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ABSTRACT 

Secondary sexual characters (SSC) are traits present only in one sex, commonly on 

males, and different from the reproductive organs. These characters have evolved mainly 

through the action of Sexual Selection, the differential mating success of organisms of the 

same species. Males use SSC to challenge other males for access to females, while females 

use these traits as signals to choose mates with overall good. SSC can manifest as horns, 

tusks, enlarged appendages, spines, coloration, and body size. Sexually dimorphic traits 

are present in all major groups of animals, including Insects. Sexual selection and 

secondary sexual traits have been proposed to be drivers for speciation on hypothetical 

bases, but empirical evidence has proven to be inconclusive.  

To explore this hypothesis in species rich lineages, such as insects, it is necessary 

to identify the diversity and frequency of SSC within particular lineages. Pselaphinae 

beetles (Coleoptera: Staphylinidae) are a great example of high species richness and broad 

morphological variation in sexual traits. This group contains more than 10,470 described 

species distributed worldwide. They are predators of small invertebrates, and their large 

number of species contrasts with their small size, between 0.6 and 3.0 mm. The diversity 

and frequency of SSC in Pselaphinae was obtained from species descriptions, fauna 

catalogues, and databases. A total of 40 dimorphic body structures were identified in 218 

species from 34 tribes. The SSC present in the largest number of species were modification 

of abdominal sternites, eyes, and mesotibiae. Differences on the quality and quantity of 

SSC were found among different tribes. To look at the evolution of SSC at the genus scale, 

in the genus Batrisodes were documented on a phylogenetic context. The basal process on 
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antennomere XI showed most convergence among species of Nearctic and Palearctic 

regions. The ventral fovea on antennomere X, was the most constant across the genus. This 

research is an initial step towards the recollection of SSC in Pselaphinae, that can be used 

to study character evolution, character correlations with microhabitats, and character 

correlation with other characters.    
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CHAPTER ONE 

LITERATURE RIVIEW 

Sexual Selection and Secondary Sexual Characters 

In organisms with sexual reproduction, secondary sexual characters are traits 

different from the reproductive organs and present in only one of the sexes (Darwin 1879; 

West-Eberhard 1979; Andersson 1994). Males more often than females present 

modifications in their external morphology, such as horns, tusks, enlarged appendages, 

spines, coloration, and body size. Additionally, visual, chemical, and sound production 

signals can differ between the two sexes. Such differences are in many cases the result of 

Sexual Selection acting differently on males and females of the same species (Darwin 

1879; West-Eberhard 1979; Andersson 1994). Under sexual selection some individuals 

will mate more often than others of the same sex, thus secondary sexual traits can be used 

by males to compete against other males for access to females, defend territories, or search 

and attract mating partners. Meanwhile, females can choose their mates using males’ 

sexual traits as signals of conspecificity, overall health, fecundity, and offspring qualities 

(West-Eberhard 1979).  

Sexual selection theory has been traditionally explained by two mechanisms: male-

male combat and female choice (Darwin 1879; Maynard-Smith 1978; Andersson 1994). 

Males can interact with each other in combat, using weapons or can initiate behavioral 

displays to signal aggression to other males and courtship to females. Whether they use 

weapons or displays, it is expected that these interactions continue if the chances of mating 

are greater than the cost of continuing fighting or signaling (West-Eberhard 1979, 1983). 
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The action of sexual selection can continue after mating has finished and male and female 

are decoupled. Sperm competition occurs within the female’s reproductive canal; in there, 

sperm from two or more males may compete for the fertilization of her ova (Eberhard 1996; 

Weddel et al. 2002). Conversely, some females can discriminate among sperm from 

different males, choosing to use, keep or discard accordingly. This post-copulatory 

behavior is known as cryptic female choice (Eberhard 1996).  

Several hypotheses have been proposed to explain how female choice has evolved 

and how it can influence the diversity of male’ sexual traits. Fisher (1930), proposed that 

female choice is the result of a self-reinforcement or runaway process, requiring genetic 

variations in both the male’s sexual trait and the female’s preference for the trait. The 

secondary sexual characters will continue to vary according to females’ preference; males 

carrying the favored trait will have higher mating success until the sexual trait is counter-

selected by Natural Selection (Fisher 1930; West-Eberhard 1983). Conversely, the sensory 

bias hypothesis predicts that signalers use competition or courtship displays to exploit 

sensory responses already present in the receptor; usually these sensorial responses are also 

under selection pressure in other contexts than mating (West-Eberhard 1983). Secondary 

sexual characters like conspicuous ornaments and bright coloration might also work as 

indicator mechanisms, where males’ traits reflect their good health and higher fitness, 

and females recognize these as cues for mate choosing (Andersson 1994; Balenger and Zuk 

2014). Secondary sexual characters may also work as species recognition mechanisms 

used by females to identify partners of the same species, avoiding hybrid crosses; under 

this mechanism of female choice, secondary sexual traits and sexual selection could 
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contribute to forming new species by reinforcement of prezygotic isolation (West-Eberhard 

1984; Anderson 1994). Under sexual conflict, males and females have different fitness 

interests, female choice is the direct result of mating avoidance, selecting for males with 

sexual traits able of overcome female resistance to costly mating (Chapman et al. 2003). 

Female reluctancy to mating coevolves with exaggerated traits in males like grasping 

mechanisms, longer legs, or larger body size (Rowe et al. 1994; Chapman et al. 2003).   

In the last two decades, however, research in these interactions has shown that there 

are more nuances around the combat for mates and mate choice (Wedell et al. 2002; Kelly 

2018; Hare & Simmons 2019). Even though males produce much more gametes than 

females, sperm quantity is limited. Males must use strategies to assess the risk of mating 

without fathering any offspring; if the number of receptive females increases, a male will 

use less sperm per female, given his chances of multiple encounters with several females. 

Also, sperm production will decrease when the probability of sperm competition increases 

by the presence of other males. On the other hand, males will give more sperm to virgin 

females, but this will depend similarly on the number of competitive males. The ejaculate 

size that a male produces can depend on the female’s age, because the chances of previous 

mating encounters in older females are higher (Weddel et al. 2002). Thus, males can 

exercise some degree of choosiness to secure multiple matings by sperm production 

optimization. The intensity of female’s choice also depends on other factors in addition to 

male attractiveness (Eberhard 1996). In older females, choosiness would decrease when 

the time and energy costs associated with searching for partners are higher than the benefit 

of selecting a preferred mate; mating history as well as the quality and quantity of the sperm 
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stored for future fertilizations are conditions for female choosiness, too. Females would 

mate with less attractive males if the risk of predation is elevated. And social cues are 

important for female choice, for example, when there are more males available for mating, 

choosiness would increase (Kelly 2018).  

 

Secondary sexual characters in Vertebrates 

Secondary sexual characters can be found in almost all groups of animals. In 

vertebrates, mammals show sexual size dimorphism in different lineages. Males may be 

bigger and heavier than females, can bear horns, tusks, or antlers; large body size and 

weapons are related to male-male combats to access to groups of females or harems. Male 

weapons usually present an allometric growth, where certain traits will increase 

disproportionately in size as overall body size increases (Pélabon et al. 2014); also, in 

primates, male and female genital area can change coloration during mating season 

(Andersson 1994). Likewise, change in coloration is common on lizards and serpents 

during mating periods; differences in body size may exist in some taxa, where males tend 

to be bigger than females and exhibit aggressive displays against other males (Andersson 

1994). Male anurans have call repertories that present properties like call rate, call 

loudness, call pitch, etc.; since call properties can be related to male size or fitness, females 

use call properties to choose among different males (Andersson 1994). Nuptial coloration 

in fish males of some taxa has been proposed as the result of sexual selection by female 

choice, where females choose males with brighter color and are capable of differentiating 

between sympatric species (Andersson 1994; Martin and Mendelson 2014); yet in other 
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taxa bright coloration is attributed to mimicry and aposematism (Andersson 1994). Birds 

show noteworthy examples of secondary sexual traits: males in many taxa present showy 

colors, plumage ornaments such as long tails, and complex songs (Andersson 1994). In 

general, polygynous taxa are more ornamented than monogamous ones (Møller and 

Pomiankowski 1993); these conspicuous colors and threat songs can function as part of the 

male repertoire to defend suitable breeding habitats from other males, while ornaments and 

displays attract females, leading to mate choice (Andersson 1994).  

 

Secondary sexual characters in Insects 

Insects are the largest group of animals in the world. Throughout all insect taxa 

there are examples of secondary sexual characters, represented as sexual size dimorphism, 

weapons, visual, acoustic, and chemical signals, nuptial gifts, or genitalia diversification. 

Understanding the origins of secondary sexual characters is a complex challenge, involving 

a species’ ecological niche, behavior, and developmental genetics. While a great diversity 

of secondary sexual characters has been described and exploited for taxonomic purposes, 

our understanding of their function and evolution are less well understood. Nonetheless, 

there are diverse examples where the function of secondary sexual characters is well 

established. 

 

Sexual size dimorphism 

In many insects, females rather than males have larger body sizes, this is 

particularly common in species that mate in flight like some ants, or on water like water 
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striders. In these cases, small size of males can be advantageous for movement energetics 

(Andersson 1994; Rowe et al. 1994).  In scarab beetles (Scarabaeidae), large size in males 

is also related to large size of horns, which are projections on the head and/or prothorax, 

used as weapons in male-male combat for females and territories (Eberhard 1980; Emlen 

and Nijhout 2000). Yet, differences in larval diet affect directly the final body size in males 

of the same species; as a consequence, in the same population will be males with small, 

intermediate, and large body sizes. Thus, larger males tend to have advantage over their 

opponents during combats (Eberhard 1980; Emlen et al. 2005). Stag beetles (Lucanidae), 

offer another example of size sexual dimorphism and weaponry; with the exaggerated 

development of males’ mandibles, often as long as the rest of their bodies, male beetles 

grab contenders and throw them away in territorial displays. As in scarab beetles, the final 

body size depends on larval feeding, and intraspecific variation occurs. Also, in some 

species, larger males do not have flying wings, while small males have developed wings 

and disperse easily (Eberhard 1980; Kawano 2006). According to Kawano (2006), large 

weapons may be a consequence of large body size as a sexually selected trait in scarab and 

stag beetles, among other taxa; since large size increases allometric effects in other 

characteristics, males would present large bodies accompanied by large weapons, thereby 

improving their winning chances. 

 

Visual signals 

Differences in coloration between males and females are common in butterflies 

(Lepidoptera), dragonflies, and damselflies (Odonata), where both sexes have highly 
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developed vision. Males are usually more colorful in butterfly lineages where sex-

dimorphic coloration is present, and coloration difference is greater among males of closely 

relates species than in females (Andersson 1994). In the species Heliconius erato, yellow 

wing pigmentation is the result of a UV-yellow-reflecting molecule. It has been observed 

that female butterflies in H. erato express two UV photoreceptors, while males only 

express one, as an example of sexual dimorphism in compound eyes structure. The extra 

UV photoreceptor in females has been suggested to aid females to distinguish among 

congeneric males (McCulloch et al. 2016). In Odonata, males of some taxa have distinctive 

pigmentation on the abdomen that aids in male-male competition for territories (Andersson 

1994). Also, in some damselflies, females have several color morphs, with one resembling 

male coloration (ref.); nevertheless, males do not show preference for a particular female 

morph. In Megalagrion damselflies, female-limited dimorphism occurs among species that 

have different altitudinal distributions on the Hawaiian archipelago. Cooper et al. (2016) 

found that the observed dimorphism was mainly correlated to the different habitats males 

and females occupy, and female dimorphism was a consequence of clines in the degree of 

habitat difference. Bioluminescence is used as visual signal by adult fireflies (Lampyridae) 

to find mating partners. The flashing displays are initiated by males during flight in 

determined habitat areas, mainly at sunset or after dark; each firefly species has its own 

flight path and light emission pattern; females remain perched on nearby vegetation, and 

answer male signals with their own flashes after characteristic pauses. This flash and 

answer behavior usually results in mating when males locate receptive females (Andersson 

1994; Matthews and Matthews 2010).  
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Acoustic signals 

Acoustic signals as secondary characters are widespread in orthopterans and 

hemipterans. Female response is affected by the intensity of songs, thus choosing males 

that sing louder; also, females can prefer long and continuous songs over short songs 

(Andersson 1994). In periodical cicadas from the genus Magicicada (Hemiptera: 

Cicadidae), females and males form large groups where several species can concur, and 

form choruses. Cooley and Marshall (2005) observed male-female interaction of 13 and 

17- years cicadas, finding that receptive females flick their wings in response to an 

individual chorusing male. Female response depends on particular changes in the 

frequency of the approaching male, which are species-specific and noticeable against the 

background chorus; after perceiving female’s wing movement, a male gets closer and 

continues a sequence of courting calls until female accepts or rejects the pairing. 

Additionally, when a male has been accepted by a female, he can signal other approaching 

males to stay away from the mating pair, using buzzing sounds that apparently confound 

the intruder.  

 

Chemical signals 

Maybe the most widespread examples of secondary sexual characters in insects are 

those used in chemical communication. Pheromones detection demands tuned sensorial 

structures capable of identifying minimal amounts of chemical signals (Andersson 1994). 

Ramsey and collaborators (2015) observed the behavior of Rhipicerus beetles 
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(Rhipiceridae) and addressed the morphology and function of male antennae. In this genus, 

males present enlarged lamellate antennae, like those observed in some moths, suggesting 

that Rhipicerus males may use their antennae to detect trace quantities of odorant molecules 

associated to females. Then, the researchers examined factors that may influence molecule 

capture in male Rhipicerus beetles such as behavior, morphology, morphometry, and 

ultrastructure using SEM. They found sexual dimorphism at the ultrastructure level, where 

males presented around 10000 more sensilla placodea on antennal surface compared to 

females’ antennae; these types of sensilla have been found to respond to scent associated 

with female conspecifics in other insects. In some cases, pheromones may be produced 

from food sources and may be used in parental investment, impacting female choice 

(Eisner and Meinwald 1995; Eisner et al. 1996). For example, in the moth Utetheisa 

ornatrix (Lepidoptera: Erebidae), larvae feed on toxic plants of the genus Crotalaria 

(Fabaceae) that contain pyrrolizidine alkaloids. Adult moths start courtship when female 

moths use a sex attractant to lure males during dusk; when a male finds a female, he first 

flies around her and pushes his abdomen against her; at the end of his abdomen the male 

displays coremata, a pair of modified groups of scales that are associated with glandular 

openings. After one or more pushes, the female opens her wings and exposes the abdomen 

for mating; the male then transfers his spermatophore. Females mate with more than one 

male. In a series of rearing and behavioral experiments, Eisner and Meinwald (1995) 

observed that dissected coremata from experimental males contained the pheromone 

hydroxydanaidal, and that this was produced using, as chemical basis, the pyrrolizidine 

alkaloids from their nutritious plants. Additionally, eggs fathered by males with alkaloid-



10 
 

rich pheromones, were avoided by predators such as ladybeetles and lacewing larvae. The 

authors found that larger males produced spermatophores with more alkaloid content; 

females then use the pheromone signal to assess alkaloid load in males’ spermatophores, 

and favor sperm from larger males to fertilize her eggs. Similarly, in the beetle 

Neopyrochroa flabellata (Pyrochroidae), males ingest the chemical cantharidin and store 

it in their large accessory glands. During courtship, males release a cantharidin-rich 

secretion from the cephalic gland, a deep transversal frontal cleft, internally pilose; females 

approach to males and sample the cephalic gland (Eisner et al. 1996a). Eisner and 

collaborators (1996ab) observed that females mated with males that were fed with 

cantharidin and with males that did not receive cantharidin diets, but with the substance 

added to their cephalic gland; males that lacked cantharidin were not accepted by females. 

After mating, females laid eggs that were unpalatable to predators. Researchers realized 

that eggs fertilized by cantharidin-fed males contained the substance as well, offering 

protection against predation. Thus, when females approach the cephalic gland during 

courtship, males offer a signal of the cantharidin load they have in their large accessory 

glands. During mating, males transfer part of the substance to the females through the 

spermatophore, using cantharidin as a nuptial gift. 

 

Genitalia 

Among many insect groups, finding closely related species in which external 

morphology is generally invariable can be rather common, where genitalia morphology is 

the only way species can be differentiated. For instance, the genus of scarab beetles 
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Phyllophaga (Scarabaeidae) contains species that look very similar externally. 

Nonetheless, this group presents highly variable, species-specific genitalia in both males 

and females. Richmond and collaborators (2016) contrasted the evolution of variation in 

genitalia structures from males and females against phylogenetic relationships in some 

Phyllophaga species. They observed mating structures from males and females dissected 

during copula; the results suggested that the specificity of male and female genitalia was 

advantageous as a mechanical mechanism to keep the couple engaged during copula, while 

the male is hanging upside down, and only male and female genitalia are keeping them 

attached. The authors discussed that the stabilizing interaction of male-female genitalia can 

be beneficial for efficient sperm transfer, and/or dislodging prevention from predators. 

They did not find evidence for coevolution between male and female genitalia. Eberhard 

(1985; 1996; 2010) proposed genitalia diversification as a result of sexual selection by 

cryptic female choice, and by a runaway mechanism; for females, male genitalia alone may 

not be the best indicator of the male’s fitness; yet, male genitalia can induce female 

response aiding the reproductive process; if the response in the female changes male’s 

reproductive success, male genitalia act as a signal to the female, then natural selection 

may act on both improvement of male’s signaling and female’s reception of the signal, 

although the signal by itself has no influence on the individual’s fitness (Eberhard 1985). 

On the other hand, an alternative hypothesis states that genitalia diversification has also 

been considered a consequence of sexual conflict (Rowe et al. 1994; Chapman et al. 2003), 

where males and females’ interests regarding courtship, mating, and fertilization are not 
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the same, rendering both sexes in a continuous coevolutionary arms race to dominate 

reproductive processes (Rowe et al. 1994; Hosken and Stockley 2004; Eberhard 2010). 

 

Evolution of secondary sexual characters 

The above diversity of sexual selection strategies illustrates the importance of 

understanding not only the morphological differences themselves, but also of having a 

strong foundation of phylogenetic relationships, data on the natural history, and behavior 

of the lineages. To establish evolutionary drivers of intersexual differences, all these factors 

may be interacting. Furthermore, taking a broader phylogenetic perspective can reveal 

factors that may not be apparent in studying the sexual differences in individual species. In 

particular, variation in the species natural histories may covary with variation in prevalence 

of secondary sexual characters, and lineages which contain both dimorphic and 

monomorphic species offer particularly useful systems to illustrate this. For example, 

Dombroskie and Sperling (2013), constructed a preliminary phylogeny for the tribe 

Archipini (Lepidoptera: Tortricidae: Tortricinae). They mapped secondary sexual 

characters, number of host plants, and geographic distributions into the resulting 

phylogenetic tree. They found species that lack secondary sexual characters had fewer host 

plant species and had colonized the New World. Thus, a historical view of the secondary 

sexual characters can be also correlated to environmental variation and distribution patterns 

of related species in a group. Chatzimanolis (2005) studied the evolution of coloration and 

secondary sexual characters in the genus Nordus (Staphylinidae), in a phylogenetic context, 

using morphological characters; males of different species present modifications on 
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abdominal sterna VII, VIII, and IX. Abdominal sternum VIII present three basic forms in 

its hind margin: it can be medially emarginated, can bear a single medial lobe, or it can 

have two medial lobes separated by an emargination. In this phylogenic hypothesis for 

Nordus species, the ancestral character seems to be the medial emargination, shared by the 

outgroups and the basal species of Nordus; most of the remaining species present variations 

of the hind margin with two medial lobes with an emargination between them; and finally, 

a single clade of three species exhibit one medial lobe. In relation to coloration evolution, 

aposematic coloration (golden-orange) seem to have evolved in the ancestor of Nordus. It 

was suggested that color differences in the same species are related to different elevations 

in which morph inhabits, with golden-orange morphs inhabiting lowlands, whereas brown 

to black morphs are found at elevations higher than 900 m. (Chatzimanolis 2005). 

 

Secondary sexual characters, Sexual Selection and Speciation 

Sexual traits incorporate sources of variation that over evolutionary time can be 

translated into species diversification. The importance of sexual selection as a unique driver 

for speciation has been explored theoretically by several authors (Lande 1981; West-

Eberhard 1984). Under certain genetical models, species can be formed by sexual selection 

following runaway processes (Lande 1981). Potentially, sexual selection can lead to 

speciation because it acts directly on characters used in mate recognition (Panhuis et al. 

2001; Ritchie 2007). Although empirical evidence is difficult to assess due to the time 

scales in which species can form, and to uncertainty regarding the action of other 

evolutionary processes, such as natural selection, that may also result in new species (West-
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Eberhard 1983; Panhuis et al. 2001; Ritchie 2007), there have been efforts to find 

correlations between sexual selection and speciation for different animal taxa. In Passerine 

birds, Barraclough and collaborators (1995), using a published phylogeny at tribal rank, 

found that taxa with greater proportions of sexually dichromatic species contained more 

species overall than sister groups where monochromatism was in larger proportion, 

supporting their hypothesis that under sexual selection by female choice for male traits, 

higher proportions of sexual dimorphism within a clade are correlated with higher number 

of species. Nonetheless, the methodological approach used by Barraclough et al (1995) has 

been criticized and found to have equivocal results after replication, Janicke et al. (2018), 

used a meta-analysis of publications using the Bateman gradients as measure of the 

intensity of sexual selection throughout the animal kingdom. They found that when males 

are under more intense sexual selection (i.e. fitness benefits gained by additional mating), 

the species richness within the family level is higher. To explore this hypothesis in other 

species rich lineages, such as insects, it is necessary to identify the diversity and frequency 

of secondary sexual characters within particular lineages. It is critical to consider the 

evolutionary relationships among taxa within the group of interest (Barraclough et al. 1995; 

Janicke et al. 2018), expecting that sister taxa will have similar ages and comparable 

evolutionary time to assess whether clades with more species actually present secondary 

sexual characters in higher diversity and frequency.  

 From the examples exposed above, it is noticeable that beetles (Coleoptera) in 

general, express extensive diversity in the presence of secondary sexual characters. Among 

these, the subfamily Pselaphinae (Staphylinidae) is a great example of high species richness 
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and broad morphological variation in sexual traits. This diversity contrasts with the 

currently inadequate knowledge of natural history of the group. 

The following chapters explore the manifestation and evolution of secondary sexual 

characters in the diverse group of Pselaphinae beetles (Coleoptera: Staphylinidae). In 

Chapter 2, the incidence of secondary sexual characters in all major lineages of Pselaphinae 

is documented, in the context of their presence in different parts of the male body. The 

diversity of secondary sexual traits is compared among different tribes to assess the 

potential correlation between highly sexual dimorphic taxa and species richness; a 

compilation of the ubiquity of sexual traits in highly diverse lineages can represent a first 

step towards the recognition of correlations between processes such as speciation and 

sexually selected traits in males. Chapter 3 deals with the evolution of secondary sexual 

characters at the genus scale, looking at their manifestations in the Holarctic genus 

Batrisodes Reitter, with special attention to North American species. The documentation 

of the secondary sexual characters in Nearctic Batrisodes in an evolutionary context is here 

used to identify whether these characters are highly convergent within the lineage, what 

characters are more constant across the genus, which tend to be lost or gained more 

frequently, and to recognize secondary sexual characters present in the most diverse clades. 

The phylogenetic relationships within this group are reconstructed to elucidate the 

distribution of taxon diversity at the level of species groups, and to explore whether certain 

secondary sexual characters are related to species numbers. 
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CHAPTER TWO 

EVOLUTION OF SECONDARY SEXUAL CHARACTERS IN PSELAPHINAE 
(COLEOPTERA: STAPHYLINIDAE). 

INTRODUCTION 

The subfamily Pselaphinae (Staphylinidae) is a diverse group of beetles with more 

than 10,470 described species in 1,278 genera, distributed worldwide (Newton 2018; 

Thayer 2005; Parker 2016). Adults and larvae are predators of small invertebrates like 

annelids, mites, Collembola, and larvae of other insects (Chandler 2001). Their great 

number of species contrasts with their small size, between 0.6 and 3.0 mm in length, and 

with the lack of information about their natural history (Chandler 2001, Parker 2016). 

However, some biological generalities for the group have emerged throughout years of 

specimen collection and taxonomic descriptions. Some species exhibit interesting 

ecological relationships with social insects, especially with ants; the association between 

beetles and ants varies from loose interactions towards colony members such as brood 

predation, to complete integration where adult beetles are accepted and fed by the ants 

through trophallaxis (Parker & Grimaldi 2014; Parker 2016). Several lineages within 

Pselaphinae contain taxa with different degrees of association to the colony life, but only 

in the Supertribe Clavigeritae are all the species myrmecophiles (Parker 2016). Species 

associated with caves are also common within the subfamily, with the most extreme 

examples in the Supertribes Batrisitae and Goniaceritae, where troglobitic species have 

evolved several times (Chandler 2001; Chandler & Reddell 2001, 2009). Such 

specializations could be the result of the general preference pselaphines have for dark and 

humid places like leaf and wood litter, decaying wood, riparian edges, lake shores, and 
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under rocks. Even so, information about their behavior as adults has been observed only in 

a few opportunities (Schomann et al. 2008). Likewise, larval stages have been studied in 

few species (De Marzo 1988; Carlton and Leschen 2008), and fewer still have examined 

pupal chamber and cocoon construction (De Marzo 1988b). 

Newton and Thayer (1995) downgraded Pselaphidae to a subfamily of 

Staphylinidae, based on morphological similarities with the Omaliinae group of 

subfamilies. Later, Chandler (2001) changed the internal classification of Pselaphinae, 

rendering six supertribes, 37 tribes, and 38 subtribes. The largest supertribe is Goniaceritae, 

with 3,061 described species in 266 genera, grouped in 14 tribes, with a worldwide 

distribution. Euplectitae follows in species richness with 2,633 species, 416 genera, eight 

tribes, distributed globally. Most Batrisitae are distributed around the tropics, with some 

genera represented in the Holarctic region; there are three tribes that include 1,948 species 

and 228 genera. The fourth supertribe in numbers of species is Pselaphitae with 1,632 

species, 206 genera, contained in 11 tribes and present in all biogeographical regions. 

Clavigeritae groups 367 described species in 108 genera contained in three tribes. Lastly, 

the supertribe Faronitae, considered to be the sister group to all other pselaphine supertribes 

(Newton and Thayer 1992; Chandler 2001), contains 330 species, and 27 genera, 

distributed in the temperate regions (Newton et al. 2001; Chandler 2001; Newton 2018).  

Pselaphinae species diversity is matched by a vast amount of morphological 

variations in its species, particularly related to sexual dimorphism, and secondary sexual 

characters in males. Taxonomically, such traits are often used to describe new species and 

differentiate closely related taxa. However, the important role of these morphological traits 
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for taxonomic species delimitation contrasts with the lack of information about their 

function during intraspecific interactions, their evolution, and their frequency in different 

lineages. Some secondary sexual traits found in Pselaphinae include modifications of the 

abdominal sternites (Cuccodoro et al. 2012), spurs on the mesotibiae, changes in the 

metaventrite (Baňař and Hlaváč 2014), different size and shape of male antennomeres 

(Kurbatov and Cuccudoro 2015), and in some dramatic cases, marked depressions on the 

head vertex (Yin and Li 2015).  

Sexual traits as those mentioned above may incorporate sources of variation that 

under evolutionary time can be translated into species diversification. Through sexually 

selected traits, new species can emerge when these characteristics are associated with mate 

search, attraction, and recognition systems (Panhuis et al. 2001). The importance of 

secondary sexual characters and sexual selection as drivers for speciation has been 

explored theoretically by several authors (Lande 1981; West-Eberhard 1984). Empirically, 

this prediction has proved difficult to test, yet in highly diverse groups such Passerine birds, 

a correlation between species richness and sexual dimorphism has being found 

(Barraclough et al. 1995; Janicke et al. 2018). Pselaphine beetles offer a great possibility 

to identify relationships between species diversity and secondary sexual characters. A great 

array of taxonomic publications describes and illustrates the external morphology males 

and females, allowing comparison between sexes; also, sexual traits can be found in 

multiple body parts on the same species, which helps to find differences among different 

lineages in different hierarchies; finally, most sexual traits are discrete, facilitating their 
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quantification to assess their frequency throughout the different lineages.  Thus, a synthesis 

of these data could provide a valuable perspective on the group’s diversity. 

This chapter seeks to document the incidence of sexual secondary characters in 

males of all major lineages of Pselaphinae, reports their specific manifestations on different 

parts of the body, illustrate their diversity, and discuss the potential correlation between 

highly sexual dimorphic taxa and species richness. 

 

MATERIALS AND METHODS 

The exploration of secondary sexual characters in Pselaphinae was based on the 

super tribes Batrisitae, Clavigeritae, Euplectitae, Goniaceritae, and Pselaphitae, or higher 

Pselaphinae (sensu Parker 2016). The supertribe Faronitae, being the sister taxa to all other 

pselaphinae lineages, and being considered to carry mostly plesiomorphic characteristics 

(Chandler 2001), was used as a morphological reference to compare the remaining 

supertribes. Through the revision of faunistic catalogues, databases and taxonomic 

descriptions, information about supertribe and tribe names was recorded using catalogues 

from the Palearctic region (Löbl & Löbl 2015), Neotropical region (Navarrete-Heredia et 

al. 2002; Asenjo et al. 2019), Nearctic (Chandler 1997; Chandler 2001), and Australia 

(Chandler 2001); for other biogeographic regions individual species descriptions and local 

catalogues were used. Because, in many circumstances, there was no difference between 

the quantity and quality of sexual traits among species in the same genus, each tribe was 

represented with at least two genera (when possible), and the Staphyliniformia World 

Catalogue Database (Newton 2018) was used to corroborate the current validity of generic 
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and specific names. All these information sources rendered a list of taxonomic publications 

where genera and species were described. To be considered for the list of sexual secondary 

characters in Pselaphinae, the species descriptions must have information about 

morphological differences between males and females; species descriptions were 

disregarded when only one of the sexes was described; although most sexual characters 

reported here are present only in male specimens (reduction in eyes size is presented in 

females rather than males), the description of female morphology allowed comparation and 

certainty of actual sex dimorphism. The secondary sexual characters were recorded in a 

presence/absence matrix; for each selected species, a value of one (1 = presence) was given 

to body parts bearing the secondary sexual characters. The body part selection was based 

on their recurrence in taxonomic descriptions: every time that a structure was described as 

different between male and female specimens, it was included in the secondary sexual 

character matrix. The male body parts used were grouped in six categories: 1) Antennae, 

including antennal flagellum (length), scape/pedicel, and flagellum segments (segments III 

to IX); 2) Head: Head capsule, mouth parts, and eyes; 3) Thorax: elytra, pronotum, and 

metaventrites; 4) Abdomen: abdominal terga and abdominal sterna; 5) Legs: coxae, 

trochanters, femora, tibiae, and tarsi of pro-, meso-, and metathoracic legs; and 6) flight 

and size dimorphisms: wing dimorphism, leg size dimorphism, and body size dimorphism. 

Line drawings were made using Adobe Illustrator (version 2019) and correspond to the 

body morphology in Faronitae (illustrations A and B, or otherwise expressed on the Figure 

label), and to the same structure, sexually modified in higher pselaphines as examples of 

the observed variation during the construction of this synthesis.  
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A linear regression analysis was used to assess the relationship between the number 

of described species worldwide for each Pselaphinae tribe and the total number of 

morphological variations for species within each tribe recorded in this study. The test 

statistic t was used to evaluate if there is a relationship between variables. The coefficient 

of determination r2 was used to establish the strength of relationship between the two 

variables.  

 

RESULTS 

A total of 34 tribes, 106 genera, and 218 species were included to construct the 

matrix of secondary sexual characters (herein SSC). This species number is not yet 

adequate to conclude any ecological and biogeographical correlations since species 

descriptions and taxa catalogues are highly biased towards the Holarctic and Australasian 

regions. Nonetheless, it was possible to include several tribes, genera, and species that are 

endemic to certain less-studied biogeographical regions such the Neotropical and 

Afrotropical regions. This information was retrieved from 95 publications, dating from 

1894 to 2019. Overall, the secondary sexual characters found in the largest number of 

species were the modification of male abdominal sterna, eye size reduction in females, 

male mesotibiae, and metasternum modifications (Fig. 1). 
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Figure 1. Number of species expressing secondary sexual characters on body structures 
of males from Higher Pselaphinae. 

 

Antennal SSC 

Most Pselaphines have 11-segmented antennae (figure 1A), except for the 

clavigerites (figure 1B), which present fusion of the terminal antennal segments, and some 

species of neotropical Goniacerini, some Bythinoplectini, and Cyathigerini species. 

Antennal sexual dimorphism was found in 22 tribes (table 1). Most secondary sexual 

characters (SSC) were found on antennomeres IX, X, and XI in 47, 47 and 44 species 

respectively, mostly in the tribes Batrisini (24, 23, and 23 species in seven genera) and 

Brachyglutini (10, 12, and 9 species in three genera). Flagellum length was the SSC most 

common among the tribes with dimorphism on the antennae, for a total of 12 tribes, 19 

genera and 26 species. The tribe Bythinini had the most species with SSC in the scape-
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pedicel category, with 11 species from one genus. In general, the antennomeres III to VII 

changed the least, being dimorphic only in the tribes Arhytodini and Ctenistini, 

additionally, antennomere V changed in Batrisini and Brachyglutini; antennomere VII was 

also variable in the tribes Brachyglutini, Cyathigerini, Iniocyphini and Goniacerini.  

Male scape and pedicel variation were observed in size related to flagellomere size; 

the scape can present dorso-ventral expansions, lateral asymmetry, be laterally swollen or 

ventrally flattened; an individual spine, tooth or tubercle can also be present. Antennal club, 

when present, was formed by the four or three apical antennomeres; intermediate 

antennomeres (III to VI, and sometimes VII) variation was limited to shape: transverse 

versus elongate, or size: same size or increasing in diameter distally. When variable, 

antennomere VII can show lateral asymmetry, have lateral excavations, differentiated 

setae, or being modified together with antennomere VIII. Antennomere IX can show lateral 

asymmetry, lateral excavations, denticles, lateral expansion, apophyses, specialized setae, 

or it can be bilobed; in many cases this antennomere marks the beginning of the antennal 

club. In the antennomere X (Figure 1C and D), variation was commonly encountered in its 

larger size compared to basal antennomeres, and its variations in shape; it can be also 

characterized by the presence of ventrolateral excavations, projections, tubercles, and be 

asymmetrically flattened. Finally, dimorphism in antennomere XI (Figure 2C and 2D) was 

related to its size, being in most cases the largest, and its lateral symmetry; other common 

variations were the presence of a single basolateral tooth, pore or tubercle, ventral or lateral 

excavations, and its surface bearing small tubercles. 
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Table 1. Antennal secondary sexual characters (SSC) in Pselaphinae tribes  

 

Supertribe No. Tribe (number of 
species) 

Flagellum 
length 

Scape-
pedicel III IV V VI VII VIII IX X XI total 

SSC 

BATRISITAE 
1 Amauropini (5)          1 1 2 
2 Batrisini (65) 5 2   2   3 24 23 23 82 

CLAVIGERITAE 3 Clavigerini (3) 2           2 

EUPLECTITAE 

4 Bythinoplectini (6)  1        2  3 
5 Euplectini (6)         1 1 1 3 
6 Jubini (1) 1           1 
7 Trichonychini (20) 3        1   4 
8 Trogastrini (2) 2 1          3 

GONIACERITAE 

9 Brachyglutini (22) 5 2 2  5 1 3 2 12 10 9 51 
10 Bythinini (14) 1 11      1    13 
11 Cyathigerini (3)   2   1 2     5 
12 Iniocyphini (3)       1     1 
13 Goniacerini (4)       1 1    2 
14 Proterini (3)          2  2 
15 Tychini (10) 2           2 

PSELAPHITAE 

16 Arhytodini (7) 1  1 2 2 2 1 2 1   12 
17 Ctenistini (4) 2  1 1 1 1 1 3 3 3 3 19 
18 Hybocephalini (3)         1 1 2 4 
19 Odontalgini (3) 2           2 
20 Schistodactylini (2) 1           1 
21 Tmesiphorini (3)        1 1 2 2 6 
22 Tyrini (6)  2      1 3 2 3 11 

Total number of species with SSC 27 19 6 3 10 5 9 14 47 47 44  



29 
 

   

Figure 2. Antennae in Pselaphinae: A. Faronitae; B. Clavigeritae; C. male Batrisodes 
riparius (Batrisini) terminal antennomeres in lateral view; D. male B. riparius ventral 

view; E. Male Batrisodes nigricans frontal view; F. Male Batrisodes schaumi. 
 
 

Head capsule, mouth parts, and eyes SSC 

Sexual dimorphism in the head and head structures was found in 20 tribes (Table 

2). Sexual variation on the eyes was the prevalent trait in 72 species and 34 genera; 32 of 

these species belonged to the tribe Batrisini. Overall, eye dimorphism was shared by 14 of 

the 20 tribes in this category. Head capsule variation was found in 38 species, with most 

species in Batrisini (six of 25 genera) and Brachyglutini (two of four genera). Sexual 

dimorphism in maxillary palpi was found only in three species from two genera in the tribe 

Batrisini, and only one species in the tribe Arhytodini showed variation in the mandibles. 
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Table 2. Head capsule and head structures SSC in Pselaphinae tribes. 

 

Head variation can be summarized as dorsal (Figure 3A), ventral (Figure 3B), 

frontal (Figure 3C), and lateral variation (Figure 3D). Dorsal variation consisted of 

modifications of the occiput region, vertexal region, vertexal sulcus and foveae, such as 

longitudinal excavations, swelling, transversal excavations behind the anterior margin of 

the eyes, and antennal tubercles. Ventral variation was limited to the widening of the gular 

fovea and gular carina. Frontal dimorphism was represented by the presence of a 

transversal sulcus between the frontal region and the clypeus, clypeal tubercles, clypeal 

Supertribe No. Tribe (number of 
species) 

Head 
capsule Mandibles Palpi Eyes total 

SSC 
BATRISITAE 1 Batrisini (65) 12  3 32 47 

EUPLECTITAE 

2 Bythinoplectini (6) 2   3 5 
3 Dimerini (1) 1    1 
4 Euplectini (6)    1 1 
5 Jubini (1)    1 1 
6 Trichonychini (20)    8 8 

GONIACERITAE 

7 Arnyllini (1)    1 1 
8 Brachyglutini (22) 11   4 11 
9 Bythinini (14) 6   6 12 
19 Cyathigerini (3)    1 1 
11 Goniacerini (3)    1 1 
12 Iniocyophini (3) 3    3 
13 Proterini (3)    1 1 
14 Tychini (10) 1   6 7 
15 Valdini (1) 1    1 

PSELAPHITAE 

16 Arhytodini (7)  1  1 2 
17 Ctenistini (4)    1 1 
18 Odontalgini (3)    1 1 
19 Tmesiphorini (3)    2 2 
20 Tyrini (6)    2 2 

Total number of species with SSC in head 
capsule, mouth parts, and eyes 38 1 3 72  
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projections, specialized setae, and enlargement of the clypeal carinae. Lateral variation was 

found as extensions of the transversal frontal excavations below the antennal insertions, 

also lateral spines or projections behind the eyes, and convexity in the genal region.  

 

 

Figure 3. Head in Pselaphinae. A. Faronitae dorsal view; B. Faronitae ventral view; C. 
Male Batrisodes denticollis (Batrisini) transversal excavation on fronto-clypeal region, in 
frontal view; D. Male Batrisodes sinuatifrons (Batrisini) transversal excavation in fronto-

clypeal region, in lateral view. 
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Thoracic SSC 

Secondary sexual traits on the thorax were found in 17 tribes (table 3). Male 

metasternum was variable in 58 species and 27 genera from 16 tribes, with most species in 

the tribes Brachyglutini (three of four genera), Batrisini (six of 21 genera), and 

Trichonychini (one of nine genera). Elytra dimorphism was common in the tribes Batrisini, 

Thaumastocephalini, Bythinoplectini, Trichonychini, and Ctenistini. Only the tribes 

Thaumastocephalini (1 species) and Bythinoplectini (2 species) presented sexual 

characters in the pronotum.  

Table 3. Thoracic SSC in Pselaphinae tribes. 

 
 

 
 

Supertribe No. Tribe (number of 
species) Elytra Pronotum Metasternum Total 

SSC 

BATRISITAE 
1 Batrisini (65) 4  13 17 
2 Thaumastocephalini (8) 1 1 1 3 

CLAVIGERITAE 3 Tiracerini   1 1 

EUPLECTITAE 
4 Bythinoplectini (6) 1 2  3 
5 Trichonychini (20) 3  6 9 

GONIACERITAE 
6 Brachyglutini (22)   19 19 
7 Cyathigerini (3)   3 3 
8 Speleobamini (2)   2 2 

 9 Tychini (10)   1 1 

PSELAPHITAE 

10 Arhyodini (8)   2 2 
11 Ctenistini (4) 1  1 2 
12 Hybocephalini (3)   1 1 
13 Odontalgini (3)   1 1 
14 Phalepsini (1)   1 1 
15 Pselaphini (4)   3 3 
16 Schistodactylini (2)   1 1 
17 Tmesiphorini (3)   1 1 
18 Tyrini (6)   2 2 

Total number of species with SSC in Thorax 10 3 59  
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Metasternum enlargement between the metacoxae was common, together with the 

longitudinal sulcus and its variable depths and widenings; these regions could be covered 

by differentiated setae; lamellae and ctenidia can be also present on the posterior margin 

of metasternum; also metasternal tubercles could be present and directed towards anterior, 

ventral, or posterior body regions (Figure 4C). Pronotal dimorphism was found mostly in 

size, shape, and pronotal sulci and foveae intensity and definition between males and 

females. Likewise, elytra differences were limited to their size and proportions between 

the two sexes.  

 

Figure 4. Thoracic structures: Faronitae A. Dorsal view; B. Ventral view. Speleobamini 
C. Metasternal tubercle in male of Prespelea myersae (modified from Caterino and 

Vasquez-Velez 2017). 
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Abdomen SSC 

 Abdominal sexual dimorphism was seen in 23 tribes (table 4). Most SSC were 

found on abdominal sterna in 82 species in 48 genera from 21 tribes, while dimorphic 

characters in the abdominal terga were observed in 45 species in 21 genera from 10 tribes. 

The tribes that included more genera with sexual dimorphism in the abdominal sterna and 

terga were Batrisini, with nine and five genera, respectively, then Trichonychini with six 

and four genera, and Brachyglutini with four and two genera, respectively.  

 Sexual dimorphism on the abdominal sterna was characterized by the presence of a 

flattened surface on some segments or throughout the abdominal length; some segments 

could be completely concave or with central or longitudinal depressions. Tubercles, 

protuberances, and convex sternite surface were also present (Figure 5C). Abdominal 

sterna could be modified on their margins, either by projecting posteriorly or with showing 

emarginations. Frequently, abdominal sternites were covered by dense hairs, thick setae, 

or small denticles. Abdominal terga was exemplified by modification of segments IV and 

V (visible segments 1 and 2) mainly; protuberances, impressions, longitudinal and 

transversal carinae were found to be in the median region of the tergites; these 

modifications were frequently bearing tuft of long hairs, short hairs covering the surface or 

small spines (Figure 5D and E).  
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Table 4. Abdominal SSC in Pselaphinae tribes. 

 
 
 
 
 
 
 
 
 
 
 
 

Supertribe No. Tribe (number of 
species) Tergites Sternites Total SSC 

BATRISITAE 1 Batrisini (65) 18 25 43 

CLAVIGERITAE 
2 Collilodionini (1)  1 1 
3 Tiracerini (1) 1  1 

EUPLECTITAE 

4 Dimerini (1)  1 1 
5 Euplectini (7)  6 6 
6 Jubini (1) 1 1 2 
7 Mayetiini (3)  3 3 
8 Metopiasini (1)  1 1 
9 Trichonychini (20) 10 14 24 

GONIACERITAE 

10 Brachyglutini (22) 8 9 17 
11 Cyathigerini (3) 1 2 3 
12 Imirini (1)  1 1 
13 Iniocyphini (3)  2 2 
14 Proterini (3) 1  1 
15 Tychini (10) 2 3 5 
16 Valdini (1)  1 1 

PSELAPHITAE 

17 Arhyodini (8)  4 4 
18 Hybocephalini (3)  1 1 
19 Odontalgini (3)  1 1 
20 Pselaphini (4) 2 3 5 
21 Schistodactylini (2)  1 1 
22 Tmesiphorini (3)  1 1 
23 Tyrini (6) 1 1 2 

Total number of species with SSC in Abdomen 45 82  



36 
 

 
 

Figure 5. Abdomen: Faronitae A. Dorsal, B. Ventral; Batrisini C. Male Batrisodes 
cryptotexanus modification of abdominal sterna, lateral view; Brachyglutini D. Male 

Brachygluta ulkei modification of abdominal terga, lateral view; E. male B. ulkei, dorsal 
view. 

 
 

Leg SSC 
 

Secondary sexual traits on legs were observed in 21 tribes (Table 5). In general, 

tibial segments presented higher variation; mesotibial dimorphism was present 67 species 

in 32 genera, being the most variable segment on legs, followed by protibial variation in 

49 species in 21 genera, and metatibial dimorphism in 43 species in 18 genera. The SSC at 

the mesotibiae were found in 28 species of Batrisini (12 of 25 genera), 11 from 

Trichonychini (three of six genera), and 10 Brachyglutini (two of four genera). The tribes 
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Trichonychini and Bythinini had nine species each where protibial dimorphism was 

present, followed by the tribes Batrisini and Thaumastocephalini, with eight species each. 

Metatibial sexual dimorphism was found in 10 species of Bythinini (one of three genera), 

and 10 species of Brachyglutini (three of four genera). The leg segments that varied the 

least among tribes were the mesocoxae, variable only in one species of Brachyglutini and 

one of Schistodactylini, and the metacoxae were dimorphic in just one species in the tribe 

Batrisini.  

The variation recorded on the protrochanters was mainly the presence of a single 

spine on ventral surface or a long digitiform apophysis; the spine could be sharp, acute, or 

small resembling a tubercle. Profemora were found to get thick around their middle, and 

to bear a tubercle near their bases. Protibiae could have on their surface a single tooth on 

the mesial region, a medioapical spur, and short denticles or spines; protibial surface could 

also be covered by short and dense pubescence, bear a transverse sulcus on the mesal 

margin, or be swollen in the middle. Protarsi could present variations on the second 

segment as being bilobed or bearing a small denticle. Dimorphism on the mesocoxae was 

a limited to a small tooth. Mesotrochanter variations were on the ventral and posterior 

margins, represented by a single spine, tooth or apophysis, in most cases these were short, 

round, blunt, apically curved, or long and stout; in addition, short setae or long bristles 

could be present. Mesofemora were found to vary in their thickness more than other leg 

segments; most modifications along their surface were a single protusion, spine, tooth, or 

carinae, commonly located on the ventro-basal, or postero-median margins (Figure 6); only 

in Clavigerini, a small spine was observed just beyond the midpoint. Mesotibial 
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modifications were found more frequently on the preapical and apical portions of the 

segment, and near to the base in a few instances; these modifications included a single 

tooth, spur, or denticle, and acute mucro; short pubescence could be covering any of these 

projections. In several cases these leg segments were curved inwards. On the hind legs, 

metacoxae were covered in setae and elongated posteriorly. Metatrochanters showed 

dimorphisms on the posterior and ventral margins, bearing one short tooth, spur or denticle; 

a longer and apically curved apophysis, scoop-like apical hook or a very oblique tooth 

could be present, and sometimes the whole segments were densely covered with long hairs. 

Metafemora presented variations on their base, in the anterior side with an excavation 

coated with a setiferous patch, and the posterior side could be sinuated, or have a carina 

covered with a tuft of hair, a small protuberance, and an angular projection. The ventral 

margin could bear spines near the apex or be flattened and glabrous. Finally, on the 

metatibiae, the most common modifications were at their apex on the mesal margin; these 

consisted in a flange with three spines, solitary spurs of different lengths and thickness, 

trichomes, and dense combs of setae.  
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Table 5. Leg SSC in Pselaphinae tribes. cx = coxae, trch = trochanters, fmr = femora, tb = tibiae, and trs = tarsi. 
 

 

Supertribe No. Tribe (number of 
species) 

Pro-leg Meso-leg Meta-leg Total 
SSC trch fmr tb trs cx trch fmr tb cx trch fmr tb 

BATRISITAE 
1 Amuropini (6)      1 3 3    3 10 
2 Batrisini (65) 5 1 8 2  14 9 28 1 14 7 4 93 
3 Thaumastocephalini (8) 1  8   1  1     11 

CLAVIGERITAE 4 Clavigerini (3)       2 2     4 
5 Tiracerini (1)   1     1    1 3 

EUPLECTITAE 

6 Dimerini (1)          1 1 1 3 
7 Euplectini (7)  1 1   2 1 3  2 1 2 13 
8 Mayetiini (3)          1   1 
9 Trichonychini (20) 1 6 9   1 1 11  1  9 39 
10 Trogastrini (2)        1     1 

GONIACERITAE 

11 Brachyglutini (22) 6 8 4  1 10 8 10  6  10 63 
12 Bythinini (14)  8 9   1 1   1 6 10 36 
13 Cyathigerini (3)   3     3     6 
14 Goniacerini (3)  1  1   4    1  7 
15 Iniocyphini (3)  1    1 1    1 1 5 
16 Proterini (3) 2  2   1  2     7 
17 Speleobamini (2)          2   2 

 18 Tychini (10)   1     2     3 

PSELAPHITAE 

19 Arhyodini (8)   3     4  1   8 
20 Odontalgini (3) 1            1 
21 Schistodactylini (2)   1  1       1 3 
22 Tmesiphorini (3)  1  1         2 
23 Tyrini (6) 2 1 2   3  1  1  1 11 

Total number of species with SSC in Legs 18 28 49 4 2 35 31 68 1 31 18 43  
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Figure 6. Legs in Pselaphinae. A. Prothoracic leg; B. Mesothoracic leg; C. Metathoracic 
leg with leg parts; D.  Sexual dimorphism in a Batrisini species. 

 
 

Wing and size dimorphism 

 Wing dimorphism was present in six species from the tribes Batrisini, 

Bythinoplectini, Jubini, and Trichonychini (table 6). Body size dimorphism was found in 

15 species from the tribes Amauropini, Thaumastocephalini, Clavigerini, Euplectini, 

Trichonychini, Bythinini, Tychini, Ctenistini, and Odontalgini. Only eight species showed 

size dimorphism in any of the legs, with six species in the tribe Brachyglutini.  
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Table 6. Wing and Size dimorphism in Pselaphinae tribes 

 
 

 

 

The correlation between the number of described species worldwide in Pselaphinae 

tribes and the sum of SSC recorded for each tribe in this study (Fig. 7) was significantly 

positive (r2=0.86, 32 d.f., p-value< 0.00001). The tribes Batrisini, Brachyglutini, 

Trichonychini, Tyrini, and Bythinini showed the largest amount of secondary sexual traits. 

Also, these four tribes contain most of the described species of Pselaphinae worldwide. 

Supertribe No. Tribe (number of 
species) 

Wing 
dimorphis

m 

Size dimorphism  Total 
SSC Pro-

leg 
Meso-

leg 
Meta
-leg Body 

BATRISITAE 
1 Amuropini (6)     1 1 
2 Batrisini (65) 1     1 
3 Thaumastocephalini (8)     1 1 

CLAVIGERITAE 4 Clavigerini (3)     2 2 

EUPLECTITAE 

5 Bythinoplectini (6) 2     2 
6 Euplectini (7)     1 1 
7 Jubini (1) 1     1 
8 Trichonychini (20) 2  1  5 8 

GONIACERITAE 
9 Brachyglutini (22)  3 3 1  7 
10 Bythinini (14)     1 1 

 11 Tychini (10)     2 2 

PSELAPHITAE 12 Ctenistini (4)     1 1 
13 Odontalgini (3)     1 1 

Total number of species with wing and size 
dimorphism 6 3 4 1 15  
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Figure 7. Relation between number of species worldwide and number of Secondary 
Sexual Characters in Pselaphinae tribes. 

 

DISCUSSION 

Secondary Sexual Characters are widespread through all major lineages within 

Pselaphinae. Several authors agree on the tendency of these characters to change at the 

intrageneric level (Park 1947, De Marzo 1989, Chandler 2001), and in some cases 

intraspecific levels (Besuchet and Kurbatov 2007). At the tribal level it is difficult to trace 

a relationship from ancestral to derivate states for SSC. Nonetheless, characters in the 

abdominal sterna, eyes, and mesotibiae are frequent in all tribes, with at least half of the 

genera carrying them (Appendix A). It is important to mention that in the supertribe 

Faronitae (i.e. Park and Carlton 2014), several genera present sexual dimorphism of the 
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abdominal sterna, which could suggest that sexual dimorphism on male abdomen could be 

an ancestral condition for secondary sexual characters in Pselaphinae. Sexual dimorphism 

on the abdominal ventrites is also present in other Staphylinidae lineages; for instance, in 

the neotropical genus Nordus Blackwelder (Staphylininae: Staphylinini), males present 

modification on the segments VII, VIII, and IX of the abdominal sterna (Chatzimanolis 

2005); and in some species of the genus Bryoporus Kraatz (Staphylinidae: Tachyporinae) 

males present groups of setae medially on the apical margin of the eight abdominal sternite 

(Campbell 1993). As with many other morphological characters, SSC in Pselaphinae seem 

to have been gained and lost in different tribes during the evolution of the group (Chandler 

2001). For example, in batrisines and brachyglutines, antennal dimorphism at the apical 

four to three antennomeres shows some similarities among members of the two tribes: the 

presence of solitary foveae, depressions, or concavities, as well as spines, lateral 

projections, or teeth; frequently associated to modified setae or hairs. In contrast, in the 

tribes Euplectini, Trichonychini, and Bythinoplectini (from Euplectitae), four of the genera 

included in this study, present secondary sexual traits of the apical antennomeres, limited 

to changes in the shape and degree of symmetry in relation to the rest of the antennae.  

When compared to other subfamilies in Staphylinidae, Pselaphines have 

characteristic compact bodies, reinforced by the internal projections of the foveae on their 

integument (Nomura 1991; Chandler 2001); as consequence, the abdominal flexibility 

common to other staphylinid groups is limited in pselaphines (Newton and Thayer 1995). 

Likewise, Pselaphines are the only ones among other Omaliinae-group members to present 

secondary sexual characters, other than wing dimorphism (Thayer 1992) or modification 
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of the abdominal sternites. From the few cases where copulatory behavior in staphylinids 

has been documented (Peschke 1987; Betz 1999; Drugmand 1992; Alcock 1991; Alcock 

and Forsyth 1988; Forsyth and Alcock 1990), it is common to find that males and females 

flex their abdomens upwards before and during copula, and from side to side as a signal of 

rejection from female to male. In Aleochara curtula (Staphylinidae: Aleocharinae), males 

can grab females’ terminalia with their clasp-like genitalia while bending the abdomen 

(Peschke 1987). In Eusphalerum (Omaliinae), the male would be on top of the female with 

his prolegs around the articulation between the pronotum and the elytra, his mesolegs 

would rest upon the mesopleural region, and the metalegs would be at the apex of the 

female’s elytra or on her abdomen for at least one hour. The copula lasts only a few 

seconds, and starts when the male arches his body and touches the last segments of the 

female’s abdomen with his own, the female moves side to side several times, and when 

stops the male makes pressure with the aedeagus on the females last sternites, the apex of 

the median lobe enters the female’s genital tract, while the parameres keep resting on the 

female’s sternites (Drugmand 1992). Male abdominal morphology in higher Pselaphinae 

suggests that flexing this part of the body before or during mating could be difficult, 

contrary to the observed in other Staphylinidae. In the genus Plagiophorus Motschusky 

(Goniaceritae: Cyathigerini), the abdomen is composite, with tergal and sternal segments 

IV to VII fused in both sexes; males have a large concavity on the abdominal composite 

sternum, and in some species the antennal clubs are concave ventrally as well. Sugaya 

(2005) observed in a pair of Plagiophorus amygdalinus Sugaya, that during copula while 

the male mounts the female, their abdomens fit when the large concavity on the male’s 
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composite sternite receives the female’s composite tergite, and keeps the couple connected 

during their interaction. This observation suggests a possible function of the SSC in the 

abdominal sternum; if copulatory behavior requires immobilization of the female’s body, 

it could be possible that Pselaphinae males have to use, beside abdominal modifications, 

other body parts to hold onto their mates; for example, male legs would be important to 

maintain female’s position before intromission of the male’s genitalia. If this were the case, 

it would be expected for males mesolegs to show modifications such as spines or 

protuberances along the leg segments. The copulatory behavior described above could 

explain, in part, the ubiquity of sexual secondary characters on abdominal sterna (Fig. 10) 

and legs (Table 5) found in the present study.  

Pselaphinae beetles have shown a high reliance on their olfactory system to find a 

capture prey; maxillary palps, antennae, and leg segments are important during feeding 

behavior for males and females (Schomann et al. 2008). More than other body parts, 

antennae are covered in different types of sensilla, that allow the beetles to distinguish the 

direction of chemical cues in their environment. Schomann and collaborators (2008), 

studying prey capture behavior in six different species of European pselaphines, found that 

apical antennomeres have a higher concentration of olfactory sensilla, which were used 

during prey search by movement of the antennae. Although there were not differences 

reported between male and female antennae, it was observed that ommatidia number and 

size of the cornea were lower in the female compared to the male of Bryaxis puncticollis 

(Goniaceritae: Bythinini). Given the importance of the olfactory system for feeding 

behavior in Pselaphines, it is expected that this system would be formed by the same 
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anatomical elements in males and females. However, the morphological differences found 

on the male antennae of different lineages, suggest that males could use these antennal 

modifications to attract females by exploiting their already tuned olfactory system (West-

Eberhard 1984; Andersson 1994). As reported here, males of several species in the tribe 

Batrisini present enlargement of the two terminal antennomeres (i.e. Fig. 2C and D). For 

instance, De Marzo and Vit (1983), studied the internal morphology of the male antennae 

in several species of palearctic Batrisodes and Batrisus. Within each antennomere there is 

a glandular reservoir that changes in shape and size according to the species; in 

antennomere XI, the glandular unit is connected to the external surface through a series of 

small channels that lead to a tubercle at the base of the antennomere; in the antennomere 

X, the glandular reservoir is connected to separated glandular channels that lead to a larger 

surface on the exterior. In the females, these two antennomeres are simple, containing a 

few, small, and isolated glandular units, among many units of the olfactory system (De 

Marzo and Vit 1983; De Marzo and Vovlas 1989). Nonetheless, sexual dimorphism on 

antennomeres and head capsule (Fig. 10) seem to be less common than abdominal or legs 

dimorphism. Head capsule dimorphism appears to absent in the Supertribes Pselaphitae 

and Clavigeritae; in this monophyletic group, antennal dimorphism is limited to differences 

in the flagellum length, where some antennomeres are larger in males compared to females. 

In the “Tyrini group” of tribes (Ctenistini, Hybocephalini, Odontalgini, Tmesiphorini, and 

Tyrini), males do not show modifications in cephalic capsule, as the other Pselaphitae 

groups, but many species within this related tribes have asymmetric antennomeres, and 

different flagellum lengths. Secondary sexual characters on the head capsule are present in 
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the two most diverse tribes Batrisini and Brachyglutini, and in their closely related 

respective tribes, Trogastrini and Bythinini. No hypotheses have been proposed for their 

function, although their evolution could be related to the protection of the cephalic 

appendages (Coulon 1989).   

Another aspect of Pselaphinae natural history is that phenotypic plasticity seems to 

occur in different lineages; for instance, species with dimorphic males have been found in 

the tribes Batrisini (Nomura 1991), Bythinini (Besuchet and Kurbatov 2007), 

Bythinoplectini (Coulon 1989),  Hybocephalini (Yin et al. 2020), among others. Dimorphic 

forms are characterized, in most cases, by brachypterous and macropterous males, with 

females being commonly brachypterous as well. The reduction on wings has been seen 

accompanied by a reduction or atrophy of the eyes’ size (Batrisini, Nomura 1991; and 

Bythinoplectini, Coulon 1989). In other cases, major males would show secondary sexual 

characters, while minor males would be similar to females (Bythinini; Coulon 1989). If 

phenotypic plasticity is widespread in Pselaphinae, during evolutionary time, these 

morphological differences can impact lineage diversification by acting together with either 

natural selection, for example different microhabitat preferences in the two male 

phenotypes, or sexual selection, if there is divergence on female choice that benefits 

differential reproductive success in both male forms (West-Eberhard 2003). 

Phylogenetic relationships within Pselaphinae continue to be evaluated constantly 

through morphological and molecular characters (Parker and Grimaldi 2014; Parker 2016; 

Yin et al. 2017; Yin et al. 2019). Figure 8 shows the current phylogenetic hypothesis about 

the relationships within higher Pselaphinae. Batrisini and Brachyglutini are currently the 
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tribes with more described species worldwide with 1,852 and 1,523 species, respectively; 

also, these had larger numbers of SSC recorded in the present study. Under this 

phylogenetic hypothesis both Batrisini and Brachyglutini are sister taxa to tribes with 

significantly lower number of species worldwide: Batrisini with Trogastrini (150 species), 

and Metopiasini (66 species) + Jubini (151 species); and Brachyglutini with Bythinini (619 

species) + the Trichonychine genus Oropodes. Differences in species diversity and 

presence of sexual dimorphisms between sister clades can indicate that the process or 

processes promoting species diversity have impacted differently each sister clade; if after 

the ancestral lineage split, the resulting sister groups were exposed to different 

environments, from ecological shifts at the local scale, to new geographical distributions, 

the distinct selective pressures would affect diversification and extinction rates of the 

resulting lineages (Barraclough et al. 1998). However, because of the limited sampling of 

secondary sexual characters in many of the Pselaphinae tribes included here, assessing the 

relationship between secondary sexual characters and species richness, can be biased by 

several factors. First, species descriptions can vary on the detail level which is used to 

delimit a species; for example, some authors may focus more in describing genitalia 

characteristics rather than external morphology, because in many cases these are the only 

structures with different morphology in closely related species. Second, some species 

descriptions are vague when indicating the qualities of the secondary sexual characters 

present in the species, commenting only which structures show dimorphism, without 

recording further details. Thus, any sexually dimorphic structure present in the species will 
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not be recorded in works such this, unless specimens of said species can be observed 

directly.  

In the last decade, several fossil specimens from Burmese amber (around 99 Ma) 

have been recovered and described: Boreotethys arctopteryx Parker 2016, B. grimaldii 

Parker 2016, and Cretobythus excavatus Yin, Parker, and Cai 2018 from the tribe 

Bythinini; Cretobrachygluta laurasiensis Yin, Kurbatov, Cuccodoro, and Cai 2019 from 

the tribe Brachyglutini; and Protrichonyx rafifrons Parker 2016, Priscaplectus carinatus 

Yin, Chandler, and Cai 2019, and P. grandiceps Yin Chandler, and Cai 2019, all left as 

incertae sedis but within the supertribe Euplectitae. From these, Cretobrachygluta and 

Priscaplectus spp. show evidence of secondary sexual characters. Cretobrachygluta shows 

protuberances on mesotrochanters, apical spine on mesotibiae, and the abdominal tergite 

VIII with an apical notch (Yin et al. 2019); while Priscaplectus carinatus showed 

modification on the vertex region, and P. grandiceps presented protuberances on the 

metatrochanters (Yin et al. 2019). Therefore, these findings suggest that secondary sexual 

characters in the Higher Pselaphinae lineage had already evolved around the Cretaceous.   

The origin and evolution of secondary sexual characters in any animal group are 

difficult to figure out. In the particular case of pselaphine beetles, it seems that the 

innovations that have been suggested to explain the evolution of myrmecophiles in the 

group (Parker and Grimaldi 2014; Parker 2016), are the same that helped the different 

lineages within Higher Pselaphinae to evolve many of the sexual modifications observed 

in males. The transition from the highly flexible abdomen in staphylinids to the 

strengthening of the body in pselaphines, worked as a preadaptation to inquiline life, 
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environmental protection, and as a selective pressure to use modifications on the body 

appendages to ensure mating success. In other words, a compact body may have increased 

survival by protecting against environmental conditions and predators, but at the same time 

limited abdomen mobility, and forced the use of legs and abdominal ventrites to hold onto 

the females during copula. Under these conditions, the great diversity of Pselaphinae 

beetles is probably the consequence of first natural selection, and then maybe reinforced 

by sexual selection. These hypotheses could be tested by comparing mating displays among 

higher Pselaphinae and their sister group Faronitae. Looking at morphological and putative 

behavioral differences between these two groups can elucidate whether males have distinct 

ways to approach females or not, and how SSC are used during these interactions.  

This study is an attempt to explore the diversity of forms that have helped 

taxonomists to discriminate between related genera and species. These characters are 

remarkably valuable for the taxonomy of the hyperdiverse Pselaphinae. Because these 

characters are unique on each species, their use to classify higher taxa is reduced. 

Nevertheless, their great variation is also intriguing because they may represent an 

important part of the evolutionary history that took Pselaphines to be so diverse. To record 

all the diversity of secondary sexual characters in this group is a monumental task, since 

the current study includes roughly 2% of all the species of Pselaphinae. Behavioral 

observations and phylogenetic analyses to compare the evolution of these traits are pivotal 

to understand how these characters are used, and how they correlate with other aspects of 

Pselaphinae evolution. 
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Figure 8. Phylogenetic relationships within higher Pselaphinae among tribes (modified 
from Parker 2016). 

 

Figure 9. Distribution of Secondary Sexual Characters on abdominal sterna throughout 
Higher Pselaphinae tribes. 
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Figure 10. Distribution of Secondary Sexual Characters on head capsule (left) and 
antennae (right) throughout Higher Pselaphinae tribes. 
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CHAPTER THREE 

EVOLUTION OF SECONDARY SEXUAL CHARACTERS IN BATRISODES 

REITTER, 1882 (STAPHYLINIDAE: PSELAPHINAE) FROM NORTH AMERICA, 

NORTH OF MEXICO 

INTRODUCTION 

The genus Batrisodes comprises around 160 species distributed in the Holarctic 

region (Newton & Chandler 1989; Chandler et al. 2009; Yin & Li 2013; Newton 2018), 

there are 64 species described for the Palearctic region with 19 species from Europe, and 

44 species from Asia (Yin & Li 2013; Yin et al. 2015; Newton 2018). In North America, 

the genus includes 85 species, and one subspecies, divided in seven subgenera, and one 

species B. juvencus Brendel 1865, is not assigned to any subgenus (86 described species 

total) (Ferro & Carlton 2014). The subgenera Babnormodes Park 1951 (33 species), 

Declivodes Park 1951 (4 species), Elytrodes Park 1951 (1 species), Excavodes Park 1951 

(20 species), Pubimodes Park 1951 (5 species), and Spifemodes Park 1953 (1 species), are 

present in the central and eastern regions; while Empinodes Park 1953 (19 species), is 

restricted to the western region (Grigarick and Schuster 1962; Newton & Chandler 1989; 

Chandler 1997).  

As with most pselaphines, Batrisodes species are frequent in leaf litter, rotten wood, 

beneath loose bark, and inside tree holes; many species visit or live inside ant nests (Park 

1947; Yin et al. 2015), while others live in caves (Park 1947; Park 1951; Park 1958; Park 

1960; Chandler et al. 2009). There are 21 described species of Batrisodes collected with 

four different genera of ants, without a species-specific relationship (Park 1947; Chandler 
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1997). Babnormodes and Excavodes are the subgenera with larger numbers of cave 

inhabitants; of the described species known only from cave interior and cave entrance, 70% 

belong to Babnormodes, and 35% to Excavodes (Chandler et al. 2009). The preference for 

humid and dark places could have been a characteristic that took Batrisodes species to 

colonize habitats such as caves and nests, where they can act as predators or scavengers on 

mites, earthworms, and ant brood (Park 1947).   

Batrisodes subgenera were proposed by Park (1951, 1953, 1960) to accommodate 

different species groups from North America and to differentiate these from Palearctic 

species. Park (1951) divided the genus into two groups of species for the Nearctic, based 

on genitalia morphology, metatibial spur presence, and male secondary sexual characters. 

One group of species was assigned to the subgenus Batriasymmodes, where males have 

complex genitalia with basal bulb, internal musculature, and articulate styles, and the 

metatibiae lack of an apical spur. Most other North American species were classified into 

five subgenera, where the aedeagus is reduced and sclerotized, lacking a basal bulb, 

internal musculature, or styles, and the apical spur on the metatibiae is present. The 

different subgenera are based on male secondary sexual characters, number of elytral 

foveae, presence of pubescence on the vertexal foveae, and integumental texture. The 

subgenus Babnormodes includes species where males have a ventral incision on the second 

segment of the mesotarsi; in Excavodes males present a transversal excavation between the 

antennae; males in the subgenus Pubimodes also bear the transversal excavation between 

the antennal insertions, and the vertexal foveae in both female and males are densely 

pubescent; the subgenus Elytrodes is characterized by having only two elytral basal foveae; 
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lastly, in the subgenus Declivodes, the male and female integument is rugose, plus males 

have antennomere X bearing a small ventral fovea. Later (1953), Park created other two 

subgenera, largely based on aedeagal structure, representing an alleged intermediate 

complexity between Batriasymmodes species group and the remaining subgenera: 

Empinodes comprises the western North American species, and Spifemodes with only one 

eastern species. All these subgenera contain species where males have modifications on 

antennomeres I, VII, IX, X, and XI. Finally, Park (1960) considered the differences in 

aedeagal morphology and the absence of metatibial spur were enough to elevated 

Batriasymmodes to the genus level. 

Secondary sexual characters may play important roles in prezygotic isolation 

between closely related taxa and facilitate the formation of new species through sexual 

selection, when these characteristics are associated with mate search, attraction, and 

recognition systems (Panhuis et al. 2001). The importance of secondary sexual characters 

and sexual selection as drivers for speciation has been explored theoretically by several 

authors (Lande 1981; West-Eberhard 1984). Empirically, this prediction has proved 

difficult to test. Yet in highly diverse groups such Passerine birds, a correlation between 

species richness and sexual dimorphism has being found (Barraclough et al. 1995; Janicke 

et al. 2018). 

Species-rich lineages such Batrisodes offer the possibility to evaluate the 

correlation between secondary sexual characters and species diversification at a finer scale; 

the most dramatic and diverse secondary sexual character are present in two of the seven 

subgenera, which are also the most species rich; these contain species with distributions 
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ranging from widely distributed to cave-related endemic species. Meanwhile, one subgenus 

is restricted to western North America, and its species are relatively uniform in their 

external morphology, including secondary sexual traits. In an evolutionary context, it is 

feasible to compare closely related taxa (sister clades) in relation to their number of species 

and prevalence of sexual secondary characters. Also, it is possible to assess whether a 

distinct sexual trait is frequently found in a particular species-rich clade, or if a combination 

of several sexual characteristics corresponds with more species diversity. Even more, 

surveying such traits and looking at their frequency throughout the group and its current 

distribution, can help to identify prevalent secondary sexual traits in specific geographical 

regions (i.e. Palearctic vs. Nearctic or eastern vs. western Nearctic); also, looking at 

Batrisodes species relationships can help to identify whether ecological shifts (cave 

dwellers vs. leaf litter inhabitants) have influenced the frequency of sexually dimorphic 

conditions. This chapter constitutes the first attempt at constructing a morphological data 

set for Batrisodes phylogeny, including taxa from the Nearctic and Palearctic regions, and 

the first phylogenetic analysis of the genus Batrisodes. The aim of this chapter is to 

document the secondary sexual characters in Nearctic Batrisodes in an evolutionary 

context to identify: a) whether these characters are highly convergent within the lineage, 

b) what characters are more constant across the genus, c) which tend to be lost or gained 

more frequently, and d) recognize secondary sexual characters present in the most diverse 

clades. 
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MATERIALS AND METHODS 

Specimens 

 The specimens used for phylogenetic analysis and observation of secondary sexual 

characters come from museum loans from the following institutions and personal 

collections: 

CNC - Canadian National Collection of Insects, Ottawa, Canada (Dr. Anthony E. Davies). 

CUAC—Clemson University Arthropod Collection, Clemson, U.S.A. (Dr. M. Ferro). 

FMNH—Field Museum, Chicago, U.S.A. (Dr. M.K. Thayer, Ms. C.A. Maier). 

LSAM—Louisiana State Arthropod Museum, Louisiana State University, Baton Rouge, 

Louisiana, U.S.A. (Ms. V.M. Bayless, Dr. C. Carlton). 

MHNG—Museum of Natural History (Museum d’Histoire naturelle) Geneva, Switzerland. 

(Dr. G. Cuccodoro). 

UNHC Chandler—Donald S. Chandler collection, Department of Zoology, University of 

New Hampshire, Durham, U.S.A. (Dr. D.S. Chandler). 

 

Phylogenetic analysis 

To assess the relationships among Batrisodes species and the evolution of 

secondary characters in the genus for North America, a matrix of 96 taxa and 81 

morphological characters was constructed in Mesquite 3.61 (Maddison and Maddison 

2019). The most parsimonious cladograms and character optimizations were identified in 

a comprehensive search strategy using the parsimony ratchet (Nixon 1999) as implemented 

in TNT (Goloboff et al. 2008; spawned from ASADO ver. 1.61 [Nixon 2004]), based on 
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the following commands: (1) ratchet settings – 200 iterations per replication, 4% up-/down-

weighted; (2) drift settings - 100 iteration per replication; (3) tree fusion settings – 10 

rounds, 200 MB max RAM; (4) general settings – 1000 tree hold; (5) analysis – ratchet, 

drift, sectorial search, tree fusion, TBR-max; and (6) xmult settings – 3 hits, 5 consensus.  

Taxa 

Table 1. Taxa included in phylogenetic analysis of secondary sexual character evolution 
for the genus Batrisodes. 1 – 6: Pselaphinae genera and species of tribes outside 

Batrisitae; 7 – 19: species within Batrisitae from the tribes Amauropini (7 -9), and 
Batrisini (10 - 96); 31 – 96: Batrisodes species for North America, north of Mexico. 

Subgeneric names are only given to the focal Nearctic species. 

Taxa Distribution 
1. Sonoma sp. Casey, 1886 Nearctic 
2. Conoplectus sp. Brendel, 1888 Nearctic and Mexico 
3. Machaerodes carinatus (Brendel), 1865 USA (OH, PA, WV, VA, NC, GA, TN) 
4. Reichenbachia sp. Leach, 1826 Worldwide 

5. Tmesiphorus costalis LeConte, 1849 
Canada (ON), USA (IA, IL, IN, OH to PA, NJ, MD, 
FL, AL, MS, KY, MO, AR, LA, SC, TX, OK, KS) 

6. Upoluna batrisoides (Motschulsky), 1857 
USA (AR, FL, IL, IN, KS, KY, LA, MO, OH, OK, 

PA, NY, SC, TN, TX) 
7. Arianops sp. Brendel, 1893 USA (GA, NC, PA, AL, SC, AR, TN, VA, TX, OK 
8. Pseudoamaurops mullerianus (Ravasini), 

1923 
Albania 

9. Amaurops sulcatulus Dodero, 1919  Italy (Sicily) 
10. Arthmius sp. LeConte, 1849 Neotropical; Southeastern USA 
11. Texamaurops redelli Barr and Steeves, 

1963 
USA (TX) 

12. Batriasymmodes sp. Park, 1951 
USA (PA, NC, SC, FL, AL, IN, OH, MD, GA, MO, 

IL, IN, NY, NJ, DE, DC, VA, WV, LA) 

13. Batrisus formicarius Aubé, 1833 
Europe (AU, BH, BU, CR, CZ, FR, GE, GR, HU, IT, 
LT, NL, PL, RO, SK, SL, SP, SZ, UK, YU), Turkey 

(European) 

14. Batrisus sibiricus Sharp, 1874 
Russia (Siberia, Far East), Korea (N, S), China 

(Beijing, Shanghai, Sichuan) 
15. Batrisus ormayi Reitter, 1885 Romania 
16. Ambicocerus celisi Leleup, 1973 Ghana 
17. Atheropterus alticola Jeannel, 1952 République démocratique du Congo (Zaire) 
18. Batriscenellus insulicola Nomura, 1991  Ryukyu Is. (Okinoerabu) 
19. Batrisocenus clavatus Raffray, 1894 Malaysia 



71 
 

20. Batrisodes sulcaticeps Besuchet, 1981 
Europe (BH, BU, GR, HU, RO) 

 
21. Batrisodes tichomirovae Löeb, 1973 Rusia (Far East) 
22. Batrisodes pogonatus Saulcy, 1874 Greece 

23. Batrisodes buqueti (Aubé), 1833 
Europe (AU, BH, BU, CR, CZ, FR, GE, GR, IT, NL, 
PL, RO, SK, SL, SP, SZ, UK, YU), Russia (southern 

European part), Turkey 

24. Batrisodes venustus (Reichenbach), 1816 
Europe (AU, BH, BU, BY, CR, CZ, DE, FI, FR, GB, 
GE, HU, IT, LA, LT, MC, NL, NR, PT, PL, RO, SK, 

SL, SP, SV, SZ, UK), Russia (European) 

25. Batrisodes delaporti (Aubé), 1833 
Europe (AU, BH, BU, BY, CR, CZ, FR, GB, GE, 

GR, HU, IT, MC, NL, PL, RO, SK, SL, SP, SV, SZ, 
UK, YU) 

26. Batrisodes oculatus (Aubé), 1833 
Europe (AU, BE, BU, CR, CZ, FR, GB, GE, GR, 
HU, IT, MC, NL, SL, SP, SZ, UK, YU, Russia 

(European), Turkey 

27. Batrisodes adnexus (Hampe), 1863 
Europe (AU, CR, CZ, DE, FI, FR, GB, GE, HU, IT, 
PL, RO, SK, SL, SV, SZ, UK, YU), Russia (northern 

European part) 
28. Batrisodes circassicus Reitter, 1887 Russia (Caucasus) 
29. Batrisodes grossus Jiang, Ri-Xin, and Yin, 

2017 
China (Yunnan) 

30. Batrisodes simianshanus Jiang, Ri-Xin, and 
Yin, 2017 

China (Chongqing) 

31. Batrisodes (Babnormodes) antennatus 
Schaeffer, 1906 

USA (NC, PA, TN, VA) 

32. B. (Babnormodes) barri Park, 1958 USA (TN) 
33. B. (Babnormodes) cavicornis (Casey), 1897 USA (IL, IN, OH, PA, KY) 
34. B. (Babnormodes) clypeospecus Park, 1960 USA (TN) 
35. B. (Babnormodes) dentifrons Chandler and 

Reddell, 2009 
USA (TX) 

36. B. (Babnormodes) fanti Chandler and 
Reddell, 2009 

USA (TX) 

37. B. (Babnormodes) femeniclypeus Chandler 
and Reddell, 2001 

USA (TX) 

38. B. (Babnormodes) ferulifer Park, 1960 USA (TN) 
39. B. (Babnormodes) foveicornis (Casey), 

1887 
USA (IA, IN, OH, NY, TN, KY, LA) 

40. B. (Babnormodes) gemmoides Park, 1960 USA (TN) 
41. B. (Babnormodes) gemmus Park, 1956 USA (TN) 
42. B. (Babnormodes) gravesi, Chandler and 

Reddell, 2001 
USA (TX) 

43. B. (Babnormodes) hairstoni Park, 1947 USA (IN) 
44. B. (Babnormodes) henroti Park, 1956 USA (KY) 
45. B. (Babnormodes) hubrichti Park, 1958 USA (KY) 



72 
 

46. B. (Babnormodes) jocuvestus Park, 1960 USA (AL) 
47. B. (Babnormodes) jonesi Park, 1951 USA (AL) 
48. B. (Babnormodes) pannosus Park, 1960 USA (TN) 
49. B. (Babnormodes) profundus Park, 1956 USA (AL) 
50. B. (Babnormodes) punctifrons (Casey), 

1887 
USA (OH, PA, NY, NH, MA, WV, MD) 

51. B. (Babnormodes) riparius (Say), 1824 
Canada (NB, ON, QC), USA (GA, KY, IL, IN, MI, 

MO, NC, NJ, NY, OH, OK, PA) 
52. B. (Babnormodes) schaefferi Park, 1947 USA (NC, VA, SC, GA) 
53. B. (Babnormodes) specus Park, 1951 USA (OH, AL, TN) 
54. B. (Babnormodes) spretoides Ferro and 

Carlton, 2014 
USA (TN) 

55. B. (Babnormodes) spretus (LeConte), 1849 
USA (DC, GA, IA, IL, IN, KY, VT, MA, ME, MO, 

NC, NY, OH, PA, TN, VA, WV) 
56. B. (Babnormodes) tumoris Park, 1960 USA (AL) 

57. B. (Babnormodes) uncicornis (Casey), 1897 
USA (AL, FL, GA, LA, MA, MS, NC, NJ, NY, PA, 

RI, SC, TN, TX, VA) 
58. B. (Babnormodes) valentinei Park, 1951 USA (AL, TN) 
59. B. (Babnormodes) wartoni Chandler and 

Reddell, 2001 
USA (TX) 

60. Batrisodes (Declivodes) bistriatus 
(LeConte), 1849 

USA (CT, DC, MD, NJ, PA) 

61. B. (Declivodes) cartwrighti Sanderson, 
1940 

USA (SC) 

62. B. (Declivodes) declivis Casey, 1908 USA (IA, IL) 
63. B. (Declivodes) fossicauda (Casey), 1897 USA (IA, PA, NY, CT, LA) 
64. Batrisodes (Elytrodes) ionae (LeConte), 

1849 
Canada (ON), USA (IN, PA, NJ, MD, DC, VA, GA, 

AL, MS, KY, MO, KS) 
65. Batrisodes (Empinodes) albonicus (Aubé), 

1833 
Canada (BC), USA (AK, CA, OR, WA) 

66. B. (Empinodes) aphaenogastri Fall, 1912 USA (ID) 
67. B. (Empinodes) cicatricosus (Brendel), 

1890 
USA (CA) 

68. B. (Empinodes) denticauda (Casey), 1893 Canada (BC), USA (WA, OR, CA) 
69. B. (Empinodes) indistinctus Grigarick and 

Schuster, 1962 
USA (CA) 

70. B. (Empinodes) lustrans Casey, 1908 USA (CA) 
71. B. (Empinodes) medocino (Casey), 1886 USA (CA) 
72. B. (Empinodes) opacus Grigarick and 

Schuster, 1962 
USA (CA) 

73. B. (Empinodes) yanaorum Chandler, 2003 USA (CA) 
74. B. (Empinodes) zephyrinus (Casey), 1886 USA (NV, CA) 
75. Batrisodes (Excavodes) auerbachi Park, 

1956 
USA (GA, NC, TN) 

76. B. (Excavodes) beyeri Schaeffer, 1906 USA (NC, TN) 
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77. B. (Excavodes) cavernosus Park, 1951 USA (AL) 
78. B. (Excavodes) clypeonotus (Brendel), 1893 USA (AL, MO, AR, LA, SC, TX, OK) 
79. B. (Excavodes) cryptotexanus Chandler and 

Reddell, 2001 
USA (TX) 

80. B. (Excavodes) dorothae Ferro and Carlton, 
2014 

USA (LA, SC) 

81. B. (Excavodes) frontalis (LeConte), 1849 
Canada (AB, MB, NB, ON, QC), USA (CO, IA, ID, 

IL, KS, LA, ME, MN, MO, OH, PA, WI) 

82. B. (Excavodes) furcatus (Brendel), 1890 
Canada (QC), USA (AL, IA, IL, IN, KY, MA, ME, 

MI, MN, NH, NY, OK, RI, TN) 
83. B. (Excavodes) grubbsi Chandler, 1992 USA (TX) 

84. B. (Excavodes) lineaticollis (Aubé), 1833 
Canada (BC, NB, NL, NS, ON, QC), USA (CO, FL, 
IL, IN, MA, ME, MI, MN, NH, SC, TX, VT, WA, 

WI, etc.) 
85. B. (Excavodes) reyesi Chandler, 1992 USA (TX) 

86. B. (Excavodes) scabriceps (LeConte), 1849 
Canada (NB, ON, QC), USA (WI, IL, IN, MI to NY, 

CT, NC, MS, TN, AR, OK) 
87. B. (Excavodes) sinuatifrons (Brendel), 1893 Canada (ON), USA (MS, TN, AR, LA) 
88. B. (Excavodes) temporalis (Casey), 1897 USA (PA, MD, FL) 
89. B. (Excavodes) texanus Chandler, 1992 USA (TX) 
90. B. (Excavodes) venyivi Chandler, 1992 USA (TX) 
91. B. (Excavodes) virginiae (Casey), 1884 USA (MI, NC, SC, TN, VA, WV) 
92. Batrisodes (Pubimodes) denticollis (Casey), 

1884 
USA (IA, IL, OH, PA, NY, NJ, MD, DC, VA, NC, 

SC, GA, TN, KY, MO, AR, OK) 
93. B. Pubimodes (nigricans) (LeConte), 1849 USA (SC, GA) 
94. B. Pubimodes (schmitti) (Casey), 1897 USA (IN, OH, PA, VA, NC, SC, AL, MS, TN, KY) 

95. B. Pubimodes (striatus) Park, 1947 
Canada (ON, QC), USA (MN, WI, IL, IN, MI to NH, 

GA, KY, MO, KS, NE) 
96. Batrisodes (Spifemodes) schaumi (Aubé), 

1844 
USA (AL, FL, GA, IL, IN, KY, LA, MI, MO, MS, 

NC, NJ, NY, OH, PA, SC, TN, VA) 
 

Morphological Characters 

Characters pertaining to the external morphology were examined using a Leica 

M80 stereomicroscope (magnifications 7.5-60X). The morphological terminology is used 

in accordance with Park (1947) and Chandler (2001). Character photographs were taken 

with a camera Canon EOS 6D with 65 mm lens and a Passport Portable Imaging system 

by Visionary Digital and edited with Adobe Photoshop 2020. Line drawings were prepared 
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with a drawing tube attached to the stereomicroscope. The initial sketches were scanned 

and redrawn using Adobe Illustrator 2020. 

 

Characters (* = Secondary Sexual Characters) 

1. Pronotal disc with processes: state 0 = present, state 1 = absent. 

2. Antennal scape apex: state 0 = circular, state 1 = emarginate. 

3. Antennal pedicel: state 0 = similar to scape, state 1 = barrel shaped or globose, state 2 

= elongate. 

4. Antennomeres III to VI: state 0 = oblong, state 1 = round transverse, state 2 = 

cylindrical. 

5. Vertexal foveae: state 0 = absent, state 1 = present. 

6. Lateral pronotal foveae: state 0 = absent, state 1 = present. 

7. Median pronotal foveae: state 0 = absent, state 1 = present-typical, state 2 = present-

foveoid depression. 

8. Procoxal foveae: state 0 = absent, state 1 = present. 

9. Elytral sutural foveae/stria: state 0 = absent, state 1 = present. 

10. Elytral basal foveae: state 0 = absent, state 1 = 2-3, state 2 = 1. 

11. Elytral subhumeral foveae: state 0 = absent, state 1 = present. 

12. Metacoxae: state 0 = contiguous, state 1 = narrowly separate, state 2 = distant. 

13. Tarsal claws: state 0 = equal, state 1 = unequal, state 2 = single. 

14. First abdominal segment: state 0 = simple, state 1 = yes, state 2 = modified. 

15. Paramedian pronotal carinae: state 0 = absent, state 1 = present. 
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16. Vertexal foveae pubescent: state 0 = absent, state 1 = present (Fig. 3B). 

17. Fronto-clypleal region complete*: state 0 = present (Fig. 1A), state 1 = absent. 

18. Eyes: state 0 = present, state 1 = absent. 

19. Antennal tubercles: state 0 = absent, state 1 = present. 

20. Fronto-clypeus constricted*: state 0 = absent, state 1 = present (Fig. 4B). 

21. Fronto-clypeus interrupted*: state 0 = absent, state 1 = present (Fig. 3C and D). 

22. Dorsal margin of frontal slope acute*: state 0 = absent, state 1 = present (Fig. 3C). 

23. Dorsal margin of frontal slope rounded*: state 0 = absent, state 1 = present (Fig. 3D). 

24. Dorsal margin of frontal slope sinuate*: state 0 = absent, state 1 = present (Fig. 3A and 

B). 

25. Anterior margin of head concave*: state 0 = absent, state 1 = present. 

26. Paired tufts of hairs on dorsal margin*: state 0 = absent, state 1 = present (Fig. 3B, D, 

and E). 

27. Clypeal carina sinuate*: state 0 = absent, state 1 = present (Fig. 3A, E, and F). 

28. Clypeal carina with tufts of hairs*: state 0 = absent, state 1 = present (Fig. 3E and F). 

29. Clypeus with medial process round*: state 0 = absent, state 1 = present (Fig. 3A). 

30. Clypeus with medial process acute*: state 0 = absent, state 1 = present (Fig. 3C to F). 

31. Long tufts of hairs on clypeal process*: state 0 = absent, state 1 = present (Fig. 3E and 

F). 

32. Transverse excavation glabrous*: state 0 = absent, state 1 = present (Fig. 4). 

33. Transverse excavation covered by short pubescence*: state 0 = absent, state 1 = present 

(Fig. 3D). 
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34. Fronto-clypeal slope continuous between antennal insertions: state 0 = absent, state 1 

= present (Fig 3E). 

35. Anterior margin of head projecting forward*: state 0 = absent, state 1 = present (Fig. 

4C). 

36. Anterior margin of head flat*: state 0 = absent, state 1 = present. 

37. Vertexal lateral carinae: state 0 = absent, state 1 = present. 

38. Vertexal medial carina: state 0 = absent, state 1 = present. 

39. Glabrous depression on dorsal portion of fronto-clypeal region*: state 0 = absent, state 

1 = present (Fig. 4E and F). 

40. Head integument in male: state 0 = dull, state 1 = polished. 

41. Head integument in female: state 0 = dull, state 1 = polished. 

42. Frontal slope vertical in females: state 0 = absent, state 1 = present. 

43. Eye dimorphism in males and females: state 0 = absent, state 1 = present. 

44. Antennomeres II to XI with modifications*: state 0 = absent (Fig. 5A and B), state 1 = 

present. 

45. Scape expanded dorso-ventrally*: state 0 = absent, state 1 = present (Fig. 5 C). 

46. Shape of antennomere IX*: state 0 = subquadrate, state 1 = trapezoid/triangular. 

47. Antennomere X enlarged*: state 0 = absent (Fig. 5A), state 1 = present (Fig. 5B).  

48. Antennomere X with ventral foveae*: state 0 = absent, state 1 = present (Fig. 5D and 

E). 

49. Antennomere X with ventral pore*: state 0 = absent, state 1 = present (Fig. 5G). 

50. Antennomere X ventrally concave*: state 0 = absent, state 1 = present (Fig. 5F and H). 
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51. Antennomere XI with basal process (tooth, pore, small fovea) *: state 0 = absent, state 

1 = present (Fig. 5F, 6A to D). 

52. Antennomere XI twice as wide as antennomere X: state 0 = absent, state 1 = present. 

53. Antennomere XI ventrally concave: state 0 = absent, state 1 = present. 

54. Pronotal laterobasal foveae pubescent: state 0 = absent; state 1 = present. 

55. Pronotal median sulcus: state 0 = present; state 1 = absent. 

56. Pronotal lateral stria: state 0 = present; state 1 = absent. 

57. Pronotal basolateral spines: state 0 = present, state 1 = absent. 

58. Basal elytral foveae discal, medial and sutural: state 0 = equidistant, state 1 = medial 

closer to sutural. 

59. Paratergites after first visible tergite: state 0 = present, state 1 = absent. 

60. Metatibial apical spur: state 0 = absent; state 1 = present. 

61. Mesotibial basal spine*: state 0 = absent, state 1 = present 

62. Mesotibial apical elongation*: state 0 = absent, state 1 = present. 

63. Mesotrochanter ventral spine*: state 0 = absent, state 1 = present. 

64. Mesofemur mesal spine or tooth on ventral margin*: state 0 = absent, state 1 = present 

(Fig. 7A). 

65. Mesotibial mesal spine*: state 0 = absent, state 1= present (Fig. 7B). 

66. Mesofemur basal spine on ventral margin*: state 0 = absent, state 1 = present (Fig. 7B). 

67. Second mesotarsal segment compressed laterally*: state 0 = absent, state 1 = present. 

68. Second mesotarsal segment ventrally incised pubescent*: state 0 = absent, state 1 = 

present. 
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69. Second mesotarsal segment ventrally incised glabrous*: state 0 = absent, state 1 = 

present (Fig. 7C).  

70. Protrochanter triangular, with small ventral tooth*: state 0 = absent, state 1 = present. 

71. Mesotrochanter ventral blunt projection*: state 0 = absent, state 1 = present (Fig. 7B). 

72. Protibia sinuate at apical half: state 0 = absent, state 1 = present (Fig. 7E). 

73. Profemur abruptly enlarged after first quarter: state 0 = absent, state 1 = present (Fig. 

7D). 

74. Profemur base covered by short and uniform group of hairs: state 0 = absent, state 1 = 

present. 

75. Last visible abdominal sternite with small concavity*: state 0 = absent, state 1 = present 

76. Depression on last abdominal sternite round*: state 0 = absent, state 1 = present. 

77. Posterior corners of last visible abdominal sternite extended apically*: state 0 = absent, 

state 1 = present. 

78. Last visible abdominal sternite with large concavity*: state 0 = absent, state 1 = present. 

79. Depression on last abdominal sternite elongate*: state 0 = absent, state 1 = present. 

80. Male genitalia: state 0 = asymmetric, state 1 = symmetric. 

Habitat (based on the morphology of the genus, associated to these habitats): state 0 = 

leaf litter/ants’ nests, state 1 = cave related. 

 

Evolution of the secondary sexual characters in Batrisodes 

To assess the change of secondary sexual traits across the species of Batrisodes, the 

number of steps (length), consistency index (ci), and retention index (ri) of each 
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character, were visually compared and redrawn onto the resulting topologies from the 

phylogenetic analyses. Once identified, the characters with higher values of the 

consistency and retention indexes were contrasted with other characters, that showed 

lower values of the parsimony statistics. Additionally, secondary sexual characters 

were compared to known ecological traits for Batrisodes species. 

 

RESULTS 

Phylogenetic relationships  

 The cladistic analysis of 96 taxa (including an outgroup of seven species), 80 

morphological characters, and one ecological character resulted in 33 equally parsimonious 

trees, with a length of 535 steps, consistency index (CI) of 0.16, and retention index (RI) 

of 0.67. The resulting majority rule consensus cladogram is shown in Figure 1. Under this 

phylogenetic hypothesis, the genus Batrisodes in the Nearctic region does not form a 

monophyletic group. Node 1 on the cladogram corresponds to the supertribe Batrisitae, 

with node 2 including the species Batriscenellus insulicola Nomura, and the remaining 

taxa in this analysis including species of Batrisini and Amauropini from the Palearctic and 

Nearctic regions. Node 3 includes a polyphyletic group where the position of Declivodes 

in relation to other Batrisodes subgenera is not resolved (node 4); nodes 5 contains species 

in the tribe Amauropini as sister group to Texamaurops reddelli plus a large clade including 

the subgenus Excavodes (paraphyletic), Pubimodes and species of Palearctic Batrisodes. 

Finally, node 6 consists of Palearctic Batrisodes, Batrisus, and the remaining Batrisodes 
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subgenera Empinodes, Elytrodes, Spifemodes, and Babnormodes (as well as two species of 

B. Excavodes). 

 

A second cladistic analysis was performed including only the genera and species of 

Batrisitae of the new world for a total of 77 taxa and 80 morphological characters and one 

ecological character (Fig. 2). Nearctic Batrisodes species form a monophyletic group; the 

subgenus Elytrodes with its unique species B. (Elytrodes) ionae resulted as the sister group 

to all other Batrisodes lineages. The subgenus Empinodes was resolved as monophyletic, 

and as sister group to Declivodes, Spifemodes, Excavodes, and Babnormodes. The last of 

these was paraphyletic in relation to the species B. (Excavodes) venyivi and B. (Excavodes) 

cavernosus. Similarly, Excavodes was paraphyletic in relation to Pubimodes, and the 

species Texamaurops reddelli Barr and Steeves was recovered as its sister taxon.  
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Figure  1. Relationships among Holarctic species of Batrisodes. Majority rule consensus 
of 33 equally parsimonious trees with length of 535 steps. Numbers on top of each node 
represent the consensus frequency; numbers below the nodes refer to different groupings 

obtained in this analysis. 
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Figure 2. Relationships among Nearctic species of Batrisodes. Majority rule consensus 
of 43 equally parsimonious trees with length of 429 steps; consistency index (CI) = 0.19, 

and retention index (RI) = 0.68 
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Secondary sexual characters in Batrisodes Reitter 

A total of 41 secondary sexual characters were identified and included in the 

character matrix. In Batrisodes one of the structures that varied the most was the fronto 

clypeal region (Figs. 2 and 3). In the subgenus Babnormodes, alone, variation of this region 

of the head presented at least four different conditions. A complete fronto-clypeal region 

(Fig. 3A) is also found in the subgenera Declivodes, Empinodes, Elytrodes, and 

Spifemodes. This characteristic is also common to other genera of Batrisitae such 

Amaurops, Arthmius, some Batriasymmodes species and Texamaurops. Fronto-clypeal 

region constricted (Fig. 3B) is a condition present only in four species within -

Babnormodes, in two of these species this character was a synapomorphy. The transversal 

excavation on the fronto-clypeal region (Fig. 3) is found in some Palearctic species of 

Batrisodes, some species Babnormodes (ex., Fig. 3C and D), and in all the species of 

Excavodes, and Pubimodes. In these two subgenera, it can be observed some combinations 

of characters around the transversal excavation; for instance, many of the species in 

Excavodes and all Pubimodes present a couple of hairs tufts on the dorsal margin of the 

fronto-clypeal region (Fig. 4B) frequently on digitiform protuberances; only in Excavodes 

these are surrounded by a concave and glabrous area (Fig. 4E and F), but seem to be 

secondarily lost in B. (Excavodes) frontalis and B. (Excavodes) lineaticollis. In addition to 

these character combinations, the clypeal process can have on its dorsal surface two groups 

of long hairs directed in opposite directions (Fig. 4E); these are present in most Excavodes 

species and are secondarily lost in B. (Excavodes) dorothae and B. (Excavodes) 

sinuatifrons. The transversal excavation on the fronto-clypeal region (ex. Fig. 3D), covered 
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by short pubescence seems to be convergent in the troglobite species of Babnormodes and 

Excavodes.  

 

Figure 3. Variation of the fronto-clypeal region in males of Batrisodes. 
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Figure 4. Head variation on males of Batrisodes. 
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Antennal variation can be divided in two conditions for the scape and seven 

conditions for the three apical antennomeres (Figs. 5 and 6). Normal antennae (Fig. 5A and 

B) are found in all females of Batrisodes and males of some species of the subgenera 

Excavodes and Babnormodes; when this condition is present, the scape is elongate and 

cylindrical, antennomeres II to VIII are similar in shape and size, and antennomeres IX, X, 

and XI increase in size progressively. The scape can be expanded dorso-ventrally in species 

of Excavodes and Pubimodes (Fig. 5C) and can be concave on the interior face. Other 

common variations in Batrisodes (sensu lato) are the presence of a fovea or a pore on 

antennomere X (Fig. 5D, E, F, and G), and a pore or a tooth on antennomere XI (Figs. 5F 

and G and Fig. 6).  

 

Figure 5. Antennal variation on scape, pedicel, and apical three antennomeres. A. Male 
scape and pedicel in Batrisodes (Babnormodes) hubrichti; B. Male apical antennomeres 

in B. (Babnormodes) hibrichti; C. Male scape and pedicel in B. (Excavodes) dorothae; D. 
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Male apical antennomeres in B. (Babnormodes) specus; E. Male B. (Babnormodes) 
foveicornis; F. Male B. (Babnormodes) jonesi; G. Male B. (Excavodes) lineaticollis. 

 
In Babnormodes, three species present the condition depicted in Figure 6A: B. 

(Babnormodes) profundus, B. (Babnormodes) riparius, and B. (Babnormodes) uncicornis 

this character is a synapomorphy. When flexed inwards, the ventro-basal tooth in 

antennomere XI reaches the ventral concavity in antennomere X. The terminal 

antennomeres in males of Empinodes are similar in all the species included in this study, 

where antennomere X lacks any ventral processes and antennomere XI carries a 

conspicuous ventral tooth (Fig. 6B). In the subgenus Declivodes, the antennomere X is not 

enlarged, although it carries a ventral fovea (Fig. 6C), condition that is observed also in 

some troglobitic species in Babnormodes and Excavodes.  

Figure 6. A. Male lateral (left) and ventral (right) sides of apical antennomeres in B. 
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(Babnormodes) riparius; B. Male B. (Empinodes) denticauda; C. Male B. (Declivodes) 
bistriatus; D. Male antennomere VI to XI in B. (Spifemodes) schaumi. 

 

 

 

 

Figure 7. Leg variation in males of Batrisodes. A. Mesoleg in Batrisodes (Spifemodes) 
schaumi, anterior view, left leg; B. Mesoleg in B. (Empinodes) albonicus, posterior view, 
left leg; C. Mesotibia and mesotarsi in B. (Babnormodes) jonesi, anterior view, left leg; 
D. Proleg in B. (Declivodes) cartwrighti, anterior view, left leg.; E. Protibia in B. (Bab.) 

jonesi, anterior view, left leg. 
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Evolution of secondary sexual characters 

 All the morphological characters used in the parsimony analysis were binary (Table 

2), therefore the length (L, number of steps on the tree), consistency index (ci), and 

retention index (ri), of the secondary sexual characters were used to identify the SSC that 

presented the best fit to the topologies in Figs. 1 and 2. In general, the ci values of individual 

characters were low for both Holarctic and Nearctic data sets, suggesting high homoplasy 

on the tree topologies. However, ri values were relatively high (above 0.5 in many cases), 

indicating that certain proportion of each character was contributing as synapomorphies 

along the cladograms. Characters in bold in table 2 were mapped and compared in the 

topologies presented in figures 8 to 13. 

Table 2. Length (L), Consistency index (ci), and Retention index (ri) of secondary sexual 
characters for Holarctic and Nearctic data sets. Characters in bold are used to illustrate 

their changes in the cladograms from Figs. 8 to 13. 

SSC Secondary sexual character 
Holarctic Nearctic 

L ci ri L ci ri 
17 Fronto-clypleal region complete 5 0.2 0.89 5 0.2 0.87 
21 Fronto-clypeus interrupted 5 0.2 0.89 5 0.2 0.87 
23 Dorsal margin of frontal slope rounded 5 0.2 0.33 5 0.2 0.33 
24 Dorsal margin of frontal slope sinuate 5 0.2 0.84 5 0.2 0.8 
26 Paired tufts of hairs on dorsal margin 5 0.2 0.77 4 0.25 0.76 
27 Clypeal carina sinuate 4 025 0.88 4 0.25 0.85 
28 Clypeal carina with tufts of hairs 6 0.16 0.66 5 0.2 0.71 
29 Clypeus with medial process round 12 0.08 0.38 11 0.09 0.14 
30 Clypeus with medial process acute 8 0.12 0.61 8 0.12 0.41 
31 Long tufts of hairs on clypeal process 7 0.14 0.68 5 0.2 0.73 
32 Transverse excavation glabrous 4 0.25 0.85 4 0.25 0.78 

33 
Transverse excavation covered by short 
pubescence 

7 0.14 0.68 6 0.16 0.72 

35 Anterior margin of head projecting forward 6 0.16 0.7 3 0.33 0.85 

39 
Glabrous depression on dorsal portion of 
fronto-clypeal region 

5 0.2 0.69 3 0.33 0.8 
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44 
Antennomeres II to XI with 
modifications 

8 0.12 0.76 5 0.2 0.82 

45 Scape expanded dorso-ventrally 12 0.08 0.71 7 0.14 0.6 
46 Shape of antennomere IX 8 0.12 0.76 7 0.14 0.76 
47 Antennomere X enlarged 12 0.08 0.71 9 0.11 0.72 
48 Antennomere X with ventral foveae 14 0.07 0.56 11 0.09 0.56 
49 Antennomere X with ventral pore 6 0.16 0.5 4 0.25 0.62 
50 Antennomere X ventrally concave 6 0.16 0.5 2 0.5 0.66 

51 
Antennomere XI with basal process 
(tooth, pore, small fovea) 

7 0.14 0.8 5 0.2 0.72 

62 Mesotibial apical elongation 14 0.07 0.67 13 0.5 0.66 
63 Mesotrochanter ventral spine 14 0.08 0.56 7 0.14 0.53 

64 
Mesofemur mesal spine or tooth on 
ventral margin 

6 0.16 0.54 3 0.33 0.33 

65 Mesotibial mesal spine 7 0.14 0.75 4 0.25 0.72 
66 Mesofemur basal spine on ventral margin 6 0.16 0.5 2 0.5 0.8 

67 
Second mesotarsal segment compressed 
laterally 

6 0.16 0.87 4 0.25 0.91 

68 
Second mesotarsal segment ventrally 
incised pubescent 

1 1 1 1 1 1 

69 
Second mesotarsal segment ventrally 
incised glabrous 

3 0.33 0.91 2 0.5 0.95 

70 
Protrochanter triangular, with small ventral 
tooth 

4 0.25 0.5 5 0.2 0.33 

71 Mesotrochanter ventral blunt projection 1 1 1 1 1 1 

77 
Posterior corners of last visible abdominal 
sternite extended apically 

5 0.2 0.6 4 0.25 0.7 

78 
Last visible abdominal sternite with large 
concavity 

2 0.5 0.83 2 0.5 0.83 

 

 The characters that showed synapomorphic capacity (ri values equal or larger than 

0.5 in table 2), were used to compare how their change corresponds across the genus 

Batrisodes, and how these characters relate to those found in the same body structures, but 

which showed more homoplasy (lower ci and ri values). In figure 8, the presence of SSC 

on the antennomeres II to XI are compared to the different forms that antennomeres X and 

XI take in the different species; the numbers next to different nodes on the bottom tree 

represent different groups; some of these are recognized lineages (i.e. numbers 1 and 8), 
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and others are species that may be related but do not form clades in this analysis (i.e. 7 and 

10). Overall, Batrisodes species have antennal modifications throughout the genus, with at 

least two secondary losses in several Nearctic lineages. The Palearctic species included in 

this analysis share the presence of a tubercle on the base of antennomere XI (groups 15 and 

18), combined in some instances with enlargement of antennomere X (group 15). In the 

Nearctic species, the tubercle on the base of antennomere XI is a synapomorphy for the 

subgenus Empinodes, and it is present in other species of the genus: B. (Elytrodes) ionae, 

B. (Spifemodes) schaumi, and the Babnormodes species B. (Babnormodes) uncicornis, and 

B. (Babnormodes) profundus, where antennomere X is not enlarged; in B. (Babnormodes) 

riparius both conditions occur. The subgenus Excavodes lacks an obvious tubercle on 

antennomere XI, but several species can present a small pore. Enlargement of the 

antennomere X occurs in the Excavodes group (2, 3, 5, and 6), and in part of the 

(Babnormodes) group (10).   
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Figure 8. Cladogram of the Holarctic analysis comparing secondary sexual characters on 
antennae (bottom) compared with size of antennomere X and shape of antennomere XI 

(top). 

 

Another modification that antennomere X exhibits is the presence of a ventral 

fovea, a small pore, or a concave surface (Figure 9). In the subgenus Declivodes (numbers 
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1 and 12), antennomere X increases in size proportional to all other flagellomeres and 

carries a ventral fovea. This condition is also present in two species of Excavodes: B. 

(Excavodes) reyesi and B. (Excavodes) scabriceps. Palearctic species of Batrisodes (4 and 

15) present the antennomere X concave ventrally; only Batrisodes sulcaticeps presents the 

small pore; Batrisus species included in the analysis show the ventral fovea on 

antennomere X, similarly to species of (Excavodes) (13, and 14), all Pubimodes (16) and 

Babnormodes (21). 

 Secondary sexual traits on mesofemora and mesotibiae are present in Batrisus, 

Palearctic Batrisodes, and in the Nearctic B. Empinodes (8), B. (Elytrodes) ionae, and B. 

(Spifemodes) schaumi (Figure 10). The second mesotarsal segment presents three forms: it 

can be compressed laterally as in the group formed by B. (Excavodes) auerbachi - B. 

(Excavodes) virginiae (number 6); it also can be incised and glabrous, a characteristic of 

the subgenus Babnormodes in the Nearctic, but it was also observed in the Palearctic 

species Batrisodes delaporti; and finally it can be incised and pubescent, which is a 

synapomorphy for the clade B. (Babnormodes) spretus - B. (Babnormodes) uncicornis 

(node 11 or 22). 
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Figure 9. Cladogram of the Holarctic analysis comparing secondary sexual characters on 
antennomeres X and XI (down) to different morphological variations of antennomere X 

(up). 
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Figure 10. Cladogram of the Holarctic analysis comparing secondary sexual characters 
on mesofemora and mesotarsi.  
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Figures 11 to 13 present one of the most parsimonious trees found in the analysis 

of Nearctic species. This topology is used here to compare secondary sexual characters 

only for Batrisodes of the Nearctic region. The modifications on the fronto-clypeal region 

compared to the characteristic of the antennomeres X and XI, are shown in Figure 11. 

Nearctic species show a continuous slope between the antennal insertions in the subgenera 

Declivodes, Empinodes, Elytrodes, Spifemodes, and some species of Babnormodes. In 

Excavodes (3, 4, and 6) and Pubimodes (5), the fronto-clypeal region is interrupted by the 

transversal excavation between the antennal insertions. Within this clade, the antennomere 

X can be of normal size with ventral fovea, enlarged with ventral fovea, enlarged with a 

ventral pore, or without any modifications. In some Babnormodes species, the fronto-

clypeal region appears only as a constriction between the frons and the clypeus without a 

true separation. Likewise, in the species where the transverse excavation on the fronto-

clypeal region is present, it is covered by short pubescence (Fig. 12). Excavodes species 

show the transverse excavation glabrous or with short pubescence, while in Pubimodes, 

the transversal excavation is densely covered by short hairs.  

Comparisons between the habitats of Batrisodes species and secondary sexual 

characters on the two apical antennomeres are presented in Figure 13. Species that have 

been found within or near to ant colonies are represented in all Batrisodes subgenera; in 

Declivodes all the known species seem to be found with ants; similarly, B. (Elytrodes) 

ionae and B. (Spifemodes) schaumi are as well associated with ants. In Excavodes, 

troglobite species present dimorphism in the antennomere X as do the species found with 

either ants and/or leaf litter in the same subgenus. On the other hand, Babnormodes species 
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with obligate associations with the troglobitic environment, do not show antennal 

modifications (19 and 20 in Fig. 13), as several other species of facultative troglophiles in 

this group do.  

 
Figure 11. Cladogram of the Nearctic analysis comparing secondary sexual characters on 

the fronto-clypeal region of the head and the variation of antennomere X. 
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Figure 12. Cladogram of the Nearctic analysis comparing secondary sexual characters on 

fronto-clypeal region and the characteristics of the transversal excavation. 
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Figure 13. Cladogram of the Nearctic analysis comparing Batrisodes habitats with 
secondary sexual characters on antennomeres X and XI. 
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DISCUSSION 

 The parsimony analysis of the Holarctic data set (Fig. 1), resulted in the 

separation of Palearctic species into two different groups, within two clades of Nearctic 

Batrisodes: one group, nested within the subgenus Excavodes, and the other among species 

of Batrisus and the subgenus Empinodes. Interestingly, these Palearctic species segregated 

into two of the species groups proposed by Besuchet (1981) in his revision of the 

Batrisodes from the Palearctic, excluding Japan. Besuchet grouped Batrisodes pogonatus, 

B. buqueti, B. delaporti, B. adnexus, B. tichomirovae, and B. venustus into the “Group 

venustus”, considering that these species have the discal carina on the first abdominal 

tergite arising from the outer edge of the mediobasal fovea; they lack the distal tuft of hairs 

on the metatibiae, and have simple aedeagi. Additionally, the species B. occulatus, and B. 

sulcaticeps were in the “Group occulatus”, since they present the discal carina on the first 

abdominal tergite starting on the posterior edge of the mediobasal fovea, they have a distal 

tuft of hairs on the metatibiae, the frontal region the head is crossed by a transversal sulcus 

over the clypeus, and their aedeagus is simple (Besuchet 1981: 276). These Palearctic 

species resemble Nearctic species in the subgenera Empinodes, Elytrodes, and Spifemodes. 

Across the distribution of the genus, Batrisodes species seem to share three different 

secondary sexual characters: mesofemora with basal or mesal protuberance, mesotibiae 

with mesal protuberance, and antennomere XI with basal process. In the Nearctic 

subgenera Babnormodes and Excavodes, these three characters are not obvious in many of 

the species; however, B. (Excavodes) lineaticollis presents a small spine on the mesotibiae 

(Fig. S1 A), and in B. (Excavodes) auerbachi antennomere XI presents a small pore, 



101 
 

detected only through SEM (Fig. S1 B). Likewise, in B. (Declivodes) bistriatus and in B. 

(Babnormodes) jonesi the antennomere XI bears a small pore basally. Thus, it is possible 

that during the diversification of Batrisodes in eastern North America, these three 

characters were reduced and lost subsequently in multiples species.  

 Following the resulting cladograms, the most species rich subgenera Babnormodes 

and Excavodes showed not only a great diversity in the variation of secondary sexual 

characters, but also diversification towards cavernicolous environments, that have been 

reached independently in these two lineages. For instance, in Babnormodes 17 of the 29 

species included in the analysis have been collected near to or in caves of Kentucky, 

Indiana, Tennessee, and Alabama, and these show ten independent losses of antennal 

modifications. Also, there are at least three different modifications on the fronto-clypeal 

region that these troglophile species have, and only one group of four species (node 9 in 

Fig. 11) lacks both antennal and head modifications. All this suggests that maybe antennal 

secondary sexual characters are not under as much selective pressure as secondary sexual 

characters in the fronto-clypeus. This hypothesis could explain how Babnormodes 

troglobites have an interrupted fronto-clypeal region, but also show unmodified antennae 

in males. In contrast, two of the four Excavodes species that have transitioned into the cave 

environment show a reduction in size of the antennomere X, while the ventral fovea persists 

in this flagellomere. Moreover, these four species are all troglobites, possessing the 

morphological changes associated with life in complete darkness, and they still bear the 

transversal excavation in the rostrum, common to all Excavodes species.  
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 Altogether, Batrisodes species in the Nearctic show frequent convergence in the 

presence of a basal process (either a tooth or a small pore) on antennomere XI (Fig. 6), and 

less frequently, in the presence of a posterior tooth or spine in mesofemora, and a spine in 

mesotibiae (Fig. 7A and B). Exceptions, however, include B. (Elytrodes) ionae, B. 

(Spifemodes) schaumi, and Empinodes, which retain the plesiomorphic morphology of 

these characters, similar to Palearctic species. In the case of Declivodes species, they seem 

to have specialized to the point where it is rather difficult to hypothesize, just on the basis 

of morphology, a clear phylogenetic relationship with any other subgenus. Nonetheless, in 

B. (Declivodes) bistriatus, there is a small pore on antennomere XI (illustrated in Fig. 6C), 

which is also present on one species of Excavodes and one of Babnormodes. Literature on 

Declivodes indicates that all its species are found with ants, and the species B. (Declivodes) 

bistriatus and B. (Declivodes) fossicauda are found with species of Formica (Parker 1947; 

Chandler 1997), but there is no information about the context of the interaction between 

these beetles and the ants. In Excavodes these three characters states in the antennomere 

XI, mesofemora and mesotibiae are slightly visible in some species (Appendix C), 

indicating that maybe in this subgenus those characters have been secondarily lost. Only 

one lineage within Babnormodes shows similarities of antennomere XI with Palearctic 

Batrisodes, Empinodes, Elytrodes, and Spifemodes, suggesting convergence of this 

character. Additionally, the facultative troglophile B. (Babnormodes) jonesi presents a 

small pore on the base of antennomere XI. Thus, for the current subgeneric classification 

of Batrisodes in North America, the loss of these characters was the result of convergence 

in the subgenera Excavodes (including Pubimodes), Babnormodes, and Declivodes.  
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 On a smaller scale within the genus, Babnormodes and Excavodes (including 

Pubimodes) present a series of convergent characters in the species that have the fronto-

clypeus excavated; species in both groups present the transverse frontal excavation covered 

by short hairs, which is common to all Babnormodes species with the fronto-clypeus 

interrupted, to the troglobite Excavodes, and to all Pubimodes.  Furthermore, the 

enlargement of antennomere X seems to be common to Babnormodes, Excavodes, and 

Pubimodes species that are not associated with cave microhabitats. The presence of the 

ventral fovea on this same antennomere could be the most constant character among the 

already mentioned subgenera and Declivodes. Secondary sexual characters on the antennae 

appear to be more frequently lost when these beetles transition completely to cave 

environments, compared to fronto-clypeal modifications.  

 Looking only at number of species contrasted with the number of secondary sexual 

traits in Batrisodes and all Pselaphinae in general, it could be easy to conclude that there is 

a direct relationship between species diversity (or speciation) and secondary sexual 

characters (as consequences of sexual selection). At the same time, when taxa as diverse 

as Batrisodes are observed in more detail, and as more data about their ecology, biology, 

and natural history has become available, it becomes clear that the success of this group is 

the result of many factors working in concert. Surely, sexual selection is one of them, as 

evidenced by the diversity of secondary sexual characters, but also the diversity of 

morphological adaptations, and the readiness to occupy new habitats.  
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CHAPTER FOUR 

GENERAL CONCLUSIONS 

Secondary sexual characters, as a manifestation of Sexual Selection, are widespread 

in the diverse group of Pselaphinae beetles. Until now, these characters have primarily been 

important in the taxonomy of the group; the present research, however, underlines the 

importance of these characters in an evolutionary context. Having a general overview of 

these characters’ diversity allows for comparisons among different lineages, to identify if 

certain characters are common to particular groups within Pselaphinae and hypothesize the 

action of the selective pressure(s) that shaped their evolution.  

The information gathered in Chapter two, although limited, sets a baseline to 

continue looking at the relationship between species richness and presence of secondary 

sexual characters. To study this relationship, several caveats have to be worked out: the 

number of taxa on each species group (or tribe) should be comparable, and the sources of 

information should be assessed for varying amount of detail used to describe the species. 

 Compact body may have been a selective pressure for the evolution of abdominal 

sternite modification and subsequent leg segment modifications. Some groups of 

Pselaphinae may have evolved male chemical attractants suggested by the presence of 

glandular openings; however, more work on the histology of this glandular tissue is needed, 

as well as behavioral data to assess the behavioral context in which these putative glands 

are used. 

The Holarctic genus Batrisodes shares groups of sexually dimorphic characters in 

antennomeres X, XI, mesofemora, and mesotibiae. Presence of the head transversal 
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excavation is present throughout the genus’s distribution, but it seems to have evolved 

independently several times.  

Most species of Nearctic Batrisodes are grouped in the subgenera Babnormodes 

and Excavodes. In these subgenera, cavernicolous species have evolved multiple times. In 

Babnormodes, cavernicolous species can be facultative (troglophilic) or obligate 

(troglobitic), while in Excavodes, all the species that inhabit caves are troglobitic. The 

changes from life near the ground surface to the cave habitat differently impacted each 

group in the losses and permanence of their secondary sexual characters. In Babnormodes 

some troglophilic and all the troglobitic species show loss of the antennal modifications. 

Troglobites in Excavodes present reduction in the size of antennomere X, but some species 

preserve the ventral foveae, and all of them have the transversal excavation on the head, 

characteristic of the subgenus.  

This research is an initial step towards the documentation of sexually dimorphic 

characters in Pselaphinae; this information can be used in the future to look at character 

evolution, character correlation with environment, and with other characters. With the 

accumulation of this type of information, it is possible to identify patterns in the strength 

of natural selection, sexual selection, and the mechanisms under which the morphological 

diversity of groups such as Pselaphinae beetles have evolved to become hyperdiverse. 
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Appendix A 
 

Number of Species within genera of Batrisini showing secondary sexual characters. 
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Structures

SSC in Batrisitae genera

Bergothia [Amauropini] Pseudoamaurops [Amauropini] Seracamaurops [Amauropini]
Araneibatrus [Batrisini] Babascenellus [Batrisini] Basitrodes [Batrisini]
Batoctenus [Batrisini] Batricavus [Batrisini] Batriscenellus [Batrisini]
Batriscydmaenus [Batrisini] Batrisodes [Batrisini] Cuccodorodes [Batrisini]
Dendrolasiophilus [Batrisini] Eleodimerus [Batrisini] Hingstonella [Batrisini]
Intestinarius [Batrisini] Loeblibatrus [Batrisini] Netrabisus [Batrisini]
Oxarthrius [Batrisini] Sathytes [Batrisini] Smetanabatrus [Batrisini]
Songius [Batrisini] Tribasodes [Batrisini] Tribasodites
Trisinus [Batrisini] Thaumastocephalus [Thaumastocephalini]
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Number of Species within genera of Euplectitae showing secondary sexual characters. 
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SSC in Euplectitae genera

Bythinoplectus [Bythinoplectini] Hedencameros [Bythinoplectini] Nandius [Bythinoplectini]
Austrieuplectus [Euplectini] Euplectus [Euplectini] Leptoplectus [Euplectini]
Okella [Euplectini] Pycnoplectus [Euplectini] Actium [Trichonychini]
Biboplectus [Trichonychini] Kenocoelus [Trichonychini] Liuyelis [Trichonychini]
Myrmecoplectus [Trichonychini] Oropodes [Trichonychini] Parkerola [Trichonychini]
Zeadalmodes [Trichonychini] Hypoplectus [Trichonychini] Mayetia [Mayetiini]
Neosampa [Trogastrini] Zeasampa [Trogastrini]
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Number of Species within genera of Goniaceritae showing secondary sexual characters. 
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SSC in Goniaceritae genera

Achilia [Brachyglutini] Brachygluta [Brachyglutini] Eutrichites [Brachyglutini] Reichenbachia [Brachyglutini]
Bryaxis [Bythinini] Machaerites [Bythinini] Tychobythinus [Bythinini] Plagiophorus [Cyathigerini]
Goniacerus [Cyathigerini] Dalmoburis [Iniocyphini] Dalmonexus [Iniocyphini] Nipponobythus [Iniocyphini]
Euparops [Proterini] Paraeuplectops [Proterini] Gnesion [Proterini] Hyugatychus [Tychini]
Taiochus [Tychini] Tychus [Tychini]
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Number of Species within genera of Pselaphitae and Clavigeritae showing secondary sexual characters. 
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SSC in Pselaphitae & Clavigeritae genera

Caccoplectinus [Arhytodini] Caccoplectus [Arhytodini] Pachacuti [Arhytodini] Rhytus [Arhytodini]
Tolga [Arhytodini] Woldenka [Arhytodini] Ctenicellus [Ctenistini] Ctenisodes [Ctenistini]
Ctenisophus [Ctenistini] Ctenistes [Ctenistini] Apharinodes [Hybocephalini] Stipesa [Hybocephalini]
Odontalgus [Odontalgini] Warrumbungle [Odontalgini] Nabepselaphus [Pselaphini] Pselaphogenius [Pselaphini]
Pselaphorites [Pselaphini] Jardine [Tmesiphorini] Saltisedes [Tmesiphorini] Tmisophorus [Tmesiphorini]
Centrophthalmus [Tyrini] Elaphidipalpus [Tyrini] Hamotus [Tyrini] Labomimus [Tyrini]
Cerylambus [Clavigerini] Seychellister Micrelytriger [Clavigerini] Colilodion [Coliliodini]
Tiracerus [Tiracerini]
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Appendix B 
 

General information about the taxa selected to sample secondary sexual characters. 
 

Tribe Genus species Type locality Region Biology Reference 

Amauropini Bergrothia adzharica Georgia Palearctic 
on sifted leaflitter in an 
altitud of 400 m Hlavac 2004  

Amauropini Bergrothia solodovnikovi Turkey Palearctic on sifted leaflitter Hlavac 2004 

Amauropini Bergrothia tibialis Turkey Palearctic 
on leaflitter of Fagus 
forest Hlavac 1999 

Amauropini Pseudamaurops graecus Albania Palearctic 
moist leaflitter and under 
rocks Hlavac 2005 

Amauropini Seracamaurops komarovi Russia Palearctic cave inhabitant Hlavac et al 1999 

Batrisini Araneibatrus curvitibialis China Indo-Malay cave inhabitant Yin & Zhou 2018 

Batrisini Araneibatrus callissimus China Indo-Malay cave inhabitant Nomura&Wang 1991 

Batrisini Atheropterus lunulatus Gabon Afrotropical N/A Castellini 1997 

Batrisini Babascenellus macroscapus Japan Palearctic sandy soil Nomura 1995 

Batrisini Basitrodes godzilla Japan Palearctic Aphaenogaster japonica Nomura 2003 

Batrisini Basitrodes hakusanus Japan Palearctic Formica lemani Nomura 2002 

Batrisini Basitrodes kasahari Japan Palearctic leaflitter Nomura 2002 

Batrisini Basitrodes oscillator Japan Palearctic 
ants of the genera Lasius 
and Formica Nomura 2002 

Batrisini Basitrodes vestitus Japan Palearctic 

Paratrechina flavipes, 
Aphaenogaster japonica, 
Myrmica kotokui, 
Myrmica jessensis, 
Aphaenogas famelica 

Nomura 2003 
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Batrisini Batoctenus kawmontis French Guiana Neotropic N/A Yin 2019 

Batrisini Batoctenus kociani French Guiana Neotropic N/A Yin 2019 

Batrisini Batricavus tibialis China Indo-Malay leaflitter Yin et al 2011f 

Batrisini Batriscenellus chinensis China Palearctic N/A Yin et al 2011d 

Batrisini Batriscenellus femoralis China Palearctic N/A Yin et al 2011d 

Batrisini Batriscenellus orientalis China Palearctic N/A Yin et al 2011d 

Batrisini Batriscenellus pulcher China Palearctic N/A Yin et al 2011d 

Batrisini Batriscenellus satoi China Palearctic Formica fusta Nomura 2003b 

Batrisini Batriscenellus subalpicolus China Palearctic leaflitter Nomura 2003b 

Batrisini Batriscenellus admonitor Russia Palearctic N/A Yin et al 2011d 

Batrisini Batriscenellus auritus North Korea Palearctic N/A Yin et al 2011d 

Batrisini Batriscydmaenus tishechkini Panama Neotropic possible myrmecophile Parker & Owens 2018 

Batrisini Batrisodes babaianus Taiwan Indo-Malay N/A Nomura 2007 

Batrisini Batrisodes masatakai Taiwan Indo-Malay N/A Nomura 2007 

Batrisini Batrisodes sennin Japan Palearctic N/A Nomura 2007 

Batrisini Cuccodorodes darjeelingensis India Indo-Malay N/A Yin 2018 

Batrisini Cuccodorodes koshiensis Nepal Indo-Malay N/A Yin 2018 

Batrisini Dendrolasiophilus nishikawai Japan Palearctic 
Lasius orientalis, L. 
nipponensis Nomura 2008 

Batrisini Eleodimerus comes Gabon Afrotropical N/A Castellini 1997 

Batrisini Hingstoniella lata India Palearctic with Myrmica sp. Yin et al 2011a 

Batrisini Intestinarius crassicornis Laos Indo-Malay N/A Kurbatov 2007 

Batrisini Intestinarius diatretus Sarawak Indo-Malay N/A Kurbatov 2007 
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Batrisini Intestinarius distorticeps Jawa Indo-Malay N/A Kurbatov 2007 

Batrisini Intestinarius guangdongensis China Indo-Malay N/A Yin et al 2011c 

Batrisini Intestinarius ingeniosus Sarawak Indo-Malay N/A Kurbatov 2007 

Batrisini Intestinarius kuzmini China Indo-Malay N/A Kurbatov 2007 

Batrisini Intestinarius longiceps China Indo-Malay N/A Yin et al 2011c 

Batrisini Intestinarius orthopygium Laos Indo-Malay N/A Kurbatov 2007 

Batrisini Intestinarius pexatus Sarawak Indo-Malay N/A Kurbatov 2007 

Batrisini Intestinarius quinquesulcatus Singapur Indo-Malay N/A Kurbatov 2007 

Batrisini Loeblibatrus yunnanus China Palearctic 
collected with ants 
Extomomyrmex Yin 2018 

Batrisini Netrabisus aestuarii Gabon Afrotropical N/A Castellini 1997 

Batrisini Oxarthrius aurora Brazil Neotropic cave inhabitant Asenjo et al 2018 

Batrisini Oxarthrius inexpectatus Brazil Neotropic cave inhabitant Asenjo et al 2018 

Batrisini Sathytes borneoensis East Malaysia: 
Borneo Indo-Malay N/A Shen & Yin 2019 

Batrisini Sathytes liuyei East Malaysia: 
Borneo Indo-Malay N/A Shen & Yin 2019 

Batrisini Sathytes larifuga East Malaysia: 
Borneo Indo-Malay N/A Shen & Yin 2019 

Batrisini Sathytes shihongliangi East Malaysia: 
Borneo Indo-Malay N/A Shen & Yin 2019 

Batrisini Smetanabatrus loebli Peninsular 
Malaysia Indo-Malay wood and bamboo sift Yin & Cuccodoro 2018 

Batrisini Songius hlavaci China Indo-Malay with Lasius niger Zhao etal. 2010 

Batrisini Tribasodes chinnensis China Indo-Malay 
with Pachycondyla 
luteipes Zhao etal. 2010 

Batrisini Tribasodites abnormalis China  Palearctic cave inhabitant Yin, Z-W et al 2015 
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Batrisini Tribasodites bama China Palearctic cave inhabitant Yin, Z-W et al 2015 

Batrisini Tribasodites bedosae China Indo-Malay cave inhabitant Yin et al 2011e 

Batrisini Tribasodites biyun China Indo-Malay cave inhabitant Yin & Zhou 2018 

Batrisini Tribasodites cehengensis China Palearctic cave inhabitant Yin, Z-W et al 2015 

Batrisini Tribasodites deharvengi China Indo-Malay cave inhabitant Yin et al 2011e 

Batrisini Tribasodites liboensis China Palearctic cave inhabitant Yin, Z-W et al 2015 

Batrisini Tribasodites thailandicus Thailand Indo-Malay cave inhabitant Yin, Z-W et al 2015 

Batrisini Tribasodites uenoi China Palearctic cave inhabitant Yin, Z-W et al 2015 

Batrisini Tribasodites xingyiensis China Palearctic cave inhabitant Yin, Z-W et al 2015 

Batrisini Trisinus sagamianus Japan Palearctic N/A Nomura 1991; Yin et al 2012 

Batrisini Trisinus tosanus Japan Palearctic N/A Nomura 1991; Yin et al 2012 

Batrisini Trisinus shaolingiger China Indo-Malay N/A Yin et al 2012 

Batrisini Trisinus pharelatus China Indo-Malay N/A Yin et al 2012 

Batrisini Trisinus shuixiuifer China Indo-Malay N/A Yin et al 2012 

Thaumastocephalin
i Thaumastocephalus bilandzijae Croatia Palearctic cave inhabitant Hlavac et al 2019 

Thaumastocephalin
i Thaumastocephalus dahnae Bosnia & 

Herzegovina Palearctic cave inhabitant Hlavac et al 2019 

Thaumastocephalin
i Thaumastocephalus kirini Croatia Palearctic cave inhabitant Hlavac et al 2019 

Thaumastocephalin
i Thaumastocephalus marsici Croatia Palearctic cave inhabitant Hlavac et al 2019 

Thaumastocephalin
i Thaumastocephalus rujnicensis Croatia Palearctic cave inhabitant Hlavac et al 2019 

Thaumastocephalin
i Thaumastocephalus slavkoi Croatia Palearctic cave inhabitant Hlavac et al 2019 

Thaumastocephalin
i Thaumastocephalus troglavi Croatia Palearctic cave inhabitant Hlavac et al 2019 
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Thaumastocephalin
i Thaumastocephalus folliculipalpus Croatia Palearctic cave inhabitant Poggi et al 2001 

EUPLECTITAE 

Tribe Genus species Type locality Region Biology Reference 

Bythinoplectini Bythinoplectus bertonii Paraguay, 
Brazil Neotropic N/A Comellini 1985 

Bythinoplectini Bythinoplectus dechambrieri Guatemala Neotropic N/A Comellini 1985 

Bythinoplectini Bythinoplectus depressus Panama Neotropic N/A Comellini 1985 

Bythinoplectini Hedencameros costaricense Costa Rica Neotropic N/A Comellini 1985 

Bythinoplectini Nandius myriamae India Indo-Malay N/A Coulon 1990 

Bythinoplectini Nandius besucheti India Indo-Malay N/A Coulon 1990 

Dimerini Otomicrus dentifrons Iraq Palearctic N/A Besuchet 1999 

Euplectini Austroeuplectus oz Eastern 
Australia Australasia 

in rotten wood or 
Eucalyptus bark litter in 
all forests types 

Chandler 2001 

Euplectini Euplectus caecus Tenerife, Spain Palearctic N/A Besuchet 1990 

Euplectini Euplectus hierrensis Canary Is. (El 
Hierro) Palearctic N/A Besuchet 1990 

Euplectini Leptoplectus filiformis Pennsylvania, 
Ohio, US Nearctic N/A Casey 1908 

Euplectini Okella parallelus Southeastern 
Australia Australasia in Solenopsis colony Chandler 2001 

Euplectini Pycnoplectus impressiceps Pennsylvania, 
US Nearctic N/A Casey 1908 

Jubini Morphogenia struhli Brazil Neotropic on leaflitter Parker 2014 

Mayetiini Mayetia bowmani North Carolina, 
USA Nearctic preference for sandy soil Schuster et al. 1959 

Mayetiini Mayetia pearsei North Carolina, 
USA Nearctic on clay soil under oaks Schuster et al. 1959 
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Mayetiini Mayetia mendocinoensis California, 
USA Nearctic 

commonly found in the 
first few inches of 
mineral soil of the A2 
horizon and are 
infrequently recovered 
from the overlying mat 
of organic debris 

Schuster et al. 1960 

Metopiasini Metopioxys carajas Brazil Neotropic cave inhabitant Asenjo et al 2019 

Trichonychini Actium vestigialis California, 
USA Nearctic 

Lyonothamnus 
floribundus floribundus 
and Quercus leaflitter 

Caterino&Chandler 2010 

Trichonychini Bibloplectus ellisi North Carolina, 
USA Nearctic on Sphagnum moss Owens&Carlton 2018 

Trichonychini Bibloplectus parki Florida, USA Nearctic 
on palmetto and scrub 
debris Owens&Carlton 2018 

Trichonychini Bibloplectus quadratum Connecticut, 
USA Nearctic on Sphagnum Owens&Carlton 2018 

Trichonychini Bibloplectus tishechkini 
Florida and 
South Carolina, 
USA 

Nearctic on Sphagnum Owens&Carlton 2018 

Trichonychini Kenocoelus dimorphus New Zeland Australasia in litter` Nomura&Leschen 2015 

Trichonychini Kenocoelus mikonuiensis New Zeland Australasia with ants in wood Nomura&Leschen 2015 

Trichonychini Kenocoelus johni New Zeland Australasia 
with Huberia striata ants 
(Myrmicinae) Nomura&Leschen 2015 

Trichonychini Liuyelis camponotophila China Palearctic with Camponotus sp Yin et al 2011 

Trichonychini Myrmecoplectus wellingtonicus New Zeland Australasia 
with Austroponera 
castanea (Ponerinae) Nomura&Leschen 2015 

Trichonychini Oropodes arcaps California, 
USA Nearctic 

taken from redwood and 
fearn leaflitters near or at 
the coast 

Chandler&Caterino 2011 
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Trichonychini Oropodes dybasi Oregon, USA Nearctic 
on old growth and 30 
year-old clearcut 
regrowth 

Chandler&Caterino 2011 

Trichonychini Oropodes orbiceps California, 
USA Nearctic 

oak (Quercus lobata) 
wooland Chandler&Caterino 2011 

Trichonychini Oropodes tataviam California, 
USA Nearctic 

in scrub oaks, gray or 
Digger pine, and mid-
elevation chaparral 

Chandler&Caterino 2011 

Trichonychini Oropodes chumash California, 
USA Nearctic semiriparian woodland  Chandler&Caterino 2011 

Trichonychini Oropodes hardyi California, 
USA Nearctic 

at black light without 
any nearby patches of 
native vegetation 

Chandler&Caterino 2011 

Trichonychini Oropodes tongva California, 
USA Nearctic 

FIT in small pocketof  
live oak woodland 
surrounded by mid-
elevation chaparral 

Chandler&Caterino 2011 

Trichonychini Parkerola gigantea New Zeland Australasia 
with Huberia striata ants 
(Myrmicinae) Nomura&Leschen 2015 

Trichonychini Zeadalmodes myrmecophilus New Zeland Australasia 
with Austroponera 
castanea and A. 
castaneicolor 

Nomura&Leschen 2015 

Trichonychini Hypoplectus palmi Kenya Afrotropical N/A Castellini 1997 

Trogastrini Neosampa granulata New Zeland Australasia 
with Prolasius advenus 
(Formicinae) Nomura&Leschen 2015 

Trogastrini Zeasampa nunni New Zeland Australasia 
with Prolasius advenus 
(Formicinae) Nomura&Leschen 2015 

GONIACERITAE 

Tribe Genus species Type locality Region Biology Reference 

Arnylliini Awas gigas China Indo-Malay with Pachyccondyla  Yin et al 2015 
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Brachyglutini Achilia adorabilis Chile Neotropic 
FIT in Valdivian 
rainforest Sabella et al 2019 

Brachyglutini Achilia baburra Chile Neotropic Valvidian rainforest Sabella et al 2019 

Brachyglutini Achilia caracolana Chile Neotropic 
In Nothofagus, 
Cupressus, and 
Eucalyptus forests 

Kurbatov et al 2018 

Brachyglutini Achilia crassicornis Chile Neotropic 
on Nothofagus and 
Araucaria leaflitter Sabella et al 2017 

Brachyglutini Achilia lobifera Southern Chile Neotropic 
on Nothofagus and 
Araucaria leaflitter Sabella et al 2017 

Brachyglutini Achilia longispina Chile Neotropic N/A Kurbatov et al 2018 

Brachyglutini Achilia pachycera Chile Neotropic 
on Nothofagus and 
Araucaria leaflitter Kurbatov et al 2018 

Brachyglutini Achilia puncticeps Chile Neotropic 
Valdivian rainforest and 
Saxogathaea Sabella et al 2019 

Brachyglutini Achilia reitteri Chile Neotropic 
Valdivian rainforest and 
Saxogathaea Sabella et al 2019 

Brachyglutini Achilia testacea Chile Neotropic 
Valdivia rainforest; 
remnets and disturbed 
forest 

Kurbatov et al 2018 

Brachyglutini Brachygluta cavicornis Virginia, USA Nearctic 
with Myrmica sabuleti in 
salt march Chandler et al 2018 

Brachyglutini Brachygluta floridiana Eastern USA Nearctic 
beneath washed logs and 
boards on beaches Chandler et al 2018 

Brachyglutini Brachygluta corniventris Midwestern 
USA Nearctic 

under driftwood on river 
banks Chandler et al 2018 

Brachyglutini Brachygluta dentata 
Eastern and 
Midwestern 
USA 

Nearctic 
Under washed up log, 
UV light Chandler et al 2018 
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Brachyglutini Brachygluta eldredgei California, 
USA Nearctic 

with Pogonomyrmex 
under rock  Chandler et al 2018 

Brachyglutini Brachygluta arguta 

Midwestern to 
Northwestern 
part of Eastern 
NA 

Nearctic 
leaflitter around 
freshwater swamps and 
marings of streams 

Chandler et al 2018 

Brachyglutini Brachygluta infinita Southern Texas Nearctic ultraviolet light Chandler et al 2018 

Brachyglutini Brachygluta  mormon 
Eastern 
California to 
Northern Utah 

Neractic 
beneath rocks by a pond 
in high deserts Chandler et al 2018 

Brachyglutini Eutrichites simulatrix El Salvador, 
Costa Rica 

Neotropic, 
Mesoamerican 

N/A Carlton&Leschen 1996 

Brachyglutini Eutrichites sotoi Mexico Neotropic, 
Mesoamerican 

N/A Carlton&Leschen 1996 

Brachyglutini Eutrichites confusum Bolivia, Costa 
Rica, Mexico Neotropic N/A Carlton&Leschen 1996 

Brachyglutini Reichenbachia fovearthra Panama Neotropic N/A Park 1942 

Bythinini Bryaxis hypocritus Georgia Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis ipsimus Russia Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis kovali Russia Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis lederi Russia Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis mekischesiamus Georgia Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis polemon Turkey Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis pygmaeus Russia Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis rivularis Georgia Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis rousi Russia Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis  temporalis Turkey Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Bryaxis tenuicornis Turkey Palearctic N/A Besuchet&Kurbatov 2007 
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Bythinini Bryaxis viti Turkey Palearctic N/A Besuchet&Kurbatov 2007 

Bythinini Machaerites marjanaci Croatia Palearctic cave inhabitant Hlavac&Jalzic 2010 

Bythinini Tychobythinus lukici Croatia Palearctic cave inhabitant Hlavac&Jalzic 2009 

Cyathigerini Plagiophorus hispidus Japan Palearctic in leaflitter Sugaya et al 2004 

Cyathigerini Plagiophorus hlavaci China Palearctic N/A Sugaya et al 2004 

Cyathigerini Plagiophorus amygdalinus Taiwan Indo-Malay 

in wet leaflitter in 
secondary forest or 
along roadsides. By 
sifting 

Sugaya 2005 

Goniacerini Goniacerus schuteri Brazil Neotropic N/A Comellini 1990 

Goniacerini Goniacerus lamellatus Venezuela Neotropic N/A Comellini 1990 

Goniacerini Goniacerus microphthalmus Brazil Neotropic N/A Comellini 1990 

Imirni Imirus outereloi Spain Palearctic N/A Besuquet 1980 

Iniocyphini Dalmoburis petrunkevitchii Central 
America Neotropic 

in soft, moist, decayed 
log mold Park 1942 

Iniocyphini Dalmonexus seeversi Panama Neotropic 
in rotten log mold, 
sifting floor mold  Park 1942 

Iniocyphini Nipponobythus dolharubang South Korea Palearctic N/A Nomura&Lee 1992 

Proterini Euparops styx 
New South 
Wales, 
Australia 

Australasia 
from rotten logs in wet 
sclerophyll forest and 
rainforest 

Chandler 2001; 
Kurvatov&Cuccodoro 2009 

Proterini Pareuplectops factor Vietnam Indo-Malay 
in rainforest leaflitter 
samples Kurvatov & Cuccodoro 2009 

Proterini Gnesion rufulum 
New South 
Wales, 
Australia 

Australasia 
in rainforest leaflitter 
samples Chandler 2001 

Speleopbamini Prespelea quirsfeldi North Carolina, 
USA Nearctic On leaflitter Caterino&Vasquez-Velez 

2017 
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Speleopbamini Prespelea myersae North& South 
Carolina, USA Nearctic on leaflitter Caterino&Vasquez-Velez 

2017 

Tychini Hyugatychus teizonagatomoi Japan Palearctic N/A Nomura 1996 

Tychini Tainochus iwaoi Japan Palearctic N/A Nomura 1996 

Tychini Tainochus puncticeps Japan Palearctic N/A Nomura 1996 

Tychini Tychus latebrosus Turkey Palearctic N/A Sabella et al 2011 

Tychini Tychus algericus North of Africa Palearctic N/A Sabella et al 2011b 

Tychini Tychus depexus North of Africa Palearctic N/A Sabella et al 2011b 

Tychini Tychus yezoensis Japan Palearctic 
collected from decayed 
leaves of the common 
reed on wetland 

Nomura 1996 

Tychini Tychus  altivagus Turkey Palearctic N/A Sabella et al 2011 

Valdini Valda frontalis California, 
USA Nearctic N/A Casey 1893 (1894) 

PSELAPHITAE 

Tribe Genus species Type locality Region Biology Reference 

Arhytodini Caccoplectinus afoveatus French Guiana Neotropic N/A Chandler & Wolda 1986 

Arhytodini Caccoplectus incitus Panama Neotropic on UV light, canal zone Chandler & Wolda 1986 

Arhytodini Caccoplectus orbis Panama Neotropic on UV light, canal zone Chandler &Wolda 1989 

Arhytodini Pachacuti hugger Ecuador Neotropic N/A Besuchet 1987 

Arhytodini Rhytus panamensis Panama Neotropic 
collected only at UV 
light Chandler 1992 

Arhytodini Tolga curticornis Queensland, 
Australia Australasia 

collected at UV light or 
FIT Chandler 2001 

Arhytodini Woldenka barroensis Panama Neotropic 
collected only at UV 
light Chandler 1992 
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Ctenistini Ctenicellus major Southeastern 
Australia Australasia 

collected with ant 
Rhytodoponera sp Chandler 2001 

Ctenistini Ctenisodes granicollis New York, 
USA Nearctic N/A Casey 1897 

Ctenistini Ctenisophus morosus Australia Australasia 
probably associated with 
ants and termites Chandler 2001 

Ctenistini Ctenistes vaulogeri 
Morocco, 
Argelia, and 
Tunisia 

Palearctic N/A Jeannel 1956 

Hybocephalini Apharinodes papageno Japan Palearctic N/A Nomura 1989 

Hybocephalini Stipesa australiae 
Northen 
Territory, 
Australia 

Australasia only known from FIT Chandler 2001 

Hybocephalini Stipesa utimia Sierra Leone Afrotropical N/A Castellini 1986 

Odontalgini Odontalgus dongbaiensis China Palearctic 
sifted beneath a pile of 
straw Yin et al 2016 

Odontalgini Odontalgus masaoi Japan Palearctic 

most type specimens were 
collected form litter of 
grassland on the banks of 
the Tokigawa River 
dominated by Miscanthus 
sinensis 

Arai & Nomura 2003 

Odontalgini Warrumbungle orientalis Western 
Australia Australasia 

collected from 
Eucalyptus or 
Oxylobium leaf litter in 
dry sclerophyll forest 

Chandler 2001 

Phalepsini Phalepsus neotropicus Mexico Neotropic 
collected from light at 
nigth Park 1945 

Pselaphini Nabepselaphus yinae China, Yunan Indo-Malay N/A Nomura 2004 

Pselaphini Pselaphogenius emeishanus Southwest 
China Palearctic N/A Nomura 2003 

Pselaphini Pselaphorites zoiai Zaire Afrotropical N/A Castellini 1997 

Schistodactylini Leanymus mirus Australia Australasia collected from Araucaria, 
Archontophoenix, 

Lea 1919; Chandler 2001 
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Dendrocnide, Eucalyptud 
and other leaf litters from 
wet sclerophyll forest and 
rainforest 

Schistodactylini Schitodactylus brevipennis Australia Australasia 
from leaf litter in Eucalyptus 
and Nothofagus forests, and 
in grass tussocks 

Chandler 2001 

Tmesiphorini Jardine kistnerorum Queensland, 
Australia Australasia 

found in colonies of the 
termite Nasutitermes 
graveolus 

Chandler 2001 

Tmesiphorini Saltisedes hainanensis China: Hainan 
Prov. Indo-Malay N/A Yin et al 2013 

Tmesiphorini Tmesiphorus amoenus Ghana Afrotropical N/A Castellini 1997 

Tyrini Centrophthalmus bartolozzi Somalia Afrotropical N/A Castellini 1997 

Tyrini Elaphidipalpus bonsarte South Africa Afrotropical N/A Coulon 1994 

Tyrini Hamotus populus Arizona, USA Nearctic 
male in UV light, female 
under bark of dead 
cottonwood 

Chandler 1974 

Tyrini Hamotus aztekus Veracruz, 
Mexico Neotropic N/A Park 1942 

Tyrini Labomimus dadongmontis China: Taiwan Indo-Malay in leaf litter Zhang & Yin 2019 

Tyrini Labomimus dilaticeps China: Taiwan Indo-Malay in leaf litter Zhang & Yin 2019 

CLAVIGERITAE 

Tribe Genus species Type locality Region Biology Reference 

Clavigerini Cerylambus maruyami Malaysia Indo-Malay N/A Nomura et al. 2008 

  Seychellister mornicus Seychelles Afrotropical Pandanus sifted litter Hlavac & Nakladal 2018 

Clavigerini Micrelytriger mirabilis Japan Palearctic N/A Nomura 1997 

Colilodionini Colilodion mirus Malaysia Indo-Malay on sifted vegetation Besuchet 1991 

Tiracerini Tiracerus curvicornis Australia Australasia presumed to be obligate 
assiciates of ants, though 

Chandler 2001 
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few records from termites’ 
nests. Most species in the 
genus collected on nests of 
Dolichoderinae ants near to 
the genus Iridomyrmex 
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Appendix C 

Secondary sexual characters in Excavodes species: Left: Spine in mesotibia in male of B. 
(Excavodes) lineaticollis. Right: Scanning electron microscopy (SEM) of antenna in male 

of B. (Excavodes) auerbachi, antennomere XI with microscopic basal pore. 
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