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COMPARING TWO THICKENED CYCLES: A
GENERALIZATION OF SPECTRAL INEQUALITIES

HANNAH PIEPER

Oberlin College

March 30, 2018

Abstract. Motivated by an effort to simplify the Watts-Strogatz model
for small-world networks, we generalize a theorem concerning interlacing
inequalities for the eigenvalues of the normalized Laplacians of two graphs
differing by a single edge. Our generalization allows weighted edges and
certain instances of self loops. These inequalities were first proved by Chen
et. al in [2] but our argument generalizes the simplified argument given by
Li in [8].
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1. Introduction

Complex networks play an important role in a variety of disciplines, ranging
from computer science, physics, sociology, and biology. One of the most signifi-
cant classes of graphs are those that demonstrate “small-world” phenomenom;
meaning that they are highly connected and display local clustering, but have
a relatively small diameter. Several random graph models that exhibit small-
world phenomena have been studied. In this paper, we will briefly examine
the Watts-Strogatz model, and explore a slight variation in its construction.

1.1. Watts-Strogatz Small World Network.
The creation of the first small-world network model was motivated by an

interest in introducing more complex structure into random graphs to capture
natural phenomena in biological, technological and social networks [11]. This
small-world network model, called the Watts-Stogatz random graph exhibits
high clustering among local neighborhoods of vertices while maintining a short
average path length.

To construct a graph G from the Watts-Strogatz Model, we begin with a
base circulant graph on n vertices.

Definition 1.1. A base circulant graph, Ck
n, with jumps 1, ..., k, is a graph on

n vertices labelled 0, 1, ..., n− 1, where each node i is adjacent to the 2k nodes
with labels i± 1, ..., i± k mod n.

Figure 1. C3
15; A circulant graph on 15 vertices with jumps 1, 2, 3

Then for each edge of Ck
n, we leave one end fixed and with a given proba-

bility, p, move the other end to a different vertex chosen at random from the
other n − 2 vertices in G. We can consider these adjustments in edge end-
points as shortcuts, causing the average shortest path length of G to be shorter
than it was before the random process. While the Watts-Strogatz model cap-
tures small-world phenomena, the process can be difficult to analyze since the
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additions of random edges and the deletions of base graph edges are not inde-
pendent.

1.2. The Base: An Alternative to the Circulant Graph.
The Watts-Strogatz random graph is often used as a model in the study

of complex networks [5]. The study of complex networks uses standard tools
from random graphs that often rely on the independence of adding edges [10],
[1]. Since the process with which random edges are added in the Watts-
Strogatz model is not independent, computational difficulties arise. We will
propose using a different type of thickened cycle as a base graph and simply
add random shortcut edges; greater independence may result in a random
graph exhibiting small world properties that is easier to analyze.

Definition 1.2. An (m,n) cluster graph, T (m,n) is a collection of mn vertices
labelled from 0 to mn−1, grouped into n clusters of m vertices such that every
vertex in a cluster is in the same equivalence class mod n. Two vertices of
this graph, i and j are adjacent if and only if (i− j) mod n = 1.

We use the notation T (m,m) because this is essentially a thick cycle on m
vertices.

In this paper, we will be comparing the cluster graph with the base circulant
graph and analyzing their spectral properties as we begin to add random edges.
In order to have the same number of vertices, edges, and vertex degree, we
will be looking at the cluster graph with m clusters of m vertices, T (m,m),
and the circulant graph, Cm

m2 , on m2 vertices with jumps 1, 2, . . . ,m.

2. Geometric Properties of Base Circulant and Cluster Graphs

The graph theoretic vocabulary and definitions that we will use are stan-
dard and can be found in [4]. By construction, Cm

m2 and T (m,m) both have
m3 edges, m2 vertices and every vertex has degree 2m.

2.1. Diameter.

Definition 2.1. The diameter of a graph G is the greatest distance between
any two vertices in G.

Theorem 2.2. The diameter of the circulant graph, Cm
m2 is dm

2
e.

Proof. Since Cm
m2 is symmetric, choose any vertex, j. If the vertices are ar-

ranged clockwise by label, it is clear that the vertex furthest from j is the
vertex labelled j +m2/2 mod m2. To take the shortest path, we will want to
take as many edges that connect vertices i and i + m as possible. There are
bm

2
c of them on the path between vertices j and j+m2/2 mod m2. However,
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if m is odd, then m2

2
6≡ 0 mod m. In this case, we must take one more edge

to get to vertex j +m2/2 mod m2. Therefore, the diameter is dm
2
e. �

Theorem 2.3. The diameter of the cluster graph, T (m,m) is given by bm
2
c

when m ≥ 4 and 2 when m < 4.

Proof. If m < 4, this is clear. So let m ≥ 4. Since the labelled vertices of
T (m,m) are grouped into clusters determined by their equivalence classes
mod n and each of those clusters is completely connected to the two adjacent
clusters, we can view the distances between vertices in two different clusters
as the distance between the clusters themselves. Once we consider the vertices
in each cluster to be lumped together, we reduce this problem to finding the
diameter of a cycle on m vertices, which is just bm

2
c.

�

As m→∞, the diameters of the two graph families are both asymptotic to
m
2

as m→∞.

2.2. Average Shortest Path.

Definition 2.4. The average shortest path of a graph G is the average number
of edges on the shortest path between all pairs of vertices in the graph.

Theorem 2.5. The average shortest path length of Cm
m2 is given by

(1)
m2
(
m(dm

2
e − 1)(dm

2
e − 2) + dm

2
e(m2 − 1 mod 2m)

)
2
(
m2

2

) ∼ m

4
, as m→∞.

Proof. Consider an arbitrary vertex i. Via the symmetry in the circulant
graph, vertex i has 2m neighbors, 2m vertices at distance 2, and so on, up to
and including distance dm

2
e − 1. These shortest path use edges that connect

vertices i and i + m. There are an additional (m2 − 1 mod 2m) vertices at
distance dm

2
e. Therefore, the average distance between any two vertices in the

graph is given by,

m2
(

2m
∑dm

2
e−1

k=1 k + dm
2
e(m2 − 1 mod 2m)

)
2
(
m2

2

) .

Using the formula for a sum of consecutive integers and simplifying, we get
that the average shortest path is

m2
(
m(dm

2
e − 1)(dm

2
e − 2) + dm

2
e(m2 − 1 mod 2m)

)
2
(
m2

2

) .

�
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Theorem 2.6. The average shortest path length of T (m,m) is given by

(2)
m2
(

2(m− 1) +m(m
2
− 1)(m

2
− 2) + m2

2

)
2
(
m2

2

) ∼ m

4
when m is even,

and

(3)
m2
(

2(m− 1) + bm2

2
c(bm

2
c − 1)

)
2
(
m2

2

) ∼ m

4
when m is odd.

Proof. Begin by choosing an arbitrary vertex j. Via the way the cluster graph
is connected, it is clear that the distance between vertex j and vertex i, where
i ≡ j mod m will be 2. Additionally, there are 2m vertices are every distance
up to and including m

2
− 1. If m is even, there is only one cluster of m vertices

at distance m
2

. Therefore, we get that the average shortest path will be,

m2
(

2(m− 1) + 2m
∑m

2
−1

k=1 k + m2

2

)
2
(
m2

2

) .

When m is odd, there will be two clusters of vertices at distance bm
2
c and so

we see that the average shortest path length in this case is,

m2
(

2(m− 1) + 2m
∑bm

2
c

k=1 k
)

2
(
m2

2

) .

From here, we can use the formula for a sum of consecutive integers to simplify
the equation. �

Since all of the expressions are asymptotic to m
4

, the difference between the
average shortest path of the base circulant and cluster graphs will only differ
by a constant as m→∞.

3. Spectral Properties of Base Circulant and Cluster Graphs

3.1. Graph Laplacians.
Now that we have seen some of the geometric properties of the base circu-

lant and cluster graphs are similar, we can turn our attention to their spectral
properties. Given a graph G on n vertices, there are several different ways of
representing G in matrix form. Among these are adjacency matrices, Lapla-
cians, and normalized Laplacians. While we will discuss all three, this paper
will primarily be concerned with the eigenvalues of the normalized Laplacian.
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Given the graph G, let di denote the degree of vertex i. We define the
Laplacian, L, of G as follows:

L(i, j) =


di if i = j,

−1 if i and j are adjacent,

0 otherwise.

We can alternatively define L as L = D −A where A is the adjacency matrix
associated with G and D = diag(d1, . . . , dn).

We define the normalized Laplacian of G as L = D−1/2LD−1/2. Note that
if di = 0, by convention, we define D−1/2(i, i) = 0. Therefore, the entries of L
are

L(i, j) =


1 if i = j and di 6= 0,

− 1√
didj

if i and j are adjacent,

0 otherwise.

The normalized Laplacians of graphs are well studied and it can be shown
that all eigenvalues of L(G) lie in [0, 2]. For a more complete discussion on
the eigenvalues of the normalized Laplacian, see [3].

3.2. The Spectra of Base Circulant Graphs.
Recall the circulant graph introduced Definition 1.1. The Laplacian for Cm

m2

is a particular kind of matrix called a circulant matrix.

L
(
C3

15

)
=


1 −1

6
−1

6
−1

6
0 . . . 0 −1

6
−1

6
−1

6
−1

6
1 −1

6
−1

6
−1

6
. . . 0 0 −1

6
−1

6
...
...

−1
6
−1

6
−1

6
0 0 . . . −1

6
−1

6
−1

6
1


Figure 2. The normalized Laplacian for C3

15, see Figure 3.

Definition 3.1. A circulant matrix is a matrix where each successive row is
rotated one element to the right of the previous row.

The jth eigenvalue of an n× n circulant matrix, C, is given by

pj = p
(
e

2πij

m2

)
= c1 + c2

(
e

2πij

m2

)
+ ....+ cn

(
e

2πij

m2

)n−1
,

and (c1, ..., cn) are the entries of the first row of C [9].
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Using this, we can then show that the jth eigenvalue of L(Cm
m2) is given by

λj = 1− 1

2m

m∑
k=1

(
e
j2πi

m2

)k
− 1

2m

m2−1∑
k=m2−m

(
e
j2πi

m2

)
=

2m+ 1

2m
− 1

2m

sin
(
(m+ 1/2)2πj

m2

)
sin( πj

m2 )
.(4)

The trigonometric part of the jth eigenvalue of Cm
m2 actually quite well known

[7].

Definition 3.2. The Dirichlet kernel, Dm(x) is of the form, Dm(x) =
sin(m+ 1

2
)x

sin 1
2
x

.

This function is bounded by f(x) = sin−1 x
2
, for any m.

Figure 3. A plot of the Dirichlet kernel.

So now we see that the eigenvalues of Cm
m2 are determined by evaluating

an affine transformation of the Dirichlet kernel, Dm(x), at the points where
x = 2πj

m2 , j = 0, . . . ,m− 1. When we plot the eigenvalues with respect to j,
this is quite obvious.
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The Unsorted Eigenvalues for the Circulant Graph, m= 30

Figure 4. The eigenvalues of C30
302 .

3.3. The Spectra of Cluster Graphs.
Recall the cluster graph introduced in Definition 1.2.

Theorem 3.3. Let G be an (m,m) cluster graph and H be the cycle on m
vertices. Additionally, let λ0, ..., λm−1 be the eigenvalues of L(H) where

λi = 2m+1
2m
−1

2

sin((3/2) 2πjm )
sin(πj

m
)

. Then the eigenvalues of L(G) are λ0, . . . , λm−1, 1, . . . , 1︸ ︷︷ ︸
m(m−1)

.

Proof. Consider the normalized Laplacian for G in the following way,

L(G) =



A′ A A A
A A′ A A
A A A′ A

...
. . .

...
. . .

A A A A′


where

A′ =


1 − 1

2m
0 . . . 0 − 1

2m
− 1

2m
1 − 1

2m
0 0

...
. . .

...
. . .

− 1
2m

− 1
2m

1

 and A =


0 − 1

2m
0 . . . 0 − 1

2m
− 1

2m
0 − 1

2m
0 0

...
. . .

...
. . .

− 1
2m

− 1
2m

0

 .



10 HANNAH PIEPER

Note that A and A′ are both m×m matrices and that A′ − A = In.
Now having the normalized Laplacian of G defined in this way, we will use

block operations to put L(G)− λIm2 in block diagonal form. First, we define
B′ as the following:

B′ =


1− λ − 1

2m
. . . − 1

2m
− 1

2m
1− λ − 1

2m
...

. . .

− 1
2m

1− λ

 .

With this definition, we now complete some elementary row and column op-
erations to obtain,

L(G)− λIm2 =


Im − diag(λ) 0 A

0 Im − diag(λ) A
...

. . .
0 0 (m− 1)A+B′


It can be shown that,

(m− 1)A+B′ =


1− λ −1

2
. . . −1

2
−1

2
1− λ −1

2
...

. . .

−1
2

1− λ

 ,

which is just the normalized Laplacian for a cycle on m vertices. Since a cycle
on m vertices is a base circulant graph with a jump of 1, we can express the
eigenvalues of this submatrix using Equation (4), meaning that λi is given by,

λi =
2m+ 1

2m
− 1

2

sin
(
(3/2)2πj

m

)
sin(πj

m
)

, i = 0, . . . ,m− 1.

Since the eigenvalues of a block diagonal matrix are the eigenvalues of each
block; we can conclude that L(G) has the eigenvalues of the cycle onm vertices.
The eigenvalues for the rest of L(G) are given by the eigenvalues of Im−diag(λ)
which will all have value exactly 1.

�

3.4. A Comparison.

Definition 3.4. Let G be a graph with n vertices and normalized Laplacian
eigenvalues λ1, . . . , λn. Define the spectral cumulative distribution function
(spectral CDF) FG : [0, 2]→ [0, 1] of G by

FG(λ) =
|{i : λi < λ}|

n
.
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When we plot the spectral CDF for the circulant and cluster graphs with
m = 30, in Figure 5 it is apparent that they share a similar shape.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

Cumulative Distribution Plots for the Eigenvalues of the Circulant/Cluster Graphs,  m = 30

Circulant Graph
Cluster Graph

Figure 5. Spectral CDF, m = 30.

We would like to quantify how similar these distributions are to one another
and determine if and how the distributions converge asm gets large. In order to
do so, we will divide the eigenvalues into three regions based on the eigenvalues
of T (m,m). Region 1 contains the set of eigenvalues less than 1, forming the
left tail in Figure 5. Region 2 contains the eigenvalues larger than 1, forming
the right tail in Figure 5. The third region will be the eigenvalues that have
value 1; these form the vertical region in the middle of the figure.

We will produce bounds on where these regions begin and end for the base
circulant graph. In order to do so, we must first understand how the shape of
the eigenvalue plots of Cm

m2 arises.
Figure 6 shows the eigenvalues of the base circulant graph on 1002 vertices in

order to emphasize the bumps at the boundary of region 1. These bumps are
coming from the introduction of the eigenvalues in successive peaks in Figure
4.
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0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
Eigenvalues

0

100

200

300

400

The Sorted Eigenvalues for the Circulant Graph, m = 100

Figure 6. A close up of the eigenvalues of C100
1002 .

However, we are only interested in the bumps arising from the highest peak
and the second deepest valley, meaning we are only interested in approximating
where the first bump appears in this figure.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Eigenvalues

0

200

400

600

800

1

2

The Sorted Eigenvalues for the Circulant Graph, m = 30

Figure 7. The Eigenvalues of C30
302 ; regions 1, 2 marked.
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0.0 0.2 0.4 0.6 0.8
Eigenvalues

0

50

100

150

200

250

1

2

The Sorted Eigenvalues for the Circulant Graph, m = 30

(a) Region 1.

1.12 1.14 1.16 1.18 1.20 1.22 1.24
Eigenvalues

850

860

870

880

890

900

910

920

1

2

The Sorted Eigenvalues for the Circulant Graph, m = 30

(b) Region 2.

Figure 8. A Close Up of the Eigenvalues of C30
302 .

Looking at the eigenvalues in these plots, it is clear that the jumps that
mark the boundaries of regions 1 and 2 are coming from the introduction of
eigenvalues from the second valley, (1), and the highest peak, (2). In order to
see this more clearly, consider the following figure.

100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ei
ge

nv
al

ue
s

1

2

The Unsorted Eigenvalues for the Circulant Graph, m= 30

Figure 9. The Unsorted Eigenvalues of C30
302 ; regions 1, 2 marked.

Thus, in order to determine bounds on the locations of regions 1 and 2, we
need only to estimate the height and depth of the highest peak and the second
valley respectively.

3.5. Eigenvalue Convergence.
In order to approximate the location of the highest peak and second valley,

we will differentiate the function for the eigenvalues and consider the zeroes.
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Since our eigenvalues are symmetric about the y axis, we will only need to find
the positive critical points.

It can be shown that

(5)
d

dx
(λx) =

(m+ 1) sin(mx)−m sin((m+ 1)x)

sin2(x/2)

where λx is found in Equation (4).
It is clear that the critical points corresponding to the highest peak and

the second valley occur when (m + 1) sin(mx) − m sin((m + 1)x) = 0, since
sin2(x/2) = 0 at x = 4kπ, which occurs at values too large to be the locations
of the highest peak and the second valley.

3.5.1. Bounding Regions of Convergence.
First, we will bound the location of the second valley from above. Since we

know that the second valley occurs at some x such that
4π

2m+1
< x < 6π

2m+1
, we can create an upper bound for the location of the second

valley by fashioning a lower bound for the derivative in this region,

m+ 1

m
sin(mx)−sin((m+1)x) ≥ sin(mx)−sin((m+1)x) = 2 cos

(
x(2m+ 1)

2

)
sin
(x

2

)
.

Since sin
(
x
2

)
6= 0 for x ∈

[
4π

2m+1
, 6π
2m+1

]
, the zeroes are given by the cosine,

at x = (2k+1)π
2m+1

. It then follows that the critical point that bounds the location

of the second valley from above is 5π
2m+1

.

Therefore, the location of the second valley lies at some x ∈
[

4π
2m+1

, 5π
2m+1

]
.

We can use a similar strategy with slightly more complicated computations to
produce a lower bound for the location as well and see that the location of the
second valley lies in, [

5π − 2 arcsin(2m+1
4πm

)

2m+ 2
,

5π

2m+ 1

]
.

For details of these computations, see Appendix A.
Then, we can use this information to construct the following curve that

bounds the depth of the second valley in this region from below:

y =
2m+ 1

2m
− 2 (2m+ 2)

m
(

5π − 2 arcsin
(

2m+1
(4πm)

)) .
Now we will turn our attention to region 2. This is the upper interval in

which only eigenvalues from the highest peak occur, which will be the largest
eigenvalues in the spectrum.
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Again we will use Equation (5), but this time, we will be looking at the
highest peak, and so we are concerned about the derivative within the region[

6π
2m+1

, 8π
2m+1

]
. Using virtually identical methods as we did when estimating

the location of the second valley, we see that the location of the highest peak

will be between

[
7π+2arcsin(− 2m+1

6πm )
2m+2

, 7π
2m+1

]
. We then can show that the height

of the second peak is less than

y =
2m+ 1

2m
− 2m+ 2

m
(

7π − 2 arcsin
(
− 2m+1

(6πm)

)) .
We note that Theorem 3.3 and the bounds proved in this section suffice to
show:

Theorem 3.5. Fix ε > 0. As m → ∞, the spectral CDFs of both families of
base graphs (circulant and cluster) converge to

F (λ) =

{
0 λ < 0,

1 λ ≥ 1,

with pointwise error O
(

1
m

)
for |λ− 1| > ε.

4. Eigenvalue Interlacing: Adding Edges

Now that we have an understanding of the eigenvalues of the base circulant
and cluster graphs, we will begin to add random edges and explore the resulting
effect on the spectra.

4.1. Previous Results.

Definition 4.1. A Hermitian matrix is a complex square matrix that is equal
to its own conjugate transpose.

As graph Laplacians are real-valued symmetric, they are Hermitian. For an
arbitrary matrix, the only certain characterization of the eigenvalues we can
make is that they are the roots of the characteristic polynomial. However, the
eigenvalues of Hermitian matrices can be expressed as the optimal solutions to
a series of optimization problems, known as the variational characterizations
of eigenvalues [6]. We will rely on the following theorem in later sections.

Theorem 4.2. (Rayleigh-Ritz) Let A ∈Mn be Hermitian. Then,

λ1x
∗x ≤ x∗Ax ≤ λnx

∗x for all x ∈ Cn

λmax = λn = max
x 6=0

x∗Ax

x∗x
= max

xx∗=1
x∗Ax

λmin = λ1 = min
x 6=0

x∗Ax

x∗x
= min

x∗x=1
x∗Ax
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The next two theorems are concerned with how the eigenvalues of particular
matrices interlace. These statements can be used to infer things about the
spectra of graphs after adding edges or deleting vertices. Previous work can
be found in [13] and [12].

Theorem 4.3 (Thm 4.3.1, [6]). Let A,B ∈ Mn be Hermitian and let the
eigenvalues λi(A), λi(B), and λi(A+B) be arranged in increasing order. Then,
for each k = 1, 2, . . . , n we have

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B).

Theorem 4.4 (Thm 4.3.15, [6]). Let A ∈Mn be a Hermitian matrix, let r be
an integer with 1 ≤ r ≤ n, and let Ar denote any r× r principal submatrix of
A. Then, for each integer k such that 1 ≤ k ≤ r we have

λk(A) ≤ λk(Ar) ≤ λk+n−r(A)

The following result that we will generalize is due to Chen et. al [2].

Theorem 4.5. Suppose H is a connected graph obtained from the graph G by
removing an edge. Let L(G) and L(H) have eigenvalues λ1 ≥ · · · ≥ λn and
µ1 ≥ · · · ≥ µn, respectively. Set λ0 = 2 and λn+1 = 2. Then,

λj−1 ≥ µj ≥ λj+1 for j = 1, . . . , n.

The original proof uses variational characterizations of eigenvalues, (see The-
orem 4.2) and some complicated computations. However, a simpler proof rely-
ing on block decomposition and inertia is presented by Chi-Kwong Li [8]. We
will present a generalization of Theorem 4.5; our proof directly generalizes the
proof presented in [8]. Before we do so, we introduce the concepts we rely on.

4.2. Inertia.

Definition 4.6. Let A ∈ Mn be a Hermitian matrix. The inertia of A is the
triple, (p, n, z) where p number of positive eigenvalues of A, n is the number
of negative positive eigenvalues of A and z is the number of zero eigenvalues
of A, all counting multiplicity.

To see a more in depth explanation of inertia, see [6]. The proof of Theorem
4.8 in the next section relies heavily on simplifications made possible by the
following theorem.

Theorem 4.7 (Thm 4.5.8, [6]). Let A,B ∈Mn be Hermitian matrices. There
is a nonsingular matrix S ∈Mn such that A = SBS∗ ⇐⇒ A and B have the
same inertia.
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4.3. A Generalized Interlacing Inequality.
In this section, we generalize Theorem 4.5 to weighted graphs with self loops

that are not necessarily connected. In order to do so, we need to adjust some
of the concepts and definitions we’ve been using throughout this paper for
graphs of this generalized form.

Let G be a weighted undirected graph with self loops. By definition, this
means that G is associated with a weight function, w : V × V → R such
that w(u, v) = w(v, u) and w(u, v) ≥ 0. Note that if {u, v} /∈ E(G), then
w(u, v) = 0. The degree, dv of vertex v is defined as

dv =
∑
u

w(u, v).

We can now define the Laplacian and the normalized Laplacian the same
way as we did in Section 3.1, using the definition of vertex degree from above.
However, since we now allow self loops, the (u, v)th entry of the normalized
Laplacian associated with G will be as follows:

L(u, v) =


1− w(v,v)

dv
if u = v and dv 6= 0,

−w(u,v)√
dudv

if u and v are adjacent,

0 otherwise.

We will use this definition of the normalized Laplacian in the following result
and proof. In the previous section, Theorem 4.5 orders the eigenvalues so that
those with the smallest indices are the largest in magnitude. In our theorem
and proof, we will relabel the eigenvalues so that λ1 ≤ · · · ≤ λn, in order to
be consistent with the standard literature [3].

Theorem 4.8. Let G be a graph with weighted edges and self loops and suppose
that H is a graph obtained from G by removing an edge. Additionally, let L(G)
and L(H) have eigenvalues λ1 ≤ · · · ≤ λn and µ1 ≤ · · · ≤ µn respectively, and
let λn+1 = 2 and λ0 = 0. Then, provided that:

(1) the edge was removed from vertices vi and vj, where vi, vj don’t have
self loops, or

(2) the edge removed was a self loop,

λj+1 ≥ µj ≥ λj−1, j = 1, . . . , n.

We can reformulate the conclusion of this theorem as follows,

Lemma 4.9. Assume that the hyptheses of Theorem 4.8. Then, the conclusion
of Theorem 4.8 results from the following. Define D2 and Z to be the degree
matrix and Laplacian for G/{v1, v2} respectively. Then for any µ ∈ (µ1, µn)
such that D2ZD2 − µIn−2 is invertible,

(a) If L(H)− µIn has p positive eigenvalues, then L(G)− µIn has at least
p− 1 positive eigenvalues.
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(b) If L(H)−µIn has q negative eigenvalues, then L(G)−µIn has at least
q − 1 negative eigenvalues.

It will then follow that λj−1 − µj ≥ 0 and µj − λj+1 ≥ 0 for any j = 1, . . . n.

Proof. Let L(H) have eigenvalues µ1, . . . , µn and L(G) have eigenvalues λ1, . . . , λn.
Now assume that H has exactly C components. Then, that means µ1 = · · · =
µC = 0 and that L(H)−µIn has n−C eigenvalues that are greater than ε−µ,
for all ε > 0. Then (a) tells us this means that L(G)− µIn must have at least
n− C − 1 eigenvalues bigger than ε− µ. But then this implies that

−µ < ε− µ ≤ λC ≤ · · · ≤ λn−1 ≤ λn.

But since this is tue for any ε < µC+1, we have that

µC+1 ≥ λC .

So now assume that L(H) has C eigenvalues less than ε for all ε > 0. Then
L(G) has at least C − 1 eigenvalues less than ε, for 0 < ε < µC+1 but then we
see that

λC ≥ µC−1.

So now consider those eigenvalues not at the end of the spectrum. For all but
finitely many values of ε, G has j + 1 eigenvalues strictly less than λj+1 + ε.
This means that µj ≤ λj+1+ε. Hence H has at least (j+1)−1 = j eigenvalues
strictly less than λj+1 + ε and since µj ≤ λj+1 + ε for all but at most finitely
many values of epsilon, we can conclude that µj ≤ λj+1. The other half of the
inequality follows from virtually identical computations. �

We will use this formulation of the conclusion to Theorem 4.8 in the following
proof.

Proof. First, relabel the vertices and assume that H is obtained from G by
removing either the edge joining vertices 1 and 2, or the self loop attached to
vertex 1.

Case 1: The edge removed connected vertices 1 and 2 and neither vertex has
a self loop.
Then, we can define the normalized Laplacians of G and H in the following
way,

L(G) =

(
D1XD1 D1Y D2

D2Y
TD1 D2ZD2

)
, L(H) =

(
I2 D̃1Y D2

D2Y
T D̃1 D2ZD2

)
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where,

D1 = diag
(

1/
√
d1, 1/

√
d2

)
, D̃1 = diag

(
1/
√
d1 − w(1, 2), 1/

√
d2 − w(2, 1)

)
D2 = diag

(
1/
√
d3, . . . , 1/

√
dn

)
, X = 2× 2 Laplacian matrix for v1, v2.

Y = 2× (n− 2) Laplacian matrix for v1, v2 and the rest of the graph.

Z = (n− 2)× (n− 2) Laplacian matrix for G/{v1, v2}.

Z̃ = D2ZD2 − µIn−2, (µ not an eigenvalue of D2ZD2).

(6)

Now we define the following matrices:

S =

(
I2 −D1Y D2Z̃

−1

0 In−2

)
and S̃ =

(
I2 −D̃1Y D2Z̃

−1

0 In−2

)
.

Notice that these are both upper triangular and are therefore invertible. Ad-
ditionally, L(G)−µIn and L(H)−µIn are both symmetric, as are the products

S(L(G)− µIn)ST and S̃(L(H)− µIn)S̃T . Therefore, we can use Theorem 4.7
to conclude that the inertias of S(L(G)−µIn)ST and L(G)−µIn are the same;

similarly for S̃(L(H)− µIn)S̃T and L(H)− µIn.

We will express these computations for the matrices associated with G, but
note that those for H are similar.

S(L(G)− µIn)ST =

(
I2 −D1Y D2Z̃

−1

0 In−2

)(
D1XD1 − µI2 D1Y D2

D2Y
TD1 Z̃

)(
I2 0

−D1Y D2Z̃
−1 In−2

)
=

(
D1XD1 − µI2 −D1Y D2Z̃

−1D2Y
TD1 0

D2Y
TD1 Z̃

)(
I2 0

−D1Y D2Z̃
−1 In−2

)

=

(
D1XD1 − µI2 −D1Y D2Z̃

−1D2Y
TD1 0

0 Z̃

)(7)

Completing the computations for L(H), we obtain

S̃(L(H)− µIn)S̃T =

(
I2 − µI2 − D̃1Y D2Z̃

−1D2Y
T D̃1 0

0 Z̃

)
.

Since the upper left hand corner of S̃(L(H)−µIn)S̃T and S(L(G)−µIn)ST

both have the matrix Y D2Z̃
−1D2Y

T in common, let C = Y D2Z̃
−1D2Y

T .

With these block decompositions, we see that S(L(G)−µIn)ST and S̃(L(H)−
µIn)S̃T have the same eigenvalues resulting from Z̃, and that only two of their
eigenvalues differ; specifically those resulting from the 2 × 2 matrices in the
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upper left hand corner. Therefore, we can check conditions a) and b) from
Lemma 4.9 on

(8) B = D1XD1 − µI2 −D1CD1 and B̃ = I2 − µI2 − D̃1CD̃1.

Thus, all that remains to verify is if B̃ has two positive or two negative
eigenvalues, then B must have at least one positive or one negative eigenvalue

respectively. To see this, we will use Theorem 4.7 again to simplify B and B̃.
Notice that

D̃−11 =

(√
d1 − w(1, 2) 0

0
√
d2 − w(2, 1)

)
,

is diagonal and nonsingular, so we can compute the products D̃−11 B̃D̃−11 and

D−11 BD−11 , and conclude that they have the same inertia as B̃ and B respec-
tively.

One can show that,

D̃−11 B̃D̃−11 = (1− µ)

(
d1 − w(1, 2) 0

0 d2 − w(2, 1)

)
− C

and D−11 BD−11 = D̃−11 B̃D̃−11 +

(
w(1, 2)(1− µ) −1

−1 w(2, 1)(1− µ)

)
.

For details of these computations, see Appendix B. Now consider

A =

(
w(1, 2)(1− µ) −1

−1 w(2, 1)(1− µ)

)
. The characteristic polynomial can

be computed using that w(1, 2) = w(2, 1), as follows,

det(A− Iλ) = (w(1, 2)− µw(1, 2)− λ)2 − 1

= λ2 + 2w(1, 2)(µ− 1)λ+ w(1, 2)2(µ2 − 2µ− 1 + 1/w(1, 2))

The constant term of the characteristic polynomial is the product of the roots;
meaning that it is the product of the eigenvalues. Since µ ∈ [0, 2], we know
that µ2 − 2µ ≤ 0 and as long as w(1, 2) ≥ 1, then 1

w(1,2)
− 1 ≤ 0. Therefore

the constant term of the characteristic polynomial is negative; meaning that
matrix A has one negative and one positive eigenvalue. Let these eigenvalues
be λ1 > 0 > λ2 with unit eigenvectors v1 and v2 respectively.

Observe the following:

vt1D
−1
1 BD−11 v1 = vt1D̃

−1
1 B̃D̃−11 v1 + vt1

(
w(1, 2)(1− µ) −1

−1 w(2, 1)(1− µ)

)
v1

= vt1D̃
−1
1 B̃D̃−11 v1 + λ1

> 0.
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Since D̃1

−1
B̃D̃1

−1
has two positive eigenvalues by assumption, and Theorem

4.2 tells us that vt1D̃1

−1
B̃D̃1

−1
v1 must lie between those two eigenvalues, we

see that vt1D̃1

−1
B̃D̃1

−1
v1 > 0. Similarly, since vt1D

−1
1 BD−11 v1 must lie between

the two eigenvalues of D−11 BD−11 , and vt1D
−1
1 BD−11 v1 > 0, we can conclude

that D−11 BD−11 and therefore B must have at least one positive eigenvalue.
We can complete virtually identical computations with v2 and λ2 to con-

clude that if B̃ has two negative eigenvalues, then D−11 BD−11 and therefore B
must have at least one negative eigenvalue.

Case 2: the edge we remove is a self loop.
So now we have,

L(G) =

(
D1XD1 D1Y D2

D2Y
TD1 D2ZD2

)
L(H) =

(
D̃1X̃D̃1 D̃1Y D2

D2Y
T D̃1 D2ZD2

)
where we define the block matrices similarly to (6):

D1 =
(

1/
√
d1

)
, D̃1 =

(
1/
√
d1 − w(1, 1)

)
, D2 = diag

(
1/
√
d2, . . . , 1/

√
dn

)
X =

(
d1 − w(1, 1)

)
, X̃ =

(
d1 − 2w(1, 1)

)
Y = 1× n− 1 Laplacian matrix for v1 and the rest of the graph.

Z = n− 1× n− 1 Laplacian matrix for G/{v1}.

Z̃ = D2ZD2 − µIn−1, (µ not an eigenvalue of D2ZD2).

(9)

We perform the block decomposition computations as we did in the previous
case and obtain:

S(L(G)− µIn)ST =

(
D1XD1 − µI2 −D1Y D2Z̃

−1D2Y
TD1 0

0 Z̃

)

S̃(L(H)− µIn)S̃T =

(
D̃1X̃D̃1 − µI2 − D̃1Y D2Z̃

−1D2Y
T D̃1 0

0 Z̃

)
But now note that these two matrices share the lower left (n− 1)× (n− 1)

matrix, Z̃, and must have all of the eigenvalues of Z̃ in common. Therefore, the
spectra of these two matrices differ by the eigenvalue coming from the 1 × 1
matrix in the upper left corner. But, regardless of what those eigenvalues
actually are, conditions a), and b) from Lemma 4.9 will be satisfied; so we are
done. �
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4.3.1. The Remaining Case.
Note that the only case not covered in the previous proof is when the edge

removed is adjacent to vertices 1 and 2, and one or both of those vertices
have a self loop. If we try to complete the proof for this case, all of the block
matrices are the same as Equations (6) presented in Case 1 of the proof, except
we also have,

X̃ = diag(d1 − w(1, 2)− w(1, 1), d2 − w(1, 2)− w(2, 2).

Note that one of w(1, 1) or w(2, 2) could be zero.
We can complete block decomposition computations as we did previously to

obtain S(L(G)− µIn)ST as defined in Equation (7) and

S̃(L(H)− µIn)S̃T =

(
D̃1X̃D̃1 − µI2 − D̃1Y D2Z̃

−1D2Y
T D̃1 0

0 Z̃

)
.

Again, set C = Y D2Z̃
−1D2Y

T and define B and B̃ as in Equation (8).
Then, using inertia, we further simplify our matrices to see that,

D̃−11 B̃D̃−11 =

(
(1− µ)(d1 − w(1, 2)− w(1, 1) 0

0 (1− µ)(d2 − w(2, 1)− w(2, 2)

)
− C

and if A′ =

(
w(1, 2)− µw(1, 2) + w(1, 1) −1

−1 w(2, 1)− µw(2, 1) + w(2, 2)

)
then,

D−11 BD−11 = D̃1

−1
B̃D̃1

−1
+ A′.

For computational details, see Appendix B.
If we compute the characteristic polynomial for A′, we will see that the

constant term is,

(1− µ)w(1, 2)(w(1, 1) + w(2, 2)) + w(1, 2)2(1− µ)2 − 1.

We can simplify the constant term by renormalizing the weights for G with
respect to w(1, 2), and let the new loop weights on vertices 1 and 2 be v and
w respectively. Then, the constant term becomes

v + w + vw − (2 + v + w)µ+ µ2.

This is quadratic in µ and will be negative between the two roots,(
1 +

v + w

2
−
√

1 +
(v − w)2

4
, 1 +

v + w

2
+

√
1 +

(v − w)2

4

)
.

However, when v, w > 0, this interval is no longer [0, 2]. As v, w get large, this
interval increases and becomes disjoint from [0, 2] rather quickly. Therefore,
since we cannot conclude that A′ has a positive and negative eigenvalue, using
Theorem 4.2 as we did before to finish the argument will not work.
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So our previous proof strategy cannot conclude anything about this case.
Experimentally, Theorem 4.8 appears to still hold.

4.3.2. Relation to the Circulant and Cluster Graphs.
We can apply this result to the circulant and cluster graphs. Since the

eigenvalues of these two graphs come in pairs, we have the following corollary.

Corollary 4.10. Let G be a circulant or a cluster graph on n vertices. Then,

0 = λ1 < λ2 = λ3 < λ4 . . . λn−1 ≤ λn

with equality holding when n is odd. Let G′ be G with a random edge and let
the eigenvalues of G′ be µ1 ≤ · · · ≤ µn. Then we have that

λ2i−1 ≤ µ2i ≤ λ2i and λ2(i+1) ≥ µ2i+1 ≥ λ2i+1.

This corollary can be visualized with the following two plots.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

Cumulative Distribution Plots for the Circulant Graph, m =5

Graph with Random Edge
Circulant Graph

Figure 10. Cumulative Distibution for the Eigenvalues of C5
52 ;

added edge between vertices 15 and 23.
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0.8

1.0

Cumulative Distribution Plots for the Cluster Graph, m =5

Graph with Random Edge
Cluster Graph

Figure 11. Cumulative Distribution for the Eigenvalues of
C(5, 5); added edge between vertices 2 and 15.

5. Conclusion and Further Work

We gave a weak convergence statement on the spectral CDFs of the cluster
and circulant base graphs in Theorem 3.5. The interlacing inequalities from
Section 4 allow us to conclude that the spectra of the two graphs still converge
as in Theorem 3.5 with the addition of a single edge. We hope that these
interlacing inequalities will allow us to conclude that the broad spectrum is
displaying some sort of convergence when adding more than 1 edge as well.

Experimentally, Theorem 4.8 seems to still apply to graphs when removing
an edge connecting vertices 1 and 2 and one or both of those vertices has a
self loop. While our proof in this paper failed to prove this case, we intend to
investigate whether the more complicated proof employing variational charac-
terizations of eigenvalues and complicated computations used by Chen et. al
can be generalized to this case.

Appendix Appendix A Computations from Section 3.5.1

Claim A.1. The lower bound for the location of the second valley is

x =
5π − 2 arcsin(2m+1

4πm
)

2m+ 2
.
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Proof. We can use inequalities a) 1 − cos(x) ≤ x sin(x) and b) x ≥ sin(x) for
x ∈

[
4π

2m+1
, 5π
2m+1

]
to bound the location of the second valley from below by

constructing the following upper bound on the derivative.

m+ 1

m
sin(mx)− sin((m+ 1)x) ≤ 1

m
+ sin(mx)− sin((m+ 1)x)

≤ 1

m
− x cos(mx) + sin(mx)(1− cos(x))

≤ 1

m
− x cos(mx+ x)

From here it is a question of where x cos(mx+x) = 1
m

. For x ∈
[

4π
2m+1

, 5π
2m+1

]
,

1

m
− x cos((m+ 1)x) ≤ 1

m
− 4π

2m+ 1
cos((m+ 1)x)

=⇒ 4π

2m+ 1
cos((m+ 1)x) =

1

m
⇐⇒ x =

2πk + arccos
(
2m+1
4πm

)
m+ 1

Note that for this to occur in the region we are interested in, k = 1. Because
arccos(x) = π

2
− arcsin(x), we we can rewrite this bound as,

x =
2π + arccos

(
2m+1
4πm

)
m+ 1

=
5π − 2 arcsin

(
2m+1
5πm

)
2m+ 2

.

�

Claim A.2. The depth of the second valley can be approximated with

y =
2m+ 1

2m
− 2 (2m+ 2)

m
(

5π − 2 arcsin
(

2m+1
(4πm)

)) .
Proof. We will construct a curve that will bound the depth of the second valley

from below. Using small angle approximation in the region,
[
5π−2 arcsin( 2m+1

4πm
)

2m+2
, 5π
2m+1

]
,

we see,

2m+ 1

2m
− 1

2m

sin ((m+ 1/2)x)

sin (x/2)
≥ 2m+ 1

2m
− 1

xm
sin ((m+ 1/2)x)

≥ 2m+ 1

2m
− 2 (2m+ 2)

m
(

5π − 2 arcsin
(

2m+1
(4πm)

)) sin

((
m+

1

2

)
x

)
,

evaluated at x =
5π

2m+ 1
.

This means the depth of the second valley can be approximated with

y =
2m+ 1

2m
− 2 (2m+ 2)

m
(

5π − 2 arcsin
(

2m+1
(4πm)

)) .
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�

The computations for bounding the location and height of the highest peak
use similar strategies to those above.

Appendix Appendix B Computations from Section 4

Claim B.1.

and D−11 BD−11 = D̃−11 B̃D̃−11 +

(
w(1, 2)(1− µ) −1

−1 w(2, 1)(1− µ)

)
.

Proof. Recall that

D̃−11 B̃D̃−11 = (1− µ)

(
d1 − w(1, 2) 0

0 d2 − w(2, 1)

)
− C.

Then,

D−11 BD−11 =

(
d1 − µd1 −1
−1 d2 − µd2

)
− C

= (1− µ)

(
d1 − w(1, 2) 0

0 d2 − w(2, 1)

)
+

(
w(1, 2)(1− µ) −1

−1 w(2, 1)(1− µ)

)
− C

= D̃−11 B̃D̃−11 +

(
w(1, 2)(1− µ) −1

−1 w(2, 1)(1− µ)

)
.

�

Claim B.2.

D−11 BD−11 = D̃1

−1
B̃D̃1

−1
+ A′.

Where

A′ =

(
w(1, 2)− µw(1, 2) + w(1, 1) −1

−1 w(2, 1)− µw(2, 1) + w(2, 2)

)
.

Proof. Recall that

D̃−11 B̃D̃−11 = D̃−11

(
D̃1X̃D̃1 − µI2 − D̃1CD̃1

)
D̃−11

=

(
(1− µ)(d1 − w(1, 2)− w(1, 1) 0

0 (1− µ)(d2 − w(2, 1)− w(2, 2)

)
− C

Now, computing D−11 BD−11 − D̃1

−1
B̃D̃1

−1
we see that,

D−11 BD1
−1 − D̃1

−1
B̃D̃1

−1
=

(
d1 − µd1 −1
−1 d2 − µd2

)
− C
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−
(
d1 − w(1, 1)− w(1, 2) 0

0 d2 − w(2, 2)− w(2, 1)

)
+

(
µ(d1 − w(1, 2)) 0

0 µ(d2 − w(2, 1))

)
+ C

=

(
w(1, 2)− µw(1, 2) + w(1, 1) −1

−1 w(2, 1)− µw(2, 1) + w(2, 2)

)
.

Meaning that

D−11 BD−11 = D̃1

−1
B̃D̃1

−1
+

(
w(1, 2)− µw(1, 2) + w(1, 1) −1

−1 w(2, 1)− µw(2, 1) + w(2, 2)

)
.

�
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