
Oberlin Oberlin 

Digital Commons at Oberlin Digital Commons at Oberlin 

Honors Papers Student Work 

2015 

Arrow: A Modern Reversible Programming Language Arrow: A Modern Reversible Programming Language 

Eli Rose 
Oberlin College 

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors 

 Part of the Computer Sciences Commons 

Repository Citation Repository Citation 
Rose, Eli, "Arrow: A Modern Reversible Programming Language" (2015). Honors Papers. 270. 
https://digitalcommons.oberlin.edu/honors/270 

This Thesis is brought to you for free and open access by the Student Work at Digital Commons at Oberlin. It has 
been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at Oberlin. For 
more information, please contact megan.mitchell@oberlin.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons at Oberlin (Oberlin College)

https://core.ac.uk/display/354496718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/270?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu


Arrow: A Modern Reversible Programming
Language

Author:
Eli Rose

Advisor:
Bob Geitz

Abstract

Reversible programming languages are those whose programs can be
run backwards as well as forwards. This condition impacts even the most
basic constructs, such as =, if and while. I discuss Janus, the first im-
perative reversible programming language, and its limitations. I then
introduce Arrow, a reversible language with modern features, including
functions. Example programs are provided.

April 10, 2015



Introduction:

Many processes in the world have the property of reversibility. To start washing
your hands, you turn the knob to the right, and the water starts to flow; the
process can be undone, and the water turned off, by turning the knob to the
left. To turn your computer on, you press the power button; this too can be
undone, by again pressing the power button.

In each situation, we had a process (turning the knob, pressing the power
button) and a rule that told us how to “undo” that process (turning the knob
the other way, and pressing the power button again). Call the second two the
inverses of the first two. By a reversible process, I mean a process that has an
inverse.

Consider two billiard balls, with certain positions and velocities such that
they are about to collide. The collision is produced by moving the balls accord-
ing to the laws of physics for a few seconds. Take that as our process. It turns
out that we can find an inverse for this process – a set of rules to follow which
will undo the collision and restore the balls to their original states1. Therefore,
physics is reversible in this sense.

Here are two additional ways to characterize reversibility.

Local

In order for a process to be reversible, it must preserve information from step
to step. We started out with certain information about the billiard balls (their
positions, masses, and velocities) and in order to reverse the collision we must
still have that information after the collision has occurred, albeit potentially in
a different place or form.

In this case, the momentum (a function of velocity) of the ball has been
transferred into whatever it collided with. In the case of both the faucet and
the power button, we can imagine one bit which stores the state. Since both
states can be completely represented using only this single bit, information is
neither created nor destroyed. The same is true of any reversible process.

Global

Consider a process as a function from start states to final states. Then, the
process is reversible if and only if this mapping is bijective.

For the faucet and the power button, the function sends off to on and on to
off. With the billiards, each pair of initial positions and velocities for the two
balls leads to a different pair of final positions and velocities.

1For Newtonian physics, these rules are simple: just substitute −t for t in the original
equations. This is called time-reversal symmetry. Modern physics obeys what is called CPT
symmetry, meaning that one needs to invert Charge (particles become antiparticles) and
Parity (everything is reflected as in a mirror) as well as T ime in order to run the equations
backwards [1]. But both types work equally well for us – we only care that a rule exists.

1



Irreversible Processes:

We often think of real-world processes such as burning firewood or shattering
glass as irreversible, since they increase entropy. The definition I have given
above, phrased in the language of information and states, is known as logical
reversibility [2]. A physical process that is reversible in the sense that it does
not increase entropy is called thermodynamically reversible2.

These two ideas are distinct, but related by an idea known as Landauer’s
Principle, which is that logically irreversibility implies thermodynamical irre-
versibility [4]. In other words, a step that goes from many states to fewer (e.g.
erasing bits or merging computation paths) unavoidably results in a certain
minimum amount of entropy increase. Typically, this entropy manifests in the
form of heat [4]. This is a powerful motivation for the study of reversible com-
puting since it means that, in principle, logically irreversible computations are
fundamentally inefficient.

Nearly all computer programs have this problem. Consider any assignment
statement, such as x = 0. The statement provides no way to “undo” itself –
we have no way of knowing what x was before it was set. Locally speaking, the
information represented by the value of x was destroyed when x was overwrit-
ten. Globally speaking, the function represented by x = 0 sends all the initial
states where x == 1, x == 2, . . . to the same final state where x == 0. It is a
collapsing or homogenezing process.

Reversibility of Program vs. Step

Note that it is perfectly possible to write a program which overall computes a
bijection between inputs and outputs, but in which not every step is reversible.
In fact, every program can be trivially modified to satisfy this condition. Simply
have the program save a copy of its entire initial state at the beginning. Then it
becomes clear that the initial and final states will be in bijection, since the final
state of the program will effectively be a tuple (initial state, final state).

Following Landauer and Bennett [5] [6], we will preclude these types of
programs, and require that our reversible programs be composed entirely of
reversible steps. One reason is because Landauer’s Principle works on the level
of individual steps, and so these types of “save-the-input” programs would still
expend the heat for their irreversible steps. Another way of stating this is
that we want “going back a step” to be easy – not to involve re-running the
computation from the beginning.

2Of course all processes create entropy. A thermodynamically reversible process can be
made to create an arbitrarily small amount by running it arbitrarily slowly. [3]

2



Goals & Definitions:

Define:

• a reversible program to be one in which every step is logically reversible.

• a reversible programming language to be one in which every program is
reversible.

Work has been done on reversible functional programming languages [7] but
my focus is on imperative languages. The most natural unit of “step” for a
imperative programming language is the statement. Therefore, our goal is to
create a language in which every statement has an inverse.

If we can invert each statement, then we can invert the whole program
by executing the inverse of each statement from the bottom up. The inverse
proceeds in reverse order to the original.

x += 3;

y *= x;

x -= 4;

⇐⇒
is the inverse of

x += 4;

y /= x;

x -= 3;

This is just the idea that if you put your socks on, then put your shoes on,
you have to take your shoes off before taking your socks off. If we consider
statements as functions applied to the program’s state, it’s just the rule for
inverting compositions of functions: (f(g(x)))−1 = g−1(f−1(x)).

As seen above, the inverse of statements of the form x ⊕= y is easy to find:
we have x += y ⇐⇒ x -= y and x *= y ⇐⇒ x /= y. The goal is to have
each statement’s inverse be just as easy to find.

Janus

Created in 1982 by Howard Derby and Christopher Lutz, Janus (and named
after the two-faced Roman god) was the first reversible programming language.
Lutz sent the language specification in a letter to Dr. Rolf Landauer four years
later.

Janus has since been re-implemented by the Program Inversion and Re-
versible Computation group at the University of Copenhagen, with various en-
hancements and additions. Since there is an online interpreter for this version
of the language, it is easier to experiment and observe programs. This is the
version of Janus I will use as reference.

Aside from the reversibility condition, Janus is a bare-bones imperative pro-
gramming language. It has no:

• Datatypes. The only allowed values are integers, either 32-bit (in which
case all arithmetic is implicitly mod 232) or arbitarily large. There are no
strings, floats, objects, pointers, or even structs.

3



• Functions. Janus has only what it calls “procedures”, which differ from
functions in that they return nothing, have no local scope, and use pass-
by-reference for all parameters. They are a wrapper around “goto” and
some variable aliases. Procedures are called as a standalone statements
only, not in expressions (because there is no return statement).

Its interesting features come directly from the requirement that every state-
ment be invertible.

• Janus has no assignment statement. It uses only +=, -= and != (XOR-
equals). There is no *= or /=. Since all data values are integers, and the
usual integer division isn’t invertible, the /= operator is disallowed. And
since *= is its inverse, that is disallowed as well. This is an illustration
of the principle that every statement in the reversible language must be
“first-class”: i.e. every statement that appears in the inverse of a program
must also be valid in any other context.

• Conditionals. What is the inverse of an if-statement? The ordinary if-
statement is irreversible, since when you encounter it from the bottom
there is no way to decide which branch to undo. Consider the following
incomplete snippet of Janus code:

if (x % 2 == 0) then

x += 1

fi

We can see that if x == 2 and x == 3 both to 3, which is irreversible.
When going backwards and trying to undo this statement, absent other
information we can’t tell if the 3 we’re looking at should become a 2 or
not.

Janus ensures reversibility by requiring the programmer to attach an ex-
tra condition after the word fi at the end of if-statements. The condition
should evaluate to true if and only if the if-statement’s condition eval-
uated to true. The intention is to provide a way to tell which branch
was executed on the way down; the onus is on the programmer to ensure
correctness.

Note that there is now no way to write the function above; there is no
condition which holds if and only if the main branch of the if-statement
was taken. We could, however, invent a way to hold onto this information.

if (x % 2 == 0) then

x += 1

even += 1

fi even == 1

⇐⇒
is the inverse of

if (even == 1) then

even -= 1

x -= 1

fi x % 2 == 0

4



If even was always 0 before reaching this code, then our if-statement would
become invertible: the even == 1 condition tells us which branch to take.
This doesn’t mean that we need to store the outcome of every if-statement.
In another context, we might not need to invent a variable to store this
information for us – often one already exists. Examples of these types of
if-statement conditions will appear later in the example programs.

• Loops. What is the inverse of a while-loop? Intuitively, we want to undo
the statements inside the while-loop as many times as we did them for-
wards. As in if-statements, Janus requires another condition. Firstly, in-
stead of while <condition> <statements>, Janus uses <statements>

until <condition>. It then requires a start condition at the start of the
loop. This condition must be true when and only when the loop starts,
just as the until condition is true when and only when the loop stops.

These are called from-loops, since they start from one condition and go
to another. Here an example which calculates (and uncalculates) the sum
of the numbers 1 through 9.

from (i == 0) loop

sum += i

i += 1

until (i == 10)

⇐⇒
is the inverse of

from (i == 10) do

i -= 1

sum -= i

until (i == 0)

• Local variables. All variables in original Janus are global, but in the
University of Copenhagen interpreter you can allocate local variables with
the local statement. The inverse of the local statement is the delocal

statement, which performs deallocation. When inverted, the deallocation
becomes the allocation and vice versa. In order to invert deallocation, the
value of the variable at deallocation time must be known, so the syntax is
delocal <variable> = <value>. Again the onus is on the programmer
to ensure that the equality actually holds. Here is an example that uses a
temporary variable to double an integer (since Janus has no *= operator).

local z = a

a += z

delocal z = a / 2

⇐⇒
is the inverse of

local z = a / 2

a -= z

delocal z = a

• Uncalling procedures. Since computing inverses is so easy it can even
be done at runtime, Janus potentially has an advantage over irreversible
languages even from a purely programmer’s perspective. Procedures are
called with the call statement, whose inverse is the uncall statement,
and since every statement is first-class, the uncall statement can be used
in ordinary code as well. To uncall a procedure is to undo all of the

5



statements in that procedure, starting at the bottom and proceeding to
the top.

There are many potential uses, such as recursive backtracking and recov-
ering from errors. Some of the example Arrow programs later will uncall
functions.

Limitations of Janus:

Janus is a fascinating proof-of-concept language; however, it suffers from severe
limitations already noted above, such as a lack of datatypes and functions. As
a result, Janus programs tend to be long, clunky, low-level and difficult to read.

Here is an example Janus program which compresses an array using run-
length encoding.

procedure encode(int text[], int arc[])

local int i = 0

local int j = 0

from i = 0 && j = 0 loop

arc[j] += text[i]

text[i] -= arc[j]

from arc[j+1] = 0 do

arc[j+1] += 1

i += 1

loop

text[i] -= arc[j]

until arc[j] != text[i]

j += 2

until text[i] = 0

// i & j should be cleared

from arc[j] = 0 do

j -= 2

i -= arc[j+1]

until i = 0

delocal int j = 0

delocal int i = 0

procedure main()

int text[7]

int arc[14]

text[0] += 1

text[1] += 1

text[2] += 2

text[3] += 2

text[4] += 2

6



text[5] += 1

call encode(text, arc)

It sends the array text == [1, 1, 2, 2, 2, 1] to the array arc == [1,

2, 2, 3, 1, 1] – where each digit is followed by the number of times that
digit appears. (The do statement means to execute the following once before
starting the loop, as opposed to the code following loop which is the body of
the loop).

The aim of Arrow is to extend Janus in a way that makes it easier to read
and write. This involves solving theoretical problems (what is the inverse of
a return statement?) and design problems (what abstractions would help to
express this common idea?).

Arrow:

Arrow, like Janus, is a reversible, imperative, interpreted language.
Datatypes: Unlike Janus, Arrow uses several datatypes: Num, List, String

and Boolean.
Nums are infinite-precision rational numbers, introduced in order to allow *=

and /= operators by making the operations of division and multiplication truly
each others’ inverses (possible loss of precision makes floating-point operations
irreversible).

Lists are dynamically resizing arrays, like Java’s ArrayList or Python’s
List (which they are based on). Lists may contain data of any type, or of
mixed types. Like Python lists, they also function as stacks, with push and pop

being each other’s inverses.
Strings and booleans are standard. Strings are immutable.
Syntax: Syntax is inspired by Janus, but is often designed to resemble

more modern languages. A statement can be +=, -=, *=, /=, which all have the
obvious inverses, a result or enter or exit statement, which will be discussed
in the next section, or any of the following:

<id> := <expr> ⇐⇒
is the inverse of

<id> == <expr>

Creates the new variable
<id> and initializes it to the
value of <expr>. This is the
equivalent of Janus’s local

statement.

Deallocates the variable
<id> if it is equal to <expr>.
This is the equivalent of
Janus’s delocal statement.

7



from <exprA> {
<statements>

} until <exprB>

⇐⇒
is the inverse of

from <exprB> {
un(<statements>)

} until <exprA>

Same as Janus’s from loop.

8



for <id> := <exprA> {

<statements>

} <inc>, until <id> == <exprB> ⇐⇒
is the inverse of

for <id> := <exprB>, un(<inc>) {

un(<statements>)

} until <id> == <exprA>

A for loop is a from loop
where the start condition al-
locates a variable and the
end condition deallocates
one. <inc> is usually a
mod-op like i += 1.

Note that the increment
statement has switched po-
sitions. Either way is
valid, and they have differ-
ent meanings.

If <inc> is above the body, it gets executed before the body; if it is below,
it gets executed after the body and before the test. The difference is just like
that between while and do-while loops.

By way of example, here is a for-loop that iterates through a list A and
operates on its elements.

for i := 0 {

A[i] *= 2

} i += 1, until i == A.length()

Note that this loop’s inverse is the following:

for i := A.length(), i -= 1 {

A[i] /= 2

} until i == 0

If we didn’t move the increment statement, we would have the following
code:

for i := A.length() {

A[i] /= 2

} i -= 1, until i == 0

which differs in meaning (in particular, it tries to access A[A.length()],
resulting in an error.)

9



if <exprA> {

<statements>

} => <exprB>

else {

<statements>

} ⇐⇒
is the inverse of

if <exprB> {

<statements>

} => <exprA>

else {

<statements>

}

Analogous to Janus’s if-
statement. The rocket sym-
bol => is used before the fi-
condition. The else is op-
tional.

Because the case where <exprA> == <exprB> comes up often (whenever the
code inside the if-statement doesn’t affect the expression), Arrow allows <=>

in place of => <exprB>, so you don’t have to write the same expression twice.
Then the if-statement’s inverse is itself.

10



do/undo {
<statements>

}
yielding {

<statements>

}

⇐⇒
is the inverse of

do/undo {
<statements>

}
yielding {

un(<statements>)

}

For two blocks of code A, B
in do/undo {A} yielding

{B}, do/undo executes A,
executes B, then executes
un(A).

Only the inner B block
needs to be inverted, since
the outer A blocks switch
and turn into one another
when inverted.

do/undo allows programmatic access to the inverses of statements that aren’t
wrapped in functions. The keyword “yielding” is used to suggest a pattern that
occurrs frequently in reversible computing: do some computation to get an
answer, then save the answer and undo the computation to get rid of the mess
(local variables or destructive mutations) we just made. For example, in order
to determine whether a number n is prime, you might write:

i := 1

from i := 1 {

i += 1

} until n % i == 0

and, after this code executes, n is prime iff i != n. Now you can do some-
thing with that information, such as copy it elsewhere or return it. But you
obviously don’t know what i is at program-writing time, so how are you sup-
posed to deallocate it?

The answer is to run the from-loop backwards to bring i back down to 1.
Note that then deallocation is automatic. So we use do/undo3.

do/undo {

i := 1

from i := 1 {

i += 1

} until n % i == 0

}

yielding {

if i != n {

// n is prime

} <=>

}

3This could be written manually, but as the loop gets more complicated, it’ll get harder
for the programmer to manually determine the inverse. Wrapping the loop in a function and
calling it is clunky and doesn’t work with local variables.

11



Variables: Arrow features a basic division among variables, into local and
main variables.

Main Variables: An Arrow program consists of any number of functions,
one of which must be named main. When the program is run forwards, main is
called; when it is run backwards, main is uncalled.

The main function must have one or more arguments. They look like this:

main(n := 3, x := [], greeting := "hello")

{

...

}

These may be though of as “arguments to main”, but they differ in meaning
from argv in C. These are the main variables. By placing them in the header
for main we indicate that we are interested in the values of these variables at the
end of the program. When you run an Arrow program, it prints out the values of
the main variables before execution and their values after. The program can be
seen as a transformation applied to these variables – the starting configuration
of main variables defines a “state” which will be mapped bijectively to another
“state”.

Local Variables: These are allocated and deallocated during the execution
of the program. No local variables exist at the beginning of the program and
none remain at the end of the program.

Functions: Janus procedures are exclusively pass-by-reference and have no
return statement. We consider the problems posed by each independently.

Pass-by-reference in a reversible context means that all of the arguments
to a procedure call f( ... ) must be variable names, and variable names
only. A procedure’s argument can’t include a literal like f(a, 1), or even an
expression as in f(a, b * 2).

A “traditional” pass-by-value function in an imperative languages works by
creating local variables to hold the values of its arguments. But consider what
would happen if we tried to simply drop those functions into our reversible
language:

f(A, n){

n += A[0]

A[0] -= n

}

main(list := [1, 2, 3]) {

f(A, 0)

}

This program will set the first item of list to 0 and then fail to reverse,
since the 1 is not being stored in a main variable. Another way to see this is to

12



observe that this program will take the lists [2, 2, 3] and [3, 2, 3] to the
same final state – [0, 2, 3]4. The problem is that n is a local variable that
we don’t deallocate, allowing us to leak data by transferring it to n.

But how could we deallocate n? That would mean we would have to know
its value by the end of the function. Presumably that value depends on what
it started out as, and the function can’t see that. If we wrote n == 1 at the
end, then the function would become specialized to these particular arguments,
which defeats the whole purpose of having a function.

So functions that create local variables are not reversible. But we would still
like to be able to use literals or expressions as function arguments: otherwise,
we’d have to create a variable, pass it in, and deallocate it just to do things like
rot encode(data, 128) or process payment(account, 10.00).

Arrow’s solution is to divide parameters and arguments into two types: ref
and const. A function header will specify one of the two for each, like this:

scoot(ref array, const i, ref trace) { ... }

ref means that a parameter is pass-by-reference, functioning identically to a
parameter for a Janus procedure. const means that the parameter is a constant
value supplied to the function. const is like pass-by-value except you can’t
modify const arguments inside the function – they’re constant. No local variable
is actually created, meaning it doesn’t have to be deallocated.

Functions are then called with an ampersand in front of the arguments which
are to be passed by reference. The ampersand is used as an analogy to C’s
reference-of operator. However, Arrow’s & is not an operator as such: it’s just
a marker that has no meaning outside of function calls. It can only be applied
to single variables, not expressions: the line scoot(&A, &i + 1, &T) would be
a syntax error. Our function would be called like:

scoot(&A, 2, &T)

or like:

scoot(&A, i, &T)

The return statement comprises two separate parts – stopping the flow of
execution, and setting a value for the function call to give back. The second is
no problem: Arrow’s result statement only sets up the return value, without
stopping execution. Its inverse is itself.

result <expr> ⇐⇒
is the inverse of

result <expr>

4There’s nothing special about the list here, or even the use of a list in general. Anything
mutable would have served.

13



Stopping the flow of execution is more problematic. Let’s give the name
“exit” to the statement that does this (without giving back a value). What is
the inverse of exit? It’s not a self-inverse, since executing A and then exiting
is not undone by exiting and then executing un(A) – we’d stop before we undid
anything. Instead, the inverse of an exit statement that tells you where to exit
the function should be an “enter” statement that tells you where to enter the
function. When we start executing the function, instead of starting at the top
we should start at the enter statement.

This is what Arrow does. Since multiple exit statements will lead to mul-
tiple enter statements, Arrow requires a condition be attached to each exit

statement. The exit only occurs if the condition is true. Furthermore, the con-
ditions are required to be disjoint. Then, when the function is inverted and
they become conditions on the enter statements, only one condition will ever
be true, and we can start execution from that point.

exit if <expr> ⇐⇒
is the inverse of

enter if <expr>

In order to illustrate a subtlety of this definition, let’s consider the following
function and its inverse.

f(ref x) {

exit if x >= 0

x *= -1

} ⇐⇒
is the inverse of

f(ref x) {

x /= -1

enter if x > 0

}

This is in fact x = |x| in disguise. Going forwards, it will flip the sign only
if x is negative. Going backwards, it will also only flip the sign if x is negative.
We’ve created something irreversible; where did we go wrong?

There is an implicit exit at the bottom of every function. When we have
no other exit statements, we can imagine it as exit if True without penalty,
but, since all the conditions must be disjoint, this can no longer be true as soon
as we have just one other exit statement.

Regardless, it still seems trivial to fill in the last condition. If there are n−1
other conditions, we can just OR them all together and negate the result. This
will be the one “missing” condition; in this example the implicit last statement
is exit if x < 0.

But now observe that this condition is never true at the point when the
statement is encountered! By that point, x was either positive to begin with
or it was negative and we just flipped it; either way, it can’t be negative. So
the implicit exit condition has failed, and it’s necessary for Arrow to throw an
error – in this case, a FailureToReturnException, unthinkable in any other
language. So this function is impossible to run, and reversiblity is preserved.

14



Methods: Some datatypes have methods – these act like Arrow functions
(they must have inverses) but are implemented at a lower level, in Python. Since
Python functions can’t be inverted, the inverses of methods must be hardcoded.

• Nums have the methods is int() and to str(), both of which are their
own inverses.

• Lists have the methods push(), pop(), peek(), empty(), and len() (re-
turns the length). push() and pop() are each other’s inverses, and every
other method is its own inverse.

• Strings have some new methods which are the inverses of operations we
often do on strings. For example, if a += b concatenates b onto the end
of a, then there must be an inverse operator a -= b which removes b from
the end of a. Since the use of this operator constitutes a kind of assertion
that b actually is on the end of a, Arrow throws an error if this is not the
case.

Strings have the methods len(), get(index) (returns the character at
that index, as a string), to int(), += and -=. These are all their own
inverses except for += and -=. In addition, to cover the case a = b + a,
strings have a left add(other) and a left del(other) method, which
append/remove the other string on the left. They are each other’s inverses.

• Booleans have no methods.

Future Work:

While Arrow is an improvement over Janus, it is still much more awkward and
less expressive than a “real” modern language like Java or Python. This can
be seen most readily by just starting to write a program in Arrow: often, one
thinks something will take five minutes until requirements like the second if-
condition emerge and necessitate spending hours instead. Even in the attached
example programs, which I chose to show off the language in various ways, there
are awkward work-arounds and boilerplate code.

I suspect that a language in which reversible computations can be expressed
just as naturally as irreversible ones exists, though it is probably even stranger
to our native (irreversible) way of thinking than Arrow. I think it will take a
lot more work to find; however, there are many areas in which I felt that Arrow
could clearly have been improved. Some improvements are more thought-out
than others.

On the design side:

• The pattern stack.push(i); i == stack.peek() for moving the local
variable i to the top of a stack (or string) occurs frequently. In general,
with reversibility a concept of “moving” data form one location to another
is needed, for example to deallocate local variables. Something like i =>

stack could be used; however, how do we know to use the push method

15



here? What would be a clean syntax? Could it work between two variables
as well, even if one isn’t going to be deallocated? What if you want to
apply a transformation on the data between points A and B (such as
turning it into a string?).

• Can Arrow support full OOP features? Some questions that would have
to be addressed: what is the inverse of creating an object (e.g. what is
the inverse of malloc? Is it free?)

• I/O. It’s clear that the inverse of x = input() is clearing the variable x.
What does this mean if input() is called without assigning to a variable,
like if it’s used as a const argument to a function? It seems like input

almost needs to create a variable. Should variables which are created be
condisered “main” variables, and displayed at the end of the run?

On the theoretical side, our syntax for exit and enter has an unexpected
consequence: it disallows traditional recursive functions. Consider the following
Arrow function, intended to compute the factorial of x and deposit it in acc,
which starts out with the value 1:

factorial(ref x, ref acc) {

exit if x == 0

acc *= x

x -= 1

factorial(&ref, &acc)

exit if ???

}

We need to provide an exit condition after the recursive call. Consider our
options: the impulse is to write x != 0, but this actually is never true at that
point in the code: by the time we’re removing frames from the stack, the answer
has already been computed and x is 0. Our condition should be x == 0, but
conditions must be disjoint, otherwise we wouldn’t know where to enter. So this
function cannot be returned from.

A possible solution comes from an unlikely source: tail-call optimization.
If we tail-recurse into factorial instead of calling it, we could eliminate the
need to come back to that stack frame and hence the need for an exit condition.
So we might have an exit into <function> if <cond> statement (inverse:
enter from <function> if <cond>) which 1) can only appear at the end of
the function and 2) exits and calls <function> simultaneously.

Then the following recursive factorial function works:

16



factorial(ref x, ref acc) {

enter from factorial(&ref, &acc) if acc != 1

enter if acc == 1

acc *= x

x -= 1

exit if x == 0

exit into factorial(&ref, &acc) if x != 0

}

Note that the dual-condition structure acc == 1, x != 0 ⇐⇒ acc != 1,

x == 0 was necessary. Many questions remain: can all recursive functions be
rewritten this way? What if enter from is used without a corresponding exit

into? How to specify constant arguments in enter from? (I’ve evaded the
problem with this function, since it only has reference arguments). If an exit

into lands at an enter from, do their conditions have to match? It seems like
this must be the case, so what happens if they don’t – runtime error, or do we
just not exit? Now we’re creating two “classes” of enter/exit statements – can
they interact with each other, or is it only allowed to enter at an enter from if
you left via an exit into and vice versa?

It seems that the most important territory to explore is just in writing pro-
grams. Almost every program out of the 19 I wrote pushed the theory in a
significant direction.

17



Arrow Example Programs:

This program calculates the prime factors of n and stores them in a list. In
reverse, it multiplies together all the prime factors to arrive back at n.

prime_factors(ref n, ref output){

from output.empty() {

i := 1

from (i == 1){

i += 1

} until n % i == 0

n /= i

output.push(i)

i == output.peek()

} until n == 1

}

main(

n := 10012,

output := []

){

prime_factors(&n, &output)

}

18



This program implements run-length encoding, like the Janus program given
earlier, except the Arrow program runs on strings. In reverse, it decompresses
a run-length-encoded string back to full length.

chunk_encode(ref chunk){

i := 0

char := chunk.get(0)

from i == 0 {

chunk.left_del(char)

i += 1

} until chunk.get(0) != char

chunk += i.to_str()

last_char := chunk.get(chunk.len()-1)

i == last_char.to_int()

last_char == chunk.get(chunk.len()-1)

chunk += char

char == chunk.get(chunk.len()-1)

}

main(data := "aaaaaabbbbccaaaaaabbaaaaaabbaaaaaaaacabbb"){

data += "$"

from data.get(data.len()-1) == "$" {

chunk_encode(&data)

} until data.get(0) == "$"

data.left_del("$")

}

19



This program bubblesorts a short list. Since sort is not reversible (it takes
many states to one) some additional output is needed – here it is in the form
of a “trace” that tracks the swaps that were done while sorting. They appear
in the list trace in the format [-1, A1, B1, A2, B2 ...] where the ith

swap exchanges elements Ai and Bi. To unsort, the program simply undoes the
swaps.

pass(ref array, ref trace){

for i := 0 {

if (array[i] > array[i+1]){

array[i] <=> array[i+1]

trace.push(i)

trace.push(i + 1)

} => trace.peek() == i + 1

} i += 1, until i == array.len() - 1

}

check(const array){

do/undo {

counter := 0

for i := 0 {

if array[i] < array[i+1] {

counter += 1

} <=>

} i += 1, until i == array.len() - 1

}

yielding {

result (counter == array.len() - 1)

}

}

sort(ref array, ref trace){

from trace.peek() == -1 {

pass(&array, &trace)

} until check(array)

}

main(

A := [3, 8, 7, 3, 2],

trace := [-1]

){

sort(&A, &trace)

}

20



References

[1] Greaves, Hilary, and Teruji Thomas. “On the CPT Theorem.” Studies in
History and Philosophy of Science Part B: Studies in History and Philosophy
of Modern Physics 45 (2014): 46-65. Web.

[2] Muehlhauser, Luke. “Mike Frank on Reversible Computing - Machine Intel-
ligence Research Institute.” MIRI. Machine Intelligence Research Institute,
31 Jan. 2014. Web. 07 Mar. 2015.

[3] Frank, Michael. “The Reversible and Quantum Computing Group
(Revcomp).” The Reversible and Quantum Computing Group (Revcomp).
University of Florida, 2003. Web. 07 Mar. 2015.

[4] Bennett, Charles H. “Notes on Landauer’s Principle, Reversible Computa-
tion, and Maxwell’s Demon.” Studies in History and Philosophy of Science
Part B: Studies in History and Philosophy of Modern Physics 34.3 (2003):
501-10. Web.

[5] Landauer, R. “Irreversibility and Heat Generation in the Computing Pro-
cess.” IBM Journal of Research and Development 5.3 (1961): 183-91. Web.

[6] Bennett, C. H. “Logical Reversibility of Computation.” IBM Journal of Re-
search and Development 17.6 (1973): 525-32. Web.

[7] Yokoyama, Tetsuo, Holger Axelson, and Robert Gluck. “Towards a Re-
versible Functional Language.” Reversible Computation Third International
Workshop, RC 2011, Gent, Belgium, July 4-5, 2011: Revised Papers. By
Alexis De Vos and Robert Wille. Berlin: SpringerLink, 2012. 14-29. Print.

21


	Arrow: A Modern Reversible Programming Language
	Repository Citation

	tmp.1590694753.pdf.3UKl2

