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Steiner Tree Games

Sam Rossin
Advisor: Kevin Woods

May 24, 2016

Abstract

Prize-collecting Steiner tree is a network design problem in which a utility provider lo-
cated at some position in a graph attempts to construct a network (subtree) of maximum
profit based on the value of the vertices in the graph and the costs of the edges. I con-
sider three network formation games where the players represent competing providers
attempting to build networks in the same market. These games seek to preserve the key
feature of Prize-Collecting Steiner tree, namely that players must each build a subtree
that attempts to include customers who are of high value or are easy to reach. I analyze
the price of anarchy and price of stability of each of these games.

1 Introduction

Network formation problems show up in a wide variety of contexts with a disparate set
of goals. In some of these instances it would be unreasonable to expect a single central
authority to have the power to enforce the formation of an optimal network. Therefore
we often study what happens when a network is formed by a large group of selfish agents,
and see how much worse the result is than a centrally enforced solution. To this end we
consider Nash Equilibria – states in which no player can improve by unilaterally changing
their strategy. In particular we consider the Price of Anarchy [6] and Price of Stability [8,
14], which are respectively the ratios of the values of the worst and best Nash Equilibria to
the optimal value. It has been argued [14] that the Price of Anarchy is a good measure of the
worst that could happen with no regulation, and the Price of Stability is a measure of what
happens when some third party can suggest a solution to the selfish agents. There are three
broad categories of network formation games that have been widely studied: facility location
games [7, 9], in which providers attempt to place facilities to maximize the customers they
can serve, social network formation games [12], in which individuals attempt to expand
their own network reach, and classic network design games [8, 14, 15, 17], in which each
player is attempting to connect a specific pair of points in a shared network.

One important network formation problem is Prize-Collecting Steiner Tree [2]. In this
problem a single utility provider is attempting to create a network connecting customers to
their service. Each potential user has an associated profit, and each edge in the network
has a cost, so the provider must decide which users to include based on their location and
value. It is natural to ask how this sort of problem would behave in a decentralized setting.
However, none of the categories of network formation games really capture the key idea of
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this problem, namely that a decision must be made about whether to add a potential user
to a network based on their value and how difficult it is to add them. With this in mind, I
consider a setup in which there are multiple utility providers based at different points in the
graph. I consider three variations of this setup based on how competing providers interact
with each other.

2 Backgound

In this section I discuss important background information and related work. In particular,
I describe Prize-Collecting Steiner tree in detail, give some background on algorithmic game
theory, and explore some games that are structure related to the problem at hand or have
features that are needed later.

2.1 Prize-Collecting Steiner Tree

Prize-collecting Steiner Tree (PCST) is a classic NP-complete network formation problem,
first defined in this form by Bienstock et al. a[2]. An instance of PCST is a graph G = (V,E)
where each edge e has a cost ce and each vertex v has an associate profit pv. One vertex r
is specially designated as the root. The goal of the problem is to form a subtree, or Steiner
Tree, T = (VT , ET ) rooted at r that maximizes the total profit:∑

v∈VT

pv −
∑
e∈ET

ce

This problem is usually thought of in terms of a utility provider installing a network, where
vertices represent potential customers and edges represent location for lines to be installed.
The profit of a vertex is the value to the provider of having that vertex as a customer, and
the cost of an edge represents how costly (or difficult) it is to install a line there. There is
also another more general version of the problem, prize-collecting Steiner forest (PCSF), in
which the vertices no longer have an associated profit, but instead there are n source sink
pairs, each with an associated profit pi, and we want to choose a subgraph that maximizes
the sum of the profits of the pairs we connect, minus the edge costs. Clearly PCST is a
special case of PCSF in which all sources are a single vertex r and every other vertex is a
sink.

There are several important approximation results for this problem. The simplest is a
deterministic rounding algorithm from the same paper that originally defined the problem
[2]. The most used result is a general primal-dual algorithm due to Goemans and Williamson
which gives a 2-approximation for PSCT [3]. Finally, there is a somewhat more recent result
from Archer et al. that uses a modification of the Goemans-Williamson algorithm to give
a (2-ε)-approximation [16].

2.2 Algorithmic Game Theory

Sometimes there is an optimization problem in which it is unreasonable to assume that we
can just enact the optimal solution, as there are various selfish agents involved, each trying
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to maximize their own personal utility. In this case, it is often interesting to see how much
worse the solutions arising from this selfish behavior can be. To do this, we will model the
problem as a game. A game consists of n players, where each player i has a set of possible
strategies Ai. We let A = A1×, ...,×An be the set of possible strategy vectors. Given a
strategy vector S = (S1, ..., Sn) ∈ A, we designate the utility of player i by ui(S). Finally,
we designate the social utility, the thing we are trying to optimize, as u(S).

We say that a strategy vector S is a Pure Nash Equilibrium if no player can improve his
utility by unilaterally deviating from S. That is, if we let S′ be a strategy vector that differs
only in the strategy of some player i (we write S′ = (S1, ..., S

′
i, ..., Sn) or S′ = (S′i, S−i)), then

we will have ui(S) ≥ ui(S′). Note that there is no guarantee that a Pure Nash Equilibrium
exists. Similarly, we define a Strong Nash Equilibrium to be a solution in which there is
no coalition of players C ⊆ {1, ..., n} such that there is a solution S′ = (S′C , S−C) in which
only the members of C deviate from S, no player in C has worse utility in S′, and at least
one player in C has strictly better utility.

Finally, we use Nash Equilibria to determine the cost of selfishness. That is, we define the
Price of Anarchy [6] to be the ratio of the social utility of the worst Nash Equilibrium to the

social utility of the optimal solution. That is, u(S)
u(S∗) where S∗ is the solution that maximizes

the social utility, and S is the Nash Equilibrium that minimizes the social utility. The Price
of Anarchy represents the worst effect selfish players can possibly have. Similarly we define
the Price of Stability [8, 14] to be the ratio of the best Nash Equilibrium to the optimal.
This represents how bad it can be for players to be selfish, if we allow some third party to
suggest a solution.

2.3 Congestion Games and Potential Games

One general game type that occurs repeatedly is the class of congestion games, first described
by Rosenthal [1]. A congestion game consists of n players and a set of resources R. Each
player has a finite set of strategies Ai ⊆ 2R where each strategy Si ∈ Ai is a subset of the
resources. Given a strategy vector S = (S1, ..., Sn), let xr = |{i : e ∈ Si}| be the number of
players using resource r. Then each resource r has a cost fr(xr) which is a function only of
xr. The cost to player i of a particular strategy vector S is ci(S) =

∑
r∈Si

fr(xr). Given a
congestion game, we define Rosenthal’s potential function Φ as follows:

Φ(S) =
∑
r∈R

xr∑
x=1

fe(x)

Rosenthal showed [1] that if a single player deviates in strategy, the change in their personal
cost will be reflected exactly in the potential function. That is, given a strategy vector S′ =
(S1, ..., S

′
i, ..., Sn) that differs from S only in the strategy of player i, then we will have Φ(S)−

Φ(S′) = ci(S)−ci(S′). As a result, congestion games always have a pure Nash Equilibrium,
as the strategy S∗ that maximizes Φ necessarily has no improving deviations. Note that this
result holds even if the cost functions fr are negative, so it works for profit maximization
games as well as cost minimization games. A related class of game, potential games, defined
by Monderer and Shapley [5], arises when we just require a potential function. That is, a
potential game is any game in which there exists a potential function Φ with the property
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(described above) that if 2 strategies differ in the strategy of player i, then the change in
the personal utility of player i is reflected in Φ. Monderer and Shapley [5] showed that
any potential game P is isomorphic to a congestion game, in the sense that there exists a
congestion game whose strategy set is bijective with P in such a way that the corresponding
strategy vectors have the same utility for all players. This isomorphism, however, is often not
particularly useful in practice as it uses an exponential number of resources. Additionally,
Monderer and Shapley [5] showed that the potential function Φ is unique up to an additive
constant for any given potential game, and as a result it is referred to as the potential
function.

It turns out that potential games and congestion games show up quite often when dealing
with network formation. We will illustrate this with an example that is important as
background for the work here. Shapley network design games, defined by Anshelevich et al.
[14] consist of a graph with edge costs ce. There are k players, each with a source-sink pair
(si, ti) that it wishes to connect using an si − ti path. The cost of each edge is divided up
among the players that use it. That is, given a vector of strategies (S1, ..., Sk), where Si is
an si − ti path, then the cost to player i is:

Ci(S1, ..., Sk) =
∑
e∈Si

ce
|{j : e ∈ Sj}|

This game is a congestion game, since strategies are subsets of the edges, the cost functions
are just the sum of the costs of the edges chosen, and the costs of the edges only depend on
the number of players using that edge. Anshelevich et al. [14] use the potential function to
show that the Price of Stability is at most Hk, the harmonic number in k, and they give an
example to show that if edges are directed this bound is tight. Further, they argued that
the Price of Stability is a more important number than the Price of Anarchy in the case
of network design games, since there will often be a third party to suggest the best Nash
Equilibrium to all players. In the case with undirected edges, Disser et al. were able to
reduce the Hk bound on the Price of Stability slightly [18], and in the more restricted case
of Undirected Broadcast Games (in which all source vertices are the same, and every other
node is a sink) Bilò et al. [17] showed that the Price of Stability is constant.

2.4 Competitive Facility Location

In this section I describe another important related problem, Competitive Facility Location.
This particular version was described by Adrian Vetta [7]. We are given a complete bipartite
graph G = (W t U,E), in which W represents a set of possible facility locations, and U
represents a set of users or markets. Each market u ∈ U has an associated value πu, and
each location v ∈W has a fixed cost cv for which a facility can be built at location v. Each
edge vu has an associated marginal cost λvu that represents the cost to service market u
from location v. Finally there are n players that each get to place a single facility at some
location in W (or they may choose the empty strategy of not placing their facility at all).

Given a strategy vector S = (v1, ..., vn) representing choices of locations for the n players,
we calculate player utilities as follows. Each player must pay the fixed cost of their location
vi. Then each market u ∈ U , is serviced by the player that can afford to bid the lowest,
that is, the player i such that λviu is minimized. Player i then achieves a value pu from
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market u equal to the cost that the second lowest bidder would pay (since if they tried to
charge more than that, the second lowest bidder could undercut them) , or πu if there is
no other bidder. They must then pay the marginal cost to service λviu, so they achieve
a profit of pu − λviu. The social utility is calculated as the sum of the players’ personal
utilities, plus

∑
u∈U (πu−pu) which is the profit achieved by the users (not the players) due

to competition between the players.

Vetta [7] showed that this game always has a Pure Nash Equilibrium, and that the price
of anarchy is 2, up to an additive constant that depends on the fixed costs (so in the case
where the fixed costs are 0, the price of anarchy is really 2).

2.5 Other Related Work

There are some other methods that have been used in the past to turn prize-collecting
Steiner tree into a game. One approach, used for example by Gupta et al. [13] is to let the
actual network be constructed by a central authority, and have the players be the customers,
whose only power is to report what their utility for being connected to the network is. The
game, then, is to design a cost-sharing method that incentives users to be willing to pay as
close to their true value as possible. Another approach, considered by Kuipers et al. [4] is
to consider a cooperative game in which players are trying to build a network together, and
one must then find the best way to distribute the profits to incentivize players to build an
optimal network.

An additional type of related game, mentioned in the introduction, is the social network
formation type of game, a survey of which was done by Jackson [12]. In these games the
players are vertices of a complete graph, and each player wishes to form a social network.
Various techniques are used to model the formation of network links, for example, in the
simplest model all players can declare who they would like links with at the same time
and then all reciprocating pairs are granted links. Then there is a valuation function
which decides how much the resulting network is worth, as well as an allocation rule which
determines how the value is divided among the players.

Another problem with many features similar to our games is connected facility location. In
this problem, as in the standard facility location problem, we want to place some number of
facilities on a bipartite graph in order to maximize the value of customers served. Connected
facility location adds an additional constraint that the facilities must be connected by a
Steiner Tree. This leads to solutions that look fairly similar to our problem, though the
bipartite graph causes the details to be quite different in the end. This problem has mostly
been studied from the perspective of approximation algorithms (see for example Swamy and
Kumar [11]), but Leonardi and Schäfer [10] also studied cost-sharing methods, as mentioned
above in relation to prize-collecting Steiner tree.

3 Steiner Tree Games

Network formation games, as studied, generally fall into three categories. Facility location
games focus on the perspective of the utility providers by using a bipartite graph in which
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they have to locate facilities. Once facilities are located, the value obtained is determined
automatically. Traditional network formation games focus on individuals located at each
vertex of a complete graph that wish to connect with each other. Selfish routing games
focus on the users of a utility network that want to be connected and must figure out how
to do it most cheaply. None of these approaches, however, capture the essence of the way
a network is formed in Prize Collecting Steiner tree: that is, the idea that the network
provider must decide which users it values enough to connect to the network, in a way that
might depend on where they are in relation to each other.

With this in mind I consider games in which n players representing network providers are
building networks on an undirected graph G = (V,E). Each player i is rooted at some
vertex ri ∈ V and wants to build a Steiner tree of the greatest value rooted at ri. As in
Prize Collecting Steiner Tree, each edge e ∈ E has an associated cost ce and each vertex
v ∈ V has an associated profit pv. Simply applying the rules for Prize Collecting Steiner
Tree to each player results in no interaction so we must consider ways to set the game up
that result in interesting outcomes. In the following sections three games are analyzed that
use different strategy sets and utility functions based on this premise.

Note that I will assume without loss of generality that each root node ri has cost cri = 0,
and that no players share a root node – that is for all i 6= j we have ri 6= rj . We can do this
since if one of these assumptions is violated we can add a new vertex r′i with 0 profit and an
edge (r′i, ri) with 0 cost, and then move the root node for player i to r′i. One can check that
this doesn’t affect the results that follow. Additionally, all of the following results still hold
if we allow the edge costs to depend on the player (as is often done in competitive facility
location games), so for each edge e we have a cost function ce(i) that depends on the player.
However, necessary modifications to the proofs to make this work are very small, and not
worth the additional notational complexity, so we will stick with symmetrical edge costs.

Finally, it should be noted that all of the following games are profit maximization games
with utility functions that can be positive or negative. Since the empty set is always a valid
solution, no optimal solution or Nash Equilibrium will have negative values for any utility
function (this is not completely trivial, but follows directly from the definitions of the utility
functions). However, it is possible for the optimal social utility of an instance to be 0, in
which case we cannot calculate the Price of Anarchy or Price of Stability. Therefore, all
PoA and PoS results below assume nonzero optimal value.

4 Equal Division of Shared Resources

This first game has the simplest basic idea. Players each construct their desired Steiner
tree, and then must pay in full for each edge they used and get the full value of any vertex
that they service alone. However, if multiple players choose the same vertex, they must
split its value evenly between them. The idea behind this game is that vertices represent
collections of customers (or some other dividable resource) and if multiple players service
the same vertex, the customers will on average split their business between the providers.

More formally, let G be a graph with the properties described above. A strategy for player
i is a subtree Si = (Vi, Ei) rooted at ri. Given a vector of players’ strategies S = (S1, ..., Sn)
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let xv = |{j : xv ∈ Vj}| be the number of players j that use vertex v. Then the personal
utility of player i is:

ui(S) =
∑
v∈Vi

pv
xv
−

∑
e∈Ei

ce

We will consider the social utility to be just the sum of the individual utilities of all the
players:

u(S) =
n∑

i=1

ui(S) =
∑

v:xv≥1

pv −
n∑

i=1

∑
e∈Ei

ce

Theorem 4.1. This game always has a Pure Nash Equilibrium.

Proof. The game can be restated as a congestion game as follows. Lets R = V t E be the
set of resources, and let the value of a resource r ∈ R be a function of the number of players
using the resource, xr:

vr(xr) =

{
pr
xr

if r ∈ V
−cr if r ∈ E

Then each strategy Si for player i is a subset of R, and ui(s) is just the sum of the values
of the resources used:

ui(s) =
∑
v∈Vi

pv
xv
−

∑
e∈Ei

ce =
∑
r∈Si

vr(xr)

Thus our game is a congestion game, and therefore always has a Pure Nash Equillibrium
[1].

Theorem 4.2. The game, however, has arbitrarily large Price of Stability.

Figure 1: A Counterexample.

Proof. Observe the graph in Figure 1. Here the optimal solution is to have player 1 take
the central node, for a social utility of 1 + ε. However, the only Nash equillibrium has both
players using this node, for a social utility of 2ε. So the PoS is 1+ε

ε which goes to infinity
as ε goes to 0.

It may be possible to modify this game slightly into a game with better properties by giving
a bonus to the social utility based on the number of players serving a vertex. This bonus
would reflect the value that users gain from having a choice of providers. The most natural
way to do this would be to add xv−1

xv
pv to the social utility for each vertex v. This is natural
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as it is the difference between the value of v and the actual value achieved by each of the
players serving v. If we add this term, the social utility becomes:

u(S) =
∑

v:xv≥1

pv −
n∑

i=1

∑
e∈Ei

ce +
∑

v:xv≥1

xv − 1

xv
pv =

∑
v:xv≥1

(2pv −
pv
xv

)−
n∑

i=1

∑
e∈Ei

ce

Conjecture 4.1. The Price of Anarchy of this version is 2.

5 Mafia

Is this second game, we simply modify what happens in the case where multiple players
use the same vertex. Players still must pay the full cost of any edges they use, and still
achieve the full reward of any vertices they service alone. However, instead of dividing up
the cost of a shared vertex evenly, all players simply receive 0 reward for a shared vertex.
This describes a case where competition has the potential to completely remove all value,
and should therefore be avoided at all costs. We then add an additional component to the
social utility (in a way that is commonly done in competitive facility location): since it is
possible for there to be extra profit at a vertex unclaimed by the service providers, this
profit is going the utility of the customers, and therefore should still be added to the social
utility.

As before, we are given a graph G = (V,E) where each edge e ∈ E has an associated
cost ce and each vertex v ∈ V has an associated profit pv. Again we have n players with
root nodes ri whose strategies Si = (Vi, Ei) are subtrees rooted at ri. Given a strategy set
S = (S1, ..., Sn) let xv be the number of players using v, as before, and let Xi ⊆ Vi = {v ∈
Vi : xv = 1} be the set of vertices only used by player i. Then the utility of player i is:

ui(S) =
∑
v∈Xi

pv −
∑
e∈Ei

ce

Unlike in the previous game, it is now possible for some of the profit from some vertex to
be awarded to none of the players. In this case, this excess profit is counted as value for
the consumer, and therefore is still a part of the social utility. This means that any vertex
that is serviced will have its full value included in the social utility function, so the social
utility function isn’t merely the sum of the utilities for all the players. Instead it is:

u(S) =
∑

v:xv≥2

pv +
n∑

i=1

ui(S) =
∑

v:xv≥1

pv −
n∑

i=1

∑
e∈Ei

ce

Note that this game still always has a Pure Nash Equillibrium, as the same proof can be
applied.

Lemma 5.1. u(S) is an exact potential function for this game.

Proof. As with the previous game, this game is a potential game if we let R = V t E be
the set of resources with value functions:
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vr(xr) =


pr if r ∈ V, xr = 1

0 if r ∈ V, xr > 1

−cr if r ∈ E

Then Rosenthal’s potential function is:

∑
r∈R

xr∑
x=1

vr(x) =
∑

v:xv≥1

pv −
∑
e∈E

xe∑
i=1

ce

But the second sum here counts each edge used by each player exactly once, so it can be
rearranged into: ∑

v:xv≥1

pv −
n∑

i=1

∑
e∈Ei

ce

Which is exactly u(S).

Theorem 5.2. This game has Price of Stability 1.

Proof. Let S∗ be a social optimal, that is let S∗ be a strategy set that maximizes u(S).
Then, since u(S) is an exact potential function by Lemma 5.1, S∗ is also a Pure Nash
Equillibrium. Therefore, the social optimal is always a Pure Nash Equilibrium, so we have
a price of stability of 1.

Recall that there is a stronger type of equilibrium than a Pure Nash Equilibrium, namely
a Strong Nash Equilibrium. A strategy set S is a Strong Nash Equilibrium if there is
no coalition C such that there is some deviation (S′C , S−C) in which only the members of
C deviate, such that no member of C has decreased utility, and at least one member has
strictly increased utility. Clearly this is a much stabler situation, so it is desirable if possible.

Theorem 5.3. There is always a Strong Nash Equilibrium and the price of stability is still
1 among Strong Nash Equilibria.

Proof. Let S∗ be an optimal strategy set. Then, without loss of generality, we can assume
that no vertex is used by more than 1 player in S∗. To see why, suppose we have an optimal
solution S in which there is some vertex v that is used by multiple players. Then we can
modify S as follows. We choose some player i such that v ∈ Vi and remove v from all other
players’ strategies. If this results in some player j having a disconnected graph, we then
add all vertices and edges from from Sj that are no longer connected to rj to Si (unless the
addition of an edge creates a cycle in Si, in which case we just ignore that edge). We then
repeat this process until no vertex is used by multiple players. Note that this process can
only increase the social utility: no vertices are removed from S, and no edges are added.

Now observe that for any strategy S we have
∑n

i=1 ui(S) ≤
∑

v:xv≥2 pv−
∑n

i=1 ui(S) = u(S).
Note further that if xv ≤ 1 for all v ∈ V then we have equality. Therefore, we have equality
in the case of S∗. Now suppose there is some coalition C with some deviation S′C such that
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no player in C is worse off as a result of the deviation, and at least one player is strictly
better off. In this case, we have:∑

i∈C
ui(S

∗) ≤
∑
i∈C

ui(S
′
C , S

∗
−C)

But since the sum of the personal utilities in S∗ is equal to the social utility, the sum of the
social utilities in (S′C , S

∗
−C) cannot be greater than it is in S∗ (since this is a lower bound

for the social value, and S∗ is optimal). Therefore some other player must have his social
value decreased to compensate. But the only way for a non-deviating player to have his
utility decrease is if someone takes one of his vertices. This decrease, however, does not
effect the social utility (since the vertex is still used), so the increase in personal utility in
C will result in an increase in social utility. That is u(S′C , S

∗
−C) > u(S∗), which contradicts

the fact that S∗ is optimal. So S∗ is a strong Nash equilibrium, which proves the claim.

Theorem 5.4. This game has arbitrarily large Price of Anarchy, even among Strong Nash
Equillibria.

Figure 2: A Counterexample.

Proof. Observe the graph in Figure 2. The optimal solution here is for player 2 to take the
middle vertex, for a total social value of 1+ε. This is, of course, a Nash Equilibrium (in fact
it is a strong Nash). However, there is another strong Nash Equilibrium, in which player
1 takes the middle vertex for a social value of ε. In this case no player has an improving
deviation, and additionally player 1 will not be willing to deviate to optimal in a coalition
with player 2, since he loses his current personal utility of ε. So the price of anarchy in this
case is 1+ε

ε , which is unbounded.

6 Competition

In this third game each player will again pick a starting subtree rooted at their root node.
However players will then try to connect any nodes directly adjacent to their starting tree.
Each node will only be serviced by one player, the player that can afford to charge the least
for it (based on the cost of the connecting edge, or 0 if it is in the starting tree), and the
value they can get from the node will be the price of the second lowest bidder.

More precisely, we again have a graph G = (V,E) where each edge e ∈ E has an associated
cost ce and each vertex v ∈ V has an associated profit pv. Again we have n players with
root nodes ri. Player i picks a base tree, Si = (Vi, Ei) rooted at ri. Now consider some
strategy S = (S1, ..., Sn). For each vertex v, let Bv be the set of players i such that v ∈ Vi
or v is adjacent to some w ∈ Vi. For each player i ∈ Bv, let γi,v be the value of the cheapest
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edge (call it ei,v) connecting v to some vertex in Vi, or 0 if v ∈ Vi. Let B∗v = arg mini{γi,v}
be the player who bid the lowest on vertex v (ties are broken arbitrarily, as in the case of a
tie the winner gets exactly 0 profit out of the vertex anyway), and let πv = minj 6=i{γj,v, pv}
be the value profit that the winner gets. Finally let Γi = {v : B∗v = i} be the set of vertices
that player i is the winner of, and let ηi = {ei,v : v ∈ Γi} be the set of edges used to connect
these vertices to Si. Then the utility for player i is:

ui(S) =
∑
v∈Γi

(πv − γi,v)−
∑
e∈Ei

ce

This can also be thought of in a slightly different way. If we let Ŝi = (V̂i = Vi ∪ Γi, Êi =
Ei ∪ ηi) be the augmented subtree resulting from adding all the vertices that player i won
the bid on to the base tree, then the utility for player i becomes:

ui(S) =
∑
v∈V̂i

πv −
∑
e∈Êi

ce

In this game, we again note that it is possible for there to be some profit for the users at the
nodes. So again when calculating the social utility, we include the full value of any vertices
that are in any players subtree. That is, if we let xv be the number of players i with vertex
v in Ŝi, we have a social utility function that is basically the same as the previous game:

u(S) =
∑

v:xv≥1

pv −
n∑

i=1

∑
e∈Êi

ce

Lemma 6.1. This game is a potential game, with potential function u(S).

I will delay this proof to the appendix as it is a bit messy. The idea is to consider strategy
vectors S and S′ that differ only in the strategy of player i. One can then divide up the
change in utility of player i into edges gained and lost, vertices gained and lost that no
other player was bidding on, and vertices gained and lost in which player i was competing
with another player. It is then possible to see that these categories together exactly make
up the change in u(S).

Theorem 6.2. This game always has a Nash equilibrium and has Price of Stability 1.

Proof. By Rosenthal, all potential games have a Pure Nash Equilibrium [1].

Let S∗ be a social optimal, that is let S∗ be a strategy set that maximizes u(S). Then, since
u(S) is an exact potential function by Lemma 6.1, S∗ is also a Pure Nash Equillibrium.
Therefore, the social optimal is always a Pure Nash Equilibrium, so we have a price of
stability of 1.

Theorem 6.3. It has arbitrarily large PoA.

Proof. Observe the graph in Figure 3 (unlabeled edges cost 0). In this graph the social
optimal occurs if player takes the left half of the graph and player 2 takes the right half for
a total social utility of 2 + 2ε. However, if player 1 instead takes the vertices necessary to
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Figure 3: A Counterexample.

connect to the top right, and player 2 connects to the top left, we are left with a total value
of 2ε, but the solution is still a Pure Nash Equilibrium. Thus the price of anarchy is 1+ε

ε
which is unbounded.

7 Conclusions and Future Directions

These Steiner Tree formation models often seem to have a very wide spectrum of Equil-
libria, with the best case being actually optimal and the worst case arbitrarily bad. As a
consequence, one good direction for follow up will be to continue tweaking the models to
see if a more stable situation arises. The first step in this regard is to settle the issue of
Conjecture 4.1, which if true would result in a fairly promising model.

Since prize-collecting steiner tree is a NP-complete problem, all of these games suffer from
the issue that players often can’t reasonably be expected to compute what their best strate-
gies really are. Therefore, another future direction would be to examine what happens if
players can only use an α-approximation to determine the what strategy they use, or if
players can only use strategies that are restricted to a smaller area of the graph (in which
computation is more feasible).

Finally, it would potentially also be interesting to study the convergence time of the Nash
Dynamics. That is, if players start from an arbitrary solution and take turns deviating to a
better strategy, how long does it take to converge to a Nash Equilibrium? As the answer to
this is probably exponential, one could also ask the same with slightly relaxed parameters
by using approximate equilibria instead.
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A Appendix

Here is a proof of Lemma 6.1.

Proof. Let S = (S1, ..., Sn) be a strategy vector and let S′ = (S1, ..., S
′
i, ..., Sn) be strategy

vector that differs only in the strategy of player i. Also, denote by x′v and π′v the number

of players using v and the profit of v . Now consider Ŝi and Ŝ′i. We can characterize the
difference between these trees as follow: some edges have been added or removed, and some
vertices have been added or removed. Further, we can divide the vertices added or removed
into two catagories: either player i is the only player bidding on them, or at least one other
player has bid on them. That is we define the following sets:

E+ = {e ∈ Ê′i : e /∈ Êi}, E− = {e ∈ Êi : e /∈ Ê′i}

N+ = {v ∈ V̂ ′i : v /∈ V̂i, xv = 0}, N− = {v ∈ V̂i : v /∈ V̂ ′i , xv = 1}

C+ = {v ∈ V̂ ′i : v /∈ V̂i, xv > 0}, C− = {v ∈ V̂i : v /∈ V̂ ′i , xv > 1}

Then we can express the change in the personal utility of player i as follows, by canceling
the edges and vertices that appear in both strategies, and grouping what remains. Note that
we can use pv instead of πv in the middle terms since by definition there is no competition:

ui(S)− ui(S′) =
∑
v∈V̂i

πv −
∑
e∈Êi

ce −
∑
v∈V̂ ′i

πv +
∑
e∈Ê′i

ce

=
∑
e∈E−

ce −
∑
e∈E+

ce +
∑
v∈N+

pv −
∑

v∈N−
pv +

∑
v∈C+

π′v −
∑
v∈C−

πv

Now consider the change in the social utility. Note that every change in edges used by player
i will effect the social utility directly. Also any vertex that i had to himself and no longer is
serving will now have no service, so its value will be lost. Similarly, any unused vertex that
player i adds to the network will be added to the social utility. However, any vertex that
was serviced by another player in S will still be serviced by someone, so its social value will
remain unchanged (since any serviced vertex contributes its full value). The only other way
that the social value can change will be if other players gain or lose edges. To track these
changes we define two more sets:

F+ = {e ∈ E : e ∈ Ê′j , e /∈ Êj some j 6= i}

F− = {e ∈ E : e ∈ Êj , e /∈ Ê′j some j 6= i}

We can then express the change in the social utility as follows, again by canceling terms
that appear in positive and negative and then grouping using the sets we have defined here:

u(S)− u(S′) =
∑

v:xv≥1

pv −
n∑

i=1

∑
e∈Êi

ce −
∑

v:x′v≥1

pv +

n∑
i=1

∑
e∈Ê′i

ce

=
∑
e∈E−

ce −
∑
e∈E+

ce +
∑
v∈N+

pv −
∑

v∈N−
pv −

∑
e∈F+

ce +
∑
e∈F−

ce
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Now consider some e ∈ F+. The only way for a nondeviating j player to gain an edge is as
the result of winning a vertex that player i had previously outbid them on. Therefore there
is some corresponding v ∈ C−, a vertex that player i is no longer the winner of. But in
order for j to now be the winner of v, they must have been the second lowest bidder before,
so player i must have had exactly gotten exactly the value of player j’s bid out of vertex v.
That is, we must have πv = ce. Note further that for every vertex v ∈ C− there must be
some corresponding edge in F+ with this property. Therefore we have:∑

v∈C−
πv =

∑
e∈F+

ce

Similarly, the only way to lose an edge is to be outbid by player i, resulting in player i
gaining value exactly equal to the cost of that edge. Therefore, we can see that for each
edge e ∈ F− there is some vertex v ∈ C+ such that ce = π′v, and vice versa. So we also
have: ∑

v∈C+

πv =
∑
e∈F−

ce

Thus, substituting, we get:

u(S)− u(S′) =
∑
e∈E−

ce −
∑
e∈E+

ce +
∑
v∈N+

pv −
∑

v∈N−
pv +

∑
v∈C+

π′v −
∑
v∈C−

πv = ui(S)− ui(S′)

So u(S) is an exact potential function.
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