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 Abstract 
	  

Eutrophication presents a serious threat to America's aquatic ecosystems, negatively impacting 

both the aquatic life and the communities dependent on these bodies of water. Reducing nutrient 

inflow of nitrogen and phosphorus into waterways from point and non-point sources is critical in 

reversing the environmental degradation caused by eutrophication. Municipal wastewater 

treatment plants are one of the primary point sources of nutrient-rich effluent, and as such, 

implementing nutrient reduction strategies within the treatment process is an impactful step 

towards mitigating eutrophication. Grey infrastructure technologies that use mechanical or 

chemical treatment have historically been used for wastewater nutrient reduction. However, 

constructed wetlands have also been implemented for wastewater nutrient reduction. These 

systems mimic the biological and chemical processes that occur in natural wetlands to remove 

nutrients but in a more controlled environment. A life-cycle cost analysis is conducted to analyze 

differences between the total life cycle costs of constructed wetland systems and grey 

infrastructure improvements for nutrient removal from municipal wastewater treatment facilities. 

Furthermore, this paper evaluates whether the inclusion of ecosystem services generated by 

constructed wetlands significantly reduces their life-cycle costs. The results of this study suggest 

that CW systems are more cost-effective than grey infrastructure technologies for nutrient 

reduction when ecosystem services are included in the analysis. This study lays the groundwork 

for future research on the inclusion of ecosystem services into future life-cycle cost analysis for 

nutrient reduction and cost analyses for constructed wetland systems. 	  
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1.0 Introduction	  

For decades, the world's oceans, rivers, lakes, and other aquatic ecosystems have been 

increasingly burdened and degraded due to excessive inflows of nutrients. Human activities now 

annually introduce equal to or greater fixed nitrogen into the environment than is naturally 

introduced (Smith et. al. 1999). The accumulation of high levels of phosphorus and nitrogen 

from agricultural, industrial, and municipal wastewater effluent is drastically decreasing the 

health and viability of marine and freshwater ecosystems. Eutrophication is the biological result 

of this influx of nutrients and is exacerbating algal blooms and the creation of dead zones in 

impacted marine environments (Smith et. al. 1999; Anderson et. al. 2002; Conley et. al. 2009). 

The explosion of algal blooms and dead zones drain aquatic ecosystems of oxygen that is critical 

in supporting aquatic life, and as a result, mass die-offs of aquatic species have been reported in 

eutrophied ecosystems (Heisler et. al. 2008). Furthermore, eutrophication not only negatively 

impacts aquatic species but also communities dependent upon such bodies of water for 

freshwater supply and economic opportunities (Chislock et. al. 2013; Michalak et. al. 2013). 

With algal blooms and dead zones becoming annual occurrences within many aquatic 

ecosystems, the United States Environmental Protection Agency (US EPA) is now calling for 

significant reductions in nutrient levels within wastewater effluent. 	  

Green infrastructure is increasingly used as a viable and cost-effective alternative for a 

myriad of grey infrastructure (GI). Green infrastructure solutions either use or mimic the 

ecological functions provided by ecosystems to perform a variety of services such as wastewater 

treatment, source water protection, soil erosion mitigation, and urban run-off mitigation (Gartner 

et. al. 2013; TNC 2013). These green infrastructure solutions are seen as more beneficial than 

standard GI due to the additional ecosystem services they generate, a subject to be examined in 
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depth within this study. These ecosystem services are environmental benefits performed by 

natural ecosystems and green infrastructure are not traded nor currently valued in traditional 

economic markets. 

 Constructed wetlands (CW) are one of the most successfully tested and implemented 

forms of green infrastructure. However, the benefits provided by wetland systems has only 

recently begun to be appreciated. Throughout past couple centuries, wetlands have been regarded 

as having little value beyond being a breeding ground for mosquitoes and waterborne diseases, 

and consequently, over fifty percent of wetlands around the globe have been converted for other 

uses since 1900 (Barbier 1993). In contrast to the global decline in natural wetlands across the 

globe, CW are increasingly built for municipal wastewater treatment (Steiner and Combs 1993; 

Kadlec and Knight 1996; US EPA 2000a; Vymazal and Kröpfelová 2008; Kadlec and Wallace 

2009; Vymazal 2010). CW mimic the biological and chemical processes that occur in natural 

wetlands to treat wastewater and remove nutrients. The treatment capacity of CW can be 

maximized compared to traditional wetlands since the daily flow into the wetland can be 

controlled to ensure peak treatment efficiency (Kadlec and Knight 1996; Thom et. al. 1998; 

Neralla et al. 2000; Vymazal and Kröpfelová 2008; Kadlec and Wallace 2009). Furthermore, 

routine maintenance such as plant removal and porous media clearance ensure the constructed 

wetland functions properly.  

As municipalities grapple with efforts to reduce nutrient levels in wastewater effluent, 

identifying cost-effective methods is critical. CW present such an option for municipalities trying 

to address new challenges in removing excess phosphorus and nitrogen from municipal 

wastewater. And while numerous studies have analyzed the cost-effectiveness of CW for nutrient 

level from agricultural run-off, no previous study has assessed the cost differences between CW 
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and grey infrastructure (GI) upgrades for nutrient reduction at municipal wastewater treatment 

plants (WWTP). These grey infrastructure technologies include both mechanical and chemical 

processes that are implemented within existing WWTP to reduce nitrogen and phosphorus from 

the effluent. This paper seeks to analyze whether there are statistically significant differences 

between life-cycle costs of CW in comparison to GI technologies. This paper will also present an 

overview of the ecosystem services that CW generate (e.g. habitat creation, education, and 

recreation) beyond nutrient reduction, and how these benefits can make CW a less expensive 

option for municipalities looking to reduce nutrient levels.	  

The remainder of the paper is organized as follows: Section 1 will present introductory 

information on the causes and effects of eutrophication on aquatic ecosystems. This is followed 

by a broad introduction to modern centralized wastewater treatment methods used by 

municipalities with focus on key organic, inorganic, and nutrient compounds that wastewater 

treatment facilities must be capable of treating. Current GI technologies for reducing nitrogen 

and phosphorus levels in wastewater will also be described in this section. Following this 

introduction into traditional wastewater treatment, information on CW models currently 

implemented for wastewater treatment will be examined as well as an introduction to the 

biological and chemical processes that occur within CW to remove nutrients. This is followed by 

a description of the ecosystem services that are generated by CW, and lastly, a brief introduction 

is given for life-cycle cost analysis (LCCA), the economic methodology used in this paper. 

Section 2 will present this paper's research methodology, including the variables and regressions 

used in the analysis. Section 3 presents the case studies and data used in the LCCA. Section 4 

will present the results of the regression, and lastly, Section 5 will examine any final conclusions 

and policy recommendations.  



	   9	  

 

1.1 Eutrophication	  

1.1.1 Causes of Eutrophication	  

Eutrophication is the ecological response to surges in the availability of nutrients 

necessary for the growth of large algal and phytoplankton populations. While eutrophication can 

occur naturally due to sediment buildup over decades and centuries that trap nutrients within the 

ecosystems, point-source and non-point source pollution from human activities have drastically 

accelerated eutrophication globally (Carpenter 1981; Carpenter et. al. 1998; Chislock et. al. 

2013; Michalak et. al. 2013). As a result, environmental governing bodies are increasingly 

analyzing how to reduce nutrient levels in the run-off and effluent from agricultural, industrial, 

and municipal wastewater sources (US EPA 2015). Significantly reducing nutrient levels from 

these point sources is critical for minimizing the accumulation of nutrients in the world's 

waterways because continued inaction will exacerbate negative impacts to aquatic ecosystems, 

local economies, and even human health.  

	  

1.1.2. Effects of Eutrophication	  

There are tremendous negative consequences that result from eutrophication, and the 

most evident is the impact upon the ecological health of aquatic ecosystems. The rapid growth, 

and subsequent death, of algal blooms and aquatic plant life promotes bacterial consumption of 

the decaying matter. These bacteria consume dissolved oxygen within the water, resulting in 

anoxic ecosystems (Chislock et. al. 2013). Due to the lack of oxygen, mass die-offs of aquatic 

fauna frequently occur in a condition called hypoxia (Diaz and Rosenberg 2008; Heisler et. Al. 

2008). These algal blooms further inhibit aquatic plant growth as the algae that forms on the 

water's surface limit the amount of sunlight that can reach plants within the water, which limits 
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the ability of plants to photosynthesize (Madden and Kemp 1996; Smith et. al. 1999). 

Eutrophication within the Chesapeake Bay is a classic case of the ecological damage this process 

causes. Decades of excessive nutrient loading from agricultural and municipal wastewater 

sources has drastically altered the ecological health of the Bay. Annual algal blooms have 

created small dead zones throughout the Bay, and once thriving populations of oysters and blue 

crabs have been crippled, in large part, by reduced oxygen levels (Malone et al. 1993; Boesch et. 

al. 2001; Kemp et. al. 2005). Without serious reductions in nutrient loading into the world's 

bodies of water, the continued eutrophication of aquatic ecosystems will spur further oxygen 

depletion and result in dire consequences for marine life.	  

Eutrophication not only has crippling effects upon marine life, but it also poses a threat to 

human health and well-being. Algal blooms can severely limit the economic productivity of 

eutrophic waterways, and it has been estimated that eutrophication causes over $2.2 billion 

United States dollars (USD) in annual damages within the United States (Dodds et. al. 2009; 

Chislock et. al. 2013) Recreation opportunities such as boating and other water sports can 

become prohibited due to dangerous cyanobacteria algal blooms, also known as blue-green 

algae. Furthermore, as seen in the Chesapeake Bay, eutrophication can negatively impact fish 

and shellfish populations, which limits the ability of local fishermen to make their living. 	  

The human-related impacts of eutrophication go beyond economics and can affect cities 

ability to supply drinking water. Under certain conditions, cyanobacteria can produce 

cyanotoxins that can trigger serious health risks, and even death, when ingested (Paerl et. al. 

2001; US EPA 2014). One dramatic example of the negative impact algal blooms can have upon 

drinking water supplies occurred during the summer of 2014 in Toledo, OH. With excessive 

levels of nitrogen and phosphorus accumulating for decades in the waters of Lake Erie, algal 
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blooms have become a regular occurrence during the summer months. However, in 2014, the 

bloom covered hundreds of miles of the lake's western portion, precisely where the city of 

Toledo took their drinking water. With no cost effective methods available to remove the toxic 

algae from the water, over 400,000 residents were left without running water for several days 

(Lee 2014; Wines 2014; Yeager-Kozacek 2014). Without immediate actions to reduce the level 

of nutrients entering this nation's aquatic ecosystems, severe algal bloom, similar to the one that 

impacted Toledo, could very well become an annual occurrence that may disrupt the domestic 

water supply for millions of people. Eutrophication negatively affects both the health of aquatic 

ecosystems and the health and vitality of communities dependent upon such bodies of water. It is 

therefore imperative that steps be made to drastically reduce the nutrient levels being released 

from human activities into the nation's waterways.    

	  

1.1. Traditional Wastewater Treatment Processes	  

1.1.1. Primary Wastewater Treatment	  
The initial steps of centralized wastewater treatment processes involve removing large, 

untreatable objects that flow into the treatment plant. Large objects such as sticks, rags, and other 

solid debris cannot be broken down in the secondary and tertiary processes, and thus, preliminary 

treatment removes these objects before they can interfere with further treatment (US EPA 

2004a). Screens stop these objects from flowing through the wastewater facility and are then 

collected and removed to appropriate solid waste facilities, such as landfills (US EPA 2004a). 

However, initial screening is often unable to remove smaller substances such as gravel and sand, 

which must also be removed before secondary treatment. In most centralized wastewater 

treatment systems, storm runoff mixes with residential wastewater, resulting in the accumulation 
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of gravel and sand. Thus, another screening process performs degritting wherein these particles 

are stopped by smaller screens and settle to the bottom of the chamber (US EPA 2004a). 	  

Suspended solids are often still present in wastewater after primary screening and 

degritting. These solids "consist of minute solid particles of matter that can be removed from the 

wastewater with further treatment such as sedimentation or gravity settling, chemical 

coagulation, or filtration" (US EPA 2004a). Settling tanks allow these solids to settle at the 

bottom of the tank where they form a layer of primary sludge (US EPA 2004a). Periodic removal 

of this sludge is necessary to prevent excessive build-up. Preliminary treatment of wastewater is 

necessary to allow for the biological and chemical processes used to purify the wastewater in 

secondary and tertiary treatment to remain effective. 

	  

1.1.2. Secondary Wastewater Treatment	  

The vast majority of biological and chemical treatment of wastewater occurs during 

secondary treatment. Anaerobic and aerobic bacterial digestion is the most common method for 

breaking down the organic matter within wastewater (Pescod 1992; US EPA 2004a). Aerobic 

digestion occurs in the presence of oxygen whereas anaerobic reactions occur without oxygen. 

Centralized wastewater treatment often uses suspended growth processes to create aerobic 

conditions for bacteria to thrive and breakdown the organic matter (US EPA 2004a). Wastewater 

enters the aeration tanks where oxygen-rich air is pumped in to create an aerobic environment, 

and allowing the bacterium to break down organic matter into activated sludge (Pescod 1992; US 

EPA 2004a). The activated sludge collects at the bottom of settling tanks where periodical 

removal prevents excessive buildup. 	  

Steps to disinfect the wastewater also occur during secondary treatment. These 

techniques effectively remove harmful pathogens from the wastewater to prevent future 
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contamination of local water systems. There are three primary methods used to disinfect 

wastewater. Chlorine is very effective in killing microorganisms and has been used in 

wastewater treatment for quite some time, however, new insight into the harmful effects of 

excessive chlorine in ecosystems has decreased the usage of this method (US EPA 2004a). 

Ozone is also effective in removing pathogens from wastewater. Furthermore, ozone has 

minimal long-term negative effects since the ozone breaks down into elemental oxygen (US EPA 

2004a). Perhaps the most common method for disinfection is the use of Ultra Violet (UV) 

technology, which kills microorganisms by damaging their genetic material (US EPA 2004a). 

UV treatment provides the most cost-effective treatment method with the added benefit of no 

negative environmental by-products (US EPA 2004a). 

	  

1.2.  Primary Substances Treated within the Municipal Wastewater Treatment Process	  

Municipal wastewater treatment facilities must be capable of removing a diverse range of 

organic, inorganic, and nutrient compounds. This section briefly examines a small portion of the 

most commonly tested substances to showcase why it is critical that any wastewater treatment 

strategy is capable of treating wastewater to meet US EPA effluent standards.  

	  

1.2.1 Total Suspended Solids (TSS) and Biodegradable Oxygen Demand (BOD)	  

TSS comprise all organic and inorganic matter that pass through primary screening in the 

treatment process. Excessive TSS in wastewater effluent can cause severe water degradation by 

decreasing the amount of sunlight that reaches the water, reducing the ability of aquatic plants to 

photosynthesize and lowering oxygen levels in the water (Rossi et. al 2006). Redcued oxygen 

levels can result in die-offs of aquatic species in these degraded waterways. Excessive TSS also 

settle on the bottom of waterways, prohibiting the growth of aquatic plants and fish species 
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ability to lay eggs for reproduction (Rossi et. al 2006). To avoid such water degradation, the US 

EPA has established effluent standards for TSS at 45 mg/L (US EPA 2010). 	  

Oxygen plays a critical role in allowing aerobic bacteria to treat wastewater, and BOD is 

the amount of oxygen required to effectively treat wastewater. It is necessary to measure BOD 

because if the wastewater contains, high levels of organic solids and ammonia, excessive oxygen 

demand for treating wastewater can leave the effluent oxygen-depleted (US EPA 2004a). 

Oxygen-deprived effluent can reduce oxygen in the receiving water source, affecting the ability 

of fish and aquatic plants to survive. Municipal wastewater treatments must minimize the BOD 

in wastewater to ensure that oxygen levels are not significantly depleted when the effluent leaves 

the WWTP. The standard measure for monitoring BOD is the five-day biological oxygen 

demand (BOD5) of treated wastewater (US EPA 2004a). This is the amount of oxygen required 

to treat wastewater over a five day period (US EPA 2004a). To maintain a standard for 

environmentally safe BOD levels, the US EPA has established the maximum BOD5 of effluent at 

30 mg/L (US EPA 2010). 

	  

1.2.2. Nutrients: Phosphorus and Nitrogen	  

Excessive nutrient levels in effluent from wastewater treatment facilities have become a 

critical factor in the global degradation of rivers, lakes, and oceans. The two most impactful 

nutrients found in wastewater effluent are nitrogen and phosphorus. In excessive amounts, these 

nutrients cause eutrophication in waterways resulting in abnormally large algae blooms (US EPA 

2004a). The subsequent die-off of the algal blooms fuels bacterial consumption of the decaying 

matter and oxygen within the water, forming dead zones that negatively impact aquatic life (US 

EPA 2004a; Carpenter 2008; Conley et. al. 2009). While the US EPA has ramped up efforts to 

reduce phosphorus and nitrogen in wastewater effluent, significant gaps persist in monitoring 
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and limiting the nutrient levels in effluent (US EPA 2012). Even though national effluent 

standards are currently lacking for these nutrients, it is becoming increasingly critical that 

municipal wastewater systems effectively remove nitrogen and phosphorus to reduce the 

likelihood of future eutrophication occurring in effluent-receiving aquatic ecosystems. 

	  

1.3 Grey Infrastructure Improvements for Nutrient Reduction	  

As wastewater treatment facilities across the United States continue to grapple with 

lowering nutrient levels in their facilities' effluent discharges, technological and infrastructure 

improvements are increasingly important to provide additional treatment before releasing the 

effluent. There are currently a number of methods being implemented to achieve better nitrogen 

and phosphorus reductions. They can be classified into three groups (See Appendix C). 

Currently, the most common technology is biological nutrient removal (BNR) that improves 

upon the treatment facility's suspended growth treatment systems. These improvements allow 

bacteria within the activated sludge process to convert nitrate into non-impactful nitrogen gas 

(Hartman and Cleland 2007). In addition, this process binds phosphorus within the sludge that is 

then removed from the facility (Hartman and Cleland 2007). Furthermore, BNR can be used to 

allow nitrifying bacteria to convert excessive ammonia into nitrate, which can subsequently be 

broken down into nitrogen gas by bacteria later in the BNR process. A second GI method for 

nutrient reduction involves the use of a media surface for bacteria and biomass to grow on. This 

attached growth method allows for the bacteria to grow and perform nitrification and 

denitrification to remove nitrogen from wastewater effluent in either an aerobic or anaerobic 

environment. 	  

There are two primary methods currently used for phosphorus removal from municipal 

wastewater effluent. The most common method employs chemical additives such as alum, lime 
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or iron salts that bind to the phosphorus and cause the phosphorus to settle to the bottom of the 

holding chamber (Hartman and Cleland 2007). The phosphorus is then removed as part of the 

activated sludge. A more recent technology for phosphorus removal is enhanced biological 

phosphorus removal (EBPR). This technology modifies the activated sludge process within 

WWTP to create a cycle of aerobic, anaerobic, and anoxic conditions that typically result in high 

levels of phosphorus removal (Strom 2006; Hartman and Cleland 2007). EBPR provides many 

benefits for wastewater treatment facilities over the use of chemical additives including: reduced 

chemical usage, reduced energy demand, lower accumulation of settled sludge, and improved 

phosphorus removal (Park et. al. 1997; Hartman and Cleland 2007).	  

             	  

1.4. Constructed Wetlands	  

Wetlands are some of the most productive ecosystems on the planet, and as such, they 

provide a wide array of ecosystem services. While there is no singular definition for what 

constitutes a wetland, these ecosystems are nearly always wet year-round, or at least seasonally 

wet, and play host to a wide diversity of plant and animal life (US EPA 2004b). Wetlands are 

capable of converting common pollutants found in municipal wastewaters into simple by-

products necessary for the wetland's plants to survive (Kadlec and Wallace  2009). This 

biological ability of wetlands to effectively treat wastewater has led to the development of 

constructed wetlands for the purpose of wastewater treatment and nutrient reduction. CW use the 

natural processes that occur within wetlands in a controlled setting to maximize treatment 

capability (Vymazal 2010). While CW can effectively treat and remove organic solids and 

nutrients present in municipal wastewater, it is often necessary that primary screening of the 

wastewater occurs before entering the CW (US EPA 2000). This preliminary treatment removes 
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large, untreatable objects such as plant material and other floating trash from the wastewater to 

ensure that the CW maintains effective treatment capabilities. 	  

 CW share two key features. To prevent wastewater from seeping into and degrading 

local groundwater, non-permeable liners are placed at the bottom of the CW (Vymazal and 

Kropfelova 2008; Kadlec and Knight 2009). The next critical step in building a CW is 

identifying wetland plants that are both capable of handling the nutrient loading that occurs in 

the nutrient removal process and are native to the local ecology when applicable. While the 

plants used within the CW vary based on local preference, the most common plants used are 

cattails, bulrushes and reeds (US EPA 2000b). However, a wide variety of wetland plants can be 

utilized so long as the plants are capable of high organic and nutrient loadings, provide extensive 

roots and rhizomes systems for attached bacteria in both anaerobic and aerobic settings, and have 

sufficient biomass above the wetland's surface to provide adequate insulation during winter 

months, if the CW is built in a colder environment (Brix 1994a; Vymazal and Kropfelova 2008; 

Vymazal 2011). Substantial above-surface plant material also increases potential nutrient 

removal when the wetland plants are periodically harvested (Reddy and De Busk 1985; Thullen 

et. al. 2005; Vymazal 2011). While sharing these two features, constructed wetlands differ upon 

the way in which the wastewater passes through the wetland. The following section will examine 

the differences in the structure and treatment capabilities for free surface flow, horizontal 

subsurface flow, and vertical subsurface flow.  

	  

1.4.1. Free Surface Flow (FSF)	  

FSF CW are designed to closely mimic the appearance and function of natural wetlands. 

As seen in Figure 1, wastewater flows openly across the wetland where the organic matter and 

nutrients come into contact with emergent wetland vegetation (Kadlec and Wallace 2009). 
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Wastewater slowly filters across the wetland, which allows for most solid organic matter to settle 

at the bottom of the wetland where the plants and bacteria break down the organic solids (US 

EPA 2000b; Kadlec and Wallace 2009). The emergent flora also have a critical role in reducing 

the buildup of algae on the wetland's surface as well as providing heat insulation during the 

winter months (US EPA 2000b; Vymazal 2010). These services are critical in ensuring the FSF 

CW maintains peak treatment capabilities year-round even when the temperature drops during 

winter months. However, for municipalities that experience harsh winters, this heat insulation 

may be inadequate as FSF CW are prone to freezing over in such climates, resulting in reduced 

treatment capacities (Werket et. al. 2002). 	  

Figure 1. Free Surface Flow Constructed Wetland (Kadlec and Wallace 2009)	  

	  

Figure 2. FSF Wetland at Arcata, CA (Humboldt State University 2016) 
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Since free surface flow constructed wetlands most accurately depict natural wetlands, 

they often provide habitat for a diverse range of wildlife (Kadlec and Knight 1996). Such 

wildlife habitation is often included as an ecosystem service generated by FSF CW. However, 

the open flow of wastewater has generated concerns regarding risk of human exposure to 

pathogens by coming in contact with the wastewater (Kadlec and Wallace 2009). These concerns 

have historically limited FSF CW to being used in wastewater treatment once pathogens have 

been treated by primary and secondary treatment methods (U.S. US EPA 2000a). 	  

	  

1.4.2. Subsurface Flow 	  

SSF CW treat wastewater as it flows through a porous media below the surface of the 

wetland. Within the media, wastewater comes into contact with bacteria and plant roots that 

perform the biological treatment processes (Kadlec 2009; Kadlec and Wallace 2009). While 

studies have begun to analyze the varying levels of effectiveness for different SSF media, most 

SSF CW utilize a gravel medium (US EPA 2000c; Pant et. al. 2001). Due to the importance of 

maintaining the media, a major cost of SSF CW is clearing clogs within the media bed. Since the 

wastewater flows through the media in SSF CW, the effectiveness of the CW to treat the 

wastewater decreases with excessive buildup of organic matter (Nivala et. al. 2012).  One major 

weakness of SSF CW is the lack of oxygen present throughout the wetland. While some oxygen 

is present around the plants' roots, nearly all of the treatment processes are performed in 

anaerobic conditions (Kadlec and Wallace 2009). Thus, the ability for these wetlands to 

breakdown ammonia through nitrification is a subject of concern, however, expanding the size of 

the CW has been shown to increase the ability of SSF CW to perform nitrification of ammonia 

(Vymazal 2006; Kadlec and Wallace 2009).	  
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 SSF constructed wetlands can be further categorized based upon the direction in which 

wastewater enters the wetland. In horizontal subsurface flow (HSSF) CW, wastewater enters 

from the side of wetland and continues to move through the gravel media (US EPA 2000c; 

Vymazal and Kropfelova 2008; Kadlec and Wallace 2009).  

	  

Figure 3. Horizontal Subsurface Flow Wetland (Kadlec and Wallace 2009).	  

	  

Figure 4. HSSF Constructed Wetland (Wastewater Gardens® Information Sheet 2016) 

 
 
 

In contrast, vertical SSF (VSSF) CW, deliver a steady stream of wastewater over the top of the 

CW where it passes through an initial level of gravel before entering the porous media to be 

treated (Kadlec and Wallace 2009). This process adds oxygen to the the wastewater as it enters 

the gravel media, the wastewater as it enters the gravel media, allowing for aerobic nitrification 

to occur (Vymazal and Kropfelova 2008; Kadlec and Wallace 2009). Thus, VSSF CW are more 

capable of performing nitrification than HSSF CW, however, due to the incursion of oxygen into 
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the wastewater, very little anaerobic denitrification occurs within VSSF CW (Vymazal 2010). 

These differences in treatment capabilities have led to considerations for hybrid CW systems that 

include both HSSF and VSSF to maximize treatment capabilities.	  

 	  

Figure 5. Vertical Subsurface Flow Wetland (Haberl 2012).	  

	  

	  

Figure 6. VSSF Constructed Wetland (Blumberg Engineers 2015). 

 
 

	  

1.5. Biological and Chemical Mechanisms for Wastewater Treatment in Constructed Wetlands	  

1.5.1. Total Suspended Solids (TSS) and Biodegradable Oxygen Demand (BOD) Removal	  

Constructed wetlands are very effective at removing total suspended solids and other 

organic matter from wastewater. In FSF CW, sedimentation of TSS occurs as the matter moves 

slowly across the wetland and steadily accumulates along the wetland's base (Kadlec and 

Wallace 2009). As the TSS accumulates, anaerobic bacteria breakdown the waste into harmless 
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by-products (US EPA 1999; Kadlec and Wallace 2009). In contrast, the accumulation of TSS in 

SSF CW occurs within the gravel media bed. As in FSF wetlands, anaerobic bacterium break 

down the TSS as they accumulate in the gravel and along plant roots (Akratos and Tsihrintzis 

2007; Al-Omari and Fayyad 2008; Greenway and Woolley 1999; Vymazal 2002). However, the 

long-term accumulation of these solids within the media can reduce the flow rate of the 

wastewater through the wetland (Vymazal and Kropfelova 2008; Kadlec and Wallace 2009). 

Within VSSF CW, additional aerobic breakdown occurs at wetland's surface as the intermittent 

dosing of wastewater allows for minor accumulation of organic matter along the CW’s surface 

(Kadlec and Wallace 2009). Aerobic bacteria then break down these TSS. Thus, there are greater 

maintenance requirements for SSF CW in removing excessive TSS build-up compared to FSF 

CW.	  

Constructed wetlands are efficient at keeping biological oxygen demand below Us EPA 

standards via anaerobic and aerobic bacteria. In HSSF CW, anaerobic bacteria attached to the 

aquatic plants' roots efficiently use oxygen present in the wastewater to decompose the solid 

waste and maintain low levels of BOD (Vymazal and Kröpfelová 2008; Crites et. al. 2010). 

Aerobic bacteria also break down oxygen within FSF CW due to the presence of bacteria in the 

litter bed that remove the oxygen present in the organic matter that accumulate along the bed 

(Crites et. al. 2010). Similar to FSF CW, VSSF CW are dependent upon aerobic bacteria that is 

attached to the media bed and plant material to minimize the amount of oxygen necessary to treat 

the wastewater (Crites et. al. 2010). 	  

	  

1.5.2. Phosphorus Removal	  

CW remove phosphorus from wastewater through various biological and chemical 

processes. A key removal mechanism is through soil accretion and plant uptake. Phosphorus 
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accumulates in the litter bed along the base of FSF CW and within the porous media of SSF CW 

(Vymazal 2007). Similarly, plants within FSF and SSF CW uptake phosphorus from the 

wastewater (Kadlec and Knight 1996, Vymazal 2007). Studies have shown that nearly 20% of 

phosphorus removed by constructed wetlands occurs through accumulation in the soil base and 

plants of the CW (Richardson 1985; Vymazal and Kröpfelová 2008).  However, excessive 

phosphorus accumulation along the litter bed, porous media, and plants of CW decreases the 

ability for the soil and plants to uptake and retain phosphorus (Kadlec and Knight 1996; Dunne 

and Reddy 2005; Vymazal 2007). Thus, it is necessary to routinely clear constructed wetlands' 

media bed and vegetation to ensure sustained phosphorus removal. 	  

Phosphorus removal also occurs via adsorption within the gravel media of SSF CW. 

Adsorption is the chemical process in which the phosphorus binds to other elements within the 

gravel (Kadlec and Knight 1996; Yang et. al. 2001; Akratos and Tsihrintzis 2007; Martín et. al. 

2013). This process is similar to the use of chemical polymers in WWTP that bind with 

phosphorus and cause it to settle down into the activated sludge. While there has been debate as 

to effectiveness of the standard gravel used in CW to react with phosphorus, higher 

concentrations of Al, Fe, or Ca ions in the media have been shown to increase the adsorption of 

phosphorus (Vymazal 2007; Vymazal and Kröpfelova 2008). Thus, it is possible for wastewater 

treatment operators to select media beds with high concentrations of these ions to increase the 

capacity of the SSF CW to bind to and remove phosphorus. 	  

	  

1.5.3. Nitrogen Removal	  

CW are efficient in removing nitrogen from wastewater effluent via biochemical 

processes. Ammonia is a common and environmentally-degrading nitrogen compound present in 

municipal wastewater. CW treat ammonia by breaking down the compound into nitrite, and 
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subsequently nitrate, via aerobic bacteria that perform nitrification (Vymazal 2007). FSF and 

VSSF are more capable at breaking down ammonia than HSSF CW, which lack the oxygen 

necessary for aerobic bacteria to survive in sufficient numbers (Vymazal 2007; Kadlec and 

Wallace 2009). This is an intermediate step in the treatment process as the nitrate must 

subsequently be converted into gaseous nitrogen (Vymazal 2007). HSSF CW are capable of 

chemically converting aqueous ammonia into ammonia gas through volatilization (Saeed and 

Sun 2012). This process occurs when ammonia reacts with catalyzing ions in the gravel media. 

The reaction quickly converts aqueous ammonia into gaseous ammonia, and the gas diffuses to 

the CW's surface where it is safely released into the environment (Tanner et. al. 2002; Mayo and 

Mutamba 2004; Kadlec and Wallace 2009).	  There are significant differences in CWs’ capacities 

to remove nitrate, another primary nitrogen molecule found in wastewater. For HSSF and FSF 

CW, the primary method for treating nitrate occurs via denitrification by anaerobic bacteria 

within the porous media and plant roots (Kadlec and Knight 1996; Yang et. al. 2001; Akratos 

and Tsihrintzis 2007). HSSF CW are more capable of performing denitrification given the 

anaerobic conditions present through the HSSF CW (Kadlec and Wallace 2009). In contrast, FSF 

and VSSF CW are less capable of treating nitrate due to the consistent inflow of oxygen within 

the CW. Thus, creating a hybrid CW system that utilizes a combination of these CW models can 

help achieve consistently effective nitrogen removal (Kadlec and Knight 1996; Vymazal 2007). 	  

	  

1.6. Wetlands and Ecosystem Services	  

Constructed wetlands provide ecosystem services not valued by traditional market costs 

and benefits (Boyer and Polasky 2004; Brander et. al. 2006). These services provide numerous 

benefits to human health and communities that encompass ecological, cultural, and economic 

well-being (de Groot et. al. 2012). Ecosystem services include ecological protection measures 
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such wastewater treatment, habitat creation, nutrient removal, erosion control, climate regulation, 

and controlling water flow to minimize flooding (de Groot et. al. 2012). Cultural value can also 

stem from ecosystem services as these ecosystems provide opportunity for education, recreation, 

and even spiritual nourishment (de Groot et. al. 2012). Furthermore, some ecosystem services 

provide economic resources such as food, fresh water, medicinal supplies as well as raw 

materials such as timber for building (de Groot et. al. 2012). Ecosystems differ on the amount of 

ecosystem services generated, however, wetlands have been shown to generate significant 

ecosystem services covering a wide range of ecological, cultural, and economic services 

(Constanza et. al. 1997; Barbier et. al. 1997; Brouwer 1997; Brouwer 2000; Ghermandi et. al. 

2009; Constanza et. al. 2014). The primary ecosystem services generated by wetlands are habitat 

creation, wastewater treatment, flood prevention, and erosion control (de Groot et. al. 2012). 

Furthermore, wetlands provide some of the highest values for recreation and education amongst 

the world’s ecosystems (de Groot et. al. 2012). Wetlands generate significant ecosystem services 

that benefit both human health and livelihoods, and as such, these services must be given greater 

focus when analyzing the life-cycle benefits of such ecosystems and green infrastructure systems 

such as CW that mimic the biologically functioning of natural wetlands.  

CW and other green infrastructure systems generate ecosystem services through 

mimicking natural ecosystems. Thus, CW provides similar ecosystem services to natural 

wetlands such as nutrient reduction, erosion control, flood abatement in addition to cultural 

services such as education and recreation. Previous studies have analyzed the values of 

ecosystem services generated by CW including habitat biodiversity, cultural education, nutrient 

removal, recreation and carbon sequestration (Hansson et. al. 2005Anderson and Mitsch 2006; 

Ghermandi et. al. 2009; Moore and Hunt 2012). It is critical that these services are accounted for 
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in the overall life-cycle costs of CW systems because failing to do so could significantly 

undervalue the life-cycle costs of CW in comparison to GI systems. By incorporating these 

ecosystem services into the life-cycle cost analysis of CW for wastewater nutrient reduction, 

policy makers and wastewater management personnel can begin to quantify the true life-cycle 

costs of CW systems.  

	  

1.7. Life-cycle Cost Analysis (LCCA)	  

LCCA is an effective methodology for analyzing and comparing the total costs incurred 

by a project over operational life-cycle. LCCA has increasingly been used in analyzing the cost-

effectiveness and treatment capacity of CW systems over a set time period (Balkema et. al. 2002; 

Dixon et. al. 2003; Machado et. al. 2007; Zhou et. al. 2009; Fuchs et. al. 2011; Corominas et. al. 

2013). This methodology provides a strong means to calculate the potential cost savings 

presented by CW for nutrient reduction as compared to GI improvements. Given varying levels 

of implementation and O&M costs between CW and GI systems, LCCA allows the total costs of 

the systems to be compared over a life-cycle as opposed to simply comparing these values 

directly. For example, in this analysis, it is anticipated that CW will have higher implementation 

costs than GI nutrient reduction technologies. However, the anticipated lower O&M costs for 

CW over their life-cycle very well may make CW a less expensive alternative to GI technologies 

with higher annual O&M costs. This thesis employs this methodology to analyze the cost 

effectiveness of CW for nutrient reduction as compared to GI wastewater treatment plant 

improvements over a twenty-year life cycle.  
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2.0 Methodology	  

This analysis expands upon prior use of LCCA research into CW by including both CW 

and GI systems for municipal wastewater nutrient reduction to test whether CW are a cheaper 

alternative to GI methods for municipal wastewater nutrient reduction. The case studies used in 

the study were researched using secondary sources from a range of online scientific journals, 

primary literature and online data sets on CW and GI. Furthermore, for select CW, direct 

correspondence with the systems' managers was also used for data collection (Corona 2016; 

Finden 2016; Helton 2016; Huebotter 2016; McNerney 2016; Pomroy 2016; Sees 2016; Wilson 

2015). The results of the LCCA will reveal whether CW are a cheaper alternative for nutrient 

reduction at a statistically significant level.	  

Prior to formulating the regressions used in the analysis, the mean values for the 

dependent and independent variables were calculated to identify noticeable patterns and 

differences between the values (See Appendix D). While the mean total cost values showed that 

GI systems were the cheaper option, the variations in the ecosystem services generated by the 

CW systems suggested that some systems may cost less than GI technologies when these 

services are included in life-cycle costs and benefits. Furthermore, the mean values for daily flow 

did not present any identifiable trends. To more accurately test for the significance of ecosystem 

services upon the total cost of CW systems, regressions are used in the LCCA. Using regressions 

allows multiple variables to be tested against select dependent variables in order to determine 

whether such variables significantly impact the values and difference in values between GI and 

CW systems. The regressions run in this analysis also provide more accurate results into whether 

the total costs of GI and CW systems differ based upon their daily flow.  	  



	   28	  

 Three regressions are run in this analysis. The first regression uses the total lifetime cost 

for the systems, TC, as the dependent variable. The TC values were computed using the one-time 

implementation costs for the projects added together with the annual O&M costs. The O&M 

costs were extrapolated for a twenty-year lifetime. This time-frame was selected due to other 

wastewater technologies LCCA analyzing CW and wastewater treatment technologies using a 

twenty-year life cycle (Abraham 2003; Ugarelli et. al. 2008; Molinos-Senante et. al. 2013). 

While GI and CW systems can remain in operation beyond this time, the twenty-year life cycle 

provides standardization to the values used in the regression, specifically the O&M costs and 

ecosystem services values (Abraham 2003; Ugarelli et. al. 2008; Molinos-Senante et. al. 2013). 

The first regression (Equation 1) will therefore use the independent variable TC to analyze if 

there are significant differences in the lifetime costs of CW and GI technologies.   	  

The second regression in this analysis will include ecosystem services as net benefit for 

CW. The dependent variable, TC_Eco, will show whether the inclusion of ecosystem services in 

the LCCA of CW systems produce significantly lower total costs for CW in comparison to when 

such values are excluded. As previously mentioned in the introduction section, CW provide 

numerous ecosystem services on top of nutrient reduction and wastewater treatment. The values 

used to generate the ecosystem services for the CW system were calculated in de Groot et. al. 

2012. These values were computed for inland wetlands systems, therefore it is necessary to use 

the benefit transfer method to use these values for CW. The benefit transfer method is used to 

transfer the value of ecosystem services calculated in previous studies to case studies where such 

values have yet to be calculated (Plummer 2009; Jenkins et. Al. 2010; Brander et. al. 2013). In 

this analysis, the values for three ecosystem services were chosen: habitat creation (2806 

USD/ha/year), education (1477 USD/ha/year), and recreation (2527 USD/ha/year). These 
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services were selected due to the high number of CW managers who reported that these were the 

primary ecosystem services generated by their respective CW systems (Corona 2016; Finden 

2016; Helton 2016; Huebotter 2016; McNerney 2016; Pomroy 2016; Sees 2016; Wilson 2015). 

To create the values for TC_Eco, the lifetime ecosystem services generated by the CW systems 

were calculated for a twenty-year life-cycle using the three ecosystem services listed above. 

Once the lifetime ecosystem services values were calculated, these values were subtracted from 

the original TC value to generate the TC_Eco values. The second regression will therefore test 

whether the inclusion of ecosystem services in the valuation of CW systems significantly impact 

whether CW are cheaper than GI technologies for nutrient reduction over their life-cycle.	  

The third regression will analyze the average value of ecosystem services provided by 

CW systems over their life-cycle as well as the impact of the other observed variables on the 

generation of ecosystem services. As previously addressed, CW provide additional benefits 

beyond wastewater treatment and nutrient reduction. This regression will provide insight into 

whether the independent variables significantly affect the value of ecosystem services generated 

by CW. These results may suggest that certain conditions maximize ecosystem services 

generated by CW systems for nutrient reduction. The Eco_Services values are equal to the values 

of the recreation, education, and habitat creation ecosystem services generated by the CW over 

the life-cycle. For GI technologies, the value 0 was assigned since ecosystem services are only 

generated by natural ecosystems and green infrastructure systems. Therefore, it is assumed that 

GI technology do not generate ecosystem services (Isely et. al. 2010; Tiwary and Kumar 2014). 

The regression ultimately provides wastewater treatment managers a life-cycle valuation for the 

ecosystem services provided by a potential CW for nutrient reduction and whether certain 

independent variables impact the amount of ecosystem services generated by CW systems.	  
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Each regression is run with robust standard errors to correct for heteroskedasticity. To 

reduce omitted variable bias, the observed variables listed below are included in each regression 

model. Reducing omitted variable bias aids in controlling for variables not included in the 

regression that may impact cost values. Furthermore, all monetary values are given in terms of 

United States Dollars (USD) and are adjusted for inflation up to 2015. 	  

To conduct the regression, it is necessary to create dummy variables to separate the CW 

systems and the GI case studies. The variable, CW, will be one independent variable in the 

regressions. CW case studies will be designated as (0), while GI improvements are designated as 

(1). This variable will show whether the TC for CW are significantly cheaper or more expensive 

compared to GI technologies for nutrient reduction.	  

The second independent variable is the daily flow of the treatment systems. The variable, 

D_flow, is included to see if the daily flow through the treatment system significantly impacts 

the systems’ life-cycle costs. Municipalities can use these results to determine whether a CW or a 

GI technology would be cheaper nutrient reduction given the WWTP’s daily wastewater load. 

The third variable, GreyxD_Flow, is generated by assigning the system's D_Flow value with the 

system's corresponding CW dummy variable. This variable is tested to observe whether increases 

in the daily flow impact the costs of CW and GI technology differently.  

With the independent and dependent variables describes, three regressions are run to test 

for statistical significance between CW and GI technologies for nutrient reduction. Epsilon is the 

error term for all variables not included in the regression.  

Equation 1. Regression Model with TC as Independent Variable	  

TC= β0+β1*CW+β2*D_Flow+β3*GreyxD_Flow +ε	  

Equation 2. Regression Model with TC_Eco as the Independent Variable	  

TC_Eco= β0+β1CW*+β2*D_Flow+β3*GreyxD_Flow +ε	  
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Equation 3. Regression Model with Eco_Services as the Independent Variable	  

Eco_Services=β0+β1CW*+β2*D_Flow+β3*GreyxD_Flow +ε	  

The independent variable for the EPA Region within each treatment system is located 

was included in three additional regressions. This variable was initially excluded from the 

analysis due to the potential for the same sample size per region, which could have fixed effects 

upon the results. Nevertheless, the results will suggest whether regional location significantly 

impact systems’ life-cycle costs. For the purpose of this analysis, the regions were assigned using 

the EPA's ten regions across the United States (see Appendix D). Table 1 lists the dummy 

variable assigned to each U.S. EPA region. The region is listed in the top row, while the 

corresponding dummy variable is listed in the row below.	  

Table 1: Dummy Variables for Region Values	  

EPA Region	   9	   4	   8	   6	   3	   2	   10	   7	   1	  
Dummy Variable	   0	   1	   2	   3	   4	   5	   6	   7	   8	  

	  

EPA Region 9 was given the variable (0) due to the high frequency of CW systems in the states 

of California and Arizona. Therefore, the results from the analysis will show whether there are 

significant differences in the total costs of systems in EPA Region 9 as compared to those 

located in other regions. 	  

With the inclusion of the independent variable Region included, three additional 

regressions are run to test for statistical significance between CW and GI technologies for 

nutrient reduction. 	  

Equation 4. Regression Model with TC as Independent Variable	  

TC= β0+β1*CW+β2*D_Flow+β3*GreyxD_Flow+β4*Region+ε	  

Equation 5. Regression Model with TC_Eco as the Independent Variable	  

TC_Eco= β0+β1CW*+β2*D_Flow+β3*GreyxD_Flow+β4*Region+ε	  
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Equation 6. Regression Model with Eco_Services as the Independent Variable	  

Eco_Services=β0+β1CW*+β2*D_Flow+β3*GreyxD_Flow+β4*Region+ε	  

Epsilon is the error term for all variables not included in the regression. Positive coefficients for 

the variable CW will suggest CW systems are cheaper in comparison to GI improvements 

because CW are assigned the dummy variable (0). In contrast, a negative coefficient will suggest 

that GI technologies are cheaper than CW systems. It is expected that the coefficient will be 

positive for CW in both regressions, however, due to the inclusion of ecosystem services as net 

benefits for CW, and it is expected that the coefficient will be greater in Equation 2 as compared 

to Equation 1. For Equation 3, the coefficient is expected to be negative since GI technologies do 

not generate ecosystem services. The coefficient will therefore suggest the average value of 

ecosystem services generated by CW systems over the twenty-year life-cycle.  	  

For the variable Daily_load, the coefficient is anticipated to be positive. This will suggest 

that the cost savings from nutrient reduction technologies are higher for WWTP that have higher 

daily flow rates. This is also anticipated in Equation 3 as higher daily flow are typically 

associated with larger CW systems, which maximizes the ecosystem services generated. The 

coefficient for the variable GreyxD_Flow is anticipated to be positive such that a 1 MGD 

increase in daily flow will generate higher costs for traditional infrastructure in comparison to 

CW. With the inclusion of this variable, the total cost increase per 1 MGD increase in 

wastewater flow for traditional infrastructure technologies will be calculated from the 

coefficients β1 + β3. Thus, a positive value for the coefficient β3 will suggest that the cost 

increases resulting from 1 MGD increase in daily flow are greater for GI than CW systems.	  

For the variable Region, it is anticipated that all of the Regions will have negative 

coefficients. This suggests that nutrient reduction technologies outside of EPA Region 9 are 

more costly than those located within Region 9. This is predicted since larger FSF CW can be 
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built in the warmer climates of California, Arizona, and Nevada, which increases the ecosystem 

services generated by these CW systems.  

 

3.0 Data	  

See Appendix 3 for the complete list of case studies, values, and sources used in this 

study. The case studies used in this analysis received effluent flow levels ranging between 0.5 

MGD to 20 MGD, serving communities ranging from 1000 to 29,000 people. Therefore, these 

systems provide nutrient reduction service for small to medium-sized towns and cities. 

Treatment systems serving communities smaller than and larger than this threshold were 

excluded to keep the scope of this study focused on small to mid-sized towns.	  

3.1 Constructed Wetland Data	  

After an extensive review of the available literature, fifty-three constructed wetland 

systems were selected for the analysis. These CW were selected due to their use in receiving 

primary and secondary treated wastewater from centralized WWTP and use in removing excess 

nutrient from the wastewater effluent. To ensure a sense of uniformity amongst the cases studies, 

only systems located in the United States are included in this analysis. Previous analyses on the 

costs of wastewater treatment have separated projects between those in developed countries and 

those in developing countries. This is primarily due to the majority of CW in developed countries 

being used for secondary or tertiary wastewater treatment. In contrast, CW in developing 

countries are increasingly used for primary wastewater treatment (Haberl 1999; Kivaisi 2001; 

Massoud et. al. 2009; Hernández-Sancho et. al. 2015). 	  

Cost function equations were used to compute select implementation and O&M cost 

values in a select number of CW systems due to a gap in available data. In order to compute 
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missing values for the implementation costs of CW, the equation computed by Kadlec and 

Knight 2009 was utilized for FSF and SSF CW:	  

FSF: Implement Costs= 194*A0.690	  

SSF: Implement Costs= 652*A0.704	  

A=area of CW (ha)	  

For missing yearly operation and maintenance (O&M) costs of FSF CW, the equation presented 

in US EPA 2000b was chosen:	  

O&M Costs= 1533 USD/ha/year	  

 The equation given in US EPA 2000c was selected to compute missing O&M costs for SSF 

systems:	  

O&M Costs= 60,000/year/1 MGD	  

Using these equations allowed for missing cost values to be computed and increase the number 

of CW systems that could be included within the analysis.  

	  

3.2. Grey Infrastructure Data	  

Following a review of existing literature and databases, eighty-one case studies for GI 

improvements for nitrogen and phosphorus removal from wastewater treatment plants were 

selected for this analysis. Three larger analyses provided the values for the implementation and 

yearly maintenance costs of these upgrades (Chesapeake Bay Program 2002; Hartman and 

Cleland 2007; US EPA 2015). The Chesapeake Bay Program, a multi-organization partnership 

focused on the protection and restoration of the Chesapeake Bay, calculated the costs that would 

be incurred by regional wastewater treatment plants in order to meet varying levels of nitrogen 

and phosphorus reduction, from Tier I to Tier IV. These tiers were established by the 

Chesapeake Bay Program to create varying standards of nutrient reduction for wastewater 
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treatment plants to achieve. This progression allows the plants to cost-effectively increment plant 

upgrades to lower effluent nutrient levels. For the purpose of this analysis, the costs required for 

the lowest level of nutrient reduction was selected to keep the level of nutrient reduction between 

GI technologies and CW systems constant. Thus, the valued costs for the technology 

improvements were either for reductions to Tier II or Tier III (See Table 1).	  

Table 2. Nutrient Reduction Levels for Tier II and III (Chesapeake Bay Program 2002)   	  

	   Total Nitrogen (mg/L)	   Total Phosphorus (mg/L)	  
Tier II	   TN=8	   TP=1.0 or permit limit if less	  
Tier III	   TN= 3.0	   TP=0.5 or permit if less	  

  

Furthermore, only improvements at "Significant Facilities" with discharge flows greater than 0.5 

MGD were selected for the purpose of this analysis to ensure the daily flows of these systems 

were similar to those of the CW case studies.      

4.0 Results 

 The regression results for Equations 1-3 are presented in Table 3. The results suggest that 

the inclusion of ecosystem services does impact whether CW systems are less costly over their 

life-cycle as compared to GI technologies. The results from Equation 1 indicate that GI systems 

are less costly than CW systems for nutrient reduction when only implementation and 

maintenance costs are included in the life-cycle analysis. The coefficient value for the observed 

variable CW, -4.676, suggests that GI technologies generated nearly 4.7 million USD in cost-

savings as compared to CW systems. This result does not support the hypothesis of this paper, 

however, the results from Equation 2 paint an intriguing picture in regards to the role ecosystem 

services have on the life-cycle costs of CW systems.  

Equation 2 included ecosystem services generated by CW systems as a net benefit 

generated over the CW’s life-cycle and lowering the total life-cycle costs of the systems. The 
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result from the regression suggest that the life-cycle costs of CW systems are comparable to GI 

technologies when ecosystem services are included in the analysis. The coefficient for the 

observed variable CW, -0.867, suggest that, when ecosystem services are included in the life-

cycle analysis, GI technologies only generated approximately 800,000 USD in cost-savings over 

the life-cycle. This difference in total costs are negligible and therefore suggest that the inclusion 

of ecosystem services make CW systems a cost comparable solution to GI technologies for 

nutrient reduction from municipal wastewater. And lastly, the results from Equation 3 for the 

observed variable CW, -3.809, suggest that CW systems generated approximately 3.8 million 

USD in ecosystem services over a twenty-year life-cycle.  

Table 3. Regression Results for Equations 1-3 

	  

The additional observed variables provide intriguing results in regards to their impact on 

life-cycle total costs. Within each regression, the coefficients for the variable Daily Flow are all 

positive, which is not unexpected given that an increase in the wastewater flow handled by the 

system would require greater yearly maintenance costs to ensure maximum treatment capability. 

However, in both Equation 1 and 2, the coefficients for Daily Flow are below 100,000 USD per 

increase of 1 MGD over the system's life cycle. Thus, the results suggest that, while higher daily 

flows inevitably increase the life-cycle costs of nutrient reduction systems, these cost increases 
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are relatively low per 1 MGD increase in wastewater flow. The results from Equation 3 suggest 

that a daily flow increase of 1 MGD increases the value of a CW's ecosystem services by nearly 

60,000 USD over its life-cycle. This result was anticipated as CW systems with higher daily 

flows often require larger area footprints, thereby increasing the ecosystem services generated by 

the CW. 	  

The coefficients for the observed variable GreyxD_Flow suggest that increases in daily 

flow generate greater total costs for GI technologies than for CW systems at a statistically 

significant level. The coefficient values for Equation 1 and 2 are 0.154 and 0.195, respectively. 

Thus, a 1 MGD increase in daily flow increases the total costs for GI improvements by over 

130,000 USD as compared to CW and by 200,000 USD when CW ecosystem services are 

included in the life-cycle analysis. These results suggest that life-cycle costs for CW systems 

increase less than those of GI technologies when daily flow increases.	  

The results obtained from the second set of three regressions are presented in Table 4. It 

is important to note that the addition of the independent variable Region did have fixed effects 

upon the results and produced high robust standard errors. This is assumed to be caused by the 

small sample size of values included per region group. The regression results for Equations for 

the variable CW differ by a substantial margin from the results of Equations 1, 2 and 3. The 

results’ robust standard errors for the variable CW are all much greater than 1, therefore, the 

results are less precise due to the varying sample sizes within the variable Region.  In Equation 

4, the coefficient for CW, -7.188, suggests that that GI systems are cheaper than CW for nutrient 

reduction when only implementation and maintenance costs are included in the life-cycle 

analysis by approximately 7 million USD. Compared to the coefficient for Equation1, this is a 

difference of 2.512, approximately 2.5 million USD. In Equation 5, the coefficient for the 



	   38	  

independent variable CW, 14.05, suggest that, when ecosystem services are included in this life-

cycle analysis, CW systems for nutrient reduction generate over 14 million USD in life-time cost 

savings compared to GI nutrient reduction technologies. While the coefficient for CW in 

Equation 2 suggests that the difference in the life-cycle costs of GI and CW systems are 

negligible, the results from Equation 5 suggest that CW generate over 14 million USD in cost 

savings over the life-cycle in comparison to GI technologies. Lastly, the coefficient for CW from 

Equation 6, -21.24, suggest that CW systems generate over 21 million USD in ecosystem 

services over the life-cycle. This is a difference of approximately17 million USD in comparison 

to the results in Equation 3. Thus, the inclusion of the variable Region had a significant impact 

on the results and produced high robust standard errors, and therefore, the primary focus of these 

results is on the statistical significance of the results for the variable, Region.  

	  
The results for the observed variable Region provide insight into the effect that location 

has upon the total cost and ecosystem services provided by CW. In Equation 1, the results 

suggest that overall, CW systems outside of EPA Region 9 are costlier than those located within 

California, Arizona, and Nevada. However, for systems in Regions 2 and 10, the results suggest 

that these systems' total costs are lower than those within EPA Region 9. The value of these 

variables coefficients, -5.946 and –2.084, suggest that CW systems in these regions are much 

cheaper than those located in Region 9. These results are most likely due to the smaller size of 

CW systems located in these regions. This analysis is supported by the coefficients for the 

variables in Equation 2 and 3 when ecosystem services are included within the independent 

variable. For Region 2, the coefficients for Equation 2 and 3 are 15.26 and –21.21, respectively, 

while the coefficients for Region 10 are 6.791 and –8.875. Therefore, the results suggest that CW 

systems in EPA Region 9 generate greater ecosystem services than those in Regions 2 and 10. 
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This could be attributed to larger FSF CW being used in Region 9 due to the warmer climate. As 

previously discussed, a larger area footprint increases the ecosystem services generated by CW. 

Thus, the cheaper total cost of CW in Region 2 and 10 from Equation 1 can be attributed to these 

systems being smaller than those within Region 9, which is why the ecosystem services 

generated by these CW are less than those in Region 9 systems. Overall, the results suggest that 

CW systems located in EPA Region 9 are generally cheaper than those elsewhere in the United 

States, and this is due in large part to the high ecosystem services generated by these systems. 	  

Table 4. Regression Results for Equations 4-6	  
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5.0 Analysis and Recommendations for Future Research	  

The results from the life-cycle analyses provide useful suggestions into the costs of 

different methods for municipal wastewater nutrient reduction as a means to minimize the 

anthropogenic eutrophication of the nation's aquatic ecosystems. GI technologies are the cheaper 

technology when ecosystem services are excluded from the LCCA. Thus, given that most cost-

benefit analyses do not take into account ecosystem services, the results suggest that wastewater 

treatment managers are more likely to select a GI improvement over a CW system. The primary 

explanation for these results is that the GI improvements for nutrient reduction often require 

simply upgrading the existing wastewater treatment plant as opposed to having to implement a 

new CW system. Furthermore, these nutrient removal upgrades may only present minor 

increases in O&M costs due to increased energy and chemical usage or the need for increased 

sludge removal. In contrast, CW require consistent maintenance of the wetland's plants and 

porous media in order to ensure peak treatment capacity. Thus, the results of the first LCCA 

disproved the hypothesis that CW systems are cheaper than GI technologies for nutrient removal, 

however, this analysis also suggests that the inclusion of ecosystem services provided by a CW 

has a strong impact on such systems lower life-cycle costs.	  

The inclusion of ecosystem services in LCCA of constructed wetlands is critical when 

comparing the costs of technologies for nutrient reduction. The results from the analysis suggest 

that the average CW system will generate over 20 million USD in ecosystem services over a 

twenty-year life-cycle. The impact of ecosystem services on the total life-cycle costs of CW 

systems was shown in the second regression analysis and suggests that CW systems are cheaper 

than GI improvements when ecosystem services are included as net benefits. Thus, CW systems 

present a cheaper solution for nutrient reduction when ecosystem systems services are included 
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in the LCCA. However, this analysis only used the values for three ecosystem services generated 

by the CW: habitat creation, education, and recreation. Thus, it is probable that this analysis has 

undervalued the total ecosystem services generated by the CW used in the analysis. It is not 

unrealistic to predict that, if the complete range of ecosystem services generated by the CW were 

included in this analysis, that the value of ecosystem services would be much higher and further 

decrease the life-cycle costs of CW systems in comparison to GI technologies. 	  

This study has shown how including ecosystem services in a LCCA provides a more 

comprehensive comparison between CW systems and GI technologies for wastewater nutrient 

reduction. For too long, the ecosystem services generated by green infrastructure such as CW 

have not been included when analyzing the life-cycle costs of infrastructure projects. Creating a 

more comprehensive analytic methodology is critical in allowing wastewater treatment managers 

to analyze whether a CW is the cheaper option for nutrient reduction. While value benefit 

transfer was used to compute the ecosystem services provided by the CW used in this analysis, 

developing more precise methodologies for computing the ecosystem service provided 

specifically by CW for wastewater nutrient reduction will allow future LCCA to incorporate site-

specific ecosystem services. It is important that wastewater treatment managers considering a 

constructed wetland system can accurately value the ecosystem services the wetland will produce 

over its life-cycle. For example, a smaller HSSF CW in the Midwest will most likely not 

generate the same services as a large FSF CW in a warmer climate, and therefore, these CW will 

produce different values and types of ecosystem services. In my correspondence with site 

managers who have previously decided to implement a constructed wetland for nutrient 

reduction, none of the mangers stated that the value of potential ecosystem services had been 

calculated to the system being implemented. Rather, these CW systems were selected because 
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the alternative GI solution proved too costly for the municipalities. Thus, it is apparent that even 

in cases where CW systems are selected for nutrient removal, there are not concrete evaluations 

for the potential ecosystem services that will be generated over the constructed wetland’s life 

cycle. Therefore, it is imperative that wastewater treatment managers have the resources 

necessary to accurately value the expected ecosystem services a constructed wetland system will 

generate. 

There are a range of variables not included in the scope of this analysis that future 

research can analyze to continue the discussion on the role of ecosystem services in LCCA for 

both CW and other green infrastructure systems. While the independent variable Region was 

included in the second set of regressions, it would be intriguing for future research to incorporate 

the mean temperature of the CW system within the LCCA. Using temperature, rather than 

region, would provide results on whether variances in a system’s temperature and location 

significantly impact their life-cycle costs and generated ecosystem services. Thus, this variable 

could allow future research to suggest whether CW in warmer southern states produce 

significantly higher ecosystem services as compared to those located in cooler northern climates. 

Furthermore, this variable could suggest whether there are certain temperatures that help to 

maximize ecosystem services, and if so, then municipalities in such climates such begin to take a 

serious look at implementing a constructed wetland system. A second variable future research 

should analyze are the type of constructed wetland and how the costs and ecosystem services 

generated by these CW models differ. As explained in the introduction section of this paper, 

there are three primary CW models: free-surface flow (FSF), horizontal subsurface flow (HSSF), 

and vertical subsurface flow (VSSF); however, due to the sample size of CW used in this 

analysis, it was decided to include all CW models together. Thus, future research should seek to 
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analyze whether different ecosystem services are generated by the different CW models. If the 

research suggests this, city officials and policy makers could determine which CW model would 

generate the most ecosystem services that are deemed most important for the surrounding 

community. 

It is also important to keep in consideration that the wastewater treatment systems both 

the GI and CW technologies were being implemented for were treating populations ranging from 

approximately 1,000 to 29,000 community members. Thus, these communities are primarily 

small to middle-sized municipalities, and so, much smaller communities, single-sized homes, 

and larger metropolitan cities are not included in the scope of this analysis. Future research 

focused on these sized towns and cities could suggest new recommendations on whether CW 

systems are a less costly option for nutrient reduction depending on various population levels. 

This research will greatly expand the scope of LCCA for CW systems to include a larger range 

of population sizes. Ultimately, the results from such studies will allow wastewater treatment 

managers from various sized communities to analyze the amount of ecosystem services and the 

total life-cycle costs of potential CW systems. 

As eutrophication continues to threaten the health of both aquatic ecosystems and 

communities dependent on them, it is important that future research is dedicated to 

understanding how wastewater treatment plants can cost-effectively reduce nutrient levels in 

wastewater effluent. This analysis has suggested that ecosystem services generated by CW 

systems greatly reduce the life-cycle cost of these systems, therefore, future research on 

valuation methodologies for ecosystem services will enhance the ability for wastewater treatment 

managers to accurately value the ecosystem services a potential CW could provide over its life-

cycle. The results of this analysis suggests that CW systems should be viewed as a cost-effective 
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solution for municipal wastewater nutrient reduction and an integral part for reversing the 

rampant anthropogenic eutrophication that has inflicted devastating impacts upon the world's 

aquatic ecosystems.  
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  Appendix A: Abbreviations	  

BNR: Biological nutrient removal	  
BOD: Biodegradable oxygen demand	  
CW: Constructed wetlands	  
EBPR: Enhanced biological phosphorus removal	  
FSF: Free-surface flow 	  
GI: Grey infrastructure	  
HSSF: Horizontal sub-surface flow	  
LCCA: Life-cycle cost assessment	  
MGD: Million gallons per day	  
O&M Costs: Operation and Maintenance costs	  
SSF: Sub-surface flow	  
TSS: Total Suspended Solids	  
VSSF: Vertical sub-surface flow	  
USD: United States Dollars	  
US EPA: United States Environmental Protection Agency	  
	  

Appendix B: Primary Biochemical Processes for Nutrient Removal in CW	  
	  

This table provides a brief overview of the primary biochemical processes that occur 
within CW to remove nitrogen and phosphorus from wastewater effluent. The "Process" column 
identifies the name of the biochemical process, while the "Chemical Equation/Description" 
column describes the chemical reaction that occurs within the process. For processes that utilize 
bacteria to breakdown the nutrients, the "Environmental Conditions" column shows whether the 
process occurs in aerobic (with oxygen) conditions or in anaerobic conditions (without oxygen). 
For some of the processes, the environmental conditions are not applicable (N/A). Lastly, the 
"Nutrient Removed" column states whether the biochemical process removes nitrogen (N) or 
phosphorus (P) from the wastewater effluent. 	  

	  
Process	   Chemical	  Equation/Description	   Environmental	  

Conditions	  
Nutrient	  
Removed	  

Nitrification	   ammonia-N→nitrite-N→	  
nitrate-N	  

Aerobic	   N	  

Denitrification	   nitrate-N→nitrite-N→	  
gaseous N2, N2O	  

Anaerobic	   N	  

Volatization	   ammonia-N (aq)→ammonia-N	  
(g)	  

N/A	   N	  

Adsorption	   P binds to Al, Fe, or Ca ions in the 
gravel media, causing the P ions to 
settle within the media	  

N/A	   P	  

Soil Accretion	   P ions settle and bind with ions 
located within the CW's soil	  

N/A	   P	  

Plant Uptake	   The wetland's plants uptake 
phosphorus through its roots as P is 
a necessary nutrient for plant 
growth. Peak P uptake usually 
occurs early in a plant's growing 
season.	  

N/A	   P	  
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Appendix C: Grey Infrastructure for Nutrient Reduction (Hartman and Cleland 2007)	  

	  
This table provides more in-depth information on current GI technologies for wastewater 

nutrient reduction. The technologies are grouped together according to the method in which they 
remove nutrients: biologically, physically, and chemically. The "Process" column identifies the 
common name for the technologies. "Process Description" provides a brief description into the 
mechanism in which nutrient reduction occurs. Lastly, the "Nutrient Removed" column identifies 
whether the process is used to remove nitrogen (N), phosphorus (P), or both nutrients (N&P).	  
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Appendix D: Mean Value Table for Dependent and Independent Variables	  
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Appendix E: EPA Regions Map (US EPA 2015)	  
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Appendix F: List of Case Studies and Values 	  
	  

The following table provides an overview of the case studies and values used in this 
study. The "Case Study" column provides the wastewater treatment that the CW or GI 
improvements were built for. The "CW" column identifies whether the case study is a CW (0) or 
a GI improvement (1). "D_Flow" provides the values for the million gallons per day (MGD) 
daily flow of wastewater into the systems. The "Eco_Services" column lists the value for the 
ecosystem services generated by the CW systems in million USD. "TC" are the total cost values 
for the systems, and "TC_Eco" are the total cost values for the systems when the "Eco_Services" 
values are included. The "Region" column identifies the US EPA Region the system is located in 
using the variable values identified in the study's Methodology section. Lastly, the sources that 
provided the values used in this study are presented in the "Source" column. 	  
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