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Preface

Heart failure is a chronic and progressive condition in which the heart is unable to pump

enough blood to meet the body’s needs. It affects over 5.8 million people in the United States,

with increasing diagnosed cases each year. Heart transplantation is the only viable therapy for the

patients who suffer from end-stage heart failure to improve their quality of life and survival. The

only source of hearts for transplantation is from cadaveric donors, which is very limited compared

to the heart transplantation waiting-list patient population. Thus, efficient and fair allocation of

this limited source to the patients is of top priority. In this dissertation, we develop mathematical

models to study the problem of heart allocation and analyze it by using simulation and optimization

techniques.

Because of the challenges in heart allocation, policy makers in the United Network for Organ

Sharing (UNOS) have periodically revised the heart allocation policies over time. In order to assess

the performance of different allocation policies, researchers have developed simulation models. The

Thoracic Simulated Allocation Model (TSAM) is a model of heart allocation system developed by

UNOS to evaluate the performance of the proposed changes in policy. However, TSAM makes

certain restricting assumptions in the simulation model.

In Chapter 1, we developed a simulation model of the complex heart transplant system in

the United States, that relaxes those assumptions and can be used to evaluate the potential impacts

of allocation policy modifications on several outcomes such as patients’ pre- and post-transplant

survivals. Furthermore, we proposed three common-sense policies by slightly modifying the current

UNOS allocation policy and compared their performance in terms of efficiency and fairness.

Due to the shortage of donor organs compared to the patients demanding for transplant,

donated hearts should be allocated in an efficient way. Furthermore, the allocation must be fair

with respect to different patient groups. It is not clear for the transplant community that the
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current allocation policy is optimal and there are debates regarding the efficiency and fairness of

the policy. In Chapter 2 of this dissertation, we developed a constrained finite horizon Markov

Decision Process model to find the optimal allocation policy. Since the state space of the original

model is unbounded and the model is intractable, we study its fluid approximation in the presence

of several fairness constraints. The performance of our proposed optimal policy is evaluated and

compared with several benchmark policies by using the simulation model developed in Chapter

1. We conducted an extensive numerical analysis and provided insights about the structure of

the proposed optimal policy. In addition, we conducted fairness analysis of the proposed policy

by comparing its outcomes in the presence of several fairness constraints. The proposed optimal

policy tends to emphasize on the post-transplant outcomes of the transplantation system by shifting

allocation priority from sicker and older patients to healthier and younger ones. Our results show

that such a policy will significantly improve the efficiency of the allocation even in the presence of

fairness constraints.

In Chapter 3, we introduced a new fairness measure in organ allocation and study its poten-

tial benefits. In particular, while existing measures of fairness in the literature of organ allocation

are inefficient and have high prices, policies based on proportional fairness yield a lower price of

fairness and decrease performance loss. We formulate organ allocation with the goal of imposing

proportional fairness as a queuing model and analyze its fluid approximation. By studying neces-

sary and sufficient optimality condition of a transformation of this problem, we analytically show

that the optimal allocation policy under proportional fairness measure is an assortative partition

policy, if certain assumptions hold. Such allocation policies are easy to implement in practice and

have interesting insights. Our numerical results show that in terms of total utility, policies based

on proportional fairness perform in the midway point between the policy based on max-min fairness

measure and the one based on utilitarian approach. Thus, they significantly reduce price of fairness

in organ allocation systems.
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Chapter 1

A Simulation Model of Heart

Transplant Queueing System

Summary: The optimal allocation of limited donated hearts to patients on the waiting

list is one of the top priorities in heart transplantation management. We developed a simulation

model of the U.S. waiting list for heart transplantation to investigate the potential impacts of

allocation policies on several outcomes such as pre- and post-transplant mortality. We used data

from the United Network for Organ Sharing (UNOS) and the Scientific Registry of Transplant

Recipient (SRTR) to simulate the heart allocation system. The model is validated by comparing the

outcomes of the simulation with historical data. We also adapted fairness schemes studied in welfare

economics to provide a framework to assess the fairness of allocation policies for transplantation. We

considered three allocation policies, each a modification to the current UNOS allocation policy, and

analyzed their performance via simulation. The first policy broadens the geographical allocation

zones, the second modifies the health status order for receiving hearts, and the third prioritizes

patients according to their waiting time. Our results showed that the allocation policy similar to

the current UNOS practice except that it aggregates the three immediate geographical allocation

zones, improves the health outcomes, and is “closer” to an optimal fair policy compared to all other

policies considered in this study. Specifically, this policy could have saved 319 total deaths (out of

3738 deaths) during 2006-2014 time horizon, in average. This policy slightly differs from the current

UNOS allocation policy, and allows for easy implementation. We developed a model to compare

1



the outcomes of heart allocation policies. Combining the three immediate geographical zones in the

current allocation algorithm, could potentially reduce mortality rate and is closer to an optimal fair

policy.

1.1 Introduction

Heart failure (HF) is a progressive disease that affects 5.8 million people in the U.S., with

550,000 new cases diagnosed annually. Heart transplantation is a life-saving treatment and improves

the quality of life and survival of late-stage HF patients (Stevenson, 2015). The source of hearts for

transplantation is from cadaveric donors, with patients joining the waiting list to receive a cadaveric

donor heart.

Since 2004, the number of new active adults (18+) joining the waiting list has increased by 40%.

However, the donation rate remains flat with 3.5 donations per 1,000 deaths in 2012, which increased

the size of the waiting list by 25% (Colvin-Adams et al., 2014). According to the UNOS data, since

2006 to 2014 total of 27119 adult patients has joined the waiting list which is significantly larger than

18962 heart donations during the same period. As of December 1, 2016, 3773 adult patients are on

the UNOS heart transplantation waiting list. These numbers clearly indicate a major imbalance in

supply and demand resulting in a substantial mortality for the patients on the waiting list (Colvin-

Adams et al., 2014). This shortage of supply raises the allocation question: which patients should

receive priority when a donor heart becomes available? This allocation problem is one of the top

priorities in heart transplant management (Colvin-Adams et al., 2014).

To enhance the fairness of organ allocation, the National Organ Transplant Act enacted new

rules to ensure the fair and equitable distribution of available organs (Davis and Delmonico, 2005).

Moreover, the allocation should be based on a priority rule for patients on the waiting list; i.e.,

if an organ is procured, patients should be ranked and the organ is offered to the highest priority

patient until it is accepted (Organ Procurement and Transplantation Network, 2015). Allocation

policies, which substantially affect the quality-adjusted life years (QALYs) of the population, should

provide fair access to organs to all patients, independent of their race, age, and other characteristics.

Faced with such challenges, policy makers in UNOS have periodically revised their policies over time

(Colvin-Adams et al., 2012). The original heart allocation system, approved in 1988, was a two-tiered

2



policy using medical emergency status applied to both adults and pediatrics (Colvin-Adams et al.,

2012). In 1989 UNOS/OPTN (Organ Procurement and Transplantation Network) implemented the

heart allocation policy to place the highest priority upon those patients who are most likely to die

while waiting (Mancini and Lietz, 2010). In 1998, this allocation method was restructured into

a three-tiered system (status 1A, 1B, and 2) in which higher priority was assigned to the sickest

patients with a short survival rate (Renlund et al., 1999). Details of the revisions to heart allocation

policy from 1988 to 2012 are provided by (Colvin-Adams et al., 2012). Current UNOS allocation

policy was issued in July 2006 allowing a broader regional sharing of donor hearts (Singh et al.,

2012). However, the optimality of the current UNOS practice in terms of efficiency and fairness

is not clear and the OPTN/UNOS Heart Subcommittee recently suggested a reassessment of the

current allocation policy (Stevenson, 2015). Meyer et al. (2015) studied the limitations of the current

three-tiered medical urgency system and depicted the future direction of heart transplantation in

the U.S.

As assessing the performance of allocation policies for the nation is not amenable to clinical

trials, researchers have developed simulation models to analyze allocation policies. For example,

the Thoracic Simulated Allocation Model (TSAM) is a model of heart allocation system from July

1, 2009 to June 30, 2011, which has been used to evaluate the proposed changes in policy. TSAM

makes the following assumptions: (1) Arrivals of candidates/donors are input to the model with a

data file, (2) The initial waiting list is input to the model with a data file, (3) An entire history

of waiting-list status changes must be input to the model for each patient. As a result, in each

simulation, the same actual donors and candidates are used, thus statistical tests of comparisons are

not possible (Scientific Registry of Transplant Recipients, 2015b). We relaxed those assumptions

by developing models for arrivals of patients and hearts, as well as models for change of health

status in the waiting list. van den Hout et al. (2003) built a model for the Eurotransplant waiting

list for heart transplantation and showed that international organ exchange reduces waiting list

mortality in different countries by 1.9% to 12.4%. Shechter et al. (2005) created a simulation model

for the liver allocation system to compare the performance of different allocation policies in liver

transplantation. Su and Zenios (2006) built a mechanism design model to examine the effect of

post-transplant information asymmetry on the kidney allocation system in terms of efficiency and

equity. Bertsimas et al. (2013) developed a framework to derive optimal policies for kidney allocation
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while considering fairness constraints.

In this study, we developed a simulation model of the U.S. heart allocation system and validated it

to evaluate the potential impacts of allocation policy modifications on several outcomes such as pre-

and post-transplant survivals. We used the current UNOS allocation policy as the baseline policy for

our simulation model. With a few exceptions, this policy ranks patients in three different levels, i.e.,

geographical (proximity to the donor hospital), health status, and waiting time level. Specifically,

when a donor heart becomes available for transplantation, the policy first categorizes patients on

the waiting list based on their distance from the procurement Organ Procurement Organization

(OPO) into six zones, where each zone includes all transplant centers within some distance of the

donor hospital. Note that these zones are not geographical districts but are defined by proximity

to the donor hospital. It first offers the procured heart to the patients who are in the Designated

Service Area (DSA) of the same OPO as the heart is (Zone DSA); if no one is matched, the heart

will be offered to the patients of Zone A; if still no match is found, it will be offered in hierarchy

to patients in Zones B, C, D, and E. At each zone it classifies patients by their health status and

then primary and secondary blood type match with the donor heart. Within each classification,

patients are ranked by the total waiting time accumulated at that health status (see Appendix A.8

for details).

In addition to the current UNOS practice in allocating donor hearts, we considered three addi-

tional heart allocation policies based on modifications of the current practice. Specifically, Policy I

preserved the current prioritization rule but combined Zones A, B, and C into one zone. Policy II

preserved the current prioritization rule but changed the priority of health status from 1A>1B>2

to 1B>1A>2. Policy III preserved the current allocation prioritization but prioritized waiting time

over health status. Furthermore, we provided a framework to analyze the fairness of allocating

donor hearts by adapting similar concepts in the context of general resource allocation with a single

decision maker and multiple self-interested players.

1.2 Methods

Because the heart allocation system is complex with several components such as queues and

allocation schemes, we designed a simulation model to represent its behavior. Data from several
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sources is used to calibrate and validate the model from 2006, the last year in which changes to the

heart allocation policy were made (Kobashigawa et al., 2015), to the end of 2014. Patient records for

30,394 adults who are reported in the UNOS database were used. Among these patients, 2623 died

while waiting on waiting list and 17,667 went under transplantation. Also the SRTR annual data

reports were used to obtain more detailed information about the patients on the waiting list, as well

as the organ donation process (Colvin-Adams et al., 2015). Patient survivals were estimated using

risk adjustment models provided in the SRTR database (Scientific Registry of Transplant Recipients,

2015a).

1.2.1 Overview of the Model

In order to design a flexible model to test the performance of a broad class of allocation

policies, we developed a simulation model of the heart allocation process on a daily basis. The

simulation model consists of six main modules: patient arrival, heart arrival, patient’s health status

change, pre-transplant survival, heart allocation, and post-transplant survival. Each module consists

of several sub-modules interacting together to simulate the allocation system (1.1).

Patient Arrival Module

This module generates patient arrivals to the waiting list and assigns various clinical and

demographic attributes according to conditional distributions. We modeled patient arrivals as a

nonstationary Poisson process (commonly used for modeling arrivals (Gallager, 2013)) with the

arrival rate depending on year. Daily arrival rates for the patient arrival process were estimated

by dividing the yearly arrival rates by 365 (see Appendix A.9 for sensitivity analysis on patient

arrival rates). We validated the model by comparing the outcomes generated by the model with

that observed in historical data. Each patient joining the waiting list has several characteristics and

attributes such as age group, gender, disease type, ethnicity, blood type, region, ventricular assist

device (VAD) status, pre-transplant (PTX) status, waiting time, and health status. UNOS considers

more than 70 disease groups for classifying the patients. Because the sample sizes in each group

were not enough to design statistical distributions, we aggregated these 70 groups into 9 broader

groups according to the organ data source of UNOS (Appendix A.1). At the time of listing, each

patient is assigned with one of four health statuses used by UNOS to represent the health condition

of a patient joining the waiting list. For details on medical criteria to assign a patient’s health status
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Figure 1.1: Overview of the Simulation Model of Heart Transplantation Waiting List
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see Appendix A.1.

The patient arrival module considers some hierarchal and conditional distributions to assign at-

tributes to patients (Figure 6 in Appendix). At the first level, regression was used to test the

time-dependency of each attribute and then the Chi-squared independence test was used for each

pair of attributes to assess the dependency among attributes. Among all the attributes, disease

group, VAD status, PTX status, gender, and arrival rates depended on calendar year. The distri-

bution of each of these attributes for each calendar year was generated based on historical data.

Heart status and age distributions were conditioned on disease group and the conditional distribu-

tions derived from historical data. After obtaining the distribution of age group conditioned on the

disease type, patient age was generated from a continuous uniform distribution for each age group.

Ethnicity and blood type are conditioned on gender, and their distributions were derived based on

gender distribution. The conditional region distribution was obtained using annual arrival rates. In

order to estimate the conditional distributions for each OPO, we aggregated the patient arrivals of

all the hospitals in that OPO. Hence, when a patient’s region was determined, the patient’s OPO

was generated according to the conditional distributions (Figure 6 in Appendix). Appendix A.2

elaborates on statistical dependency tests and creation of such hierarchy.

Heart Arrival Module

This module generates a newly donated heart and assigns its attributes that will be used

in the allocation process. Similar to the patient arrival module, each donated heart has several

attributes such as donor age, gender, blood type, region, ethnicity, and OPO.

Donated hearts arrive according to a nonstationary Poisson process varying by year, and the daily

arrival rates are estimated by dividing the yearly rates by 365 (see Appendix A.9 for sensitivity

analysis on heart arrival rates). UNOS datasets consider hearts from pediatric and adult donors as

the source for donated hearts. As we only considered the hearts from adult donors, we adjusted

the yearly arrival rates of hearts to account for this issue, as well as heart wastage. We did not

include the decision processes of patients in accepting/rejecting the offered heart, which depends

on the patient and heart characteristics, as well as geographical remoteness. However, extending

our simulation to incorporate such decisions is straightforward. Conditional arrival distributions for
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each heart attribute were estimated from historical data. Similar to the patient arrivals, at the first

level, the time-dependency of each attribute was tested using regression. Results showed that blood

type, age, and ethnicity depend on calendar year, and each distribution was estimated via historical

data. The Chi-squared test was then used to analyze the dependency of each pair of attributes in

the heart arrival process to create the second level conditional distributions. At the second level,

donor region, and gender depended on blood type and age, respectively (Figure 7 of Appendix).

Appendix A.3 elaborates on statistical tests and conditional distributions.

Patient Health Status Change Module

UNOS considers four medical urgency (health) statuses for the patients on the waiting list:

1A, 1B, 2, and Inactive. Health status 1A is for the patients with the most urgent health status.

These patients are mostly in hospitals requiring multiple intravenous (IV) medications and have

some sort of mechanical assist devices in their heart. Health status 1B is for the patients with less

urgent health status, who could be possibly at home using left ventricular assist devices (LVADs)

or multiple IV medications. The least urgent patients are assigned with the health status 2. A

patient who has already been evaluated and accepted by a transplant center, but cannot receive

a heart, is assigned with the Inactive health status. For instance, if a patient has another active

illness or infection that can possibly jeopardize the transplant process, she will be assigned with this

health status. Requirements for each health status are described in detail in OPTN policies (Organ

Procurement and Transplantation Network, 2015) (see Appendix A.1 for more details). However,

the health status of a patient may change while waiting for transplant. We modeled the daily health

status progression of patients on the waiting list as a Markov chain and used UNOS/SRTR datasets

to estimate its transition probability matrix via maximum likelihood estimator (Ross, 2014). In

particular, we used the frequency of health status changes between each pair of health statuses over

time. Therefore, the module observes the health status of each patient at the start of each day

and determines her health status at the next day according to a transition probability matrix. This

module was validated by comparing the portion of patients in each health status produced by the

model with that observed in historical data (Table 20 in Appendix A.4).
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Pre-Transplant Survival and Delisting Module

In the absence of transplantation, removal of a patient from the waiting list may be due

to death or delisting. Different allocation policies induce different death and delisting distributions.

Therefore, in order to study the impacts of allocation policies on waiting list outcomes, one cannot

directly use historical data for death and delisting distributions (van den Hout et al., 2003). We

estimated the probability of death via Cox proportional hazard models. In particular, we used the

risk adjustment models of SRTR for estimating death probabilities (Scientific Registry of Transplant

Recipients, 2015a). We included all covariates of the Cox model regardless of statistical significance

because the magnitude of the proportional hazards is more important. The baseline hazard function

was estimated from the Centers for Disease Control and Prevention (CDC) datasets (Centers for

Disease Control and Prevention, 2015). Appendix A.6 provides details regarding pre-transplant

survival.

Delisting from the waiting list may occur as the patient has clinically improved or became too ill

to transplant. Annual number of delisted patients was used to estimate yearly delisting distribu-

tions. Also, Chi-squared tests revealed a significant correlation between delisting and health status.

Therefore, we produced annual delisting distributions for each health status (Appendix A.5). Death

and delisting modules were validated by comparing the outcomes produced by the model with those

observed in historical data. This module at the start of each day generates the probability of death

and delisting for each patient and updates the list accordingly. If none of these events happen, the

health status, waiting time, and age of the patient is updated and she moves to the next period

(day) (see Appendix A.6 for details).

Heart Allocation Module

Upon procurement of a donor heart to the system, this module ranks the patients on the

waiting list and offers it to the highest ranked patient. Because one of the purposes of this study was

to analyze the performance of any allocation policy, we used object-oriented programming to create

a flexible framework such that any combination of attributes could be used to rank the patients.

The current UNOS allocation rule was used as the baseline. With a few exceptions, the allocation

process uses the following hierarchy. Once a heart is procured in an OPO, it is offered to a suitable

candidate (based on prioritizing health status and considering primary and then secondary blood
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type match with the donor) that is registered on the waiting list of the same OPO. If the heart is

not matched or accepted at the procurement OPO, it is offered to larger areas with a hierarchy until

it is accepted and a match is found (see Appendix A.8 for details).

Post-Transplant Survival Module

In the model, after receiving a donor heart, patients enter the post-transplant phase. This

module keeps track of these patients and estimates their survival. To that end, we used the Cox

proportional hazard models reported in SRTR database to estimate the death probabilities after

transplantation (Scientific Registry of Transplant Recipients, 2015a). Similar to the pre-transplant

survival module, all covariates were incorporated regardless of their statistical significance, and the

baseline hazards were estimated via CDC database (Centers for Disease Control and Prevention,

2015). Therefore, at the start of each day, this module generates the probability of death for each

patient after transplantation and if a patient dies in a period, both the patient and graft are removed

from the system as organs are never transplanted more than once. Note that, however, we did not

consider graft survival and instead considered the patients who relist (after transplanted with a

heart) in the patient arrival module as UNOS datasets provide the arrival of patients demanding a

re-transplant (see Appendix A.7 for details).

1.2.2 Allocation Policies

Policy I: The geographical configuration of zones is a critical aspect in the heart allocation

system. An ideal zone is a geographically small one with a large population as the likelihood of finding

a match is higher and transportation time is short. We propose a three-tiered zone allocation system:

If a donor heart is matched with no one in its DSA, it is offered to Zone 1 (union of Zones A, B,

and C of UNOS allocation rule). Similarly, if it is not matched with a patient in Zone 1, it is offered

in hierarchy to patients in Zone 2 (Zone D of UNOS allocation rule) and Zone 3 (Zone E of UNOS

allocation rule). Note that in each zone we considered the same health status, blood type match,

and waiting time prioritization rules as UNOS. The rationale behind combining Zones A, B, and C

to form Zone 1 is that the 4- to 6-hour cold ischemic time for a heart is equivalent to approximately

1,500 air-line miles (Scientific Registry of Transplant Recipients, 2015b) (Zone C also contains all

transplant hospitals within 1,500 miles of the donor hospital). A similar approach is proposed for

patients who are multi-listed for kidney transplantation (Ata et al., 2016) (see Appendix A.8 for
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details). In Appendix A.9, we conduct sensitivity analysis on priority zones combinations.

Policy II: To prioritize patients according to their health status, UNOS gives the first priority

to health status 1A, the second priority to health status 1B, and finally the third priority to health

status 2. The patients assigned with health status 7 (Inactive) are not considered in the heart-

patient matching algorithm. This allocation rule gives priority to patients with a higher medical

urgency status. However, it has led to a significant imbalance in the distribution of donated hearts.

In particular, more than 67% of all transplants correspond to status 1A while status 1A patients are

only 10% of those on the waiting list. Moreover, less than 30% of all transplants correspond to health

status 1B while these patients compromise 40% of the waiting list. This disparity has caused some

patients in status 1B relocate together with their families to other regions with shorter waiting time

(Stevenson, 2015). Also, prioritizing the sickest patients may not be optimal as they may experience

a shorter post-transplant survival compared to status 1B patients. Thus, in Policy we followed the

UNOS allocation system except that status 1B was prioritized over 1A in each classification (see

Appendix A.8 for details).

Policy III: In the current UNOS allocation policy, waiting time is the last priority. Prioritization

based on waiting time is unclear as van den Hout et al. (2003) wrote “waiting time as an allocation

factor has been a point of discussion for more than a decade.” Policy considered the UNOS allocation

rule except that in each zone waiting time is prioritized over health status, i.e., considering primary

and secondary blood type match, patients are ranked first by longer waiting time (see Appendix A.8

for details).

1.2.3 Model Validation

In order to compare the outcomes of the proposed allocation policies, we wanted to ensure

that the difference between policy outcomes is because of the real performance differences of policies

rather than randomness in the model. We used the standard variance reduction techniques to

decrease the effects of randomness in outcomes of allocation rules (Shechter et al., 2005). Because

patient and donor heart arrivals were assumed to be independent of the allocation policy, one stream

of random numbers was used to produce the patient population and another stream of random

numbers was used to produce the donor hearts across all policies.
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Once we combined all the modules, we validated the simulation model by comparing its outcomes

with the historical data for several measures, such as the number of patients on the waiting list at

the end of each year, yearly patient arrivals, yearly heart arrivals, number of transplants performed

at each year, number of deaths on waiting list at each year, and 1- and 5-year post-transplant

survivals. The simulation was run 30 times using the current UNOS allocation policy and the

average and standard deviation of the 30 replications were reported (Table 1.1). We also conducted

statistical t-tests to check the statistical difference between real data and simulation outputs (Table

1.2).

1.2.4 Fairness Analysis

Fairness is extensively studied in resource allocation problems involving a central decision

maker and multiple players where each player receives a utility based on the allocation chosen

by the central decision maker. In this context, the utility of a patient could be her post-listing

life expectancy or quality-adjusted life expectancy (one might also include perioperative pain and

distress). The utilitarian principle implies that an efficient allocation is one that maximizes the sum

of the expected utilities of the players, i.e., post-listing life expectancy of the patient population

(Rawls, 2009). However, the decision maker may settle on the utility allocation which incorporates

fairness considerations. In this work, we considered two axiomatically justified notions of fairness:

proportional fairness and max-min fairness (Young, 1995; Sen et al., 1997). The idea of max-min

fairness is to prioritize the players that are the least well off, so as to ensure the highest minimum

expected utility that each player derives (Rawls, 2009; Kalai and Smorodinsky, 1975). Proportional

fairness is the generalization of Nash solution where multiple players are involved (Nash, 1950).

In this fairness scheme, a transfer of resources is justified if the gainer utilities increase by a larger

percentage than loser utilities decrease. That is, an allocation rule is proportionally fair, if compared

to any other allocation rule, the aggregate proportional change is non-negative.

Suppose there are N players and Uj denotes the utility of player j and ωj is a weight such that∑N
j=1 ωj = 1. Note that since humans are equally precious, in the fairness analysis, we considered
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equal weights for all the patients (i.e., ωj = 1
N ). Define

Mα(U, ω) =


∏N
j=1 U

ωj
j if α = 1,(∑N

j=1 ωjU
α−1
j

) 1
1−α

if α ≥ 0, α 6= 1,

(1.1)

and let π denote an admissible policy. To find the fairest allocation, we considered a decision maker

who seeks to find a policy that yields the maximum value for the expected value of fairness measure

defined in (1.1), that is, a policy maker seeks a policy that maximizes the following quantity

vπ(s0) = Eπ {Mα(U, ω) | s0} (1.2)

where s0 is the initial patient population and expectation Eπ {·} is taken over all randomness in the

system. Let π∗ be the policy that maximizes formulation (1.2). Computing π∗ requires solving Bell-

man optimality equations and since the state space is extremely huge (may increase exponentially) ,

the current methods do not apply (Puterman, 2014). Thus, one needs to use approximate solutions

by approximate dynamic programming or fluid scaling (Powell, 2007), which is beyond the scope of

this study.

However, the fairness analysis studied in this section only provides the fairness ranking among

the policies and it reveals nothing about the fairness measure for the optimal fair policy. In order to

study the fairness in the heart allocation context, we considered a family of α-fairness that include

both max-min and proportional fairness as special cases. In particular, α = 1 and α→∞ correspond

to proportional and max-min fairness, respectively. Therefore, for a given allocation policy π and

initial patient population s0, we defined a metric (vπ(s0)), which measures the fairness of allocation

policies based on the α-fairness concept, i.e., assigns a numerical value to policy π. Then, an optimal

α-fair policy can be found by searching over all possible allocation policies.

In our implementation, we considered post-listing life expectancy as the utility for each patient,

defined as the expected life years that each patient gains from when he/she joins the waiting list,

until he/she dies. In order to estimate vπ(s0) for a given policy π, we created the initial patient

population s0 according to the waiting list distribution in 2006 and simulated the system until 2014.

Recall that we generated the same patient population and donor heart for all allocation policies. For
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each patient in the system (those who were in the system and arrived through the entire horizon), we

calculate the post-listing life expectancy as we know when he/she joined the system and when he/she

died. A patient may die while waiting for transplant or after transplant. For patients who went

under transplantation, after our simulation ends at 2014, we let the simulation of post-transplant

patients continue until all died. For patients who are still alive at the end of simulation horizon,

we let the simulation run until all die. This approach assumes that patients on the waiting list at

the end of the simulation horizon do not go under transplantation. However, this assumption is

not restrictive as this procedure (i) can easily incorporate the heart arrivals in the future, and (ii)

holds for all policies, therefore, their rankings remain intact. We removed the patients delisted from

the analysis as we could not locate historical data on their survival distribution. We estimated the

expected values in formulation (1.2) by the Monte Carlo simulation, i.e., we simulated the system

and in each simulation record the total utility of the entire patient population and take an average

over all runs. For each of the four considered policies, after simulating the policy, we calculated (1.2)

for both cases α = 1 and α→∞. These values are reported in Table 1.4. Note that our simulation

uses pre- and post-transplant Cox survival models to estimate the probability of death at each time

period for patients on the waiting list and those on the post-transplant phase. We validated these

models, which are the base for estimating post-listing life expectancies, by comparing our simulation

results with those in real data (Tables 1.1, 1.2, and 1.3).

1.3 Results

This section provides the numerical results of our analysis, including validation of the model

and comparison of proposed allocation policies in terms of efficiency and fairness. Table 1.1 shows

the result of the simulation model outcomes along with UNOS reports from the start of 2006 to

the end of 2014. In particular, we reported the average and standard deviation of each output,

as well as the percentage of relative difference between historical data and model outputs. The

results of the simulation such as new patients listed, donor hearts, transplants performed, and

delisted patients closely match those observed in historical data for almost all years. Specifically,

we conducted statistical t-tests (Table 1.2) and our results show that simulation outputs are not

statistically different than real data. Our model slightly overestimated the pre-transplant deaths

and consequently underestimated the number of patients on the waiting list. All in all, the model
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mimics all the trends in different outcomes appropriately.

Table 1.1: Validation of Model Results

Outcome Measure 2006 2007 2008 2009 2010 2011 2012 2013 2014

New Patients Arrival

UNOS 2554 2633 2825 2966 3029 2894 3115 3373 3730

Model Mean (x̄) 2586.3 2733.73 2953.7 3035.83 3129.5 2907.36 3293.83 3544.36 3816.1

Model Standard Deviation (s) 50.53 61.03 57.88 59.24 63.23 61.89 52.84 49.35 67.28

Difference (%) 1.24 3.68 4.35 2.3 3.21 0.45 5.42 4.83 2.25

Diseased Donors Arrival

UNOS 1893 1938 2100 1958 2080 2084 2165 2307 2437

Model Mean (x̄) 1897 1944.5 2107.6 1968.03 2072.1 2080.1 2158.53 2295.76 2429.43

Model Standard Deviation (s) 36.81 42.3 42.61 49.22 52.61 48.17 43.62 45.58 55.49

Difference (%) 0.21 0.33 0.36 0.5 -0.38 -0.18 -0.29 -0.48 -0.31

Deaths While on Waiting List

UNOS 331 279 299 301 263 287 269 285 309

Model Mean (x̄) 323.66 311 315.2 322.26 295 309.66 303.13 279.15 295.84

Model Standard Deviation (s) 23.23 22.35 26.54 28.37 22.37 30.59 26.6 25.36 26.84

Difference (%) -3.51 5.45 5.32 -3.87 16.25 8.54 -5.4 -5.88 -3.16

Number of Patients on the

Waiting List

UNOS 2551 2417 2466 2712 2904 2847 3063 3332 3400

Model Mean (x̄) 2504.23 2389.1 2224.4 2433.1 2565.8 2431.36 2606.36 2847.73 3044.06

Model Standard Deviation (s) 98.25 120.34 126.11 130.96 149.69 174.65 155.08 133.34 165.92

Difference (%) -1.86 -1.16 -10.86 -11.46 -13.18 -17.09 -17.51 -17 -11.69

Transplants Performed

UNOS 1870 1877 1796 1851 1967 1944 1998 2123 2241

Model Mean (x̄) 1897 1944.5 2107.6 1968.03 2072.1 2080.1 2158.53 2295.76 2429.43

Model Standard Deviation (s) 36.81 42.3 42.61 49.22 52.61 48.17 43.62 45.58 55.49

Difference (%) 1.42 3.47 14.78 5.94 5.07 6.54 7.43 7.52 7.75

Delisted Patients

UNOS 524 604 690 570 607 736 641 711 893

Model Mean (x̄) 520.43 609.26 694.96 569.33 598.26 740.23 640.66 710.16 890.8

Model Standard Deviation (s) 22.89 23.46 28.17 25.43 21.51 28.79 22.94 23.88 29.83

Difference (%) -0.68 0.86 0.71 -0.11 -1.45 1.24 1.5 0.44 0.87

Note. UNOS= United Network for Organ Sharing. Mean (x̄) and standard deviation (s) are the results of 30 replications.
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Table 1.2: p-values of t-test for Comparing Real Data and Simulation Outputs

Measure New Patients

Arrival

Diseased Donors

Arrival

Deaths While on

Waiting List

Number of

Patients on the

Waiting List

Transplants

Performed

Delisted

Patients

p-value 0.58 0.99 0.1 0.14 0.07 0.99

Table 1.3 shows 1- to 5-year post-transplant survival rates produced by simulation and UNOS data

for patients transplanted between 2006 and 2014. The model predicts the post-transplant survival

rates accurately, especially 3- to 5- year post-transplant survival rates.

Table 1.3: Survival Rates of Patients Transplanted During 2006-2008

Survival 1-Year Survival

Rate

2-Year Survival

Rate

3-Year Survival

Rate

4-Year Survival

Rate

5-Year Survival

Rate

UNOS Reports 0.89 0.85 0.82 0.79 0.75

Model Mean (x̄) 0.93 0.88 0.84 0.8 0.75

Difference (%) 4.3 3.4 2.38 1.25 0

We compared the three policies described in the “Allocation Policies” section along with the

UNOS practice in terms of efficiency and fairness. We considered a policy to be the most efficient

if it achieves the least number of total deaths (pre- and post-transplant deaths), and closest to a

fair (proportional or max-min) policy if yields the highest value for the fairness measure defined

in formulation (1.2). Figure 1.2 shows pre-transplant, post-transplant, and total patient deaths for

each proposed policy from 2006 to 2014. The total number of deaths in the study period for the

current UNOS policy is 3788. However, this number is 3419, 3514, and 4148 for the Policies I, II,

and III, respectively. Policy I which combines Zones A, B, and C outperforms other policies. In fact,

Policy I reduced the expected number of deaths by 319. Also, policy II outperformed the UNOS

policy. Moreover, the performance of Policy III was worse than the UNOS practice. The results

indicate that prioritizing health status 1B over 1A and prioritizing waiting time are suboptimal.

Table 1.4 shows the results for vπ(s0) to analyze the fairness of proposed policies. Intuitively

speaking, a higher value of vπ(s0) for proportional (max-min) fairness indicates that the allocation

policy π is closer to an optimal proportional (max-min) fair policy for the initial population s0. In

particular, in an optimal proportionally fair policy, the aggregate proportional change in post-listing

life expectancy of patients compared to any other allocation rule is non-negative. Also, an optimal
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Figure 1.2: Comparison of Pre-transplant, Post-transplant, and total number of deaths for UNOS,
Policy I, Policy II, and Policy III (years: 2006-2014)
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Table 1.4: Results of Fairness Comparison of Policies

Policy Proportional Fairness Measure Max-Min Fairness Measure
UNOS 2209.28 108.76
Policy I 2356.5 109.45
Policy II 2294.4 109.77
Policy III 1921.92 108.86
Note. The proportional and max-min fairness measure columns indicate the values of vπ(s0) defined

in formulation (1.2) for α = 1 and α→∞, respectively. Note that a higher number implies a smaller

gap from the optimal policy. We used life days as a metric for each individual’s utility.

max-min fair policy obtains the largest post-listing life expectancy for the patients who have the

least life expectancy estimates, compared to any other allocation rule. Results show that Policy I is

closer to an ideal proportional fair policy among others as it has the highest fairness measure. Also,

our results show that in terms of proportional fairness, UNOS policy outperforms Policy III, which

prioritizes based on waiting time. Moreover, our results show that all the proposed policies perform

similarly in terms of max-min fairness.

1.4 Conclusion and Discussion

The problem of optimally allocating limited donor hearts to the patients on the waiting

list is one of the top priorities in heart transplant management as the imbalance between supply

and demand has increased over the last decade. Simulation models can help policy makers and

medical professionals to analyze allocation rules without actually implementing them. We developed

a stochastic simulation model of heart allocation system and validated it in several dimensions by

comparing the model outcomes with historical data from 2006 to 2014. We also adapted two well-

accepted fairness notions to develop a framework to analyze the fairness of allocation policies in the

context of organ allocation. In addition to the UNOS allocation rule, we considered three additional

policies: (1) one that combines Zones A, B, and C, (2) one that prioritizes status 1B over 1A,

and (3) one that prioritizes candidates based on waiting time. Our results showed that the policy

that combines Zones A, B, and C could avert 319 total deaths (pre- and post-transplant deaths)

and was closer to an ideal proportionally fair allocation policy. Hence, it seems that combining

these priority zones and broadening the organ sharing area may result in more efficient and fair

policies. Moreover, combining zones is easy to understand and straightforward to implement. Our
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results have a similar message with those observed for the Eurotransplant heart allocation simulation

model, where international organ exchange is estimated to reduce waiting list mortality in different

countries by 1.9% to 12.4% (van den Hout et al., 2003). Studies on other organs also found that

broadening the organ sharing area by multiple listing can significantly reduce the mortality rate

(Ata et al., 2016). Our results for the fairness analyses revealed that proportional fairness may be

of more interest to measure the fairness of organ allocation policies as the max-min fairness measure

for different policies was not significantly different. Our results show that this is due to the fact

that the post-listing expected life of the very sick patients does not significantly change by different

policies.

Our results indicated that the simulation model produced outcomes close to historical data, which

increases the confidence that the model can reasonably approximate the quantities of interest to

transplant community. In particular, one can use this model to analyze the performance of other

allocation policies and derive insights on how allocation policies change the waiting list population

dynamics. However, this study has several limitations, and by addressing them, we can develop a

more accurate decision-making tool to evaluate allocation rules.

First, although detailed data on patient and donor heart arrivals were available in the UNOS/SRTR

datasets for each region, these data were not available for each transplant center or OPO. Therefore,

we generated appropriate distributions for each region and assigned the OPO of a new patient or

donor heart based on a uniform distribution. The validation results show that patient and heart

arrivals closely match historical data. Second, since UNOS/SRTR datasets reported the frequency

of health status change independent of other patient attributes, we constructed a Markov chain in

the patient health status change module based only on health status and ignored other dependencies

such as age, gender, and waiting time. The validation of this module indicated that the distribu-

tions produced by the model are statistically the same as observed data. Third, because detailed

data for heart wastage was not available in UNOS/SRTR datasets, we adjusted the heart arrivals to

compensate heart wastage. Fourth, we did not model the patient choice in accepting/rejecting the

offered heart. However, adding such a feature to the model is straightforward upon availability of

data. Fifth, we considered post-listing life expectancy in analyzing the fairness of policies and did

not consider quality-adjusted life expectancy or cost. The cost component, which includes pre- and
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post-transplant care, may impact policy recommendations.
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Chapter 2

Optimal Allocation Rules for Heart

Transplantation

Summary: Identifying an efficient and fair allocation of limited donated hearts to patients

on the waiting list is one of the top priorities in heart transplantation management. The recent

heart allocation rule by the United Network for Organ Sharing (UNOS) has emphasized medical

urgency to address the heart transplant crisis by further dividing the previous sickest patient group

into three subgroups. However, there is significant debate on optimality and fairness of such policy.

We undertake a rigorous study to address this debate. In particular, we quantify the price that the

society pays for following a medical urgency approach, which favors the sickest patients, compared

to a utilitarian approach, which seeks to maximize total life years (LYs). Our results, produced

by a validated simulation model, reveal that said price is 8% of total LYs and increases to 10% by

considering a broader regional sharing aligned with four hour cold-ischemic time for heart. In fact,

we provide concrete numbers for pre-transplant death and LYs broken down for each health and age

group to further shed light on this debate. We also consider relevant objectives in transplantation

and our results show that the “optimized” utilitarian policy outperforms that of the medical urgency

one in other measures. Our analysis provides novel insights on optimal patient allocation and sheds

light on the debate around this challenging problem. Furthermore, the UNOS Heart Subcommittee

plans to develop a scoring system for heart. We develop a heart allocation system which achieves

a similar performance to the optimized utilitarian policy in terms of LYs, and pave the way for
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designing future heart allocation systems.

2.1 Introduction

Motivation. Heart failure (HF) is a chronic and progressive condition in which the heart is

unable to maintain the blood flow. Over 5.8 million people in the U.S. are suffering from HF and

each year around 550,000 new cases are diagnosed (Bui et al., 2011). For late-stage HF patients,

heart transplantation is a life-saving treatment (Stevenson, 2015). Patients join a waiting list to

receive a cadaveric donor heart. Since 2004, the number of new adult candidates on the waiting list

has increased by 51%. The number of patients actively awaiting heart transplant has increased by

90% from 2004 to 2015. However, the donation rate remains flat with 2.8 donations per 1,000 deaths

in 2015 (Colvin et al., 2017). As a result of the shortage of supply, more than 3,000 patients died on

the heart transplant waiting list while waiting for a heart offer during 2006-2014 time horizon. This

shortage of supply raises an allocation question: How does one prioritize patients on the waiting list

in an efficient and fair manner?

The National Organ Transplant Act enacted new rules to ensure the fair and equitable distribution

of donated organs (Davis and Delmonico, 2005). Furthermore, certain priority rules for patients on

the waiting list should be used in the allocation process to find the best match for an available

donor organ (Organ Procurement and Transplantation Network, 2015). Therefore, designing such

allocation policies is extremely challenging and faced with such issues, UNOS has revised the organ

allocation policies periodically over time (Colvin-Adams et al., 2012). Over the past two decades,

heart allocation policies have evolved due to the evolution of the clinical profile of end-stage HF

patients. The initial heart allocation policy, approved in 1988, was a two-tiered rule such that donor

hearts were allocated based on medical urgency and waiting time (Colvin-Adams et al., 2012). In

1998, UNOS revised the latest policy and restructured it into a three-tiered urgency-based system

(status 1A, 1B, and 2) which prioritized sickest patients with shorter survival rates (Renlund et al.,

1999). In July 2006, UNOS allowed a broader regional sharing of donor hearts keeping the three-

tiered urgency system intact (Singh et al., 2012). Recently, UNOS extended the three-tiered system

to a seven-tiered one, which is mainly medical urgency driven (Meyer et al., 2015). The seven-tiered

policy was approved by the OPTN/UNOS in December 2016 and is in effect since January 2018
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(Davies et al., 2017).

However, it is not clear that the current allocation policy is optimal for the transplant community,

and there are still significant discussions regarding enhancing its efficiency and fairness. In fact,

there are still debates among surgeons and policy makers in accepting the benefits of the seven-

tiered policy for the patient population (Organ Procurement and Transplantation Network, 2016a;

Stevenson et al., 2016). Although the new proposal helps to reduce pre-transplant mortality rates

among sicker patients, it may worsen the post-transplant outcomes as it trades off a potential

decrease in waiting list mortality for an almost certain increase in post-transplant mortality.

Main Contributions and Results: In order to address the aforementioned debates, we quantify

the extent that LYs can be improved by shifting attention from a medical urgency approach, which

favors the sickest patients, to a utilitarian approach, which considers total LYs of the population.

In particular, we undertake the first study that investigates an optimal and fair dynamic allocation

of limited cadaveric hearts to heterogeneous patients on the waiting list for both perspectives rig-

orously. Previous attempts are ad-hoc, i.e., the proposals from OPTN/UNOS Heart Subcommittee

are evaluated via Thoracic Simulation Allocation Model (TSAM), which is a simulation model of the

waiting list, and decisions are made based on simulation results, among other factors. Our results

reveal that the said extent is around 8% of the total LYs and shed light on the trade-off between life

years gained and the number of deaths for each patient group by providing concrete numbers pro-

duced by a validated simulation model. In addition, the said extent increases to 10% if a broadening

of regional sharing is allowed in line of four-hour cold ischemic time for heart. Our analysis shows

that the improvement is mostly due to the post-transplant component of the total life years objec-

tive function. In fact, the UNOS policy performs slightly better than optimized utilitarian policy

(proposed policy) in terms of pre-transplant LYs, but its post-transplant performance is significantly

worse than that of the proposed policy. The analysis of the proposed allocation rule reveals that

its advantage emanates mainly from offering donor hearts away from the sickest patients and older

ones toward healthier and younger patients. Our results also show that the benefits from change in

health prioritization is more than that of age prioritization. Furthermore, our work sheds light on

the current debate around prioritization of patients with Ventricular Assistance Device (VAD). In

particular, our results show that the proposed policy does not prioritize patients with VAD, similar
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to UNOS.

We also consider other relevant objective functions and several methods developed for the total LYs

objective. In particular, policies produced by the utilitarian approach outperform UNOS policies in

terms of mean and standard deviation of waiting time among patient classes, which are measures of

fairness in transplantation. Specifically, the average waiting time can be reduced to half by following

the utilitarian approach. Moreover, if the objective is to minimize pre-transplant mortality (a true

medical urgency objective), our results show that UNOS or UNOS 7-tiered policy is near-optimal.

The UNOS Heart Subcommittee plans to develop a scoring system for heart allocation similar to

other organs such as kidney, liver, and lung (Meyer et al., 2015). We design such a heart allocation

scoring system (HAS), which involves two main challenges: (i) identifying relevant score components,

and (ii) estimating the coefficient of each component. We consider numerous sets of relevant score

components, use a data-driven approach to estimate the coefficients, and choose the best setup. In

fact, our proposed HAS policy achieves a similar performance to the optimized utilitarian policy in

terms of total LYs.

Finally, our results echo the recent change of heart allocation rules in Eurotransplant and France,

where post-transplant survival is included in prioritization (Smits et al., 2017). Moreover, post-

transplant survival is included in UNOS allocation rules for other organs. For example, UNOS lung

transplantation allocation rules consider post-transplant survival and age (Organ Procurement and

Transplantation Network, 2015). Historically, a paradigm shift happened for kidney transplantation:

around two decades ago, the allocation rules prioritized the sickest patients but now they do include

post-transplant survival (Organ Procurement and Transplantation Network, 2015). In fact, in “The

Complete Lives System” which seeks to establish an ethical framework to allocate scarce treatment

to a patient population, Persad et al. (2010) do not recommend a sickest-first prioritization as

it deprives treatment from other patients who may have benefited more (a utilitarian approach).

They also mention that when every patient cannot be saved, saving the sickest one is “flawed,” and

recommend an explicit preference for the young.
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2.2 Related Work

Two streams of work are related to our study: organ allocation and control of network

queuing systems.

Organ Allocation. We briefly review optimization/simulation work related to organ allocation

from a patient’s and policy maker’s perspective and then review related work on heart transplan-

tation. One stream of work in organ allocation focuses on finding the optimal time to accept an

offered organ based on patient/organ characteristics: see, e.g., Ahn and Hornberger (1996), David

and Yechiali (1985), and Alagoz et al. (2004, 2007). Our work is different from these studies because

we study the organ allocation problem from a policy maker’s perspective to find efficient and fair

allocation rules. In fact, optimal time to accept an organ is an optimal stopping problem while the

allocation problem is an optimization problem on a queuing network. Several studies considered

organ exchange programs such as Zenios (2002), and Ashlagi et al. (2011), which do not apply to

heart transplantation as organ exchange is not possible.

Transparency in the waiting list, regional redesign, and geographical equity are also addressed

in different contexts. For example, Sandıkçı et al. (2008) estimated the price of privacy in liver

transplantation; Kong et al. (2010) considered the redesign of allocation regions; Ata et al. (2016)

studied the problem of geographical disparities in access to donor kidneys. However, the objective

of our work is to find efficient allocation rules by considering fairness constraints and the methods

developed in these studies do not apply.

In a series of papers, Su and Zenios (2004, 2005, 2006) examined the impacts of patient choice

on (i) organ wastage and waiting times, (ii) efficiency of kidney allocation system, and (iii) post-

transplant information asymmetry on the kidney allocation system. We apply two methodologies

developed in these studies to heart allocation problem: one that seeks to improve the efficiency by

maximizing the total quality adjusted life years (QALYs) of the population, and one that seeks to

improve equity by maximizing the minimum QALYs of the patients. Also, Lee et al. (2008) studied

the allocation of dialysis capacity for patients with end stage renal disease considering fairness.

Bertsimas et al. (2013) developed a data-driven approximate dynamic programming model to

derive efficient policies for kidney allocation to maximize the total life expectancy while considering
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fairness constraints. We use this method to estimate the coefficients of numerous collections of point

systems that we design for heart transplantation in order to develop a novel scoring system for heart

allocation.

Akan et al. (2012) investigated the trade-off between medical urgency and efficiency in liver al-

location. A fluid model is used to minimize the total number of patient deaths while waiting for

transplant and to maximize total QALYs through a weighted combination of the two objectives. Our

work is different from this study in several dimensions: (1) we study the heart allocation problem,

where the source of hearts is only from cadaveric donors; (2) The fluid approximation of our stochas-

tic formulation differs from that in Akan et al. (2012). In particular, we consider fairness constraints

in formulating the stochastic system and show that the corresponding fluid approximation, which

contains integral constraints, has an optimal solution of the priority index type and provide novel

insights about the impact of fairness constraints on priority indices. Considering fairness constraints

is one of the major approaches to address fairness in organ transplantation (RFI, 2008).

In order to identify an efficient and fair heart allocation rule, simulation models are developed to

test the performance of different policies. For example, the TSAM is a model of heart allocation

system by UNOS/SRTR, which has been used to evaluate the proposed changes in policy (Scientific

Registry of Transplant Recipients, 2015b). van den Hout et al. (2003) developed a simulation model

of the Eurotransplant waiting list for heart transplantation to examine potential allocation policies.

Hasankhani and Khademi (2017) created a flexible simulation model of the U.S. heart allocation

system to compare the performance of several allocation policies. However, simulation models are

not able to find optimal allocation rules, which is the focus of this study.

Optimal Control of Queuing Networks. The fluid approximation is extensively used for an-

alyzing stochastic queuing networks for a variety of applications such as communication networks,

manufacturing systems, and service management.

Harrison and Zeevi (2005) studied a large call center with several numbers of input flows and agent

pools to minimize the expected total personnel costs and abandonment penalties via fluid approxi-

mation. Kiani et al. (2019, 2020); Yousefi et al. (2019) used classical techniques for solving MDPs

to find optimal appointment scheduling for healthcare systems. Bassamboo and Randhawa (2010)
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considered capacity selection in queuing problems with impatient customers who may abandon the

system to minimize the total cost. A fluid approximation of the original queue is applied to find the

optimal solution. Savin et al. (2005) formulated the problem of allocating capacity in rental systems

as a discrete-time MDP and analyzed the structure of the optimal policy of the original stochastic

system via fluid approximation. In a single server fluid network, Bäuerle and Rieder (2000) showed

that the optimal policy is a priority index policy. Perry and Whitt (2011) studied two queuing sys-

tems each having their own designated service pools, where servers of one queue may serve customers

of the other queue in the case of unexpected overload. They analyzed the system by approximating it

by a fluid model, and described its transient behavior under heavy traffic averaging principle. Meyn

(1997) studied the optimal scheduling problem for multiclass queuing network with deterministic

routing. It is shown that there is a close connection between the optimization of queuing networks

and the optimal control of their corresponding fluid network model. However, our study is different

from the literature of controlling queuing systems in several dimensions. For example, (1) If an

analogy is made where patients resemble customers and organs resemble servers, in our system the

number of servers is not fixed as servers arrive to the system according to a stochastic process and

leave permanently upon transplant; (2) There are two sources of abandonment as patients on the

waiting list may die or be delisted; (3) Patients on the waiting list may change their class as the

health of a patient on the waiting list may change, among other dynamics; (4) The objective is to

maximize total pre-transplant (waiting time) and post-transplant life years, which is different from

standard objective functions in queuing theory literature.

2.3 Problem Formulation

This section formulates the heart allocation problem as a finite-horizon continuous-time

constrained stochastic dynamic program. In particular, we consider a finite-horizon model because

UNOS changes allocation policies after a finite time (e.g., 10 years) and a continuous-time model

since arrival processes of patients and hearts are random. Patients arrive to the system according to a

random process and join a waiting list to receive a donor heart. We consider all patient characteristics

that affect the dynamics of the system, as well as pre- and post-transplant survival, e.g., age group,

health status, blood type, etc. Also, donor hearts arrive to the system according to a stochastic

process and are assigned to patients on the waiting list. We consider all donor heart characteristics
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that affect the evolution of the system such as donor age group and blood type. The donor heart

characteristics along with patient characteristics determine the (random) post-transplant survival.

Let I := {1, 2, . . . , I} and H := {1, 2, . . . ,H} be the set of patient and heart types.

Upon arrival of an organ, the decision maker offers it to a patient on the waiting list. If the patient

accepts the offer, a transplantation is carried out and the patient moves to the post-transplant phase.

If the patient declines the offer, the decision maker offers it to another patient on the waiting list

and this procedure continues until the organ is accepted or wasted (after several tries).

State Space. We assume that we keep track of N patients in the waiting list and let p =

(p1, p2, . . . , pN ) denote the state of all patients, where pn contains all information about patient

n. This assumption is not restrictive because one may consider a large N . The state of patient n

is given by pn = (in, τn, zn), where in ∈ I denotes the class of patient n, τn denotes the time that

patient n arrived to the system, and zn is a binary variable indicating whether patient n has declined

the current available heart. The indicator zn is set to zero upon patient arrival. If a patient declines

an offer, zn becomes 1 such that we do not re-offer the current available heart to the patient. If

the available heart becomes accepted or wasted, zn is set to zero for all patients on the waiting list.

Note that we keep track of patient arrival time to calculate his/her waiting time, among others.

Without loss of generality we assume that the dynamics of the system are driven by events. We

consider the following events in the system: “patient n arrives,” “heart type h arrives,” “patient

n dies,” “patient n delists,” “patient n changes class,” “patient n accepts offer of heart type h,”

“patient n declines offer of heart type h,” and “heart type h declined N times,” which triggers the

event “heart type h is wasted.” Therefore, state transitions take place at discrete points in time

when an event happens in the system.

Policy makers may face fairness constraints in offering high quality organs to specific groups of

patients. Therefore, let bhi denote the total cumulative offers of heart type h to patient type i and

b = (bhi : i ∈ I, h ∈ H). Hence, the state of the system is represented by s = (p, e, b, t), where p is

the list of patients containing state of all patients on the waiting list, e is the event type, b is the

offer history at time t, and t is the current time. Let P denote the set of all possible patient lists, E

the set of all possible events, and B the set of all possible offer histories. Therefore, the state space
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of the system can be expressed by

S := {s = (p, e, b, t) : p ∈ P, e ∈ E , b ∈ B, t ∈ R+}.

Because the state of the system does not change between events, the state trajectory is completely

characterized by {sκ : κ = 1, 2, . . . ,K}, where sκ is the system state right after the κth event, and

K denotes the final decision epoch, which corresponds to the end of the planning horizon. We let

t(sκ) be the time that event κ occurs, e(sκ) be the type of κth event, and b(sκ) be the offer history

up to the occurrence of κth event.

Action Space. When an organ becomes available, the decision maker offers it to the patients on

the waiting list. Let the event type be “heart type h becomes available.” Let H(s) = {h} be the

set that points to the available heart type, and let P (s) be the set of eligible patients with heart

type h when the state of the system is s, e.g., in terms of blood type compatibility, avoiding offer

to inactive patients on the list, and proximity consideration. Define ahn(s) = 1 if the available heart

of type h is offered to patient n, and ahn(s) = 0, otherwise. Let a(s) :=

(
ahn(s) : n ∈ P (s)

)
for

h ∈ H(s), the action space reads

A(s) :=

{
a(s) ∈ {0, 1}|P (s)| :

∑
n∈P (s)

ahn(s) = 1;h ∈ H(s)

}
. (2.1)

If an offer is made, b(s) is updated based on patient and heart types.

An offered organ may be declined by a patient. In this case, the organ will be offered to other

patients until it is accepted or wasted. Because the cold ischemic time for heart is around four hours

and each patient has about an hour to accept or decline the offer, the heart will be wasted after a

few offers, e.g., N = 4 (Organ Procurement and Transplantation Network, 2017). Therefore, if the

event is of type “patient n declines heart type h offer,” patient n is removed from the list of eligible

patients, i.e., P (s) ← P (s) \ {n} and an offer is made similar to formulation (2.1). If the organ is

declined in the second effort, we continue offering it to the eligible patients until one of these events

happen: “patient n accepts heart type h offer,” or “heart type h is declined N time,” which triggers

the event “heart type h is wasted.” In modeling the patient decision in accepting/declining the

offer, we assume that the sequence of such events, that starts with heart arrival and ends with heart
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acceptance or wastage, happen sequentially but without time delay. That is, the time between organ

arrival and organ acceptance/wastage is zero. This assumption is for modeling purposes and is not

restrictive because when a heart becomes available, it will be accepted or wasted in less than four

hours, which is much less than the expected time for the arrival of the next heart in a Designated

Service Area (DSA). If the event is not of type “heart type h arrives,” or “patient n declines heart

type h offer,” the action space is empty, i.e., A(s) = ∅.

Transitions. We assume that patients of type i join the waiting list according to a stochastic

process with finite mean. Also, hearts of type h arrive to the system according to a stochastic

process with finite mean. In particular, our estimates of real data for the U.S. transplant system

show that the arrival processes of patients and hearts are non-stationary Poisson processes. Patients

on the waiting list may die before transplantation. The probability of death in a period on the

waiting list depends on patient characteristics such as age, health status, type of heart disease, etc,

and is estimated via a Cox proportional hazard model. Patients on the waiting list may be delisted

due to several reasons such as unsuitability for transplantation. Delisting probabilities may also

depend on patient characteristics. Dynamic characterization of patients may change over time. The

age of patients changes deterministically. The health of a patient may change probabilistically while

waiting for transplantation, which may depend on other characteristics and the time that a patient

has been in a health status. We assume that a heart is accepted by a patient with a probability that

depends on heart quality and patient characteristics.

Recall that κ denotes the index of the κth event. The complete trajectory of the system is therefore

represented by {(sκ, aκ) : κ = 1, 2, . . . ,K}, where sκ is the system state and aκ is the action taken

(if any) at the time of the κth event. The stochastic evolution of the system can be presented by

sκ+1 = F (sκ, aκ, ω(sκ, aκ)), where F (., ., .) is a transfer mapping and ω(sκ, aκ) is a random element

that contains all the sources of randomness in the system. In fact, ω(sκ, aκ) produces the time and

type of the next event considering all the stochastic processes involved.

Rewards. We consider a policy maker who seeks to maximize the QALYs of the entire patient

population in a finite horizon. Let h(sκ, aκ, sκ+1) be the total QALYs received by transition from

state sκ to sκ+1 when action aκ is taken at the time of the κth event. Let Xi(t) denote the number
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of patients of type i on the waiting list at time t. The expected immediate reward is then given by

h(sκ, aκ, sκ+1) =



(t(sκ+1)− t(sκ))(
∑I
i=1 βiXi(t(sκ))) if the event e(sκ) is of the form “patient n

arrives,” or “patient n dies,” or “patient n

delists,”or “patient n changes class”

or “heart h wasted,”

(t(sκ+1)− t(sκ))(
∑I
i=1 βiXi(t(sκ))) + αhi if the event e(sκ) is of the form “patient n

accepted heart type h offer,”

and is zero otherwise, where t(sκ) denotes the occurrence time of event κ, βi is the quality of life

for a patient type i on the waiting list, and αhi denotes post-transplant QALYs of a type i patient

receiving heart type h.

Recall that K denotes the last event index in the system which corresponds to the end of the

horizon, i.e., t(sK) = T . Let the final reward r(sK) be the total future QALYs of the patients who

are on the waiting list at the end of the planning horizon. We then have r(sK) =
∑
i ηiXi(t(sK)),

where ηi is the future expected QALYs for patients who are in the system at the end of the planning

horizon.

Optimality Equation. Let Π denote the set of all non-anticipative policies. Let Jπ(s) be the

expected total reward starting from state s0 = s under policy π ∈ Π. By letting π(sκ) denote the

action selected by an admissible policy π in state sκ, Jπ(s) can be written as:

Jπ(s) = Eπ
{K−1∑
κ=1

h(sκ, π(sκ), sκ+1)) + r(sK)

∣∣∣∣s0 = s

}
, for s ∈ S, π ∈ Π.
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Therefore, the decision maker solves for V (s) = sup
π∈Π
{Jπ(s)}, where V (s) is the optimal value func-

tion, which satisfies the Bellman optimality equation

V (s) = max
a∈A(s)

{
Ea
(
h(s, a, s′) + V (s′)

)}
, ∀s ∈ S, (2.2)

with a boundary condition V (sK) = r(sK), where s′ is the next state after taking action a in state

s, and the expectation is taken with respect to action a.

In organ transplant, fairness may be seen by considering a lower bound on the percentage of total

offers to specific groups of patients (RFI, 2008). For example, if a policy maker seeks to offer at

least 10% of good quality hearts h′ to the oldest age group i′, a constraint of type Eπ
{
bh
′

i′ (sK)

}
≥

Eπ
{

0.1
∑
i b
h′

i (sK)

}
should be imposed, where bh

′

i′ (sK) is the total number of heart type h′ offers

made to type i′ patients at the last event K. Consider K fairness constraints and let {Fk}1≤k≤K be

a collection of subsets of patient indices, where Fk ⊆ I for 1 ≤ k ≤ K, {Gk}1≤k≤K be a collection

of subsets of heart type indices, where Gk ⊆ H for 1 ≤ k ≤ K and {ak}1≤k≤K be a collection of real

numbers, where ak ∈ [0, 1] for 1 ≤ k ≤ K denotes the lower bound on the percentage of the hearts

belong to set Gk, allocated to the patients whose indices belong to the set Fk. Then, the fairness

constraints can be written as follows:

Eπ
{ ∑
i∈Fk

∑
h∈Gk

bhi (sK)

}
≥ Eπ

{
ak
∑
i∈I

∑
h∈Gk

bhi (sK)

}
; 1 ≤ k ≤ K.

Therefore, by letting b(sK) =
(
bhi (sK)

)
i∈I,h∈H fairness is modeled by imposing constraints of type

Eπ{Ab(sK)} ≥ 0 , where A is a K by IH matrix, with elements ak,ih defined by

ak,ih =


1− ak, if i ∈ Fk, h ∈ Gk

−ak, if i ∈ I \ Fk, h ∈ Gk.

In this case, the policy maker solves

sup
π∈Π

{
Jπ(s) : Eπ{Ab(sK)} ≥ 0

}
, (2.3)
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which is a constrained stochastic dynamic program (Altman, 1999). The standard dynamic pro-

gramming principles do not apply to (2.3) because of the fairness constraints.

2.4 Fluid Approximation

Solving formulations (2.2) and (2.3) to optimality is intractable due to the curse of dimen-

sionality. Therefore, we employ fluid approximation techniques to produce feasible allocation rules

to the constrained stochastic problem, and evaluate them in Section 2.6.

In creating the fluid approximation, we assume that the death, class change, and delisting rates do

not depend on the waiting time of patients. Our simulation results, however, show that the solutions

produced by this approach have high quality in a setting where these rates do depend on waiting

times. Recall that patients on the waiting list are categorized by different characteristics such as age

group, blood type, VAD status, and health status, indexed by i ∈ I. Therefore, there are I number

of queues for patients in the system. We let λi(t) be the arrival rate of class i patients at time

t. Similarly, hearts are categorized by different characteristics to reflect quality indexed by h ∈ H.

Hence, there are H classes associated with hearts and let µh(t) denote the arrival rate of heart type

h at time t. Let xi(t) be the number of patients in class i at time t, and x(t) = (x1(t), ..., xI(t))
T

be the state trajectory, which is an I-dimensional column vector with T denoting the transpose of

a matrix. There are xi(0) patients in class i initially, and x(0) is the initial state of the system.

According to the UNOS classification (2006-2018), there are four health statuses: 1A, 1B, 2, and

7 (Inactive), where health status 1A is the worst and 2 is the best health status. Status 7 is for

patients who are not considered in the allocation process, e.g., those who are too sick to transplant.

The health status of a patient may change over time, which corresponds to a change of queue in

our fluid model. Let ρij be the rate at which patients of class i become patients of class j and

ρ = [ρij ] be the class change matrix. For transitions that are not possible, set the rate ρij = 0 and

ρii = 0 for all i. Also, define ρ̂ = [ρ̂ij ] as an I × I diagonal matrix with ρ̂ii =
∑
j ρij . Patients

of class i die with rate di, which incorporates the delisting rate of class i patients as well. Let d

be an I × I dimensional diagonal matrix with dis on the diagonal and qh for h = 1, . . . ,H be the

offer acceptance probability matrix, which is an I × I dimensional diagonal matrix, with qhi s on its

diagonal, where qhi denotes the acceptance probability for patients in class i when offered with a
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heart with quality h. In particular, if phi is the probability that a patient type i accepts an offer

of heart type h, then qhi = 1 − (1 − phi )N . Since UNOS dynamically allocates organs to patients,

let the control variables uhi (t) be the rate of allocating a heart type h to patients of class i at time

t, and uh(t) = (uh1 (t), . . . , uhI (t))T for h = 1, . . . ,H. Denote the control variable of the system by

u(t) = (uh(t) : h = 1, ...,H; t ≥ 0) which satisfies three sets of constraints: donor heart limitation,

non-negativity constraints, and constraints of type uhi (t) = 0 for (i, h) ∈ INF, where INF indicates

the infeasible set of patient-heart pairs, e.g., the pair (i, h) does not satisfy blood type matching.

Hence, a control u(t) is feasible if

u(t) ∈ Ω(t) := {u(t) : e.uh(t) ≤ µh(t); uh(t) ≥ 0, ∀h; uhi (t) = 0, ∀(i, h) ∈ INF}, (2.4)

where e is an I-dimensional row vector of ones. Given a feasible control u(t), the system state

evolution can be expressed by the following system of equations:

ẋ(t) = λ(t)−
H∑
h=1

qhuh(t)− (d+ ρ̂− ρT )x(t), x(0) = x0 (2.5)

x(t) ≥ 0, t ≥ 0, (2.6)

where λ(t) is a column vector whose ith entry at time t is λi(t). In order to incorporate fairness

constraints in an average sense (over time) into the fluid model, we consider the following set of K

fairness constraints

∫ T
0

( ∑
i∈Fk

∑
h∈Gk

uhi (t)

)
dt ≥ ak

∫ T
0

(∑
i∈I

∑
h∈Gk

uhi (t)

)
dt; k = 1, . . . ,K. (2.7)

Consider a policy maker who seeks to maximize the total QALYs of the population over a finite

horizon, which captures both pre- and post-transplant life expectancy of each patient on the trans-

plantation waiting list. In order to capture the reward accrued by patients on the waiting list, let

βi be the quality-adjusted coefficient of a patient in class i while waiting for transplantation and

β = (β1, ..., βI). Hence, the total QALYs rate for the entire population at time t can be written as

βx(t). To capture the post-transplant life expectancy of patients, let αhi denote the expected QALYs

of a patient in class i transplanted with a heart with quality h, and αh = (αh1 , ..., α
h
I ). The total
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post-transplant QALYs can then be written as
∑H
h=1

∫ T
0
αhqhuh(t)dt, where T denotes the end of

the planning horizon. Finally, in order to capture the final rewards, let ηi be the expected future

QALYs of a patient in class i who is still waiting for an organ at time T , and η = (η1, ..., ηI). The

expected final reward is then ηx(T ). Hence, the fluid model for the stochastic system in Section 2.3

is as follows: 
VF (x0) = max

∫ T
0

(∑H
h=1 α

hqhuh(t) + βx(t)
)
dt+ ηx(T )

subject to (2.4)− (2.7),

(P1)

where VF (x0) is the optimal objective function of the fluid model given that the initial state of the

system is x0, which is an optimal control problem with pure state constraints, as well as integral

constraints. Because the optimal control problem (P1) has integral constraints, the standard nec-

essary and sufficient conditions for optimality do not directly apply. Therefore, we transform (P1)

to a pure state optimal control problem with final time state constraints and show that the optimal

policy is a priority rule.

Let ki(t) be the shadow price of the ith state evolution constraint in (2.5), which measures the

future benefit of type i patients in terms of QALYs if not transplanted at time t, and k(t) =

(k1(t), . . . , kI(t)). Let yhi (t) be the shadow price of the ihth constraint corresponding to the evolution

of auxiliary state variables zhi (t) defined to transform (P1) (see B.2), yh(t) = (yh1 (t), . . . , yhI (t)), and

y(t) = (yh(t) : h = 1, ...,H; t ≥ 0). Let wi(t) be the shadow price associated to the ith non-

negativity constraint in (2.6), and w(t) = (w1(t), . . . , wI(t)). Finally, let γk be the kth adjoint

variable associated to the kth fairness constraint, and γ = (γ1, . . . , γK). The following theorem

characterizes the structure of the optimal policy.

Theorem 2.1. A feasible triple of state and control variables (x, z, u) is an optimal solution for

(P1) if and only if there exist shadow prices k(t) and y(t) with one sided limits everywhere, a non-
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decreasing vector w(t), and an adjoint vector γ such that

k̇(t) ≤ (k(t)− w(t))(d+ ρ̂− ρT )− β, ∀ t ∈ [0, T ], k(T ) = η,

if xi(t) > 0 , k̇i(t) = [(k(t)− w(t))(d+ ρ̂− ρT )]i − βi,

ẏ(t) = 0, ∀ t ∈ [0, T ], y(T ) = γA, (2.8)

γ · (Az(T )) = 0, γ ≥ 0 (2.9)

uh(t) ∈ argmax
v

{((
αh − k(t)

)
qh + yh(t)

)
v : v ∈ R|I|+ , e · v ≤ µh(t), vhi = 0; (i, h) ∈ INF

}
∀h ∈ H.

(2.10)

Equation (2.10) gives the optimal control of the fluid model, which shows that given the

shadow prices k(t), and y(t) the optimal control at each time t can be found by solving a Knapsack

problem whose solution is given by sorting the patient groups. In fact, at each time t and for each

available heart type h, the optimal solution prioritizes the patient groups based on the quantity(
αhi − ki(t)

)
qhi + yhi (t), which can be interpreted as the marginal benefit in terms of QALYs that

a patient type i may gain from transplanting a heart type h while considering the impact of the

fairness constraints. Given shadow prices, the optimal policy is of priority rule type which is easy

to understand and implement. A policy maker creates a priority list of patient types and offers the

available heart according to the priority list. In each class, the offer is given to the patients with the

largest waiting time. If there are less than N patients in a priority, a rejected heart will be offered

to patients in lower priorities. We denote this policy by optimal priority list (OPL) policy.

Theorem 2.1 shows that even in the presence of fairness constraints, the optimal policy is a priority

index policy with priority coefficients
(
αhi − ki(t)

)
qhi + yhi (t). To provide insights on this quantity,

note that by (2.8), shadow prices yhi (t) are constant in [0, T ] and this constant value is the ihth

element of the vector γA, i.e., yhi (t) =
(
γA
)
ih

=
∑K
k=1 γkak,ih. Therefore, the priority index policy

is with respect to the priority coefficient
(
αhi − ki(t)

)
qhi +

∑K
k=1 γkak,ih. The shadow price yhi (t) can

be interpreted as the impact of fairness constraints in the QALYs of the patients in class i receiving

a heart type h, where the contribution of the kth fairness constraint is equal to γkak,ih. By the

definition of matrix A (see Section 2.3), for i ∈ Fk, the entry ak,ih = 1−ak is non-negative, meaning

that the impact of kth fairness constraint on the priority coefficient is non-negative and imposing

fairness constraint k favors patients in Fk. On the other hand, the entry of matrix A for i ∈ I \Fk,
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ak,ih = −ak is nonpositive, showing the negative impact of the kth fairness constraint on the patients

in I \Fk. In other words, in the presence of the kth fairness constraint, patients in Fk have a higher

priority coefficient and patients in I \ Fk have a lower priority coefficient (note that γk ≥ 0 for

k = 1, . . . ,K). In addition, γk, the shadow price associated to the fairness constraint k, must be

zero when the corresponding constraint is not binding by (2.9), i.e., when the fairness constraint is

not active in the optimal solution, its contribution to yhi (t) is zero. Hence, when none of the fairness

constraints is active in the optimal solution (i.e., all fairness constraints are redundant), γ = 0 and

in such a case, the OPL policy coincides with the policy proposed in Akan et al. (2012).

The implementation of the OPL policy requires an efficient procedure to calculate shadow prices.

From the proof of Theorem 2.1 one can see that, when the system is overloaded, i.e., x(t) > 0 for all

t ∈ [0, T ], k(t) satisfies the following linear system of differential equations: k̇(t) = −β+k(t)(d+ ρ̂−

ρT ), with final condition k(T ) = η, which is solved by using the matrix methods for solving linear

systems of differential equations.

Remark 2.1. The indexibility property of the optimal policy holds when the fairness constraints

are applied in an “average” sense, i.e., during the planning horizon [0, T ] at least ak percent of the

total hearts of type Gk are allocated to the patients of type Fk. However, the indexibility property of

the optimal policy is not generelizable to an “almost sure” setting, where at each time t ∈ [0, T ] the

constraints must hold true, i.e., at least ak percent of the total hearts of type Gk are allocated to the

patients of type Fk, which can be written as Au(t) ≥ 0. In this case, the optimal solution solves the

following LP at time t: maximize
∑H
h=1[αh − k(t)].qhuh(t), subject to, uh(t) ∈ Ω(t) ∩ {Au(t) ≥ 0},

whose solution is a randomized policy using a proof similar to Theorem 2.1.

Remark 2.2. Fluid models may provide an upper bound on the optimal value function of the stochas-

tic system. We show that the fluid model of a bounded Markovian version of our problem also provides

an upper bound, which can be used to assess the quality of solutions in that setting. We also test the

validity of such assumptions in our problem using real data: see Section B.3.

Remark 2.3. In our simulation model, the fluid model (P1) is solved for each region separately

based on data specific to that region for creating the priority lists. However, regional sharing is

an important issue in organ transplantation, which may address geographical disparity. In order to

address this issue, we reformulate problem (P1) to include Organ Procurement Organization (OPO)
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as one of the factors defining patient and heart classes, derive the optimal policy in the presence of

certain proximity constraints, and simulate it to investigate insights from such regional inclusion:

see B.6 for details.

2.5 Alternative Objective Functions

The main objective function considered in this work is the maximization of total QALYs

of the entire patient population. However, there are other related objective functions in organ

transplantation.We analyze the heart allocation problem with four alternative objective functions.

In particular, we formulate two optimal control problems with different objective functions but the

same feasible state-action region as (P1): one to minimize the total number of pre-transplant deaths,

and the other to minimize the total wastage of donor hearts, denoted by problems (P2) and (P3),

respectively. In particular, a policy maker who seeks to minimize the pre-transplant deaths solves

for 
min

∫ T
0
e.dx(t)dt

subject to (2.4)− (2.7).

(P2)

Similarly, if the objective of a policy maker is to minimize the total organ wastage, which is equivalent

to maximizing the total transplanted organs, the policy maker solves


max

∑H
h=1

∫ T
0
e · qhuh(t)dt

subject to (2.4)− (2.7),

(P3)

where e is an I-dimensional vector of all ones. Denote the optimal policies derived from solving

problems (P2) and (P3) by MPD, and MTW, respectively.

Similar arguments as in proof of Theorem 2.1 show that the optimal solution of both problems

are priority type policies. Specifically, at time t, the optimal solution of problem (P2) prioritizes

patients according to ascending order of the coefficients qhi k̂i(t)−ŷhi , where k̂i(t) is the ith component

of adjoint variables vector associated to state evolution constraints in (2.5) and ŷhi (t) is the shadow

price associated to the evolution of auxiliary variables introduced for each integral constraint (see

B.5.2). In fact, if the acceptance probability is the same among patients, and patients are only

38



categorized by their health, then in the absence of fairness constraints, the optimal solution of

problem (P2) coincides with the UNOS policy, which prioritizes patients in the order of worst to

best health status (1A > 1B > 2), as pre-transplant death rates satisfy d1A > d1B > d2 from

real data estimation. On the other hand, when the objective is to minimize the total wastage of

hearts, the optimal policy prioritizes patients according to coefficient qhi + ỹhi (t) where qhi is the

ith diagonal element of the acceptance matrix qh and ỹhi (t) is the shadow price associated to the

auxiliary variables introduced to transform integral fairness constraints (see B.5.2). In other words,

the optimal solution of problem (P3) is a priority index policy for each available heart type h, which

prioritizes patients with higher heart acceptance probability in the absence of fairness constraints.

Furthermore, we study two other objective functions related to the expected waiting time of

patient classes on the waiting list, because reducing the waiting list and time to transplantation is

a top priority of UNOS. Zenios (1999) studied the organ allocation problem as a queuing model

with reneging and derived asymptotic expressions for the expected waiting time of different patient

classes. We use these expressions and formulate a problem that minimizes the mean of the expected

waiting time across all patient classes (MWT Policy). Furthermore, we study the equity policy

(VWT Policy) introduced in Zenios (1999), which equalizes waiting times of patient classes: see B.5

for details.

2.6 U.S. Heart Transplantation System

This section presents the result of applying the methods discussed in Sections 2.3-2.5 to

the U.S. heart transplantation waiting list and explains novel insights. In the U.S., the OPTN

maintains the national registry for donated organs and manages the organ allocation process under

the administration of UNOS. Patients demanding transplant have to register in OPOs waiting lists

to receive an offer. Donated hearts also become available in OPOs and are offered to the patients

according to a policy which is based on certain priority rules. There are a total of 59 OPOs in the

U.S. distributed in 11 geographical regions across the country and each OPO includes one or more

transplant centers. According to the UNOS data reports, adult patients are categorized into four

age groups ([18-35], [35-50], [50-65], and [65+]), four health status groups (1A, 1B, 2, and Inactive),

four blood type groups (O, A, B, and AB), and two VAD status groups (showing whether a patient
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has ventricular assist device in their heart) (Colvin-Adams et al., 2015). Hence, we classify the

patients on the waiting list into 128 classes. Similarly, donor hearts are classified into 16 heart

types based on the age (four age groups) and blood type (four blood type groups) of the donor. We

consider the planning horizon 2006-2014 because the three-tiered allocation policy was implemented

since 2006 (Kobashigawa et al., 2015). The initial population in each class at the start of the

planning horizon is estimated by using the SRTR annual data reports. All the parameters defined

in Sections 2.3-2.5 are directly estimated from the UNOS and SRTR data sets or, if not available, by

the validated simulation model of Hasankhani and Khademi (2017). The overview of the simulation

model is enclosed in B.4. Using this set of parameters, we solve the discretized version of the optimal

control problem (P1), explained in Section B.3, for each region separately to find its optimal solution

and calculate the total LYs received by the patients of each region in the absence of the fairness

constraints. In the numerical analysis we use LYs instead of QALYs due to unavailability of data.

2.6.1 Benchmark Policies

We consider several benchmark policies along with the policies proposed in Sections 2.4

and B.3 and study their performance via the simulation model. In particular, we consider UNOS,

UNOS 7-tiered (new OPTN proposed policy), Su/Zenios efficiency (SZE), and Su/Zenios equity

(SZQ) policies, a heart allocation scoring system (HAS) policy, as well as a broadening regional

sharing (BRS) policy and policies that reverses the health prioritization of patients in UNOS/UNOS

7-tiered policy (UNOS-HR/UNOS 7-tiered-HR). This is motivated by the fact that prioritizing

healthier patients achieves a higher total LYs in our simulations. The UNOS allocation policy which

was implemented by UNOS during the 2006-2018 time period, prioritizes patients on the waiting

list in three different levels, i.e., geographical (proximity to the donor hospital), health status, and

waiting time level. Each policy has its own prioritization criteria. See B.5 for details.

2.6.2 Numerical Results

This section reports the results of applying said policies in the validated simulation model.

Table 2.1 compares the total LYs in simulating the OPL policy with those resulted from the UNOS

policy for each region. Results indicate that the total LYs under the OPL policy is significantly

greater than that of the UNOS policy in each region. The improvement is as large as 8.6% in Region
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Table 2.1: Percentage Improvement of OPL over UNOS

Region R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Total

OPL vs. UNOS (%) 7.2 8.1 7.8 7.5 8.6 8.5 7.7 7.1 8.0 8.4 8.1 7.9

5 and for the whole country is 7.9%.

Total LYs consists of three parts: (i) pre- and (ii) post-transplant LYs for the patient population

during the planning horizon 2006-2014, and (iii) future LYs for the patients who are on the waiting

list at the end of the planning horizon (final reward). Table 2.2 compares the results of simulating

the OPL, UNOS, and other benchmark policies for these three measures. Our results show that the

OPL policy is worse than UNOS in terms of pre-transplant LYs and final reward. However, it is

significantly better than UNOS in terms of post-transplant LYs such that in overall it outperforms

the UNOS policy by 7.9%. Furthermore, Table 2.2 illustrates that the recently proposed UNOS

7-tiered policy performs similarly to the UNOS policy in terms of all the measures except a slight

improvement for the pre-transplant LYs. In addition, a comparison between OPL and SZE reveals

that the performance of SZE is similar to that of OPL in terms of pre-transplant and final LYs, while

it is outperformed by OPL in terms of post-transplant and total LYs. A similar conclusion holds

true between OPL and SZQ as the former yields a significantly higher post-transplant and total

LYs. The BRS policy achieves an improvement over UNOS in terms of pre- and post-transplant as

well as total LYs by broadening the regional sharing of donor organs. In fact, BRS is the best in

terms of pre-transplant mortality.

Furthermore, Table 2.2 reports the results of simulating the MPD, MTW, MWT, and VWT

policies introduced in Section 2.5. Recall that MPD seeks to minimize the number of pre-transplant

deaths, roughly speaking, an objective that UNOS is seeking in heart transplantation. Our results

show that the performance of MPD is marginally better than UNOS or UNOS 7-tiered in terms

of pre-transplant LYs, which suggest that if the objective is to focus on pre-transplant LYs, UNOS

is already doing a good job. Furthermore, recall that we analytically show that MPD prioritizes

patients similar to UNOS in terms of health, if health is the only patient characteristic (note that

the improvement of MPD over UNOS in terms of pre-transplant LYs is because MPD considers age

and VAD prioritization as well). In addition, results indicate that the MWT and VWT policies
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that minimize the mean and variance of waiting times respectively, perform slightly worse than

UNOS in terms of pre-transplant LYs while outperform UNOS in post-transplant LYs. Although

MWT and VWT have a better pre-transplant performance in simulation compared to the SZE, their

post-transplant outcomes are outperformed by the SZE which yields a similar total LYs for these

policies. In summary, our results suggest that the policies that consider post-transplant survival such

as OPL, SZE, and SZQ perform better than those that consider pre-transplant survival like UNOS

and MPD in terms of maximizing the LYs of the patient population. Table 2.2 also reports the

results of simulating the OPL-RS policy that is derived from solving the fluid model (Po) discussed

in Section B.6. The OPL-RS policy that considers proximity in allocating organs, performs similar

to OPL in terms of pre-transplant LYs but achieves a higher post-transplant and total LYs. The

reason is that under OPL-RS organs can be shared within patients of a wider area and as a result

the opportunity of finding healthier and younger matches is higher compared to OPL. In addition,

we provide an estimate for LYs per patient by dividing total LYs gain under each policy by total

number of patients.

Table 2.2 for each policy, next to the last column, indicates the average waiting time among patient

groups over several simulation runs and the last column reports the standard deviation of the waiting

times across patient classes. Our results show that OPL significantly reduces the expected waiting

time and is the closest to the MWT policy (which minimizes the mean of waiting times), e.g., it

reduces the waiting time by almost half compared to UNOS. We also observe that the order of the

policies in terms of mean waiting time in Table 2.2 is similar to that of pre-transplant LYs, i.e.,

the mean waiting time of a policy increases if pre-transplant LYs increases. This observation is an

application of Little’s law: the mean waiting time is proportional to the expected number of patients

in the queue, which depends on the allocation policy. In particular, allocation policies that seek to

minimize the number of pre-transplant deaths give more priority to sicker patients who have higher

pre-transplant mortality rates, causing healthier patients who have lower pre-transplant mortality

rates to stay on the waiting list, which consequently results in large waiting list and expected waiting

time. In fact, our results show that the size of waiting list is smaller under OPL than UNOS. In

summary, in this context because the pre-transplant mortality rate is significantly greater for sicker

patients, with similar arrival rates, their prioritization naturally increases the size of waiting list,

thus the waiting time.
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Table 2.2: Benchmark Policies Comparison

Objective Function (Life-Days ×106) Waiting Time (Days)
Policy Pre-TX Post-TX Final Total Life Days per

Patient
Mean STD

UNOS 9.05 147.25 0.035 156.33 5073 189 168
(0.216) (0.899) (0.0012) (0.710) (23.05)

UNOS 7-Tiered 9.14 147.28 0.035 156.45 5077 191 191
(0.243) (1.010) (0.0012) (0.892) (28.98)

OPL 6.89 163.00 0.021 169.91 5514 91 63
(0.372) (0.0572) (0.0009) (0.509) (16.52 )

SZE 7.22 157.91 0.025 165.16 5359 110 73
(0.207) (0.665) (0.0003) (0.506) (16.43)

SZQ 7.24 155.57 0.025 162.83 5284 105 72
(0.138) (0.735) (0.0001) (0.596) (19.35)

BRS 10.74 148.58 0.034 159.36 5171 206 234
(0.167) (0.187 ) (0.0004) (0.285) (9.27)

HAS 6.77 162.38 0.021 169.71 5507 97 75
(0.148) (0.883) (0.0011) (0.997) (32.37)

UNOS-HR 7.63 150.02 0.032 157.68 5117 96 66
(0.162) (0.707) (0.0007) (0.793) (25.74)

UNOS 7-tiered-HR 7.57 149.44 0.031 157.041 5096 101 65
( 0.076) (0.722) (0.0011) (0.776) (25.19)

MPD 9.55 146.6 0.034 156.07 5064 157 140
(0.868) (1.0759) (0.0015) (1.113) (36.15)

MTW 7.86 151.28 0.032 159.17 5165 122 56
(0.429) (1.520) (0.0019) (1.188) (38.58 )

MWT 7.63 156.41 0.024 164.08 5324 82 147
(0.031) (1.470) (0.0004 ) (1.439) (46.70)

VWT 8.81 154.63 0.031 163.49 5305 136 53
(0.474) (0.352) (0.0005) (0.335) (10.88)

OPL-RS 6.72 165.24 0.023 171.98 5581 95 82
(0.126) (0.587) (0.0009) (0.642) (20.84)

Note. Numbers in parenthesis show the standard deviation of each measure over the simulation runs; SZE: Su and Zenious efficiency policy;

SZQ: Su and Zenious equity policy; BRS: a policy that broadens regional sharing priority; HAS: heart allocation scoring system policy;

UNOS-HR: a policy that reverses the UNOS health priority; UNOS 7-Tiered-HR: a policy that reverses the UNOS-7-Tiered health priority;

MPD: a policy that minimizes pre-transplant death ; MTW: a policy that minimizes total heart wastage; MWT: a policy that minimizes

mean waiting time among patient classes; VWT: a policy that minimizes variance of waiting times among patient classes; OPL-RS: OPL

policy with proximity considerations (regional sharing)
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Regarding standard deviation of waiting times our results show that the policies that prioritize

healthier patients such as OPL and SZE have a lower standard deviation and are closer to the VWT

policy (which equalizes the waiting times among patient classes) compared to those that prioritize

sicker patients. The reason for this observation is that in heart transplantation, where the arrival

rates of sick and healthy patients are not significantly different, prioritizing sicker patients with high

mortality rates causes more healthier patients be on the waiting list who have lower mortality rates.

Therefore, the difference between the waiting times of sicker and healthier patients is exacerbated,

thus a higher variance. Furthermore, SZQ which considers equity in allocation yields a waiting time

variance similar to that of SZE and is closer to the OPL and VWT policies in terms of this measure.

These results suggest that OPL improves the variance of waiting time among patient groups, which

is a measure of equity, compared to UNOS.

2.6.3 Policy Analysis

As shown in Table 2.2, the improvement of the OPL policy over UNOS is due to the post-

transplant LYs. This section analyzes the OPL and UNOS policies in detail to shed light on how

these policies allocate hearts and provide insights on the proposed policy. Note that the OPL policy

prioritizes patients at each time based on shadow prices, which are time dependent. In particular,

it ranks patient groups by
(
αhi − ki(t)

)
qhi + yhi (t), which represents the life expectancy benefit

from transplant compared to not having one while reflecting the impact of fairness constraints.

Among patient characteristics we focus on health and age as they are important factors in heart

transplantation and subjects of debate. Therefore, Table 2.3 shows the value of
(
αhi − ki(t)

)
qhi for

each pair of (health, age) when the effect of other patient characteristics, time, and heart types

is averaged out. Note that red and green indicate higher and lower priority, respectively. Similar

tables are provided in B.8 for each heart type h ∈ H. Results in Table 2.3 provide insights about

how the OPL policy prioritizes patients and suggests implementable guidelines for allocating donor

hearts. In particular, it indicates that the marginal benefit of younger and healthier patients from

transplant is much larger than that of the oldest and sickest ones, emphasizing the fact that the

OPL policy gives priority to younger and healthier patient groups, those with higher post-transplant

survival. B.8 shows similar tables in the presence of fairness constraints.
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Table 2.3: Color-Coded Graph of Age and Health Prioritization for OPL
Policy

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9358.52 6189.24 3278.25 1148.56
1B 9682.77 6725.66 4199.26 1913.78
2 10288.39 6590.31 3973.45 3282.51

Note: Red denotes higher and green shows lower priority.

Next, in order to investigate how in practice (simulation), the OPL policy prioritizes patients, we

record the number of times heart type h is allocated to patient type i for all (i, h) pairs. A similar

count is carried over for UNOS policy. In particular, we conduct further analysis on the OPL policy

by using the simulation model and comparing the percentage of hearts allocated to different patient

classes under OPL and UNOS. In the simulation, for both policies the same stream of random

number generators are used for patient and organ arrival to have a fair comparison. Results of this

analysis is reported in B.8. Specifically, the percentage of donor hearts assigned to different patient

health status (Figure 18a), age groups (Figure 18b), and VAD groups (Figure 18c) are calculated for

each policy. Results suggest that the OPL policy, unlike UNOS, prioritizes healthier and younger

patients, but similar to UNOS patients with VAD are not prioritized.

Further analysis of the pre- and post-transplant death rates shows that the expected survival of

younger and healthier patients after transplantation is higher than older and sicker ones. More-

over, the expected post-transplant survival is much larger than the expected pre-transplant survival.

Therefore, if the goal of a policy is to maximize the total life expectancy (pre- and post-transplant)

of the patient population, it naturally gives higher priority to younger and healthier patients. This

observation is consistent with our results that the OPL policy significantly outperforms the UNOS

policy in post-transplant survival while it is dominated by UNOS in pre-transplant LYs. In particu-

lar, since the OPL policy prioritizes the younger and healthier patients, the percentage of older and

sicker patients, who have larger pre-transplant death rates, increases on the waiting list under the

OPL policy, which results in shorter pre-transplant life-years compared to UNOS. The same logic

holds true for the final reward.

In order to provide further insights on the trade-off between utilitarian and medical urgency

approaches, Tables 2.4 and 2.5 report the number of pre-transplant deaths the OPL policy trades

off to obtain an increase in total LYs for each health and age group compared to UNOS. The results
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Table 2.4: LYs/Death Trade-off for Patient Health Groups (OPL minus UNOS)

Health Group 1A 1B 2 Inactive Total

Death 215 22 -171 511 577

Total Life-Days (×107) -5.48 1.55 5.41 -0.012 1.46

Table 2.5: LYs/Death Trade-off for Patient Age Groups (OPL minus UNOS)

Age Group [18-35] [35-50] [50-65] [65+] Total

Death -39 -262 470 408 577

Total Life-Days (×107) 1.1 0.47 -0.066 -0.043 1.46

indicate that the OPL policy produces 577 more pre-transplant deaths compared to UNOS, but

achieves 1.46 × 107 more total life days. See B.8 for similar analysis for UNOS 7-tiered and OPL

policy with fairness constraints.

2.6.4 Fairness Analysis

Policy analysis for the UNOS and OPL allocation rules reveals that the improvement of the

objective function is related to a shift in allocation rule towards prioritizing younger and healthier

patients. However, this efficient policy may disproportionately affect sickest and older patients on the

waiting list, which may raise equity issues. Therefore, this section provides a systematic and flexible

framework to study fairness by applying lower bounds on the percentage of donor hearts allocated to

specific groups of patients. Specifically, we match the percentage of hearts allocated to different age

and health groups by UNOS in the following analysis, by which the contribution of age/health on the

objective function can be assessed separately. To that end, a fairness analysis on the optimization

problem (P1) is conducted by adding extra constraints to the set of feasible actions. See Section B.7

for details. Recall that by Theorem 2.1 the OPL policy in the presence of fairness constraints is still

a priority index policy depending on shadow prices, which are estimated by the optimal dual values

of the corresponding constraints in the discretized version of problem (P1), a linear program. The

improvement of our proposed OPL policy over UNOS in the presence of several fairness constraints

is reported in Tables 2.6-2.8. Table 2.6 reports the results of imposing age fairness constraints. In

particular, our results suggest that imposing age fairness constraints to match UNOS reduces the
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Table 2.6: Improvement of the OPL over UNOS in the presence of age fairness constraints (%)

Constraint Applied for [35+] [50+] [65+] [50-65] and [65+] [35-50] and [50-65] and [65+]

Improvement 3.0 3.9 5.7 2.2 2.1

Table 2.7: Improvement of the OPL over UNOS in the presence of health fairness constraints (%)

Constraint Applied for [1A] [1B] [2] [1A] and [1B]

Improvement 1.5 4.9 7.2 0.8

percentage of improvement, but there is still room for improvement because, e.g., by optimizing

health priority and other age groups, the OPL policy outperforms UNOS by 5.7% if only the oldest

age group is matched. All in all, results in Table 2.6 illustrates the significance of allocation priority

shift from older to younger patients in improvement of OPL compared to UNOS. Table 2.7 reports

the improvement of the OPL policy over UNOS in the presence of each health fairness constraint.

Results show that if we set the percentage of allocated hearts to the patients with health status 1A

to be at least as high as UNOS, the improvement over UNOS reduces to 1.5%. This result suggest

that the OPL improvement is mainly due to a priority shift from the sickest patient group (status

1A) to the healthier ones (status 1B and 2). However, considering a health fairness constraint of

[1B] reduces the 7.9% improvement to 4.9% which shows that in terms of health priority, the most

part of improvement is due to a priority shift from 1A toward 1B and 2. The results in Table 2.7

corroborate this insight. Finally, Table 2.8 reports the improvement of the OPL policy over UNOS

in the presence of combined age-health constraints and shows that in these cases the improvement

becomes marginal. See B.7 for more details regarding the fairness constraints studied in this work.

Table 2.8: Improvement of the OPL over UNOS in the presence of age-health fairness constraints
(%)

Constraint Applied for [65+] and [1A] [50-65] and [65+] and [1A]

Improvement 0.8 0.4
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Table 2.9: Percentage Improvement of OPL over UNOS for Different
Cases of Parameters (%)

Case Baseline Case (1) Case (2) Case (3) Case (4) Case (5) Case (6)

Improvement 7.9 11.2 5.6 5.9 10.1 7.8 7.7

2.6.5 Sensitivity Analysis

This section provides the results of conducting sensitivity analysis on the patient and heart

arrival rates. In order to test the robustness of the results to the change in model parameters,

we conduct several one- and two-way sensitivity analysis. Specifically, we change the arrival rates

of patients and hearts by 10% and calculate the percentage improvement of the OPL policy over

UNOS in terms of the total LYs for the following cases: (1) patient arrival rates increased by 10%,

(2) patient arrival rates decreased by 10%, (3) heart arrival rates increased by 10%, (4) heart arrival

rates decreased by 10%, (5) patient and heart arrival rates both increased by 10% simultaneously,

and (6) patient and heart arrival rates both decreased by 10% simultaneously. Note that we use

a mis-specified policy in conducting the sensitivity analysis, i.e., we keep the policy derived under

the base case parameters fixed and run the simulation in different cases using the corresponding

parameter values. The results are reported in Table 2.9 and show that as we increase arrival rates

of patients (Case (1)), or decrease arrival rates of hearts (Case (4)), the improvement of the OPL

over UNOS increases to 11.2% and 10.1%, respectively, compared to the 7.9% improvement of the

baseline scenario. The reason is that in cases (1) and (4) the system becomes closer to a fully

overloaded one and the fluid model provides a more accurate approximation. Also, the OPL policy

has more opportunity to allocate hearts in a near-optimal fashion. However, as we decrease the

arrival rates of patients (Case (2)), or increase arrival rates of hearts (Case (3)), the percentage

improvement of the OPL over UNOS practice decreases from 7.9% to 5.6% and 5.9%, respectively.

Furthermore, the results in Table 2.9 show that in Case (5) and (6) the improvement of OPL over

UNOS does not significantly change compared to the baseline case.
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2.7 Conclusions and Managerial Insights

We studied the problem of dynamically allocating scarce donor hearts to a heterogeneous

patient population on the transplant waiting list from a variety of viewpoints in the efficiency and

fairness spectrum. For efficiency we considered (i) maximization of total QALYs of the entire patient

population; (ii) minimization of the expected waiting time; and (iii) minimization of pre-transplant

mortality. For fairness we considered (i) maximization of the minimum QALYs over patient groups;

(ii) minimization of the variance of expected waiting time among patient groups; and (iii) applying

fairness constraints. We applied the optimal policies for each measure of efficiency and fairness into

a simulation model of the U.S. heart allocation system, developed and validated from UNOS/SRTR

data.

Our results provide the following insights into heart transplantation allocation rules: (1) OPL

outperforms UNOS by almost 8% in terms of total LYs and reduces the expected waiting time by

almost half. Our analyses show that the improvement for total LYs and expected waiting time is

due to significant improvement on post-transplant LYs and reducing the size of the waiting list,

respectively. (2) Our analytical and numerical analyses show that, unlike UNOS, the OPL policy

prioritizes healthier and younger patients who have a higher post-transplant survival. In addition,

OPL does not prioritize VAD status. (3) In order to investigate the contribution of health and

age in the improvement, we applied certain constraints that matched UNOS allocation percentages

for each age and health and our results show that health prioritization is more important than

age. (4) The new proposed UNOS 7-tiered policy marginally improves over the previous UNOS

practice. In fact, UNOS/UNOS 7-tiered policies perform similarly to the policy that minimizes the

pre-transplant mortality. This suggests that if the objective is to focus on pre-transplant mortality,

the UNOS policy is near-optimal. (5) The performance of OPL with respect to mean and variance

of waiting time is closer to that of MWT (which minimizes expected waiting time) and VWT(which

minimizes variance of waiting time) than UNOS. A similar result is observed with respect to the

objective of maximization of the minimum LYs. These results suggest that OPL is more robust than

UNOS with respect to change in different objective functions especially in terms of fairness measures

considered in this study. (6) Incorporating the location of patients and organs in allocation rules

and considering a broader regional sharing can significantly improve total LYs, size of the waiting

list, and help address geographical disparity.
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The OPTN/UNOS Heart Subcommittee plans to develop a point-based heart allocation rules in

the near future similar to Kidney Allocation System. We developed a Heart Allocation System by

designing relevant score components and estimating the corresponding coefficients by a data-driven

approach. Our simulation results show that HAS achieves a similar performance to OPL in terms of

LYs and could pave the way for the future UNOS HAS. A natural path forward is to test our proposed

policies and HAS by TSAM, the UNOS/SRTR heart simulation model. This is because although we

used a simulation model that is validated in several dimensions, it has limitations which may impact

the results. For example, (i) detailed data on patients and donors were available for each region and

not for every DSA or OPO. Therefore, appropriate distributions were generated for each region and

a new patient/heart in a region is assigned to OPOs based on a uniform distribution; (ii) the patient

health status change module only considers health and does not consider other attributes such as age,

gender, etc.; (iii) because detailed data for heart wastage was not available, the donor heart arrival

rates were adjusted for wastage compensation; (iv) the acceptance probabilities for each heart type

depends only on patient health; (v) we used health classes and age groups definitions by UNOS and

better results may be obtained if there was flexibility in such definitions; (vi) our analysis focused

on life years and did not consider quality of life due to unavailability of data. However, considering

QALYs will bolster our results because the sicker and older patients have a lower quality of life

and as a result the gap between the utilitarian and medical urgency-based approaches is likely to

increase. Finally, we did not consider the cost of changing allocation rules, which may impact the

recommendation based on the results.
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Chapter 3

Proportionally Fair Organ

Allocation Rules for

Transplantation

3.1 Introduction

Organ transplantation is the only viable life-saving treatment option for patients with late-

stage organ disease, who join a waiting list to receive a donated organ and have a transplant. There

are more than 113,000 patients on the waiting list as of April 29, 2019, which is caused by a significant

imbalance between the rate of patients joining the waiting list (demand) and that of donor organs

(supply) (United Network for Organ Sharing, 2019). In fact, on average, 18 patients die every day

while waiting for a transplant (United Network for Organ Sharing, 2019).

This public health crisis has received significant attention from governmental entities and research

communities. For example, the White House Office of Science and Technology issued a call to action

to reduce the size of the waiting list noting that “ending the wait for organ transplant ... [is] some of

what America can do” (The White House Office of Science and Technology Policy, 2016). Because of

the notable imbalance between supply and demand, organ transplantation rules play a critical role

in the performance of the transplant system and have striking impact on patients’ life and society.
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To that end, the United States (US) Congress passed the National Organ Transplant Act (NOTA) in

1984, which enacted new rules to ensure that organ allocation rules are efficient and fair. However,

designing efficient and fair allocation policies is extremely challenging and the United Network for

Organ Sharing (UNOS) has periodically changed them because of advancements in research and

technology (Colvin-Adams et al., 2012). In fact, there is a fundamental and natural conflict between

efficiency and fairness in organ allocation as long as organ shortage persists.

The principles of efficiency is well-established and the consensus is around maximization of the

overall utility of patients, which is dominantly measured by total Quality-Adjusted Life Years

(QALYs) of the entire patient population (United Network for Organ Sharing, 2019). While the

bulk of the literature on organ allocation is driven by the objective of maximizing total QALYs

of the patient population, we believe that fairness is a crucial objective in organ transplantation

systems. However, because of the subjective nature of fairness, it is difficult to lay out a universally

accepted framework for fair organ allocation. In fact, following an axiomatic approach, no fairness

scheme can satisfy all five axioms of fairness simultaneously under mild conditions (Bertsimas et al.,

2011). Nonetheless, in order to provide some principals for fair allocation, UNOS proposed the

following six factors: 1) medical urgency, 2) likelihood of finding a suitable organ in the future, 3)

waiting time, 4) first versus re-transplantation, 5) age, and 6) geographical fairness considerations

(United Network for Organ Sharing, 2019).

The goal of this study is to propose a new measure of fairness in organ allocation, elaborate

its potential benefits, analyze the structure of optimal allocation policies under this measure, and

numerically quantify the benefits via a simulation model validated by real data for heart transplan-

tation. Next, we discuss the results of studies that consider efficiency and fairness in organ allocation

and close the discussion by providing evidence on inefficiency of current measures of fairness. In

particular, because our focus is in proposing a fairness measure in the objective function, we begin

with discussing other perspectives of fairness in organ transplantation and then focus on available

measures of fairness for the objective function.

As mentioned earlier, geographical disparity is a factor that UNOS highlights for fairness pur-

poses. Ata et al. (2016) addressed this issue by proposing multiple listing and initiating Organ Jet

service. Fairness may also be imposed by incorporating lower bounds on percentage of total offers
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to specific groups of patients (Bertsimas et al., 2013). Bertsimas et al. (2013) applied a data-driven

approach to design allocation rules, where fairness constraints were studied. Now, we describe the

fairness measures as the objective and report their inefficiencies compared to a utilitarian policy.

(1) Medical urgency. Medical urgency is perhaps a major criteria that UNOS has followed for

organ allocation, which tends to prioritize the sickest patients. For example, the current heart

allocation policy is mainly medical urgency driven (Organ Procurement and Transplantation Net-

work, 2015). A natural path to formulate this measure in the objective function is to minimize

pre-transplant mortality. However, numerical evidence reveals that allocation policies that are med-

ically urgent driven cause significant performance loss. For example, see Su and Zenios (2006), Akan

et al. (2012), and Hasankhani and Khademi (2017).

(2) Waiting (list) time. In many queuing systems involving human beings, the principle of first-

come first-served is believed to be the most relevant in terms of fairness. However, in transplant

systems it is not a primary factor in prioritization because prioritization based on waiting time will

cause severe consequences in terms of total life yeas of the patient population. In fact, Childress

(1991) mentioned that “length of time on the waiting list is the least fair, most easily manipulated,

and most mindless of all methods of organ transplantation.” Therefore, the current practice is to

use waiting time as a tie-breaker or a part of the scoring system. Our numerical results shows that

prioritizing patients solely based on waiting time will cause around 10% efficiency loss and around

24% more total deaths in heart transplantation.

(3) Equalizing waiting time among patient groups. One measure of fairness in service queuing

theory is the minimization of the variance between the expected waiting time of customer (patient)

classes. Inspired by observing a notable difference between waiting times of different ethnic groups,

Zenios (1999) studied the transplant queuing system with this objective and observed significant

inefficiency of such policies. In particular, he wrote “Focusing on equalizing waiting time alone can

be misleading because the patient mortality serves as a confounding factor.” Our simulation results

corroborate with previous studies and show that following such policies results in 5% performance

loss.

(4) Max-min utility. The notion of max-min fairness was introduced as a design objective in the

literature of communication networks by Bertsekas et al. (1992) and is widely used in the political

sciences (Rawls, 2009). In the resource allocation problems, the principle of max-min fairness is to

allocate network resources such that the utility of a player cannot be increased without decreasing
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the utility of another player having a smaller utility. Under max-min fairness for a multi-player

game, the decision maker allocates resources to the players to maximize the lowest utility level

among players. Then, tries to maximize the second lowest utility level and so on. The main princi-

ple of max-min fairness in organ allocation systems is to design allocation rules that guarantee that

the QALYs of the worst patient group is maximized (Rawls, 2009). However, the said measure will

result in a significant performance loss. For example, see Su and Zenios (2006) and Hasankhani and

Khademi (2017).

Since the common measures of fairness in organ allocation cause a significant performance loss, a

natural question arises: can an alternative fairness measure be applied to transplant systems with

a less performance loss? This study provides an answer to this question and our results yield an

affirmative answer. In particular, we propose an application of proportional fairness, which is a

generalization of Nash standard for comparison, in organ transplantation.

Proportional fairness is widely used in queuing networks and resource allocation problems such

as bandwidth allocation of network capacities. For example, Bonald et al. (2006) study a communi-

cation network whose resources are shared by a random number of data flows under proportional,

max-min, and balanced fairness and compare their performance. Li et al. (2008) study a multi-rate

wireless LAN network. Their model allocates access points to the users in order to achieve optimal

proportional fairness in a network with several access points. Manfredi (2014) propose a healthcare

traffic control over the modern heterogeneous wireless network to avoid congestion and guarantee

quality of service from the service reliability and responsiveness point of view. They propose policies

based on proportional fairness and study the performance of the proposed policies in simulation.

Swenson (1992) study the problem of allocating scarce resources (incentive care units) to patients

demanding for ICU. They used Rawl’s theory of justice to rank patients on the waiting list in a fair

fashion.

Under the Nash principle for two players, an allocation is fair if the percentage increase in

utility of one player is larger than the percentage decrease in utility of the other player. By the

generalization of the Nash solution for multiple players, a fair policy is the one that achieves a non-

positive aggregate proportional change, compared to any feasible allocation policy. In particular,

for N players, the PF policy is proportionally fair if for every feasible policy π ∈ Π and its induced

54



feasible utility uπ = (uπ1 , . . . , u
π
N ) ∈ U ,

N∑
j=1

uπj − uPF
j

uPF
j

≤ 0, (3.1)

where Π and U are the set of feasible allocations and utilities, respectively. We interpret this

inequality by dividing the N players into two groups, the ones who gain utility due to switching

from allocation π to PF , and the ones who lose utility. The inequality (3.1) ensures that the amount

of utility that gainers gain is not less than that of the losers lose. For a convex utility set U , the fair

allocation under proportional fairness PF is unique and can be obtained by solving the following

problem:

max
u

N∑
j=1

log(uj),

subject to u ∈ U.

The first order optimality condition for this problem coincides with the Nash standard of comparison

principle for N players. The Nash bargaining game is a game between two players that demand a

portion of some good, in our context divisible organ. Both players receive their request if the total

amount requested by the players is less than that available, and they receive nothing, otherwise

(disagreement value is set to zero here). John Nash proposed a solution satisfying the axioms of

scale invariance, symmetry, efficiency, and independence of irrelevant alternatives. Various solutions

are proposed for this game with slightly different assumptions.

To better understand the application of Nash principle for a two patient problem in trans-

plantation queuing systems and the distinctions between different fairness measures, consider the

following example:

Example 3.1. Suppose we have two patients: Patient 1 is sick and Patient 2 is healthy, and one

organ is available. Patient 1 lives 1 year if she does not receive the organ, and lives 2 years if she

receives an organ. Patient 2 lives 3 year if she does not receive the organ, and lives 5 years if she

receives an organ. Define the utility as the life-years of the patients. That is, u1 and u2 are the

utility of Patients 1 and 2, respectively. The allocation question is to whether allocate the organ to

the sick or healthy patient. Thus, if we assign the organ to the sick patient, then u1 = 2 and u2 = 3;
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if we assign the organ to the healthy patient, then u1 = 1 and u2 = 5. However, assume in general

that the organ assignment could be randomized. Let the decision variable be π = (π1, π2), where

π1 and π2 are the probability that the organ is assigned to the sick and healthy patient, respectively

and belong to the set of admissible decisions X = {(π1 + π2) : π1 + π2 = 1, π1, π2 ≥ 0}. Thus, we

can write the utilities of patients as u1 = 2π1 + π2 and u2 = 3π1 + 5π2. In the following, we find

the optimal allocation rule following the (1) utilitarian approach, (2) max-min fairness, and (3)

proportional fairness.

Utilitarian approach: The objective is to maximize the total utility, i.e., maximize u1 + u2 =

5π1 + 6π2 subject to π ∈ X . Then it follows that the solution π = (0, 1) is the optimal solution.

Therefore, the optimal allocation in the utilitarian approach is to allocate to the healthy patient with

probability one with utilities u1 = 1, u2 = 5.

Max-min fairness: The objective here is to maximize the minimum utility across patients, i.e.,

maxπ∈X min{u1, u2} = maxπ∈X min{2π1 +π2, 3π1 + 5π2}. The optimal solution is π = (1, 0) in this

case. Thus, the optimal allocation is to allocate to the sick patient and the utilities are u1 = 2, u2 = 3.

Proportional fairness: The objective is to maximize the multiplication of the utilities, i.e., u1 ×

u2 = (2π1 + π2)(3π1 + 5π2) subject to π ∈ X . It is not difficult to see that the optimal solution is

π = (0.75, 0.25), which is a randomized policy allocating the organ to the sick patient with probability

0.75 and to the healthy one with probability 0.25 and the utilities are u1 = 1.75, u2 = 3.5.

The optimal solution of the proportional fairness problem satisfies the equilibrium point of the Nash

bargaining problem. In particular, we have

2∑
i=1

ui − uPF
i

uPF
i

=
2π1 + π2 − 1.75

1.75
+

3π1 + 5π2 − 3.5

3.5
≤ 0,

for all π ∈ X . Therefore, aggregate proportional change is non-positive and the solution π =

(0.75, 0.25) is the Nash bargaining solution and hence the optimal proportional fair policy. This

result is in line with the fact that a policy is proportionally fair if compared to any other allocation

policy, the players who gain utility, gain higher than those who lose utility. Note that this observation

is true only when the organ is assumed to be divisible and in the case of indivisible organ there is no

solution to the Nash bargaining problem.
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As can be seen from this example, the total utility (u1 + u2) under the utilitarian approach

(UA), max-min fairness (MF), and proportional fairness (PF) are 6, 5, and 5.25, respectively. This

observation shows that the total utility under the PF policy is between that of MF and UA policies.

The utilitarian approach is maximizing the total utilities of the patient population by prioritizing

healthier and younger patients who have better post-transplant survival but it is not fair with respect

to older and sicker patients. On the other hand, max-min fairness achieves a lower total utility

compared to the utilitarian approach, but improves the minimum expected utility among patients.

This observation encouraged us to propose proportional fairness in organ transplantation queuing

systems, a fairness measure that sits at the midway point between the two extremes, utilitarian

approach and max-min fairness and compensates for the utility loss in max-min fairness. This

observation is in line with the results in Bertsimas et al. (2011), where they compare the max-min

and proportional fairness and show that the bounds on the price of fairness are higher for the max-

min fairness criteria resulting in a lower total utility for this policy compared to the proportional

fairness criteria. The price of fairness is defined by the total utility loss under max-min/proportional

fairness criteria compared to the utilitarian criteria.

One interpretation for Nash solution is that it is a solution to a bargaining among players, i.e., the

solution to the bargaining is the proportional fairness utility for each player. For the construction

of Nash bargaining between two individuals and the required assumptions for the Nash solution see

Nash (1950). Since we apply proportional fairness as a measure of fairness in transplant systems,

the solution that we propose may have similar interpretations. That is, patients seek to maximize

their QALYs (utility) and bargain among themselves for the limited organs. Then, UNOS allocation

based on the proportionally fair policy in organ allocation implies that UNOS believes a fair policy

is the one that corresponds to the patient bargaining in the Nash bargaining sense. Viewing the

transplant system as a game among patients and UNOS seeking an objective is not unprecedented

in the literature. Ata et al. (2020) modeled the transplant system as a game among rational patients

who seek to maximize their total QALYs by accepting/rejecting the offered organ and UNOS seeks

to optimize the total QALYs over the Nash equilibrium of the game among patients. Note, however,

that the proportional fairness can be used as a measure by itself and not tied to a bargaining problem

similar to the literature of bandwidth allocation of network capacity.
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The goal of our study in this chapter is to (I) quantify the extent that efficiency loss due to

fairness consideration in organ allocation can be improved by introducing proportionally fair organ

allocation, and (II) provide insights on the structure of optimal proportionally fair organ allocation

policies in different settings. While policy makers in UNOS have significant debates on the efficiency

and fairness of the current allocation policy (Organ Procurement and Transplantation Network,

2016a; Stevenson et al., 2016), our results in this study can pave the way to modify the organ

allocation policies and shift them towards incorporating fairness measures that are less sensitive to

the inequality in utility allocation compared to the policies considering max-min fairness. To that

end, we make the following contributions.

We formulate an optimization problem to incorporate proportional fairness as an equity measure

in organ allocation. In particular, in Section 3.2 we use a fluid approximation of the transplanta-

tion queuing system for deriving the necessary ingredients for utility estimation and feasibility set.

In Section 3.3 an achievable region based approach is utilized to transform the said optimization

problem to an equivalent one over the space of all performance outcomes. Then, we show that the

optimal policy is assortative if certain assumptions are made on the problem parameters (Theorem

3.1). Assortative policies are attractive, easy to understand and implement, and have the following

insight: higher quality organs are assigned to higher QALYs-to-gain patients (see Section 3.2 for

detailed discussions). Section 3.4 presents the numerical results and contributions and Section 3.5

concludes.

3.2 Problem Formulation

We formulate the organ allocation problem as a queuing model with n queues associated

with patient types. Available organs, which their type lies between [0, 1], are partitioned into n

subsets where each subset is allocated to one of the patient classes. As a result of this allocation,

each patient receives a utility, which depends on the patient type and their expected waiting time,

as well as the type of the donor organ. Su and Zenios (2006) studied a similar queuing system for

kidney transplantation and provided expressions for the expected waiting times and the utilities by

studying a fluid approximation of the queuing model. They formulate a partitioning problem to

study the kidney allocation problem. We consider a similar formulation where decision is to find
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a way to partition the organ pool (available donor organs with different qualities) into n subsets

such that the resulting allocation is optimal in terms of proportional fairness. A policy is optimal

in being proportionally fair (PF), if it attains the maximum value for the sum of the logarithm of

patient utilities compared to any other allocation (partition).

Let I = {1, . . . , n} be the set of patient classes with λi being the arrival rate of patients in class i ∈ I,

and λ =
∑n
i=1 λi be the total arrival rate of patients. Donor organs arrive to the system according

to a Poisson process with rate µ with µ < λ (without loss of generality assume µ = 1). Patients on

the waiting list may die within an exponentially distributed time with mean d (note that we assume

d1 = . . . = dn = d, that is the life expectancy while waiting is the same across all patient classes).

We make this assumption to derive structural properties for the policy and relax it in our numerical

results. Also, arriving organs have different types (categorized based on their qualities) and for each

organ there is a random number X ∈ X associated to the organs in an i.i.d. fashion. We assume

that X is uniformly distributed in the interval X = [0, 1]. Let Li(x) be the post-transplant life

expectancy of a patient in class i that receives an organ of type x. The goal of our formulation is to

find the best way to divide the arriving organ pool into n subsets each allocated to one of the patient

classes. Thus, we formulate the organ allocation problem as a partitioning problem of organ pool,

where the decision maker looks for the best partition A = {A1, . . . , An} of [0, 1] into disjoint subsets

Ai. The resulting allocation policy corresponding to a partition A under the fluid scaling allocates

an organ with type X to a patient in class i if X ∈ Ai, where X is a uniform [0, 1] random variable.

The utility of patients in class i under any allocation partition A is given by (Su and Zenios, 2006):

Ui = βDi + αpiTi,

where the utility function Ui denotes the Quality Adjusted Life Years (QALYs) of the patients in

class i, Di denotes pre-transplant life years (from the time a patient has arrived until death or

transplant), Ti denotes post-transplant life years (from the time a patient receives an organ until

death), pi denotes the probability that a patient survives until receiving a transplant, and α and β

are the quality of life scores corresponding to pre- and post-transplant life years, respectively. The

quantities Di, pi, Ti depend on the allocation policy (partition A). Under the fluid scaling these
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quantities are estimated in Su and Zenios (2006) and are as follows:

Di =

[
λi − µi
λi

]+

di,

pi =
µi
λi
,

Ti = E
[
Li(X)|X ∈ Ai

]
,

where µi = µP(X ∈ Ai) = P(X ∈ Ai) is the allocation rate to the patients in class i. Then, the

utility function for patients in class i can be written as follows:

Ui = β

[
λi − µi
λi

]+

di + α
µi
λi

E
[
Li(X)|X ∈ Ai

]
.

We consider a decision maker seeking for an allocation (partition) A that maximizes the proportional

fairness objective (
∑n
i=1 λi log(Ui)), subject to the fluid condition µi ≤ λi for every i:

max
A

( n∑
i=1

λi log
(
βdi(

λi − µi
λi

) + α
µi
λi

E[Li(X)|X ∈ Ai]
))

(P4)

subject to 0 ≤ µi ≤ λi i = 1, 2, . . . , n. (3.2)

Next, we simplify the objective function. We assume that Li(x) = m+ cig(x), where m > 0 denotes

the LYs gained by receiving an organ of the lowest quality, g(x) ≥ 0 is the quality of the type x

organ, and ci > 0 denotes the risk of death for patients in class i after transplantation. Without loss

of generality, we order patient and organ types such that ci > ci+1 for i = 1, . . . , n− 1 (i.e., patients

with lower index have a lower post-transplant risk) and g(·) is a decreasing function on organ type

x, i.e., organs with smaller x have a higher quality. Our numerical study in Section 3.4 reveals that

these assumptions are all satisfied for the heart transplantation dataset considered as the case study.

By using these assumptions and setting a = mα− dβ, bi = ciα, and γi = E[g(x)1{X ∈ Ai}] we can

rewrite the utility of patients in class i as follows:

Ui =
λi − µi
λi

dβ +
µi
λi

(
m+ ciE[g(X)|X ∈ Ai]

)
α

= dβ +
µi
λi
a+ bi

γi
λi
.
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After omitting the constant term dβ from the utility function of all the patient classes, we end up

with the following formula for the utility, which only depends on µi and γi as the decision variables:

Ui =
aµi + biγi

λi
.

Thus, we observe that the utility of patients in class i depends on the allocation policy (partition

A) through the variables µi = P{X ∈ Ai} and γi = E[g(x)1{X ∈ Ai}] in a linear way. Variables µi

and γi can be interpreted as the intensity of organ allocation, and the quality of organs allocated

to the patients in class i, respectively. By using the derived utility function, problem (P4) can be

written in a more compact way as follows:

max
A

( n∑
i=1

λi log
(aµi + biγi

λi

))
(P5)

subject to 0 ≤ µi ≤ λi i = 1, 2, . . . , n.

This optimization problem is very difficult to solve, since the search is over all the partitions in

A. In fact, partitioning the interval [0, 1] into n subsets has infinite possibilities. One solution is

to discretize the organ space into finitely disjoint subsets and solve the problem over the discrete

organ space which yields a randomized allocation policy. However, the issue here is that the size of

the latter is still huge and it involves an exponential number of decision variables growing with the

number of subsets that the organ space is partitioned. Moreover, randomized policies are difficult

to implement in practice and do not provide insight to this problem. Due to theses issues, and the

dependency of the number of variables to the number of discretized subsets, we use the technique

introduced by Bertsimas (1995) to transform the problem into a computationally tractable one,

which also enables us to derive structural properties for the allocation problem. The technique is

called the achievable region method and involves solving an optimization problem over 2n decision

variables that does not depend on the number of the subsets explained above.

3.3 Analysis of the Optimal Policy

Due to the dependency of the utilities to the allocation partition A through the variables

~µ = (µ1, . . . , µn) and ~γ = (γ1, . . . , γn), we express them by ~µ(A) and ~γ(A). Since the space of the
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decision (space of partitions A) is complex, we use the achievable region method to transform the

decision space into a more tractable one. For any allocation partition A, the method finds vectors

~µ(A) and ~γ(A) that can be achieved by that partition. In particular, the method characterizes the

space of all performance measures ~µ(A) and ~γ(A) that can be achieved by any feasible decision

(allocation partition A). Then it optimizes the objective over the new decision space to find the

optimal value of the transformed performance measures, i.e., ~µ∗(A) and ~γ∗(A). Finally, the method

finds the partition A∗ that achieves these optimal performance measures. Such a method is used in

the multi-class scheduling literature as well, e.g., see Federgruen and Groenevelt (1988).

Let AR(A) denote the achievable region of the performance measures
(
~µ(A), ~γ(A)

)
corresponding

to the allocation partition A defined by

AR(A) :=

{
(~µ,~γ) :

n∑
i=1

µi = µ, γ(S) ≤ G(µ(S)) ∀S ⊆ {1, . . . , n}

}
, (3.3)

where for each S ⊆ {1, . . . , n}, µ(S) =
∑
i∈S µi, γ(S) =

∑
i∈S γi, and G(x) =

∫ x
0
g(t)dt. In fact,

for each subset of patient classes S, function G(·) provides an upper bound on the quality of share

of organs allocated to the patients in that subset. Su and Zenios (2006) showed that (i) under an

allocation partition A, every achievable performance measure
(
~µ(A), ~γ(A)

)
must satisfy (3.3), and

(ii) for any given (~µ,~γ) satisfying (3.3) one can construct an allocation partition A(~µ,~γ) corresponding

to (~µ,~γ) via an algorithm called the synthesis algorithm.

The result above helps transform the complex decision space of the partitions into the decision space

over (~µ,~γ) ∈ R2n
+ specified in (3.3). By using the newly introduced decision space (variables (~µ,~γ)),

the proportional fairness objective function can be represented by

n∑
i=1

λi log(Ui) =

n∑
i=1

λi log
(aµi + biγi

λi

)
=

n∑
i=1

λi log
(
aµi + biγi

)
− λi log(λi).

We omit the constant term λi log(λi) which does not affect the optimal solution. Thus, the par-

titioning problem (P5) can be reformulated in the new decision space as a nonlinear programming
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problem as follows:

max
(~µ,~γ)

n∑
i=1

(
λi log

(
aµi + biγi

))
(P6)

subject to,

γ(S) ≤ G
(
µ(S)

)
, ∀S ⊆ {1, . . . , n}, (3.4)

0 ≤ µi ≤ λi, ∀i = 1, . . . , n, (3.5)

n∑
i=1

µi = µ. (3.6)

From now on, we focus on this problem which is a combinatorial optimization problem as it involves

constraints (3.4) that form a polymatroid.

Definition 3.1. An allocation policy A is called an assortative partition if

A1 = [0, µ1] , A2 = [µ1, µ1 + µ2], . . . , An = [µ1 + . . .+ µn−1, µ1 + . . .+ µn].

Note that the allocation domain i is of length µi, and since by assumption, patient groups are

ordered such that b1 ≥ b2 ≥ . . . ≥ bn, the policy being assortative is interpreted as follows: the

organs with the highest quality are allocated to the patients with better post-transplant survival.

The following lemma by Su and Zenios (2006) shows that the assortativeness property of an allocation

policy is tied to the bindingness of certain constraints in (3.4) at optimality.

Lemma 3.1. Any achievable performance measure (~µ,~γ) satisfying

i∑
k=1

γk = G(

i∑
k=1

µk), i = 1, . . . , n,

corresponds to a partition which is assortative.

Let Sk for k = 1, . . . , n be a subset of size k of the patient indicies {1, . . . , n} and Sk be the

set of such subsets, e.g., S1 =
{
{1}, {2}, . . . , {n}

}
. The following proposition proves an interesting

property about the activeness of constraints of problem (P6) at optimality. Specifically, it shows

that for every k = 1, . . . , n, at most one of the constraints in (3.4) corresponding to the elements of

Sk can be binding at the optimal solution.
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Proposition 3.1. At most one of the constraints of size k in (3.4) corresponding to the elements

of Sk is binding at optimality for every k = 1, . . . , n.

Proof. We prove this proposition by using the proof by contradiction for constraints corresponding

to S1, i.e., k=1. The proof for k > 1 is similar. We prove that among the following constraints, at

most one of them can be binding:

γ1 ≤ 1− e−µ1 ,

...
...

...

γn ≤ 1− e−µn .

Suppose this is not true and assume there exist some i and j such that γi = 1−e−µi and γj = 1−e−µj

for i 6= j. This yields γi + γj = 2− e−µi − e−µj . However, the constraint corresponding to {i, j} (an

element of S2) in (3.4) imposes that γi + γj ≤ 1− e−(µi+µj). Thus, we get:

2− e−µi − e−µj ≤ 1− e−(µi+µj) (3.7)

=⇒ e−µi + e−µj − e−(µi+µj) ≥ 1 (3.8)

Now, let the function h(·, ·) be defined by h(x, y) = e−x+e−y−e−(x+y). Note that for this function,

we have h(0, 0) = 1 and

∂h(x, y)

∂x
= e−(x+y) − e−x,

∂h(x, y)

∂y
= e−(x+y) − e−y,

both being negative for x, y ≥ 0, meaning that h(·, ·) is a non-increasing function for x, y ≥ 0.

Therefore, we have h(x, y) ≤ 1 for x, y ≥ 0 and h(x, y) < 1 for x, y > 0. This argument proves that

e−µi + e−µj − e−(µi+µj)− 1 ≤ 0 for µi, µj ≥ 0 with equality holding for µi = µj = 0. Now, note that

µi = µj = 0 cannot yield an optimal solution since it implies γi = γj = 0 and the objective goes to

−∞ in this case. Therefore, at optimality, we have e−µi + e−µj − e−(µi+µj) < 1 which contradicts

(3.8), and completes the proof for k=1. The proof for constraints corresponding to the elements of

Sk for k > 2 follows by a similar logic.
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Next, we discuss two assumptions on the parameters of our problem under which optimal

solution is an assortative partition policy. Assumption 3.1 is for strictly overloaded queuing systems

where arrival rate of patients are significantly higher than that of donors.

Assumption 3.1. The transplantation queuing system is strictly overloaded, i.e., λi > µ := 1 for

all i = 1, . . . , n.

Then, we explore the setting where this assumption does not hold but still the optimal policy is

assortative. In order to find the optimal solution of problem (P6) in this case, we write the KKT

condition for this nonlinear problem and show that under some looser conditions on λi, the problem

still this property that constraints corresponding to the subsets [j] for j = 1, . . . , n in (3.4) are

binding at the optimal point. Note that due to the presence of constraints (3.4) in the model, which

form a polymatroid, one may use combinatorial optimization techniques to find the optimal solution

for problem (P6). The theoretical results we get from KKT conditions coincide with the solution

based on the combinatorial optimization techniques in Fujishige (2005). Before stating Theorem 3.1,

which is the main results of this section, we consider the following assumption.

Assumption 3.2. The nonlinear system of equations,


λi(a+bie

−(µ1+...+µi))

aµi+bie
−(µ0+...+µi−1)(1−e−µi )

= λi+1(a+bi+1e
−(µ1+...+µi))

aµi+1+bi+1e−(µ0+...+µi)(1−e−µi+1 )
, i = 1, . . . , n− 1,∑n

i=1 µi = µ = 1,

has a solution ~µ = (µ1, . . . , µn) such that 0 < µi < λi for i = 1, . . . , n.

The following lemma shows that Assumption 3.2 is more general than Assumption 3.1 for n = 1, 2, 3.

Lemma 3.2. If Assumption 3.1 holds, then the nonlinear system of equations in Assumption 3.2

has a solution.

Proof. To prove the statement for n = 1, assume Assumption 3.1 holds, i.e., λ1 > 1, then the system

of non-linear equations reduces to a single equation µ1 = µ = 1, which clearly has a solution µ1 = 1

in the interval (0, λ1), where λ1 > 1 and the statement is trivial.
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For n = 2, the system of non-linear equations is given by

λ2(a+ b2e
−µ1)

aµ2 + b2e−µ1(1− e−µ2)
=

λ1(a+ b1e
−µ1)

aµ1 + b1(1− e−µ1)
,

µ1 + µ2 = 1,

which can be reduced to a single equation by substituting µ1 = x and µ2 = 1 − x with max{0, 1−

λ2} ≤ x ≤ min{1, λ1}. Therefore, we need to find the roots of function f(x) on the interval

(max{0, 1− λ2},min{1, λ1}), where

f(x) = λ2(a+ b2e
−x)

(
ax+ b1(1− e−x)

)
− λ1(a+ b1e

−x)
(
a(1− x) + b2e

−x(1− e−(1−x))
)
. (3.9)

If Assumption 3.1 holds, i.e., λ1, λ2 > 1, the feasible interval for x is [0, 1]. Since f(·) is continuous

and we have f(0) = −λ1(a+b1)
(
a+ b2(1− e−1)

)
< 0 and f(1) = λ2(a+b2e

−1)
(
a+ b1(1− e−1)

)
>

0, by the intermediate value theorem it follows that the equation f(x) = 0 has a solution in the

interval (0, 1). This step shows that for n = 2, Assumption 3.1 implies Assumption 3.2 proving the

statement.

Before proving the lemma for n = 3, we discuss the Borsuk’s theorem for the existence of solu-

tions of nonlinear equations (Frommer and Lang, 2005). In particular, for our problem the theorem

provides sufficient conditions on the parameters a, b, and λ under which the nonlinear system of equa-

tions in Assumption 3.2 has a solution in the interior of {(µ1, . . . , µn) : 0 ≤ µi ≤ λi for i = 1, . . . , n}.

In fact, these conditions are a generalization of the intermediate value theorem for n ≥ 3. These

conditions can be numerically tested via interval analysis but it is difficult to derive closed form equa-

tions in a clean format on the parameters of the problem. Nonetheless, we tested these sufficient

conditions for the problems that we knew the solution exists, but the tests were inconclusive.

To prove the statement for n = 3, first note that in the linear setting, the necessary an sufficient

condition for existence and uniqueness of solution to a system of equations is that the Jacobian

determinant be nonzero. In nonlinear setting if the Jacobian matrix has nonzero determinant, then

one gets the same result locally, i.e., for small perturbations. For n = 3, the nonlinear system of
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equations is given by

λ2(a+ b2e
−µ1)

aµ2 + b2e−µ1(1− e−µ2)
=

λ1(a+ b1e
−µ1)

aµ1 + b1(1− e−µ1)
,

λ3(a+ b3e
−(µ1+µ2))

aµ3 + b3e−(µ1+µ2)(1− e−µ3)
=

λ2(a+ b2e
−(µ1+µ2))

aµ2 + b2e−µ1(1− e−µ2)
,

µ1 + µ2 + µ3 = 1,

which can be reduced to a system of two nonlinear equations by substituting µ1 = x, µ2 = y, and

µ3 = 1 − x − y, where (x, y) is defined in a feasible two dimensional polygon P := {(x, y) : 0 ≤

x ≤ λ1, 0 ≤ y ≤ λ2, 1 − λ3 ≤ x + y ≤ 1}. In particular, we need to find the zeros of the function

f(x, y) = (f1(x, y), f2(x, y)) in the interior of P, where f1 and f2 are defined by

f1(x, y) = λ2(a+ b2e
−x)

(
ax+ b1(1− e−x)

)
− λ1(a+ b1e

−x)
(
ay + b2e

−x(1− e−y)
)
,

f2(x, y) = λ3(a+ b3e
−(x+y))

(
ay + b2(1− e−y)

)
− λ2(a+ b2e

−(x+y))
(
a(1− x− y) + b3e

−(x+y)(1− e−(1−x−y))
)
.

A sufficient condition for the continuous function f with continuous Jacobian to have a root in

the interior of P is to ensure the system has a Jacobian with nonzero determinant locally at the

extreme points of P (Ortega and Rheinboldt, 2000). This is true when the Jacobian determinant

det(J(x, y)) is a concave function of the variables (x, y). To see the reason, assume there are two

pints (x1, y1), (x2, y2) ∈ P such that det(J(x1, y1)), det(J(x2, y2)) > 0, then for 0 ≤ θ ≤ 1 we have

det (J(θ(x1, y1) + (1− θ)(x2, y2)) ≥ θdet(J(x1, y1)) + (1− θ)det(J(x2, y2)) > 0,

that is, the determinant function det(J(x, y)) is positive for any convex combination of the points

(x1, y1) and (x2, y2), i.e., on the line segment between (x1, y1) and (x2, y2). Thus, in order to check

the sign of the Jacobian determinant in P, it suffices to check its sign at extreme points of the

polygon P, as every point in its interior is a convex combination of its extreme points.

Now, to prove the statement assume λi > 1 for i = 1, 2, 3. In this setting, the Jacobian

determinant is a concave function and the polygon P has three extreme points, i.e., (0, 0), (1, 0),

and (0, 1). The Jacobian determinant of the non-linear system f(x, y) = (0, 0) is positive at these

points, thus positive on the entire P.

67



The following example shows that there are sets of parameters for which Assumption 3.1

does not hold, but the system of nonlinear equations in Assumption 3.2 has a solution in the interior

of {(µ1, . . . , µn) : 0 ≤ µi ≤ λi}, supporting the fact that Assumption 3.2 includes more general set

of parameters compared to Assumption 3.1.

Example 3.2. Consider an example of an organ transplantation system with only 3 patient groups

ordered in their post-transplant survival, i.e., b1 = 20, b2 = 15, b3 = 10, with the same pre-transplant

survival, i.e., a1 = a2 = a3 = a = 2. Assume further that their arrival rates are λ1 = 0.6, λ2 =

0.7, λ3 = 0.8. Then, for such an example, the nonlinear system of equations in Assumption 3.2 has

a solution as follows: µ1 = 0.22, µ2 = 0.31, µ3 = 0.47, which clearly belongs to the interior of the

polygon formed by constraints (3.5). However, the condition in Assumption 3.1 does not hold for

this problem. Therefore, the solution of optimization problem (P6) for this set of parameters is an

assortative partition policy.

Next, in the following theorem we construct the condition under which the optimal solution

of problem (P6) is an assortative partition policy, i.e., Assumption 3.2.

Theorem 3.1. Under Assumption 3.2, the optimal solution of problem (P6) is an assortative par-

tition policy.

Proof. Let F : R2n
+ → R be a continuous real valued function on (~µ,~γ) representing the objective

function of problem (P6) defined by,

F (~µ,~γ) =

n∑
i=1

(
λi log

(
aµi + biγi

))
.

Furthermore, for S ⊆ {1, . . . , n} let TS be the Lagrange multiplier associated with the corresponding

constraint in (3.4), Li and Hi be the Lagrange multipliers associated to the ith lower and upper

constraints in (3.5), respectively, and Y be the multiplier associated with the single organ availability

constraint (3.6). Let L be the Lagrangian function that adjoints the constraints to the objective

function using the Lagrange multipliers, defined by:

L(~µ,~γ, ~T , ~L, ~H, Y ) = F (~µ,~γ) +
∑

S⊆{1,...,n}

TS

(
G
(
µ(S)

)
− γ(S)

)
+

n∑
i=1

Liµi +

n∑
i=1

Hi(λi − µi) + Y (

n∑
i=1

µi − 1).

Now, KKT conditions for problem (P6) can be stated through the following three conditions:
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(I) Primal Feasibility: The variable vector (~µ,~γ) must be feasible to the primal problem, that is,

γ(S) ≤ G
(
µ(S)

)
, ∀S ⊆ {1, . . . , n},

0 ≤ µi ≤ λi, ∀i = 1, . . . , n,

n∑
i=1

µi = µ.

(II) Dual Feasibility: The dual variables ~T =
(
TS : S ⊆ {1, . . . , n}

)
, ~L =

(
Li : i ∈ {1, . . . , n}

)
,

and ~H =
(
Hi : i ∈ {1, . . . , n}

)
, must be nonnegative vectors.

(III) Complementary Slackness: The primal and dual variables must satisfy the following con-

dition:

TS

(
G
(
µ(S)

)
− γ(S)

)
= 0, ∀S ⊆ {1, . . . , n},

Liµi = 0, ∀i = 1, . . . , n,

Hi(λi − µi) = 0, ∀i = 1, . . . , n,

Y (

n∑
i=1

µi − µ) = 0.

Furthermore, for each i = 1, . . . , n, partial derivative of the Lagrangian function L with respect to

µi and γi at the optimal point (~µ,~γ, ~T , ~L, ~H, Y ) must be zero, that is, for each i = 1, . . . , n,

∂L
∂µi

(~µ,~γ, ~T , ~L, ~H, Y ) =
aλi

aµi + biγi
+

∑{
S⊆{1,...,n}:i∈S

}TS ∂G(µ(S))

∂µi
(~µ,~γ, ~T , ~L, ~H, Y ) + Li −Hi + Y = 0, (3.10)

∂L
∂γi

(~µ,~γ, ~T , ~L, ~H, Y ) =
biλi

aµi + biγi
−

∑{
S⊆{1,...,n}:i∈S

}TS ∂γ(S)

∂γi
(~µ,~γ, ~T , ~L, ~H, Y ) = 0. (3.11)

By Lemma 3.1, in order to have an assortative partition policy, constraints (3.6) must be non-

binding at optimal solution, and among the constraints corresponding to the elements of the set Sk

in (3.4), the constraint corresponding to the subset [k] must be binding at the optimal solution for

k = 1, . . . , n. We construct such a solution that satisfies the KKT optimality condition as follows: we

let ~L = ~H = 0, TS = 0 for each S ⊆ {1, . . . , n} that S 6= [k] for k = 1, . . . , n, and G
(
µ(S)

)
−γ(S) = 0

for S = [k] and each k = 1, . . . , n with
∑n
i=1 µi = µ. This construction clearly satisfies the primal

feasibility and complementary slackness. Furthermore, it is easy to see that such a solution satisfies
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the dual feasibility. By using this solution and choosing g(x) = e−x, as mentioned earlier, we have

G(x) =
∫ x

0
g(u)du = 1− e−x, and the equations (3.10) and (3.11) can be rewritten as follows,

aλi
aµi + biγi

+
∑{

S=[k]:k=1,...,n

}TSe−µ(S) + Y = 0, (3.12)

biλi
aµi + biγi

−
∑{

S=[k]:k=1,...,n

}TS = 0. (3.13)

By equations (3.12) and (3.13) and eliminating Lagrange multipliers TS and Y from the equations,

we get the following system of nonlinear equations:

λi(a+ bie
−(µ1+...+µi))

aµi + bie−(µ0+...+µi−1)(1− e−µi)
=

λi+1(a+ bi+1e
−(µ1+...+µi))

aµi+1 + bi+1e−(µ0+...+µi)(1− e−µi+1)
i = 1, . . . , n− 1,

(3.14)

where µ0 := 0 by convention. Also, note that by equations (3.12) and (3.13), for each S ⊆ {1, . . . , n}

the dual variables TS are non-negative and satisfy the dual feasibility condition (II) as required for

a KKT solution. Equations in (3.14) together with constraint (3.6), form a non-linear system of

equations with n variables and n equations on the variables µi. By construction, any solution to

this system of nonlinear equations that lies in the space {~µ : 0 < µi < λi, i = 1, . . . , n} is in fact the

optimal solution of the problem (P6), which is an assortative partition policy according to Lemma 3.1.

Note that by Assumption 3.2 such a solution exists. Once ~µ is characterized, we can easily construct

the corresponding solution ~γ, i.e., for each i = 1, . . . , n, we have γi = e−(µ0+...+µi−1)(1 − e−µi). It

remains to note that since the objective function F (·, ·) of the problem (P6) is concave, and the

constraints form a convex set, the KKT optimality solution is a unique solution. This completes the

proof.

3.4 Numerical Results

This section presents the numerical results of applying the methods discussed in Sections

3.2 and 3.3 of Chapter 3 to the U.S. heart transplantation waiting list. For the purpose of numerical

study, we categorize patients based on their health status, age, blood-type, and VAD status into

128 classes. The input parameters of the optimization models (P5) and (P6) are estimated from
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the UNOS/OPTN heart transplantation data sets. Specifically, λi, the arrival rate of patients in

class i and µ, total arrival rate of donor hearts are estimated from the OPTN data sets for the

2006-2014 period. Pre-transplant quality of life coefficients, αis, are estimated for every health class

i by mapping from the coefficients for heart failure disease classes presented in Tengs and Wallace

(2000). Note that without loss of generality, we set the post-transplant quality of life coefficient to

be one, i.e., β = 1, and adjust the pre-transplant coefficients accordingly.

Table 3.1 summarizes the results of the simulation runs for the UA, MF, and PF policies: see

Hasankhani and Khademi (2017), Hasankhani and Khademi (2019), and Su and Zenios (2006) for

details. Furthermore, we include two policies by UNOS in our analysis, UNOS policy and recently

proposed UNOS-7 Tiered heart allocation policy (see Chapter 2 for more discussion on the UNOS

policies). We compare the proportional fair policy proposed in this study with these benchmark

policies in terms of total utilities of the patient population, minimum expected utility (MEU), sum

of logarithm of expected utilities (SLEUs), and the variance of waiting times. These benchmarks

include a policy that minimizes the variance of the waiting time between patient classes (VWT

policy), and an equity policy proposed by Su and Zenios (2006) (SZE policy).

In order to measure fairness in the simulation, we calculate the expected QALYs of patients in

different classes under simulation from the time they join the waiting list until they die or receive

an organ, i.e., the post-listing QALYs. The first three columns in Table 3.1 report the sum of the

QALYs of patients, the minimum expected QALYs among patient groups, and sum of the logarithm

of QALYs of the patients, respectively. The last column indicates the variance across patient classes

of the expected waiting times, which is introduced to be a measure of fairness in the literature (Su

and Zenios, 2006). All the measures reported are in terms of days except for the variance which is

in terms of the square of a day. Note that since the patients change class due to health deterioration

or age change, we consider the initial listing class of the patients in reporting the simulation results.

Results in Table 3.1 are in line with what we observed in Example 3.1, emphasizing on the fact that

the PF policy has higher total utility outcome than that of MF and lower than that of UA policy.

The price of fairness, i.e., utility loss with respect to UA, for MF and PF policies are around 6% and

2%, respectively. That is, the PF policy performs with a lower price in losing utility compared to
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Table 3.1: Policy Comparison

Policies Total QALYs(×108) MEU SLEUs(×102) Variance of Waiting Times

UA 1.651 115 2642.32 8100

MF 1.560 133 2574.33 6888

PF 1.605 119 2929.26 4489

VWT 1.600 122 2625.04 2601

UNOS 1.524 117 2527.09 23409

UNOS 7-Tiered 1.528 116 2555.91 30625

MF. This is because MF policy allocates organs more to the patients who have the lowest expected

utility, e.g., sicker patients, to maximize their utility. However, as a result of this allocation patients

who expect to gain higher utilities will not receive enough donor organ to increase their utilities.

On the other hand, since the goal of the proportional fairness is to have a non-positive aggregate

proportional change compared to other allocations, its solution, i.e., PF policy, will produce policies

performing better than MF policy in terms of aggregate utility while at the same time preserving a

certain degree of fairness based on the Nash solution. Therefore, the PF policy has a significantly

smaller price of fairness. Note that the price of fairness for VWT policy, which introduced in Chapter

2 as a policy focusing on fairness by equalizing the waiting time among patients, is around 3%.

Furthermore, the PF policy outperforms UNOS and UNOS 7-Tiered policies by around 7% in terms

of total utility. In addition, the minimum utility of the patients under PF policy is slightly higher

than that of UA. In terms of minimum expected utility, the MF policy achieves the highest minimum

utility among patients and all other policies perform almost similar in terms of this measure. In terms

of the sum of logarithm of utility of patients, the PF policy outperforms all other policies. Policies

that consider fairness in their prioritization, i.e., MF, PF, and VWT, achieve smaller variance for

waiting time across different patients compared to the UA and UNOS policies. This is an interesting

observation of the impact of incorporating fairness in transplant queuing system allocation rules.

In addition, we conduct an analysis on the percentage of hearts allocated to different patient classes

under each policy and discuss the priority focus in each of them. This analysis helps us capture

the utility allocation among different patient classes and compare them for different allocations.
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In particular, we report the percentages of donor hearts allocated to each patient health, age, and

VAD status class in the simulation. Figures 3.1-3.3 report the results of this analysis for the PF,

UA, MF, and UNOS policies. We observe an interesting behavior from the PF policy. In fact, the

results reported in Figure 3.1 show that in terms of health prioritization, the PF policy allocates

only around 29% of the total hearts to patients in health class 1A, i.e., sickest patient class, less

than the 49% of the UNOS policy but greater than the 18% of UA policy. The MF policy, on the

other hand, is closer to UNOS policy with 41% allocation to the sickest patient group, and this is in

line with its objective as it tries to maximize the lowest utility among patients, e.g., sickest patients.

These results suggest that PF policy prioritize healthier and sicker patients in a same manner as

it assigns almost the same percentage of hearts to patients in 1A and 2, the sickest and healthiest

patient classes. Furthermore, compared to the UA policy, it imposes certain level of fairness with

respect to sicker patients, as it shifts priority from healthier to sicker patients.

In terms of age prioritization also we observed an interesting behaviour from PF policy. Although

it is not surprising to see that UA policy prioritizes younger patients more than that of UNOS

and MF, we observe that PF policy even allocates slightly higher percentage of organs to younger

patients compared to UA policy. Specifically, PF policy allocates 56% of total hearts to the younger

patient groups, i.e., [18-35] and [34-50] compared to the 51% of the UA policy and 38% of the MF

policy. The reason is that as we show in chapter 2, the improvement of the UA policy over UNOS

policy in terms of total utility is mainly due to a shift in patients prioritization from sicker and older

patients towards healthier and younger ones, with an emphasize on shift in health prioritization.

Thus, relatively speaking, UA policy tries to allocate more organs to healthy patients than the

young patients. That is, among two patients, the healthy-old one and the sick-young one, the policy

allocates organ to healthy-old patient rather than to sick-young one. Nonetheless, our results in

Figures 1.1 and 1.2 suggest that the improvement of the PF over UNOS policy is also because of

a shift towards prioritizing healthier and younger patients in PF policy, but with more emphasize

on the shift in age prioritization. These results are consistent with the findings in Ladin and Hanto

(2011) for kidney, where they state that prioritizing younger patients is more equitable, not because

they are likely to gain higher utilities, but because they have not experienced their “fair innings”,

i.e., they have not had an opportunity to live as long as older ones. Specifically, they write “Fair

innings enhances equity by affording all patients the opportunity to achieve as much of a normal
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Figure 3.1: Percentage of Hearts Allocated to Each Health Group

lifespan as possible.” Note that the impact of patients’ age is considered in the quality of life

coefficients used to estimate the QALYs of the patients in our analysis. On the other hand, MF

policy prioritizes patients similar to the UNOS policy as its objective is to ensure the maximum

amount of life-expectancy for the patients in the oldest age group, i.e., patients gaining the least

utility level in terms of age categorization. Thus, it allocates more hearts to older patients compared

to the PF and UA policies.

Finally, from the viewpoint of patient prioritization based on their VAD status, our results demon-

strate a slight shift toward prioritizing patients without VAD in the two policies with the objective

of fairness, PF and MF policy, compared to the UNOS policy. In addition, the PF policy performs

similar to the UA policy in prioritizing patients according to their VAD status. All in all, our nu-

merical results are in agreement with the theoretical results about the proportional fairness stating

that it produces policies in the midway point between max-min fairness and utilitarian approach.

3.5 Conclusion

We study the problem of allocating donor organs to patients on the transplant waiting list

under different fairness measures in the objective. Since the common measures for fairness have
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Without VAD With VAD
0

0.2

0.4

0.6

0.8

1

0.83

0.17

0.88

0.12

0.88

0.12

0.92

0.08P
er

ce
n
ta

ge
of

T
ot

al
T

ra
n

sp
la

n
ts

UNOS Policy
UA Policy
PF Policy
MF Policy

Figure 3.3: Percentage of Hearts Allocated to Each VAD Status Group

75



a high price and cause a significant performance loss, we propose incorporation of a new fairness

measure in organ transplantation system. Specifically, we introduce an application of proportional

fairness, which is a generalization of Nash standard, and analyze it both mathematically and nu-

merically. In addition to proposing an application of proportional fairness measure, we study the

performance of two existing policies that incorporate fairness, i.e., a policy based on max-min fairness

measure, which maximizes the minimum expected utility among patients, as well as VWT policy,

which is introduced in the literature of organ allocation as a policy that equalizes the waiting times

among patients.

We formulate the organ transplantation problem with proportional fairness, being a measure

of equity in its objective, as a queuing model and analyze its fluid approximation. Our analytical

results show that under certain assumptions, the solution of the resulting optimization problem is an

assortative partition policy, which is easy to implement in practice and provides analytical insights.

In particular, under assortative partition allocation policies, good quality organs are assigned to

healthier and younger patients who receive higher utilities. From a numerical viewpoint, we quantify

the extent that incorporating proportional fairness measure in organ transplantation improves the

price of fairness compared to existing fairness measures. While the efficiency loss is high under the

max-min fairness, we show that the loss can be significantly reduced by incorporating proportional

fairness in designing allocation policies. In addition, we numerically compare the performance of

the policies studied in this work with that of the PF policy under different metrics, including total

utility of the patients, minimum expected utility, sum of the logarithm of utilities, and variance

of the waiting time of patients. Finally, we show via simulation that how these policies prioritize

different patient classes in practice and how many percentages of organs are allocated to each patient

health status, age, and VAD status classes. Results confirm that the model which has proportional

fairness measure in its objective produces policies (the PF policy) that prioritize healthier patients

more than UNOS and less than UA policies. Furthermore, interestingly, it puts slightly more priority

on younger patients than UA policy. However, all in all, it yields a total utility, which is a measure

of efficiency, less than that of UA and greater than that of MF. This observation is in line with the

results in the existing literature of proportional fairness in bandwidth allocation in wireless networks

which corroborate our findings.
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Appendix A Appendix of Chapter 1

A.1 Attributes

In order to create a reliable simulation model of the heart transplantation system and a

flexible allocation policy module, several attributes and characteristics for patients and donated

hearts were considered in this study. Tables 2 and 3 show these attributes for patients and hearts,

respectively.

Table 2: Patient Characteristics

Attribute Groups

Age group(4) [18-35]; [35-50]; [50-65]; [65+]

Gender(2) [Female]; [Male]

Blood type(4) [O]; [A]; [B]; [AB]

Region(11) [Region 1];. . .; [Region 11]

Ethnicity(7) [White]; [African-American]; [Hispanic]; [Asian]; [American Indian/Alaska Native]; [Pacific

Islander]; [Multiracial]

Disease(9) [Dilated Myopathy (2 Groups)]; [Heart Re-transplant (Graft Failure)]; [Hypertrophic

Cardiomyopathy]; [Restrictive Myopathy]; [Valvular Heart Disease]; [Congenital Heart Defect];

[Coronary Artery Disease]; [Other]

VAD status(2) [1= If the patient has a VAD]; [0=Otherwise]

PTX status(2) [1=If the patient has gone under transplantation before]; [0=Otherwise]

Health status(4) [1A]; [1B] ; [2]; [Inactive (7)]

OPO(58) [OPO 1];. . .; [OPO 58]
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Table 3: Heart Characteristics

Attribute Groups

Donor age group(4) [18-35]; [35-50]; [50-65]; [65+]

Donor gender(2) [Female]; [Male]

Donor blood type(4) [O]; [A]; [B]; [AB]

Donor region(11) [Region 1]; . . .; [Region 11]

Donor ethnicity(7) [White]; [African-American]; [Hispanic]; [Asian]; [American Indian/Alaska Native]; [Pacific

Islander]; [Multiracial]

Donor OPO(58) [OPO 1];. . .; [OPO 58]

A.1.1 Disease Groups

UNOS considers more than 70 disease groups for patients with heart failure (United Network

for Organ Sharing, 2015). Table 4 shows the number of patients in each disease group on the waiting

list (Feb 2016). As can be seen from Table 4, some disease groups have small number of candidates,

which make it impossible to create meaningful statistical distributions. In order to produce more

accurate arrival distributions, we aggregated the UNOS heart disease categorization into 9 groups

as listed in Table 5. We used the UNOS categorization of reasons for heart transplantation in

aggregating disease groups (United Network for Organ Sharing, 2015) (Table 6).
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Table 4: Waiting List Disease Group Categorization in Feb 2016 (Adults)

Disease Group Registrations

All Diagnosis 3,886

Dilated Myopathy: Post-Partum 61

Dilated Myopathy: Viral 54

Heart Re-Tx/Gf: Acute Rejection 2

Heart Re-Tx/Gf: Chronic Rejection 10

Heart Re-Tx/Gf: Coronary Artery Disease 75

Heart Re-Tx/Gf: Hyperacute Rejection 2

Heart Re-Tx/Gf: Non-Specific 4

Heart Re-Tx/Gf: Other Specify 4

Heart Re-Tx/Gf: Primary Failure 6

Heart Re-Tx/Gf: Restrictive/Constrictive 3

Hypertrophic Cardiomyopathy 95

Arrhythmogenic Right Ventricular Dysplasia/Cardio 9

Restrictive Myopathy: Amyloidosis 20

Restrictive Myopathy: Idiopathic 25

Restrictive Myopathy: Other Specify 7

Restrictive Myopathy: Sarcoidosis 21

Restrictive Myopathy: Sec To Radiat/Chem 7

Valvular Heart Disease 40

Other, Specify 88

Not Reported 200

Congenital Heart Defect : Hypoplastic Left Heart 1

Congenital Heart Defect : Prior Surgery Unknown 7

Congenital Heart Defect : With Surgery 125

Congenital Heart Defect : Without Surgery 14

Coronary Artery Disease 117

Dilated Myopathy: Adriamycin 56

Dilated Myopathy: Alcoholic 7

Dilated Myopathy: Familial 112

Dilated Myopathy: Idiopathic 1,307

Dilated Myopathy: Ischemic 1,111

Dilated Myopathy: Myocarditis 22

Dilated Myopathy: Other Specify 274
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Table 5: Disease Categorization in Model

Group Diseases Included

Dilated Myopathy 1. Dilated Myopathy: Adriamycin

2. Dilated Myopathy: Alcoholic

3. Dilated Myopathy: Familial

4. Dilated Myopathy: Idiopathic

6. Dilated Myopathy: Myocarditis

7. Dilated Myopathy: Other Specify

8. Dilated Myopathy: Post-Partum

Dilated Myopathy : Viral 1. Dilated Myopathy : Viral

Restrictive Myopathy 1. Restrictive Myopathy: Amyloidosis

2. Restrictive Myopathy: Idiopathic

3. Restrictive Myopathy: Other Specify

4. Restrictive Myopathy: Sarcoidosis

5. Restrictive Myopathy: Sec To Radiat/Chem

Hypertrophic Cardiomiopathy 1. Hypertrophic Cardiomiopathy

Valvular Heart Disease 1. Valvular Heart Disease

Congenital Heart Defect 1. Congenital Heart Defect : Hypoplastic Left Heart

2. Congenital Heart Defect : Prior Surgery Unknown

3. Congenital Heart Defect : With Surgery

4. Congenital Heart Defect : Without Surgery

Coronary Artery Disease 1. Coronary Artery Disease

2. Dilated Myopathy: Ischemic

Heart Re-Tx/Gf 1. Heart Re-Tx/Gf: Acute Rejection

2. Heart Re-Tx/Gf: Chronic Rejection

3. Heart Re-Tx/Gf: Coronary Artery Disease

4. Heart Re-Tx/Gf: Hyperacute Rejection

5. Heart Re-Tx/Gf: Non-Specific

6. Heart Re-Tx/Gf: Other Specify

7. Heart Re-Tx/Gf: Primary Failure

8. Heart Re-Tx/Gf: Restrictive/Constrictive

Other 1. Arrhythmogenic Right Ventricular Dysplasia/Cardio

2. Not Reported

3. Other/specify

81



Table 6: UNOS Table of Reasons for Heart Transplantation

Heart Diagnosis Categories Heart Diagnoses

Cardiomyopathy Dilated Myopathy: Idiopathic

Dilated Myopathy: Myocarditis

Dilated Myopathy: Other Specify

Dilated Myopathy: Post-Partum

Dilated Myopathy: Familial

Dilated Myopathy: Adriamycin

Dilated Myopathy: Viral

Dilated Myopathy: Alcoholic

Hypertrophic Cardiomyopathy

Restrictive Myopathy: Idiopathic

Restrictive Myopathy: Amyloidosis

Restrictive Myopathy:Sarcoidosis

Restrictive Myopathy: Endocardial Fibrosis

Restrictive Myopathy: Other Specify

Restrictive Myopathy: Sec To Radiat/Chem

Coronary Artery Disease Coronary Artery Disease

Dilated Myopathy: Ischemic

Congenital Heart Disease Congenital Heart Disease

Valvular Heart Disease Valvular Heart Disease

Retransplant/Graft Failure Heart Re-Tx/GF: Coronary Artery Disease

Heart Re-Tx/GF: Other Specify

Heart Re-Tx/GF: Non-Specific

Heart Re-Tx/GF: Acute Rejection

Heart Re-Tx/GF: Hyperacute Rejection

Heart Re-Tx/GF: Primary Failure

Heart Re-Tx/GF: Chronic Rejection

Heart Re-Tx/GF: Restrictive/Constrictive

Other Cardiac Disease: Other Specify

Heart: Other Specify

Cancer
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A.1.2 Health Status Assignment

This section closely follows UNOS/OPTN policy reports. Each heart transplant candidate

is assigned a health status that reflects the candidate’s medical urgency for transplant. Heart

candidates (18+) at the time of registration may be assigned one of the following health statuses

(Organ Procurement and Transplantation Network, 2015).

• Adult status 1A

• Adult status 1B

• Adult status 2

• Inactive status

Adult Heart Status 1A Requirements: To assign a candidate adult status 1A, the candidate’s

transplant program must submit a Heart Status 1A Justification Form to the OPTN Contractor. A

candidate is not assigned adult status 1A until this form is submitted. If the candidate is at least

18 years old at the time of registration, then the candidate’s transplant program may assign the

candidate adult status 1A if either of the following conditions is met:

1. The candidate is admitted to the transplant hospital that registered the candidate on the waiting

list, or an affiliated Veteran’s Administration (VA) hospital, and the candidate also meets at least

one of the requirements in Table 7.
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Table 7: Adult Status 1A Requirements for Candidates Currently Admitted to the Transplant
Hospital

If the candidate meets this condition: Then adult status 1A is valid for:

Has one of the following mechanical circulatory support devices

in place:

• Total artificial heart (TAH)

• Intra-aortic balloon pump

• Extracorporeal membrane oxygenation (ECMO)

14 days, and must be recertified by an attending physician every

14 days from the date of the candidate’s initial registration as

adult status 1A to extend the adult status 1A registration.

Requires continuous mechanical ventilation. 14 days, and must be recertified by an attending physician every

14 days from the date of the candidate’s initial registration as

adult status 1A to extend the Status 1A registration.

Requires continuous infusion of a single high-dose intravenous

inotrope or multiple intravenous inotropes, and requires

continuous hemodynamic monitoring of left ventricular filling

pressures. The OPTN Contractor will maintain a list of the

OPTN-approved qualifying inotropes and doses.

7 days, and may be renewed for additional 7 day periods for each

occurrence of an adult status 1A listing under this criterion for

this candidate.

2. A candidate who is at least 18 years old at the time of registration, and may or may not

be currently admitted to the transplant hospital, may be assigned adult status 1A if the candidate

meets at least one of the requirements in Table 8.
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Table 8: Adult Status 1A Requirements for Candidates Current Hospitalization Not Required

If the candidate meets this condition: Then adult status 1A is valid for:

Has one of the following mechanical circulatory support devices

in place:\begin{itemize}\item Left ventricular assist device

(LVAD)\item Right ventricular assist device (RVAD) \item Left

and right ventricular assist devices (BiVAD)\end{itemize}

30 days, and the candidate may be registered as adult status 1A

for 30 days at any point after being implanted once an attending

physician determines the candidate is medically stable. The 30

days do not have to be consecutive. However, if the candidate

undergoes a procedure to receive another device, then the

candidate qualifies for a new term of 30 days. Any 30 days

granted by the new device would substitute and not supplement

any time remaining from the previous adult status 1A

classification.

Candidate has mechanical circulatory support and there is

medical evidence of significant device-related complications

including, but not limited to, thromboembolism, device

infection, mechanical failure, or life-threatening ventricular

arrhythmias. A candidates sensitization is not an acceptable

device-related complication to qualify as adult status 1A. If a

transplant program reports a complication that is not listed

here, the registration will be retrospectively reviewed by the

heart regional review board (RRB).

14 days, and must be recertified by an attending physician every

14 days from the date of the candidate’s initial registration as

adult status 1A to extend the adult status 1A registration.

If the attending physician does not update the qualifications for adult status 1A registration

when required according to Tables 7 and 8, then the candidate’s adult status 1A will expire and the

candidate will be downgraded to adult status 1B.

Adult Heart Status 1B Requirements: To assign a candidate adult status 1B, the candidate’s

transplant program must submit a Heart Status 1B Justification Form to the OPTN Contractor. A

candidate is not assigned adult status 1B until this form is submitted. The candidate’s transplant

program may assign the candidate as adult status 1B if the candidate is at least 18 years old at the

time of registration and has at least one of the following devices or therapies in place:

• Left ventricular assist device (LVAD)

• Right ventricular assist device (RVAD)

• Left and right ventricular assist devices (BiVAD)

• Continuous infusion of intravenous inotropes
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Candidates that continue to qualify for adult status 1B may retain this status for an unlimited

period and this status does not require any recertification, unless the candidate’s medical condition

changes.

Adult Heart Status 2 Requirements: If the candidate is at least 18 years old at the time of

registration and does not meet the criteria for adult status 1A or 1B but is suitable for transplant,

then the candidate may be assigned adult status 2. The candidate may retain adult status 2 for

an unlimited period and this status does not require recertification, unless the candidate’s medical

condition changes.

Status Updates: If a candidate’s medical condition changes and the criteria used to justify that

candidate’s status is no longer accurate, then the candidate’s transplant program must update the

candidate’s status and report the updated information to the OPTN Contractor within 24 hours of

the change in medical condition. Hence, we decided to update the patients’ health status daily in

our simulation model.

A.1.3 Region

For the administration of organ allocation and appropriate geographic representation within

the OPTN policy structure, the membership is divided into 11 geographic regions (Organ Procure-

ment and Transplantation Network, 2015). Members belong to the Region in which they are located

(Figure 4). Different states are categorized into 11 regions as follows:

• Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Eastern

Vermont.

• Region 2: Delaware, District of Columbia, Maryland, New Jersey, Pennsylvania, West Vir-

ginia, and the part of Northern Virginia in the Donation Service Area served by the Washington

Regional Transplant Community (DCTC) OPO.

• Region 3: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, and Puerto Rico.

• Region 4: Oklahoma and Texas.

• Region 5: Arizona, California, Nevada, New Mexico, and Utah.
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• Region 6: Alaska, Hawaii, Idaho, Montana, Oregon, and Washington.

• Region 7: Illinois, Minnesota, North Dakota, South Dakota, and Wisconsin.

• Region 8: Colorado, Iowa, Kansas, Missouri, Nebraska, and Wyoming.

• Region 9: New York and Western Vermont.

• Region 10: Indiana, Michigan, and Ohio.

• Region 11: Kentucky, North Carolina, South Carolina, Tennessee, and Virginia.

Figure 4: Map of UNOS Regional Categorization

OPO is an organization authorized by the Centers for Medicare and Medicaid Services,

under Section 1138(b) of the Social Security Act, to procure organs for transplantation. Each region

consists of several OPOs (Figure 5). There are 58 OPO centers in the U.S.; each includes one or

more transplant centers (hospitals). Table 9 shows the number of OPOs and transplant centers in

each region (United Network for Organ Sharing, 2015).
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Figure 5: Map of OPO Locations

Table 9: Number of OPO and Transplant Centers in Each Region

Region Number of OPO Centers Number of Transplant Centers

1 2 14

2 5 35

3 10 30

4 4 30

5 8 33

6 3 9

7 4 22

8 5 19

9 4 14

10 6 20

11 7 24
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Since the OPO-level arrival data were not available in UNOS datasets, in order to generate

the OPO for an arrived patient/heart, we first generated her/its region, and then using Table 9,

randomly assigned one of the OPOs of the generated region as her/its OPO.

A.2 Patient Arrival Analysis

In order to generate the attributes of an arrived patient, we used statistical methods to

create a series of conditional relationships. Figure 6 demonstrates the three levels of these hierarchal

relationships. We assessed the dependency of each of the attributes to time at the first level and

to each other at the second and third levels in the patient arrival process. Since data for VAD

were not available in UNOS datasets at the time of study, we assumed that it is dependent to time

and included it in the first level of this hierarchy. We also excluded region and OPO from this

statistical study, as yearly arrival rate generates the region arrival rates and region generates OPO.

However, we reported the p-values of region dependency to time in the regression test for the first

level. Another attribute that we did not consider in the first level of dependency was health status

as health status arrival rates is more dependent to disease and age. Other patient attributes were

included in the statistical tests.

First, for each group of patient attributes, we used regression to test its dependency to time

(calendar year). For example, for blood type, we tested 4 null hypotheses, i.e., the dependency of

blood type “O,” “A,” “B,” and “AB” to time. In particular, for blood type “O,” the two variables

included in the regression are A0 which stands for arrival of blood type “O” and T which shows

time (in years). We tested whether the coefficient of time in equation A0 = aT + b equals zero or

not. In fact, the null hypothesis is defined by:


H0 : a = 0,

H1 : a 6= 0.

By choosing a significance level α, a p-value less than α rejects the null hypothesis, and shows that

the variable depends on time. Similar statistical tests were used to test the dependency of blood

type groups “A,” “B,” and “AB” to time. By repeating the same procedure for the other patient

attributes, we created Table 10, which shows the p-values for each test (we used α = 0.1 for the

analysis reported in 10). Then, for each attribute, we defined the degree of dependency to time,
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which is the percentage of groups of an attribute dependent on time. By comparing these degrees

of dependency, we chose attributes gender, PTX status, and disease group to be dependent on time

in our model. By doing so, we then created the first layer shown in Figure 6. Note that we used

programming language R to perform our statistical tests throughout this thesis.

Table 10: Regression p-values for Testing the Time Dependency of Attributes

Attribute Groups Regression

p-value

Dependency

to time?

Degree of dependency

Gender Female: 0.0004452 Yes 2 out of 2

Male: 0.0004450 Yes (100%)

Ethnicity White: 0.0279300 Yes 4 out of 7

African-American: 0.0001934 Yes (57.14%)

Hispanic: 0.0005916 Yes

Asian: 0.0055590 Yes

American Indian/Alaska Native: 0.2516000 No

Pacific Islander: 0.3977000 No

Multiracial: 0.6751000 No

Blood type O: 0.8458000 No 1 out of 4

A: 0.3584000 No (25%)

B: 0.2806000 No

AB: 0.0718700 Yes

Disease Dilated Myopathy: Post-Partum 0.1939000 No 13 out of 32

Dilated Myopathy: Viral 0.7376000 No (40.62%)

Heart Re-Tx/Gf: Acute

Rejection

0.1313000 No

Heart Re-Tx/Gf: Chronic

Rejection

0.1423000 No

Heart Re-Tx/Gf: Coronary

Artery Disease

0.1100000 No

Heart Re-Tx/Gf: Hyperacute

Rejection

0.1117000 No

Heart Re-Tx/Gf: Non-Specific 0.3074000 No

Heart Re-Tx/Gf: Other Specify 0.6850000 No

Heart Re-Tx/Gf: Primary

Failure

0.8999000 No

Heart Re-Tx/Gf:

Restrictive/Constrictive

0.0875900 Yes

Hypertrophic Cardiomyopathy 0.0005736 Yes
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Table 10 continued from previous page

Arrhythmogenic Right

Ventricular Dysplasia/Cardio

0.2825000 No

Restrictive Myopathy:

Amyloidosis

0.9744000 No

Restrictive Myopathy:

Idiopathic

0.0016430 Yes

Restrictive Myopathy: Other

Specify

0.0001368 Yes

Restrictive Myopathy:

Sarcoidosis

0.0001163 Yes

Restrictive Myopathy: Sec To

Radiat/Chem

0.7919000 No

Valvular Heart Disease 0.1260000 No

Other, Specify 0.9980000 No

Not Reported 0.9143000 No

Congenital Heart Defect :

Hypoplastic Left Heart

0.0783000 Yes

Congenital Heart Defect : Prior

Surgery Unknown

0.0446000 Yes

Congenital Heart Defect : With

Surgery

0.1449000 No

Congenital Heart Defect :

Without Surgery

0.0175300 Yes

Coronary Artery Disease 0.2912000 No

Dilated Myopathy: Adriamycin 0.6545000 No

Dilated Myopathy: Alcoholic 0.0137200 Yes

Dilated Myopathy: Familial 0.3949000 No

Dilated Myopathy: Idiopathic 0.0000042 Yes

Dilated Myopathy: Ischemic 0.0818800 Yes

Dilated Myopathy: Myocarditis 0.0000056 Yes

Dilated Myopathy: Other

Specify

0.0021600 Yes

Age group [18-35]: 0.1635000 No 1 out of 4

[35-50]: 0.3096000 No (25%)

[50-65]: 0.0036680 Yes

[65+]: 0.1369000 No

PTX status 1: 0.0012420 Yes 1 out of 2

0: 0.1329000 No (50%)
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Table 10 continued from previous page

Region Region 1: 0.1275000 No 3 out of 11

Region 2: 0.1257000 No (27.27%)

Region 3: 0.1599000 No

Region 4: 0.0168600 Yes

Region 5: 0.9526000 No

Region 6: 0.1880000 No

Region 7: 0.9564000 No

Region 8: 0.2506000 No

Region 9: 0.0145800 Yes

Region 10: 0.0005045 Yes

Region 11: 0.2114000 No

After creating the first level, the Chi-squared independency test was used to test the de-

pendency of each attribute in the first level to the remaining attributes. Results (p-values) of the

Chi-squared independency test of attributes gender, PTX status, and disease group are reported

in Tables 11, 12, and 13, respectively. In the Chi-squared test the null hypothesis is to check the

independency of the two tested variables. When the p-value reported by the test is smaller than a

significance level, the null hypothesis is rejected and consequently the dependency of the variables

is concluded.

Table 11: P-values for Chi-squared Independency Test for Gender

Independency test of gender and: P-value

Blood type 0.0008254

Age < 2.2× 10−16

Ethnicity < 2.2× 10−16

Table 12: P-values for Chi-squared Independency Test for PTX Status

Independency test of PTX status and: P-value

Blood type < 2.2× 10−16

Age < 2.2× 10−16

Ethnicity < 2.2× 10−16

Table 13: P-values for Chi-squared Independency Test for Disease

Independency test of disease and: P-value

Blood type 0.6651

Age < 2.2× 10−16

Ethnicity 0.4259
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Based on reported p-values of the tests, we developed the hierarchy such that each attribute

in level one had only one dependent variable in level two. Since most of the p-values were smaller

than the usual significance levels, we chose the attribute with the smallest p-value as the dependent

variable for each of the attributes in level one (Table 14). Note that 2.2 × 10−16 is the smallest

p-value that R programming language reports and this small number in fact shows a dependency

between attributes.

Table 14: Second Level Dependency of Patient Attributes

Attribute Dependent Attributes

Gender Age, Ethnicity

PTX Status Blood Type, Age, Ethnicity

Disease Age

Age was the only dependent attribute to disease, and it was chosen as the second level

variable depending on disease. The only remained choice for gender was ethnicity. For PTX status,

though, we could choose blood type as its second level, we did not do so because blood type depends

more on ethnicity than previous heart transplant (PTX status). The only remained variables are

health status, and blood type. So far, we created three conditional branches, that is, gender/ethnicity

branch, disease/age branch, and PTX status branch. Among these branches we chose health status

as the third level variable for disease/age branch, because the health status arrival depends more on

disease/age than to gender/ethnicity or PTX status. Also, blood type group arrival rates depend

more on gender/ethnicity. Creating the conditional relationships for patient attributes helps to

estimate patient attribute arrival distributions more accurately.
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Figure 6: Pattern of Dependency in Patient Arrival Data

A.3 Heart Arrival Analysis

When a heart is procured to the system, the model assigns its various attributes according

to a series of conditional relationships. We used the same statistical methods described in Appendix

A.2 for patient arrivals to test the dependency of heart attributes to each other, as well as time

(calendar year). We included all the attributes of a heart considered by UNOS in our analysis.

Table 15 shows the p-values of time dependency test for each group of heart attributes, as well as

their degree of dependency to time. Based on the results of Table 15, we created the first level

of hierarchy, which involves age group, blood type, and ethnicity because these attributes have a

larger degree of dependency to time compared to the other attributes. Tables 16, 17, and 18 show

the p-values for Chi-squared independency test between each of the attributes in the first level

with gender and region. However, since almost all the p-values were close to zero, we decided to

consider the region to depend on blood type and gender to depend on age group in the second level.

We generated the OPO of an arrived heart randomly based on its region. Figure A.4 shows these
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conditional relationships.

Table 15: Regression p-values for Testing the Time Dependency of Attributes

Attribute Groups Regression

p-value

Dependency

on time?

Degree of dependency

Gender Female: 0.1974000 No 0 out of 2

Male: 0.1974000 No (0%)

Ethnicity White: 0.0006164 Yes 3 out of 7

African-American: 0.0056930 Yes (42.85%)

Hispanic: 0.5378000 No

Asian: 0.0000042 Yes

American Indian/Alaska Native: 0.9271000 No

Pacific Islander: 0.2107000 No

Multiracial: 0.2567000 No

Blood type O: 0.1157000 No 2 out of 4

A: 0.8177000 No (50%)

B: 0.0179900 Yes

AB: 0.0030470 Yes

Age group [18-35]: 0.1635000 No 1 out of 4

[35-50]: 0.3096000 No (25%)

[50-65]: 0.0036680 Yes

[65+]: 0.1369000 No

Region Region 1: 0.0010610 Yes 3 out of 11

Region 2: 0.5411000 No (27.27%)

Region 3: 0.0811700 Yes

Region 4: 0.3148000 No

Region 5: 0.5095000 No

Region 6: 0.7325000 No

Region 7: 0.1348000 No

Region 8: 0.1945000 No

Region 9: 0.0119400 Yes

Region 10: 0.6285000 No

Region 11: 0.5649000 No
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Table 16: P-values for Chi-squared Independency Test for Age Group

Independency test of age group and: P-value

Region < 2.2× 10−16

Gender < 2.2× 10−16

Table 17: P-values for Chi-squared Independency Test for Blood Type

Independency test of blood type and: P-value

Region < 2.2× 10−16

Gender < 6.7× 10−8

Table 18: P-values for Chi-squared Independency Test for Ethnicity

Independency test of ethnicity and: P-value

Region < 2.2× 10−16

Gender < 2.2× 10−16

Table 19: Second Level Dependency of Heart Attributes

Attribute Dependent Attributes

Age Group Gender, Region

Blood Type Region

Ethnicity Gender, Region
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Figure 7: Pattern of Dependency in Heart Arrival Data

A.4 Patient Health Status Change Module

We validated the health status change module by comparing the portion of patients in each

health status produced by our simulation model with the historical data reported in UNOS datasets

(United Network for Organ Sharing, 2015). In particular, we used the Kolmogorov-Smirnov test

to check whether the health status distributions produced by the model are statistically identical

to the real health status distributions at the end of each calendar year during 2006-2014. P-values

reported in Table 20 indicate that the Markov chain developed to describe the health status change

of patients on the waiting list, accurately estimates the proportion of patients in each health status

over time. The transition probability matrix of the Markov chain is given by:
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P =

1A 1B 2 Inactive


1A 0.97919 0.01864 0.00103 0.00114

1B 0.00447 0.99267 0.00052 0.00234

2 0.00012 0.00071 0.99668 0.00249

Inactive 0.00021 0.00012 0.00031 0.99936

In order to estimate this matrix, we first estimated the monthly frequency of transition matrix using

the SRTR annual data reports. Then, by using Chapman-Kolmogorov equations, we estimated the

daily frequency of transition matrix by taking the 30th root of the monthly transition frequencies.

Table 20: P-values for the Kolmogorov-Smirnov Test

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014
P-value 0.7714 0.2286 1 0.7718 0.77 1 1 1 1

A.5 Delisting

In our simulation model, outflow of patients from waiting list occurs due to three reasons:

transplant, death, and delisting. According to UNOS data, there are several reasons for delisting

such as transplanted in another country, unable to contact candidate, medically unsuitable, refused

transplant, transferred to another center, condition improved, too sick to transplant, transplanted

at another Center, etc (United Network for Organ Sharing, 2015). Using UNOS delisting data, we

calculated the number of delisted patients during each year from 2006 to the end of 2014. Table 21

shows the historical data for daily delisting rates (computed by dividing numbers delisted annually

by 365) at each year. We model the delisting process as a nonstationary Poisson process. That is, at

each day, using Table 21, we generate a Poisson random number with the mean of the daily delisting

rate. The generated number determines the number of patients to be delisted at that day. We then

picked the patients who are going to be delisted according to a distribution that depends on the

health status. The rationale behind the choice of health status for the delisting process is that the

delisting distribution significantly depends on health status, while weakly correlates with the other

attributes according to the historical data reported by UNOS (United Network for Organ Sharing,

2015). For example, the daily delisting rate for year 2014 is equal to 2.42. Suppose that the Poisson

random number generated using a mean of 2.42 is equal to 3 in the simulation. Therefore, we delist

3 patients from the waiting list. The health status removal distribution of patients in 2014 is given

by (United Network for Organ Sharing, 2015):

98



• Health status 1A: 8.6 % of all delisted patients

• Health status 1B: 15 % of all delisted patients

• Health status 2: 14 % of all delisted patients

• Health status 7 (Inactive): 62.4 % of all delisted patients

Table 21: Number of Yearly and Daily Delisting for UNOS Waiting List During 2006-2014

Year 2014 2013 2012 2011 2010 2009 2008 2007 2006

Transplanted in another country 1 0 0 0 0 0 0 0 0

Unable to contact candidate 14 13 6 19 17 3 68 5 13

Medically unsuitable 0 0 0 0 0 0 0 0 0

Refused transplant 24 13 22 17 13 24 22 26 17

Transferred to another center 76 42 62 60 70 32 34 37 45

Other 218 191 154 214 122 120 165 97 129

Condition improved 203 149 151 171 173 202 255 315 196

Too sick to transplant 317 274 219 234 196 177 134 111 108

Transplanted at another center 30 25 17 16 9 10 11 7 8

Total removal 883 707 631 731 600 568 689 598 516

Daily removal rate 2.42 1.94 1.73 2 1.64 1.56 1.89 1.64 1.41

A.6 Pre-Transplant Death

Patients may die while waiting for a donor heart on the waiting list. We used the SRTR

Cox proportional hazard model to generate the daily death probability for each patient on the

waiting list (Scientific Registry of Transplant Recipients, 2015a). Although this model estimates the

patient survival based on patient data from 07/01/2012 to 06/30/2013, we used it to generate death

probabilities for the other years. The covariates for 1-year patient survival are reported in Table 22

(Scientific Registry of Transplant Recipients, 2015a). Covariates for VAD status, Region, and OPO

were not available in the proportional hazard model. Hence, we assigned 0 for those covariates.
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Table 22: Heart Waitlist Mortality Rates (07/01/2012-06/30/2013)

Characteristic Level Estimate Standard Error P-value

Age 17 and less 0.1383 0.2213 0.5321

35-49 0.5141 0.1978 0.0093

50-64 0.5834 0.1904 0.0022

65+ 0.7811 0.2059 0.0001

18-34 0 (Ref.) (Ref.)

Blood Type A -0.0188 0.0984 0.8486

AB -0.0324 0.2755 0.9064

B 0.0438 0.1355 0.7465

O 0 (Ref.) (Ref.)

Diagnosis (Disease) Cardiomyopathy -0.1261 0.1091 0.2479

Retransplant 0.7975 0.2066 0.0001

Valvular Heart Disease 0.9104 0.2393 0.0001

Congenital Heart Disease 0.6431 0.1977 0.0011

Missing 0 (Ref.) (Ref.)

Other 0.139 0.3649 0.7032

Gender Female -0.1655 0.106 0.1185

Male 0 (Ref.) (Ref.)

Race (Ethnicity) African-American/Black -0.0048 0.113 0.9663

Hispanic/Latino 0.0168 0.1582 0.9152

Asian 0.061 0.2861 0.8313

Other -0.4669 0.5804 0.4212

White 0 (Ref.) (Ref.)

Health Status 1A 1.1268 0.202 <0.0001

1B 0.3857 0.2012 0.0552

Inactive 2.3946 0.1754 <0.0001

Waiting Time >Median -0.9484 0.0933 <0.0001

The mechanism of our pre-transplant survival module is such that it assigns a probability

of death for each patient at the start of each day, generates a random number between 0 and 1, and

determines if the patient is going to die during that day, that is,

• Suppose that for a patient, the covariate coefficient associated with his attributes are equal to

β1, β2, . . . , β11 (we read these numbers from the estimate column reported in Table 22).

• Yearly probability of death (Pyearly) for the patient is equal to:

Pyearly = (baseline hazard). exp (

11∑
i=1

βi)
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• We convert it to a daily probability of death Pdaily, by

Pdaily = 1− exp (−Pyearly

365
)

• We generate a random number between 0 and 1 denoted by R:

– If Pdaily ≥ R, the patient dies.

– If Pdaily < R, the patient will remain on the waiting list,

where exp(x) is the exponential function and baseline hazard is a function that assigns

a baseline probability of death for a patient according to the patient’s age. We used the U.S.

population life tables during 2013 reported in the CDC database to estimate this baseline hazard

function(Centers for Disease Control and Prevention, 2015) (Table 23).
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Table 23: Abridged Life Table for the U.S. Total Population, 2013

Age of a Person

(Years x to x+n)

Probability of

Dying Between

Ages x to x+n

Number

Surviving to Age

x

Number Dying

Between Ages x

to x+n

Person-Years

Lived Between

Ages x to x+n

Total Number of

Person-Years

Lived Above

Age x

Life Expectancy

at Age x

0-1 0.005958 100,000 596 99,475 7,882,785 78.8

1 5 0.001021 99,404 102 397,372 7,783,311 78.3

5 10 0.00059 99,303 59 496,355 7,385,939 74.4

10 15 0.000705 99,244 70 496,080 6,889,584 69.4

15-20 0.002227 99,174 221 495,400 6,393,505 64.5

20-25 0.004158 98,953 411 493,788 5,898,105 59.6

25-30 0.004869 98,542 480 491,535 5,404,318 54.8

30-35 0.005727 98,062 562 488,941 4,912,783 50.1

35-40 0.007072 97,500 690 485,855 4,423,842 45.4

40-45 0.009949 96,811 963 481,799 3,937,986 40.7

45-50 0.015604 95,848 1,496 475,781 3,456,188 36.1

50-55 0.024272 94,352 2,290 466,384 2,980,407 31.6

55-60 0.035563 92,062 3,274 452,547 2,514,024 27.3

60-65 0.05006 88,788 4,445 433,361 2,061,477 23.2

65-70 0.071576 84,343 6,037 407,404 1,628,116 19.3

70-75 0.109091 78,306 8,543 371,349 1,220,712 15.6

75-80 0.170567 69,764 11,899 320,641 849,363 12.2

80-85 0.271135 57,864 15,689 251,503 528,722 9.1

85-90 0.425836 42,175 17,960 166,078 277,219 6.6

90-95 0.614587 24,216 14,883 81,352 111,141 4.6

95-100 0.786379 9,333 7,339 25,247 29,789 3.2

100+ 1 1,994 1,994 4,541 4,541 2.3

A.7 Post-Transplant Death

The mechanism of the post-transplant survival module is similar to the pre-transplant sur-

vival module. The only difference is that we used the post-transplant Cox proportional hazard model

reported in the SRTR website (Scientific Registry of Transplant Recipients, 2015a) to generate the

daily probability of death for patients after transplantation (Table 24). Some of the covariates pre-
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sented in the Cox proportional hazard model were not available in our simulation and we did not

consider them. However, some of these covariates such as bilirubin at transplant (mg/dL), dialysis at

transplant, drugtreated HTN at listing, ischemic time (hrs), most recent CPRA/PRA, PA (Sys, mm

Hg), and sudden death at listing have a possibility for missing data. Hence, we used the estimates

for missing covariates in such attributes.
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Table 24: 1-Year Patient Post-Transplant Survival

Characteristic Level Estimate Standard Error P-value

Bilirubin at Transplant (mg/dL) mg/dL 0 0.014 <0.0001

Missing 0 0.5145 0

Dialysis at Transplant Yes 1 0.2255 0

Unknown/Missing 0.6518 0.6263 0

No 0 (Ref.) (Ref.)

Donor Age 0-34 0.1602 0.1094 0

35+ 0 (Ref.) (Ref.)

Donor Cause of Death CVA/Stroke 0 0.1288 0

Other 0 (Ref.) (Ref.)

Drug-Treated HTN at Listing Missing 0.2993 0.2348 0

Yes 0 0 0

No 0 (Ref.) (Ref.)

Ischemic Time (hrs) In Hours (hrs) 0 0 0

Missing 1 0 0

Medical Condition In ICU 0 0 0

Hospitalized Not in ICU 0 0 0

Not Hospitalized 0 (Ref.) (Ref.)

Most Recent CPRA/PRA Percent (%) 0 0 1

Missing 0 0 0

PA (Sys, mm Hg) Systolic (mm HG) 0 0 0

Missing 1 0 0

Recipient Diagnosis Cardiomyopathy 0.0761 0 0

Congenital Heart Disease 0.522 0.2408 0.0302

Other/Missing 0.4738 0.369 0.1991

Coronary Artery Disease 0 (Ref.) (Ref.)

Recipient Height (cm) In Centimeters (cm) 0.0124 0.0054 0.021

Recipient Race/Ethnicity Black 0.0408 0.1287 0.7513

Hispanic/Latino 0.1307 0.1893 0.4899

Asian 0.2627 0.2998 0.3808

Multiracial/Other/Unknown/Missing 0.2733 0.5826 0.639

White 0 (Ref.) (Ref.)

Recipient Serum Creatinine (mg/dL) >1.6 0.635 0.1094 <0.0001

1.6 or Less 0 (Ref.) (Ref.)

Recipient on Life Support (ECMO) Yes 0.8371 0.3776 0.0266

No 0 (Ref.) (Ref.)

Recipient on VAD Yes 0.4382 0.1115 0.0001

No 0 (Ref.) (Ref.)

Recipient on Ventilator Yes 0.4903 0.3452 0.1556

No 0 (Ref.) (Ref.)

Sudden Death at Listing Yes 0.073 0.1437 0.6115

Unknown/Missing 0.4062 0.1637 0.0131

No 0 (Ref.) (Ref.)

The other possibility that can occur for patients in the post-transplant is the graft (heart)

failure. Since in the arrival of patients, we considered such patients (patients whose PTX status

is equal to 1), to avoid double-counting them, we did not include the graft failure event in the

post-transplant phase.
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A.8 Allocation Policies

A.8.1 Current UNOS Allocation Policy (Organ Procurement and Transplantation

Network, 2015)

Waiting Time Accumulation: Waiting time for heart candidates begins when the candidate is

first registered as an active heart candidate on the waiting list, and is calculated within each heart

status. As a result, waiting time accrued at a higher status will be added to any time accumulated

at a lower status, but waiting time accumulated at a lower status will not be added to any higher

status. If a candidate’s status is upgraded, waiting time accrued while registered at the lower status

is not transferred to the higher status. Conversely, waiting time accrued while registered at a higher

status is transferred to a lower status if the candidate is downgraded. Waiting time does not accrue

while the candidate is inactive.

Heart Allocation Classifications and Rankings: Allocation of Hearts by Blood Type Within

each heart status, hearts will be allocated to candidates according to the primary blood type match-

ing requirements in Table 25.

Table 25: Primary Blood Type Matching Requirements

Hearts from donors with: Are allocated to the candidates with:

Blood Type O Blood type O or blood type B

Blood Type A Blood type A or blood type AB

Blood Type B Blood type B or blood type AB

Blood Type AB Blood type AB

After hearts are allocated to primary blood type candidates, they are allocated to any

secondary blood type compatible candidates, then to any eligible incompatible blood type candidates

(Table 26).

Table 26: Secondary Blood Type Matching Requirements

Hearts from donors with: Are allocated to the candidates with:

Blood Type O Blood type A or blood type AB

Blood Type A Not applicable

Blood Type B Not applicable

Blood Type AB Not applicable
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Sorting Within Each Classification: Candidates are sorted within each classification by the

total amount of waiting time that the candidate has accumulated at that status.

Allocation of Hearts from Donors at Least 18 years Old: Hearts from deceased donors

at least 18 years old are allocated to candidates according to Table 28. Table 27 shows the zone

definitions for the current UNOS policy.

Table 27: Zone Definition for the UNOS Policy

Zone Includes transplant hospitals:

A Within 500 nautical miles from the donor’s hospital but outside of the donor’s hospital DSA.

B Within 1000 nautical miles from the donor’s hospital but outside of the zone A and donor’s hospital DSA.

C Within 1500 nautical miles from the donor’s hospital but outside of the zone B and donor’s hospital DSA.

D Within 2500 nautical miles from the donor’s hospital but outside of the zone C and donor’s hospital DSA.

E More than 2500 nautical miles from the donor’s hospital.

Table 28: Allocation of Hearts from Deceased Donors At Least 18 Years Old in the UNOS Policy

Classification Candidates

within:

And are:

1 OPO’s DSA Adult or pediatric status 1A and primary blood type match with the donor

2 OPO’s DSA Adult or pediatric status 1A and secondary blood type match with the donor

3 OPO’s DSA Adult or pediatric status 1B and primary blood type match with the donor

4 OPO’s DSA Adult or pediatric status 1B and secondary blood type match with the donor

5 Zone A Adult or pediatric status 1A and primary blood type match with the donor

6 Zone A Adult or pediatric status 1A and secondary blood type match with the donor

7 Zone A Adult or pediatric status 1B and primary blood type match with the donor

8 Zone A Adult or pediatric status 1B and secondary blood type match with the donor

9 OPO’s DSA Adult or pediatric status 2 and primary blood type match with the donor

10 OPO’s DSA Adult or pediatric status 2 and secondary blood type match with the donor

11 Zone B Adult or pediatric status 1A and primary blood type match with the donor

12 Zone B Adult or pediatric status 1A and secondary blood type match with the donor

13 Zone B Adult or pediatric status 1B and primary blood type match with the donor

14 Zone B Adult or pediatric status 1B and secondary blood type match with the donor

15 Zone A Adult or pediatric status 2 and primary blood type match with the donor

16 Zone A Adult or pediatric status 2 and secondary blood type match with the donor
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Table 28 continued from previous page

Classification Candidates

within:

And are:

17 Zone B Adult or pediatric status 2 and primary blood type match with the donor

18 Zone B Adult or pediatric status 2 and secondary blood type match with the donor

19 Zone C Adult or pediatric status 1A and primary blood type match with the donor

20 Zone C Adult or pediatric status 1A and secondary blood type match with the donor

21 Zone C Adult or pediatric status 1B and primary blood type match with the donor

22 Zone C Adult or pediatric status 1B and secondary blood type match with the donor

23 Zone C Adult or pediatric status 2 and primary blood type match with the donor

24 Zone C Adult or pediatric status 2 and secondary blood type match with the donor

25 Zone D Adult or pediatric status 1A and primary blood type match with the donor

26 Zone D Adult or pediatric status 1A and secondary blood type match with the donor

27 Zone D Adult or pediatric status 1B and primary blood type match with the donor

28 Zone D Adult or pediatric status 1B and secondary blood type match with the donor

29 Zone D Adult or pediatric status 2 and primary blood type match with the donor

30 Zone D Adult or pediatric status 2 and secondary blood type match with the donor

31 Zone E Adult or pediatric status 1A and primary blood type match with the donor

32 Zone E Adult or pediatric status 1A and secondary blood type match with the donor

33 Zone E Adult or pediatric status 1B and primary blood type match with the donor

34 Zone E Adult or pediatric status 1B and secondary blood type match with the donor

35 Zone E Adult or pediatric status 2 and primary blood type match with the donor

36 Zone E Adult or pediatric status 2 and secondary blood type match with the donor

In order to determine the set of OPOs in each zone and for each OPO center, by using

Figure 5, we calculated the distances between any pair of OPO centers (distances estimated by the

Google Maps (Google, 2015)) and followed the definition of each zone.

A.8.2 Policy I

This section explains how we proposed the three-tiered zone allocation system. If a donor

heart is matched with no one in its Designated Service Area (DSA), it is offered to Zone 1 (union

of Zones A, B, and C of UNOS allocation rule). Similarly, if it is not matched with a patient in

Zone 1, it is offered in hierarchy to patients in Zone 2 (Zone D of UNOS allocation rule) and Zone

107



3 (Zone E of UNOS allocation rule). Table 29 shows the zone definition for Policy I. Note that in

each zone we considered the same health status, blood type match, and waiting time prioritization

rules as UNOS. Table 30 shows the allocation procedure for Policy I in the model.

Table 29: Zone Definition for Policy I

Zone Includes transplant hospitals :

1 Within 1500 nautical miles from the donor’s hospital but outside of the donor’s hospital DSA.

2 Within 2500 nautical miles from the donor’s hospital but outside of the zone A and donor’s hospital DSA.

3 More than 2500 nautical miles from the donor’s hospital.

Table 30: Allocation of Hearts from Deceased Donors At Least 18 Years Old in Policy I

Classification Candidates within: And are:

1 OPO’s DSA and Zone 1 Adult or pediatric status 1A and primary blood type match with the donor

2 OPO’s DSA and Zone 1 Adult or pediatric status 1A and secondary blood type match with the donor

3 OPO’s DSA and Zone 1 Adult or pediatric status 1B and primary blood type match with the donor

4 OPO’s DSA and Zone 1 Adult or pediatric status 1B and secondary blood type match with the donor

5 Zone 2 Adult or pediatric status 1A and primary blood type match with the donor

6 Zone 2 Adult or pediatric status 1A and secondary blood type match with the donor

7 Zone 2 Adult or pediatric status 1B and primary blood type match with the donor

8 Zone 2 Adult or pediatric status 1B and secondary blood type match with the donor

9 OPO’s DSA and Zone 1 Adult or pediatric status 2 and primary blood type match with the donor

10 OPO’s DSA and Zone 1 Adult or pediatric status 2 and secondary blood type match with the donor

11 Zone 3 Adult or pediatric status 1A and primary blood type match with the donor

12 Zone 3 Adult or pediatric status 1A and secondary blood type match with the donor

13 Zone 3 Adult or pediatric status 1B and primary blood type match with the donor

14 Zone 3 Adult or pediatric status 1B and secondary blood type match with the donor

15 Zone 2 Adult or pediatric status 2 and primary blood type match with the donor

16 Zone 2 Adult or pediatric status 2 and secondary blood type match with the donor

17 Zone 3 Adult or pediatric status 2 and primary blood type match with the donor

18 Zone 3 Adult or pediatric status 2 and secondary blood type match with the donor

A.8.3 Policy II

To prioritize patients according to their health status, UNOS gives the first priority to health

status 1A, the second priority to health status 1B, and finally the third priority to health status
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2. The patients assigned with health status 7 (inactive) are not considered in the heart-patient

matching algorithm. UNOS allocation rule gives priority to patients with a higher medical urgency

status. However, it has caused a significant imbalance in the distribution of donated hearts. In

particular, more than 67% of all transplants correspond to status 1A while status 1A patients are

only 10% of those on the waiting list. Moreover, less than 30% of all transplants correspond to

health status 1B while these patients compromise 40% of the waiting list. This disparity has caused

some patients in status 1B relocate together with their families to other regions with shorter waiting

time6. Also, prioritizing the sickest patients may not be optimal as they may experience a shorter

post-transplant survival compared to status 1B patients. Thus, in Policy II we followed the UNOS

allocation system except that status 1B was prioritized over 1A in each classification. Table 31

summarizes the allocation priority for this policy.

Table 31: Allocation of Hearts from Deceased Donors At Least 18 Years Old in Policy II

Classification Candidates within: And are:

1 OPO’s DSA Adult or pediatric status 1B and primary blood type match with the donor

2 OPO’s DSA Adult or pediatric status 1B and secondary blood type match with the donor

3 OPO’s DSA Adult or pediatric status 1A and primary blood type match with the donor

4 OPO’s DSA Adult or pediatric status 1A and secondary blood type match with the donor

5 Zone A Adult or pediatric status 1B and primary blood type match with the donor

6 Zone A Adult or pediatric status 1B and secondary blood type match with the donor

7 Zone A Adult or pediatric status 1A and primary blood type match with the donor

8 Zone A Adult or pediatric status 1A and secondary blood type match with the donor

9 OPO’s DSA Adult or pediatric status 2 and primary blood type match with the donor

10 OPO’s DSA Adult or pediatric status 2 and secondary blood type match with the donor

11 Zone B Adult or pediatric status 1B and primary blood type match with the donor

12 Zone B Adult or pediatric status 1B and secondary blood type match with the donor

13 Zone B Adult or pediatric status 1A and primary blood type match with the donor

14 Zone B Adult or pediatric status 1A and secondary blood type match with the donor

15 Zone A Adult or pediatric status 2 and primary blood type match with the donor

16 Zone A Adult or pediatric status 2 and secondary blood type match with the donor

17 Zone B Adult or pediatric status 2 and primary blood type match with the donor

18 Zone B Adult or pediatric status 2 and secondary blood type match with the donor

19 Zone C Adult or pediatric status 1B and primary blood type match with the donor

20 Zone C Adult or pediatric status 1B and secondary blood type match with the donor

21 Zone C Adult or pediatric status 1A and primary blood type match with the donor

22 Zone C Adult or pediatric status 1A and secondary blood type match with the donor
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Table 31 continued from previous page

Classification Candidates within: And are:

23 Zone C Adult or pediatric status 2 and primary blood type match with the donor

24 Zone C Adult or pediatric status 2 and secondary blood type match with the donor

25 Zone D Adult or pediatric status 1B and primary blood type match with the donor

26 Zone D Adult or pediatric status 1B and secondary blood type match with the donor

27 Zone D Adult or pediatric status 1A and primary blood type match with the donor

28 Zone D Adult or pediatric status 1A and secondary blood type match with the donor

29 Zone D Adult or pediatric status 2 and primary blood type match with the donor

30 Zone D Adult or pediatric status 2 and secondary blood type match with the donor

31 Zone E Adult or pediatric status 1B and primary blood type match with the donor

32 Zone E Adult or pediatric status 1B and secondary blood type match with the donor

33 Zone E Adult or pediatric status 1A and primary blood type match with the donor

34 Zone E Adult or pediatric status 1A and secondary blood type match with the donor

35 Zone E Adult or pediatric status 2 and primary blood type match with the donor

36 Zone E Adult or pediatric status 2 and secondary blood type match with the donor

A.8.4 Policy III

Policy III considered the UNOS allocation rule except that in each zone waiting time is

prioritized over health status, i.e., considering primary and secondary blood type match, patients

are ranked first by longer waiting time. Section A.8.1 explains how the waiting time in each health

status is accumulated.

A.9 Sensitivity Analysis

A.9.1 On Patient and Heart Arrival Rates

In this section, we conducted sensitivity analysis on the arrival of patients and hearts to

assess the impacts of change in the number of arrivals on the outcomes such as total death (pre-

and post-transplant deaths). We let the arrival rates of patients and hearts to increase and decrease

by a certain percentage (e.g., 10 percent) and compare the total patient death (including pre- and

post-transplant deaths) for the following seven cases: (1) baseline scenario, (2) daily arrival rates

of patients increased by 10 percent compared to the baseline rates, (3) daily arrival rates of hearts

increased by 10 percent compared to the baseline rates, (4) daily arrival rates of patients and hearts

both increased by 10 percent compared to the baseline rates, (5) daily arrival rates of patients
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decreased by 10 percent compared to the baseline rates, (6) daily arrival rates of hearts decreased

by 10 percent compared to the baseline rates, (7) daily arrival rates of patients and hearts both

decreased by 10 percent compared to the baseline rates. Figures 8, 9, and 10 summarize the result

of the sensitivity analysis for the aforementioned cases.

Figure 8: Total Number of Deaths for Different Patient and Heart Arrival Rates
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Figure 9: Pre-Transplant Deaths for Different Patient and Heart Arrival Rates

Figure 10: Post-Transplant Deaths for Different Patient and Heart Arrival Rates
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A.9.2 On Allocation Priority Zones

As we have described in Chapter 1, allocation priority zones are defined based on the

proximity of patients’ hospital to the donor’s hospital. Current UNOS allocation policy, considers

5 allocation priority zones, i.e., Zone A, Zone B, Zone C, Zone D, and Zoned E, in addition to

DSA. Our proposed Policy I aggregates Zones A, B, and C in the current UNOS policy into one

single priority zone. We conducted sensitivity analysis on different combinations of priority zones.

Specifically, we considered a policy that combines Zones A and B into single priority zone (Policy

IV). Similar to the other policies, we calculated the total number of deaths (including pre- and

post-transplant deaths) for this policy (Figures 11, 12, and 13). We also conducted fairness analysis

on policy IV. We measured the proportional fairness and max-min fairness for this policy using the

same approach discussed in Section 1.2.4 of Chapter 1 (Figures 14 and 15). These measures are

reported for the following three policies:

(1) Current UNOS allocation policy: After offering an available heart in its DSA, it shares the

organ to patients in Zone A (within 500 miles of the OPO of the available heart), Zone B (within

500-1000 miles of the OPO of the available heart), Zone C (within 1000-1500 miles of the OPO of

the available heart), Zone D (within 1500-2500 miles of the OPO of the available heart), and Zone

E (more than 2500 miles distance from the OPO of the available heart), respectively.

(2) Policy I: This policy combines Zones A, B, and C in the UNOS policy. After offering an

available heart in its DSA, this policy shares it to patients in Zone 1 (within 1500 miles of the OPO

of the available heart), Zone 2 (within 1500-2500 miles of the OPO of the available heart), and Zone

3 (more than 2500 miles distance from the OPO of the available heart), respectively.

(3) Policy IV: This policy combines Zones A and B in the current UNOS policy. After offering

an available heart in its DSA, this policy shares it to patients in Zone 1 (within 1000 miles of the

OPO of the available heart), Zone 2 (within 1000-1500 miles of the OPO of the available heart),

Zone 3 (within 1500-2500 miles of the OPO of the available heart), and Zone 4 (more than 2500

miles distance from the OPO of the available heart), respectively.
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Figure 11: Pre-Transplant Deaths

Figure 12: Post-Transplant Deaths

Figure 13: Total Deaths
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Figure 14: Proportional Fairness Measure

Figure 15: Max-Min Fairness Measure

Furthermore, we conducted a sensitivity analysis on the arrival rate of patients to check its

effect on the order of the policies in terms of efficiency (number of total deaths). As can be seen

from Figure 16, the order of policies remain unchanged as we increase the patient arrival rates. We

increased arrival rates of patients by 10 percent in our planning horizon, and compared the total

number of deaths for UNOS policy, three considered policies in Chapter 1 (Policies I, II, and III),

and Policy IV. Our results show that order of the policies does not change by changing the input

parameters in the described range.
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Figure 16: Total Number of Deaths for 10 Percent Increased Patient Arrival Rates for Different
Policies
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Appendix B Appendix of Chapter 2

Appendix B includes several details regarding the mathematical proofs of the theorems that

appear throughout Chapter 2, model validation results, alternative objective functions, and further

OPL analysis. In particular, Section B.1 provides notation tables and a mapping from mathematical

model to application. Section B.2 provide proof for Theorem 2.1. Section B.3 studies the heart

allocation problem in a Markovian setting and provides the mathematical analysis of the optimal

solution of problem (PU ) introduced therein. Section B.4 provides an overview of the simulation

model used to test the performance of allocation policies in this study, as well as the results of

statistical tests performed for validation purposes of the assumptions made in Section B.3 under

which an upper bound for the Markovian network is justified. Section B.5 provides details about the

benchmark policies studied in Section 2.6.1 and derives the optimal policies for alternative objective

functions introduced in Section 2.5 of Chapter 2. Section B.6 studies the reformulated fluid model

which incorporates the proximity considerations in heart allocation system. Section B.7 describes

details of the fairness constraints imposed in Section 2.6.4. Finally, Section B.8 provides detailed

insights on the mechanism of the OPL policy in the absence and presence of fairness constraints.

B.1 Lists of Notations and Abbreviations

This section provides lists of notations and abbreviations used throughout the text. In

particular, Tables 32, 33, 34, and 35 describe the notations used in mathematical formulations in

Sections 2.3, 2.4, B.3, and B.5, respectively. Furthermore, Table 36 provides a list of abbreviations

used in Chapter 2 and its appendix.
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Table 32: Notations Used in Stochastic Formulation in Section 2.3

Notation Description

i Patient type index

h Heart type index

I Number of patient classes

H Number of heart types

I Set of patient type indicies

H Set of heart type indicies

p List of patients (defined on P)

pn nth patient’s information on list p

in Class that patient n in list p belongs to

τn Arrival time of patient n in list p

zn Binary variable indicating whether patient n has declined the current offer

bhi Total cumulative offers of heart type h to patient type i

κ Decision epoch indicator

sκ State of MDP at epoch κ

aκ Action of MDP at epoch κ

e(κ) Event type (defined on E)

b(κ) Heart offer history (defined on B)

t(κ) Current time (defined on R+)

K Final decision epoch

H(s) A set indicating available heart at state s

P (s) Set of eligible patients (for transplant) at state s

ahn(s) A binary variable indicating if the available heart type h is offered to patient n on list

A(s) Action space at state s

S State space

F (sκ, aκ, ω(sκ, aκ)) State evolution mapping governing transition probabilities

h(sκ, aκ, sκ+1) Immediate reward of transition from sκ to sκ+1 when action aκ is taken

r(sκ) Final reward

Xi(t) Number of patients in class i at time t

Π Set of all admissible policies

π Allocation policy

Jπ(s) Value function of MDP with initial state s under policy π

V (s) Optimal value function of MDP with initial state s

k Index of fairness constraints

K Total number of fairness constraints

Fk Set of patient class indices under consideration in fairness constraint k

Gk Set of heart type indices under consideration in fairness constraint k

ak Lower bound imposed in fairness constraint k

A A K by IH matrix of fairness constraints coefficients

N Maximum number of patients that we keep track of in the system

N Maximum number of times a donor heart can be offered before its wasted
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Table 33: Notations Used in Fluid Approximation (P1) in Section 2.4

Notation Description

λi Arrival rate of patients in class i

µh Arrival rate of heart type h

xi(t) Number of patients in class i at time t

ρij Rate at which patients of class i become patient of class j

ρ Class change matrix with elements ρij

di Pre-transplant death rate of patients in class i

d Pre-transplant diagonal death rate matrix with elements di

qhi Heart type h offer acceptance for patients in class i

qh Diagonal offer Acceptance probability matrix with qhi as its diagonal elements

uhi (t) Rate of allocating heart type h to patients in class i at time t

INF Set of infeasible pair of patients/hearts for transplantation

Ω(t) Set of feasible controls at time t

T End of the planning horizon

βi QALYs for patients in class i waiting on the waiting list

αhi QALYs for patients of class i receiving a heart type h

ηi Future QALYs for patients of class i who are on the transplant waiting list at time T

VF (x0) Optimal value function of the fluid approximation (P1) with initial state x0

ki(t) Shadow price associated to evolution of ith constraint at time t in (5)

yhi (t) Shadow price associated to evolution of ihth auxiliary state variable at time t

wi(t) Shadow price associated to ith non-negativity constraint in (6)

γk Shadow price associated to the kth fairness constraint
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Table 34: Notations Used in Stochastic Formulation in Section B.3

Notation Description

Xi(t) Number of patients on the waiting list of class i at time t

Yi(t) Number of patients in class i in the post-transplant phase at time t

{Tn : n ≥ 0} Sequence of jump times of Markov queuing network in Section B.3

ahi (t) Probability of assigning a heart type h to a patient in class i

A Action space of queuing network in Section B.3

Q Generator matrix of the queuing network in Section B.3

q((x, y), a, (x′, y′)) Transition rate from state (x, y) to (x′, y′) when action a is taken

d′i Post-transplant death rate for patients in class i

A(x, y) Set of all admissible actions in state (x, y)

b((x, y), a) Expected drift of the Markovian queuing network in Section B.3

γi QALYS for the patients in class i in the post-transplant phase

δi Future QALYs for patients of class i who are on the post-transplant phase at time T

r(x(t), y(t)) Reward rate function

g(x(T ), y(T )) Final reward function

Jπ(x, y) Value function of queuing network in Section B.3 with initial state (x, y) under policy π

V (x, y) Optimal value function of the queuing network in Section B.3 with initial state (x, y)

VF̂ (x0, y0) Optimal value function of the fluid approximation (PU ) with initial state (x0, y0)

V
(m)

F̂
(x0, y0) Optimal value function of the descritized fluid model (PU ) with initial state (x0, y0)

Table 35: Notations Used in Alternative Objective Function Formulation in Section B.5

Notation Description

k̂i(t) Shadow prices associated to the ith state evolution constraint in optimal control problem (P2)

ŷhi (t) Shadow price associated to evolution of ihth auxiliary state variable at time t in problem (P2)

k̃i(t) Shadow prices associated to the ith state evolution constraint in optimal control problem (P3)

ỹhi (t) Shadow price associated to evolution of ihth auxiliary state variable at time t in problem (P3)

ahi Allocation rate of heart type h to patients in class i

ai Total allocation rate of hearts to patients in class i

Wi Expected waiting time of patients in class i

λ =
∑I
i=1 λi Total arrival rates of patients

µ =
∑H
h=1 µ

h Total arrival rates of hearts
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Table 36: Abbreviations Used Throughout the Text

Abbreviation Description

UNOS United Network for Organ Sharing

SRTR Scientific Registry of Transplant Recipient

HF Heart Failure

DSA Designated Service Area

OPO Organ Procurement Organization

VAD Ventricular Assist Device

OPTN Organ Procurement and Transplantation Network

UB Upper Bound

LB Lower Bound

OPL Optimal Priority List Policy (Optimal solution of problem (P1))

SZE Su and Zenios Efficiency Policy

SZQ Su and Zenios Equity Policy

BRS Broadening Regional Sharing Policy

MPD Minimization of Pre-Transplant Death Policy

MTW Minimization of Total Wastage of Hearts Policy

MWT Mean Waiting Time Policy

VWT Variance of Waiting Time Policy

STD Standard Deviation

B.2 Theorem 2.1

Theorem 2.1. A feasible triple of state and control variables (x, z, u) is an optimal solution for

(P1) if and only if there exist shadow prices k(t) and y(t) with one sided limits everywhere, a non-

decreasing I-dimensional vector function w(t), and a non-negative K- dimensional adjoint vector γ

121



such that

k̇(t) ≤ (k(t)− w(t))(d+ ρ̂− ρT )− β, ∀ t ∈ [0, T ], k(T ) = η, (15)

if xi(t) > 0 , k̇i(t) = [(k(t)− w(t))(d+ ρ̂− ρT )]i − βi, (16)

ẏ(t) = 0, ∀ t ∈ [0, T ], y(T ) = γA, (17)

γ · (Az(T )) = 0, γ ≥ 0 (18)

uh(t) ∈ argmax
v

{((
αh − k(t)

)
qh + yh(t)

)
v : v ∈ R|I|+ , e · v ≤ µh(t), vhi = 0; (i, h) ∈ INF

}
∀h ∈ H.

(19)

Proof. Formulation (P1) is an optimal control problem with state variable x(t) and control variable

u(t), which involves integral constraints. First, we transform integral constraints (7) by introducing

a new state variable z(t) =
(
zhi (t)

)
i∈I,h∈H, and by setting zhi (t) =

∫ t
0
uhi (τ)dτ with zhi (0) = 0 as

follows:

∑
i∈Fk

∑
h∈Gk

zhi (T ) ≥ ak
∑
i∈I

∑
h∈Gk

zhi (T ), ∀k = 1, . . . ,K,

yielding the equivalent constraints of the following form,

(1− ak)
∑
i∈Fk

∑
h∈Gk

zhi (T )− ak
∑

i∈I\Fk

∑
h∈Gk

zhi (T ) ≥ 0, ∀k = 1, . . . ,K, (20)

with the additional constraints

żhi (t) = uhi (t), ∀i ∈ I, h ∈ H, t ∈ [0, T ], (21)

zhi (0) = 0, ∀i ∈ I, h ∈ H, (22)

which is due to the fact that zhi (t) is non-decreasing and therefore of bounded variation and (21)

holds for almost all t ∈ [0, T ]. We assume that (21) serves as a true reformulation, and analyze this

surrogate reformulation.

Constraints in (20) are a set of linear final time constraints on the state variable z(t), which can be

written as Az(T ) ≥ 0 where A is a K by I ×H matrix whose element on kth row and ihth column,
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ak,ih, for each h ∈ Gk is defined by,

ak,ih =


1− ak, if i ∈ Fk,

−ak, if i ∈ I \ Fk.

Also, the constraints in (21) are evolution, and the constraints in (22) are the initial value constraints

of the state variable z(t). Then, the optimal control problem (P1) with integral constraints can be

written equivalently as the following linear optimal control problem with finial time constraints:



VF (x0) = max
∫ T

0

(∑H
h=1 α

hqhuh(t) + βx(t)
)
dt+ ηx(T )

subject to ,

ẋ(t) = λ(t)−
∑H
h=1 q

huh(t)− (d+ ρ̂− ρT )x(t), ∀t ∈ [0, T ]

ż(t) = u(t), ∀t ∈ [0, T ]

u(t) ∈ Ω(t) := {u(t) : e.uh(t) ≤ µh(t); uh(t) ≥ 0, ∀h;

uhi (t) = 0, ∀(i, h) ∈ INF},

x(t) ≥ 0, ∀t ∈ [0, T ]

x(0) = x0

z(0) = 0,

Az(T ) ≥ 0.

Let the functions F (·, ·, ·), f1(·, ·, ·), and f2(·, ·, ·) denote the total QALYs and system state evolution

at time t, respectively, that is,

F (x(t), u(t), t) =

H∑
h=1

αhqhuh(t) + βx(t),

f1(x(t), u(t), t) = λ(t)−
H∑
h=1

qhuh(t)− (d+ ρ̂− ρT )x(t),

f2(x(t), u(t), t) = u(t).
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Also, let the function S denote the final reward at time T , i.e., S(x(T ), T ) = ηx(T ). Define the

functions g and a as follows:

g(x(t), t) = x(t),

a(z(T ), T ) = Az(T ),

where A is a K by IH matrix of fairness constraints (assume we consider K fairness constraints).

Functions F (·, ·, ·), f1(·, ·, ·), f2(·, ·, ·), and g(·, ·) are continuously differentiable with respect to all

their arguments. In fact, they are linear. Hence, the differentiability requirements are satisfied. We

first prove that non-negativity of state constraint is of order one, in the sense that g(x(t), t) ≥ 0

does not explicitly depend on u, but its first derivative with respect to t depends on u. The order

of a state constraint is defined as the number of times that we differentiate g(·, ·) with respect to t

until control variable u appears (Hartl et al., 1995). Define g0(·, ·, ·) and g1(·, ·, ·) as the following:

g0(x(t), u(t), t) = g = g(x(t), u(t), t),

g1(x(t), u(t), t) = ġ = gx(x(t), t)f(x(t), u(t), t) + gt(x(t), t),

where the subscripts denote partial derivatives. We have gx(x(t), t) = e and gt(x(t), t) = 0. There-

fore, g1(x(t), u(t), t) = e.f1(x(t), u(t), t), and since f1 explicitly depends on u, consequently, g1 also

depends on u, showing that the state constraint g(x(t), t) ≥ 0 is of order one.

Hence, by applying Theorem 2 (Necessary conditions) in Seierstad and Sydsaeter (1986, chap. 5),

and Theorem 7.1 in Hartl et al. (1995) we can characterize the optimal policy as follows:

Let (x∗(t), z∗(t), u∗(t)) be a feasible solution solving problem (P1) with g(x, t) a C2−function

of (x, t). Then, there exist a scalar k0, vector functions k(t) = (k1(t), . . . , kI(t)) and y(t) =

(y1
1(t), . . . , y1

I (t), . . . , yH1 (t), . . . , yHI (t)) with one sided limits everywhere, a non-decreasing vector

function w(t) = (w1(t), ..., wI(t)), and a non-negative adjoint vector γ, such that,

(I). k0 = 0 or k0 = 1.

(II). (k0, k(t), y(t), w(T )− w(0), γ) 6= 0 for all t ∈ [0, T ].

(III). u∗(t) maximizes H(x∗(t), z∗(t), u, k(t), y(t), t) for u ∈ Ω(t) and for all t ∈ (0, T ),
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where

H(x∗(t), z∗(t), u, k(t), y(t), t) =

H∑
h=1

[k0α
h − k(t)].qhuh + k(t).λ(t)

+[k0β − k(t)(d+ ρ̂− ρT )].x∗(t) + y(t)u(t).

(IV). wi(t) is constant on any interval where x∗i (t) > 0, and wi(t) is continuous at all

t ∈ (0, T ) where x∗i (t) = 0 and ẋ∗i (t) is discontinuous.

(V). (a) If we define k∗(t) = k(t) + w(t), then k∗(t) is continuous, and has a continuous

derivative, k̇∗(t), at all points of continuity of u∗(t) and w(t), and we have:

k̇∗(t) = −∂L̄
∗

∂x
(
∂L̄

∂x
evaluated at (x∗(t), u∗(t), k∗(t), w(t), t)),

where L̄ = H − w(t).(gx(x, t).f(x, u, t) + gt(x, t)). Therefore, we have

k̇∗(t) = −k0β + [k(t)− w(t)](d+ ρ̂− ρT ). (23)

(b) y(t) is continuous, and has a continuous derivative, ẏ(t), at all points of continuity of u∗(t) and

we have:

ẏ(t) = −∂L̄
∗

∂z
(
∂L̄

∂z
evaluated at (z∗(t), u∗(t), y∗(t), t)),

Therefore, we have

ẏ(t) = 0, (24)

meaning that y(t) is constant for t ∈ [0, T ], i.e., y(t) = c.

(VI). The following transversality conditions hold at the final time T :

(a) k(T ) = k0

(
∂S

∂x(T )

)
= k0η.

(b) y(T ) = k0

(
∂S

∂z(T )

)
+ γ

(
∂a

∂z(T )

)
= γA where γ is the K-dimensional adjoint variable vector asso-

ciated to the fairness constraints a(z∗(T ), T ) = Az(T ) ≥ 0.

(c) γa(z∗(T ), T ) = 0, γ ≥ 0.
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Without loss of generality, we normalize w(t) by setting w(T ) = 0. This follows from Note 3.a in

Seierstad and Sydsaeter (1986, chap. 5). Now, by condition (III), u∗(t) maximizes


∑H
h=1[k0α

hqh − k(t)qh + yh(t)].uh + k(t).λ(t) + [k0β − k(t)(d+ ρ̂− ρT )].x∗(t),

subject to u ∈ Ω(t),

(PH)

where yh(t) = (yh1 (t), . . . , yhI (t)). Since the maximization is with respect to the control variable u,

by ignoring those terms in objective function of (PH) that are independent of u, we can write (PH)

equivalently as the following: u∗(t) maximizes


∑H
h=1[k0α

hqh − k(t)qh + yh(t)].uh,

subject to, u ∈ Ω(t).

(P̄H)

Optimality condition (I)-(VI) is called normal when k0 = 1 and abnormal when k0 = 0. Fontes

and Frankowska (2015) showed that under certain constraint qualifications on state constraints,

optimality condition requires k0 = 1. First, by considering the following lemma we show that

necessary conditions for (P1) cannot be satisfied with k0 = 0. Note that the problem-specific

argument in Akan et al. (2012) to prove this step is not applicable to our setting where fairness

constraints are involved.

Lemma B.1. (Fontes and Frankowska, 2015). Let (x∗(t), z∗(t), u∗(t)) be the optimal solution of

(P1). Under certain regularity conditions, if the following constraint qualification holds, then the

necessary conditions (I)-(VI) will be satisfied with k0 = 1.

CQn (Constraint Qualification for Normality) Assume that for every τ > 0 such that x∗(τ) = 0,

function g(x, t) is continuously differentiable on a neighborhood of x∗(τ), and there exist ε > 0 and

δ > 0 satisfying

inf
u∈Ω(t)

−∇g(x∗(τ), τ).f1(x∗(τ), u, t) < −δ

for a.e. t ∈ {r ∈ [τ − ε, τ ] ∩ [0, T ] : maxξ∈∂∗(−g(x∗(r),r)[ξ.f1(x∗(r), u∗(r), r)] ≥ 0},

where for a function h(·), ∂∗h(x) is the reachable Jacobian at x, and is defined as:

∂∗h(x) = lim sup
y→x

{h′(y)},
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where h′(y) denotes the Jacobian of h(·) at y.

Now, we apply Lemma B.1 to the optimal control problem (P1) to show that the necessary

optimality condition is satisfied with k0 = 1. First, note that the function g(·, ·) in the state

constraint g(x, t) ≥ 0 is continuously differentiable everywhere and we have ∇g(x∗(τ), τ) = e, where

e is the row vector of ones. Also, due to differentiability of g(·, ·) and consequently −g(·, ·), the

reachable Jacobian set of −g(·, ·) at any point (x(t), t) is a singleton consists of its Jacobian at

(x(t), t), i.e., ∂∗(−g(x∗(t), t) = {∇ − g(x∗(t), t)} = {−e}.

Now, suppose that for some τ ∈ (0, T ] we have x∗(τ) = 0 and suppose there exist ε > 0 such that

t ∈ {r ∈ [τ − ε, τ ] ∩ [0, T ] : [−e.f1(x∗(r), u∗(r), r)] ≥ 0}, meaning that t belongs to an interval right

before the time τ where the sum of components of the state evolution constraint is non-positive.

Then, for such a t we have f1(x∗(τ), u(t), t) = λ(t) −
∑H
h=1 q

huh(t). Since (uh(t) = 0,∀h ∈ H) is a

feasible control that belongs to Ω(t), we plug it into f and we have f1(x∗(τ), 0, t) = λ(t). Therefore,

inf
u∈Ω(t)

−∇g(x∗(τ), τ).f1(x∗(τ), u, t) ≤ −e.f1(x∗(τ), 0, t) ≤ −e.λ(t) = −
∑
i∈I

λi(t).

By setting δ =
∑
i∈I λi(t)−δ1 for some small δ1 > 0, we conclude that for all t ∈ {r ∈ [τ−ε, τ ]∩[0, T ] :

[−e.f1(x∗(r), u∗(r), r)] ≥ 0}, we have:

inf
u∈Ω(t)

−∇g(x∗(τ), τ).f1(x∗(τ), u, t) ≤ −e.f1(x∗(τ), 0, t) ≤ −e.λ(t) = −
∑
i∈I

λi(t) < −δ.

Therefore, the constraint qualification for normality holds for the optimal control problem (P1) and

the optimality conditions (I)-(VI) are satisfied with k0 = 1. Note that Akan et al. (2012) used a

proof of contradiction approach to show normality of the optimal control without constraints, which

is a special case of our setting. However, that approach is not applicable in our problem.

Hence, if we plug k0 = 1 in the objective function of (P̄H), we have: u∗(t) solves
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max
∑H
h=1[αhqh − k(t)qh + yh(t)].uh(t),

subject to,

e.uh(t) ≤ µh(t),∀h ∈ H,

uhi (t) = 0,∀(i, h) ∈ INF,

uh(t) ≥ 0,∀h ∈ H, .

(P̃H)

Note that problem (P̃H) is a separable linear program with respect to its decision variables uh(t),

i.e., solving (P̃H) is equivalent to solving H linear programs for h = 1, . . . ,H separately as follows:



max[αhqh − k(t)qh + yh(t)].uh(t),

subject to,

e.uh(t) ≤ µh(t),

uhi (t) = 0,∀(i, h) ∈ INF,

uh(t) ≥ 0.

This shows that the optimal solution is a priority index policy with respect to coefficient αhqh −

k(t)qh + yh(t) proving (19).

In order to prove (15) and (16), we claim that [k̇(t) + β − (k(t) − w(t))(d + ρ̂ − ρT )].x∗(t) = 0.

To see this, suppose that xi(t) 6= 0 or equivalently xi(t) > 0 for some i ∈ I and h ∈ H. Then, by

condition (IV) we conclude that wi(t) is constant, which implies that ẇi(t) = 0. Now, by condition

(V), we have: k̇∗i (t) = k̇i(t) = −βi + [(k(t)−w(t))(d+ ρ̂−ρT )]i, and this implies k̇i(t) +βi− [(k(t)−

w(t))(d + ρ̂ − ρT )]i = 0. Conversely, suppose that k̇i(t) + βi − [(k(t) − w(t)(d + ρ̂ − ρT ))]i 6= 0 or

equivalently k̇i(t) < −βi + [(k(t)− w(t))(d+ ρ̂− ρT )]i=k̇
∗
i (t). Hence, by condition (V) we see that

ẇi(t) > 0 and this implies xi(t) = 0 (since otherwise, if xi(t) > 0, by condition (IV), wi(t) has to be

constant, which contradicts the fact that ẇi(t) > 0). Therefore, we conclude the following results

k̇(t) ≤ (k(t)− w(t))(d+ ρ̂− ρT )− β, for t ∈ [0, T ], k(T ) = η,

if xi(t) > 0 , k̇i(t) = [(k(t)− w(t))(d+ ρ̂− ρT )]i − βi.
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Furthermore, (17) follows from optimality conditions (V-b) and (VI-b). Finally, (18) is immediate

by condition (VI-c).

(ii) Conversely, suppose that a feasible control ū ∈ Ω(t) and its associated state trajectory (x̄, z̄)

satisfy the necessary conditions (I)-(VI). Since f1(x, u, t) and f2(x, u, t) are linear on (x, z, u), g(x, t)

is linear on x, and Hamiltonian H(x, z, u, k, y, t) is concave on (x, z, u), by Theorem 1 in Seierstad

and Sydsaeter (1986, chap. 5) (Sufficient conditions) we conclude that (x̄, z̄, ū) is the optimal solution

of (P1), which completes the proof of Theorem 2.1.

B.3 An Upper Bound in a Markovian Setting

It is shown in several studies that the fluid approximation provides a lower bound (in

minimization case) to the optimal solution of the corresponding stochastic system. For example,

Gurvich et al. (2014) studied a matching queue, in which items of different classes arrive to the

system and wait on multiple queues to be matched with items of other classes. They approximated

the matching system by a fluid model and used it to generate lower bounds on the objective function

of the original system and characterize the asymptotic optimal solutions for both balanced and

imbalanced matching networks. Jiménez and Koole (2004) studied a time-varying queuing model

for a call center and showed that a fluid approximation generates a lower bound on the performance

of the system in several overloaded situations. Altman et al. (2001) showed that for a certain class

of queuing systems the fluid approximation provides a lower bound on the workload of the queuing

system. Bäuerle (2000, 2002) considered the class of control problems for networks with linear

dynamics. They showed that the fluid approximation of the network provides a lower bound on the

objective function of the stochastic problem. They also studied how to construct asymptotically

optimal decision rules. We generate upper bounds on the performance of the original system based

on work presented in Bäuerle (2000, 2002). However, the methods developed do not directly apply

as the expected drift of the Markov process in our formulation is a function of both state and action

variables. Therefore, we adopted the methodology to address such technicalities.

In order to assess the quality of solutions produced by the fluid approximation, we provide an

upper bound in a Markovian setting and the absence of fairness constraints. Bäuerle (2000, 2002)

provided an upper bound on the optimal value function for a class of stochastic networks. Specifically,
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Bäuerle (2002) developed an upper bound for a class of Markovian stochastic networks in finite and

infinite horizon, where the expected drift of the process is linear on control and the reward rate

is linear on state variables. Also, Bäuerle (2000) studied an infinite-horizon Markovian stochastic

network where the drift of the process is linear on control and the cost rate is lower-semicontinuous

in state and convex in control and derived an upper bound. The Markovian stochastic network

of the heart transplantation queue considered in this study differs from the ones considered in

Bäuerle (2000, 2002) as the expected drift in our network is a function of both state and action.

However, we adopt and apply the methods discussed in Bäuerle (2002) to derive the upper bound.

Nonetheless, the application of Markovian queuing networks to measure suboptimality of allocation

rules in transplantation queuing networks is novel.

This section formulates the heart transplantation system studied in Section 2.3 as a Markovian

stochastic queuing network. To that end, we assume that the interarrival times of all stochastic

processes involved are independent, stationary, and exponentially distributed. In fact, the statistical

tests on the UNOS heart transplantation data confirms the validity of these assumptions; see EC.4.2.

for validation results. However, the probability of death on the waiting list depends on many other

factors in the Cox proportional hazard model and our analysis shows that the dependency to waiting-

time is “weak,” i.e., the probability of death for a patient waiting 9 months (average waiting time

in heart transplantation queue is 7 months) is only increased by 2%, on average, compared to no

waiting if everything else is fixed. Furthermore, recall from the stochastic formulation in Section 3

that we keep track of a total of N patients. This assumption is not restrictive as one may assume a

large N .

For i ∈ I, define Xi(t) as the number of type i patients on the transplant waiting list, Yi(t) as

the number of type i patients on the post-transplant phase at time t, and let the state process of

the system be {(X(t), Y (t)) : t ≥ 0} where X(t) = (X1(t), . . . , XI(t)) and Y (t) = (Y1(t), . . . , YI(t)).

Hence, there are 2I number of queues including patients on both pre- and post-transplant lists and

the state space of the model is S = {(x, y) ∈ N2I
0 : (x, y) · e ≤ N} where N0 denotes the set of non-

negative integers, and e is a 2I dimensional vector of ones. The state process {(X(t), Y (t)) : t ≥ 0}

is a continuous time Markov process and note that in this formulation we keep track of patients in

the post-transplant phase such that the reward rates become a linear function of the state. The
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controller can take action continuously over time, and without loss of generality one may restrict

the control (action) of the system to discrete sequence of points in time where the state process of

the system has a jump. Therefore, let the sequence {Tn : n ≥ 0} with T0 := 0 be the sequence of

jump times of the Markov process {(X(t), Y (t)) : t ≥ 0}, which corresponds to the decision epochs

of the model. Let the control variable ahi (t) be the probability of assigning an available heart type

h to a patient in class i, and a(t) = (ahi (t) : i ∈ I, h ∈ H). The action space can be written as

A := {(ahi : i ∈ I, h ∈ H) :
∑
i

∑
h a

h
i = 1, 0 ≤ ahi ≤ 1 ∀i ∈ I, h ∈ H; ahi (t) = 0, ∀(i, h) ∈ INF},

which is a compact and convex set. Let Q = (q((x, y), a, (x′, y′))) be the generator of the stochastic

process {(X(t), Y (t)) : t ≥ 0}, where q((x, y), a, (x′, y′)) is the transition rate from state (x, y) to

state (x′, y′) given that (x, y) · e 6= N when action a is taken, given by

q((x, y), a, (x′, y′)) =



λi x′ = x+ ei, y
′ = y,

ρijxi x′ = x− ei + ej , y
′ = y,

dixi x′ = x− ei, y′ = y,∑
h µ

hahi (1− (1− phi )N ) x′ = x− ei, y′ = y + ei,

d′iyi x′ = x, y′ = y − ei,

where d′i denotes the death rate for patients in class i after transplantation, d′ is a diagonal matrix

representing post-transplant death rates with d′i on its diagonal, ei is the I-dimensional unit vector

whose ith element is 1, and e is a 2I dimensional vector of ones. In the case where (x, y) · e = N ,

the transition rate from state (x, y) to (x′, y′) is similar to the case where (x, y) · e 6= N , except

q((x, y), a, (x + ei, y)) = 0. Note that the other transition rates are equal to zero and that q(·) is

uniformly bounded as both state variable (x, y) and action a are bounded.

Define A(x, y) := {a ∈ A : xi = 0 =⇒
∑
h a

h
i = 0} as the set of all admissible actions in state

(x, y) and note that A(x, y) 6= ∅ for all (x, y) ∈ S, meaning that there is at least one admissi-

ble action in every state. For all (x, y), (x′, y′) ∈ S and a ∈ A(x, y) let b : S × A → R2I with

b((x, y), a) =
∑

(x′,y′)∈S((x′, y′) − (x, y))q((x, y), a, (x′, y′)) be the expected drift of the network,

which can be written as
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b((x, y), a) =



(
λ−

∑H
h=1 q

hµhah − (d+ ρ̂− ρT )x,
∑H
h=1 q

hµhah − d′y
)

(x, y) · e < N,

(
−
∑H
h=1 q

hµhah − (d+ ρ̂− ρT )x,
∑H
h=1 q

hµhah − d′y
)

(x, y) · e = N.

The reward rate function r : S → R+ with r(x(t), y(t)) = βx(t) + γy(t) is linear on state vari-

able which accounts for the pre- and post-transplant QALYs, where γ = (γ1, . . . , γI) is the QALYs

coefficient vector for the patients in the post-transplant phase. Similarly, the final reward function

g : S → R+ at the end of the planning horizon T is given by g(x(T ), y(T )) = ηx(T ) + δy(T ) where

δ = (δ1, . . . , δI) is the future QALYs coefficient vector for the patients who are still alive in the

post-transplant phase at the end of the planning horizon. For an initial state (x, y) ∈ S and a fixed

decision rule π, let the expected total QALYs be

Jπ(x, y) = Eπ
{∫ T

0

r(x(τ), y(τ))dτ + g(x(T ), y(T ))|(x(0), y(0)) = (x, y)

}
.

The decision maker solves for

V (x, y) = sup
π∈Π

{
Jπ(x, y)

}
,

where Π is the set of all admissible policies.

A fluid approximation to the stochastic network is given by



VF̂ (x0, y0) = max
∫ T

0
r(x(t), y(t))dt+ g(x(T ), y(T ))

subject to

(ẋ(t), ẏ(t)) = b((x(t), y(t)), a(t)),

(x(0), y(0)) = (x0, y0),

x(t) ≥ 0, y(t) ≥ 0,

N − e2I · (x, y) ≥ 0,

a(t) ∈ A,

(PU )
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The following theorem, shows that the value function of problem (PU ) provides an upper bound to

the optimal value function of the stochastic Markovian network, V (x, y).

Theorem B.1. For all initial states (x, y) ∈ S, V (x, y) ≤ VF̂ (x, y).

In order to solve the optimal control problem (PU ), the planning horizon is discretized. Let

V
(m)

F̂
(x, y) be the optimal value function of the discretized version of the optimal control problem

(PU ) where m denotes the number of discretization steps. Because the optimal control problem

is linear, its discretized version is an LP which can be solved efficiently. Also, since problem (PU )

satisfies conditions in a corollary for Theorem 3 in Budak et al. (1969), as the number of discretization

steps increases, the optimal value of the discretized version of the optimal control problem converges

to VF̂ , i.e., V
(m)

F̂
(x, y)→ VF̂ (x, y) as m→∞, for all x.

Remark B.1. Although in the original system in Section 2.3 some probability distributions are not

memoryless based on statistical tests on real data, we “heuristically” use the bound presented in this

section, i.e., V
(m)

F̂
(·), to assess the quality of feasible allocation policies. Furthermore, we show in

Section B.3.2 that the optimal solution of problem (PU ) is also a priority index policy depending on

shadow prices associated to x and y evolution constraints. In Section B.3.2, we test the quality of

solutions produced by such priority rules.

B.3.1 Proof of Theorem B.1

Theorem B.1. For all initial states (x, y) ∈ S, V (x, y) ≤ VF̂ (x, y).

Proof. Proof. Suppose that π ∈ Π is an arbitrary decision rule for the Markovian stochastic queuing

network. As stated in the main text of Chapter 2, the state process {(X(t), Y (t)) : t ≥ 0} is a

Markov process whose generator is Q = (q((x, y), π(x, y), (x′, y′))). Using the Dynkin’s formula for

this Markov process, we obtain

M(t) = (X(t), Y (t))− (x, y)−
∫ t

0

b((X(s), Y (s)), π(X(s), Y (s)))ds, (25)

where M(t) is a martingale with the initial condition M(0) = 0 and b(·, ·) is the expected drift of

the network (Athreya and Kurtz, 1973, Display 5). Note that in transforming the Markov process

via Dynkin’s formula we used the fact that the expected drift is uniformly bounded (condition (1)

in Athreya and Kurtz (1973)) and its derivative exists (condition (2) in Athreya and Kurtz (1973)).
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These conditions hold because the expected drift is a linear function of state and action, where both

of them are bounded (defined on bounded state and action sets). First, note that:

(a) For our stochastic queuing network, the expected drift

b((x, y), a) =



(
λ−

∑H
h=1 q

hµhah − (d+ ρ̂− ρT )x,
∑H
h=1 q

hµhah − d′y
)

(x, y) · e < N,

(
−
∑H
h=1 q

hµhah − (d+ ρ̂− ρT )x,
∑H
h=1 q

hµhah − d′y
)

(x, y) · e = N,

is bounded as both state and action variables belong to bounded spaces, which yields the following:

Eπ
{∫ t

0

b
((
X(s), Y (s)

)
, π
(
X(s), Y (s)

))
ds
}

=

∫ t

0

Eπ
{
b
((
X(s), Y (s)

)
, π
(
X(s), Y (s)

))}
ds.

(b) The expected drift is linear on its arguments. Therefore, we have:

Eπ
{
b
((
X(s), Y (s)

)
, π
(
X(s), Y (s)

))}
= b
(
Eπ
{(
X(s), Y (s)

)}
,Eπ

{
π
(
X(s), Y (s)

)})
.

Then, we take the expectation of (25) considering (a) and (b) and noting by the optional sampling

theorem that the expectation of the martingale M(t) is equal to zero (the expectation of M(0)),

which yields:

0 = Eπ
{(
X(t), Y (t)

)}
− (x, y)

−
∫ t

0

(
λ(s)−

H∑
h=1

qhµhEπ
{
πh
(
X(s), Y (s)

)}
− (d+ ρ̂− ρT )Eπ{X(s)},

H∑
h=1

qhµhEπ
{
πh
(
X(s), Y (s)

)}
− d′Eπ{Y (s)}

)
ds,
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which yields the following for the case where (X(t), Y (t)) · e < N ,

Eπ
{(
X(t), Y (t)

)}
= (x, y)

+

∫ t

0

(
λ(s)−

H∑
h=1

qhµhEπ
{
πh
(
X(s), Y (s)

)}
− (d+ ρ̂− ρT )Eπ{X(s)},

H∑
h=1

qhµhEπ
{
πh
(
X(s), Y (s)

)}
− d′Eπ{Y (s)}

)
ds, (26)

and, for the case where (X(t), Y (t)) · e = N , we have

Eπ
{(
X(t), Y (t)

)}
= (x, y)

+

∫ t

0

(
−

H∑
h=1

qhµhEπ
{
πh
(
X(s), Y (s)

)}
− (d+ ρ̂− ρT )Eπ{X(s)},

H∑
h=1

qhµhEπ
{
πh
(
X(s), Y (s)

)}
− d′Eπ{Y (s)}

)
ds (27)

Define
(
x̂(t), ŷ(t)

)
:= Eπ

{(
X(t), Y (t)

)}
, and â(t) := Eπ

{
π
(
X(t), Y (t)

)}
. We have

(
X(t), Y (t)

)
≥ 0,

(X(t), Y (t)) · e ≤ N , and π
(
X(t), Y (t)

)
∈ A, almost surely. Hence, we have

(
x̂(t), ŷ(t)

)
≥ 0 and(

x̂(t), ŷ(t)
)
· e ≤ N , and â(t) ∈ A as the action space A is convex. So, by rewriting (26) and (27) we

get

(
x̂(t), ŷ(t)

)
= (x, y) +

∫ t

0

b
(
(x̂(s), ŷ(s)), â(s)

)
ds.

This can be written by plugging the expected drift function as follows



(x, y) +
∫ t

0

(
λ(s)−

∑H
h=1 q

hµhâh(s)− (d+ ρ̂− ρT )x̂(s),
∑H
h=1 q

hµhâh(s)− d′ŷ(s)
)
ds, (x̂, ŷ) · e < N,

(x, y) +
∫ t

0

(
−
∑H
h=1 q

hµhâh(s)− (d+ ρ̂− ρT )x̂(s),
∑H
h=1 q

hµhâh(s)− d′ŷ(s)
)
ds, (x̂, ŷ) · e = N.
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This is equivalent to (x̂0, ŷ0) = (x, y) with

(
˙̂x(t), ˙̂y(t)

)
= b
(
(x̂(t), ŷ(t)), â(t)

)

=



(λ(t)−
∑H
h=1 q

hµhâh(t)− (d+ ρ̂− ρT )x̂(t),
∑H
h=1 q

hµhâh(t)− d′ŷ(t)), (x̂, ŷ) · e < N,

(−
∑H
h=1 q

hµhâh(t)− (d+ ρ̂− ρT )x̂(t),
∑H
h=1 q

hµhâh(t)− d′ŷ(t)), (x̂, ŷ) · e = N.

Therefore, the pair
(

(x̂(t), ŷ(t)), â(t)
)

is feasible for the fluid model (PU ) for every decision rule π.

Note that the expected total QALYs for the stochastic queuing network for an arbitrary policy π is

given by

Jπ(x, y) =Eπ
{∫ T

0

[
βX(t) + γY (t)

]
dt+ ηX(T ) + δY (T )

∣∣∣(X(0), Y (0)
)

= (x, y)
}

=

∫ T
0

[
βEπ

{
X(t) |

(
X(0), Y (0)

)
= (x, y)

}
+ γEπ

{
Y (t) |

(
X(0), Y (0)

)
= (x, y)

}]
dt

+ ηEπ{X(T )|
(
X(0), Y (0)

)
= (x, y)}+ δEπ{Y (T )|

(
X(0), Y (0)

)
= (x, y)}

=

∫ T
0

[
βx̂(t) + γŷ(t)

]
dt+ ηx̂(T ) + δŷ(T )

=

∫ T
0

r(x̂(t), ŷ(t))dt+ g(x̂(T ), ŷ(T )).

This implies that for every decision rule π ∈ Π, and initial state (x, y) ∈ S, because the triple of

state-action
(
(x̂, ŷ), â

)
is feasible for the fluid problem (PU ), we have

Jπ(x, y) =

∫ T
0

r(x̂(t), ŷ(t))dt+ g(x̂(T ), ŷ(T )) ≤ VF̂ (x, y),

meaning that the value function of the stochastic queuing network for every decision rule π ∈ Π,

Jπ(x, y), is bounded above by the optimal value function of the fluid model (PU ), VF̂ (x, y). Taking

supremum over all feasible decision rules yields

sup
π
Jπ(x, y) ≤ VF̂ (x, y) =⇒ V (x, y) ≤ VF̂ (x, y),

which shows that the optimal value function of the fluid model (PU ) provides an upper bound to
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the optimal value function of the stochastic queuing network.

B.3.2 Policy Derivation for Problem (PU )

Fluid approximation (PU ) of the Markovian stochastic queuing network of the heart trans-

plantation allocation problem introduced in Section B.3 is a linear optimal control problem with

state variable (x, y) and action a as shown below:



VF̂ (x0, y0) = max
∫ T

0
r(x(t), y(t))dt+ g(x(T ), y(T ))

subject to

(ẋ(t), ẏ(t)) = b((x(t), y(t)), a(t)),

(x(0), y(0)) = (x0, y0),

x(t) ≥ 0, y(t) ≥ 0,

N − e2I · (x, y) ≥ 0,

a(t) ∈ A,

(PU )

where r(x(t), y(t)) = βx(t) + γy(t) is the cost rate function, g(x(T ), y(T )) = ηx(T ) + δy(T ) is

the final cost function, b((x(t), y(t)), a(t)) is the expected drift, and e2I is a 2I-dimensional vector

of ones. The necessary and sufficient optimality conditions for the linear optimal control problem

provides the following LP for each heart type h at each time t, whose solution provide the optimal

control 

max
(
k2(t)− k1(t)

)
qhuh(t),

subject to,

e.uh(t) ≤ µh(t),

uhi (t) = 0,∀(i, h) ∈ INF,

uh(t) ≥ 0,

(28)

where k1(t) and k2(t) are the shadow prices associated to ẋ(t) and ẏ(t) constraints, respectively.

Similar arguments as in proof of Theorem 2.1 provides the following condition that can be used to
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Table 37: Each Objective Function Component for OPLS Policy

Objective Function (Life-Days ×106)

Policy Pre-TX Post-TX Final Total

OPLS 7.43 160.21 0.024 167.66

Table 38: Mean and Standard Deviation of Waiting Time for OPLS Policy

Waiting Time (Days)

Policy Mean STD

OPLS 96 72

calculate these shadow prices

k̇1(t) = −β + (d+ ρ̂− ρT )(k1(t)− w1(t)) + w̄3(t), (29)

k̇2(t) = −γ + d′(k2(t)− w2(t)) + w̄3(t), (30)

with final condition k1(T ) = η and k2(T ) = δ. In addition, vectors w1(t) and w2(t) and scalar

w3(t) are the shadow prices associated to constraints x(t) ≥ 0, y(t) ≥ 0, and N − e2I · (x, y) ≥ 0,

respectively. Note that w̄3(t) is a I-dimensional vector whose elements are all w3(t).

As can be seen from the derived LP in (28), given the shadow price vectors k1(t) and k2(t), the

optimal solution of problem (PU ) at each time t is a priority index policy with priority coefficient(
(k2
i (t)−k1

i (t)
)
qhi , which prioritizes patients with higher coefficients. This provides a patient priority

list that can be used to simulate the optimal solution of the optimal control problem (PU ). We denote

this policy by OPLS. Tables 37 and 38 report the results of simulating the OPLS policy in terms of

life years and mean and standard deviation of waiting time. Results in the tables indicate that the

OPLS policy performs very similarly to the OPL policy in terms of these measures.

In addition, this section presents the results of solving the discretized fluid problem (PU ), which

yields an upper bound on the value function of the stochastic formulation in Section 2.3 in the absence

of fairness constraints, and the results of simulating the OPL policy that yields a lower bound. In

particular, Table 39 assesses the upper and lower bounds on the total LYs of the patient population

for each region in the U.S., and reports the optimality gap calculated by UB(r)−LB(r)
UB(r) × 100%, where
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Table 39: Optimality Gap in a Markovian Setting

Region R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Total

Optimality Gap (%) 7.7 7.0 3.2 2.8 4.5 1.4 4.3 6.5 2.2 2.8 3.9 4.3

UB(r) and LB(r) stand for the upper and lower bound in region r, respectively. The optimality

gap ranges from 1.4% to 7.7% across regions and it is 4.3% in the country, which suggests that the

proposed OPL policy is near optimal.

B.4 Simulation and Assumption Validation

This section provides details about the simulation model, the allocation policies studied and

simulated in Chapter 2, as well as the results of statistical tests performed for validation purposes.

A simulation model of the stochastic heart transplantation system on a daily basis, calibrated and

validated by data from UNOS/SRTR, is used for numerical studies (Hasankhani and Khademi, 2017).

This simulation model is different from the TSAM provided by SRTR. In particular, TSAM makes

the following assumptions: (1) arrivals of patients and donors are input to the model with a data

file, (2) the initial waiting list is input to the model with a data file, (3) an entire history of waiting

list health status changes must be input to the model for each patient. The simulation model relaxes

those assumptions by creating models for arrivals of patients and hearts, as well as models for change

of health status in the waiting list. It consists of six main modules: (1) patient arrival module, (2)

heart arrival module, (3) patient health status change module, (4) pre-transplant survival module,

(5) allocation module, and (6) post-transplant survival module. Figure 17 in Section B.4 illustrates

the flow of the simulation model. In addition, Table 40 in Section B.4 provides a mapping of heart

transplantation system elements from practical aspects to the simulation and mathematical models.

The patient arrival module generates patient arrivals to the waiting list and assigns various clinical

and demographic attributes according to conditional distributions. The patient arrival is modeled

as a non-stationary Poisson process with the arrival rate depending on year. Similar to the patient

arrival module, heart arrival module generates a newly donated heart and assigns its attributes that

will be used in the allocation process. In the simulation model, the daily health status progression

of patients on the waiting list is modeled as a Markov chain and data from UNOS/SRTR is used
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to estimate its transition probability matrix using maximum likelihood estimator. By using a Cox

survival model, at each day of the simulation, the pre-transplant survival module generates the

probability of death for patients on the waiting list. The post-transplant survival module uses

another Cox model to generate death probabilities for patients on the post-transplant phase. Note

that the simulation model considers all the characteristics of patients and donated hearts reported in

UNOS/SRTR data sets such as ethnicity, gender, number of transplants before listing, and disease.

The allocation module is responsible for matching the available hearts with patients. In particular,

once a heart is procured, this module seeks to match the available heart with a patient on the waiting

list by using certain priority rules, which is called the allocation policy. The UNOS allocation policy

is used as a baseline policy for the simulation model for validation purposes.

The simulation model is validated by using the UNOS allocation policy in the allocation module

and comparing the outputs for several measures such as yearly patient arrivals, yearly heart arrivals,

waiting list size at the end of each year, yearly transplants performed, yearly deaths on the waiting

list, and 1- and 5-year post-transplant survivals with those reported by UNOS/SRTR. Also, the

Markov chain model used in health status change module is validated by comparing the percentage

of patients in each health status in our simulation model with the historical data reported by

UNOS. The statistical tests for comparing the outcomes of the simulation model and real data

and associated p-values confirm the validity of the simulation model. For details regarding model

creation, calibration, and validation see Hasankhani and Khademi (2017). The simulation model is

used to compare the performance of the several allocation policies under different measures, which

are discussed in Sections 2.6 and B.5. The modules of the simulation model are validated and the

results are reported in Hasankhani and Khademi (2017). We provide the results of the validation of

the assumptions made throughout the Chapter 2. The health status change module is validated and

the results are reported in Table 48. The pre-transplant survival module is responsible for generating

patient deaths while waiting on transplantation waiting list, which makes use of a Cox proportional

hazard model. Furthermore, patients delisting due to reasons other than death is also considered

in the simulation model. The heart allocation module, is a set of user defined rules which finds a

patient match for an available donor heart. Finally, patients receiving a donor heart move to the

post-transplant phase, and the post-transplant survival module is responsible for generating survival

of transplanted patients. Another Cox model is used in the post-transplant survival module to
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determine survival times of different types of patients after transplantation. Figure 17 represents the

overview of the simulation model, as well as the interaction between different modules. Furthermore,

Table 40 illustrates a mapping from the practical aspects of the heart transplantation to simulation

and mathematical models. UNOS policy was used as a baseline policy in the simulation model to

validate different modules of the simulation model, as well as the whole model. The validation results

of all modules and the corresponding statistical tests with their p-values are reported in Hasankhani

and Khademi (2017) and we do not duplicate them in this work and refer the interested reader

to that study. However, we report the results of the statistical tests for the components that are

necessary for the assumptions made in Section B.3 where we present an upper bound in a Markovian

setting.

In order to simulate the OPL policy, we create a patient priority list for each donor heart type in

each day of simulation according to the descending order of coefficient
(
αhi − ki(t)

)
qhi + yhi (t) in the

presence, and
(
αhi −ki(t)

)
qhi in the absence of the fairness constraints. Upon arrival of a donor heart,

the simulation model preserves the same geographical (regional sharing) and blood type matching

rules but instead of prioritizing patients by their health status, prioritizes based on the priority list

corresponding to the available heart type and simulation day. Furthermore, similar to UNOS policy,

first-come first-served waiting time priority rule is used within each class of eligible patients. The

benchmark policies and the ones derived by considering alternative objectives, explained in Section

B.5, are also simulated in a similar fashion.

B.4.1 UNOS Policies

UNOS Policy (2006-2018): UNOS policy prioritizes patients according to their health status

(1A>1B>2) while it considers certain blood type matching, and regional sharing rules. Tables 41

and 42 indicate the primary and secondary blood type matching rules, respectively. Also, Table 43

provides the definition of the priority Zones in the UNOS allocation. Furthermore, patients within a

same priority class are prioritized based on their waiting time. This policy offers an available heart

to patients on the waiting list according to Table 44, which summarizes the UNOS allocation policy

for the hearts from adult deceased donors (at least 18 years old). Note that in the simulation model,

due to the limited cold ischemia time of heart (4-6 hours), we assume that a donor heart is offered

to at most N = 4 patients and is wasted if no match is found. Next, we describe the new 7-tiered
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Table 40: Practical Aspects of Allocation in Simulation and Mathematical Modeling

Practical Aspect Simulation Model Mathematical Modeling

Patient Arrival
Patient Arrival Module:

Poisson arrivals
λi(t):

Patient type i arrival rate

Heart Arrival
Heart Arrival Module:

Poisson Arrivals
µh(t):

Heart type h arrival rate

Patients Death
Pre-transplant Survival Module:

A Cox proportional hazard model

di:
Patient type i pre-transplant

death rate

Patients Delisting
Patients Delisting Module:
Delisting based on fitted
historical distributions

Delisting rate is included
in the patients’ death rate.

Patients Class
Change

Patients Class Change Module:
A Markov chain based on historical

frequency of class changes

ρij :
Rate at which patients

of class i move to j.
ρ̂ii =

∑
j ρij

Heart Acceptance
(Wastage)

Allocation Module:
Due to limited cold ischemic time
for heart, a donor heart is offered

to at most four patients and if no match
found the heart will be wasted.

qh:
Heart type h acceptance probability.

A diagonal matrix.
qhi : Diagonal element i,

denoting heart type h acceptance
probability for patient class i

Proximity
Constraints

Allocation Module:
UNOS proximity zones

(DSA, Zones A-E)
Not explicitly modeled.

Blood Type
Compatibility

Allocation Module:
UNOS primary and secondary

ABO matching.

INF: Set of infeasible pairs of
patients and hearts.

Including primary and
secondary ABO matching.
uhi (t) = 0, ∀(i, h) ∈ INF

Avoiding
Transplant of

Inactive Patients

Allocation Module:
Does not consider inactive patients

in the allocation procedure.

INF: Set of infeasible pairs of
patients and hearts.

Including inactive patients
transplant avoid.

uhi (t) = 0, ∀(i, h) ∈ INF
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Figure 17: Heart Allocation Simulation Model
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policy and its implementation.

Table 41: Primary Blood Type Matching Requirements

Hearts from donors with: Are allocated to the candidates with:

Blood Type O Blood type O or blood type B

Blood Type A Blood type A or blood type AB

Blood Type B Blood type B or blood type AB

Blood Type AB Blood type AB

Table 42: Secondary Blood Type Matching Requirements

Hearts from donors with: Are allocated to the candidates with:

Blood Type O Blood type A or blood type AB

Blood Type A Not applicable

Blood Type B Not applicable

Blood Type AB Not applicable

Table 43: Priority Zone Definition

Zone Includes transplant hospitals:

A Within 500 nautical miles from the donor hospital but outside of the donor’s hospital DSA.

B Within 1000 nautical miles from the donor hospital but outside of the zone A and donor’s hospital DSA.

C Within 1500 nautical miles from the donor hospital but outside of the zone B and donor’s hospital DSA.

D Within 2500 nautical miles from the donor hospital but outside of the zone C and donor’s hospital DSA.

E More than 2500 nautical miles from the donor hospital.

UNOS 7-Tiered Policy: The newly proposed 7-tiered policy, which is in effect since January

2018, categorizes patients into seven health status groups, and broadens the regional sharing of the

hearts. The new definition of each health status provided by UNOS is used in the simulation model

to categorize the patients on the waiting list. Note that since the simulation model is keeping track of

all patient characteristics that UNOS data reports, this categorization is straightforward. Table 45

summarizes a mapping from previous 3-tiered to newly proposed 7-tiered health status classification

by UNOS to provide a big picture of the new classification. The UNOS 7-tiered policy considered as
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Table 44: Allocation of Hearts from Adult Deceased Donors in the UNOS Policy

Classification Candidates that are within the: And are:
1 OPO’s DSA Adult or pediatric status 1A and primary blood type match with the donor
2 OPO’s DSA Adult or pediatric status 1A and secondary blood type match with the donor
3 OPO’s DSA Adult or pediatric status 1B and primary blood type match with the donor
4 OPO’s DSA Adult or pediatric status 1B and secondary blood type match with the donor
5 Zone A Adult or pediatric status 1A and primary blood type match with the donor
6 Zone A Adult or pediatric status 1A and secondary blood type match with the donor
7 Zone A Adult or pediatric status 1B and primary blood type match with the donor
8 Zone A Adult or pediatric status 1B and secondary blood type match with the donor
9 OPO’s DSA Adult or pediatric status 2 and primary blood type match with the donor
10 OPO’s DSA Adult or pediatric status 2 and secondary blood type match with the donor
11 Zone B Adult or pediatric status 1A and primary blood type match with the donor
12 Zone B Adult or pediatric status 1A and secondary blood type match with the donor
13 Zone B Adult or pediatric status 1B and primary blood type match with the donor
14 Zone B Adult or pediatric status 1B and secondary blood type match with the donor
15 Zone A Adult or pediatric status 2 and primary blood type match with the donor
16 Zone A Adult or pediatric status 2 and secondary blood type match with the donor
17 Zone B Adult or pediatric status 2 and primary blood type match with the donor
18 Zone B Adult or pediatric status 2 and secondary blood type match with the donor
19 Zone C Adult or pediatric status 1A and primary blood type match with the donor
20 Zone C Adult or pediatric status 1A and secondary blood type match with the donor
21 Zone C Adult or pediatric status 1B and primary blood type match with the donor
22 Zone C Adult or pediatric status 1B and secondary blood type match with the donor
23 Zone C Adult or pediatric status 2 and primary blood type match with the donor
24 Zone C Adult or pediatric status 2 and secondary blood type match with the donor
25 Zone D Adult or pediatric status 1A and primary blood type match with the donor
26 Zone D Adult or pediatric status 1A and secondary blood type match with the donor
27 Zone D Adult or pediatric status 1B and primary blood type match with the donor
28 Zone D Adult or pediatric status 1B and secondary blood type match with the donor
29 Zone D Adult or pediatric status 2 and primary blood type match with the donor
30 Zone D Adult or pediatric status 2 and secondary blood type match with the donor
31 Zone E Adult or pediatric status 1A and primary blood type match with the donor
32 Zone E Adult or pediatric status 1A and secondary blood type match with the donor
33 Zone E Adult or pediatric status 1B and primary blood type match with the donor
34 Zone E Adult or pediatric status 1B and secondary blood type match with the donor
35 Zone E Adult or pediatric status 2 and primary blood type match with the donor
36 Zone E Adult or pediatric status 2 and secondary blood type match with the donor
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Table 45: Mapping from 3-tiered to 7-tiered Health Status Classification

Three-tiered status Seven-tiered status
1A 1

2
3

1B 4
2 5

6
Inactive 7

a benchmark policy in this study is similar in implementation to the UNOS policy, which makes use

of similar blood type matching rules and Zone definitions as in Tables 41, 42, and 43. Furthermore,

patients within a same priority class are prioritized according to their waiting time in the“first-in

first-served” fashion. However, a donor heart under the 7-tiered policy is offered to a wider area

around the DSA of the available heart’s OPO compared to the UNOS policy as shown in Table

46, which provides the details of the proposed 7-tiered allocation policy, which is implemented in

simulation.

B.4.2 Validation of Assumptions in Section B.3

Assumptions considered to obtain the upper bound in Section B.3 state that the interarrival

and interdeparture times in the heart transplantation waiting system are exponentially distributed

and stationary. Note that Hasankhani and Khademi (2017) report the results for non-stationary

Poisson processes and we refer the reader to that study for the validation results. Such assump-

tions help us treat the problem in Section B.3 as a Markovian queuing network, and are validated

by conducting statistical tests on patient and heart arrivals, as well as death and delisting rates.

Furthermore, patient class change due to health improvement/deterioration is modeled by a Markov

chain which is also validated by using the real data. In particular, the chi-squared goodness of fit

test with a significant level of α = 0.05 is used to test the validity of the null hypotheses (whether the

patient/heart arrivals and patient death/delisting follow Poisson distributions). Table 47 reports the

p-values associated to these statistical tests, where a p-value larger than the considered significance

level (α = 0.05) suggests that the null hypotheses cannot be rejected. In addition, the Markov chain

that is developed to model the health status change of patients on the waiting list is validated by

comparing the proportion of patients in each health status produced by the simulation model with

the historical data reported by UNOS/SRTR. In particular, we used the Kolmogorov-Smirnov test
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Table 46: Allocation of Hearts from Adult Deceased Donors in the UNOS 7-Tiered Policy

Classification Candidates that are within the: And are:
1 OPO’s DSA+Zone A Adult Status 1 or pediatric status 1A and primary blood type match with the donor
2 OPO’s DSA+Zone A Adult Status 1 or pediatric status 1A and secondary blood type match with the donor
3 Zone B Adult Status 1 or pediatric status 1A and primary blood type match with the donor
4 Zone B Adult Status 1 or pediatric status 1A and secondary blood type match with the donor
5 OPO’s DSA+Zone A Adult Status 2 and primary blood type match with the donor
6 OPO’s DSA+Zone A Adult Status 2 and secondary blood type match with the donor
7 Zone B Adult Status 2 and primary blood type match with the donor
8 Zone B Adult Status 2 and secondary blood type match with the donor
9 OPO’s DSA Adult Status 3 or pediatric status 1B and primary blood type match with the donor
10 OPO’s DSA Adult Status 3 or pediatric status 1B and secondary blood type match with the donor
11 OPO’s DSA Adult Status 4 and primary blood type match with the donor
12 OPO’s DSA Adult Status 4 and secondary blood type match with the donor
13 Zone A Adult Status 3 or pediatric status 1B and primary blood type match with the donor
14 Zone A Adult Status 3 or pediatric status 1B and secondary blood type match with the donor
15 OPO’s DSA Adult Status 5 and primary blood type match with the donor
16 OPO’s DSA Adult Status 5 and secondary blood type match with the donor
17 Zone B Adult Status 3 or pediatric status 1B and primary blood type match with the donor
18 Zone B Adult Status 3 or pediatric status 1B and secondary blood type match with the donor
19 OPO’s DSA Adult Status 6 or pediatric status 2 and primary blood type match with the donor
20 OPO’s DSA Adult Status 6 or pediatric status 2 and secondary blood type match with the donor
21 Zone C Adult Status 1 or pediatric status 1A and primary blood type match with the donor
22 Zone C Adult Status 1 or pediatric status 1A and secondary blood type match with the donor
23 Zone C Adult Status 2 and primary blood type match with the donor
24 Zone C Adult Status 2 and secondary blood type match with the donor
25 Zone C Adult Status 3 or pediatric status 1B and primary blood type match with the donor
26 Zone C Adult Status 3 or pediatric status 1B and secondary blood type match with the donor
27 Zone A Adult Status 4 and primary blood type match with the donor
28 Zone A Adult Status 4 and secondary blood type match with the donor
29 Zone A Adult Status 5 and primary blood type match with the donor
30 Zone A Adult Status 5 and secondary blood type match with the donor
31 Zone A Adult Status 6 or pediatric status 2 and primary blood type match with the donor
32 Zone A Adult Status 6 or pediatric status 2 and secondary blood type match with the donor
33 Zone D Adult Status 1 or pediatric status 1A and primary blood type match with the donor
34 Zone D Adult Status 1 or pediatric status 1A and secondary blood type match with the donor
35 Zone D Adult Status 2 and primary blood type match with the donor
36 Zone D Adult Status 2 and secondary blood type match with the donor
37 Zone D Adult Status 3 or pediatric status 1B and primary blood type match with the donor
38 Zone D Adult Status 3 or pediatric status 1B and secondary blood type match with the donor
39 Zone B Adult Status 4 and primary blood type match with the donor
40 Zone B Adult Status 4 and secondary blood type match with the donor
41 Zone B Adult Status 5 and primary blood type match with the donor
42 Zone B Adult Status 5 and secondary blood type match with the donor
43 Zone B Adult Status 6 or pediatric status 2 and primary blood type match with the donor
44 Zone B Adult Status 6 or pediatric status 2 and secondary blood type match with the donor
45 Zone E Adult Status 1 or pediatric status 1A and primary blood type match with the donor
46 Zone E Adult Status 1 or pediatric status 1A and secondary blood type match with the donor
47 Zone E Adult Status 2 and primary blood type match with the donor
48 Zone E Adult Status 2 and secondary blood type match with the donor
49 Zone E Adult Status 3 or pediatric status 1B and primary blood type match with the donor
50 Zone E Adult Status 3 or pediatric status 1B and secondary blood type match with the donor
51 Zone C Adult Status 4 and primary blood type match with the donor
52 Zone C Adult Status 4 and secondary blood type match with the donor
53 Zone C Adult Status 5 and primary blood type match with the donor
54 Zone C Adult Status 5 and secondary blood type match with the donor
55 Zone C Adult Status 6 or pediatric status 2 and primary blood type match with the donor
56 Zone C Adult Status 6 or pediatric status 2 and secondary blood type match with the donor
57 Zone D Adult Status 4 and primary blood type match with the donor
58 Zone D Adult Status 4 and secondary blood type match with the donor
59 Zone D Adult Status 5 and primary blood type match with the donor
60 Zone D Adult Status 5 and secondary blood type match with the donor
61 Zone D Adult Status 6 or pediatric status 2 and primary blood type match with the donor
62 Zone D Adult Status 6 or pediatric status 2 and secondary blood type match with the donor
63 Zone E Adult Status 4 and primary blood type match with the donor
64 Zone E Adult Status 4 and secondary blood type match with the donor
65 Zone E Adult Status 5 and primary blood type match with the donor
66 Zone E Adult Status 5 and secondary blood type match with the donor
67 Zone E Adult Status 6 or pediatric status 2 and primary blood type match with the donor
68 Zone E Adult Status 6 or pediatric status 2 and secondary blood type match with the donor
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Table 47: P-values for the Chi-Squared Goodness of Fit Test

Process P-Value
Patient Arrival 0.058

Heart Arrival 0.051

Patient Death and Delisting 0.051

Table 48: P-values for the Kolmogorov-Smirnov Test

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014

P-value 0.7714 0.2286 1 0.7718 0.7700 1 1 1 1

to check whether the health status distributions produced by the model are statistically identical to

the real health status distributions at the end of each calendar year during the period 2006-2014. P-

values for such statistical tests are reported in Table 48, which suggest that at a α = 0.05 significance

level the Markovian assumptions cannot be rejected.

B.5 Benchmark Policies and Alternative Objective Funnctions

This section provides details of the benchmark policies introduced in Section 2.6.1, and an-

alyzes the policy derivation for heart allocation problem with alternative objective functions studied

in Section 2.5 of Chapter 2.

B.5.1 Benchmark Policies

UNOS Policy (2006-2018). The UNOS allocation policy prioritizes patients on the waiting list in

three different levels, i.e., geographical (proximity to the donor hospital), health status, and waiting

time level. In particular, once a heart becomes available in an OPO, the policy first categorizes

patients on the waiting list based on their distance from the heart procurement OPO into six zones,

each including all transplant centers within some distance of the donor hospital. The policy first

offers the procured heart to the patients in the DSA of the same OPO as the heart is (Zone DSA);

if no one is matched, the heart will be offered in hierarchy to patients in Zones A, B, C, D, and

E. At each zone it prioritizes patients by their health status (1A > 1B > 2) and then primary and

secondary blood type match with the donor heart. Within each class, patients are ranked by their

waiting time (see B.4.1 for more details).
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UNOS 7-Tiered Policy. UNOS has revised the previous 3-tiered health status policy and pro-

posed a new policy which categorizes patients into seven groups based on their health status and

considers a broader regional sharing of donor hearts. Specifically, there is a correspondence between

the health statuses of the 3-tiered and 7-tiered grouping systems, i.e., roughly speaking, status 1A

is divided into three new statuses 1-3; status 1B is new status 4, status 2 is divided into two new

statuses 5-6; and inactive status is new status 7. The mechanism of the 7-tiered policy is similar

to that of UNOS policy, i.e., there is still three levels of prioritization, geographical, health status,

and waiting time. Prioritization based on health status and the regional sharing of donor hearts are

changed accordingly but the blood type matching eligibility is preserved under this policy. Eligible

patients in the same class are prioritized according to their waiting time (see B.4.1).

Su and Zenios Efficiency (SZE) Policy. Su and Zenios (2006) studied the problem of efficient

allocation of donor kidneys, and developed a mathematical programming model to find the optimal

kidney allocation in the case of full and hidden information. The problem setup is similar to ours,

where there are classes of patients and donor kidneys arriving to the system, and the patients

may depart due to transplant or death. However, they do not consider patients’ class change, i.e.,

health improvement/deterioration. Utility for a patient is defined by a combination of pre- and

post-transplant quality-adjusted life expectancy and the objective is to maximize the utilitarian

efficiency, i.e., the sum of utilities of all patient classes, subject to organ availability and truth-

telling constraints. The focus is on post-transplant heterogeneity as the pre-transplant death rates

are assumed to be constant across all patient classes. They showed that the optimal policy is an

assortative partition policy, whose solution provides a priority list of patients, which depend on the

type of available organ. We adopt and apply their method to the heart transplantation case study

and simulate it in the case of full patient information. Parameters and data required in this model

are estimated from the UNOS/SRTR real data.

Su and Zenios Equity (SZQ) Policy. Su and Zenios (2006) also studied an objective of equity

among patient classes by maximizing the minimum utility over patient classes. They showed that

the optimal solution of the equity problem is also an assortative partition policy, which provides a

patient priority for allocation. We adopt their techniques into heart transplantation and simulate

the SZQ policy in the case of full patient information, similar to the SZE policy.
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Broadened Regional Sharing (BRS) Policy. The geographic disparity is an important prob-

lem in organ allocation and sharing organs can address it; see Ata et al. (2016) and references

therein. Hasankhani and Khademi (2017) proposed a policy similar to UNOS that broadens the

regional sharing of the donor hearts. Specifically, when a donor heart becomes available, it is first

offered to the patients in the DSA of the available heart, and if no one is matched, it is offered to

the patients in Zone 1 (union of Zones A, B, and C of UNOS allocation rule), Zone 2 (Zone D in

UNOS allocation rule), and Zone 3 (Zone E in UNOS allocation policy) in hierarchy. Note that in

each prioritization zone, the same health status, blood type match, and waiting time prioritization

rules are considered as UNOS. The rationale for combining the UNOS priority Zones A, B, and C

is that the 4- to 6-hour cold ischemic time for heart is equivalent to 1500 airline miles similar to the

definition of Zone 1.

UNOS Health Reversed (UNOS-HR) Policy. As mentioned earlier in this section, in terms of

health status of the patients, UNOS allocation policy prioritizes sicker patients over healthier ones,

i.e., prioritization order in terms of health status of patients is as follows: 1A>1B>2. We consider

a simple benchmark policy which is similar to the UNOS policy in terms of geographic and waiting

time priorities but reverses the health priority order in which donor hearts are allocated to the

patients. In particular, this policy prioritizes healthier patients in the following order: 2>1B>1A.

Heart Allocation Scoring System (HAS) Policy. Designing a heart allocation system is a

top priority in heart transplantation and UNOS Heart Subcommittee plans to design such a scoring

system similar to kidney and lung. There are two main challenges for such a design: (1) identifying

appropriate score components, and (2) estimating the coefficients of each score component in the

formula. There is not any available scoring system for heart and, thus, no scoring components

are available. Therefore, we design many score components, estimate their coefficients (which is

discussed later), and measure the resulting score-based allocation policy via our validated simulation

model. Then, we choose the scoring system with the highest performance as the heart allocation

scoring system. Note that considering a combination of some common sense score components

and optimally estimating their coefficients does not necessarily produce good policies as many of

candidates that were tested produced significantly poor policies. Therefore, introducing such a

combination of score components is novel and a contribution by itself. In order to address the

150



second challenge, we use the approximate dynamic programming approach proposed by Bertsimas

et al. (2013) to estimate the coefficients of a given set of score components based on real data

from heart transplantation. Recall that score components are functions of certain patient/heart

characteristics with specific weights corresponding to each patient/heart pair. For a pair of patient

i and heart h, we finalize four pre-selected score components including: f1(i, h) =
(
1-DPI(h)

)
×

POST(i), f2(i, h) =DPI(h)×WT(i), f3(i, h) = |AGE(i)-AGE(h)|, and f4(i, h) =PRE(i), where

DPI(h) denotes the donor profile index of the donor heart taking values in interval [0, 1] (higher

quality hearts have lower DPI), POST(i) denotes the expected post-transplant survival of a patient

type i averaged over heart types, WT(i) denotes the waiting time of a patient type i, Age(i) and

Age(h) denote the age of patient type i and age of donor h, and PRE(i) denotes the expected pre-

transplant survival of a patient type i. Then, for a pair (i, h) of patient and heart type, the heart

allocation score (HAS) function can be written as

HAS(i, h) =w0 + w1 ·
(
1−DPI(h)

)
· POST(i) + w2 ·DPI(h) ·WT(i)+

w3 · |AGE(i)−AGE(h)|+ w4 · PRE(i),

with wj for j = 1, 2, 3, 4 being the weight associated to the jth score component fj .

After selecting the score components, the score weights are calculated by fitting a regression model on

the heart transplantation historical data such that the efficiency of the allocation policy is maximized

in the absence and presence of fairness constraints. For the HAS policy, optimal values of score

components are estimated as follows: w1 = 1.466, w2 = 1.079, w3 = 0.006, w4 = 0.007 with a

regression intercept of w0 = 806. These optimal values are used to simulate the policies. Once the

weights are estimated, for a given pair of patient-heart, the HAS is calculated and the patients will

be offered with donor hearts based on their score. We calculate the HAS for patient-heart pairs in

two cases and simulate the allocation policies in each case, i.e., absence of fairness constraints (HAS

policy) and presence of 50+ age fairness constraints (HAS-F policy). This method is flexible to

incorporate other fairness constraints. Results of simulating HAS is reported in Table 2 in Chapter

2. Here, we report the results of simulating the HAS-F policy. For the HAS-F policy, the estimated

values of the weights are as follow: w1 = 1.69, w2 = 0.031, w3 = 0.01, w4 = 0.005 with a regression

intercept of w0 = 750.
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Table 49: Each Objective Function Component for HAS-F Policy

Objective Function (Life-Days ×106)

Policy Pre-TX Post-TX Final Total

HAS-F 7.11 161.13 0.024 168.26

Table 50: Mean and Standard Deviation of Waiting Time for HAS-F Policy

Waiting Time (Days)

Policy Mean STD

HAS-F 109 92

B.5.2 Alternative Objective Functions

Section 2.5 analyzes the heart transplantation system with alternative objective functions

including (1) minimizing pre-transplant mortality, (2) minimizing total wastage of donor organs, (3)

minimizing the mean of waiting times for patient classes, and (4) minimizing the variance of waiting

times across patient classes and develops optimal allocation policies under these objectives. This

section provides details of deriving optimal policies for (1) and (2). Analysis of (3) is presented here

and (4) is analyzed in Zenios (1999).

Minimization of Pre-Transplant Death: We reformulate the optimal control problem (P1) by

replacing its objective function with a function indicating the total mortality on the waiting list

during the planning horizon where fairness constraints are present. Note that the analysis in this

section is different from that presented in Akan et al. (2012) because we consider fairness constraints

in the set of constraints. Therefore, the objective function can be written as

min

∫ T
0

e.d x(t)dt,
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where d is the pre-transplant death rate matrix. Then, an optimal control problem of the following

form has to be solved in order to find the optimal allocation rule:


min

∫ T
0
e.d x(t)dt

subject to (2.4)− (2.7).

(P2)

Problem (P2) is an optimal control problem with integral constraints on the control variables, which

can be transformed to a linear optimal control problem with boundary state constraints. An anal-

ogous arguments as in the proof of Theorem 2.1 and writing necessary and sufficient optimality

conditions for the linear optimal control problem yields the following LP for each heart type h,

whose solution provides the optimal control of the problem (the optimal allocation rule when a

heart of type h is available) at time t



min
(
k̂(t)qh − ŷh(t)

)
uh(t)

subject to

e.uh(t) ≤ µh(t),

uhi (t) = 0,∀(i, h) ∈ INF,

uh(t) ≥ 0,

where k̂(t) is the shadow price associated to the state evolution constraints in (2.5), and can be

calculated by solving the following linear system of ODEs (in an overloaded system),

˙̂
k(t) = d+ k̂(t)(d+ ρ̂− ρT ),

with final condition k̂(T ) = 0. Furthermore, ŷh(t) is the shadow price vector associated to the

evolution of auxiliary state variables (introduced to transform the integral constraints into linear

ones). The necessary and sufficient optimality condition suggests that ŷhi (t) is constant in [0, T ] and

this constant value is the ihth element of the vector γA, and γk is the shadow price associated to the

kth fairness constraint (fairness constraints after transforming integral constraints to linear ones),

i.e., ŷhi (t) =
(
γA
)
ih

=
∑K
k=1 γkak,ih.

As can be seen from the derived LP, given the shadow price vector k̂(t), ŷh(t), the optimal solution
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of problem (P2) at each time t is a priority index policy with priority coefficient qhi k̂i(t) − ŷhi (t),

which prioritizes patients with lower coefficients. This provides a patient priority list that can be

used to simulate the policy that minimizes pre-transplant mortality. In particular, once we have the

priority list, the policy can be simulated in the same fashion as the OPL policy.

Minimization of Heart Wastage: Another objective function considered in this section is to

minimize total wastage of donor organs which is equivalent to maximizing total number of transplants

during the planning horizon where the fairness constraints are incorporated. The objective function

can be written as

max

H∑
h=1

∫ T
0

e · qhuh(t)dt,

and the optimal control problem associated to this objective is as follows


max

∑H
h=1

∫ T
0
e · qhuh(t)dt

subject to (2.4)− (2.7).

(P3)

Note that formulation (P3) is different from that presented in Akan et al. (2012) for the minimization

of heart wastage due to the presence of fairness constraints, thus a distinct analysis. Similar to

the proof of Theorem 2.1, transforming the optimal control problem (P3) with integral constraints

(2.7) to a linear problem with boundary state constraints, and following the necessary and sufficient

optimality conditions provide the following LP whose solution can be used to find the optimal policy,

which is also a priority index type. Hence, when a heart type h is available at time t, the LP



max
((
e− k̃(t)

)
· qh + ỹh(t)

)
uh

subject to

e.uh(t) ≤ µh(t),

uhi (t) = 0,∀(i, h) ∈ INF,

uh(t) ≥ 0,
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is solved and the optimal solution of the problem (P3) is found, where k̃(t) is the shadow price vector

associated to the state evolution constraints in (2.5), and can be calculated by solving the following

linear system of ODEs (in an overloaded system),

˙̃
k(t) = k̃(t)(d+ ρ̂− ρT ),

with final condition k̃(T ) = 0, whose solution implies k̃(t) = 0 for t ∈ [0, T ]. In addition, ỹh(t) is

the shadow price vector associated to the evolution of auxiliary state variables introduced to apply

the integral fairness constraints transformation. Similarly, by letting γ be the shadow price vector

associated to the transformed fairness constraints, we have ỹhi (t) =
(
γA
)
ih

=
∑K
k=1 γkak,ih.

Hence, the optimal solution of problem (P3) at each time t is a priority index policy with priority

coefficient qhi + ỹhi (t), which prioritizes patients with higher coefficients. In fact, when a heart type

h is available, this policy prioritizes patients with higher acceptance probability of the donor heart

while it considers the impact of the fairness constraints in prioritizing patients. The priority list is

used to simulate the policy that minimizes total wastage of donor hearts, in a similar fashion as the

OPL policy is simulated.

Minimization of Mean and STD of Waiting Times: In the rest of this section, we provide

details of the MWT and VWT policies. As described in the main text of Chapter 2, in Zenios (1999)

the expected waiting time for patient class i is derived to be Wi = 1
di

(
1 −

∑
h µ

hahi
λi

)
, where di is

the pre-transplant death rate for patient class i, λi is the arrival rate of patient class i, and ahi is

the percentage of heart type h allocated to patient class i. By using this expression and letting

ai =
∑H
h=1 µ

hahi denote the total allocation rates to a patient in class i, we formulate the following

problem that minimizes the average expected waiting time among patient groups in long run



minai

[
1
I

∑I
i=1

1
di

(
1− ai

λi

)]
subject to∑I
i=1 ai = µ,

ai ≥ 0,∀i = 1, . . . , I.
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The problem is a Knapsack problem whose solution is a priority index policy with respect to the

coefficient − 1
diλi

that prioritizes the patients with lower coefficient. Specifically, when a heart is

available for transplantation, the policy offers the available heart to the patient classes with lower

− 1
diλi

or equivalently lower diλi, which is denoted by MWT.

UNOS considers disparities in the expected time to transplant for different patient groups as a

measure of equity in organ allocation: reducing the variability in expected waiting times improves the

equity (Organ Procurement and Transplantation Network, 2016b). In fact, during the last decades,

UNOS revisited allocation policies to improve equity. For example, after the implementation of

the kidney allocation system the variability in the expected time to transplant among patients has

been significantly reduced (Organ Procurement and Transplantation Network, 2016b). Reducing the

variability in the expected waiting time of different customer types is also proposed in the queuing

literature as a measure of equity. For example, Avi-Itzhak and Levy (2004) used an axiomatic

approach for a G/D/1 queuing system and showed that the variance of the waiting time can be

used as a yardstick for comparing the equity of proposed designs and extended it to more general

queuing systems. As mentioned earlier, Zenios (1999) studied the organ transplantation waiting list

as a queuing model with reneging, and analyzed the system analytically to find allocation policies

considering equity by equalizing the expected waiting time of patient classes. In particular, by letting

λ =
∑I
i=1 λi, µ =

∑H
h=1 µ

h, ρ = λ
µ , and d̄ =

∑I
i=1

λidi
λ and assuming that (1) the demand exceeds

the supply (i.e., λ > µ), (2) the organ arrival rate is much larger than the individual patient death

rates (i.e., µ >> di, i = 1, . . . , I), and (3) maxi di <
ρd̄
ρ−1 , a policy that equalizes the expected waiting

time over patient classes (VWT Policy) randomizes patient groups proportional to λi
ρ

(
(1−ρ)di+ρd̄

d̄

)
.

Note that assumptions (1), (2), and (3) made in Zenios (1999) hold for heart transplantation set of

parameters.

B.6 Fluid Model with Geographical Considerations

The fluid model (P1) does not consider the location of patients and donor hearts as one

of the factors defining patient and heart types. Therefore, the OPL policy is found for each trans-

plantation region separately. However, regional sharing of donor hearts may improve efficiency and

fairness by providing more transplant opportunities. In this section, we reformulate the fluid model

(P1) to incorporate locations of patients and hearts into our formulation. The problem setup, vari-
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ables, and parameters are the same as the fluid model (P1) in Section 2.4, except that in order

to apply geographical considerations in allocation rules we add OPO as one of the factors defining

patient/heart types to represent their location. Thus, the model variables are modified as follows.

Let xio(t) be the number of patients in class i listed on the waiting list of OPO o, and uho
′

io (t) be the

allocation rate of heart type h procured in OPO o′ to the patients in class i listed on the waiting

list of OPO o. Note that there are 59 OPOs in the U.S. and we let O = {1, . . . , 59} denote the set

of all OPOs. All the parameters α, β, η, λ, q, d, ρ̂, ρT , and µ are modified accordingly to depend on

OPOs. Objective function which is the total QALYs of the patient population and the state evolu-

tion constraints, state variable non-negativity constraints, and fairness constraints are also modified

to include the patient/heart OPOs. The proximity constraints are included in the set of admissible

actions Ω(t) in the following way: Based on the limited cold ischemic time for heart (4 hours),

the air distance corresponding to this time period, and the distances between the 59 OPOs in the

U.S. heart transplantation system, we choose 500 miles threshold as allowable distance for regional

sharing of donor hearts, i.e., a heart procured in an specific OPO can be shared among patients of

the OPOs that are included in a circle with radius 500 miles around the procured OPO. Therefore,

the following set of constraints are added to the set of admissible actions Ω(t):

∑
i∈I

∑
h∈H

uho
′

io = 0, for o /∈ CIR(o′), o′ ∈ O,

where for each o′ ∈ O, CIR(o′) is the set of all OPOs within the 500 miles (air distance) from the

OPO o′ and are found by using the UNOS regional data and Google maps. Then, the reformulated

fluid model can be written as follows:
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VF (x0) = max

∫ T
0

( ∑
h∈H

∑
o′∈O

αho
′
qho
′
uho

′
(t) +

∑
o∈O

βoxo(t)
)
dt+

∑
o∈O

ηoxo(T ) (Po)

subject to

ẋo(t) = λo(t)−
∑
h∈H

∑
o′∈O

qho
′
uho

′
(t)− (do + ρ̂o − ρTo )xo(t), xo(0) = x0

o, o ∈ O

xo(t) ≥ 0, t ≥ 0, o ∈ O∫ T
0

( ∑
i∈Fk

∑
h∈Gk

∑
o′∈O

uho
′

io (t)

)
dt ≥ ak

∫ T
0

(∑
i∈I

∑
h∈Gk

∑
o′∈O

uho
′

io (t)

)
dt, k = 1, . . . ,K, and o ∈ O,

u(t) ∈ Ω(t) :=
{
u(t) : e.uho

′
(t) ≤ µho

′
(t); uho

′
(t) ≥ 0, ∀h, o′ ∈ O;∑

o∈O

∑
o′∈O

uho
′

io = 0, ∀(i, h) ∈ INF;

∑
i∈I

∑
h∈H

uho
′

io = 0, ∀o /∈ CIR(o′), o′ ∈ O
}
.

where xo(t) =
(
x1,o(t), . . . , xI,o(t)

)
is the state variable vector for patients in OPO o, x0

o =(
x0

1,o, . . . , x
0
I,o

)
is the initial population vector in OPO o, and λo(t) =

(
λ1,o(t), . . . , λI,o(t)

)
is the

arrival rate vector of patients in OPO o. Furthermore, uho
′
(t) =

(
uho

′

io (t) : i ∈ I, o ∈ O
)

is the

allocation rate vector of a heart available in OPO o′ with type h and µho
′
(t) is the heart type h

arrival rate in OPO o′.

Note that in the reformulated model, we model the fairness considerations in such a way that they

hold for patients in every OPO, e.g., during the planning horizon [0, T ]: at least ak percent of total

donor hearts of specific type belonging to set Gk must be allocated to the patients belonging to the

set Fk in each OPO o ∈ O. Similar arguments as in proof of Theorem 2.1 characterizes the structure

of the optimal solution of problem (Po) and shows that the solution is a priority index policy with

respect to coefficients depending on the shadow prices of the fairness constraints. We call this policy

OPL-RS and simulate this policy along with other benchmarks via the validated simulation model.

The results are reported in Table 2.2 of Chapter 2 where the simulation performance of different

allocation policies are reported.

Also, note that for computational purposes we assume pre-transplant death rate (d) and life quality

coefficients (β) and (η) be the same across all OPOs. Furthermore, we used the same acceptance

probability matrix (qh) and class change matrices (ρ̂ and ρ) for different OPOs. The reason is that
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these quantities are independent of the proximity considerations. However, for the post-transplant

life expectancy coefficients (αh,o
′
), we adjusted the life expectancies as when a donor heart in an

OPO allocated to a patient in another OPO with higher distance, its quality is affected and most

likely is going to be deteriorated compared to the case where it is allocated to a patient in the same

OPO (this reduction in life expectancy is reflected in the organ failure Cox model presented for heart

in the SRTR risk adjustment models): see Colvin et al. (2017). Nonetheless, the formulation (Po)

is flexible enough to incorporate any dependency of parameters to OPO location upon availability

of data.

B.7 Fairness Analysis of OPL

Section 2.6.4 in Chapter 2 studies the OPL policy in the presence of several age, health,

and combination of age-health constraints. Table 51 below shows the details of the constraints that

imposed in each grouping, where for each one, K denotes the number of fairness constraints imposed,

and for each k = 1, · · · ,K, Gk denotes the set of heart types under consideration in constraint k

(i.e., H is the set of all heart types), Fk the set of patient classes under consideration in fairness

constraint k (e.g., {I ∈ I : HS(i) = 1A} is the set of patient classes whose health status is 1A and

{I ∈ I : age(i) ≥ 35} is the set of patient classes older than 35 years), and ak the lower bound

associated to constraint k. Recall that Theorem 2.1 provides the optimal solution of problem (P1)

in the presence of each set of constraints, which is a priority index policy. We analyze OPL in the

presence of fairness constraints via simulation and compare their improvement over UNOS with the

OPL policy in the absence of fairness constraints. Numerical results are reported in Section 2.6.4.

Age Fairness Constraints. This set of constraints consists of one or more constraints ensuring

the percentage of total hearts allocated to patients in a specific range of age group during the

planning horizon is at least that under the UNOS policy. Such constraints can be seen as fairness

constraints assuring that the OPL policy is as fair as the UNOS policy in allocating donated hearts

in terms of age. We consider five age groupings including (i) [35+], (ii) [50+], (iii) [65+], (iv) [50-65]

and [65+], and (v) [35-50] and [50-65] and [65+]. For example, for [50+], UNOS allocates 65% of

the total donated hearts to the patients older than 50 years (Figure 18b). Hence, a constraint of
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Table 51: Details for Fairness Constraints

Fairness
constraints

Heart Types
Involved (Gk)

Patient Classes
Involved (Fk)

Lower Bound
(ak)

Number of
Constraints (K)

Age [35+] All heart types (H) {I ∈ I : age(i) ≥ 35} 0.88 K=1

Age [50+] All heart types (H) {I ∈ I : age(i) ≥ 50} 0.65 K=1

Age [65+] All heart types (H) {I ∈ I : age(i) ≥ 65} 0.13 K= 1

Health [1A] All heart types (H) {I ∈ I : HS(i) = 1A} 0.49 K=1

Health [1B] All heart types (H) {I ∈ I : HS(i) = 1B} 0.47 K= 1

Health [2] All heart types (H) {I ∈ I : HS(i) = 2} 0.04 K= 1

Age [50-65] All heart types (H) {I ∈ I : 50 ≤ age(i) ≤ 65} 0.52
K=2

Age [65+] All heart types (H) {I ∈ I : age(i) ≥ 65} 0.13

Age [35-50] All heart types (H) {I ∈ I : 35 ≤ age(i) ≤ 50} 0.23
K=3

Age [50-65] All heart types (H) {I ∈ I : 50 ≤ age(i) ≤ 65} 0.52

Age [65+] All heart types (H) {I ∈ I : age(i) ≥ 65} 0.13

Health [1A] All heart types (H) {I ∈ I : HS(i) = 1A} 0.49
K=2

Health [1B] All heart types (H) {I ∈ I : HS(i) = 1B} 0.47

Health [1A] All heart types (H) {I ∈ I : HS(i) = 1A} 0.49
K=2

Age [65+] All heart types (H) {I ∈ I : age(i) ≥ 65} 0.13

Health [1A] All heart types (H) {I ∈ I : HS(i) = 1A} 0.49
K=3

Health [1B] All heart types (H) {I ∈ I : HS(i) = 1B} 0.47

Age [65+] All heart types (H) {I ∈ I : age(i) ≥ 65} 0.13
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type

∫ T
0

( ∑
{i:age(i)≥50}

∑
h

uhi (t)

)
dt ≥ 0.65

∫ T
0

(∑
i

∑
h

uhi (t)

)
dt

is considered as a fairness constraint in problem (P1), where {i : age(i) ≥ 50} denotes the set of

patient indices whose age are greater than 50 years, ensuring an allocation of at least 65% of donor

hearts to such patients. Similar constraints are added and analyzed for each group separately.

Health Fairness Constraints. Fairness constraints on health are also imposed in the optimal

control problem (P1), ensuring that the OPL policy allocates at least the same percentage of hearts

as the UNOS policy does to patients with certain health statuses. In particular, we consider four

health status groupings, i.e., (i) [1A], (ii) [1B], (iii) [2], and (iv) [1A] and [1B]. We analyze the

optimal solution of problem (P1) under each group of fairness constraints separately. For example,

by Figure 18b, UNOS allocates 49% of total hearts to 1A patients, thus the following health fairness

constraint

∫ T
0

( ∑
{i:Health(i)=1A}

∑
h

uhi (t)

)
dt ≥ 0.49

∫ T
0

(∑
i

∑
h

uhi (t)

)
dt

is imposed, where {i : health(i) = 1A} denotes the set of patient indices with health status 1A.

Similar constraints are considered for other health groupings.

Age-Health Fairness Constraints. We also analyze two combinations of age-health fairness

groups, i.e., (i) [65+] and [1A], and (ii) [50-65] and [65+] and [1A]. For example, the latter involves

three fairness constraints in the optimal control problem (P1), i.e., two constraints on age and one

on health. By Figure 18b, UNOS allocates 52% of total hearts to patients in age group [50-65],

13% to patients in [65+] age group, and 49% to patients with health status 1A. Hence, the imposed
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fairness constraints are as follows:

∫ T
0

( ∑
{i:50≤age(i)≤65}

∑
h

uhi (t)

)
dt ≥ 0.52

∫ T
0

(∑
i

∑
h

uhi (t)

)
dt

∫ T
0

( ∑
{i:age(i)≥65}

∑
h

uhi (t)

)
dt ≥ 0.13

∫ T
0

(∑
i

∑
h

uhi (t)

)
dt

∫ T
0

( ∑
{i:Health(i)=1A}

∑
h

uhi (t)

)
dt ≥ 0.49

∫ T
0

(∑
i

∑
h

uhi (t)

)
dt,

B.8 Further Analysis of OPL Policy

This section provides the priority coefficients of the OPL policy (in the absence and presence

of different fairness constraints) in color coded tables for the allocation of each heart type h, which

helps us understand how the policy performs in terms of prioritization based on age and health

status of patients.

In the Absence of Fairness Constraints. Table 2.3 in Section 2.6.3 illustrates the OPL policy

priority coefficients which are averaged over heart type, time, and patients characteristics except for

age and health status. This section provides similar tables for each of sixteen heart types for OPL

policy (heart type 16 is excluded due to insufficiency of data). In particular, the numbers in Tables

53-67 are for the case where fairness constraints are absent and numbers are average of quantities(
αhi − ki(t)

)
qhi over time, and over the other characteristics of patients (except for age and health

status). Table 52 shows the mapping between heart types considered in this study and the age and

blood type of the donor heart. Note that for infeasible pairs of patients and hearts in allocation we

put NA as coefficient in the tables.

In the Presence of Fairness Constraints. In order to understand the patient prioritization in

the presence of fairness constraints, we conduct an analysis similar to that in Section 2.6.3 of Chapter

2 and present color-coded tables for the OPL policy patient prioritization coefficients in the presence

of each age, health, and combination of age-health fairness constraints. In particular, Tables 68-78

provide the average over time, heart type, and other patient characteristics of the priority coefficient

of OPL policy in the presence of several fairness constraints. Comparing the priority coefficients

in Table 2.3 with those in Tables 68-78 reveals that: (1) the [35+] fairness grouping containing a

single constraint on the patients older than 35 years shifts the allocation priority from the youngest

162



Table 52: Mapping between Heart Types and Age and Blood type of Donor Hearts

Heart Type Age Group Blood Type
1 [18-35] O
2 [18-35] A
3 [18-35] B
4 [18-35] AB
5 [35-50] O
6 [35-50] A
7 [35-50] B
8 [35-50] AB
9 [50-65] O
10 [50-65] A
11 [50-65] B
12 [50-65] AB
13 [65+] O
14 [65+] A
15 [65+] B
16 [65+] AB

Table 53: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 1)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9451.75 6830.38 3858.69 2452.14
1B 10330.62 7316.52 4137.73 2060.95
2 9987.37 5842.15 5514.90 6403.52

Table 54: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 2)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9159.13 6528.95 3713.90 2141.06
1B 9910.72 7352.75 4151.35 2851.39
2 9809.52 8770.95 4414.51 2409.12

Table 55: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 3)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9942.47 6562.14 3473.14 1909.45
1B 9828.78 6776.78 4193.68 2065.05
2 10103.98 8866.96 3325.18 1720.39

Table 56: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 4)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 8669.89 6201.93 4486.51 1577.37
1B 9223.56 6924.85 4255.33 3020.79
2 9633.63 6948.99 4111.03 2292.62

Table 57: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 5)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9449.36 6811.87 2988.58 863.33
1B 8750.33 6700.207 3577.13 1374.24
2 10469.72 8157.46 5040.80 5411.05
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Table 58: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 6)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9400.38 6145.19 3470.40 1197.09
1B 10126.54 7087.75 3391.25 1704.89
2 10285.47 6432.37 5896.87 2205.885

Table 59: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 7)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 8325.94 6162.03 3310.36 1353.77
1B 9883.22 6340.02 3442.12 977.46
2 11074.06 5850.47 3456.26 1324.29

Table 60: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 8)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 6850.35 6640.65 2536.18 1087.57
1B 9693.64 6958.98 3657.99 2879.19
2 9920.64 5986.23 2937.81 3469.26

Table 61: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 9)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9120.64 5880.84 2900.51 1735.72
1B 10213.11 6040.29 4225.98 1882.94
2 10633.56 7468.03 2472.72 2149.85

Table 62: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 10)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9111.76 6318.25 2834.75 585.62
1B 9814.92 7602.79 4059.18 2003.57
2 11400.31 5122.83 2670.71 2354.74

Table 63: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 11)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9354.25 5967.19 3006.06 733.24
1B 8681.42 5745.42 3530.73 1408.26
2 10433.26 5484.21 2767.69 2683.11

Table 64: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 12)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 13036.77 4317.99 2148.74 NA
1B 10786.75 5671.73 3680.07 2042.61
2 9709.12 8953.25 2129.88 1890.90

Table 65: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 13)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9788.129 6092.61 3153.92 2387.92
1B NA 7484.04 6548.36 1437.16
2 NA 1790.06 5520.97 NA
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Table 66: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 14)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A NA NA 4013.75 NA
1B 8313.78 6157.08 5237.22 NA
2 NA NA 5369.02 12604.04

Table 67: Color-Coded Graph for OPL Policy without Fairness Constraints (Heart type 15)

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A NA NA NA NA
1B 10001.36 NA 4900.78 1084.407
2 NA NA NA NA

patient group (age group [18-35]) to the ones older than 35 years, (2) the [50+] fairness grouping

containing a single constraint on the patients older than 50 years shifts the allocation priority from

the younger patient groups (age groups [18-35] and [35-50]) to the ones older than 50 years, (3) the

[65+] fairness grouping containing a single constraint on the patients older than 65 years shifts the

allocation priority from the patients younger than 65 years to the ones in age group [65+] (note

that although the priority order in the color-coded tables does not change in this case, the priority

coefficients for patients older than 65 years increases while it decreases for the younger ones), (4)

the [50-65] and [65+] fairness grouping containing two constraints one on the patients in age group

[50-65] and one on the patients older than 65 years, shifts the allocation priority towards these

patients (as can be seen from Tables 69 and 71, the priority order in this grouping is similar to

that in [50+] but the former has higher priority coefficients for patients older than 65 years because

it considers two separate constraints on patients in age groups [50-65] and [65+] while the [50+]

grouping combines the two older age groups which emphasizes on prioritizing [50-65] patients more

than the [65+] ones since they have a better post-transplant outcomes), (5) the [35-50] and [50-65]

and [65+] fairness grouping containing three constraints one on the patients in age group [35-50], one

on the patients in age group [50-65], and one on the patients older than 65 years, shifts the allocation

priority towards these patients compared to the absence of fairness constraints, i.e., Table 2.3. As

can be seen from Tables 68 and 72, the priority order in this grouping is similar to that in [35+].

Table 68: Color-Coded Graph for OPL Policy with Age Fairness Constraints ( [35+])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 4311.10 6877.52 3966.54 1836.84
1B 4635.35 7413.94 4887.55 2602.07
2 5240.97 7278.59 4661.74 3970.79
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Table 69: Color-Coded Graph for OPL Policy with Age Fairness Constraints ([50+])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 6876.80 3707.52 4614.56 2484.87
1B 7201.05 4243.94 5535.57 3250.09
2 7806.67 4108.59 5309.76 4618.82

Table 70: Color-Coded Graph for OPL Policy with Age Fairness Constraints ([65+])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9139.80 5970.51 3059.53 2612.32
1B 9464.05 6506.93 3980.54 3377.55
2 10069.66 6371.58 3754.73 4746.27

Furthermore, comparing the coefficients in Tables 71 and 72 illustrates an increase in coefficients for

age groups [35-50] and a decrease in coefficients for age group [65+] in this grouping, (6) the [1A]

fairness grouping containing a single constraint on the patients with health status 1A, increases the

priority coefficient for 1A patients and consequently decreases the coefficients for 1B and 2 patients

shifting the priority from healthier patients (with health status 1B and mostly 2) towards sicker

patients (1A patients) compared to the case where no fairness constraint is present in the model,

(7) the [1B] fairness grouping containing a single constraint on the patients with health status 1B,

increases the priority coefficient for 1B patients and decreases the coefficients for 1A and 2 patients

shifting the priority from healthier and sicker patients, with health status 2 and 1A respectively,

towards patients with medium health status (1B patients) compared to the case where fairness

constraints are not present in the model, (8) the [2] fairness grouping containing a single constraint

on the patients with health status 2, does not change the priority coefficient of patients since in the

optimal control problem (P1), such a constraint is redundant and its corresponding shadow price is

zero, which suggests that the fairness grouping [2] has no impact on the optimal allocation policy

(the reason is that the OPL policy in the absence of fairness constraints is fairer than UNOS in

allocating hearts to healthier patients with health status 2), (9) the [1A] and [1B] fairness grouping

containing two constraints, one on the patients with health status 1A and one on the 1B patients,

increases the priority coefficients for these patients compared to the case where fairness constraints

Table 71: Color-Coded Graph for OPL Policy with Age Fairness Constraints ( [50-65] and [65+])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 6949.29 3780.00 4454.08 2931.64
1B 7273.54 4316.43 5375.09 3696.86
2 7879.16 4181.07 5149.28 5065.59
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Table 72: Color-Coded Graph for OPL Policy with Age Fairness Constraints ( [35-50] and [50-65]
and [65+])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 4098.32 7071.02 4711.46 -1288.7
1B 4422.57 7607.45 5632.47 -523.57
2 5028.19 7472.09 5406.66 845.16

Table 73: Color-Coded Graph for OPL Policy with Health Fairness Constraints ([1A])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 10698.5 7529.2 4618.2 2488.6
1B 8395.3 5438.2 2911.8 626.3
2 9000.9 5302.9 2686.0 1995.1

Table 74: Color-Coded Graph for OPL Policy with Health Fairness Constraints ( [1B])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9091.61 5922.32 3011.34 881.64
1B 9983.76 7026.65 4500.25 2214.77
2 10021.47 6323.39 3706.54 3015.59

Table 75: Color-Coded Graph for OPL Policy with Health Fairness Constraints ( [2])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 9358.52 6189.24 3278.25 1148.56
1B 9682.77 6725.66 4199.26 1913.78
2 10288.39 6590.31 3973.45 3282.51

Table 76: Color-Coded Graph for OPL Policy with Health Fairness Constraints ([1A] and [1B])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 11772.47 8603.18 5692.20 3562.50
1B 8039.91 5082.80 2556.41 270.93
2 21.13 -3676.9 -6293.8 -6984.7
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Table 77: Color-Coded Graph for OPL Policy with Age-Health Combination of Fairness Constraints
( [65+] and [1A])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 10140.07 6970.78 4059.80 4813.58
1B 8196.87 5239.75 2713.36 3311.35
2 8802.49 5104.40 2487.55 4680.08

Table 78: Color-Coded Graph for OPL Policy with Age-Health Combination of Fairness Constraints
( [50-65] and [65+] and [1A])

Health GroupAge Group [18-35] [35-50] [50-65] [65+]
1A 7881.10 4711.81 5368.04 4253.28
1B 6297.10 3339.99 4380.81 3110.26
2 6902.72 3204.64 4155.00 4478.99

are absent (note that the priority coefficients for health status 2 patients significantly reduces in this

grouping as the optimal policy puts its priority on 1A and 1B patients together), (10) the [65+] and

[1A] fairness grouping containing one age constraint on the patients older than 65 years and one

health constraint on the 1A patients, increases the priority coefficients for these patients compared

to the case where fairness constraints are absent (comparing the coefficients reveals that in Table 77

priority coefficients are higher for 1A patients (and all the age groups in 1A row) and those older than

65 years while coefficients for 1B and 2 patients in the column of [65+] age group decreases compared

to 70 since the [1A] fairness constraint has more impact on the optimal solution of the problem (P1)

than the [65+] constraint), (11) the [50-65] and [65+] and [1A] fairness grouping containing two age

constraints and one health constraint, increases the priority coefficients for these patients compared

to the case where fairness constraints are absent (comparing the coefficients reveals that in Table

78 priority coefficients are higher for patients in age group [50-65] compared to 70). Furthermore,

by Table 2.8 the OPL policy in the presence of this threshold performs similar to the UNOS policy

as these constraints restrict percentage allocation of hearts to age groups [50-65], [65+] and health

group [1A] to be at least as low as UNOS (recall that we showed earlier that the improvement of

OPL over UNOS is due to prioritizing healthier and younger patients in OPL policy and by imposing

such constraints improvement vanishes, which results in a policy similar to UNOS).

Furthermore, as discussed in Section 2.6.3, the OPL policy is further analyzed via the simulation

model to provide insights about its prioritization criteria in practice. In fact, we compare the

percentage of hearts allocated to different patient classes in simulating OPL and UNOS and the

results are summarized in Figure 18. Our results show that the OPL policy is significantly different
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than UNOS policy in prioritizing patients on the waiting list. In particular, the results indicate that

the OPL policy allocates more donor hearts to healthier patients (with health status 2) and less to

the sickest patients (with health status 1A) compared to the UNOS policy. While the UNOS policy

tends to allocate 49% of the total available hearts to patients with health status 1A, the proposed

OPL policy prefers to assign only 18% to this health group and allocates 45% of the donated hearts

to patients with health status 2, compared to 4% for the UNOS policy. Also, the percentage of

hearts assigned to younger age groups (age groups [18-35] and [35,50]) is greater for the OPL policy

than the UNOS allocation. In fact, the UNOS policy assigns 65% of donor hearts to patients older

than 50 years old, where the OPL policy assigns 51% to such patients. However, as shown in Figure

18c, the percentage of transplants performed on the patients with different VAD statuses is not

significantly different for the two policies. This observation holds true because the post-transplant

survival for patients with VAD is similar to those without VAD (Colvin-Adams et al., 2015). Also,

the proportion of donor hearts transplanted in each of the allocation zones (i.e., DSA, Zone A, B,

C, D, and E) are reported for the two policies in Figure 18d. In the simulation of the UNOS policy

around 77% of all transplants are performed in the DSA of the donor heart and 23% in the proximity

Zones A-E, whereas, the OPL policy assigns 96% of the hearts in the DSA of the available hearts and

only 4% of the transplants are done in Zones A-E. These numbers indicate that finding a match for

an available heart within closer distances of the procured OPO is easier in the OPL policy than that

of UNOS practice. Note that the OPL policy does not directly take proximity zones into account but

changing patient prioritization can indirectly change the proportion of organs assigned to each zone.

In this case, because the OPL policy prioritizes healthier patients and the proportion of healthier

patients is higher on the waiting list (Stevenson, 2015), there is more opportunity to assign patients

in the DSA of the donor heart. Note that in B.6 the regional aspect of allocation is taken into

account and the OPL policy is analyzed in the presence of certain geographical considerations in the

fluid model.

Finally, as mentioned earlier in Chapter 2, we conduct similar analysis on OPL-F policy (the OPL

policy with fairness constraints over age group [65+] and health group 1A) as we did on OPL in

Section 2.6.3. Specifically, Tables 79 and 80 report the difference between the performance of OPL-F

and UNOS policies in terms of LYs gain and number of death increments broken down to patient’s

health and age groups. Results indicate that OPL-F policy performs similar to the UNOS policy
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Figure 18: Health, Age, VAD, and Zone Priorities for UNOS and OPL
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Table 79: LYs/Death Trade-off for Patient Health Groups (OPL-F minus UNOS

Health Group 1A 1B 2 Inactive Total

Death 7 34 -38 52 55

Total Life-Days (×107) -0.043 0.013 0.044 -0.0009 0.141

Table 80: LYs/Death Trade-off for Patient Age Groups (OPL-F minus UNOS)

Age Group [18-35] [35-50] [50-65] [65+] Total

Death -5 -17 79 -2 55

Total Life-Days (×107) 0.009 0.133 -0.005 0.003 0.141

in terms of both pre-transplant deaths and total LYs. In addition, similar analysis is conducted

for comparing OPL with the newly proposed UNOS 7-tiered policy and the results are reported in

Tables 81 and 82. Note that since UNOS 7-tiered policy considers new 7-tiered health classes, we

simulate the 7-tiered policy but in order to have a meaningful comparison between OPL and UNOS

7-tiered, in breaking down the reported LYs and death differences into each patient health group,

we report them for a three-tiered system. Results of comparing UNOS 7-Tiered with OPL is very

similar to that of UNOS as the 7-tiered policy produces 625 more pre-transplant deaths but gains

1.49× 107 more total life days compared to OPL. This analysis together with the analysis presented

in Section 2.6.3 provide decision makers with a tool to quantify the cost that policy makers have to

trade off in order to gain an increase in total LYs by switching to a policy based on the utilitarian

approach.

Table 81: LYs/Death Trade-off for Patient Health Groups (OPL minus UNOS-7-tiered)

Health Group 1A 1B 2 Inactive Total

Death 221 30 -116 490 625

Total Life-Days (×107) -4.82 1.63 4.7 -0.015 1.49
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Table 82: LYs/Death Trade-off for Patient Age Groups (OPL minus UNOS-7-tiered)

Age Group [18-35] [35-50] [50-65] [65+] Total

Death -52 -286 510 453 625

Total Life-Days (×107) 1.08 0.62 -0.13 -0.075 1.49
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