
Oberlin Oberlin

Digital Commons at Oberlin Digital Commons at Oberlin

Honors Papers Student Work

2016

Drawing DNA Sequence Networks Drawing DNA Sequence Networks

Julia Olivieri
Oberlin College

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors

 Part of the Mathematics Commons

Repository Citation Repository Citation
Olivieri, Julia, "Drawing DNA Sequence Networks" (2016). Honors Papers. 239.
https://digitalcommons.oberlin.edu/honors/239

This Thesis is brought to you for free and open access by the Student Work at Digital Commons at Oberlin. It has
been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at Oberlin. For
more information, please contact megan.mitchell@oberlin.edu.

https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/239?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu

Drawing DNA Sequence Networks

Julia Olivieri

June 21, 2016

Abstract

We explore methods for drawing a graph of DNA sequences on a digital canvas such that

the Euclidean distances between sequences on the canvas suggest the distances between the

sequences as calculated from pairwise sequence alignment. We use data from three plant taxa,

the genus Castilleja as well as the families Caryophyllaceae and Cactaceae, to test our methods.

We discuss different possible measures of the cost of a drawing, and analyze heuristic approaches

to the problem including random assignment, greedy assignment, the iterated hill-climber, and

simulated annealing. We find that our hill-climbing method tends to return superior drawings.

Our simulated annealing method also returns drawings with low costs, but in much less time

than the hill-climbing method for large datasets.

1 Introduction

1.1 Why visualize DNA sequence similarity?

Today we are facing a huge influx of newly sequenced DNA available to the public for
analysis. This has been instrumental in many recent biological advances, from creating
flu vaccines to cloning sheep. One particularly fascinating application is the use of DNA
sequences to infer evolutionary histories of organisms, including how recently different
species diverged from a common ancestor.

These relationships are usually inferred by gathering DNA sequences for the groups in ques-
tion and determining the most likely chain of events that could give rise to the sequences,
creating a phylogeny. Then the phylogeny is displayed with a bifurcating phylogenetic
tree.

Phylogenetic trees provide useful information about relationships among sister groups, but
it would be valuable to have other strategies for portraying connections among sequences.

1

For one thing, phylogenetic trees far from portray the whole story. True trees of life often
aren’t strictly bifurcating: events such as hybridization and horizontal gene transfer can
cause the true relationships to be more net-like. Also, finding alternate ways of portray-
ing connections among DNA sequences visually could encourage new perspectives on the
data.

There have been some studies that analyze population graphs of species and some that
attempt to portray individual DNA sequences visually [1, 2]. However, we have not found
any research attempting to graphically represent DNA sequence networks using the problem
construction we are investigating here. We will explore different ways of representing DNA
sequences on a canvas in a way that suggests relative differences among the DNA sequences.
With so much new information, new ways to process and understand it are important.

1.2 Data sets

We choose three plant groups to use as case studies. Plants often have more entangled
evolutionary histories than animals due to the rampancy of genome duplications and hy-
bridization between taxa.

Castilleja

As botanist Harold William Rickett put it, “The genus Castilleia1 is one of those that
make botanists wish they had embraced some easy branch of science such as theoretical
physics” [6]. It is in the Orobanchaceae family, which includes mostly herbaceous parasitic
plants. This family is the largest and most diverse of all parasitic angiosperms (flowering
plants), so understanding its phylogeny could throw light on which factors made it so
successful [3]. Also, because the evolutionary history of Castilleja is so convoluted we
may benefit from alternate methods of analysis to provide us with a clearer picture of
its ancestral relationships. We have 19 sequences in our Castilleja dataset. See [3] for a
phylogenetic tree.

Caryophyllales

This plant order accounts for 6% of angiosperm diversity, with about 11510 species across
34 families. This order originated between 67 and 121 million years ago, and contains
species that span all seven continents and all terrestrial ecosystems. The amazing diversity
of plants in this order makes it fascinating to study their phylogenetic history [7].

We chose two families from this plant order to include as datasets, Caryophyllaceae and
and Cactaceae. Caryophyllaceae contains mostly small herbaceous plants which have com-
plex morphological differences, making it difficult to determine the relationships between

1alternative spelling, genus names are italicized

2

them [4]. We have 16 sequences in our Caryophyllaceae dataset. We also chose the cactus
family, which has between 1500 and 1800 species. Because many cacti need to survive under
similar environmental pressures they can end up displaying common features that may not
be related to shared genetic history [5]. We have 82 sequences in our cactus dataset. Both
of these groups have complicated phylogenetic histories, so visualizing their relationships
in a different way could help us understand them better. See [4] for a Caryophyllaceae
phylogenetic tree and [5] for a Cactaceae phylogenetic tree.

1.3 Method for comparing sequences

Now that we have our datasets we need some way of accessing their DNA sequences and
comparing them. There is a very large searchable database of DNA sequences on the
website of the National Center for Biotechnology Information [8]. We found a subset of
the exact sequences used to create the phylogenies in Figure 1 by searching their accession
numbers in this database (see Appendix 2 for accession numbers).

We need a method for calculating the difference between two DNA sequences, s1 and s2.
DNA sequences are made up of four nucleotide bases (bases for short), so they are denoted
as strings of the letters A, T, G, and C. Because we can have insertions and deletions,
we cannot simply line up two sequences and count the number of base differences. For
example, the minimum-cost alignment of ATGCAA and TGGATA is

A T G C A – A
– T G G A T A

where we insert gaps (symbolized by – here) to create an optimal alignment.

We can see that any alignment will pair bases of s1 up with bases of s2, although sometimes
a base will be paired with a gap (a gap can never be paired with another gap). Then to
find the cost of an alignment we can assign a value g as the gap penalty and a value σ as
the substitution penalty (we used g = 3 and σ = 2 to compare our sequences). Because
a substitution is more likely than an insertion or deletion, we will assume σ < g. Then
we will have some number of gaps paired with bases (such pairs cost g), some number of
bases paired with mismatched bases (such pairs cost σ) and some number of bases paired
with the same base (such pairs cost 0). Adding all these costs together yields the cost
of the alignment. For example, the alignment above has cost 2g + σ. For larger pairs of
sequences, the standard approach for finding an optimal alignment and its cost is to use
dynamic programming [9].

Now that we have a method of comparing sequences we can approach the problem of
drawing the sequences.

3

2 Graph Drawing

2.1 Formulation of the problem

We can represent DNA sequences as nodes in a weighted complete graph G. Let S be the
set of DNA sequences, let |S| = n, and let the elements of S be s1, . . . , sn. If si, sj ∈ S, let
the weight wij of the edge sisj be defined as the cost of an optimal alignment of the two
sequences, calculated as shown above (note that wij = wji).

(a) (b)

Figure 1: It is possible to place a sequence in any area that is white, and impossible to
place a sequence in any area that is black. (a) In the continuous version all placements on
the canvas are possible. (b) An example of the discrete case described above with l = 8.

Points

We have a square digital canvas that has height and width l. We will define the bottom
left corner of the canvas to be (0, 0) and the top right corner to be (l, l). Let P be the set
of possible point locations (points for short) on the canvas. These will be the places where
we can draw nodes representing sequences in S. For p ∈ P , let (px, py) specify the point’s
x- and y-coordinates on the canvas. Then we can define P continuously as

P = {(x, y) | 0 ≤ x ≤ l, 0 ≤ y ≤ l}

as shown in Figure 1a. However, it will be useful for us to consider discrete subsets of the
continuous case. For example, we can consider the case where

P = {(x, y) | 0 ≤ x ≤ l, 0 ≤ y ≤ l, x, y ∈ Z}

as shown in Figure 1b.

Drawing

4

Let D be an injective mapping from S to P such that D(si) ∈ P , where D(si) denotes the
point where we will draw si. Let dij be the Euclidean distance between D(si), D(sj) ∈ P ,
so

dij =
√

(D(si)x −D(sj)x)2 + (D(si)y −D(sj)y)2.

Our goal is to draw all the elements of S on the canvas such that the Euclidean distance
between D(si) and D(sj) ∈ P is in accordance with wij (up to scale). Preferably we would
find a drawing that could be scaled such that wij = dij for all si, sj ∈ S. This would be
called the ideal drawing I.

We know Euclidean distances satisfy the triangle inequality. One question immediately
comes to mind: do the weights?

Claim 1 Weights on G obey the triangle inequality.

Proof. Let si, sj , sk ∈ S. Then we can change wij nucleotides of sequence si to make it
identical to sj . We also know that we can make wjk changes to sj to make it identical to
sk. Therefore we can transform si into sj and then into sk in at most wij +wjk nucleotide
substitutions. Therefore wik ≤ wij + wjk, so weights on G obey the triangle inequality.

So we can see that the weights satisfy the triangle inequality. Does this mean that we will
be able to draw all of our graphs ideally?

Claim 2 An ideal placement does not always exist.

Proof. Let’s look at a simple example. Let’s say we have the following sequences:

1. AAAAA
2. ATATA
3. TTTTT
4. AAATT

Using a substitution penalty of σ = 1 and a gap penalty of g = 2 we get the weight matrix:

W =

1 2 3 4

1 0 2 5 2
2 2 0 3 2
3 5 3 0 3
4 2 2 3 0

.

5

Now, let’s position s1 at point (6, 3). We can then place the second sequence anywhere on
the circle of radius 2 around the origin (Figure 2a). Without loss of generality let’s place it
at (6, 5). Now we must place s3 and we have only one choice, (6, 8) (see Figure 2b). Now we
must place s4. As we can see in Figure 2c, the circles around the sequence placements with
radii corresponding to that sequence’s distance from s4 do not have a common intersection
point. Therefore there is no place to position s4 ideally, and therefore an ideal drawing
does not exist in this case.

(a) (b) (c)

Figure 2: Trying to place sequences on the canvas to make an ideal drawing.

Now we can see that the problem is more complicated that it initially seemed. Our goal
is to find optimal (or close-to-optimal) drawings. Finding provably optimal drawings is
extremely difficult. Our focus instead is on developing heuristic methods that produce
close-to-optimal drawings.

2.2 The Quadratic Assignment Problem

This question is a variation on the quadratic assignment problem (QAP), a core problem
of combinatorial optimization that is NP hard. In this problem, there are n facilities and
n locations in which these facilities can be placed. We are then provided with informa-
tion about the distance between each pair of locations and the flow between each pair of
facilities. The idea is to place the facilities in locations to minimize the sum of distances
multiplied by their flows. The QAP has many applications ranging in field from sports,
to chemistry, to archaeology, and including everything from circuit wiring to typewriter
keyboard design [10].

In our problem we have sequences rather than facilities and points rather than locations.
Also, rather than flow between facilities we have weights due to nucleotide differences.
Therefore, whereas in the QAP a higher flow means the facilities should be closer together,

6

in our problem a higher weight means the sequences should be further apart. Also, our
weights obey the triangle inequality, which isn’t guaranteed for flow. Additionally, we
allow more points than sequences (analogous to having more locations than facilities in the
QAP).

In 1998, it was impossible to solve the QAP to optimality within reasonable time limits
for cases larger than n = 20. This was at a time when much progress had been made
on other NP complete problems: the TSP could be solved with thousands of cities, and
the maximum clique problem could be solved on graphs with thousands of vertices and
millions of edges [10]. Even as recently as 2013 problems with n > 35 can’t be solved
within reasonable computational time, and even finding an approximate solution within
some constant factor of the optimal solution cannot be completed in polynomial time unless
P=NP. This holds true even when the values obey the triangle inequality. In fact, even
finding local optima is nontrivial [11].

Therefore, we need a different approach to solve our problem. We will use heuristic methods
to approach optimal solutions.

2.3 Point placement

Our problem involves deciding where to place points on the canvas. By limiting the size of
the possible point placements P (while always ensuring that |P | ≥ n) we limit our options,
making the problem more tractable.

This means that we must find some method of choosing the elements of P . Figure 1b
shows one method. We experimented with several others. Each exhibits different costs,
as well as different aesthetics (see Figure 4). For consistency we chose to use the same
point configuration for all of our images here. We chose the circle formation because it
avoids the possibility of edges running over points that they don’t connect, which can be
misleading.

2.4 Determining Cost

We want to find a drawing that approximates the ideal drawing. But what do we mean
by “approximates the ideal drawing”? How can we tell if one drawing is closer to the ideal
than another? To accomplish this we need some measure of the distance of a drawing from
the ideal, or the cost of a drawing.

7

Figure 3: Several possible point placements, shown with both 16 and 100 nodes: random,
square grid, skew grid, circle, multiple circles, skew multiple circles.

2.4.1 Euclidean cost

One possible measure of cost calculates the difference between the Euclidean distance
between each pair of nodes on the canvas and the weight of each pair of nodes on the
complete graph.

We can formulate this measurement as

C(D) =
∑

si,sj∈S
|kdij − wij |

where k = max(wij)/
√

2l. Dividing the maximum weight on an edge of G by the maximum
distance between two points on the canvas gives us a scaling factor that makes distances
comparable to weights. We can also adapt this cost more specifically to various point

8

configurations by using the maximum distance between two points in the configuration
rather than

√
2l.

We can also use this method to calculate the cost of one node: for si ∈ S that would
be

Csi =
∑
sj∈S
|kdij − wij |.

This cost measure is attuned to even small changes in node placement. However, we may
be interested in getting general placement right, without concerning ourselves too much
with adjusting a specific placement. In that case we can try another method.

2.4.2 Ordering cost

A second possible measure of cost simply measures whether vertices are assigned positions
on the canvas close to sequences that they have many nucleotides in common with.

Let s ∈ S and let D be a drawing of S on the canvas. Then let ls = u1, u2, . . . , un such
that ui ∈ S, each element of S appears exactly once in ls, and ws,ui ≤ ws,ui+1 . Let
Ls = v1, v2, . . . , vn such that vi ∈ S, each element of S appears exactly once in Ls, and
dD(s),D(vi) ≤ dD(s),D(vi+1).

If ui is in ls, then ui must be in Ls. Let’s say ui is the entry vj in Ls. Then cs(i) =
|i− j|.

Then define the cost of sequence s given D to be:

Cs =
n∑

i=1

cs(i).

Then the cost of D is
C(D) =

∑
s∈S

Cs.

In this cost system, the exact coordinate or distance on the canvas isn’t important. A
placement with cost 0 would merely mean that for any given sequence, the point closest to
that sequence on the canvas would have the fewest number of nucleotide base differences
from the first sequence, the sequence the next farthest away would have second fewest
number of nucleotide base differences from the firs sequence, and so on for all points on
the canvas.

9

2.4.3 Flow cost

This cost is informed by the QAP formulation. Instead of measuring based on nucleotide
differences we can use nucleotide similarities. If this information is not readily available we
can approximate it by taking the average length of our sequences L. Then for si, sj ∈ S
the number of nucleotides in agreement between the two sequences, aij , is approximately
L− wij .

Now, the higher aij is, the closer we want si and sj . Therefore we can calculate

C(D) =
∑

si,sj∈S
dijaij .

Minimizing this cost measure encourages sequences that have more similarities to be closer
together.

2.4.4 Cost choice

We report the same measure of cost for each image so that the costs can be directly
compared. We chose the ordering cost because we are interested in the relative rather than
absolute correct positioning. Also, the ordering cost yields the smallest values, so they are
somewhat easier to understand and compare.

2.5 Heuristic methods

Given an l × l canvas, to find the optimal placement we might first think to try every
combination of placing each s ∈ S at each point in P and comparing the costs. However,
if |S| = n and |P | = m with n ≤ m we can see that the number of possibilities is

m!

(m− n)!
.

If m = n = 13 there are already 6, 227, 020, 800 possible placements. We need a different
approach if we are to use sets S of nontrivial size.

Because we cannot feasibly analyze every possible drawing given nontrivial sets S and P ,
we need a method to help us decide which drawings to analyze to give us close-to-optimal
solutions. We turn to heuristic algorithms. Results of these methods are displayed in
Table 1 and Figures 6, 7, and 8.

10

2.5.1 Random assignment

We can search indiscriminately through the space of drawings by choosing many random
drawings and recording the drawing with the lowest cost. One run of the random assign-
ment procedure consists of assigning each s ∈ S to a p ∈ P that has yet to be assigned to
a sequence, creating drawing D. We then save the cost of D. We perform some predeter-
mined number of runs r, each time calculating the cost and saving any D with a minimum
cost.

This method does not retain any information from one run to the next, so it is truly a blind
search. Assuming there is only one optimal solution, the chance of landing on it is

1−
(

1− (|P | − n)!

|P |!

)r
.

This means that if n = |P | = 10 and r = 100000, there is only about a 2.72% chance of
obtaining the optimal solution (assuming there is one optimum). However, a benefit of this
method is that the program doesn’t get bogged down in any local optima.

2.5.2 Greedy assignment

The idea of this method is to assign one sequence at a time to its ‘best’ placement on the
canvas.

For one run we start by randomly choosing an order for the elements in S. Assume si is at
the ith place in this order. Then we randomly choose D(s1) from P . We can then calculate
the Euclidean cost of the single node placement of s2 at p for each p ∈ P that has not yet
been assigned a sequence. We then let D(s2) equal the p ∈ P for which the Euclidean cost
of the sequence was smallest (if there are multiple of these points, choose one randomly).
We repeat this procedure for the remaining sequences.

2.5.3 Iterated hill-climber

Hill-climbing algorithms search a neighborhood of solutions that are close to the current
solution in some way and find the most optimal solution in that neighborhood [12]. They
are iterative methods, so the process is repeated until a local optimum is found.

A 2-swap of si and sj is a switch from the current map D to a new map D′ for which
D′(si) = D(sj) and D′(sj) = D(si) for some si, sj ∈ S, and D′(sk) = D(sk) for all other
sk ∈ S.

11

(a) (b) (c) (d)

Figure 4: Performing the greedy method for Caryophyllaceae. Green circles are points
that have been assigned sequences, light green circles are most recently assigned. Other
circles are possible point placements, with lighter meaning lower cost for the light green
circle being placed there. (a) Adding the first sequence randomly. (b) Adding the second
sequence. (c) Adding the sixth sequence. (d) Adding the tenth sequence.

Each run of the hill-climber starts with a random assignment of sequences to points. Then
for every si, sj ∈ S calculate the cost of the drawing resulting from the 2-swap of si and
sj . Next, we find the minimum of all of these costs and use that map for the next round.
We continue like this until there is no 2-swap that decreases the cost.

The iterated hill-climber is guaranteed to find a local optimum. However, the danger
lies in the possibility of getting stuck in local optima. Multiple runs starting with random
configurations helps avoid this. If the same number of runs are used for random assignment
and the iterated hill-climber, the the iterated hill-climber is guaranteed to find of solution
of greater than (or equal) optimality, because it only improves each run’s cost. However,
random assignment is much faster than the iterated hill-climber.

A 3-or-more swap could lead to finding a more optimal solution in the same number of
runs. Let’s define a 3-swap as a switch from the current map D to a new map D′ for
which D′(si) = D(sj), D

′(sj) = D(sk), and D′(sk) = D(si) for some si, sj , sk ∈ S, and
D′(sl) = D(sl) for all other sl ∈ S. Then there are n(n−1)(n−2)/3 possible 3-swaps for a
graph with n nodes as opposed to n(n−1)/2 possible 2-swaps. Therefore, for n = 16 there
are 1120 possible 3-swaps and only 120 possible 2-swaps. We can see that a 3-swap method
would significantly increase the runtime, so we will pursue a different method.

2.5.4 Simulated annealing

We want to try some method that moves steadily towards optimality, but that still has
enough randomness to not get stuck in every local optimum. Simulated annealing is a
method that involves adding a new parameter called the temperature that changes the
probability of moving from one point of the search space to another [12].

12

In the simulated annealing procedure, we choose some temperature T > 1, ratio q ∈ (0, 1),
and number of runs r. We start with a random drawing D. The cost of our current drawing
is cur. Then we perform a 2-swap and find the cost of D′, new. If new is the lowest cost
we have calculated so far we save new as opt and D′ as optD. If the new cost is less than
our current cost cur, we save it as cur and D′ becomes our current drawing. If not, we
choose a random b ∈ [0, 1). Then if

b < e(cur−new)/T

D′ still becomes our current drawing. Otherwise, we maintain D as our current draw-
ing.

Note that cur−new ≤ 0, because the new cost must be greater than or equal to the current
cost (otherwise we would have automatically accepted it).

After we’ve done this r times, we set T equal to qT and perform the procedure again. We
continue until T ≤ 1. Then we return optD.

We settled on T = 100 and q = 0.75 for our datasets because they resulted in drawings
of comparable cost to those generated by the hill-climbing method, but still allowed the
procedure to finish in a reasonable amount of time. Adjusting the initial value of T and
the value of q could yield better drawings, but could also take more time.

13

Figure 5: Caryophyllaceae images: For all images the color of each edge is scaled with
sequence similarity, so the more yellow an edge is, the more similar the two sequences it
connects are; the more blue it is, the more different the sequences it connects are. In order
from left to right these are the images corresponding to the Caryophyllales results listed in
Table 1.

14

Figure 6: Castilleja images: In order from left to right these are the images corresponding
to the Castilleja results listed in Table 1.

15

Figure 7: Cactaceae images: Not all edges are shown in these drawings; only those with a
number of nucleotide differences less than or equal to the maximum number of differences
divided by 5. This is to avoid many edges being completely covered up. In order from left
to right these are the images corresponding to the Cactaceae results listed in Table 1.

16

Conclusion

We have now tried several methods for creating drawings of sets of DNA sequences. The
question remains: which of the methods we have tried is best? The answer is not completely
straightforward. Although the hill-climber consistently generated drawings with the lowest
costs, we are also interested in differences in runtime that make some methods more feasible
than others. See Table 1 for a breakdown of our results (the images corresponding to each
of these results can be found in Figures 6, 7, and 8).

Dataset Result # Method Runs Cost Runtime (sec)

1 random 1 1256 0.414
2 random 10000 966 22.222

Caryophyllaceae 3 greedy 1 1004 0.363
4 greedy 10000 986 38.430
5 hill climbing 10 856 31.750
6 simulated annealing 1000 858 35.853

7 random 1 1958 0.547
8 random 10000 1522 32.106

Castilleja 9 greedy 1 2100 0.569
10 greedy 10000 1430 59.848
11 hill climbing 10 1164 78.945
12 simulated annealing 1000 1180 53.047

13 random 1 176386 11.903
14 random 10000 164250 1304.604

Cactaceae 15 greedy 1 134830 8.035
16 greedy 1000 170238 312.003
17 hill climbing 1 96476 39303.943
18 simulated annealing 1000 99678 2098.429

Table 1: Comparison of heuristic methods.

For results 3, 9, and 15 we didn’t use a random ordering: instead, we used the order the
sequences appeared on the phylogenetic tree.

For the small datasets, Caryophyllaceae and Castilleja, the greedy method in results 4
and 10 barely outperformed the random method in results 2 and 8, with slightly lower
costs that took about double the time. The hill-climbing and simulated annealing methods
performed best, both yielding comparable costs and runtimes. Tweaking the parameters
T and q, as well as the number of runs, for the simulated annealing method could yield
superior results within a reasonable amount of time. However, strictly from our results
here the hill climbing and simulated annealing approaches both seem viable for creating
images of small datasets. In both of these datasets the ranges of costs are relatively small,

17

especially for Caryophyllaceae. The images in Figure 6 show little visual difference between
various methods.

For the large dataset, Cactaceae, the hill climbing and simulated annealing methods
also performed best, returning comparable costs. The hill climbing algorithm perform-
ing slightly better, but the methods exhibited vastly different runtimes. The hill climbing
algorithm took nearly 11 hours to perform a single run, whereas the simulated annealing
procedure was completed in less than 35 minutes. This drastic difference in runtimes cou-
pled with the relative similarity of costs suggests that simulated annealing is the preferred
method for finding drawings of larger datasets. The random and greedy approaches in
results 14 and 17 returned drawings with costs almost double those found in results 17 and
18. However, result 15 has a surprisingly low cost. It seems that for large datasets such as
this, if some information is known about the dataset a pre-designed ordering could yield a
drawing with a relatively low cost in a very short amount of time. Figure 8 shows a large
visual difference between images with low costs and high costs.

Future Directions

We can now create images where distances between sequence nodes approximate distances
between sequences, given a set of DNA sequences. It is important to note that these
images should not be used to infer relationships among taxa; phylogenetic trees represent
that information more accurately. We are representing different information: the degree of
similarity among these specific DNA sequences. This can provide us with information that
phylogenetic trees do not claim to provide, such as the relative difference between each
pair of sequences (rather than just the relationships between sister taxa).

So far our methods have only been tested on datasets with fewer than 100 sequences. We
would like to be able to draw larger sets of sequences. Drawing thousands of sequences at
a time would require modified methods to make the problem tractable, but the simulated
annealing approach seems promising. We could also combine multiple methods, such as
using greedy drawings to begin each run of the hill climber rather than random ones.
Additionally, now that full genome sequencing is possible, it could be valuable to use full
genomes, or at least multiple genes, as data for drawings. Also, comparing drawings of
different genes for the same set of taxa could provide interesting information about differing
gene histories. We would also like to explore more deeply what we can learn from these
images. What conclusions can we draw? Are there measures of similarity between different
drawings that can tell us something about the communities they come from?

We believe that this project can be appreciated both as a new variation on a classic
combinatorial optimization problem, and as a new method in the field of DNA sequence
analysis that could help shed some light on sequence relationships.

18

References

[1] Rodney J. Dyer and John D. Nason. Population graphs: the graph theoretic shape of
genetic structure. Molecular Ecology, 13:1713–1727, 2004.

[2] Ashesh Nandy, Marissa Harle, and Subhash C. Basak. Mathematical descriptors of
DNA sequences: development and applications. Archive of Organic Chemistry, 9:211–
238, 2006.

[3] Jonathan R. Bennett and Sarah Mathews. Phylogeny of the parasitic plant fam-
ily Orobanchaceae inferred from phytochrome A. American Journal of Botany,
93(7):1039–1051, 2006.

[4] Simone Fior, Per Ola Karis, Gabriele Casazza, Luigi Minuto, and Francesco Sala.
Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast
matK and nuclear rDNA ITS sequences. American Journal of Botany, 93(3):399–411,
2006.

[5] Reto Nyffeler. Phylogenetic relationships in the cactus family (Cactaceae) based on
evidence from trnK/matK and trnL-trnF sequences. American Journal of Botany,
89(2):312–326, 2002.

[6] Harold William Rickett. Wild Flowers of the United States, volume 1. Hinkhouse Inc,
New York, New York, 1966.

[7] Samuel F. Brockington, Ya Yang, Fernando Gandia-Herrero, Sarah Covshoff, Ju-
lian M. Hibberd, Rowan F. Sage, Gane K. S. Wong, Michael J. Moore, and Stephen A.
Smith. Lineage-specific gene radiations underlie the evolution of novel betalain pig-
mentation in Caryophyllales. New Phytologist, 207(4):1170–1180, 2015.

[8] National Library of Medicine. BLAST R©, 2016. http://blast.ncbi.nlm.nih.gov
/Blast.cgi.

[9] István Miklós. Introduction to Algorithms in Bioinformatics. Budapest, Hungary,
2016. http://www.renyi.hu/ miklosi/AlgorithmsOfBioinformatics.pdf.

[10] Eranda Çela. The Quadratic Assignment Problem: Theory and Algorithms. Springer
Science+Business Media, B.V., Dordrecht, Holland, 1998.

[11] Rainer E. Burkard. Handbook of Combinatorial Optimization. Springer Reference,
Media, New York, 2013.

[12] Zbigniew Michalewicz and David B. Fogel. How to Solve it: Modern Heuristics.
Springer, Berlin, Germany, 2002.

19

Apendix 1: Terminology

term definition

– the gap symbol
C(D) the cost of drawing D
D an injective map from S to P (a drawing of S on the canvas)

D(si) the element of P that D maps si to
dij the Euclidean distance between D(si) and D(sj)
G the complete graph with sequences as nodes and wij as the weight on edge sisj
g the gap penalty (σ < g)
I ideal drawing: injective map from S onto P for which wij = dij
k max(wij)/

√
2l

l side length of canvas
m |P |
n |S|
P the set of points on the canvas available for assignment
px for p ∈ P , this is the x coordinate of the position on the canvas
py for p ∈ P , this is the y coordinate of the position on the canvas
q the ratio for simulated annealing, q ∈ [0, 1)
r the number of runs for a heuristic method
S the set of DNA sequences
si an element of S
σ the substitution penalty (σ < g)
T the temperature for simulated annealing, T > 1
wij the cost of the alignment of si and sj

20

Appendix 2: Sequence Accession Numbers

Search these numbers in BLAST to get the sequences [8].

Castilleja

AM233921, AM233922, AM233957, AM233926, AM234019, AM233969, AM233940, AM233945,
AM233938, AM233997, AM233951, AM233946, AM233937, AM233941, AM233939, AM233942,
AM233947, AM234032, AM233998

Caryophyllaceae

AY936267, AY936273, AY936259, AY936263, AY936241, AY936333, AY936279, AY936277,
AY936235, AY286529, AY936247, AY936252, AY936254, AY936253, L78088, AF210907

Cactaceae

AY015345.1, AY015346.1, AY015347.1, AY015348.1, AY015349.1, AY015350.1, AY015351.1,
AY015352.1, AY015353.1, AY015354.1, AY015355.1, AY015356.1, AY015357.1, AY015358.1,
AY015359.1, AY015360.1, AY015361.1, AY015362.1, AY015363.1, AY015364.1, AY015365.1,
AY015366.1, AY015367.1, AY015368.1, AY015369.1, AY015370.1, AY015371.1, AY015372.1,
AY015373.1, AY015374.1, AY015375.1, AY015376.1, AY015377.1, AY015378.1, AY015379.1,
AY015380.1, AY015381.1, AY015382.1, AY015383.1, AY015384.1, AY015385.1, AY015386.1,
AY015387.1, AY015388.1, AY015389.1, AY015390.1, AY015391.1, AY015392.1, AY015393.1,
AY015394.1, AY015395.1, AY015396.1, AY015397.1, AY015398.1, AY015399.1, AY015400.1,
AY015401.1, AY015402.1, AY015403.1, AY015404.1, AY015405.1, AY015406.1, AY015407.1,
AY015408.1, AY015409.1, AY015410.1, AY015411.1, AY015412.1, AY015413.1, AY015414.1,
AY015415.1, AY015416.1, AY015417.1, AY015418.1, AY015419.1, AY015420.1, AY015421.1,
AY015422.1, AY015423.1, AY015424.1, AY015425.1, AY015426.1

21

	Drawing DNA Sequence Networks
	Repository Citation

	tmp.1590085719.pdf.6wXII

