Oberlin
Digital Commons at Oberlin

Honors Papers
Student Work

2013

Strict Photo ID, Voter Turnout, and Race

Thomas La Voy
Oberlin College

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors
Part of the Political Science Commons

Repository Citation

La Voy, Thomas, "Strict Photo ID, Voter Turnout, and Race" (2013). Honors Papers. 328.
https://digitalcommons.oberlin.edu/honors/328

This Thesis is brought to you for free and open access by the Student Work at Digital Commons at Oberlin. It has been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at Oberlin. For more information, please contact megan.mitchell@oberlin.edu.

Strict Photo ID, Voter Turnout, and Race
 a politics honors thesis

5/1/2013
Oberlin College
Thomas La Voy

Abstract

${ }^{1}$

Everett Dirksen, the senator who introduced the Voting Rights Act, once said: ""the right of a free citizen to vote is somehow a battle that is never quite fully won in any time or generation." So far, he seems to have been right. In recent years, a push across many states to enact stricter voter identification laws has received widespread attention. This issue and its ramifications are often discussed in the media, but without much empirical evidence. In 2007, Alvarez, Bailey and Katz assembled a working paper titled "The Effect of Voter Identification Laws on Turnout," which was recently referenced in the federal case between Texas and the Justice Department over whether the state's new voter ID law was in violation of the 1965 Voting Rights Act. This paper, the only piece of social science evidence the Judges gave significant consideration to in the Texas case, is the basis for mine. I use a similar methodology, but update my data to include survey results from the 2008 and 2010 elections, and focus only on strict photo ID laws rather than every category of voter identification. The results are astounding: a state enacting a strict photo ID voting requirement is associated with a white citizen being 7% less likely to vote, and a Hispanic citizen being 27% less likely to vote. I believe this disparate effect across both ethnicity and language group shows that strict photo ID laws are in effect in violation of the Voting Rights Act.

[^0]
Research Question

In May 2011, Governor Rick Perry of Texas signed SB 14 into law, a bill that requires strict photo ID for in-person voting statewide. Pursuant to section 5 of the Voting Rights Act of 1965, changes made to election laws within covered states and districts, including Texas, require preclearance from the Justice Department. Attorney General Eric Holder denied Texas such preclearance, concerned about the law's effect on minority voter turnout. Section 5 allows for Texas to sue the Attorney General in the U.S. District Court for the District of Columbia if the state feels that preclearance has been wrongly denied, an option that Texas took. In the resulting case, State of Texas v. Eric H. Holder, Jr., Texas is plaintiff and:
seeks a declaratory judgment that Senate Bill 14 (SB 14), a newly-enacted law requiring inperson voters to present a photo ID, "neither has the purpose nor will have the effect of denying or abridging the right to vote on account of race[,] color," or "member[ship] [in] a language minority group... To satisfy section 5's effect requirement, Texas must demonstrate that SB 14 will not "lead to a retrogression in the position of racial minorities with respect to their effective exercise of the electoral franchise." ${ }^{2}$

The opinion rendered by the three-judge panel in August, 2012 found that: "Texas has failed to make this showing-in fact, record evidence demonstrates that, if implemented, SB 14 will likely have a retrogressive effect." ${ }^{3}$ It is important to note that while explaining their opinion, the judges eviscerated essentially every piece of social science data used to show the scale of the effect of SB 14. Practically every study presented by either the plaintiffs or defendants that attempted to demonstrate the effects of strict voter ID laws was ignored, except for one: [T]he United States introduced into evidence a 2011 paper by Dr. Michael Alvarez of the California Institute of Technology which reaches precisely the opposite conclusion. Applying a

[^1]statistical regression model to voting data from all 50 states, Dr. Alvarez concludes that photo ID requirements impose "significant negative burdens on voters." The Alvarez study predicts that imposition of a photo ID requirement in any given state will depress overall voter turnout by approximately 10%. Texas-which bears the burden of proof-has failed to produce any evidence undermining the validity of the Alvarez study. ${ }^{4}$

Inspired by the judges giving credence to the Alvarez study alone, I intend to rely on Alvarez's methods in investigating the cross-racial effect of strict photo voter ID laws, updated with voter data from 2008 and 2010. Strict photo ID laws are more and more common, were in place in ten states during the 2012 election (covering 62 million people -19.9% of the U.S. population) and pose a significant potential threat to American democracy. Like Alvarez, the results of my study should give judges ruling on the legality of strict photo ID laws some answers as to the effect of these increasingly prevalent laws, which they can use to determine if the laws violate the Voting Rights Act.

This brings me to my research question: Do strict photo voter identification laws requiring photo identification have an effect on voter turnout? If so, is this effect biased against certain races or ethnicities?

Background

Strict photo ID laws are the highest form of voter identification commonly required in the United States. These laws vary in exact specifications across states, but generally require that in-person voters present an unexpired state or federal government-issued ID that includes the person's name and photo. Inspired by the Help America Vote Act (2002), which was a reaction to the nationwide voting issues that occurred in the 2000 election, ten states had strict photo ID voting laws enacted for the 2012 election, up from five in 2004, four in 2006, five in

[^2]2008, and seven in 2010. In 2004, these states were: GA, IN, LA, SC, SD; in 2006 GA, IN, LA, SD;
in 2008 GA, IN, LA, MI, SD; and in 2010 GA, ID, IN, LA, MI, OK and SD. More states have attempted to add these laws, including South Carolina in 2011 and Pennsylvania and Texas in 2012, but have had them blocked by various parties, including the U.S. Department of Justice and state and federal courts. ${ }^{5}$

A firestorm of political and legal controversy surrounds the issue of strict photo voter ID laws. Supporters of strict photo ID laws, typically Republicans, argue that such measures are necessary to guarantee the integrity of elections and avert voter fraud. ${ }^{6}$ However, allegations as to the extent of actual voter fraud being perpetrated nationwide are often overblown compared to what studies show is a "rare phenomenon." ${ }^{78}$ Critics, often Democrats, believe that stricter voter ID laws " disenfranchise the poor, members of minority groups and the elderly, who are less likely to have photo IDs and are more likely to be Democrats."9

Liberals have also criticized voter ID laws for being centrally organized by conservative, corporate interests such as the American Legislative Exchange Council (ALEC), which just closed its Public Safety and Elections Task Force in April, 2012. ${ }^{10}$ Prior to that, ALEC had drafted model

[^3]voter ID laws (some strict-photo, some not) that were then introduced into state legislatures, with some degree of state-by-state adjustment, which have since reached a significant level of saturation nationwide. ${ }^{11}$

Fig. 1 - States with strict photo voter ID laws are in dark blue.

[^4]
State of the Literature

Voter Fraud:

While conservative proponents of stricter voter ID laws often point to voter fraud as sufficient motivation for photo ID requirements, evidence seems to show that these concerns are not only overblown, but specifically manufactured for political benefit. ${ }^{1213}$ Some supporters of voter ID laws claim that whether or not voter fraud is commonplace, the perception of it being so and causing people to drop out of the democratic process is enough justification for strict photo ID laws, restoring trust in American democracy. ${ }^{14}$ But Stephen Ansolabehere and Nathaniel Persily found in 2008 that the perception of voter fraud being widespread has no significant impact upon likelihood to vote: "Among those who had some belief about the extent of Fraud or Impersonation, the correlation between that belief and turnout proved extremely weak and almost always statistically insignificant" ${ }^{15}$

Current State of Voting:

The current voting system nationwide imposes many burdens on voters, which can be viewed as biased against certain groups. The requirement of having to register to vote imposes significant barriers, which can be decreased through different tactics such as one-trip voting (same-day registration, an expected 8.7\% increase in turnout) and active motor-voter laws (4\%

[^5]increase in turnout). ${ }^{16}$ Election days are not national holidays and for workers who are living paycheck-to-paycheck taking the necessary time off from work may not be feasible financially, or in terms of what their employers allow.

Poll workers are already using their discretion to ask for photo ID from voters. 49\% of voters in 2006 were asked for photo ID, despite only two states actually requiring photo ID. However, the photo ID request rate varies significantly across both regions (ID is requested the most often in the South) and whether states allow or do not allow photo ID be requested by poll workers. Surveys from 2006 and 2008 show that photo ID request rates differ across races significantly. Holding income, party, age, region, and state laws constant, whites are requested for ID 47-53\% of the time, Hispanics 54-58\% and African-Americans 55-73\% of the time. As Stephen Ansolabehere writes: "The data further show that poll workers do not administer this procedure fairly or without regard to race, which raises the important possibility that in practice voter identification procedures violate the Voting Rights Act." ${ }^{17}$

The Effect of Voter ID Laws on Voter Turnout:

Studies show voter ID laws disproportionately affect low-SES (lower income, lesseducated) people:

Research confirms that stricter voter-ID rules also disproportionately reduce the turnout of the least educated and those with lowest incomes. Vercellotti and Anderson (2006) find a stronger relationship between voter-ID requirements and lower turnout among registered voters with less than a high school education. Alvarez, Bailey, and Katz $(2008,20)$ show that the leasteducated registrants and those with lower incomes were less likely to vote in states that require

[^6]a photo ID than in states that require voters only to state or sign their names. And Barreto, Nuño, and Sanchez (2007) report that Indiana registered voters and eligible non-registrants with incomes under $\$ 20,000$ were much less likely to have the form of ID that the Indiana law requires than were higher-income residents, and less-educated people were somewhat less likely to possess the required photo ID. ${ }^{18}$

This difference across income and education brackets translates into a cross-racial
disproportionate effect of voter ID laws: "Thus, any disproportionate effect of stricter voter-ID rules on blacks may well reflect the fact that blacks tend to be lower in SES (though the fact that the impact is not specifically racial makes it no less real)."19

However, some have found that stricter voter ID laws do not have a significant negative effect on voter turnout. In 2009, Harvard's Stephen Ansolabehere wrote that: "Voter ID does not appear to present a significant barrier to voting. Although poll workers widely request ID, such requests rarely result in voters denied the franchise. Moreover, very few people chose not vote in the 2008 primaries for lack of identification. Although the debate over this issue is often draped in the language of the civil and voting rights movements, voter ID appears to present no real barrier to access. An important caveat accompanies these findings. These surveys covered a midterm election and presidential primary elections."20

Overall, aggregate-level studies tend to show that photo ID has no significant effect. But at the individual level, studies by Vercellotti and Anderson and Alvarez, Bailey and Katz show that stricter voter ID laws have a significant, negative impact on turnout, disproportionately affecting less-educated, lower-income voters. ${ }^{21}$

[^7]
Empirical

Data:

While A/varez uses two levels of analysis, their conclusions are mainly drawn from the level of individual responses, and not the aggregate, state-level model. This individual-level probit model found in Alvarez is what I base my model on, relying upon the U.S. Census Bureau's Current Population Survey Voting and Registration Supplement, like both Alvarez and Vercellotti. Alvarez was a major improvement upon Vercellotti by considering data across multiple years. But unlike Vercellotti, which used CPS data from only 2004, and Alvarez, which used data from 2000, 2002, 2004 and 2006, I will rely on CPS data from 2000, 2002, 2004, 2006, 2008 and 2010. This provides much more relevant data due to the number of states with strict photo ID (PID) requirements expanding from zero in 2000 and 2002, five in 2004 and four in 2006 to five again in 2008 and seven in 2010. Of my 425,753 observations across all years, about 5.7% were under strict photo ID laws. In Alvarez's study, this proportion would have been closer to 3.5\% of 280,984 observations. Unfortunately, November 2012 CPS data was not available at the time of writing this paper.

When pared down to only U.S. citizens who responded "Yes" or "No" when asked whether they had voted that November, total observations across the six November Current Population Surveys add up to 425,753 responses. This also only includes respondents whose stated age was 18 or above, and who categorized their race as white, black, or Asian (including Hawaiian or Pacific Islander). I dropped those who identify as Native American - the total population was only about 5,000, of which only 384 voted under strict photo ID laws.

Respondents also state their sex as male or female; whether or not they identify as Hispanic;
which state they live in; which of sixteen categories their family income falls within; whether their education can be categorized as less than high school, a high school degree, an associate's degree, some college, or a college degree. Based on a respondent's combination of year and state, I am able to include a variable categorizing each observation as being in a strict photo ID state or not.

Alvarez tries to account for the effect on voter turnout of several different voter identification regimes. This is very difficult, requires an innovative Bayesian shrinkage estimator, and my model avoids this mess by focusing only on the issue raised in Texas and the controversy over strict photo ID voter laws. ${ }^{22}$

My model:

Like Alvarez, I start with a logistic model of turnout from the CPS. But my model is simpler because I am interested not in eight different identification regimes, but merely whether a state has a strict photo ID requirement.

$$
\begin{aligned}
& \operatorname{Pr}\left(Y_{i t}=1\right)=\operatorname{logit}^{-1}\left(\alpha_{j i}+b^{0}+b^{1} X_{i t}\right) \\
& \text { for } i=1, \ldots, N ; j=0 \text { or } 1 ; t=1, \ldots, 6
\end{aligned}
$$

where i indexes observations, j is a dummy for a state having a strict photo ID requirement, and t indexes years. $Y_{i t}$ is equal to one if the respondent said that they had voted in that year's election, and zero otherwise. B^{0} is an intercept term, and $X_{i t}$ the vector of covariates, includes these:

PID: A dummy variable for whether an observation falls within a state and election covered by strict photo ID.

[^8]Age: Respondent's age in years.
Age ${ }^{2}$: Age's value squared.
Education: Highest level of education achieved by respondent. Less than high school = 1; high school only $=2$; Associate's degree $=3$; some college $=4$; college degree $=5$. Education ${ }^{2}$: Education value squared.

Family Income: Respondent placed their family's annual income in one of 16 categories, ranging from less than $\$ 5,000$ to $\$ 150,000$ or more.

Female: A dummy variable for whether a respondent identified as female.
Year: A variable accounting for which year the observation was from.
Midterm: A dummy variable for whether an observation was from a midterm election year.

South: A dummy variable for whether a respondent was from a state in the South. ${ }^{23}$ I also include a dummy variable for each state, but dropped Texas due to collinearity.

Each observation includes a race variable, off which I create dummy variables for whites, blacks, Asians and Hispanics. I use these dummy variables to run independent regressions for each race - for example, I run a regression that includes the "White" dummy variable and excludes all others. This allows me to differentiate odds ratios for the PID dummy across races, effectively showing what the effect of a strict photo ID requirement is on likelihood to vote for Asians, for blacks, for Hispanics and for whites.

My model differs from Alvarez in a few key ways. First, I distinguish between Hispanics, blacks and Asians, rather than lumping them all together as the "nonwhite" part of a binary race variable, because I believe that the effects of strict photo ID laws can potentially widely differ across different races and ethnicities. Second, I am focusing only on strict photo ID voting

[^9]requirements, rather than considering the impact of every level of identification requirements present in the U.S., which Alvarez included in their elaborate model.

The third key difference is that Alvarez controls for socioeconomic factors when investigating the effect of voter ID requirements on race, and they find that there is no significant difference in effect upon whites and nonwhites. They control for the key sociodemographic factors of age, education and family income, doing so because they "are interested in seeing whether these variables have any interactive effect with identification requirements." ${ }^{24}$ I believe that a model that controls for education, age, and income across races is overly analytical and does not answer the question of cross-racial differences in effect to the standard set forth by the Voting Rights Act. By controlling for too many demographic factors, a model is more likely to report false negatives for Voting Rights Act violations. If Texas passed a bill that outlawed voting by anyone who is fluent in Spanish, and a model investigating the effect on voter turnout of whites versus Hispanics controlled for a respondent's fluency in Spanish, this model could show that the effect of this Texas bill would have the same effect on whites as on Hispanics.

I ran two models: one in which age, education and income are controlled for in the same manner as in Alvarez, and one in which they are not controlled for. The results are similar, but I believe in and stand behind the second, main model. The two sets of results are shown in fig. 2, my main model is marked as Not Controlling and the secondary one is labeled as Controlling.

[^10]
Strict Photo ID Effect on Voter Turnout by Race (with $P>|z|$)

| Strict Photo ID Effect on Voter Turnout by Race (with P>\|z|) | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Not Controlling | Asian | Black | Hispanic | White |
| Photo ID | -24.2\% (0.233) | -8.4\% (0.144) | -27.1\% (0.041)** | -7.1\% (0.001)*** |
| Female | -0.1\% (0.233) | 33.6\% (0.000)*** | 13.5\% (0.000)*** | 7.34\% (0.000) ${ }^{* * *}$ |
| Year | 3.35\% (0.000)*** | 5.16\% (0.000)*** | 2.96\% (0.000)*** | 2.51\% (0.000)*** |
| Midterm | -48.3\% (0.000) ${ }^{* * *}$ | -63\% (0.000)*** | 55.6\% (0.000)*** | -53.8\% (0.000)*** |
| South | -61.3\% (0.000) ${ }^{* * *}$ | -37.9\% (0.000)*** | 59.0\% (0.000)*** | -52.6\% (0.000)*** |
| Controlling | Asian | Black | Hispanic | White |
| Photo ID | -22.2\% (0.307) | -12.2\% (0.042)** | -23.9\% (0.100)* | -10.1\% (0.000)*** |
| Age | 5.2\% (0.000)*** | 7.38\% (0.000)*** | 5.95\% (0.000)*** | 6.17\% (0.000) ${ }^{* * *}$ |
| Age ${ }^{2}$ | 0.00\% (0.000)*** | 0.00\% (0.000) ${ }^{* * *}$ | 0.00\% (0.000)*** | 0.00\% (0.000) ${ }^{* * *}$ |
| Education | 126.6\% (0.000)*** | 103.7\% (0.000)*** | 106.3\% (0.000)*** | 158.2\% (0.000)*** |
| Education ${ }^{2}$ | -6.9\% (0.000)*** | -5.4\% (0.000)*** | -5.4\% (0.000)*** | -7.6\% (0.000)*** |
| Family Income | 5.77\% (0.000)*** | 8.17\% (0.000) ${ }^{* * *}$ | 6.81\% (0.000)*** | 10.41\% (0.000)*** |
| Female | 3.55\% (0.363) | 40.42\% (0.000)*** | 12.7\% (0.000)*** | 7.52\% (0.000)*** |
| Year | 1.62\% (0.007)*** | 4.1\% (0.000) ${ }^{* * *}$ | 1.26\% (0.002)*** | 0.40\% (0.001) ${ }^{* * *}$ |
| Midterm | -50.8\% (0.000)*** | -68.0\% (0.000)*** | -60.9\% (0.000)*** | -60.7\% (0.000)*** |
| South | -59.1\% (0.000) ${ }^{* * *}$ | -33.3\% (0.000)*** | -38.0\% (0.008) ${ }^{* * *}$ | -12.4\% (0.016)** |

fig. 2 Level of significance: ${ }^{*<=} 0.1^{* *<=0.05^{* * *}<=0.01}$
The results are appalling. In my main, Not Controlling model, strict photo ID requirements are associated with white individuals being 7.1\% less likely to vote, significant at the 1\% level. Under strict photo ID requirements, Hispanic individuals are 27.1\% less likely to
vote, a figure that is significant at the 5% level. This means that there is a 20% difference in the effect of strict photo ID laws in terms of likeliness to vote between whites and Hispanics. Asian and black individuals are also less likely to vote, but their results are not significant.

The results from my secondary model, which controls for age, education and income, making it closer to the model from Alvarez, are fairly consistent with the results from my second model. Strict photo ID requirements are associated with whites being 10.1% less likely to vote (significant at the 1% level), blacks being 12.2% less likely to vote (significant at the 5% level, this was not statistically significant in my main model), and Hispanics being 23.9\% less likely to vote (significant at the 10% level). In both my Controlling and Not Controlling models, Asian individuals are less likely to vote under strict photo ID requirements, but their figures never approach significance.

My results also returned some interesting numbers for certain demographics. The results from my secondary, controlling model shows that for every race, the variables age, age ${ }^{2}$, education, education ${ }^{2}$ and family income are statistically significant above the 1% level in their effect on likelihood to vote. The variable for South is statistically significant in having a negative effect on likelihood to vote across every race in both the controlling and non-controlling models. Across both models and all races, by far the most negative, significant effect on likelihood to vote is whether the election took place during a midterm year. Across both models, black, Hispanic and white women were significantly more likely to vote than men, but there was no statistically significant difference in likelihood to vote between Asian men and women. Finally, the year variable is statistically significant and positive across each race and model, indicating that generally, over time (between 2000 and 2010), most respondents are more likely to vote.

Discussion

My model, relying on the data from the Census Bureau's Current Population Survey, shows that strict photo ID requirements are associated with a 7.1% drop in likeliness to vote among white respondents, and a 27.1% drop among Hispanic respondents, both of which are statistically significant. Black and Asian respondents are also less likely to vote, but their figures are not statistically significant. To answer my original research question, strict photo ID voting laws have: A) negative effects on voter turnout (or, at least on individuals' likeliness to vote); and B) the negative effect on likeliness to vote among Hispanics is much, much worse than among whites. This is a pretty clear indication that these strict photo ID laws violate the standard set forth by the judges in the Texas case, which is that such a law not "lead to a retrogression in the position of racial minorities with respect to their effective exercise of the electoral franchise." At a minimum, this should mean at a minimum that strict photo ID laws in states covered by Section 5 are a violation of the Voting Rights Act, and that federal courts will back up the Justice Department in denying these laws preclearance.

However, we should easily also interpret this disparate effect across ethnicity and language minority group as a general violation of Section 2 of the Voting Rights Act, no matter whether the requirement takes place in a covered state or not. Section 2 reads: "No voting qualification or prerequisite to voting, or standard, practice, or procedure shall be imposed or applied by any State or political subdivision to deny or abridge the right of any citizen of the United States to vote on account of race or color." Strict photo ID is a prerequisite, and if you believe what I have shown, it decreases the likelihood to vote among one race (technically,
ethnicity) much more than it does among another. As I read it, this is an abridgment of the right to vote, on account of race or color.

There is a lot more going here. For whites and Hispanics, age, education and income alone do not explain away all of the decrease in likelihood to vote. As opposed to other groups, whites and Hispanics of any age, of any education, and of any family income are all less likely to vote under strict photo ID laws. In other words, under strict photo ID laws, simply being white or Hispanic alone will lead to you being less likely to vote, on top of which lies the effect of age, education and income.

Without considering demographics, blacks are not (statistically significantly) less likely to vote under strict photo ID laws, contrary to literature which raises concerns over the effect of these laws on black voting rights. However, when you do control for age, education and income (each of which has its own significant effect on likelihood to vote), strict photo ID laws become borderline negatively significant in their effect on voting likelihood among blacks. Combining this result with the effects of education and income, it appears that strict photo ID laws have a more disparate effect between a poorer, less educated black voter and a richer, more educated black voter than between a poorer, less educated white voter and a richer, more educated white voter. That is to say, strict photo ID laws' effects are more consistent across white voters or across Hispanic voters regardless of demographics than across black voters.

Conclusion

Strict photo ID laws are currently in place in ten states and would be in effect in more if they had not been blocked by various parties, such as the Justice Department and state and federal courts. I have constructed a model, based on the Alvarez paper from the Texas v. Eric Holder case, to investigate these laws' effects on voter turnout across races and ethnicities, knowing that their legality under the Voting Rights Act will depend on the results. When using Current Population Survey data and looking at an individual of a certain race's likelihood to vote, I find that strict photo ID laws are associated with a 7.1% drop in likelihood to vote among whites and 27.1% among Hispanics, both of which are statistically significant. When I also control for the key demographics of age, education, and income, just as was done in Alvarez, I find similar results: whites are 10.1% less likely to vote, Hispanics are 23.9% less likely, and blacks are 12.2% less likely. Based on this, I find that whites and Hispanics are more consistently, negatively affected by strict photo ID laws, while the effect on black voters relies much more directly on the individuals' specific demographics. The substantial difference in effect between whites and Hispanics raises serious questions about the legality of these strict photo ID laws under the Voting Rights Act.

Appendix A - Full Regression Results

For all tables, *<=0.1, ${ }^{* *}<=0.05,{ }^{* * *}<=0.01$.
PID: Photo ID Law.
Odds ratios are given. To see the percentage effect on an individual's likelihood to vote, take 1 (odds ratio) * 100.

Asians (Controlling):

Voted	Odds Ratio	Std. Err.	z	P>z	[95\% Confidence	Interval]
PID	0.7778618	0.1913876	-1.02	0.307	0.4802531	1.259896
Age	1.051993***	0.0067589	7.89	0.000	1.038828	1.065323
Age ${ }^{2}$	$0.9997403^{* * *}$	0.0000656	-3.96	0.000	0.9996117	0.999869
Education	2.265895***	0.2141553	8.65	0.000	1.882741	2.727024
Education ${ }^{2}$	$0.9314131^{* * *}$	0.0130179	-5.08	0.000	0.9062447	0.9572804
Family Income	1.057728***	0.0060728	9.78	0.000	1.045892	1.069698
Female	1.035493	0.039712	0.91	0.363	0.9605123	1.116327
Year	1.016162***	0.0060519	2.69	0.007	1.00437	1.028093
Midterm	$0.4926614^{* * *}$	0.0199444	-17.49	0.000	0.4550816	0.5333444
South	0.40914***	0.0952904	-3.84	0.000	0.2591932	0.6458332
ME	1.299641	0.5364656	0.63	0.525	0.5787151	2.918652
NH	1.009895	0.3111211	0.03	0.975	0.5521335	1.847176
VT	0.4512363*	0.2107992	-1.7	0.088	0.1806165	1.127329
MA	0.4844075***	0.126674	-2.77	0.006	0.2901477	0.8087283
RI	0.5285366**	0.1581691	-2.13	0.033	0.2939989	0.9501769
CT	0.5001744**	0.1377842	-2.51	0.012	0.2915003	0.8582304
NY	0.449188***	0.1013837	-3.55	0.000	0.2886079	0.6991142
NJ	0.4991312***	0.1177444	-2.95	0.003	0.3143528	0.7925232
PA	0.4700716***	0.1278837	-2.77	0.006	0.2757994	0.8011884
OH	0.673731	0.2041803	-1.3	0.193	0.3719822	1.220256
IN	0.8278959	0.4188426	-0.37	0.709	0.3071444	2.231562
IL	0.4388501***	0.1059462	-3.41	0.001	0.2734142	0.7043872
MI	0.9255393	0.2640548	-0.27	0.786	0.5291131	1.618979
WI	1.513255	0.4804494	1.3	0.192	0.8121962	2.819444
MN	1.128864	0.3047514	0.45	0.653	0.6650412	1.916172
IA	0.6217438	0.2146565	-1.38	0.169	0.3160348	1.223173
MO	0.3435556***	0.1339744	-2.74	0.006	0.1599775	0.7377943
ND	0.711464	0.3296366	-0.73	0.462	0.286928	1.76414
SD	0.816246	0.3894662	-0.43	0.670	0.3203878	2.079534
NE	0.3885509***	0.1298147	-2.83	0.005	0.2018654	0.7478836
KS	0.4346793***	0.1373279	-2.64	0.008	0.2340182	0.8073994
DE	0.7798576	0.2471457	-0.78	0.433	0.4190443	1.451345

MD	0.4981616***	0.1243329	-2.79	0.005	0.3054389	0.8124863
VA	1.215859	0.2025582	1.17	0.241	0.877154	1.685352
WV	0.4383496	0.292544	-1.24	0.217	0.1185084	1.621407
NC	1.24272	0.2985816	0.9	0.366	0.7759961	1.990155
SC	0.7143994	0.2793046	-0.86	0.390	0.3320105	1.5372
GA	0.8180613	0.2537358	-0.65	0.517	0.4454214	1.502452
FL	1.341266*	0.2266552	1.74	0.082	0.9631056	1.867911
KY	0.5480334	0.2466445	-1.34	0.181	0.2268405	1.324017
TN	0.3591821***	0.1422388	-2.59	0.010	0.1652846	0.780543
AL	0.9980047	0.5424118	0	0.997	0.3439598	2.895726
MS	0.5357706	0.4335392	-0.77	0.441	0.1096975	2.616743
AR	0.3059555**	0.1596189	-2.27	0.023	0.1100477	0.8506198
LA	0.8405222	0.5231207	-0.28	0.780	0.2481887	2.846534
OK	0.5221257*	0.1905587	-1.78	0.075	0.2553375	1.067667
MT	1.255421	0.6162201	0.46	0.643	0.4797108	3.285485
ID	0.4619901**	0.1727844	-2.06	0.039	0.2219643	0.9615729
WY	0.501234	0.2477287	-1.4	0.162	0.1902588	1.320494
CO	0.6230133*	0.1683137	-1.75	0.080	0.3668902	1.057934
NM	0.768832	0.2848141	-0.71	0.478	0.3719662	1.58913
AZ	0.5891518	0.1689827	-1.84	0.065	0.3358013	1.033646
UT	0.3161588***	0.0945597	-3.85	0.000	0.175922	0.5681858
NV	0.3926519***	0.0924475	-3.97	0.000	0.2475127	0.6228994
WA	0.7631469	0.1816679	-1.14	0.256	0.4786066	1.216851
OR	0.63977*	0.1729633	-1.65	0.099	0.3766168	1.086796
CA	0.6368405**	0.1354629	-2.12	0.034	0.4197308	0.9662523
AK	0.8558219	0.225065	-0.59	0.554	0.5111324	1.432957
HI	0.8358189	0.1788926	-0.84	0.402	0.5494487	1.271444
_cons	3.62E-16***	$4.32 \mathrm{E}-15$	-2.98	0.003	$2.49 \mathrm{E}-26$	5.27E-06

Black (Controlling):

Voted	Odds Ratio	Std. Err.	z	$\mathrm{P}>\mathrm{Z}$	[95\% Conf.	Interval]
PID	0.8782534**	0.0559791	-2.04	0.042	0.7751129	0.9951182
Age	1.073814***	0.003915	19.53	0.000	1.066168	1.081515
Age^{2}	0.9995687***	0.000038	-11.36	0.000	0.9994943	0.9996431
Education	2.037402***	0.0937967	15.46	0.000	1.861614	2.229789
Education ${ }^{2}$	0.9463332***	0.0070561	-7.4	0.000	0.9326041	0.9602644
Family Income	1.08165***	0.0034018	24.96	0.000	1.075003	1.088338
Female	1.404218***	0.0334066	14.27	0.000	1.340245	1.471244
Year	1.041048***	0.0038463	10.89	0.000	1.033536	1.048614
Midterm	0.3204737***	0.0081359	-44.82	0.000	0.3049178	0.3368233
South	0.6672706***	0.0441099	-6.12	0.000	0.5861831	0.759575
ME	0.6462411	0.2113903	-1.33	0.182	0.340377	1.226956
NH	0.3649487***	0.1217113	-3.02	0.003	0.1898253	0.7016323
VT	0.4809797	0.2182471	-1.61	0.107	0.1976467	1.17048
MA	0.7443738**	0.0973686	-2.26	0.024	0.5760349	0.9619075
RI	0.6629604***	0.0924781	-2.95	0.003	0.5043723	0.8714128
CT	0.6071435***	0.0638064	-4.75	0.000	0.4941243	0.7460132
NY	$0.7259352^{* * *}$	0.0472113	-4.92	0.000	0.6390574	0.8246237
NJ	0.7482928***	0.0665381	-3.26	0.001	0.6286123	0.8907591
PA	1.096558	0.0965294	1.05	0.295	0.9227857	1.303054
OH	0.9203376	0.0710846	-1.07	0.282	0.7910473	1.070759
IN	0.8227933	0.0997332	-1.61	0.108	0.6488049	1.04344
IL	1.436687***	0.1070712	4.86	0.000	1.241438	1.662644
MI	1.625377***	0.139558	5.66	0.000	1.373625	1.923269
WI	1.283445*	0.1799623	1.78	0.075	0.9750419	1.689395
MN	1.040061	0.1607539	0.25	0.799	0.7682376	1.408064
IA	0.6424631**	0.1144354	-2.48	0.013	0.45314	0.9108859
MO	1.076894	0.1111751	0.72	0.473	0.8796253	1.318403
ND	0.3425531***	0.1261284	-2.91	0.004	0.1664618	0.7049222
SD	0.7995523	0.283237	-0.63	0.528	0.399313	1.600959
NE	0.4545518***	0.0757594	-4.73	0.000	0.3278801	0.6301612
KS	0.4635015***	0.0532513	-6.69	0.000	0.3700474	0.580557
DE	0.7251693***	0.0644415	-3.62	0.000	0.6092538	0.8631388
MD	0.8450844**	0.0586003	-2.43	0.015	0.7376929	0.9681096
VA	0.9264419	0.0727982	-0.97	0.331	0.7942044	1.080697
wv	0.6128971***	0.1166777	-2.57	0.010	0.4220304	0.8900849
NC	1.075641	0.077826	1.01	0.314	0.933427	1.239523
SC	1.624035***	0.1224924	6.43	0.000	1.400857	1.882769
GA	1.30886***	0.1076164	3.27	0.001	1.114053	1.53773
FL	1.18578**	0.0845152	2.39	0.017	1.031183	1.363554

KY	0.6786971***	0.0822036	-3.2	0.001	0.535277	0.8605445
TN	0.7928976**	0.0767558	-2.4	0.017	0.6558691	0.9585548
AL	1.526381***	0.1164978	5.54	0.000	1.314307	1.772675
MS	1.905794***	0.1462606	8.4	0.000	1.639647	2.215142
AR	0.9067895	0.0877365	-1.01	0.312	0.7501505	1.096136
LA	1.792792***	0.1612214	6.49	0.000	1.503085	2.138338
OK	0.5467721***	0.0626021	-5.27	0.000	0.4368666	0.6843273
MT	0.8486069	0.5907988	-0.24	0.814	0.216821	3.321328
ID	0.3923882**	0.1845957	-1.99	0.047	0.1560542	0.9866351
WY	0.4557679**	0.1695249	-2.11	0.035	0.2198546	0.9448263
CO	0.4511427***	0.0624515	-5.75	0.000	0.3439398	0.5917597
NM	$0.3749674^{* * *}$	0.0827799	-4.44	0.000	0.2432638	0.5779757
AZ	0.4162082***	0.0684486	-5.33	0.000	0.3015256	0.5745094
UT	0.5850283	0.2285197	-1.37	0.170	0.2720736	1.257961
NV	0.5289856***	0.0602234	-5.59	0.000	0.4231917	0.6612269
WA	0.4398619***	0.0809971	-4.46	0.000	0.3066015	0.6310421
OR	0.7576566	0.1914145	-1.1	0.272	0.4617689	1.24314
CA	0.6797445***	0.0473094	-5.55	0.000	0.5930662	0.7790911
AK	0.6298666**	0.1278255	-2.28	0.023	0.4231606	0.9375445
HI	0.2447241***	0.0727897	-4.73	0.000	0.1366152	0.4383839
_cons	4.27E-37***	3.16E-36	-11.31	0.000	$2.13 \mathrm{E}-43$	8.58E-31

Hispanic (Controlling):

Voted	Odds Ratio	Std. Err.	z	P>z	[95\% Conf.	Interval]
PID	0.76051*	0.1266468	-1.64	0.100	0.5487258	1.054034
Age	1.059518***	0.0045786	13.38	0.000	1.050582	1.068529
Age^{2}	0.9997825***	0.000046	-4.73	0.000	0.9996924	0.9998727
Education	2.062978***	0.1039177	14.38	0.000	1.869034	2.277046
Education ${ }^{2}$	0.9463048***	0.0078035	-6.69	0.000	0.9311331	0.9617236
Family Income	1.06806***	0.0040709	17.28	0.000	1.060111	1.076069
Female	1.127011***	0.0299253	4.5	0.000	1.069858	1.187216
Year	1.012623***	0.0041441	3.07	0.002	1.004534	1.020778
Midterm	0.3913021***	0.0110342	-33.27	0.000	0.3702622	0.4135376
South	0.619818***	0.1114363	-2.66	0.008	0.4357404	0.8816589
ME	1.202487	0.4252985	0.52	0.602	0.6012089	2.405112
NH	0.7846823	0.2302659	-0.83	0.409	0.4414767	1.394697
VT	1.369149	0.6005053	0.72	0.474	0.5795835	3.234339
MA	0.6179861**	0.1350148	-2.2	0.028	0.4027282	0.9482991
RI	1.192986	0.2590855	0.81	0.416	0.7794286	1.825972
CT	0.7771454	0.156392	-1.25	0.210	0.5238504	1.152915
NY	0.9395642	0.1736686	-0.34	0.736	0.6540197	1.349777
NJ	0.7825439	0.1510916	-1.27	0.204	0.5359951	1.142501
PA	0.9544362	0.2010773	-0.22	0.825	0.631566	1.442365
OH	1.163768	0.2838017	0.62	0.534	0.7215864	1.876913
IN	0.6890676	0.2083239	-1.23	0.218	0.380996	1.246244
IL	0.9503681	0.1820055	-0.27	0.790	0.6529467	1.383267
MI	1.221944	0.2902368	0.84	0.399	0.7671377	1.946387
WI	0.8379434	0.1949319	-0.76	0.447	0.5311272	1.321998
MN	1.331915	0.3304123	1.16	0.248	0.8190607	2.165891
IA	0.8725186	0.2304985	-0.52	0.606	0.5198854	1.464339
MO	1.029743	0.3005597	0.1	0.920	0.5811408	1.824635
ND	0.525846*	0.1955402	-1.73	0.084	0.2537069	1.089896
SD	1.185467	0.3966999	0.51	0.611	0.6152436	2.28419
NE	0.6104626**	0.1421374	-2.12	0.034	0.3867845	0.9634942
Ks	0.65504*	0.1493572	-1.86	0.064	0.4189704	1.024123
DE	0.8617178	0.2108544	-0.61	0.543	0.533438	1.392022
MD	1.03354	0.2324575	0.15	0.883	0.6650901	1.606107
VA	1.135193	0.1816668	0.79	0.428	0.8295655	1.55342
wv	0.7771608	0.445382	-0.44	0.660	0.2527533	2.389598
NC	1.052952	0.1848657	0.29	0.769	0.7463871	1.485434
SC	0.8134015	0.2257579	-0.74	0.457	0.4721237	1.401374
GA	1.397249	0.3087208	1.51	0.130	0.9061536	2.154498
FL	1.401601***	0.077312	6.12	0.000	1.257976	1.561624

KY	0.8260806	0.2904121	-0.54	0.587	0.4147429	1.645379
TN	$\mathbf{0 . 4 1 3 9 3 9 7 * *}$	0.1454783	-2.51	0.012	0.2078663	0.8243094
AL	1.963793^{*}	0.7560014	1.75	0.080	0.9234398	4.176214
MS	0.6637533	0.2620895	-1.04	0.299	0.3061269	1.439169
AR	0.8792261	0.228029	-0.5	0.620	0.5288589	1.461711
LA	1.250721	0.3385873	0.83	0.409	0.7357474	2.126143
OK	$\mathbf{0 . 6 5 1 8 0 0 1 *}$	0.1676788	-1.66	0.096	0.3936757	1.079171
MT	0.92502	0.262879	-0.27	0.784	0.5299688	1.614551
ID	$\mathbf{0 . 3 8 2 1 6 5 3 * * *}$	0.0900666	-4.08	0.000	0.2407936	0.6065375
WY	0.8856916	0.1921068	-0.56	0.576	0.5789707	1.354904
CO	0.8881432	0.169647	-0.62	0.535	0.6107905	1.291438
NM	1.038335	0.1924602	0.2	0.839	0.7220432	1.493178
AZ	0.7641592	0.1448826	-1.42	0.156	0.526985	1.108076
UT	$\mathbf{0 . 5 3 5 8 9 3 2 * * *}$	0.1264489	-2.64	0.008	0.3374655	0.8509952
NV	$\mathbf{0 . 6 8 5 2 6 5 * *}$	0.1338729	-1.93	0.053	0.4672706	1.00496
WA	0.753228	0.1659926	-1.29	0.198	0.4890384	1.160139
OR	0.851058	0.2034188	-0.67	0.500	0.5327287	1.359603
CA	1.036218	0.1856457	0.2	0.843	0.7293774	1.472142
AK	1.272614	0.3137656	0.98	0.328	0.7849302	2.063299
HI	0.7421159	0.179722	-1.23	0.218	0.4616703	1.192921
(COns	$\mathbf{3 . 5 1 E - 1 3 * * *}$	$2.88 \mathrm{E}-12$	-3.49	0.000	$3.64 \mathrm{E}-20$	$3.40 \mathrm{E}-06$

Whites (Controlling):

Voted	Odds Ratio	Std. Err.	z	P>z	[95\% Conf.	Interval]
PID	0.8986627***	0.0228309	-4.21	0.000	0.8550107	0.9445432
Age	1.061684***	0.0013091	48.54	0.000	1.059122	1.064253
Age^{2}	0.9998036***	0.0000125	-15.66	0.000	0.999779	0.9998282
Education	2.582126***	0.0435691	56.22	0.000	2.498128	2.668947
Education ${ }^{2}$	0.9238124***	0.0023741	-30.84	0.000	0.9191709	0.9284772
Family Income	1.104099***	0.0012672	86.29	0.000	1.101618	1.106585
Female	1.075194***	0.0083045	9.39	0.000	1.05904	1.091594
Year	1.003958***	0.0012307	3.22	0.001	1.001548	1.006373
Midterm	0.3930602***	0.0032414	-113.23	0.000	0.3867582	0.3994648
South	0.8762335**	0.0478302	-2.42	0.016	0.7873287	0.9751774
ME	2.017459***	0.116878	12.11	0.000	1.800909	2.260048
NH	1.184563***	0.067859	2.96	0.003	1.058756	1.325318
VT	1.494938***	0.0889071	6.76	0.000	1.330455	1.679754
MA	1.345242***	0.0798142	5	0.000	1.197562	1.511134
RI	1.364237***	0.0808023	5.24	0.000	1.214714	1.532165
CT	1.131236**	0.0662188	2.11	0.035	1.008618	1.268761
NY	1.075448	0.0591713	1.32	0.186	0.9655088	1.197906
NJ	0.8850359**	0.0509929	-2.12	0.034	0.7905282	0.9908419
PA	1.037599	0.0572581	0.67	0.504	0.9312307	1.156116
OH	1.295332***	0.0722248	4.64	0.000	1.161235	1.444915
IN	1.050514	0.0642034	0.81	0.420	0.9319224	1.184198
IL	1.130244**	0.0633964	2.18	0.029	1.012576	1.261586
MI	1.647185***	0.0948193	8.67	0.000	1.471443	1.843917
WI	1.677421***	0.0973845	8.91	0.000	1.49701	1.879575
MN	2.37376***	0.137823	14.89	0.000	2.118435	2.659858
IA	1.497502***	0.0866566	6.98	0.000	1.336936	1.677353
MO	1.482088***	0.0881968	6.61	0.000	1.318925	1.665435
ND	1.597596***	0.0956964	7.82	0.000	1.420626	1.796611
SD	2.073084***	0.1276277	11.84	0.000	1.837441	2.338947
NE	1.16802***	0.0684179	2.65	0.008	1.041335	1.310118
KS	1.105358	0.0652061	1.7	0.089	0.9846678	1.240841
DE	1.369263***	0.0852485	5.05	0.000	1.211971	1.546969
MD	1.187231***	0.0710016	2.87	0.004	1.055917	1.334876
VA	1.14727***	0.0388196	4.06	0.000	1.073653	1.225934
wv	0.9772158	0.0585565	-0.38	0.701	0.8689303	1.098996
NC	1.189618***	0.0380926	5.42	0.000	1.117252	1.266671
SC	1.181473***	0.0456239	4.32	0.000	1.095352	1.274366
GA	1.295512***	0.0530125	6.33	0.000	1.195667	1.403695
FL	1.324963***	0.034903	10.68	0.000	1.258291	1.395169

KY	$\mathbf{1 . 4 0 3 1 2 7 ^ { * * * }}$	0.0835988	5.68	0.000	1.248481	1.576928
TN	1.047586	0.0635279	0.77	0.443	0.9301884	1.1798
AL	$\mathbf{1 . 5 2 9 4 7 8 ^ { * * * }}$	0.0609554	10.66	0.000	1.414554	1.653738
MS	$\mathbf{1 . 2 6 9 5 7 3 ^ { * * * }}$	0.0579324	5.23	0.000	1.160957	1.38835
AR	$\mathbf{1 . 2 0 3 5 2 3 ^ { * * * }}$	0.0454346	4.91	0.000	1.117688	1.295951
LA	$\mathbf{1 . 7 1 6 7 2 7 ^ { * * * }}$	0.0818135	11.34	0.000	1.563636	1.884806
OK	$\mathbf{1 . 1 9 8 2 9 4 ^ { * * * }}$	0.0742493	2.92	0.004	1.061258	1.353026
MT	$\mathbf{1 . 6 8 7 0 6 2 * * *}$	0.1040112	8.48	0.000	1.495039	1.903748
ID	$\mathbf{1 . 2 3 7 6 1 ^ { * * * }}$	0.0749673	3.52	0.000	1.099064	1.393621
WY	$\mathbf{1 . 4 4 6 1 2 9 * * *}$	0.0858104	6.22	0.000	1.287355	1.624485
CO	$\mathbf{1 . 4 0 6 7 5 4 ^ { * * * }}$	0.0815828	5.88	0.000	1.255607	1.576095
NM	$\mathbf{1 . 3 2 5 9 8 6 ^ { * * * }}$	0.0842766	4.44	0.000	1.170681	1.501894
AZ	1.032927	0.0629007	0.53	0.595	0.9167169	1.163869
UT	1.008607	0.0604472	0.14	0.886	0.8968261	1.13432
NV	0.9664842	0.0575969	-0.57	0.567	0.8599397	1.086229
WA	$\mathbf{1 . 5 8 5 9 3 9 * * *}$	0.0942908	7.76	0.000	1.411494	1.781944
OR	$\mathbf{2 . 0 1 3 1 6 6 ^ { * * * }}$	0.1224206	11.51	0.000	1.786973	2.267991
CA	$\mathbf{1 . 2 3 6 1 7 2 * * *}$	0.0665983	3.94	0.000	1.112297	1.373843
AK	$\mathbf{1 . 9 5 5 4 1 8 * * *}$	0.1239916	10.58	0.000	1.726894	2.214184
HI	0.9266035	0.0747999	-0.94	0.345	0.791008	1.085443
Cons	$\mathbf{4 . 0 1 E - 0 6 * * *}$	$9.85 \mathrm{E}-06$	-5.06	0.000	$3.24 \mathrm{E}-08$	0.000495

Asians (Not Controlling):

Voted	Odds Ratio	Std. Err.	z	P>z	[95\% Conf.	Interval]
PID	0.7584651	0.1759301	-1.19	0.233	0.4813875	1.195023
Female	0.9996071	0.0362817	-0.01	0.991	0.9309667	1.073308
Year	1.033474***	0.0057841	5.88	0.000	1.022199	1.044873
Midterm	0.5172298***	0.0197761	-17.24	0.000	0.4798862	0.5574795
South	0.3870543***	0.0866913	-4.24	0.000	0.2495297	0.6003735
ME	0.8073366	0.3117594	-0.55	0.579	0.3787533	1.720889
NH	0.9456404	0.2782958	-0.19	0.849	0.5311571	1.683562
VT	0.3690323**	0.1662919	-2.21	0.027	0.1525806	0.8925439
MA	0.5008124***	0.1252031	-2.77	0.006	0.3068136	0.8174768
RI	0.4461341***	0.1276747	-2.82	0.005	0.2546059	0.78174
CT	0.5796729**	0.1526721	-2.07	0.038	0.3459368	0.9713356
NY	0.3977595***	0.0862271	-4.25	0.000	0.2600731	0.6083391
NJ	0.6251253**	0.1419325	-2.07	0.039	0.4005943	0.9755048
PA	0.4165926***	0.1085717	-3.36	0.001	0.2499613	0.694305
OH	0.6498636	0.1882411	-1.49	0.137	0.3683503	1.146525
IN	0.8784157	0.4246672	-0.27	0.789	0.3405568	2.265743
IL	0.4369731***	0.1013078	-3.57	0.000	0.2774037	0.6883307
MI	0.8011039	0.216943	-0.82	0.413	0.4711716	1.362067
WI	0.9427118	0.2827533	-0.2	0.844	0.5236884	1.697012
MN	0.7341284	0.1887108	-1.2	0.229	0.443575	1.215002
IA	0.4718204**	0.1545486	-2.29	0.022	0.2482897	0.8965917
Mo	0.2964926***	0.1095897	-3.29	0.001	0.1436787	0.6118361
ND	0.56445	0.2481239	-1.3	0.193	0.2384789	1.335983
SD	0.5032178	0.231079	-1.5	0.135	0.2045888	1.237742
NE	0.2572494***	0.0822014	-4.25	0.000	0.1375187	0.4812237
KS	0.2940909***	0.0879456	-4.09	0.000	0.1636576	0.528478
DE	0.8066737	0.2442318	-0.71	0.478	0.4456406	1.460196
MD	0.523522***	0.1254728	-2.7	0.007	0.3272857	0.8374192
VA	1.36312**	0.2162231	1.95	0.051	0.9988797	1.860179
wv	0.367073	0.2240748	-1.64	0.101	0.1109552	1.214387
NC	1.092246	0.247522	0.39	0.697	0.7005249	1.703012
SC	0.7025961	0.2571127	-0.96	0.335	0.3429347	1.439462
GA	0.8357463	0.245644	-0.61	0.542	0.4697727	1.486829
FL	1.402338**	0.2241437	2.12	0.034	1.02518	1.918249
KY	0.5422271	0.2352054	-1.41	0.158	0.2317128	1.268857
TN	0.2838601***	0.1075715	-3.32	0.001	0.1350621	0.596589
AL	0.9319798	0.4868449	-0.13	0.893	0.3347791	2.594506
MS	0.4578101	0.365508	-0.98	0.328	0.0957415	2.189125
AR	0.275324**	0.137086	-2.59	0.010	0.1037586	0.7305735

La Voy 28

LA	0.6283334	0.3731649	-0.78	0.434	0.1961845	2.012406
OK	$\mathbf{0 . 3 7 8 6 9 7 9 * * *}$	0.1307876	-2.81	0.005	0.1924513	0.7451864
MT	0.9267262	0.4263856	-0.17	0.869	0.3761098	2.283433
ID	$\mathbf{0 . 3 6 1 4 2 5 9 * * *}$	0.1285266	-2.86	0.004	0.1800212	0.7256294
WY	$\mathbf{0 . 3 6 4 8 2 1 9 * *}$	0.1705135	-2.16	0.031	0.1459619	0.9118481
CO	$\mathbf{0 . 5 2 7 3 8 9 2 * *}$	0.1363041	-2.48	0.013	0.3177881	0.8752353
NM	0.6885287	0.2430768	-1.06	0.290	0.3446796	1.375398
AZ	$\mathbf{0 . 5 1 4 1 3 9 5 ^ { * * }}$	0.140874	-2.43	0.015	0.3005052	0.8796499
UT	$\mathbf{0 . 2 3 6 3 3 0 7 * * *}$	0.0675909	-5.04	0.000	0.1349197	0.4139663
NV	$\mathbf{0 . 3 6 6 6 3 7 \mathbf { 1 } ^ { * * * }}$	0.0827866	-4.44	0.000	0.2355241	0.570739
WA	$\mathbf{0 . 6 3 8 3 3 0 8 ^ { * * }}$	0.1455561	-1.97	0.049	0.408272	0.9980264
OR	$\mathbf{0 . 6 2 6 6 1 8 2 *}$	0.1616883	-1.81	0.070	0.3778894	1.039062
CA	$\mathbf{0 . 6 1 2 6 3 6 2 * *}$	0.1253249	-2.4	0.017	0.4102752	0.9148082
AK	$\mathbf{0 . 5 6 6 8 9 3 6 * *}$	0.1422742	-2.26	0.024	0.3466364	0.927105
HI	0.714825	0.1464097	-1.64	0.101	0.4784731	1.067928
_cons	$\mathbf{5 . 0 7 E - 2 9 * * *}$	$5.69 \mathrm{E}-28$	-5.81	0.000	$1.42 \mathrm{E}-38$	$1.81 \mathrm{E}-19$

Blacks (Not Controlling):

Voted	Odds Ratio	Std. Err.	z	P>z	[95\% Conf.	Interval]
PID	0.9160786	0.0549265	-1.46	0.144	0.8145095	1.030313
Female	1.33608***	0.0292021	13.26	0.000	1.280053	1.394558
Year	1.051561***	0.0036201	14.6	0.000	1.044489	1.05868
Midterm	0.3701138***	0.0086644	-42.46	0.000	0.3535155	0.3874913
South	0.6213649***	0.0382275	-7.73	0.000	0.5507814	0.7009939
ME	0.5816603*	0.1743132	-1.81	0.071	0.3232805	1.046549
NH	0.4895553**	0.1529515	-2.29	0.022	0.2653758	0.9031132
VT	0.8061888	0.350677	-0.5	0.620	0.3437005	1.891008
MA	0.728732***	0.0891098	-2.59	0.010	0.5734325	0.9260902
RI	0.571865***	0.0735578	-4.34	0.000	0.444432	0.7358373
CT	0.5678315***	0.0556542	-5.77	0.000	0.4685885	0.6880933
NY	0.6890714***	0.0414816	-6.19	0.000	0.612382	0.7753646
NJ	0.7766913***	0.064364	-3.05	0.002	0.6602521	0.9136652
PA	0.940391	0.0769174	-0.75	0.452	0.801099	1.103903
OH	0.7809368***	0.0558653	-3.46	0.001	0.6787723	0.8984786
IN	0.7002595***	0.0790994	-3.15	0.002	0.5611896	0.8737927
IL	1.249653***	0.0870083	3.2	0.001	1.090244	1.43237
MI	1.233455***	0.0982589	2.63	0.008	1.055152	1.441887
WI	0.8865023	0.1150578	-0.93	0.353	0.6873908	1.143289
MN	0.9098869	0.1283508	-0.67	0.503	0.6901046	1.199665
IA	0.4719629***	0.0777269	-4.56	0.000	0.3417627	0.651765
MO	0.9533998	0.0915042	-0.5	0.619	0.7899134	1.150723
ND	0.3519074***	0.1220389	-3.01	0.003	0.1783356	0.6944146
SD	0.7331601	0.2390636	-0.95	0.341	0.3869413	1.389161
NE	0.4110289***	0.0634508	-5.76	0.000	0.303719	0.5562536
KS	0.4485161***	0.0480084	-7.49	0.000	0.363636	0.553209
DE	0.776483***	0.0639256	-3.07	0.002	0.6607772	0.9124496
MD	1.017533	0.0655615	0.27	0.787	0.8968172	1.154497
VA	0.9901664	0.0725422	-0.13	0.893	0.8577227	1.143061
wv	0.5793725***	0.1036375	-3.05	0.002	0.4080335	0.8226591
NC	0.9942747	0.0670306	-0.09	0.932	0.8712068	1.134727
SC	1.391738***	0.098375	4.68	0.000	1.211686	1.598544
GA	1.159597*	0.0893532	1.92	0.055	0.997051	1.348642
FL	1.05965	0.0702787	0.87	0.382	0.9304835	1.206747
KY	0.6404009***	0.0724177	-3.94	0.000	0.5130935	0.7992954
TN	0.6711062***	0.0603567	-4.43	0.000	0.562649	0.8004699
AL	1.239213***	0.0881795	3.01	0.003	1.077896	1.424674
MS	1.332106***	0.095321	4.01	0.000	1.15779	1.532667
AR	0.6799225***	0.0619715	-4.23	0.000	0.5686915	0.8129092

LA	$\mathbf{1 . 3 7 3 4 2 8 * * *}$	0.1155162	3.77	0.000	1.164698	1.619567
OK	$\mathbf{0 . 4 9 6 4 8 9 7 * * *}$	0.0527227	-6.59	0.000	0.4031998	0.6113643
MT	0.6971635	0.4363223	-0.58	0.564	0.2044594	2.377181
ID	$\mathbf{0 . 3 3 9 0 2 5 8 *}$	0.1537101	-2.39	0.017	0.1394146	0.8244361
WY	$\mathbf{0 . 4 2 0 9 6 3 7 *}$	0.1448249	-2.51	0.012	0.2144887	0.8261997
CO	$\mathbf{0 . 4 8 2 9 1 5 7 * * *}$	0.0620121	-5.67	0.000	0.3754629	0.6211202
NM	$\mathbf{0 . 3 8 1 2 0 0 2 * * *}$	0.0787157	-4.67	0.000	0.2543225	0.5713752
AZ	$\mathbf{0 . 4 3 7 4 8 7 2 * * *}$	0.0660582	-5.48	0.000	0.3254156	0.5881556
UT	0.6408526	0.2271524	-1.26	0.209	0.319924	1.283718
NV	$\mathbf{0 . 5 5 3 9 6 1 2 * * *}$	0.0589157	-5.55	0.000	0.4497292	0.6823507
WA	$\mathbf{0 . 4 2 2 1 6 2 9 * * *}$	0.0715468	-5.09	0.000	0.3028456	0.5884898
OR	0.8733128	0.2080899	-0.57	0.570	0.5474551	1.393128
CA	$\mathbf{0 . 7 7 8 9 2 6 7 * * *}$	0.0503179	-3.87	0.000	0.6862933	0.8840634
AK	0.7515712	0.1432816	-1.5	0.134	0.5172431	1.092057
HI	$\mathbf{0 . 2 7 8 1 5 9 6 * * *}$	0.0770761	-4.62	0.000	0.1615966	0.4788021
Cons	$\mathbf{5 . 4 2 E - 4 4 * * *}$	$3.74 \mathrm{E}-43$	-14.44	0.000	$7.28 \mathrm{E}-50$	$4.04 \mathrm{E}-38$

La Voy 31

Hispanics (Not Controlling):

Voted	Odds Ratio	Std. Err.	z	P>z	[95\% Conf.	Interval]
PID	0.7288176**	0.1127302	-2.05	0.041	0.5382188	0.986913
Female	1.134703***	0.0278748	5.14	0.000	1.081364	1.190673
Year	1.029662***	0.0038984	7.72	0.000	1.022049	1.037331
Midterm	0.4441301***	0.0115232	-31.28	0.000	0.4221097	0.4672993
South	0.4097166***	0.0677661	-5.39	0.000	0.2962764	0.5665917
ME	1.076091	0.3498097	0.23	0.822	0.5690429	2.034946
NH	0.6606128	0.1758515	-1.56	0.119	0.3920683	1.113095
VT	1.228814	0.4885556	0.52	0.604	0.5637196	2.67861
MA	0.3486769***	0.0704524	-5.21	0.000	0.2346565	0.5181003
RI	0.6073878**	0.1210734	-2.5	0.012	0.410953	0.8977181
CT	0.4896368***	0.0907677	-3.85	0.000	0.3404712	0.7041543
NY	0.6412886***	0.1091075	-2.61	0.009	0.4594433	0.8951074
NJ	0.6295458***	0.1121272	-2.6	0.009	0.4440393	0.8925514
PA	0.5333261***	0.1034216	-3.24	0.001	0.3646947	0.7799311
OH	0.7187939	0.1612438	-1.47	0.141	0.4630823	1.115708
IN	0.4699709***	0.1321828	-2.68	0.007	0.2708097	0.8156008
IL	0.650536**	0.1148721	-2.43	0.015	0.4602201	0.9195537
MI	0.8361567	0.1840967	-0.81	0.416	0.5430985	1.28735
WI	0.5255984***	0.113443	-2.98	0.003	0.3442977	0.8023685
MN	0.8270969	0.1880232	-0.84	0.404	0.5297286	1.291396
IA	0.4752098***	0.1158834	-3.05	0.002	0.2946548	0.766403
MO	0.7421653	0.1999215	-1.11	0.268	0.4377312	1.258328
ND	0.2682754***	0.0940166	-3.75	0.000	0.1349829	0.533191
SD	0.7701654	0.2402862	-0.84	0.403	0.4178449	1.419557
NE	0.3703881***	0.0793502	-4.64	0.000	0.2433883	0.5636563
KS	0.427986***	0.0901292	-4.03	0.000	0.2832538	0.6466709
DE	0.5340494***	0.1211939	-2.76	0.006	0.3423064	0.8331973
MD	1.012196	0.2105452	0.06	0.954	0.6732985	1.521674
VA	1.582155***	0.2318358	3.13	0.002	1.187192	2.108517
wv	0.7723322	0.4149771	-0.48	0.631	0.2694327	2.2139
NC	1.26141	0.2051835	1.43	0.153	0.9170605	1.735059
Sc	0.9459315	0.2483929	-0.21	0.832	0.565382	1.582623
GA	1.36535	0.2769901	1.54	0.125	0.9174018	2.032021
FL	2.009677***	0.1024895	13.69	0.000	1.818514	2.220935
KY	0.6289147	0.2021741	-1.44	0.149	0.3349348	1.180928
TN	0.3011207***	0.0961406	-3.76	0.000	0.1610543	0.5630007
AL	1.333612	0.4671622	0.82	0.411	0.6712046	2.649745
MS	0.7251111	0.2660542	-0.88	0.381	0.353253	1.488412
AR	0.6131929**	0.151038	-1.99	0.047	0.3783854	0.9937107

La Voy 32

LA	1.629287**	0.3992457	1.99	0.046	1.007898	2.633776
OK	0.4198245***	0.099985	-3.64	0.000	0.2632367	0.6695595
MT	0.6294482*	0.1650493	-1.77	0.077	0.3764993	1.052339
ID	0.2116651***	0.0461999	-7.11	0.000	0.1379934	0.3246685
WY	0.676468*	0.1356306	-1.95	0.051	0.4566494	1.002101
CO	0.6058953***	0.106487	-2.85	0.004	0.4293363	0.8550619
NM	0.7813398	0.1332604	-1.45	0.148	0.5593253	1.091479
AZ	0.5221744***	0.0911743	-3.72	0.000	0.3708442	0.735258
UT	0.3882664***	0.0848623	-4.33	0.000	0.2529793	0.5959017
NV	0.4671837***	0.0839926	-4.23	0.000	0.3284388	0.6645398
WA	0.5328774***	0.107939	-3.11	0.002	0.3582689	0.7925845
OR	0.6064234**	0.1340331	-2.26	0.024	0.3932252	0.935213
CA	0.7193995**	0.1185374	-2	0.046	0.5208532	0.9936306
AK	1.031597	0.2348021	0.14	0.891	0.6603405	1.611582
HI	0.6518996*	0.1461241	-1.91	0.056	0.4201291	1.01153
_cons	7.22E-26***	$5.48 \mathrm{E}-25$	-7.62	0.000	$2.48 \mathrm{E}-32$	$2.10 \mathrm{E}-19$

La Voy 33

Whites (Not Controlling):

Voted	Odds Ratio	Std. Err.	z	P>z	[95\% Conf.	Interval]
PID	0.9290622***	0.0214098	-3.19	0.001	0.8880334	0.9719867
Female	1.073434***	0.0074716	10.18	0.000	1.058889	1.088178
Year	1.025066***	0.0011343	22.37	0.000	1.022845	1.027291
Midterm	0.4622023***	0.0034129	-104.52	0.000	0.4555613	0.4689401
South	0.4747425***	0.0235936	-14.99	0.000	0.4306807	0.5233122
ME	1.011003	0.053359	0.21	0.836	0.9116488	1.121185
NH	0.7885034***	0.0412263	-4.54	0.000	0.7117035	0.8735908
vT	0.8647809***	0.0468462	-2.68	0.007	0.7776703	0.9616491
MA	0.9418302	0.0509983	-1.11	0.268	0.8469967	1.047282
RI	0.8346895***	0.0450586	-3.35	0.001	0.7508877	0.9278437
CT	0.839635***	0.0447972	-3.28	0.001	0.7562689	0.9321909
NY	0.7002071***	0.0351605	-7.1	0.000	0.6345765	0.7726256
NJ	0.6924652***	0.0364691	-6.98	0.000	0.6245525	0.7677626
PA	0.6256387***	0.0314942	-9.32	0.000	0.5668587	0.6905139
OH	0.7012367***	0.0356214	-6.99	0.000	0.6347831	0.7746471
IN	0.5716388***	0.0318217	-10.05	0.000	0.5125515	0.6375377
IL	0.7244144***	0.0371073	-6.29	0.000	0.6552171	0.8009196
MI	0.9234855	0.0484777	-1.52	0.129	0.8331955	1.02356
WI	0.9799013	0.0519207	-0.38	0.702	0.8832444	1.087136
MN	1.421305***	0.0754043	6.63	0.000	1.28094	1.577052
IA	0.8232679***	0.043415	-3.69	0.000	0.7424259	0.9129127
мо	0.7726695***	0.0418566	-4.76	0.000	0.694837	0.8592205
ND	0.8803224**	0.0480997	-2.33	0.020	0.7909211	0.9798291
SD	1.028632	0.0576678	0.5	0.615	0.9215934	1.148102
NE	0.6887066***	0.0367501	-6.99	0.000	0.6203164	0.7646368
KS	0.6721612***	0.0360929	-7.4	0.000	0.6050156	0.7467586
DE	0.8650799**	0.0490372	-2.56	0.011	0.7741155	0.9667334
MD	0.8706966**	0.0475053	-2.54	0.011	0.7823935	0.9689659
VA	1.520907***	0.0463681	13.75	0.000	1.432689	1.614557
wv	0.4453963***	0.0242749	-14.84	0.000	0.4002714	0.4956084
NC	1.308571***	0.0376929	9.34	0.000	1.236741	1.384573
SC	1.28699***	0.0446523	7.27	0.000	1.202383	1.377551
GA	1.355304***	0.0501203	8.22	0.000	1.260545	1.457185
FL	1.596474***	0.0377954	19.76	0.000	1.524089	1.672297
KY	0.6323507***	0.0342181	-8.47	0.000	0.5687185	0.7031024
TN	0.5356083***	0.0295405	-11.32	0.000	0.4807295	0.5967518
AL	1.493109***	0.0537479	11.14	0.000	1.391395	1.602258
MS	1.304374***	0.0537734	6.45	0.000	1.203125	1.414142
AR	1.085757**	0.036961	2.42	0.016	1.015679	1.160671

[^0]: ${ }^{1}$ Thomas La Voy is a senior politics and economics major at Oberlin College, class of 2013. He would like to take this opportunity to thank Professors Paul Dawson and Michael Parkin of the Oberlin College Politics Department, and Professor Barbara Craig of the Oberlin College Economics Department.

[^1]: ${ }^{2}$ State of Texas v. Eric H. Holder, Jr. U.S. District Court for the District of Columbia. 30 Aug. 2012. N.p., n.d. Web.
 ${ }^{3}$ Ibid.

[^2]: ${ }^{4}$ Ibid.

[^3]: ${ }^{5}$ Kinnard, Meg. "South Carolina Voter ID Law: Justice Department Blocks Controversial Legislation." Huff Post Politics. The Huffington Post, 23 Dec. 2011. Web. 23 Apr. 2013. http://www.huffingtonpost.com/2011/12/23/south-carolina-voter-id-law_n_1168162.html. ${ }^{6}$ Ibid.
 7 "In-person Voter Fraud 'a Very Rare Phenomenon'" PolitiFact Georgia. PolitiFact, 19 Sept. 2012. Web. 23 Apr. 2013. http://www.politifact.com/georgia/statements/2012/sep/19/naacp/-person-voter-fraud-very-rarephenomenon/.
 ${ }^{8}$ Levitt, Justin. "The Truth About Voter Fraud." The Truth About Voter Fraud. Brennan Center for Justice, 9 Nov. 2007. Web. 23 Apr. 2013. http://www.brennancenter.org/publication/truth-about-voter-fraud. ${ }^{9}$ Urbina, Ian. "U.S. PANEL IS SAID TO ALTER FINDING ON VOTER FRAUD." The New York Times. The New York Times, 11 Apr. 2007. Web. 23 Apr. 2013.
 http://www.nytimes.com/2007/04/11/washington/11voters.html?pagewanted=1.
 ${ }^{10}$ Magoc, Ethan. "Flurry of Voter ID Laws Tied to Conservative Group ALEC." NBC News. NBC, 21 Aug. 2012. Web. 23 Apr. 2013. http://openchannel.nbcnews.com/_news/2012/08/21/13392560-flurry-of-voter-id-laws-tied-to-conservative-group-alec?lite.

[^4]: ${ }^{11}$ Sorenson, Adam. "ALEC Scraps Gun-Law, Voter-ID Task Force." TIME - Swampland. TIME, 17 Apr. 2012. Web. 23 Apr. 2013. http://swampland.time.com/2012/04/17/alec-scraps-gun-law-voter-id-task-force/.

[^5]: ${ }^{12}$ Levitt, Justin. The Truth About Voter Fraud. Publication. New York City: Brennan Center for Justice, 2007. Web. 22 Apr. 2012. http://www.brennancenter.org/publication/truth-about-voter-fraud.
 ${ }^{13}$ Mayer, Jane. "The Voter-Fraud Myth." The Political Scene. The New Yorker, 29 Oct. 2012. Web. 23 Apr. 2013. http://www.newyorker.com/reporting/2012/10/29/121029fa_fact_mayer.
 ${ }^{14}$ Ansolabehere, Stephen, and Nathaniel Persily. "Vote Fraud in the Eye of the Beholder: The Role of Public Opinion in the Challenge to Voter Identification Requirements."Harvard Law Review 121.7 (2008): 1737-774. JSTOR. Web. 30 Sept. 2012. <http://www.jstor.org/stable/40042715 .>. p. 1738.
 ${ }^{15}$ "Vote Fraud," p. 1750.

[^6]: ${ }^{16}$ Hershey, Marjorie Randon. "What We Know about Voter-ID Laws, Registration, and Turnout." PS: Political Science \& Politics 42.01 (2009): 87. Web.
 [http://journals.cambridge.org/action/displayAbstract?fromPage=online\&aid=3260780](http://journals.cambridge.org/action/displayAbstract?fromPage=online%5C&aid=3260780). p. 87-88
 ${ }^{17}$ Ansolabehere, Stephen. "Effects of Identification Requirements on Voting: Evidence from the Experiences of Voters on Election Day." PS: Political Science \& Politics 42.01 (2009): 127. JSTOR. Web. 30 Sept. 2012., p. 129

[^7]: ${ }^{18}$ Hershey p. 88.
 ${ }^{19}$ Hershey p. 90.
 20 "Effects of Identification Requirements," p. 129.
 ${ }^{21}$ Hershey p. 88.

[^8]: ${ }^{22}$ Alvarez, R. Michael, Delia Bailey, and Jonathan N. Katz. "An Empirical Bayes Approach to Estimating Ordinal Treatment Effects." Political Analysis (2011): n. pag. JSTOR. Web. 30 Sept. 2012. p. 20

[^9]: ${ }^{23}$ I consider the following states to be in the South, same as Alvarez: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Texas and Virginia.

[^10]: ${ }^{24}$ Alvarez p. 19

