(F,G)) =
∑
P

dimk(OP (A2)/(F,G)) =
∑
P

I(P, F ∩G). �

5. Bézout’s Theorem

Although everything in the preceding section was done in the context of affine space,
we now move to an application of the intersection number which requires that we work
in projective space. The key theorem of this section is Bézout’s Theorem, which gives a
closed form for the total number of intersections of two projective plane curves, counting
multiplicity.

There are many treatments of Bézout’s Theorem, including generalizations to higher
dimensional projective space. A proof of the theorem over P2(C) in particular can be
found in Chapter 8 of [2]; this proof uses resultants, an important tool in computational
algebra, and takes a significantly more hands-on approach than the proof we give.

Theorem 5.1 (Bézout’s Theorem). Let F and G be projective plane curves of degree
m and n, respectively. If F and G have no common component, then∑

P∈P2

I(P, F ∩G) = mn.

Proof. We first show that if F ∩ G is infinite, then F and G must have a common
component. Note that at least one of the three projective axes will miss infinitely many
points in F ∩G. Then we can dehomogenize F and G, perhaps by choosing a coordinate
other than Z to be 1, such that F∗ ∩G∗ is infinite. But then by Proposition 2.2, F∗ and
G∗ have a common component H. Rehomogenizing, H∗ will be a common component
of (F∗)

∗ and (G∗)
∗, so H∗ is also a common component of F and G. By hypothesis, F

and G do not share a common component, thus F ∩G is finite.
Then we may apply a projective change of coordinates so that none of these points

lie on the line Z = 0, that is, F ∩ G is contained in U3, the copy of the affine plane
determined by Z 6= 0. Dehomogenizing F and G, we then have∑

P∈P2

I(P, F ∩G) =
∑
P∈A2

I(P, F∗ ∩G∗) = dimk(k[X, Y ]/(F∗, G∗)),

by Corollary 4.10.
Let Γ∗ = k[X, Y ]/(F∗, G∗), Γ = k[X, Y, Z]/(F,G), and R = k[X, Y, Z]. Let Rd denote

the forms of degree d in R, and similarly let Γd denote their images in Γ, that is, the
forms of degree d in Γ. We will prove that dim Γ∗ = dim Γd = mn for d ≥ m+ n.
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First we show dim Γd = mn when d ≥ m+ n. Consider the sequence

0 −−−→ R
ψ−−−→ R×R ϕ−−−→ R

π−−−→ Γ −−−→ 0, (5.2)

where ψ(C) = (GC,−FC), ϕ(A,B) = AF + BG, and π is the natural quotient map.
It is not difficult to see this sequence is exact. Suppose ψ(C) = (GC,−FC) = 0. Then
C = 0, so ψ is injective. Since ϕ(A,B) = AF + BG, and F and G have no common
component, (A,B) ∈ kerϕ if and only if AF = −BG if and only if A = GC and
B = −FC for some C ∈ k[X, Y, Z]. Thus Imψ = kerϕ. Note that π(C) = 0 if and
only if C = AF + BG for some A,B ∈ k[X, Y, Z], so Imϕ = ker π. Lastly, since π is a
quotient map, it is surjective.

Let d ≥ m+n be given. We may restrict the sequence (5.2) by noting that ψ, ϕ, and
π behave nicely on forms. In particular, (5.2) restricts to

0 −−−→ Rd−m−n
ψ−−−→ Rd−m ×Rd−n

ϕ−−−→ Rd
π−−−→ Γd −−−→ 0.

For a fixed k, Rk is a vector space with basis {XaY bZc | a+ b+ c = k}. This basis has∑k
a=0

∑k−a
b=0 1 = (k+1)(k+2)

2
elements. By the Corollary 2.11,

dim Γd = dimRd − dim(Rd−m ×Rd−n) + dimRd−m−n,

=
(d+ 1)(d+ 2)

2
− (d−m+ 1)(d−m+ 2)

2
· (d− n+ 1)(d− n+ 2)

2

+
(d−m− n+ 1)(d−m− n+ 2)

2
,

= mn.

Next we show that dim Γ∗ = dim Γd for d ≥ m + n. Choose A1, . . . , Amn ∈ Rd such
that their residues A1, . . . , Amn form a basis for Γd. Let Ai∗ denote the dehomogenization
of Ai, that is, Ai∗ = Ai(X, Y, 1), and ai be the residue of Ai∗ in Γ∗. We are finished if
we can show {a1, . . . , amn} is a basis for Γ∗.

To do so, we first define a map α : Γ→ Γ by α(H) = ZH. This map restricts to one
on Γd, with α(Γd) ⊆ Γd+1. In fact, this restriction is an isomorphism of vector spaces.
As we showed above, dim Γd = dim Γd+1 = mn, so it remains to see that α is injective.

Suppose ZH = AF + BG, so α(H) = ZH = 0. Let J0 denote J(X, Y, 0) for any
J ∈ k[X, Y, Z]. Since we chose F ∩ G to have no zeroes on Z = 0, F0 and G0, both
forms in k[X, Y ], have no common factors. Since ZH = AF + BG, then 0 = A0F0 +
B0G0, so A0F0 = −B0G0. By our previous comment, B0 = F0C and A0 = −G0C for
some C ∈ k[X, Y ]. Let A1 = A + CG and B1 = B − CF , so ZH = AF + BG =
AF + CGF + BG − CFG = A1F + B1G. Moreover, (A1)0 = A0 + CG0 = 0 and
(B1)0 = B0 − CF0 = 0, so Z must divide both. Thus we can write A1 = A′Z and
B1 = B′Z for some A′, B′ ∈ k[X, Y, Z]. But then H = A′F +B′G, so H = 0, as desired.

Now, since α : Γd → Γd+1 is an isomorphism, by applying it r times to our basis
for Γd, we can use it to produce a basis for Γd+r for all r ≥ 0, namely the residues of
{ZrA1, . . . , Z

rAmn}. We now show that our ai vectors form a basis for Γ∗.
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Let H ∈ Γ∗, where H ∈ k[X, Y ]. We can pick an N ≥ 0 such that ZNH∗ ∈ k[X, Y, Z]

is a form of degree d + r. We can then write ZNH∗ in terms of our basis for Γd+r,
so ZNH∗ = (

∑mn
i=1 λiZ

rAi) + BF + CG for some λi ∈ k and B,C ∈ k[X, Y, Z]. If we
dehomogenize, we see that H = (ZNH∗)∗ = (

∑mn
i=1 λiAi∗) + B∗F∗ + C∗G∗. Finally, we

can take the residue of H (with respect to (F∗, G∗)) to see H =
∑mn

i=1 λiai. Thus the
ai’s generate Γ∗.

Now suppose
∑mn

i=1 λiai = 0. Then in k[X, Y ], the sum
∑mn

i=1 λiAi∗ = BF∗ + CG∗ for
some B,C ∈ k[X, Y ]. We now want to consider the homogenized form of this. Note
that since the Ai∗’s all have the same degree d, homogenizing this sum may be done
termwise. For BF∗ + CG∗, however, it is not as simple, but for appropriate powers of
Z, (BF∗ + CG∗)

∗ = ZsB∗F + ZtC∗G. In particular, one of s and t will be zero. Then

mn∑
i=1

λiAi =

(
mn∑
i=1

λiAi∗

)∗
= (BF∗ + CG∗)

∗ = ZsB∗F + ZtC∗G.

Then the residue of this in Γd is zero, so
∑mn

i=1 λiAi =
∑mn

i=1 λiAi = 0. But the Ai’s were
chosen to form a basis for Γd, so each λi must be zero. Hence the ai’s are independent.

Thus we have shown dim Γ∗ = dim Γd = mn, and we may conclude our desired result,
that

∑
P I(P, F ∩G) = mn. �

6. Conclusion

Although Bézout’s Theorem gives a concise solution to our motivating question for
two curves in P2(k), the story of intersection number does not end here. This is just
the tip of a mathematical iceberg and a rich field of study. From here, two natural next
steps would be to consider the intersection of n curves, where n > 2, or consider the
intersection of curves in higher dimensions. Pursuing either of these paths immediately
becomes much more difficult, and requires a significantly more sophistication than used
by the approach taken here; [4] is a treatise on the subject.
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