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Abstract

Photos which contain rich visual information can be a source of privacy issues. Some privacy

issues associated with photos include identification of people, inference attacks, location disclosure,

and sensitive information leakage. However, photo privacy is often hard to achieve because the

content in the photos is both what makes them valuable to viewers, and what causes privacy concerns.

Photo sharing often occurs via Social Network Sites (SNSs). Photo privacy is difficult to

achieve via SNSs due to two main reasons: first, SNSs seldom notify users of the sensitive content in

their photos that might cause privacy leakage; second, the recipient control tools available on SNSs

are not effective.

The only solution that existing SNSs (e.g., Facebook, Flickr) provide is control over who

receives a photo. This solution allows users to withhold the entire photo from certain viewers while

sharing it with other viewers. The idea is that if viewers cannot see a photo, then privacy risk is

minimized. However, withholding or self-censoring photos is not always the solution people want. In

some cases, people want to be able to share photos, or parts of photos, even when they have privacy

concerns about the photo.

To provide better online photo privacy protection options for users, we leverage a behavioral

theory of privacy that identifies and focuses on two key elements that influence privacy – information

content and information recipient. This theory provides a vocabulary for discussing key aspects of

privacy and helps us organize our research to focus on the two key parameters through a series of

studies.

In my thesis, I describe five studies I have conducted. First, I focus on the content parameter

to identify what portions of an image are considered sensitive and therefore are candidates to be

obscured to increase privacy. I provide a taxonomy of content sensitivity that can help designers

of photo-privacy mechanisms understand what categories of content users consider sensitive. Then,
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focusing on the recipient parameter, I describe how elements of the taxonomy are associated with

users’ sharing preferences for different categories of recipients (e.g., colleagues vs. family members).

Second, focusing on controlling photo content disclosure, I invented privacy-enhancing ob-

fuscations and evaluated their effectiveness against human recognition and studied how they affect

the viewing experience.

Third, after discovering that avatar and inpainting are two promising obfuscation methods,

I studied whether they were robust when de-identifying both familiar and unfamiliar people since

viewers are likely to know the people in OSN photos. Additionally, I quantified the prevalence

of self-reported photo self-censorship and discovered that privacy-preserving obfuscations might be

useful for combating photo self-censorship.

Gaining sufficient knowledge from the studies above, I proposed a privacy-enhanced photo-

sharing interface that helps users identify the potential sensitive content and provides obfuscation

options. To evaluate the interface, I compared the proposed obfuscation approach with the other

two approaches – a control condition that mimics the current Facebook photo-sharing interface and

an interface that provides a privacy warning about potentially sensitive content. The results show

that our proposed system performs better over the other two in terms of reducing perceived privacy

risks, increasing willingness to share, and enhancing usability. Overall, our research will benefit

privacy researchers, online social network designers, policymakers, computer vision researchers, and

anyone who has or wants to share photos online.
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Chapter 1

Introduction

1.1 Problem Motivation

Sharing photos on SNSs helps users manage the impression others have of them, maintain

an off-line relationship with their family and friends, and gain attention from a wider audience

than their existing friend circle [211]. While users enjoy these benefits, the rich visual information

that photos contain may lead to privacy leakages, such as identification, location leakage, sensitive

information leakage, and social activity leakage [6]. Privacy leakage could harm users’ impression

management and even influence their career [6].

A social recruiting survey of Jobvite shows that recruiters take candidates’ social media

profiles seriously when evaluating them [129]. Ashley Payne, a high school English teacher, was

fired because of a parent’s complaint on her Facebook photo of her holding wine and beer at a

bar, though this photo was taken during her private vacation and she did not friend any of her

students [68]. Similarly, an employee working at a nonprofit was nearly fired because she posted a

photo of a donation card and revealed the donor’s name [231].

Privacy leakage could also harm users and their family members’ safety. Parents often inno-

cently share their children’s photos to record precious life moments. However, a Children’s eSafety

Commissioner warned that over half of the photos found on pedophilia websites were downloaded

from parents’ social media. Even photos depicting children’s regular activities such as swimming or

doing homework could make them vulnerable or become victims offline [236].

In another story, sensitive content leakage even led to a teenager’s suicide. A topless photo

1



of a 15-year-old girl spread quickly among her classmates who bullied her on Facebook and in person,

and she then hung herself after years of being bullied [116].

The above stories show us the possible serious consequences of photo privacy leakage. If

failing to protect users’ privacy, SNSs, with tens of millions of users over the world, might become

an irresponsible and possibly criminal environment.

1.2 Research Motivation

A large number of research approaches have been explored to alleviate privacy leakage from

different perspectives. These approaches can be categorized to controlling photo content disclosure

and controlling photo recipients.

For example, in terms of the first approach, controlling photo content disclosure, Face/Off

system applies facial recognition in a photo and obfuscates the detected faces [124]. However, ob-

fuscation methods are very limited in these studies and blurring is the most commonly used method

(e.g., [124, 251, 269, 297]) though it is ineffective. Moreover, these systems made incomplete assump-

tions about what types of content raise users’ privacy concerns. For example, Google StreetView

only identifies and blurs faces and license plates [103].

Most SNSs (e.g., Facebook) adopt the second approach—controlling photo recipients to pro-

tect photo privacy, such as selectively sharing with a group of recipients [86] or untagging themselves

from others’ photos [85]. Nonetheless, untagging is ineffective since unwanted viewers can still trace

back to the identity of the person who reveals sensitive content. Besides SNSs, some researchers have

explored this approach and developed privacy protection systems. For example, Cryptagram allows

users to encrypt photos then upload them to SNSs [275]. Only the recipients that users specify can

have the right credential to retrieve the original photo. Yet these systems all have drawbacks. First,

it is time-consuming to choose the right recipients every time when sharing a photo. Next, due

to a large number of SNS friends, users may accidentally select or exclude certain recipients [34].

Under such threats, users consider censoring/withholding photos to be safer option [191]. However,

self-censorship hampers the communicative ability of SNSs [219]. Social media risks becoming an

asocial environment if content sharing is limited [218].

More importantly, knowing that a number of privacy frameworks could inform privacy

research, such as the behavioral privacy model, contextual integrity, and networked privacy, we find
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that little work on online photo privacy protection leverages these privacy frameworks into their

study design and mechanism development.

To address these research gaps, in my doctoral thesis, I aim to leverage the behavioral

privacy model to inform my research, gain an understanding of privacy parameters, and examine

privacy protection methods to inform the building for an effective and usable photo privacy protection

system on SNSs.

1.3 Research Objectives

The behavioral privacy model identifies two core elements that could affect privacy – infor-

mation content and information recipient [50]. Adjusting either one would affect privacy. Aiming at

protecting online photo privacy, I decided to leverage this model with the focus on the two elements.

My research aims to optimize the behavioral privacy model in the context of photo privacy; study the

two parameters, content and recipient; offer an alternative photo privacy protection strategy other

than self-censorship and SNS recipient control; and design an effective and usable photo privacy

system. To achieve this goal, I plan to answer the following questions.

• Understand what to obscure (content) and prevent from whom (recipient):

– RQ1: What is the sensitive content in photos to be obscured? (Chapter 3)

– RQ2: What are users’ preferences with different groups of recipients? (Chapter 3)

• Study and select promising obfuscation methods (can be viewed as a part of the content

parameter):

– RQ3: What are the effective and usable obfuscations? (Chapter 4)

– RQ4: Are the obfuscations robust in terms of de-identifying both unfamiliar and familiar

people? (Chapter 5)

• RQ5: As an extreme privacy protection scheme, is photo self-censorship prevalent? Can

obfuscations combat it and encourage photo sharing? (Chapter 6)

• The outcome of my dissertation is a photo privacy protection system that enables sensitive

content detection and offers obfuscation options to protect the identified sensitive content. We

conducted an evaluation:

3



– RQ6: Can our system reduce users’ privacy concerns when sharing photos? (Chapter

7)

– RQ7: Can our system encourage sharing? (Chapter 7)

– RQ8: Is our system usable? (Chapter 7)

1.4 Overview & Summary of Studies

To answer the research questions, we conducted five studies as Figure 1.1, Table 1.1, and

Table 1.2 show.
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Figure 1.1: Illustration of different phases of this dissertation.

Study 1 Identifying sensitive content and users’ sharing preference. Focusing on

the first element in the behavioral theory of privacy, controlling content disclosure, we must know

what portions are considered sensitive and should be obscured. Although machine learning methods

exist that can identify content in photos, we currently do not have a taxonomy that describes what

content is considered sensitive, and how sharing preferences for content differs across potential photo

recipients. To fill this gap, we collected photos that contain sensitive content from 116 participants

and recorded their sharing preferences for these photos with 20 recipient groups. Next, we conducted

a card sort study on the 181 unique pieces of sensitive content identified in this study to surface user-

defined categories of sensitive content. Using data from these studies we generated a taxonomy that

identifies 28 categories of sensitive content. We also establish how sharing preferences for content

differs across groups of potential photo recipients. This taxonomy can serve as a framework for

understanding photo privacy, which can in turn inform new photo privacy protection mechanisms.

Study 2 Identifying effective and usable obfuscations. With the focus on the content

element, the second study introduces privacy-enhancing obfuscations for photos and conducts an

online experiment with 271 participants to evaluate their effectiveness against human recognition

and how they affect the viewing experience. Results indicate the two most common obfuscations,

blurring and pixelating, are ineffective. On the other hand, inpainting, which removes an object or

person entirely, and avatar, which replaces content with graphical representation are effective. From

a viewer experience perspective, blurring, pixelating, inpainting, and avatar are preferable. Based
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on these results, we suggest inpainting and avatar may be useful as privacy-enhancing technologies

for photos because they are both effective at increasing privacy for elements of a photo and provide

a good viewer experience.

Study 3 Obfuscation effectiveness of de-identifying both unfamiliar and familiar

people. In Study 2, one limitation is that we only explored obfuscations’ effectiveness for de-

identifying unfamiliar people (people in stimuli were unknown to the participants). Hence in Study 3,

we conducted another online experiment with 230 participants where we investigated the effectiveness

of enhancing photo privacy using obfuscations, which hide part of the photo content. Results indicate

that obfuscations reduce privacy concerns associated with online photo sharing and encourage people

to share more photos. Furthermore, we find that obfuscations’ effectiveness as a privacy-enhancement

is differentially affected by familiarity, or whether viewers know people in a photo. We identify

obfuscations that are robust to the increased likelihood of recognition associated with familiarity

and provide a good viewer experience. We suggest these obfuscations would be useful tools for photo

privacy enhancement, especially in cases where viewers are familiar with the people who are in the

photos, such as SNSs.

Study 4 Obfuscation may combat photo self-censorship. SNS users self-censor or

withhold content to achieve privacy. Due to the lack of useful photo privacy-protection tools, photos

are a likely, but unexplored, target for self-censorship. We reported results from the survey we

conducted with 230 participants in Study 3 which also elicited data about photo self-censorship

on SNSs. We quantified the prevalence of self-reported photo self-censorship and associated this

with gender, age, privacy preference, Internet and SNS usage, and interrogated whether privacy-

preserving obfuscations, such as blurring, may be useful for combating photo self-censorship. Our

results indicate that over half of the participants have self-censored photos on SNSs and privacy-

conscious people are more inclined to censor photos. We also find that women are more likely to

report they would share a photo they had previously self-censored if they were able to obfuscate

portions of the photo to enhance privacy.

Study 5 An experiment to determine whether obfuscation reduces privacy con-

cerns and increases willingness to share. Based on the formative research we have conducted,

we developed a prototype of a photo privacy protection system. To evaluate this prototype, we

conducted a three-group between-subject pretest-posttest experiment. We focused our assessment

on the system’s ability to reduce privacy concerns, the ability to encourage photo sharing, and the
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overall usability.
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Chapter 2

Background and Related Work

To gain a better understanding of the current state of research about photo privacy protec-

tion on SNSs, I conducted a systematic literature review of research published in the ACM Digital

Library and IEEE Xplore. I used multiple terms and combinations to search both titles and ab-

stracts in each database and limited the search to manuscripts published between 2000 to 2020 (see

Table 2.1). After the initial search, I manually excluded articles that are duplicated and/or not

directly relevant to the scope of my dissertation. For example, I excluded papers about developing

algorithms to recognize objects in photos.

The papers can be grouped into four categories: (1) investigating users’ strategies or behav-

iors when faced with privacy risks (2.1.1), (2) developing online photo privacy protection systems

(2.1.2), (3) identifying potentially sensitive content that leads to privacy concerns (2.3.1.1), and (4)

implementing obfuscations to protect photo privacy (2.3.1.2). In the following sections, I first give

an overview of online photo privacy and then discuss articles in each category.

2.1 Introduction to Online Photo Privacy

Hundreds of millions of Online Social Network (SNS) users present themselves, communi-

cate, and share thoughts and pictures every day [82]. In 2018, 68% of U.S. adults used Facebook, and

three-quarters of those users accessed Facebook on a daily basis. Additional social media platforms

such as Snapchat and Instagram are popular among young adults (e.g., 78% of 18- to 24-year-olds

are Snapchat users) [256]. On Facebook alone, 350 million photos are uploaded every day. In total,
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Terms ACM Digital Library IEEE Xplore
Initial
Search

After
Screening

Initial
Search

After
Screening

photo privacy 182 41 153 16
social media privacy photo 17 2 18 0
image photo face de-identification 18 2 3 0
photo image obfuscation redaction privacy 27 0 29 4
privacy blur/pixelate/inpaint 51 5 112 5
self-censorship social network 64 3 26 0

Total 359 53 341 25

Table 2.1: Summary of systematic literature review

more than 250 billion photos have been uploaded by Facebook users [257], while on Snapchat about

20,000 photos are shared every second [14].

The massive amount of data shared on SNSs sometimes includes sensitive details, which

generates a number of privacy issues. For example, people often reveal information such as date of

birth, gender, location which can lead to physical privacy risks [126]. Other privacy issues include

unintentional facial recognition, inference attacks, location leakage, identity theft, relation privacy

leakage, phishing, and profiling risk [92, 153, 170, 283].

Unlike textual information shared on SNSs, the rich visual information that photos shared

on SNSs may pose an even higher level of privacy risk. One primary privacy concern for SNS users

is impression management within their social circles [25]. For example, users expressed concerns

about unflattering photos and incriminating evidence. However, despite these concerns, people fail

to predict the short-term or long-term consequences of the information flow, at least in part due to

the limitations of human working memory [187].

Other serious privacy invasions may occur without users’ awareness. For example, identi-

fication, location leakage, sensitive information leakage, and social activity leakage are all possible

consequences of photo sharing on SNSs [6]. Photo privacy leakage not only harms users’ impression

management, but may also lead to financial and social embarrassment [8] and even threatens users

physical and property security (e.g., stalking) [6, 8].

2.1.1 Users’ Privacy-Protective Practices

With increasing concerns, users actively take steps to alleviate privacy issues. A behavioral

theory of privacy examines Privacy-Enhancing Behaviors (PEBs) and clusters them into three cate-

11



gories: avoidance, modification, and alleviatory [50]. Though this model is not limited to the online

environment, it does capture, predict, and help organize users’ photo privacy behaviors. Many on-

line photo PEBs fall within the avoidance and alleviation categories. Modification refers to users

modifying their behaviors during the act of photo capture which often occurs in the physical envi-

ronment (e.g., being careful, not in front of others, quietly). While we see the potential for work on

this category in the future, for the work proposed here, we focus on avoidance and alleviation.

2.1.1.1 Avoidance

Most photo privacy protection behaviors fall within the avoidance category. Avoidance be-

haviors refer to the actions that people take to avoid privacy leakage before it occurs [50]. A very

common behavior is photo self-censorship—self-censoring potentially problematic content before

sharing. Self-censorship, described as “the act of intentionally and voluntarily withholding infor-

mation from others in the absence of formal obstacles [18]”, is adopted by SNS users to maintain

a consistent self-presentation among different audience groups [191]. Since SNSs contain few visual

cues about the audience [48], users are unlikely to have an accurate understanding of their social

graph considering the large number of SNS “friends,” or are underestimating their photo recipi-

ents [23]. In such cases, they consider censoring/withholding photos to be a safer option [191]. For

instance, a prior study alludes to photo self-censorship by suggesting teens refuse to share sensitive

photos online [61]. Yet photo self-censorship hampers the communicative ability of SNSs, which is

an important feature of social networks [219]. Social media risks becoming an asocial environment

if content sharing is limited [218].

Another avoidance solution, which is often adopted by SNS users, is selective sharing, de-

fined as “refrain from sharing content or by selecting recipients.” Regarding recipient selection,

users utilize privacy settings or recipient controlling tools offered by SNSs to disclose their per-

sonal information selectively, hence this approach is also named “technical strategy” by Stutzman et

al. [268]. Based on a survey of undergraduate Facebook users’ privacy-enhancing practices, 83% of

participants stated using Facebook privacy settings and 58% indicated they had made their profile

friends-only [268]. In terms of photo sharing, the mainstream SNSs such as Facebook and Snapchat

allow users to choose public, friends only, or a specific group of friends to share a photo. However,

“friends” on SNSs is very ambiguous which may include anyone from a significant other to a com-

plete stranger [63] since a small portion of users is likely to accept friend requests from unknown
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people [132]. As users might believe that they have done an adequate job in protecting privacy by

only allowing “friends” to access their uploaded content, they are very likely to share their personal

information which brings them risks [63]. In terms of the other aspect of selective sharing—content

restriction, users would share a photo with potential sensitive content but hide the most sensitive

part by, for example, cropping it or covering it with a sticker.

2.1.1.2 Alleviation

Alleviation are the actions taken to reduce the consequences of the spread of information

after a photo has been captured [50]. For example, users might delete photos when they notice

potential privacy risks after posting photos. Though users believe their photos are deleted immedi-

ately, most existing SNSs have the deletion delayed up to 30 days which lets others re-access those

deleted photos via photo links [181].

Privacy on SNSs is not only about one’s disclosures, but also the disclosures about one’s

self by other users [268]. For example, a user may be tagged and auto-identified in another user’s

photo without knowledge and consent. Thus, users often leverage alleviatory strategies to address

conflicting sharing decisions by others. Specifically, these strategies involve asking others to make

a photo containing him/herself private, asking others to completely remove a photo [107], and

untagging him/herself from a photo [24, 268]. However, this approach may cause social tension.

Furthermore, even if a user untags him/herself, viewers are still able to access that photo in the

photo uploader’s profile.

2.1.2 System Solutions for Photo Privacy Protection

Many studies have been conducted from different perspectives to protect online photo pri-

vacy. Intervention timing is an important consideration when developing these photo privacy control

mechanisms which align with the behavioral privacy model. The model elucidates temporal aspects

of privacy: avoidance, which occurs prior to an act; and alleviation, which occurs after an act [50].

The review of research approaches is summarized based on their intervention timing.

2.1.2.1 Avoidance

Most of the research fits within the avoidance temporal category.
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At the time of capture. A photo could be protected before upload, and an SNS would

never gain access to the raw photo, which addresses organizational threats related to SNS providers

and various third parties [151]. The novel approach “Offlinetags” can be applied at the time of

capture to avoid privacy leakage. Offlinetags consist of four symbol stickers which represent people’s

privacy preferences–no photos, blur me, upload me, tag me. They are designed to be easily recogniz-

able by algorithms, so that cameras either do not take photos or automatically blur the people who

wear “no photo” or “blur me” stickers during capture. Unlike cameras or phones that people can

effortlessly manage the stream of data, wearable lifelogging camera devices such as Google Glass con-

tinuously capture large numbers of photos without users’ actions. The results of in situ user studies

and interviews suggest that instead of reviewing and deleting problematic photos later, the wearable

cameras should enable obscuring certain content or pausing instantaneously once detected [66, 122].

In general, this approach controls a portion of the photo content (e.g., people’s faces) or the entire

photo.

Before sharing. Despite the possible computational resource-intensity, photo privacy can

be protected before photos are uploaded online. For example, a photo privacy-preserving tool

consists of two parts – a client-side application for applying scrambling obfuscation on people’s

faces and a server for hosting photos [306]. The client-side application obfuscates a photo then

uploads it to the private server. Viewers who have the key are able to view the obfuscated-free

version. Researchers also developed a system that encrypts photos prior to sharing on Facebook [270].

Similarly, PrivacyJPEG encrypts several sensitive areas of photos and binds the access control

policies before uploading photos [169]. Another tool is integrated in camera application [248]. After

a photo is taken, the tool automatically detects all the faces in this photo and notifies the user,

therefore he/she will beware of other people’s privacy when making the sharing decision.

At the time of sharing. Most techniques in previous research are designed to protect

photo privacy at the time of sharing (e.g., after uploading). These techniques can be categorized

into three approaches – controlling photo content, controlling photo viewers, and controlling photo

metadata.

In terms of controlling photo content, face blurring is the most widely adopted method.

For example, Face/Off determines which viewer is not permitted to view which face in a photo and

consequently blurs that face [124]. A recent study on multi-party photo privacy proposes a built-in

option in SNSs which enables photo content modification such as blurring faces and cropping people
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out when a sharing conflict is detected [269]. Similarly, another system utilizes facial recognition, no-

tifies other stakeholders in a group photo, and provides the face blurring option [297]. A tool named

“Cardea” predicts users’ privacy preferences based on four elements in photos – location, scene,

other people’s presences, and hand gestures, then applies blurring on certain people’s faces [251].

Apart from face blurring, researchers propose an automated method to replace people unintend-

edly captured in photos with synthesized people from a dataset. Though the application context

in this study is Google Street View, this method can also be applied to any online photos [208].

Additionally, cartoon stickers have been employed to hide people’s faces [173].

Controlling photo viewers is another common approach. “Cryptagram” enables converting

photos to encrypted images [275]. Users upload the encrypted images to SNSs and only the viewers

with the right credentials can retrieve the original photo. It guarantees that both unwanted viewers

and SNSs cannot infer the photo. Several other systems protect photo privacy by predicting and

optimizing photo access control settings using a set of elements of photos. For example, a study

identifies photo content and aesthetics as elements that influence users’ sharing preferences [136],

while two studies find photo content inferred by tags and the tie strength of relationship may decide

the preferred photo recipients [95, 140]. In addition, a context-based personalized privacy settings

recommender system provides users recommendations on photo access settings [264]. With the

focus on multi-party privacy conflicts, a system analyzes the social intimacies between the visitor

and co-owners and restricts certain viewers’ access to an entire photo [87].

Metadata associated with photos include cameras’ identifier numbers and the GPS coordi-

nates of the location where a photo was taken. Besides the photo content, the metadata can cause

privacy leakage as well, especially since people may not be aware of it when sharing photos [101].

To address this concern, researchers developed a metadata protection application to enable users

to change metadata and protecting posting location [101]. Metadata leakage is often caused by

users’ unawareness of the existence of metadata. Hence, in another study, an SNS extension first

shows users the photo metadata and provides options to modify or remove it [113]. Additionally,

researchers propose the use of external metadata storage services which allow users to easily manage

metadata for photos on SNSs [113]. On the other hand, metadata can be used to protects privacy.

For example, SnapMe watchdog utilizes metadata and keeps track of photos taken in the users

environment [114].
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2.1.2.2 Alleviation

After sharing. “Restrict Others” tool was developed to protect personal information in

others’ photos [25]. Besides untagging, it allows each stakeholder depicted in a photo to negotiate

with the owner to hide the photo from certain viewers. PRIMO notifies users privacy violations in

photos that other people upload, for example, photos showing a user with other people not having

his/her gender [42]. However, since these tools intervene after the act, it is likely that the unwanted

recipients have viewed the photo.

Though the previous work has sought to protect online photo privacy using various ap-

proaches, little of the work leverages privacy theories. Even if a little work invokes privacy theories,

most of them only mention theories in the background section without deep engagement [16]. In the

section below, I introduce common theories of privacy and a behavioral privacy model that informs

my research.

2.2 Theories of Privacy in HCI

Privacy, as a multifaceted concept, has been studied from the perspective of many different

disciplines including philosophy, law, communication, social psychology, and Human-Computer In-

teraction (HCI). The concept of privacy was first brought up in philosophical discussions. Aristotle

identified two distinct spheres of life—the public sphere of political activity and the private and

domestic sphere of the family [64]. In the discipline of law, Warren and Brandeis defined privacy as

the legal right to be let alone [292]. In the physical world, letting alone is not a tough task since

the boundary between public and private can simply be the walls of one’s house. However, besides

physical privacy, researchers started to concern themselves with the informational privacy invasions,

such as the unauthorized dissemination of portrait photos and the news that contain personal infor-

mation [292]. In the discipline of communication, Burgoon et al. characterized information privacy

as the “ability to control who gathers and disseminates information about one’s self or group and

under what circumstances [43].”

Privacy has been investigated extensively in social psychology as well. The widely held

definition of privacy in social psychology is the right to control information about oneself. For

example, Westin defined privacy as the right to “control, edit, manage and delete information about

themselves and decide when, how, and to what extent information is communicated to others [293].”
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Stone et al. described privacy as “the ability of the individual to control personal information

about one’s self [265].” Beyond the individual privacy, Altman framed privacy as “an interpersonal

boundary process by which a person or a group regulates interaction with others [11].” He argued

that the boundary regulation process is dynamic. An individual alters the degree of openness to

others to achieve his/her desired level of privacy over time. One’s disclosing and stimuli from others

are both involved in boundary regulation.

Communication Privacy Management Theory (CPM), a framework in the discipline of com-

munication, further expands Altman’s theory by defining privacy as “the feeling that one has the

right to own private information, either personally or collectively [226].” CPM introduces two types

of boundaries: personal boundaries that manage private information about oneself and collective

boundaries which involve the private information shared with others. Collective boundaries are the

overlap of two circles which represent two persons’ private information, hence the lines of ownership

is often ambiguous.

In the field of HCI, an important privacy framework is contextual integrity (CI) developed

by Nissembaum [207]. It describes privacy as an appropriate flow and emphasizes that privacy

is not about not collecting data nor data minimization. In contrast, individuals have the need

to share information, but the information should be shared appropriately. Individuals interact

within a context and the flow should conform with the legitimate contextual informational privacy

norms in the context. CI introduces five independent parameters in privacy – actors which include

subject, sender, and recipient (e.g., physician, teacher, friend), information type (e.g., demographics,

transaction history, photo), and transmission principle (e.g., consent, compel, buy). For example, a

physician (sender) can legally release a patient’s medical information (attribute) to designated people

(recipient) with his/her consent (principle), while releasing information without consent is considered

an invasion of the patient’s privacy. An appropriate flow is hard to regulate in a networked online

environment [31, 192]. For example, the information we share about ourselves may unintendedly

disclose other people’s personal information.

2.3 In The Context of Online Photo Privacy

Unlike other types of data such as text, photos that contain rich visual information are

more likely to cause privacy issues when shared on SNSs. Much photo privacy leakage is due to
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the information misclosure which occurs when “privacy is violated in that information not intended

for a specific person(s) is nevertheless revealed to that person [50].” For example, the intended

content “drinking in a bar” can be intended to be disclosed to a close friend recipient; however,

accidentally sharing this content with unintended recipients such as colleagues and supervisors may

cause trouble (recipient misclosure). On the other hand, people may be willing to share photos that

depict themselves with the appropriate clothes; however, accidentally sharing partial nude photos

are considered content misclosure.

To my knowledge, there is no framework that is specifically developed for the context of

online photo sharing. To ground my research within a privacy theory, I first delved into CI. CI has

been useful in privacy studies such as investigating the threat raised by vehicle safety communication

technology [308] and identifying privacy issues on SNSs [183]. However, this model may not be very

suitable in a photo privacy setting. For example, the attributes can only be the visual content in

photos and in most cases, the subject is the user him/herself. Moreover, CI lacks another important

element in photo privacy – photo content (e.g., identity, object).

Hence, I looked into the behavioral theory of privacy [50]. Firstly, this theory elucidates

temporal aspects of privacy: avoidance, which occurs prior to an act; modification, which occurs

during an act; and alleviation, which occurs after an act. In the photo setting, users’ privacy behav-

iors and privacy protection techniques I reviewed above all fit within the avoidance and alleviation

categories. Recent work supports the usefulness of a temporal perspective. For example, Rashidi

and colleagues [232] describe how users manage privacy in a collaborative environment via the life

span of photos which includes four temporal stages: whether the user is ready to be captured in a

photo, whether the photo should be taken, whether a photo can be shared, and whether the sharing

should be mitigated. Second, this behavioral privacy model identifies two core elements that could

affect privacy – information content and information recipient [50]. Adjusting either recipient or

content would affect privacy (Fig. 2.1). Aiming at protecting online photo privacy, I decided to

leverage this behavioral privacy model with the focus on the two elements – content and recipient.

2.3.1 Controlling Content

Controlling information content has been implemented in visual content protection exten-

sively. For example, since most YouTube videos are public by default, it is hard to regulate the

information recipients. Instead, YouTube uses a blurring obfuscation to hide faces and objects in
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Figure 2.1: Content by recipient interaction described in the behavioral privacy model [50].

certain videos [301]. In the home environment, two privacy-preserving mechanisms (blob tracker

and point-light) have been used to protect elements of users’ identities [49]. Specifically focusing on

photo privacy protection, I have summarized the research that aligns with the approach of controlling

photo content in the paragraph of “At the time of sharing” in “System Solutions for Photo Privacy

Protection.” However, most of the previous work made incomplete assumptions that people’s faces

were the only sensitive content to be protected and applied blurring obfuscation on faces.

2.3.1.1 Sensitive Content

We have some hints from prior work about the kinds of content in a photo that people

consider sensitive (summarized in Table 2.2). For example, interview studies reveal that people are

very cautious when sharing photos which illustrate their own faces or family members’ faces on

SNSs either because they want to project a perfect image to manage others’ impression of them

or they want to avoid others misusing these photos [3, 25, 155]. Sensitive features extracted from

participants’ photos and users’ comments via machine learning indicate that people, landscape, and

certain places and events are sensitive [45]. Certain objects, backgrounds [6], and phone screens [121]

are also common concerns. When cameras are ubiquitous, such as in life-logging, monitor screens,

and irrelevant persons in photos lead to privacy concerns [121]. People are also concerned about

revealing photos that contain text such as their address, organizational affiliation, and email address

[15, 100].

The most comprehensive study to date using an ML approach examining content sensitivity

is work that claims to identify 268 privacy-sensitive object classes [303, 304]. The privacy-sensitive

object classes include sensitive people, sensitive locations, toilet, discrimination texts, home shrines,

and visual attributes for personal hobbies. However, there are a number of limitations to this work
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that makes it difficult to apply towards the goal of understanding sensitive content.

First, researchers identified the privacy-sensitive object classes using a set of photos that

people had uploaded to an SNS. While the sets were labeled as “private,” it is not clear what

“private” meant to the people who uploaded the photos. Obviously, the photos they uploaded

were shared with the organization hosting the photos (in this case, probably Flickr, but see further

limitations below), so not “private” if we mean that the photos were not shared with anyone. It

is unlikely that people would have shared to Flickr their most sensitive photos. Instead, they may

have chosen not to upload the most sensitive photos at all [255]. Hence, the photos in this dataset

may not represent the most sensitive photos. For example, they would not contain any photos that

participants chose not to upload to Flickr.

Additionally, current machine vision approaches are only able to detect object classes present

in existing photo datasets, such as ImageNet [241] and MS COCO [182], which are not privacy-

specific. MS COCO, for example, focuses on objects that “would be easily recognizable by a 4-year-

old.” Given the general-purpose goal, those datasets do not contain private images with sensitive

objects. As a result, the machine learning approaches based on those datasets are limited to detecting

general-purpose objects, rather than sensitive content. Because sensitive objects are not a part of

these object sets they, therefore, cannot currently be detected reliably.

Finally, the paper fails to provide critical methodological details and detailed results which

makes judging the rigor and implications of the work impossible. For example, while we think

the SNS the researchers drew from was probably Flickr, this information is not presented in the

paper, and requests for this information to the authors were not answered. Furthermore, there is no

information about whether the privacy setting was fine-grained, whether the sample size is sufficient,

and whether the sample of participants was representative. All of these factors taken together make

it impossible to use this prior work to understand sensitive content in photos.

To our knowledge, no work systemically identifies and summarizes sensitive content in pho-

tos. Without an instructive framework, many photo obfuscation systems do not refer to any studies

that examine sensitive content, but rather make untested or incomplete assumptions about what

types of content raise users’ privacy concerns. For example, Google Street View considers people’s

faces and vehicle license plates to be the highest priority sensitive content but neglect other content,

such as private houses or objects in yards [103].
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Category Sensitive content Research method

Identity Photo owner [25, 124] Focus group; N/A
Family members [3] Interview
Children [3, 136] Interview

Nudity [215] EU Data Protection
Directive 95/46/EC,
EUS Privacy Act of
1974, SNSs rules

Factors that harm Unflattering/embarrassing shots [3] Interview
impression management Activity that may be misinterpreted [3] Interview

Presentation management [121] In situ study
Environment [6] Interview
Event [6, 25] Interview; focus group

Factors that reveal Monitor screen [121, 238] In situ study
personal information Location [121] In situ study

Written information [121] In situ study
Bedroom [238] Online experiment

Illegal Illegal activity [25] Focus group
Copyright [3] Interview

Photo quality Technically flawed photo [3, 121, 136] Interview; in situ study
No need to share Irrelevant to viewers [3] Interview

Table 2.2: Summary of previously identified sensitive categories in photos

2.3.1.2 Obfuscation methods

Blurring is the most commonly used obfuscation to control information content disclosure

both in research and in practice. However, blurring may not provide sufficient privacy protec-

tion [180]. Both in the photo and video surveillance, blurring is less effective than solid masking

in terms of preventing people from recognizing the obscured individual [180, 148, 179]. In addition

to human recognition, blurring is also susceptible to reversal by machine identification; researchers

have used generative adversarial networks to refine image details [162], trained artificial neural net-

works to perform re-identification [195], and automated “faceless recognition” using clothes and/or

pose [212]. Redaction tools from video surveillance can be applied to privacy-preserving online photo

sharing, since both of these applications attempt to protect a subject’s identity by hiding the sub-

ject’s visual information (see Table 2.3 for an overview of the obfuscation methods). However, most

of these focus on the effectiveness of these redaction tools against automatic recognition software.

To the best of our knowledge, none of these tools have been used to enhance privacy for photos

shared via SNSs. In particular, I have seen no work that investigates their effectiveness against

human re-identification, especially in relation to users’ attitudes towards these tools.
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Example Name & Definition
Related
Work

Example Name & Definition
Related
Work

Blurring. Reduces im-
age detail by generat-
ing a weighted average of
each pixel and its sur-
rounding pixels.

[24,
69,
80, 98,
138,
149,
158,
301]

Pixelating. Replaces
original small pixels,
which are single-colored
square display ele-
ments that compose
the bitmap, with larger
pixels.

[65,
146,
148,
158,
286,
302]

Silhouette. Re-
places content with
a monochrome visual
object that mirrors the
extracted shape of the
original content.

[49,
149,
214,
216,
305]

Avatar. Replaces con-
tent with a graphical
representation that pre-
serves some elements of
the underlying content.
For example, a human
avatar can preserve fa-
cial expression and ges-
ture, but hide biomet-
rically unique elements
(e.g., face) of identity.

[216,
235,
262]

Point-light. Replaces
content with several
moving dots that pre-
serves some elements of
the underlying content.
For example, a point-
light image of a human
can preserve a person’s
activity, but hide many
biometrically unique
elements.

[49] Bar. Replaces content
with a monochrome vi-
sual object that is the
shape of a small, thin
rectangle.

[305]

Masking. Re-
places content with
a monochrome solid
box that covers the
content to be protected
and surrounding image
content.

[148,
149,
305]

Inpainting. Com-
pletely removes content
fills in the missing
part of the image in
a visually consistent
manner.

[149,
216,
272,
282,
305]

Table 2.3: Eight obfuscation methods.
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Category Recipients

Private Only me
Family Spouse/significant others [47, 55]

Household members [47, 56, 55, 102, 224]
Relatives [47, 224]

Friends Close friends [47, 102, 224, 285]
Normal friends [47, 56, 55, 224, 300]

Colleagues Colleagues, co-workers [47, 55]
& Classmates Classmates [285]

Supervisors [47, 55]
Acquaintances SNS friends that haven’t met offline [300]

Acquaintances [224]
Loose acquaintances [102]

Table 2.4: Summary of recipients from prior literature

2.3.2 Controlling Recipients

People have different levels of privacy preference for various groups of photo recipients [56,

213]. We summarize different recipient groups from prior literature in Table 2.4, including private,

family, friends, colleagues or classmates, and acquaintances. Most SNSs (e.g., Facebook) leverage

the recipient control approach (access control list model) [192] which enables users to select a subset

of friends to share their photos or posts with; or if they are unsatisfied with a photo, they may self-

censor the photo. This approach addresses privacy concerns by preventing unwanted others from

viewing their photos [25, 266]. However, in practice, SNS users may not fully understand their social

graph due to a large number of SNS friends [23], thus may include inappropriate recipients (recipient

misclosure). Choosing recipients from SNS friends is also a cumbersome task. Furthermore, their

intended recipients may change considering different types of sensitive content. Hence, there lacks a

system that provides recommendations to users on which recipients they could safely share a photo

with.

2.4 Summary of the Literature Review

According to the behavioral privacy model [50], we know that both of the photo content

and recipients in combination influence privacy (Figure 1.1). Hence, in my research, I combined

controlling content and controlling recipients to provide better photo privacy management. From

the above literature review, we understand the limitations of photo privacy protection tools that
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implemented in practice and developed in research:

• Insufficient knowledge of user-defined sensitive content in online photos

• Insufficient knowledge on appropriate photo recipients considering different sensitive content

depicted in photos

• Lack of effective and satisfying obfuscation methods that can be applied on SNSs

• Lack of knowledge on obfuscation adoption willingness and its potential to combat self-censorship

My research aims to address these limitations and propose an effective and usable photo

privacy protection on SNSs which considers both content control and recipient control.
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Chapter 3

Study 1: Identifying Sensitive

Content and Users’ Sharing

Preference

Note: This work was published at CHI 2020 [176].

3.1 Introduction

To protect online photo privacy, researchers have developed photo obfuscation systems which

make part of the photo content invisible to viewers, such as masking a person’s face [250]. However,

these systems make incomplete assumptions about what types of content raise privacy concerns.

For example, the Face/Off system assumes that faces are the only sensitive content that needs to

be protected [124]. Researchers have tried to use machine learning to understand what content

is sensitive, but this work has severe methodological limitations limiting its usefulness. Therefore,

there is a need for a user-defined taxonomy of sensitive content in photos. This taxonomy should

be based on content users identify as sensitive. Moreover, because people have different levels of

privacy preference for various groups of photo recipients [56, 213], we do not yet understand the

variations in sharing preferences by recipient group. To bridge the gap, we propose a taxonomy that

systemically identifies and summarizes sensitive content in photos and facilitates an understanding
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of people’s sharing preferences for sensitive content categories with different recipients.

We also introduce a new method for sensitive content elicitation which overcomes the lim-

itations of prior machine learning approaches. Using this approach, we collected 181 unique pieces

of sensitive content from 116 participants. We then further grouped the content into 28 categories

via a card sort with a different set of 14 participants. We not only report what content is consid-

ered sensitive but also summarize why participants are unwilling to share various types of sensitive

content, for example, to avoid getting into trouble or harming impression management. In terms of

recipients, we observed a four-level sharing preference pattern (i.e., private, significant others, close

relatives and friends, colleagues). We also found several cases that did not align with this pattern

when we compared recipient groups in the subset of each sensitive category. Finally, we describe

how our work might be applied to Social Network Sites (SNSs) and how it might benefit relevant

machine learning studies.

The contributions of this paper are sixfold. We:

• Introduce a novel method to elicit sensitive content from participants. It removes many of

the barriers in collecting private content by providing participants with alternative ways to

identify sensitive data that preserve their privacy.

• Integrate prior work from across disciplines, test it, and extend it. We collected a much larger

data set (563 total items including 181 unique pieces of sensitive content) from a larger sample

size compared to prior work (see Table 2.2).

• Provide a more granular level of detail about sensitive content categories which may be more

practical for privacy researchers, computer vision researchers and practitioners.

• Connect granular sensitive content categories to potential recipient categories, surfacing both

consistencies in terms of sharing preferences and exceptions to these consistencies.

• Describe, based on qualitative data, reasons people might not want to share sensitive content

in photos.

• Provide design implications for building new photo privacy protection systems.
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Category Recipient groups

Private Private, not share with anyone
Family Significant others

Household members
Close relatives
Distant relatives

Friends Close friends
Distant friends
Ex-girl/boyfriends

Colleagues & Close colleagues/classmates
classmates Distant colleagues/classmates

Close supervisor
Distant supervisor

Acquaintances Friends of friends
People you’ve only met online
People you’ve only met once or twice

Age People of your age
People younger than you
People older than you

Gender People of the same gender as you
People of different gender

Table 3.1: Recipient groups used in our study

3.2 Method

3.2.1 Study One: Photo Elicitation

We collected two types of data via the photo elicitation: first, we gathered photos and/or

descriptions of photos with sensitive content to understand what content is sensitive. To collect

a purposefully diverse set of sensitive content, we defined private as photos that participants keep

1) private, and are unwilling to share with 2) family, 3) friends, 4) colleagues/classmates, and 5)

acquaintances, asked them to upload corresponding photos for each category and then to identify

sensitive content. Second, for each photo, they answered a question about their likelihood to share

that photo with the 20 different recipient groups shown in Table 3.1.

3.2.1.1 Participants

Our goal was to obtain a sample whose demographic and technology experience character-

istics mirrored and reflected the variations among U.S. Internet users. In particular, our goal was to

recruit a sample that was reflective of the target population in terms of age, gender, race, Internet
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usage, and SNS usage. We use the Pew Research Center’s [228, 225] data on Internet usage and

demographics for comparison.

To determine the necessary sample size for our study, first, we ran a pilot study to understand

how the data points (photos and text descriptions) were distributed in each sensitivity category. We

recruited 20 participants via MTurk and asked them to complete the procedure in the ‘Procedure’

subsection. Next, we conducted a power analysis based on the pilot study to calculate the necessary

sample size. Specifically, if we want to find an effect at 0.85 power level between different recipient

groups within the smallest sensitive content category which has only five data points in our pilot

study, the power analysis revealed we would need 84 participants. To allow for a larger margin of

error, we decided to increase the number of participants to 120 for the full-scale study. We recruited

120 participants via MTurk. MTurk meets one of our criteria for our target sample in that MTurkers

are Internet users [240]. Additionally, MTurk recruitment results in a more diverse sample compared

to standard Internet sampling and college sampling [39]. The data in studies using MTurk are as

reliable as those obtained via other recruitment methods [51]. Moreover, MTurk is commonly used

successfully for conducting privacy research [53, 234, 296]. We paid participants $4.00 to complete

the 30-minute session which is in line with the recommendation in [253] to pay workers at least

minimum wage in the study’s location. To ensure high data quality, we set restrictions to only

include US-based MTurk workers with a high reputation (above 97% approval ratings), and with

the number of HIT approved being greater than 500 [223]. Additionally, we included three attention

check questions throughout the survey to detect inattentive respondents [1] (e.g., “How likely is that

you are paying attention, please do not select anything”).

Excluding the data of participants who failed two or more attention check questions, the final

sample size is 116 (56 men, 59 women, and one participant preferring not to disclose gender). Fifteen

percent ranged in age from 18 to 24; forty-eight percent ranged from 25 to 34; twenty-three percent

ranged from 35 to 44; fourteen percent were 45+. Seventy-eight percent were White. Seventy-two

percent visited SNSs most of the day or several times a day and 48% uploaded photos at least a

few times a week. This sample mirrors and reflects the variations [152] among the demographic

characteristics of the population of U.S. adults who use the Internet in terms of age, gender, race,

Internet usage, and SNS usage as compared to samples obtained by Pew. The Pew samples, in turn,

are representative of the population of U.S. Internet users as a whole [228, 225]. In other words, our

sample has similar demographic characteristics in terms of age, gender, race, Internet usage, and
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SNS usage to the population of U.S. Internet users.

3.2.1.2 Measurements

Sensitive photo. First, participants identified one personal photo that they considered

sensitive. Next, they had one of three options: 1) upload the photo (we reminded them that only

researchers would have access to this photo and would not share it), 2) find a photo online that

contained similar sensitive content and upload that photo, or 3) or describe the photo in words.

Identify sensitive content. After providing a photo or description, we asked participants

to answer an open-ended question “What content in this photo do you consider sensitive?”

Sharing Likelihood. After identifying the sensitive content in a photo, participants rated

the sharing likelihood with each of the 20 recipient groups (Table 3.1). These recipients were

developed based on prior work (Table 2.3) with additional granularity in the form of close and

not close as suggested by [144]. Additionally, we included two more dimensions: age and gender.

Participants answered “How likely are you to share this photo with ?” on a Likert-type scale from

1-very unlikely to 7-very likely. This likelihood scale is adapted from [289].

3.2.1.3 Procedure

The entire study was IRB approved. Before the actual test, we conducted a pilot study to

check for bugs and to assure that the data collection worked well. During the actual test, participants

accessed our experiment website, hosted by Qualtrics, via the link posted on MTurk. After they

consented, they answered six demographic questions, two social network familiarity questions, and

a social network photo uploading frequency question. Next, we asked participants to look at their

photos on their phone and find one that they considered “private (means not share with anyone)”

(photo 1). Once they found such a photo, we offered them three choices: 1) share the photo with

us, 2) look for a photo online which has similar sensitive content and share it with us, or/and 3)

describe the photo in detailed text. After the identified the photo and either uploaded it, a similar

photo or described the photo they answered 20 questions which measured their likelihood to share

the photo with the 20 recipient groups listed in Table 2.4.

After they completed all 20 questions for the first photo they identified, participants then

repeated this procedure four additional times with the following variations: we asked them to look

for a photo they would NOT want to share with their family (photo 2), friends (photo 3), col-
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leagues/classmates (photo 4), and acquaintances (photo 5). For each variation, we gave them exam-

ples of each recipient group. For example, the examples for family are significant others, household

member, close relatives, distant relatives. After finishing the five photo collection tasks, participants

received a code and pasted it to MTurk to receive remuneration.

3.2.2 Study Two: Open Card Sort

The photo elicitation study resulted in 181 unique pieces of raw sensitive content (see further

details in the results section). To group the sensitive content items into categories, we conducted an

open card sort. A card sort is a method to discover how people think content should be organized

and named [260, 21]. Because there was not a predetermined number of categories required, and

because we were interested in having participants generate names for categories, we conducted an

“open” (vs. closed) card sort. In an open card sort, participants can create as many categories as

they want and generate a name for each category they create [21].

3.2.2.1 Participants

We recruited 14 participants (in line with the sample size recommended in [279]) to take

part in the in-person study via posting flyers on campus. Five participants were male, and nine

were female. They ranged in age from 18 to 38. We offered them $10 Amazon gift cards for their

participation in the 40-minute session. As is standard for card sort studies (e.g., [259]) there was

no overlap in participants between study one, where participants provided content and study two,

where participants sorted content.

3.2.2.2 Procedure

Each participant first saw digital cards in XSort, a computer program designed to collect

card sort data. All 181 cards were placed randomly on the computer desktop. Next, we instructed

participants to “place cards into groups in a way that makes the most sense to you, but please

make sure the cards in the same group have a similar sensitivity level and content.” Once they were

satisfied with a group, they labeled it with a name they generated. They could regroup and relabel

until they were happy with the groups and names.
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3.3 Results

From the photo elicitation we collected 563 data points, of which 545 were photos uploaded

by participants. Of these, 329 were personal photos and the remaining 216 were photos that partici-

pants found online which had similar sensitive content to the personal photos they identified on their

phones. For each photo or text description that they provided, we used an open-ended question to

ask them to identify and describe the sensitive content. Across the 563 data points, we identified

181 unique pieces of sensitive content (see the Example column in Table 3.2). The answers to this

question also revealed some reasons that people don’t want to share certain sensitive photo content,

which we discuss in the “Why Don’t People Share?” section of the Discussion.

3.3.1 Sensitive content categories

The primary purpose of the card sort study was to group the 181 pieces of content into

categories. To generate categories based on the card sort data we performed a hierarchical cluster

analysis [21]. Hierarchical cluster analysis progressively groups items based on their tendency to

co-occur in participants’ card sorting groups. This analysis allows us to answer the question “which

items are often grouped together and therefore perceived to be similar, and which items are rarely

grouped together and therefore perceived to be dissimilar [21]?” The results are visualized in a

dendrogram. Due to space limitations, Figure 3.1 only shows a portion of the complete dendrogram,

but see the supplemental document titled “dendrogram” for the version containing the entire den-

drogram. Upon deliberation, we selected the 0.8 breakpoint. Selecting a breakpoint (or level in the

hierarchy) impacts the number of clusters. Choosing a smaller breakpoint would result in more cat-

egories, whereas a larger breakpoint would result in fewer categories (with lower granularity). The

0.8 breakpoint resulted in 28 categories of sensitive content (Table 3.2). These categories roughly

align with the sensitive content categories which were derived from previous literature and therefore

provide support for these prior findings. However, due to our much larger data set compared to any

of the prior work in Table 2.2, our results are much more granular in detail, and therefore simulta-

neously expand and refine those categories. For example, whereas prior work [136, 215] found that

nudity was a category of sensitive content, our work revealed nuances such as that breastfeeding is

not in the same category as other types of nudity.

Our results regarding photos of children are similarly notable as compared to prior work:
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Figure 3.1: A part of the dendrogram. All items in this sort are listed vertically. Items placed
next to each other vertically are more similar. The horizontal line from each item joins other items
vertically, showing where items are grouped at higher levels of relationship [21].
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while prior work [3, 136] identified “children” as a sensitive category, it is unclear that what makes

this category sensitive. Many people share photos of their children on SNS regularly. Are all

images including children sensitive? Our work revealed that specific types of photos of children

are considered sensitive, such as when the child is nude, is wearing inappropriate clothes, or in a

dangerous situation. We are not aware of prior work that has reported this type of nuance about

the sensitivity of photos of children. It is not just that the photo contains a child, it matters what

the child is doing or wearing. Similarly, [3] identifies the category unflattering/embarrassing shots

which by itself may be too vague to guide any automated sensitive content detection. However,

our results unpack this category in great detail, with subcategories such as messy hair, looking old,

strange hair/wig, and pout, which may be more easily detected automatically, and furthermore, help

us understand what types of occurrences in photos make people feel like a photo is unflattering or

embarrassing.

Arguably, the additional detail provided by our taxonomy makes it more practical for privacy

researchers, computer vision researchers, social scientists, and practitioners to apply in their work.

For example, if computer vision researchers would like to identify sensitive content in photos, using

prior work, they would not have known to train their systems to separate breastfeeding from other

types of nudity or all photos of children, from photos of children in dangerous situations.

Category Example

Nudity/Sexual (113) - Genitals; naked person; butt crack; naked buttock; breasts;

naked same-sex; cleavage; bare back; shirtless; masturbation; sex-

ual action; erotic online photo; sexualized objects; sexual motion

with statue; suggestive posture

Mitigated (10) - Breastfeeding; bent over showing behind; kissing

Close up (6) - Close up

Irresponsible to child/pet (8) - Child in dangerous situation; child in inappropriate clothes;

naked child; delinquent pet owner

Bad characters/ unlawful/

criminal (27)

- Infidelity/cheating; photo owner in dangerous situation; illegal

drug; being physical abused; mug shot/get arrested; incriminating

evidence
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Appearance/facial expression

(59)

- Ungroomed; messy hair; unflattering appearance; looking old;

unsatisfying body shape; overweight; funny looking; strange

hair/wig; scared/being nervous; scary looking; pout; goofy face;

weird smile; forced smile; unamused face; unflattering face; inti-

mate expression

Pose (8) - Show off muscles, being vain; flirty; Narcissistic posture; dra-

matic posture; wife pose (no sexual meaning); weird posture in

yoga

Not professional at work (9) - Activities that break work rules; negative attitude towards work;

look unprofessional at work; co-workers kissing

Sleep and grooming (5) - Sleeping; wearing pajamas; wearing face mask for skin care

Clothing (33) - Tight clothing; revealing clothing; wearing body-shaping corset;

changing clothes; not fashion outfit; tacky outfit; wearing bib for

dining; cross-dressing; wearing disposable gown

Drinking/party (30) - Drinking; drinking a body shot; drunk; hang out with friends;

at a party

Food/smoking (8) - Diet/food; unhealthy eating; smoking

Medical condition/visible

blood (40)

- Black eye; swollen eyes; abscess; peeling skin; blister; rash; bad

teeth; bad skin condition; acne; moles; stretch marks; gore; bloody

person; bloody animal; dog bite; body injury; eye removal; surgery

wound; baby waste; period blood

Medical treatment (7) - In hospital with doctors; on a stretcher; with hospital ward

mates; wearing oxygen mask; in medical treatment; family mem-

ber medical accident

LGBTQ/Religion (6) - Lgbtq event; being gay; same-sex partner; spiritual inclinations;

religious clothing; people in different races

Political and vulgar text (13) - Negative texts/meme; vulgar/explicit texts/meme; politically

incorrect texts/meme; racist texts/meme; violation of religious

dogma
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Other people (74) - Grandparents; family member; significant other; step-parents;

step-children; young family member; older children; friends; fam-

ily member who passed away; photo owner’s children; estranged

people; ex-significant other; people who is unacceptable by photo

owner’s family

Personal moment (14) - Affectionate moment with significant other; affectionate moment

with friends

Event (5) - Family event/party; children beauty pageant; funeral

Photo owner (18) - Photo owner non-sensitive body parts; photo owner him/herself;

selfie

Bad quality of photo (2) - Unclear photo; old photo

Objects/personal assets (11) - Pumpkin pie; video game; cat; kitten; dog; boyfriend’s cat; car;

PC; money; expensive necklace

Unorganized home (9) - Nasty toilet; dirty bedding; uncleaned swimming pool; messy

room

Gun (7) - Gun; fake gun; hunting

Space/relaxed phase at home

(8)

- In bed; bedroom; in bathroom; leisure at home; living room;

house

Toilet (3) - Using toilet; head in toilet

Other people’s information

(9)

- Screenshot of other’s baby registry; friend’s to do list; brother’s

diploma; person in the photo considers it private; save others

photos without permission

Personal identifiable informa-

tion (24)

- Vehicle license plate; driver license; order history; bank account;

debit/credit card; online password; private project; only for job

purpose; home address; to do list; body weight number; confiden-

tial work photo; vacation location
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Table 3.2: Twenty-eight sensitive categories with the number of

data points in each category and their examples. Each word or

phrase in the example column represents a unique piece of sensitive

content, as identified and named by participants, in response to the

open ended question, “What content in this photo do you consider

sensitive?”.

3.3.2 Sharing Preference by Sensitive Content

We analyzed people’s sharing preference of sensitive content via a linear mixed-effects model

with fixed slopes and random intercepts set for each participant, where the outcome variable was

the likelihood to share and the predictor was the sensitive content category. We conducted Tukey

posthoc tests to compare all possible category pairs since it accounts for multiple comparisons and

adjusts p-values accordingly. Note that we reversed the rating of recipient “only me,” because a

higher likelihood to keep the photo private means a lower likelihood to share with others which

may bias the results. We then conducted a chi-square test to evaluate the significance of fixed

effects. The overall χ2 shows significant variation among 28 categories, χ2(27) = 139.65, p < .0001,

indicating that sensitive categories affected sharing likelihood differently. Though the categories are

all considered sensitive, we know, from Figure 3.2 which illustrates the overall likelihood to share a

category across all recipients, some categories are even more sensitive than others.

People are least likely to share other people’s information. We found differences between

other people’s information (M = 1.07, SD = 0.82) and personal identifiable information, not pro-

fessional at work, photo owner, drinking/party, political/vulgar text, other people, objects/personal

assets, and bad quality of photos (all d1 ≥ 0.75, all p < .05). Nudity and partial nudity (M = 1.65,

SD = 1.46) is less likely to be shared compared to personal identifiable information, photo owner,

drinking/party, other people, objects/personal assets, and bad quality of photos (all d ≥ 0.45, all p

< .05). Though the means of medical treatment (M = 1.38, SD = 2.04) and sleep/grooming (M

= 1.53, SD = 1.06) are low in Figure 3.2, the variation in the data and fewer data points lead to

non-significant comparisons with other categories, except for the difference between sleep/grooming

1d represents Cohen’s d.
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Figure 3.2: Participants’ likelihood to share each sensitive content category across all recipient
groups.

and other people (d = 0.63, p < .05).

3.3.3 Sharing Preference by Recipient

We created another mixed-effect model to look at the sharing preference by recipient. Again,

there is a variation among all recipient groups, χ2(19) = 3112.25, p < .0001. Unlike the similar

likelihood rating between categories in the last section, the blue bars in Figure 3.3 clearly show

a four-level pattern: only myself, significant other, people who are close to the photo owner, and

people who are not close or work-related.

Again, we did Tukey post-hoc tests to compare recipient groups. As we expected, besides

keeping photos private, people are most likely to share sensitive content with their significant others

(M = 4.33, SD = 2.37) compared to all other recipients (all d ≥ 0.79, all p < .001). On the other

hand, people are less likely to share with people who are not close to them (e.g., people only met

once or online, ex significant others, friends of friends, distant friends and relatives) and people in

their work no matter how close they are (e.g., colleagues, supervisors) when comparing with close

relatives (M = 2.56, SD = 1.68, all d ≥ 0.31, all p < .01), close friends (M = 2.65, SD = 1.68, all

d ≥ 0.36, all p < .01), and household members (M = 2.71, SD = 1.68, all d ≥ 0.38, all p < .01).

In terms of age (three red bars in Figure 3.3), people are more likely to share sensitive content with

people in their age group (M = 2.24, SD = 1.68) than younger people (M = 1.86, SD = 1.68, d =

0.23, p < .001). However, we did not find evidence for a difference between people in their age group
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and older people. The two yellow bars in Figure 3.3 show the means of recipient in different gender

and same gender with photo owners, but we did not find evidence for a difference between these.

Besides the overall plots (Figure 3.2 and 3.3), we explored if there were interactions between

the sensitive content categories and recipients. We did individual plotting by subsetting each sen-

sitive category, then compared the overall plot with the subset plots to see if there were abnormal

higher or lower bars. We also plotted the subset of each recipient. Most plots followed the pattern

in the overall plot.

For plots which did not align with the overall plots, we conducted follow-up Tukey post-hoc

tests within each subset. In the subset of nudity category, besides keeping the photo private and

excluding the age and gender groups, the likelihood of sharing with significant others (M = 4.12,

SD = 2.62) are much higher than any other recipients (all d ≥ 1.48, all p < .001), while there is no

difference among other recipients. The trend of personal moment is the same as nudity. Though the

sharing likelihood among close friend, household member, and close relative is somewhat similar in

the overall plot, we noticed that people are more likely to share photos that depict when they are

unprofessional at work with their close friends (M = 4.96, SD = 2.24) and significant others (M

= 5.65, SD = 1.22) compared with all other recipients (all d ≥ 0.97, all p < .05), except for close

colleagues. In the event subset, since the content is mostly family-related, there is no difference

in the likelihood to share with significant others, household members, and close relatives (all p >

.05). For personal assets, except for the comparison with significant others, there is no difference

among the combinations of household members, relatives, friends, ex, colleagues, supervisors, friends

of friends, and friends only met online or met once (all p > .05).

Figure 3.3: Participants’ likelihood to share with each recipient across all sensitive content categories.
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3.4 Discussion

3.4.1 With Whom Do People Share Or Not Share?

Previous work identifies several clusters of recipients treated similarly when sharing infor-

mation, in which significant other is treated differently than any other recipients [213]. Indeed, our

result suggests that in general, significant other is the group that people are most likely to share

a sensitive photo with. However, this pattern is reversed in situations where the photo’s content

shows the photo owner cheating. Participants reported qualitatively that they would not share these

photos with a spouse because “it creates problems in my marriage.”

Following significant others, people are similarly likely to share sensitive photos with people

who are emotionally or biologically close to them: household members, close friends, and close rela-

tives. Kairam et al’s study on selective sharing in Google+ suggests the same pattern in which this

cluster of recipients is categorized as ‘strong ties’ recipients [135]. However, we found an exception

that people do not mind sharing photos in which they look unprofessional at work with close friends,

but they prefer not to disclose them with household members and close relatives. The reason behind

this could be that the content is mostly “inappropriate” humor and joking (e.g., give the middle

finger with a goofy face) in the workplace which could be fun when sharing with friends; how-

ever, household members might worry about their attitudes towards the work and possible negative

judgments from supervisors [54]

Though sharing information with work-related recipients on SNSs is prevalent because of

the specific sharing needs for workplace SNS use [28, 254], the likelihood of sharing sensitive content

is generally very low. First, people share very little sensitive information with their colleagues and

supervisors, no matter whether they are close or not. This result may reflect the phenomenon

described in a longitudinal study about social isolation in the workplace suggesting that people

find it difficult to establish friendships with their colleagues or supervisors [134]. Moreover, some

content may be sensitive because it has the potential to reveal “white lies” or remove “plausible

deniability” at work [249]. For example, one participant reported she would refuse to share a photo

with her colleagues and supervisor because she “took this when I had called in sick to work one day

and was instead hanging out with my boyfriend.” Her supervisor might consider her behavior an

irresponsible abuse of the company’s sick leave policy.

Next, as one participant said, “I wouldn’t want to share to people I don’t know well,”
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suggesting people are hesitant to share sensitive content with acquaintances or ‘weak-ties’ [135],

such as distant friends or relatives, friends of friends, or people they only met once or online.

3.4.2 Why Don’t People Share?

When asked to identify the sensitive content, participants’ responses revealed many of the

reasons they don’t want to share certain sensitive photo content. We can summarize the reasons

behind the desire not to share sensitive photo content as follows: first, avoiding getting into trouble

(e.g., social tension, losing job, law violation); second, avoiding harming their impression manage-

ment (e.g., appearance); third, avoiding content leakage that may harm themselves, family, and

property safety (e.g., home address); last, maintaining a comfortable social distance with others

(e.g., not being monitored when relaxing at home).

Interestingly, other people’s information is rated as the content least likely to be shared even

if the underlying content itself would otherwise be less sensitive (e.g., friend’s todo list, brother’s

diploma). In this way, the ownership of the photo clearly affects percieved sensitivity. This result

is in line with prior work by Eiband et al. who found that people do not like being shoulder surfed

even when content (e.g., third persons’ information) is not sensitive. Their work suggested a reason

behind this is that the content may reveal relationships [79]. It also suggests that people try to avoid

social tension caused by unauthorized sharing and saving of others’ photos [29]. People also generally

respect others’ privacy concerns [25]. For example, in this study, we found that people are unlikely

to share a photo if a person in the photo considers it private. However, multi-party sharing conflicts

may occur if the photo uploader is not aware of others’ concerns [273]. Existing privacy controls on

SNS are unable to protect a user from content leakage by their friends [273], hence emerging work

has developed multi-party privacy control mechanisms to alleviate this problem [123]. On the other

hand, unauthorized saving of others’ photos may not only cause social tension but may also harm

impression management. For example, one participant in our study noted:“They’d think it’s creepy

that I have it [a female friends’ bikini photo that he had saved].”

Nudity, sexual or mitigated content is another common concern that has been identified

in prior work [215, 304] and is substantiated by our study. Three reasons for this concern were

revealed in our qualitative data. First, photos with nudity or sexual content are mostly sent only

between significant others to maintain a romantic relationship [274]. However, leakage of these

photos damages people’s impression management and reputation, and even leads to social ostracism,
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depression, and suicide [237]. Second, sharing sexually suggestive photos may become a potential

threat to physical safety via off-line contact [199]. Last, disseminating other people’s nude photos

violates the law and may get photo uploaders into legal trouble.

Aligning with previous work [210], medical treatment and medical condition are both rated

as very unlikely to be shared with others. People express concerns that employers may change hiring

decisions or limit job opportunities based on seeing their medical information [105]. This type of

content could also harm their impression management since it indicates an unhealthy condition that

may show the person’s weakness to photo viewers. People tend to share photos that depict socially

desirable characteristics [74, 119], but avoid sharing photos which are not socially desirable such as

photos showing a disorganized home, food and smoking, or a toilet.

Besides managing impression, SNS users selectively share photos because they want to

maintain their personal space free from intrusion, which is similar to maintaining a comfortable

social distance in the off-line world [2]. Hence, people are not likely to share content about their

sleep and grooming, personal moment, space or relaxed phase at home.

Other types of content that may get photo uploaders into trouble are bad characters, unlawful

and criminal evidence, and content showing that they are irresponsible in regards to children or pets.

Regarding a photo that depicts a water pipe with cannabis, one participant stated: “I could lose my

job and friends if this photo were posted to my Facebook. It is sensitive because it could nuke my

life.”

Though personal identifiable information and personal assets are not the top sensitive con-

tent in Figure 1.1, their leakage could lead to personal, family, and property safety issues. For

example, online fraud and identity theft attacks can be perpetrated by collecting information such

as a user’s name, online password, SSN, or bank account information from multiple sources [26, 201].

3.4.3 Privacy is Subjective Except for the Consistency

There is a debate in the literature about the extent to which privacy is subjective. While

privacy is a universal necessity for the proper functioning of human society [200], it may be subjective

and dependent on complex social, cultural, and historical factors [62, 93, 200]. At an individual

level, privacy could vary among people based on the environment and prior experience which could

encourage them to reveal more or less information [62]. What some people are comfortable sharing

others might consider a threat to the privacy [287]. On the other hand, prior work on people’s privacy
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concerns suggests at least some consistency. For example, a study on photo privacy detection suggests

that people generally agree that certain types of content should not be shared, such as photos of a

driver’s license, a legal document, and a pornographic photo [278]. Another study situated in an

online context found that there is a consensus about certain privacy concerns such as personally

identifiable information (e.g., credit card number, SSN, fingerprints) and sensitive content (e.g.,

religion, sexual preference, wage) [10]. Some other commonly identified categories of private items

in personal photos include human faces, sensitive text, and objects such as cars and animals) [111].

The categories of sensitive content suggested by prior work are consistent with our findings,

suggesting the taxonomy we report here is not merely a reflection of the subjective privacy preferences

of the participants in our study. Instead, taken together, our taxonomy and the prior work we

describe here suggest that there is consistency in some aspects of privacy, such as what people

consider sensitive content in photos. Furthermore, even assuming that privacy is subjective would

not challenge our taxonomy of sensitive content. Though people may have different privacy concerns

about their personal photos, there is consistency in the types of content that people feel is sensitive

and potentially privacy-invasive. Even if an individual does not feel that their own photo containing

some of this content is sensitive to them, there is usefulness in helping that person understand

that others may consider it sensitive, because we know that people tend to avoid sharing photos

they know may offend others [255]. Moreover, we know that there is a desire to use machine

learning approaches to find consistencies regarding sensitive content [303, 304]. In our study, we also

find a consistent pattern of privacy concerns from participants’ personal photos. Our goal was to

identify consistencies in people’s perception of content sensitivity. People’s consensus can address

the reported subjective nature of aspects of privacy [298], and this consensus is obtained through

our study. We collected 563 data points of which only 181 are unique that again suggests that there

is some agreement about content sensitivity which may be useful to understand.

3.4.4 A New Method for Sensitive Content Elicitation

As we described in the background section, existing methods for identifying sensitive content

in photos are severely limited. However, the method we introduce in this paper is not subject to

the limitations we outlined for ML approaches, for example, because we do not rely on existing

general purpose databases and we provide participants with alternative, privacy-preserving, ways to

identify sensitive data while. Our method gives participants the option to find a photo - similar to
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their own sensitive photo - and share that one instead, or just describe the photo. We can see the

success of our method and the biases of previous methods by comparing it to the categories elicited

using a ML approach applied to the categories from [303, 304]. Whereas we found that people are

unlikely to upload photos depicting that they are irresponsible to children or pets, this category

was not present in the categories generated by [303, 304]. Moreover, from our study, we learned

that other people’s information is a top concern even if the content itself seems less sensitive (e.g.,

friend’s to-do list, brother’s diploma). On the other hand, a ML approach is unable to distinguish

between a person’s own information and other’s information, which results in an inaccurate, or at

least incomplete, classification of sensitivity.

One straightforward way our work could work in concert with ML approaches is by intro-

ducing our photo elicitation method as a way to supplement existing datasets or to create a new

dataset of sensitive photos from scratch. This method could be used to gather and add new images

with important private content to existing general-purpose image datasets which would then make

them useful for image privacy tasks. An important question that arises is whether and how private

content collected using our elicitation method may be made ethically available to ML practitioners.

One potential solution we propose is to use the taxonomy in combination with advanced privacy-

preserving ML approaches, such as transfer learning [217, 277]. In transfer learning, a model can be

first pre-trained with sensitive content and then shared along with the trained model parameters for

further use without directly sharing sensitive content. Such models can also be fine-tuned according

to the requirements of different ML approaches.

Another way our work could benefit ML for privacy tasks is by using the taxonomy itself

as a point of comparison. For example, we could compare the categories in our taxonomy to the

categories in the Flickr dataset [303, 304]. Doing this, we see that while we found that people are

unlikely to upload images depicting their medical condition or treatment, this category was not

present in the categories generated by [303, 304]. In this way, our taxonomy can serve as one form of

ground truth for categories generated via ML, that could be further triangulated with other sources

of ground truth.

3.4.5 Implication: A Usage Scenario for SNSs

The only photo privacy protection technique currently provided by most SNSs (e.g., Face-

book) is choosing or excluding certain recipient groups [84]. Even when sensitive content is just a
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small part of a photo, uploaders’ only options are to either share the sensitive content as part of

the photo or withhold the entire photo from some or all recipients which leads to a large sharing

loss [255]. Furthermore, it can be overwhelming for users to have to make privacy decisions about

every photo they share. Uploaders may have a large number of connections (e.g., friends on face-

book) making it difficult for them to sort through all potential recipients and make decisions about

desirable recipients every time they upload a photo [34]. Current privacy management options that

allow users to choose or exclude certain recipient groups only target one side of the photo-sharing

equation (recipients, but NOT content). Our work lays the foundation for new solutions that could

help people to make decisions about photo sharing easily. The taxonomy can be used to inform

an automatic photo privacy protection system that combines existing recipient control mechanisms

with our proposed solution addressing controlling content. For example, a new system could help

automatically identify content that the uploader may find sensitive or that may be offensive to others

so that it can be highlighted for additional scrutiny by users, who can then make sharing (or not

sharing) decisions based on additional aspects of context. The taxonomy may also be useful for

solutions aimed at reducing users’ effort toward recipient selection. We uncovered which recipient

groups would be most likely targets for exclusion when sharing certain content. These recipient

groups could be highlighted for additional scrutiny or become part of user-tailored privacy solutions

which provide guidance based on users prior behaviors and preferences [141].

A usage scenario could be the following: upon uploading a photo, the system detects possible

sensitive content in the photo based on our categories and highlights the content for review by the

person who uploaded the photo; next, depending on the sensitive content, the system could suggest

applicable obfuscations (e.g., cartooning, inpainting [180]) that when applied, would prevent some

viewers from seeing the sensitive content as shown in Figure 3.4 (e.g., removing/inpainting the beer

can). Afterward, the system gives the photo uploader recommendations about viewers who the

uploader may wish to exclude from the recipient list. Together, these approaches could dramatically

improve the privacy and sharing options available to people who share photos online.

3.5 Limitation and Future Work

One limitation of our work is that we only focus on U.S. Internet users, and therefore the re-

sults of our study only inform us about this population. The sensitive content elicited from U.S. par-
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Figure 3.4: Example interface of content detection and obfuscation.

ticipants could be useful to designers and practitioners interested in designing for a U.S. population.

Furthermore, researchers who have the resources to study cross-cultural privacy (e.g., [174, 291])

may be able to use the methods we describe here to determine whether different sensitive categories

emerge across cultures. The sample for our card-sorting study is also limited. The participants

for the card sort study were all members of the university community. It is possible that other

participants in a replication could group and/or name categories differently. For example, instead

of grouping the item “acne” into “medical condition” other participants could have grouped it into

“grooming.” However, it is less likely that other participants would have different perspectives about

the category for many items such as “blister” or “surgery wound”; there is not another category

besides “medical condition” where they could reside. However, reviewing Table 3.1, most items seem

intuitively to fit within each category. Future work could replicate the card sort using the items we

introduce here (listed in Table 3.2).

Another limitation is that we were only able to collect sensitive content that participants

would identify in one of three ways: 1) by uploading a photo from their own phone, 2) by uploading

a photo similar to a sensitive photo from their phone, or 3) by describing a photo and the sensi-

tive content in it. It is possible that people are unwilling to identify content that is so sensitive

45



that they do not want to reveal it to researchers in any form. Despite this limitation, we see the

methodological innovation we report in this paper as a step in the direction of getting closer to

the ideal of understanding sensitive content categories. Notably, we see it as an improvement over

complementary approaches such as those that rely on applying machine learning to photos posted

on Flickr [303, 304].

Last, while we did investigate some individual differences (e.g., age and gender), our results

mainly represent general sharing preferences. Future work should investigate individual differences

in photo sharing preferences across different demographic variables. Finally, since this work demon-

strated that the photo elicitation method can help elicit content that would otherwise be missing

from datasets of sensitive photos, future work could investigate how the method could be adapted

to other types of data such as video.

3.6 Chapter Conclusion

We report a taxonomy for photo privacy that describes what content is considered sensitive

and how sharing preferences differ across potential photo recipients. We derived the taxonomy by

synthesizing existing literature, collecting photos that contain sensitive content from 116 participants

and recording their sharing preferences with 20 recipient groups and then conducting a card sort to

surface 28 user-defined categories of sensitive content. This taxonomy can serve as a framework for

understanding photo privacy, which can, in turn, inform new photo privacy protection mechanisms.

Moreover, we introduce a new sensitive content elicitation method which overcomes many of the

limitations of prior approaches. Understanding the sensitive content that needs to be protected, in

the next chapter, I investigate effective and usable obfuscations that can be applied to the sensitive

content.
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Chapter 4

Study 2: Identifying Effective and

Usable Obfuscations

Note: This work was published at CSCW 2018 [180].

4.1 Introduction

From the last study I learned that what content could be obfuscated, hence, for the next

step, I need to identify some obfuscations that can be applied to the sensitive content. While some

prior work has investigated methods to hide elements of photos to be shared online, it has been

limited to a few approaches, most notably blurring and pixelating [124, 284], which are ineffective

at preventing human and machine identification [161, 195]. Moreover, researchers did not make

any arguments about why and how the obfuscation choices were made. In another study that I

collaborated, we applied obfuscations to scene elements in photos, however, the obfuscation options

were limited to blurring, pixelating, masking, and silhouette [109]. Hence, I aimed to explore other

alternatives that are both effective and have a good viewer experience.

Recognizing the need for more effective photo privacy-enhancing obfuscations, we identified

silhouette [216], box masking [305], avatar [235], point-light [49], bar [305], and inpainting [216, 305].

Moreover, recognizing that the audience for online photos is human beings, we investigated human

(vs. machine) perception of these options (in terms of photo satisfaction, perceived photo information
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sufficiency, photo enjoyment, social presence, obfuscation likability and preference), as well as their

ability to identify content in the photos. To our knowledge, there is no existing research that

addresses both effectiveness against human recognition and users’ perceptions of obfuscations as

privacy-enhancing tools.

Our results show that even though people are generally satisfied with blurring and pixe-

lating—the two most investigated and widely-adopted obfuscation methods—these methods do not

enhance privacy. When developing collaborative privacy management systems, researchers should

consider alternative privacy-enhancing obfuscations, such as inpainting and avatar, which are both

effective and likable. Though our findings focus on face and body, they can be further applied to

other PII, such as object and location.

4.2 Method

4.2.1 Overview

We conducted an experiment with 271 participants to understand how type of obfuscation

and region the obfuscation is applied to influenced effectiveness and users’ perceptions (satisfaction,

perceived information sufficiency, photo enjoyment, social presence, and likability).

4.2.2 Participants

Three hundred and forty seven participants from United States were recruited via the Ama-

zon Mechanical Turk. While imperfect, it is considered one of the better sampling strategies because

Turkers are relatively more diverse than the samples collected by other means (e.g., U.S. college sam-

ples) [39]. We paid participants $1.50 to complete the study [239]. To ensure the data quality, we set

restrictions to only include MTurk workers with high reputation (above 95% approval ratings), and

with the number of HIT approved being greater than 1000 [223]. Excluding the data of participants

who failed more than one attention check questions, the final sample size is 271 (131 men and 140

women). Fifty-seven participants were from the Midwest region; 99 were from the South; 66 were

from the West, and 49 were from the Northeast [40] . Forty-three percent ranged in age from 25 to

34; twenty percent ranged from 35 to 44; and forty-eight percent is was from 45 to 54. Seventy-six

percent was White. Ninety-eight percent of participants used Internet most of the day or several
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times a day; and 72% visited SNSs most of the day or several times a day.

4.2.3 Experimental Design

We used a 8 (privacy-enhancing obfuscation) by 2 (body region) experimental design. The

eight obfuscation methods were: blurring, pixelating, silhouette, avatar, point-light, masking, bar,

and inpainting. The two regions were face and body. Please see below sections for descriptions of

why we chose them.

4.2.3.1 Regions

Different elements in an image can be considered sensitive: for example, people, personal

belongings, affiliation, and privacy information [122, 284]. For this study, we decided to study the

recognizability of people for a variety of reasons, but one very compelling reason was because of

prior work on human recognition of faces [27, 65, 146], machine recognition of faces [161, 195],

and obfuscation of humans in video [33, 149]. We chose two regions to obfuscate: face and body

(which includes the face). Masking the face is the most common strategy for hiding the identity of a

person in photos or videos [301, 98, 124]. The face also has special meaning and significance in the

human visual system. The perceptual process in facial recognition is different from the process in

recognizing non-facial stimuli, that faces are recognized at the individual level [89]. However, prior

work on video surveillance suggests that masking only the face is ineffective: obscuring the entire

body is more effective than obscuring only the face [52].

4.2.3.2 Obfuscation Methods

We chose eight redaction tools from previous work on online photo privacy, video surveil-

lance, and video monitoring [49, 216, 262, 305]. We did not investigate some tools that were less

applicable to photo redaction. For example, “see-through (translucent) [305]” and “monotone [305]”

are excluded because the semitransparent or monochrome subjects may not be identified accurately

in videos where they are dynamic, while in a photo, people can easily identify a static subject. Gen-

erally, we excluded the tools that were either ineffective or overlapping. The eight redaction tools

we studied are listed in Table 2.3, including blurring, pixelating, silhouette, avatar, point-light, bar,

masking, and inpainting.
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We also tested the baseline condition of no obfuscation (as is). We left out three region by

obfuscation combinations resulting in 14 total conditions (including as is; see obfuscation methods

Table 2.3 and its caption). We did not test the following obfuscations for face: inpainting, point-light

and bar because we anticipated these might make viewers uncomfortable. For example, inpainting

just the face would have resulted in what appeared to be a headless person, which we anticipated

might be jarring to view.

4.2.4 Stimuli

4.2.4.1 Targets

Target is the person in a photo who needs to be identified. We selected targets from racial

categories broadly representing the racial makeup of the United States [41] including white, African

American, Asian, and Hispanic and Latino, who were unknown to participants. The target photos

were taken by our lab and researchers. We applied each of the 14 obfuscations to all targets with 2

different backgrounds resulting in 392 unique images.

4.2.4.2 Backgrounds

We selected the backgrounds and background people photos online which had licenses that

allowed for reuse and modify, and photos taken by our lab and researchers, cut them out, and

reassembled them to include the target person (Figure 4.1 ). Each photo has the same number of

background people (three people) and similar background (campus building etc.).

4.2.4.3 Photo Creation

We used Photoshop to create photos so they would be consistent, except for elements we

intentionally varied (e.g., target or obfuscation). Each photo consists of the target with an obfus-

cation applied, three non-target people, and a background (Figure 4.1 ). To generate a complete

set of experimental stimuli, we created an image of each target/obfuscation pair and overlaid these

on each background. The experiment platform randomly selected the combination of target, obfus-

cation condition and background. In total, the stimuli set has 392 unique photos (14 targets * 14

obfuscations * 2 backgrounds).
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Figure 4.1: Experiment interface with one stimuli and ID photo examples

4.2.4.4 ID Photo

For each target we collected one ID photo (e.g., the second person from the left in Figure 4.1

), and three ID photos of similar looking people. A similar looking person might be the same gender,

have a similar hair style, skin color, body shape and/or height (see the right two people in Figure 4.1

).

4.2.5 Measurements

We measured obfuscation effectiveness using identification success and confidence, and users’

experience via existing, psychometrically validated Likert scales.

4.2.5.1 Obfuscation effectiveness

• Identification Success. We measured identification success by asking “Please identify the

person indicated by the orange arrow.” Four answer choices included three ID photos and

“None of above.”
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• Identification Confidence. After each identification, we measured confidence using the

question “How confident do you feel that you correctly identified the person?” Participants

rated their response on a scale from 1 ‘Completely unconfident’ to 7 ‘Completely confident,’

where the higher score meant more confident [230].

4.2.5.2 Users’ experience

Next, we measured the following four aspects of the privacy-enhancing obfuscation in the

photo. All the responses used 7-point Likert scale from 1 ‘Strongly disagree’ to 7 ‘Strongly agree.’

For participants’ ease of use, we adapted all scales to 7-point. Additionally, 7-point scales are more

suitable for electronic distribution [91] and the data collected is more accurate than other point

scales [130].

• Photo Satisfaction. We measured perceived photo satisfaction using the item “The photo

is satisfying” derived from the image appeal scale [59].

• Perceived Photo Information Sufficiency. We selected a single item “The photo provides

sufficient information” from the photo information quality scale to measure the perceived

information sufficiency [247].

• Photo Enjoyment. We measured perceived photo enjoyment using the single-item photo

enjoyment scale [233].

• Perceived Social Presence. We measured perceived social presence using the item “There

was a sense of human contact when I saw the photo” from perceived social presence scale [154].

• Obfuscation Likability. We measured likability of each obfuscation using the item “I like

the obfuscation” which was derived from the interface preference scale [203].

• Obfuscation Preference. We asked participants’ preference for each obfuscation with the

question “If you could use any of the obfuscations for photos you post on online social networks,

which one, if any, would you like to use?” We followed up this question by asking an open-ended

question about the reason, and queried participants’ willingness to use the obfuscation they

selected. We also asked participants, “Have you ever declined to upload a photo to an online

social network for privacy reasons?” If yes, they additionally answered which obfuscation they

might use in such a scenario, and their reasons.
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Note that we also captured the time participants spent on each question so that we could

exclude participants who used automatic survey response software.

4.2.6 Procedure

Prior to the study, we conducted three pilot tests to check for bugs, gather data about the

length of the study and ensure that the data collection worked well.

In the actual testing, first, participants accessed the experiment website (Qualtrics) via

the publically distributed link through MTurk. After consenting, they answered six demographic

questions and two social network familiarity questions. Next, they tested the browser and monitor

size and followed resizing instructions to make sure they all viewed stimuli in a similar visual en-

vironment. Afterwards, they saw 14 obfuscation conditions examples with the descriptions as an

overview.

Next, we trained participants about the tasks. During training, participants learned about

the tasks they would perform, and completed two training trials. Participants then completed 14

trials where they saw photos with semi-randomly assigned obfuscation conditions and targets, and

identified the target person. Participants saw all 14 conditions and 14 targets. There were no

repeating conditions or targets. For example, in the first trial, if the photo includes condition 1-

target 3, photos including condition 1 and target 3 will be excluded in future trials. Note that in

most cases, the target was among the four choices offered, but there was around 21% chance that

the target was NOT present. Afterwards, they rated their confidence, and rated the four statements

about their feeling.

After finishing all trials, participants were shown 14 conditions individually, and rated their

preference towards each condition. Then they answered a set of obfuscation preference questions.

After all tasks, a random code was generated. Participants copied this code to MTurk to receive

remuneration.

4.3 Results

The experiment was completed by 347 participants. We excluded the data of 76 participants

who either failed more than one attention check questions, or answered some questions instantly

(reaction time = 0), indicating the potential use of automatic responding software [223]. The final
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% of success Odds ratio 95% CI p-value

Masking 41% 0.20 [0.14, 0.29] <.001***
Silhouette 45% 0.23 [0.16, 0.34] <.001***

Face Avatar 47% 0.26 [0.18, 0.37] <.001***
Blurring 64% 0.52 [0.36, 0.76] .05*

Pixelating 72% 0.73 [0.50,1.08] .97
Inpainting 19% 0.07 [0.05, 0.10] <.001***
Masking 20% 0.07 [0.05, 0.11] <.001***

Bar 27% 0.11 [0.07, 0.16] <.001***
Body Point-light 28% 0.12 [0.08, 0.17] <.001***

Avatar 33% 0.14 [0.10, 0.21] <.001***
Silhouette 40% 0.20 [0.13, 0.28] <.001***
Blurring 67% 0.59 [0.41, 0.87] .33

Pixelating 67% 0.58 [0.40, 0.86] .27
Baseline As is 77% NA NA NA

Table 4.1: Identification success rate, odds ratio, 95% confidence interval, and p-value by region and
obfuscation for all cases where the as is is the baseline. The obfuscations are ordered by identification
success of body region from lowest (most effective) to highest (least effective).

sample size is 271, which provides sufficient power for the statistical tests we planned (i.e., 271 is

more than the required 225 suggested by our a priori power analysis to achieve a power of 0.85).

4.3.1 Obfuscation Effectiveness

The primary measures of obfuscation effectiveness are identification success and identifica-

tion confidence. Identification success is the percentage of trials in which a participant correctly

identified a target. If we were to recast this as obfuscation success, or the percentage of trials in

which a participant was unable to correctly identify a target, we would subtract the identification

success percentage from 100%. For example, if a participant achieved a 60% identification rate, the

corresponding obfuscation rate would be 40%. Identification confidence is a self-reported rating of

how confident the participant was that their identification was correct.

4.3.1.1 Identification Success

We analyzed the identification results using signal detection [271]: hit (the target is present,

and the response is correct), miss (the target is present, but the response is incorrect, such as

selecting the wrong person, or “None of above”), correct rejection (the target is absent, and the

response is “None of above”), and false alarm (the target is absent, but participants do not select

“None of above”). Using this approach, we can classify identification success using three categories:
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among all cases, among trials where the target is present, and among trials where the target is

absent. In next paragraph, we focus on identification success among all cases, as shown in Table 4.1

.

As expected, the identification success of as is is the highest across categories (all cases

(77%), target present (80%), and target absent (70%)). A Tukey post-hoc test based on a logistic

mixed-effects model of all cases shows that the identification success of as is (77%) is higher than all

obfuscations (all p < .05) except for body blurring (67%), body pixelating (67%), and face pixelating

(72%). In addition, the identification success of blurring (face: 64%; body: 67%) and pixelating (face:

72%; body: 67%) are similar to each other (all p > .05), and much higher than other obfuscations

(all p < .001; see Table 4.1). The success percentage difference between blurring/pixelating and

other obfuscations ranges between 17 and 48%, which suggests that, in addition to being stastically

less effective, they are also practically less effective. The lack of a difference between blurring and

pixelating, two of the most common obfuscations [98, 158], and as is (5-13%) on the other hand,

indicates that they are ineffective protections against human recognition, regardless of whether they

are applied to the face or the entire body.

4.3.1.2 Body vs. Face

Overall, body-obfuscations were more difficult to identify (M = 45%) than face-obscuring

obfuscations (M = 54%; p < .001), indicating body-obscuring obfuscations are generally more

effective than face-obscuring obfuscations. Looking at individual obfuscation methods, though,

there was not always a difference between face and body. Face-obscuring obfuscations were about

as effective as body-obfuscations for many of the less effective obfuscations including blurring (face:

64%; body: 67%), pixelating (face: 72%; body: 67%), and silhouette (face: 45%; body: 40%; all p

> .05).

Obfuscations that protect more details of the target including body avatar, body point-light,

body masking, body bar, and body inpainting, tend to be more effective. While body inpainting

performs the best, there is no difference among these obfuscations, except between body inpainting

(M = 19%) and body avatar (M = 33%, p < .05). It is also worth noting that for target absent

cases, the correct rejection rate is higher either when the obfuscation transformation level is low

(e.g., as is, face blurring) or when the the obfuscation shows no sign of a visible body (e.g., body

masking, body bar, body inpainting). The reasons for these higher rates are different, though: in the
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Figure 4.2: Means and standard errors of identification confidence of Total Correct (Hit + Correct
Rejection) and Total Wrong (Miss + False Alarm).

former participants easily found out the target was not in three full-body ID photos, while in the

latter cases there was no hint at all to identify the target, hence participants tended to choose “None

of above” as a last resort.

4.3.1.3 Identification Confidence

Identification confidence increases as obfuscation effectiveness decreases, or, in other words,

people are more confident with answers when they can correctly identify the target. In Figure 4.2 ,

for each obfuscation, the left bar represents identification confidence of total correct (hit and correct

rejection) and the right bar represents total wrong (miss and false alarm).

We conducted a linear mixed effects model for total correct and total wrong, and compared

obfuscation conditions using a Tukey post-hoc test. When the participant is correct, the identifica-

tion confidence of as is is much higher than any other obfuscation methods, as expected (all d ≥

0.36, all p < .001). Notably though, confidence when viewing blurring and pixelating obfuscations—

while lower than as is—is higher than other obfuscations, with medium to large effects (all d ≥

0.58, all p < .001). The means are above five (somewhat confident), providing further evidence that

blurring and pixelating are ineffective. Moreover, identification confidence of total correct is higher

than total wrong for these four methods (all d ≥ 0.41, all p < .05), and larger than the differences

for any of the other obfuscations, indicating that it is also easier for participants to detect when
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Hit Miss
Correct
rejection

False
alarm

Total
correct

Total
wrong

As is 5.93 (1.08) 5.29 (1.38) 5.14 (1.52) 4.68 (1.34) 5.77 (1.23) 5.10 (1.39)
Masking 4.07 (1.61) 3.89 (1.86) 4.28 (1.93) 3.74 (1.66) 4.12 (1.68) 3.87 (1.83)
Silhouette 4.21 (1.68) 3.90 (1.84) 3.45 (1.57) 3.81 (1.62) 4.08 (1.68) 3.89 (1.79)

Face Avatar 4.06 (1.73) 4.06 (1.80) 4.09 (1.95) 3.88 (1.36) 4.06 (1.76) 4.02 (1.71)
Blurring 5.19 (1.22) 4.27 (1.55) 5.36 (0.95) 4.50 (1.56) 5.21 (1.19) 4.36 (1.55)
Pixelating 5.18 (1.17) 4.64 (1.42) 5.03 (1.25) 4.31 (1.67) 5.15 (1.18) 4.51 (1.53)
Inpainting 3.29 (1.90) 3.25 (2.24) 2.74 (2.18) 2.47 (1.78) 2.88 (2.10) 3.18 (2.21)
Masking 3.68 (1.92) 3.08 (2.18) 2.69 (2.15) 3.25 (1.77) 3.04 (2.11) 3.10 (2.15)
Bar 2.93 (1.64) 3.18 (2.18) 3.07 (2.29) 3.35 (2.09) 3.01 (2.06) 3.19 (2.16)

Body Point-light 3.82 (1.81) 3.34 (2.05) 3.03 (2.24) 3.63 (1.86) 3.49 (2.02) 3.38 (2.03)
Avatar 3.70 (1.79) 3.56 (1.97) 4.24 (2.20) 3.94 (1.63) 3.88 (1.94) 3.63 (1.91)
Silhouette 4.34 (1.71) 3.73 (2.05) 3.31 (2.11) 3.71 (1.62) 4.06 (1.87) 3.72 (1.96)
Blurring 5.09 (1.39) 4.76 (1.48) 4.84 (1.18) 4.03 (1.34) 5.05 (1.37) 4.47 (1.46)
Pixelating 5.15 (1.39) 4.62 (1.50) 5.12 (1.20) 4.35 (1.29) 5.14 (1.36) 4.50 (1.41)

Table 4.2: Identification confidence for Hit, Miss, Correct Rejection, False Alarm, Total Correct
(Hit + Correct Rejection), and Total Wrong (Miss + False Alarm) on a scale from 1 - 7 where 7 is
most confident. Standard deviations appear in parentheses beside the means. Within face and body
categories, the order of the obfuscations is from most to least effective.

they incorrectly identified the target (see Table 4.2 for means and standard deviations).

Conversely, as we see in Figure 4.2 , mean identification of the five most effective obfuscation

methods (those on the left side of Figure 4.2 : body inpainting, body masking, body bar, body

point-light, and body avatar) are all below four (neither unconfident nor confident) for both total

correct and total wrong, indicating that participants were not confident about their identification,

regardless of whether they correctly or incorrectly identified the target.

4.3.2 Users’ Experience of Obfuscations

We analyzed users’ experience of the obfuscations via five linear mixed-effect models, where

the outcome variables were photo satisfaction, information sufficiency, enjoyment, social presence,

and obfuscation likability, and the predictor was the obfuscation condition. We conducted Tukey

post-hoc tests to compare all possible obfuscation pairs.

4.3.2.1 Photo Satisfaction

We now know that some obfuscation filters are more effective than others, but how do they

influence users’ satisfaction with the photos? From the results of our linear mixed-effects model,

the overall χ2 shows significant variation among 14 obfuscation conditions, χ2(13) = 986.62, p <
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Figure 4.3: Photo satisfaction rating (M and SE ). Obfuscations ordered from most to least effective.

.0001, indicating that obfuscations affected satisfaction differently. Indeed, Figure 4.3 shows that

participants are generally less satisfied with the more effective obfuscations (see Table 4.3 ). From

the Tukey post hoc test on this model, the results show that participants are most satisfied with

as is (M = 4.82, SD = 1.62) compared to any other obfuscations (all d ≥ 0.37, all p < .001. As

the smallest difference, the difference between as is (4.82) and face pixelating (4.20) has an effect

size of d = 0.37; while other effect sizes are all above 0.5, which represent medium or large effects).

Participants are also satisfied with face pixelating, face blurring, body pixlating, and body blurring,

but as mentioned before, these methods are not particularly effective.

Among the more effective obfuscations, participants are most satisfied with face avatar(1)

(M = 3.49, SD = 1.71) and body avatar(2) (M = 3.43, SD = 1.76) with both scores higher than

body masking (M = 2.44, SD = 1.51, d1 = 0.59, p1 < .001, d2 = 0.56, p2 < .001), body bar (M

= 2.59, SD = 1.55, d1 = 0.54, p1 < .001, d2 = 0.48, p2 < .001), body point-light (M = 2.77, SD

= 1.54, d1 = 0.44, p1 < .001, d2 = 0.41, p2 < .001), and body silhouette (M = 2.86, SD = 1.49,

d1 = 0.39, p1 < .001, d2 = 0.36, p2 < .001). Moreover, the most effective obfuscation among all

14 conditions, body inpainting (M = 3.10, SD = 1.73), scores are higher than body masking (d =

0.39, p < .001) and body bar (d = 0.32, p < .001), and is also slightly (but not significantly) more

satisfying than body point-light, body silhouette, and face silhouette.
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Figure 4.4: Information sufficiency rating (M and SE ). Obfuscations ordered from most to least
effective.

4.3.2.2 Photo Information Sufficiency

Do users believe that obscured photos still provide sufficient information? It seems that this

also depends on the obfuscation method. Similar to photo satisfaction, from the linear mixed-effects

model, the overall χ2 on information sufficiency shows a variation among the 14 obfuscations, χ2(13)

= 1555.11, p < .0001, with more effective obfuscations generally provide less information (Figure 4.4

). As expected, the information sufficiency of as is (M = 5.28, SD = 1.54) is higher than all other

obfuscations (all d ≥ 0.59, all p < .001). Participants also give higher information sufficiency ratings

to face pixelating (M = 4.30, SD = 1.52), body pixelating (M = 4.13, SD = 1.59), body blurring

(M = 3.97, SD = 1.62), and face blurring (M = 4.00, SD = 1.59) compared to the remaining 9

obfuscation methods (all d ≥ 0.41, all p < .01), which means that blurring and pixelating preserve

more information in photos. Among the more effective obfuscation methods, body avatar (M =

3.10, SD = 1.65) provides more information than body inpainting (M = 2.49, SD = 1.64, d = 0.33,

p < .001), body masking (M = 2.18, SD = 1.43, d = 0.55, p < .001), body bar (M = 2.34, SD =

1.55, d = 0.45, p < .001), body point-light (M = 2.48, SD = 1.56, d = 0.38, p < .001), and body

silhouette (M = 2.71, SD = 1.52, d = 0.24, p = .01).
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Figure 4.5: Enjoyment rating (M and SE ). Obfuscations ordered from most to least effective.

4.3.2.3 Photo Enjoyment

From the linear mixed-effects model of enjoyment, a similar pattern occurs where there is

again a variation among the 14 conditions, χ2(13) = 795.09, p < .0001, with that more effective

obfuscations are less enjoyable (Figure 4.5 ). The mean enjoyment of as is photos (M = 4.65, SD =

1.64) is higher than all others (all d ≥ 0.39, all p < .001). Participants felt that photos with the body

avatar obfuscation (M = 3.64, SD = 1.81) were about equally enjoyable with body pixelating (M

= 3.77, SD = 1.61, d = 0.07, p = .99), body blurring (M = 3.70, SD = 1.61, d = 0.03, p = 1.00),

and face blurring (M = 3.90, SD = 1.58, d = 0.15, p = .38), though they create the most enjoyable

photos (aside from as is and face pixelating). In addition, as our most effective obfuscation method,

body inpainting (M = 3.16, SD = 1.70) is more enjoyable than body masking (M = 2.45, SD = 1.46,

d = 0.43, p < .001) and body bar (M = 2.74, SD = 1.54, d = 0.27, p < .01).

4.3.2.4 Social Presence

Do the obscured photos still provide a sense of human contact? From the results of the linear

mixed-effects model, the overall χ2 of social presence scores demonstrated significant variation among

the 14 conditions, χ2(13) = 754.27, p < .0001. The social presence score in the as is condition (M

= 4.81, SD = 1.69) is higher than in all other obfuscation conditions (Figure 4.6 ) (all d ≥ 0.30,
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Figure 4.6: Social presence rating (M and SE ). Obfuscations ordered from most to least effective.

all p < .001). Beyond as is, the scores of other obfuscations are less spread out between conditions

than the other scores, with most social presence scores around 3 or 4. Body masking has the lowest

social presence score (M = 2.76, SD = 1.65). Again, body inpainting(1) (M = 3.34, SD = 1.85) and

body avatar(2) (M = 3.42, SD = 1.75) provide a better sense of human contact than body masking

(M = 2.76, SD = 1.65, d1 = 0.34, p1 < .001, d2 = 0.40, p2 < .01) and body bar (M = 2.93, SD =

1.64, d1 = 0.24, p1 < .001, d2 = 0.29, p2 < .001). While not significant, their social presence ratings

are slightly higher than body point-light (M = 3.08, SD = 1.71) and body silhouette (M = 3.14, SD

= 1.67).

4.3.2.5 Obfuscation Likability

Moving from participants’ attitudes towards the photos to their attitudes towards the ob-

fuscations themselves, we ask how much they like (or dislike) the obfuscations. From the results of

the linear mixed-effects model, there is a variation among obfuscation conditions, χ2(13) = 963.46,

p < .0001, but There is no difference between as is (M = 4.76, SD = 2.02), face pixelating (M =

4.58, SD = 1.74), body pixelating (M = 4.31, SD = 1.75), body blurring (M = 4.52, SD = 1.68),

and face blurring (M = 4.71, SD = 1.70) (all d ≤ 0.19, all p > .05). Generally, the rightmost

five conditions in Figure 4.7 are similarly likable. Among the remaining nine obfuscation methods,

participants like body avatar (M = 4.02, SD = 2.08), face avatar (M = 3.82, SD = 1.99), and body
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Figure 4.7: Obfuscation likability (M and SE ) from most to least effective.

inpainting (M = 3.72, SD = 2.13) more than the other six obfuscations (all d ≥ 0.26, all p < .05).

4.3.2.6 Obfuscation Preference

At the end, we asked participants which obfuscation method they would most like to use

to obfuscate their own online photos (Table 4.3 ). Participants reported they would most like to

use as is (23%), face blurring (15%), body avatar (12%), body inpainting (11%), and face avatar

(9%). In contrast, very few people chose body bar (1%), body masking (2%), body point-light (2%),

body silhouette (2%), or face masking (2%), and there was only one participant who preferred face

silhouette (resulting in a rounded percentage of zero). Leaving out ineffective blurring and pixelating,

the preferences for body avatar and inpainting (around or larger than 10%) are about five times as

high as for other obfuscations which are mostly below 2%. Asking participants how willing they

would be to use their preferred obfuscation method, we found that they generally had a positive

attitude, with all obfuscations scoring at or above 4 on a 7-point scale (Table 4.3 ). Aside from as is

(M = 6.15, SD = 1.21), participants who preferred body avatar reported the highest willingness to

use the obfuscation of their choice (M = 5.94, SD = 1.03). In the open-ended question, participants

stated that body avatar “as least give some context to the photo if someone saw it online and

looks kind of fun, ” “most pleasing to the eyes, cute, ” “protects someones privacy but it makes it

lighthearted,” “the avatar keeps the person’s identity semi-private while not taking away from the
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General
preference

Willingness
to use

Preference given
privacy concern

As is 23% 6.15 (1.21) 1%
Masking 2% 5.40 (0.89) 2%

Silhouette 0% 4.00 (0.00) 0%
Face Avatar 9% 5.80 (0.96) 17%

Blurring 15% 5.60 (1.40) 26%
Pixelating 7% 5.74 (0.73) 9%
Inpainting 11% 5.29 (1.53) 15%
Masking 2% 4.50 (2.74) 0%

Bar 1% 5.25 (1.50) 4%
Body Point-light 2% 5.00 (2.35) 1%

Avatar 12% 5.94 (1.03) 16%
Silhouette 2% 4.67 (0.52) 1%
Blurring 5% 5.23 (1.30) 4%

Pixelating 7% 5.75 (0.97) 4%

Table 4.3: Obfuscation preference, willingness to use, and preference given privacy concerns. Stan-
dard deviations appear in parentheses beside the means. Obfuscations are ordered from most to
least effective.

composition of the photo with a line, block, or blur,” and “privacy does not have to be so bland, the

avatar is creative.” For inpainting, they considered it “looks best to fully remove the person from

the picture if it can be done in a way that isn’t fully obvious,” “it is like they are not there at all,”

“just removes the person so that the photo isn’t ruined,” and “provides the true privacy.” All above

results introduce that avatar and inpainting are practically more preferable and create a better user

experience than other effective obfuscations.

4.3.2.7 Would Privacy Obfuscations Change Privacy Behaviors?

As a follow up question, participants answered whether they had ever decided not to upload a

photo to a SNS for privacy reasons. Fifty three percent of participants reported they had indeed done

so. Over half (56%) of those who had declined to upload a photo for privacy reasons reported that

they would upload the photo they previously declined to share, if having access to an obfuscation.

We asked the 81 participants who had privacy reasons that prevented them from sharing a photo

in the past but reported they would upload a photo using one of the obfuscations which which

obfuscation they would choose. Twenty-six percent selected face blurring, 17% selected face avatar,

16% preferred body avatar, and 16% would like to use body inpainting (Table 4.3 ).
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4.4 Discussion

Our overall goal is to increase the privacy options people have when sharing photos by

discovering obfuscations that are both effective against re-identification and preferred/likable by

users. First, we discuss the effectiveness of the obfuscations. We find that body obfuscations are

generally more effective than face obfuscations (see the ”body vs. face” part of the Results section),

and there is no practical difference in user experience between face and body (for example, the

likability difference between face avatar and body avatar is just 0.2, which means participants have

almost the same attitude towards these two obfuscations). Hence in the following discussions, we only

discuss body obfuscations which are relatively more effective and without user experience decreasing.

Next, we discuss the user experience of the obfuscations. Finally, we integrate these, along with prior

work on machine re-identification (vs. human re-identification) to generate recommendations about

the most effective and likable obfuscations for photo privacy (Table 4.4).

4.4.1 Effectiveness: Face vs. Body

We found that body-obfuscations were more effective than face-obscuring obfuscations with

a 9% success difference (see section Body vs. Face). From the practical perspective, obscuring

the body is also supposed to be more effective against human recognition than obscuring the face

because it can conceal more details such as clothes, gestures, gender, race, and height that may

reveal a person’s identity [5, 242]. Similarly, machines may be able to infer a person’s identity from

a photo with only the face obscured based on body information or the same clothes appearing in

different photos over time [212]. In the case of SNSs, this effect would be exacerbated because we

would expect people to primarily view familiar faces; blurring and pixelating are even less effective

for familiar vs. unfamiliar faces [65]. Because they are more effective overall both in our work and

in previous work, in the following discussion we only consider body obfuscations.

4.4.2 Moving Beyond Blurring and Pixelating

Although blurring and pixelating are commonly used both in research and in practice [24,

124, 286], our results suggest that they are two of the least effective obfuscation methods against

human recognition (identification rates as high as 67%, Table 4.1; with above average confidence,

Figure 4.2 and Table 4.2).
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Prior Use for
Privacy Protection

Preference

Effectiveness
Against Human
Recognition

Effectiveness Against
Machine Recognition

Inpainting Less common. Used
for photo [272] and
video [149, 216, 305].

Preferred Effective Unknown, suspected
highly effective

Masking Less common. Used
for photo [148] and
video [149, 305].

Not preferred Effective Unknown, suspected
highly effective

Bar Rare. Used for video
[305].

Not preferred Effective Unknown, suspected
highly effective

Point-
light

Rare. Used for video
[49].

Not preferred Effective Unknown, suspected
effective

Avatar Rare. Used for photo
[235] and video [216,
262].

Preferred Somewhat effec-
tive

Unknown, suspected
effective

Silhouette Less common. Used
for photo [216, 305]
and video [149].

Not preferred Somewhat effec-
tive

Unknown, suspected
effective

Blurring Common. Used for
photo [24, 98, 124,
177] and video [301]

Less-preferred Ineffective Ineffective [161, 195]

Pixelating Common. Used for
photo [65, 158, 286]
and video [33, 146].

Less-preferred Ineffective Ineffective [195]

As is N/A Preferred Ineffective Ineffective [220]

Table 4.4: Summary of photo obfuscation methods (body-obfuscations only because they are more
effective; see “Effectiveness: Face-obscuring vs. Body-obscuring.”) Effectiveness is defined by the
difference in the identification success percentage of as is and each body obfuscation (see Table 4.1).
The misidentification of as is is 23% (100% minus 77%). An obfuscation that achieves at least twice of
as is misidentification (46%) is defined as “Somewhat effective”, so the identification success should
be no more than 54%. An obfuscation that achieves at least three times of as is misidentification
(69%) is considered “Effective”, so the identification success should be at most 31%. Obfuscations
are ordered from most to least effective.
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Consistent with prior work on blurring and pixelating obfuscations against human recogni-

tion [27, 158], participants in our study were able to identify humans who were blurred and pixelated

in photos. This may because these obfuscations fail to hide body shape, skin and hair color. Color

cues are important in face recognition. The effect of color becomes more evident when shape cues

are degraded [299]. As we mentioned in section “Controlling Content”, these features may also allow

the obscured photo to be re-identified by machines. For example, generative adversarial networks

(GAN) [161], and artificial neural networks [195] worked well to identify blurred and pixelated faces

[195].

On the other hand, inpainting, masking, bar, point-light, and avatar are much more effective

in obfuscating the target in each photo (Table 4.1). Participants are also less confident about their

ability to identify people who are de-identified using these obfuscations (Figure 4.2 and Table 4.2),

regardless of whether their identification is correct or incorrect. In other words, these obfuscations

are effective and viewers feel less confident in their ability to recognize targets when viewing them.

This finding is consistent with prior work about the relationship between activity visibility and

perception confidence that the less visible an activity is, the perceptions are more likely to derive

from participants’ own experiences, thus lower accuracy and confidence they have [20].

Perhaps surprisingly, participants were only somewhat unconfident (with mean ratings

around three), rather than very unconfident about their ability to recognize targets in effective

obfuscations. Partly, this may be due to the effect of our experimental interface. Participants

were forced to make a choice even when they did not know which target was present. Once they

made their choice, cognitive dissonance may have led them to report they were “somewhat” rather

than “very” unconfident in that choice. Alternatively, or additionally, Americans are more likely

to choose a Likert option that indicates positive emotion [164]. Participants may have chosen the

most positive choice (somewhat unconfident) among the options on the unconfident side of the scale.

These speculations do not take away from the key finding: participants were less confident in their

recognition of effective obfuscations.

Inpainting, which removes all visual clues about the person in a photo, is the most effective

obfuscation, yielding a mere 19% identification success, which is notably, less than chance (25%).

When target is present, this rate decreases to 7% which is much lower than chance, indicating, as

expected, participants were unable to identify a target in this condition. When the target is absent

most participants chose “None of above” because the target is completely removed, resulting in more
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correct rejections (67%). In a sense, this is an ideal scenario: rather than trying to guess the target’s

identity, it is better for viewers to simply assume that there is no one there at all.

4.4.3 User Experience

The upward slopes in Figures 4.3 to 4.6 and 4.7 demonstrate that overall, there is a trade-off

between obfuscation effectiveness and user experience: obfuscations with a higher effectiveness have

a lower user experience in terms of satisfaction, information sufficiency, enjoyment, social presence,

and likability. The scatter plot in Figure 4.8 , which plots likability against identification success,

also demonstrates this trend.

Blurring and pixelating are subtle; they preserve many visual features of an image such

as the colors and shapes [299]. Because of the subtlety, people may not notice the affected region

at first glance. While this subtlety may contribute to relatively high levels of satisfaction, it also

likely results in their relative ease of recognition. Conversely, masking, bar, and point-light are more

effective, but they are less satisfying, give insufficient information, are less enjoyable, and lack a

sense of social presence. This is also reflected by the preference percentages (only around 2%) and

qualitative feedback of these three obfuscations. For example, participants thought dots or lines

damaged the photo aesthetics. However, there might be solutions. Another study that I contributed

to uncovers that viewers’ satisfaction can be restored by adding beautification filters to enhance the

aesthetics of an obscured photo [110]. As we will discuss in the following section, inpainting and

avatar are exceptions that are both effective and provide a relatively good user experience.

4.4.4 Better Options: Inpainting and Avatar

Although effective obfuscations are generally less satisfying (Figure 4.8 ), inpainting and

avatar are outliers to this trend. They are very effective, and, as compared to other effective

obfuscations, have high levels of satisfaction, information sufficiency, enjoyment, social presence and

likability.

We could argue that the user experience ratings of inpainting should be similar to the as is

condition, because inpainting does not add unrelated content (e.g. a large gray box) to the image.

Ostensibly, with the target completely removed and the area filled in by existing photo content, the

only difference is the number of people in the group photo. However, after removing the target,
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As is Face Obfuscaon Body Obfuscaon

Figure 4.8: Scatterplot of Likability (X axis) against Identification Success (Y axis). This plot
shows the general trade-off between effectiveness and user experience. However, body avatar and
body inpainting are outliers. They are both effective and provide a good user experience.

an unnatural seeming space were left, damaging the composition [167]. Furthermore, participants

probably knew, based on in-study experience, that there likely used to be a person in the gap they

saw in the photo. The awkwardness of this gap may have reduced the user experience.

Future versions of inpainting could improve the user experience by using more sophisticated

image re-construction techniques to recompose the picture after removing the target [58, 104]. Using

these techniques, we can imagine a system that could first extract the people in the photo, identify

and fill gaps in the background, and finally put the people back to achieve an optimal composition,

but without the target. Indeed, we see promising commercial applications that have elements of this

functionality already present such as Photoshop’s “content aware patch” and Snapseed’s “Expand

[276] ” feature. While currently these advanced editing options are not suited to the task (e.g.,

sometimes these generate unnatural double images), we see promise for techniques such as these to

create inpainting obfuscation options that provide a better user experience.

Unlike inpainting, avatar does add content to an image, so we might not expect the user

experience ratings of avatar to be similar to as is. However, the user experience ratings of the avatar
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obfuscation were higher than all other effective obfuscation methods, and therefore should be further

explored. One noteworthy thing about avatar is that the photo enjoyment rating of body avatar

is slightly higher than face avatar, indicating that people may prefer to see a complete cartoon

character rather than just a cartoon face. However, except for Bitmoji [30], existing approaches to

avatar creation mainly focus on generating avatars that look somewhat like the target, but with an

exclusive focus on the face (e.g., facial component matching [235]). Future avatar-based approaches

for photo obfuscation may benefit from the development of methods to create full-body avatars

instead of face avatars as this may improve the user experience.

Our results show that avatar and inpainting also provide a greater sense of human contact

than other effective obfuscations. For avatar, the cartoon human character preserves the target’s

facial expression and gesture. Viewers may feel this feature allows them to perceive human contact

both among the people within the photo, and between themselves and the people in the photo [22].

For inpainting, since the target is totally removed, people may be less likely to be jarred by the

visual indicator of the lack of presence of a person in the photo. People tend to select the medium

that they perceive to have the highest human contact, hence enough human contact in a photo or

on SNSs would increase their participation and encourage them continue using the medium [94].

Participants qualitative input was consistent with the quantitative results about users’ ex-

perience. For example, inpainting and avatar are more likable and preferable than other highly

effective obfuscations. In open response format, participants mentioned that they liked inpainting

because “it is the most thorough privacy technique,” “it seems you were never there in the first place

and there is no way to identify you,” “it is the best way to make the photo visually appealing,”

and “provides true privacy.” For avatar, they stated it is “cute and fun,” “catches the eyes,” “still

shows the person in a positive light,” and “inserts personality, you can customize it.” Participants’

comments revealed that they preferred face blurring for many of the reasons they liked inpainting

and avatar, but were unaware of the ineffectiveness of blurring. Participants reported that they

thought blurring “adequately hides identity while still giving information about the original photo

and person’s attitude,” “the body without a clear face doesn’t tell much,” and “preserves the in-

tegrity of the picture while providing some form of privacy.” This implies that, perhaps because of

its widespread use, people are unaware that blurring is ineffective against both human (Table 4.1 and

Table 4.4) and machine identification [161, 195]. One clear implication is that if users are provided

with obfuscation options, they should be clearly informed about the benefits and drawbacks of each

69



(e.g., blurring is ineffective as a privacy-enhancement).

Finally, inpainting, avatar and face blurring were the most commonly selected obfuscations

people would want to use to obscure a photo they had previously declined to upload to a SNS for

privacy reasons. Participants reported they would be willing to upload that photo, if they had an

obfuscation available as a solution to their privacy dilemma. These results indicate that obfus-

cation methods, especially inpainting and avatar, have the potential to dramatically

increase the privacy options available to people who want to share photos on SNSs. In

SNS scenario, users can inpaint themselves in a photo which their friend uploads, that generates

a re-constructed photo that is closest to the original one. Hence, the photo uploader will not feel

much sharing loss, and viewers will not even be aware. On the other hand, though both the uploader

and viewers will be aware of the avatar obfuscation, it brings positive emotions, as our participants

stated: “cute” and “fun.” It is similar to other frequently used applications which add cartoon figure

or emoji in a photo. Avatar makes photos more interesting and protects privacy. Both obfuscations

reduce privacy conflicts in photo sharing on SNSs.

Though in this study, we only applied avatar and inpainting on human in photos, but they

can also be useful to protect other sensitive content we identified in the first study, for example, beer

can, pet, and vehicle license plate.

4.4.5 Obfuscation Timing: at capture, upload or share?

Besides the obfuscation methods, referring back to the behavioral privacy model [50], in the

Background section, we have introduced that privacy protection can happen at different phrases,

hence obfuscation timing is important to consider when developing photo privacy control mecha-

nisms. Obfuscations can be applied at various stages of photo processing: at the time of capture,

on the device, at the time of upload, or at the time of sharing. Applying an obfuscation at each

stage has different privacy benefits and addresses different concerns [151]. Applying at the time of

sharing means that a SNS, for example, would gain access to a raw photo (including identifiable

information) but “friends” may not see the raw photo because of the obfuscation, which addresses

concerns about social threats [118, 151]. On the other hand, we could apply an obfuscation at the

time of photo capture, such that only an obfuscated image is captured on a device (e.g., phone). In

this example, an image would be obfuscated before upload, and a SNS would never gain access to

the raw photo, which addresses organizational threats related to SNS providers and various third
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parties [151].

We already see somewhat related commercially available examples of the first situation,

where “filters” are applied at the sharing stage (e.g., Facebook and Snapchat photo filters [112, 258]).

However, these obfuscations are not designed to obfuscate, nor are they likely effective as a privacy-

enhancement, though this warrants future investigation. From our qualitative data, we know that

at least some participants have privacy concerns about the privacy of their photos as shared with

platforms (e.g., a SNS like Facebook). One participant raised his/her concern about this by saying:

“Facebook identifies you first, then blurs you, but Facebook already tracks you.” People fear that

their information will be collected, stored, sold, and reuse by SNS providers or other third parties

[151].

One possible solution, therefore, is to apply privacy obfuscations before uploading images to

such platforms. However, identifying and obfuscating sensitive parts in an image is computationally

resource-intense, for example, increasing CPU usage [150]. A remarkable degradation in efficiency in

case of devices is observed with the increase in the number of people in the photos being processed.

Thus, accomplishing privacy obfuscation on a device (vs. offloading to the cloud, for example) will

require a re-thinking of desired device capabilities. Should new cameras be designed with computer

vision capabilities on board, as suggested by [50]? How can automated redaction be done in a more

efficient (from a memory, power, etc. perspective) on the device rather than on the cloud so that

private information does not need to leave the device thus putting it at greater risk for leaking,

hacking, etc.?

4.5 Limitations

First, other information, besides a visual representation of the face and body of a person

can be revealing. The risk of contextual cues in identification is particularly acute in OSNs because

of their social nature. For example, in an OSN un-obscured mutual friends, the background [263],

any text or personal belongings, the comments under the photo [124], and the time and location

[283] may lead to identification of an obscured person. The approaches we have identified here may

be similarly effective and satisfying when applied to these contextual photo elements. However, this

is certainly worth investigating in the future.

Second, participants were recruited via mTurk. Though Turkers are relatively more demo-
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graphically diverse than the sample collected by other means [39], recruiting this way has drawbacks.

For example, MTurk only allows studies to be conducted online and has a unique nature of labor

[193]. Future work should replicate this study with non-mTurk participants.

Third, the user experience rating of masking is the worst compared to all other obfuscations.

Besides the box covering content in the photo beyond just the target, the gray color used may

also be an issue. We decided to use gray for the box to ensure a consistent experience and to

prevent any gender indication, (e.g., a pink box could indicate the obscured target is a female [133]).

However, gray may evoke negative emotions compared to warmer and brighter colors and result in

less perceived human contact both within the photo and between the viewer and the photo [190].

Third, a research question around computer vision emerge from this work: What automated

interpolation techniques are most effective at creating effective, acceptable and seamless inpainting?

For example, reconstructing 3D models of world landmarks using collections on photo sharing sites

may allow recovery of obfuscated parts of photos [58]. Future studies need to further investigate

how platforms and devices might implement the user experience enabling these obfuscations.

Finally, we only applied obfuscations to people that viewers were not familiar with. How-

ever, on SNSs, viewers are likely to know the people in a photo, which limits the applicability of

obfuscations. Hence, investigating obfuscations which are robust in de-identifying both familiar and

unfamiliar people is important. I have addressed this limitation in the next chapter.

4.6 Chapter Conclusion

In Study One, we identified sensitive content in photos, hence in this study, we aimed to

investigate effective and usable obfuscations that can be applied on sensitive content. The results

show that the two most commonly studied and used obfuscations, blurring and pixelating, are not

effective at preventing humans (or, drawing from related work, machines) from recognizing the

content of a photo. Thus, the most commonly used privacy obfuscations do not provide privacy

protection. We then introduce novel obfuscations that are effective at preventing humans from

recognizing content in an image. Of the highly effective obfuscations we introduce, we then analyze

these from the perspective of user experience finding that inpainting, which totally removes the

content from the photo, and body avatar, which replaces the content with an avatar, outperform

other obfuscations. We suggest that body inpainting and body avatar show promise as photo privacy-
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enhancing technologies because they are effective from a human recognition perspective and provide

a good user experience.

73



Chapter 5

Study 3: De-identifying Familiar

and Unfamiliar People

Note: This work was rejected from CHI 2018 and USENIX 2018.

5.1 Introduction

From the last chapter – Study Two, we know that some photo obfuscations are effective at

de-identification by humans and machines from the last chapter-Study Two. However, one serious

limitation of this work is that we only applied obfuscations on people who are unfamiliar to viewers.

This seriously limits the obfuscations’ application in SNSs context. Most privacy conflicts in SNSs

are related to familiar people identification [25]. Viewers who are familiar with people depicted in

a photo can identify them more easily when they are not obfuscated [36]. Some obfuscations may

be robust across familiar and unfamiliar people, whereas others may not be, as shown in Figure 5.1

where it is trivial to identify former US president Barack Obama. To bridge this gap, in this study,

we investigated the de-identification effectiveness and users’ experience of obfuscations which were

applied on both familiar and unfamiliar people in photos. We selected blurring, silhouette, avatar,

masking, inpainting obfuscations from our last study, and included morphing [127]. We predicted

morphing to have high effectiveness and to make for a better user experience, because it could

obscure a photo seamlessly (for detailed introduction of these obfuscations, please see Table 5.1).
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Figure 5.1: An example of a blurred familiar person

In general, the goal of this study is to investigate the effectiveness against human recogni-

tion and the user experience (by measuring satisfaction, information sufficiency, enjoyment, social

presence, likability and preference) among six obfuscation methods applied on both familiar and

unfamiliar people. Overall, we would like to uncover which obfuscations are effective and can at the

same time provide a good user experience across familiar and unfamiliar cases.

We found that most of these obfuscations (e.g. inpainting, masking, avatar, and morphing)

were effective and that there was no major difference between identifying familiar and unfamiliar

people across all obfuscations, except for blurring, which is much less effective in familiar cases.

Furthermore, we found that familiarity did not influence photo satisfaction, information sufficiency,

and social presence. Inpainting, avatar, and morphing provide a good user experience. In terms of

likability and user preference, morphing is less preferable, though. In brief, inpainting and avatar

have a solidly high effectiveness and a good user experience across familiar and unfamiliar cases.

To summarize, the primary contribution of this work is identifying obfuscations that are 1)

robust in the increased likelihood of recognition associated with familiarity and 2) provide a good

viewer experience.

The remainder of this chapter is structured as follows: First, we summarize previous work

on withholding behavior, two approaches to protect privacy, and specify the importance of familiar

people de-identification. Next, we introduce our method and use statistical analysis to study obfus-

cation’s effectiveness, viewer experience, and our obfuscations’ impact on photo withholding. We
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Example Name & Definition Related
Work

Example Name & Definition Related
Work

Blurring. Reduces
image detail by gener-
ating a weighted aver-
age of each pixel and
its surrounding pixels.

[24, 301,
98, 149,
158]

Morphing. Merging
two people’s bodies to
create an average rep-
resentation.

[76, 147,
127]

Silhouette. Re-
places content with
a monochrome visual
object that mirrors the
extracted shape of the
original content.

[49, 149,
216, 305]

Avatar. Replaces
content with a graph-
ical representation
that preserves some
elements of the un-
derlying content. For
example, a human
avatar can preserve
facial expression and
gesture, but hide
biometrically unique
elements (e.g., face) of
identity.

[216, 235,
262]

Masking. Re-
places content with a
monochrome solid box
that covers the content
to be protected and
surrounding image
content.

[148, 149,
305]

Inpainting. Com-
pletely removes con-
tent fills in the miss-
ing part of the image
in a visually consistent
manner.

[149, 216,
272, 305]

Table 5.1: Six obfuscation methods. In the example figures, we applied the methods on familiar
people. They were also applied on unfamiliar people in the study, yielding in 14 conditions (We
added as is as the baseline condition).

subsequently discuss the results of our analysis. Finally, we also state our limitations in this study.

5.2 Method

To answer these questions, we conducted an experiment with 230 participants to investigate

the effectiveness and user experience of privacy-enhancing obfuscations.
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5.2.1 Participants

We recruited 285 participants located in United States through the Amazon Mechanical

Turk crowd-sourcing service. Participants were paid $2.00 to complete the study which took about

30 minutes based on a suggested payment on MTurk [239]. We set restrictions to ensure high data

quality: MTurk workers must have a good reputation (above 95% approval rate) with more than

1000 HITs approved [223]. After collection, we excluded the data from participants who failed more

than one attention check question. Additionally, to ensure the majority of participants knew the

targets in familiar cases, we also excluded the data from participants who failed to identify three or

more famous people in familiarity questions, resulting in a final sample size of 230.

One hundred and twenty-two reported being male, 107 being female, and one person pre-

ferred not to reveal the gender. Participants’ ages ranged from 18 to 55+ years, with 13% age 18-24,

47% age 25-34, 23% age 35-44, 10% age 45-54, and 7% age 55+. Seventy-two percent was White.

This sample is representative of the US population [281]; in general, recruiting via mTurk results

in a more diverse sample than other recruitment means [39]. Ninety-nine percent of participants

reported using Internet most of the day or several times a day; and 73% used SNSs most of the day

or several times a day.

5.2.2 Experimental Design

Our experiment was a within-subject design, with seven privacy-enhancing obfuscation

conditions by two familiarity levels (familiar vs. unfamiliar). The seven obfuscations were as is

(obfuscation-free), blurring, morphing, silhouette, avatar, masking, and inpainting.

5.2.2.1 Obfuscation Methods

We adopted six obfuscations from prior work on online photo privacy and video surveillance

[180, 124, 127, 216, 305] (listed in Table 5.1). We chose the most effective and user-friendly ones, for

example, inpainting and avatar, and the commonly adopted blurring. We did not include pixelating,

bar, and point-light, because they are neither effective nor user-friendly from Study Two. We are

particularly interested in morphing [127], which merges another person with the target person in

the photo to create a general representation. We expect morphing to have high effectiveness and

good user experience, because it is the most seamless obfuscation among our six methods.
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5.2.3 Stimuli

5.2.3.1 Targets

The target is the person in a photo to be identified. In total, we had 14 targets (seven

familiar people and seven unfamiliar people). To create unfamiliar targets, we took photos of seven

people who were unknown to our participants. We included models from racial categories broadly

representing the racial makeup of the United States, including white, African American, Asian, and

Hispanic and Latino. For familiar targets, we chose seven people who were shown to be familiar to

participants from [96, 294], for example, Brack Obama (Table 2.2). Next, we located images of each

of these people that allowed for noncommercial reuse and modification and downloaded these for

use in the study.

Though famous people may not be a perfectly representative of friends, they are a common

proxy in significant prior work that investigates recognition of familiar people, and these work

indicates that the cognitive process of recognizing famous and familiar people are similar (e.g.,

[37, 81, 244, 245]). One reason for our choice and this choice in prior work is because participants

have different levels of familiarity with people in their friend circle whereas the familiarity of famous

persons is more consistent across participants. Using famous persons is thus likely to result in a more

consistent recognition rate. For the purposes of experimental control, we traded off some amount of

external validity. Furthermore, we explicitly tested participants’ familiarity with the celebrities we

used as stimuli. As shown in the results of familiarity questions (Table 5.2), with the exception of

Taylor Swift, all of the famous people we used as familiar targets achieved a named identification

rate of 90% or higher. This means that at least 90% of participants were able to correctly produce

(recall rather than recognize) the name of the famous person. The subjective familiarity means are

five or above, indicating a relatively high level of self-reported familiarity with all familiar targets.

5.2.3.2 Photo Creation

To create photo backgrounds and background people, we again chose online photos that al-

lowed reuse and modification and photos taken by our researchers. We used Photoshop to reassemble

them with the targets. To be consistent, each photo has one target (obfuscation condition applied),

three background people, and a similar background scenery (park, campus etc.) (Figure. 5.2). We

employed each of the seven obfuscations to one familiar target and one unfamiliar target, each with

78



Name %Named Mean Familiarity (SD)

Jennifer Aniston 95% 5.55 (1.50)
Angelina Jolie 93% 5.67 (1.52)
Taylor Swift 83% 4.97 (1.92)
Oprah Winfrey 99% 6.08 (1.10)
Barack Obama 100% 6.55 (0.71)
Brad Pitt 96% 5.90 (1.36)
Leonardo DiCaprio 98% 6.16 (0.97)

Table 5.2: Participants’ familiarity with the famous people in our stimuli. The three columns show
the famous people’s names, percentage of being named, and means of familiarity with standard
deviations.

two different backgrounds resulting in 196 unique photos (7 familiar targets * 7 obfuscations * 2

backgrounds + 7 unfamiliar targets * 7 obfuscations * 2 backgrounds).

5.2.3.3 ID Photo

We gathered an ID photo of each target, and three ID photos of people who look similar to

the target, for example, with same gender, same race, similar hair color, and body figure (e.g. the

second and fourth person in the choices in Figure. 5.2). The ID photos of famous targets are also

all famous people’s photos, for example, Jennifer Aniston vs. Nicole Kidman.

5.2.4 Measurements

We measured obfuscation effectiveness via identification rate and confidence, and user ex-

perience through existing validated Likert scales.

5.2.4.1 Obfuscation Effectiveness

• Identification Rate. We asked “Please identify the person indicated by the orange arrow.”

with four choices (three ID photos and “None of above”).

• Identification Confidence. Afterwards, participants were shown the question “How confi-

dent do you feel that you correctly identified the person?” with a scale from 1 ‘Completely

unconfident’ to 7 ‘Completely confident’ [230].
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Figure 5.2: Experiment interface with one stimuli and ID photo examples

5.2.4.2 Users’ Experience

We measured the obfuscation’s user experience from four perspectives. All the responses

used 7-point Likert scale from 1 ‘Strongly disagree’ to 7 ‘Strongly agree.’

• Photo Satisfaction. We adapted the satisfaction item “The photo is satisfying” from the

validated image appeal scale [59]. Image appeal, validated across cultures, is the extent to

which images are perceived as “appropriate and aligned to user expectations, satisfying, or

interesting” [59].

• Perceived Photo Information Sufficiency. Various privacy filters may cause different

levels of information sufficiency. We selected a single item “The photo provides sufficient in-

formation” from the photo information quality scale [72]. This scale measures “the satisfaction

of users who directly interact with the computer for a specific application”. Our selected item
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loads onto the “content” factor and was correlated to the item “is the system successful?”[72]

• Photo Enjoyment. We measured perceived photo enjoyment using the single-item photo

enjoyment scale [233].

• Perceived Social Presence. We adapted an item “There was a sense of human contact

when I saw the photo” from perceived social presence scale which measures the feelings of

intimacy and warm [154]. Human contact here means both contact between the viewers and

people in the photo, and people’s interaction within the photo.

• Obfuscation Likability. We measured likability of each obfuscation using the item “I like

the obfuscation” which derived from the interface preference scale [203].

• Obfuscation Preference. Participants reported their preference for each obfuscation with

the question “If you could use any of the obfuscations for photos you post on SNSs, which

one, if any, would you like to use?”, followed by an open-ended question about the reason,

and 7-point Likert scale item measuring their willingness to use this obfuscation. Next, they

answered “Have you ever declined to upload a photo to an online social network for privacy

reasons?” If “Yes,” they were asked given the access to one obfuscation, if they were willing

to share again. If “Yes,” we asked which obfuscation would have moved them to upload the

photo, and their reasons for doing so.

5.2.5 Procedure

Prior to the study, we conducted pilot tests with our lab members to check for bugs, gather

data about the length of the study and ensure that the data collection worked well. In the actual

test, first, participants accessed the experiment website Qualtrics though the link in our MTurk

HIT. After providing consent, they answered six demographic questions and two social network

usage questions. Next, we asked participants to test the browser size and resize their browser to

make sure all participants viewed stimuli in a similar visual environment. Afterwards, they saw an

overview of the seven obfuscation examples along with the description of each obfuscation.

Next, we trained participants about the experimental task. During training, participants

learned about the tasks they would perform and completed two training trials. To help participants

gain confidence about the identification task, next they completed two pre-trials. The photos used
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%
identified
Total

%
identified
Familiar

%
identified
Unfamiliar

OR (familiar
vs.
unfamiliar)

p-value

OR (vs.
As is,
regardless of
familiarity)

p-value %∆

Masking 21% 25% 17% 1.62 <.05* 0.05 <.001*** -75%
Inpainting 23% 22% 24% 0.89 0.59 0.06 <.001*** -72%
Avatar 33% 27% 39% 0.58 <.01** 0.10 <.001*** -60%
Silhouette 33% 30% 35% 0.80 0.25 0.10 <.001*** -61%
Morphing 36% 34% 37% 0.88 0.60 0.12 <.001*** -57%
Blurring 72% 78% 67% 1.75 <.01** 0.53 <.001*** -13%
As is 83% 90% 77% 2.69 <.001*** NA NA NA

Table 5.3: Identification rate in all cases (including both target present and absent), odds ratio
and p-value between familiar and unfamiliar cases for each obfuscation, and odds ratio and p-value
between each obfuscation and the baseline as is regardless of familiarity. The obfuscations are
ordered by identification rate of total cases (familiarity + unfamiliar) from lowest (most effective)
to highest (least effective).

in the pre-trials were obfuscation-free, making the target easily identifiable.

Participants then completed 14 trials where they saw photos with semi-randomly assigned

obfuscation conditions and targets, and identified the target person (Figure. 5.2). Participants saw

all 14 conditions and 14 targets during the experiment. No conditions or targets were repeated. For

example, in the first trial, if the photo contains condition blurring (on familiar target) and Jolie, then

the rest of the photos that include either blurring (on familiar target) or Jolie would be excluded

from the subsequent trials. In most cases the target was among the four choices offered, but there

was a 21% chance that the target was NOT present among the choices. Afterward identifying the

target, participants rated their confidence and experience.

After finishing all trials, participants were shown each of the seven obfuscation conditions

individually, and rated each likability. Then they answered several obfuscation preference questions.

Next they saw the seven famous people’s photos used in the familiar trials, and were asked to

write down each famous person’s name and rate their familiarity with each person [261]. Finally,

participants responded to a set of privacy attitude questions. After completing all tasks, a random

code was generated. Participants copied this code to MTurk to receive remuneration.
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Figure 5.3: Means and standard errors of identification confidence of Total Correct and Total Wrong
separated by familiarity.

5.3 Results

5.3.1 Obfuscation Effectiveness

Obfuscation effectiveness is measured through identification rate, which is the percentage

of trials that participants correctly identified a target in question. Identification confidence is a

self-reported measure of how confident a participant was in his or her identification. In this work,

because we are interested in privacy, higher identification rate means lower obfuscation and pri-

vacy effectiveness. For example, if one obfuscation has a 40% identification rate, that means its

effectiveness as a privacy-enhancing obfuscation is 60% (100% - 40%).

5.3.1.1 Identification Rate

Using a Tukey post-hoc test on a logistic mixed-effects model of all cases, we found that

regardless of familiarity, as is (90% and 77%) and blurring (79% and 67%) have higher identification

rates compared to any other obfuscations (all p < .001), which indicates blurring is ineffective against

human recognition. All other obfuscations perform well, with identification rates ranging from 17%

to 39% (Table 5.3).

Effect of Familiarity. If we look across all obfuscations, familiarity does not have an effect

on identification rate, χ2(1) = 1.01, p = .31. However, breaking it down into individual obfusca-

tions, participants were able to identify familiar targets obfuscated by as is, blurring and masking

more easily than unfamiliar targets (all p < .05; differences of 8–13%). For inpainting, silhouette,

and morphing, there was no major difference between familiar and unfamiliar cases (all p ≥ .25).
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Oppositely, a familiar person was less likely to be identified than an unfamiliar person when the

avatar obfuscation was applied, with a 12% difference (p < .01). Note that inpainting, silhouette

and morphing are effective across both familiar and unfamiliar cases.

5.3.1.2 Identification Confidence

Using a Tukey post-hoc test on a linear mixed-effects model of all cases we found that

regardless of familiarity, people are more confident with their identifications for three visually less

distorted obfuscation methods, as is (M = 5.56, SD = 1.64), blurring (M = 5.15, SD = 1.52), and

morphing (M = 5.22, SD = 1.51), than the remaining four obfuscations (all d ≥ 0.52, all p < .001),

with all scores above four. When identifying the targets in photos using inpainting (M = 3.71, SD

= 2.20), masking (M = 3.69, SD = 2.19), avatar (M = 4.03, SD = 1.92) and silhouette (M = 3.99,

SD = 1.92), their confidence decreases (Figure. 5.3).

Effect of Familiarity. Familiarity has an overall effect on the identification confidence (χ2(1)

= 48.10, p < .0001): people are more confident about their identifications when they view familiar

people’s photos. For as is and blurring, when viewing photos of familiar people, people feel more

confident than viewing photos of unfamiliar people (both d ≥ 0.23, both p < .01), especially when

they are correct.

Since people can hardly see anything related to the target’s identity in inpainting and mask-

ing, the confidence ratings are similar regardless of the familiarity or the identification correctness

(all between three to four), which indicates people are generally not confident when viewing photos

with these two obfuscations.

5.3.2 Users’ Experience

Knowing that inpainting, masking, silhouette and morphing are effective, how do our par-

ticipants feel about these obfuscations? We created four linear mixed-effect models to analyze users’

experience of the obfuscations, then conducted Tukey post-hoc tests on the pairs we were interested

in, for example, comparisons between morphing and other obfuscations.

5.3.2.1 General Effects of Obfuscation and Target Familiarity

As shown in Figure 5.4 to 5.7, the results of four linear mixed-effect models on four scales

show significant variations among the seven obfuscation methods: with χ2(6) = 697.01, p < .0001

84



Figure 5.4: Photo satisfaction rating (M and SE ). Obfuscations ordered from most to least effective.

for satisfaction; χ2(6) = 924.43, p < .0001 for information sufficiency; χ2(6) = 588.59, p < .0001 for

enjoyment; and χ2(6) = 549.25, p < .0001 for social presence.

Familiarity does not have an overall effect on satisfaction, enjoyment, and social presence.

Information sufficiency is an exception with χ2(1) = 4.58, p < .05, and obscured photos with

unfamiliar people have lower information sufficiency compared to those with familiar people. Only

in as is, the satisfaction, information sufficiency, and enjoyment of photos with familiar people are

higher than those with unfamiliar people (all d ≥ 0.25, all p < .001) (Figure 5.4 to 5.6).

5.3.2.2 Effective Obfuscations That Provide A Good User Experience

One obfuscation, in particular, stood out as being both effective and providing a good

user experience. Morphing has the highest ratings compared to other obfuscations across all four

measurements (all d ≥ 0.27, all p < .001). There is no difference between morphing and as is on

satisfaction, information sufficiency, enjoyment and social presence in unfamiliar cases (all p > .05),

and no difference on satisfaction and social presence in familiar cases (both p > .05), indicating that

overall morphing a person makes the photo as satisfying, enjoyable, and provides the similar amount

of information and human contact as the original (as is) photo.

Although the user experience scores are not as high as morphing, inpainting (the most

effective obfuscation) has a relatively good performance in satisfaction, information sufficiency, en-

joyment and social presence, compared to next-most effective obfuscation masking (all d ≥ 0.44, all
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Figure 5.5: Information sufficiency rating (M and SE ). Obfuscations ordered from most to least
effective.

p < .001).

Among the four most effective obfuscations in Figure 5.4 to 5.7, avatar performs better than

masking from all perspectives (all d ≥ 0.29, all p < .001). The ratings are also higher than silhouette,

though some differences are not statistically significant, for example, in information sufficiency and

social presence measurements.

5.3.3 Obfuscation Likability

The results of four linear mixed-effect models on obfuscation likability show a variation

among the seven conditions, χ2(6) = 371.99, p < .0001 (Figure 5.8. Consistent with the other four

user experience measurements, within effective obfuscations, users like inpainting (1) (M = 4.11,

SD = 2.18) and avatar (2) (M = 3.86, SD = 2.00) more than masking (M = 2.16, SD = 1.56,

d1 = 0.80, p1 < .0001, d2 = 0.72, p2 < .0001) and silhouette (M = 3.17, SD = 1.78, d1 = 0.37,

p1 < .0001, d2 = 0.29, p2 < .0001). Note that the likability of inpainting is about as high as blurring

(M = 4.54, SD = 1.73, p = .15). However, the likability of morphing (M = 3.00, SD = 1.82) is

much lower than as is (M = 5.14, SD = 1.88, d = 0.84, p < .001), even though these two have

similar satisfaction, information sufficiency, enjoyment and social presence. Morphing is also less

likable when compared to inpainting(1) and avatar(2) (d1 = 0.40, p1 < .001, d2 = 0.34, p2 < .001).
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Figure 5.6: Enjoyment rating (M and SE ). Obfuscations ordered from most to least effective.

General
preference

Willingness
to use

Preference given
privacy concern

Masking 3% 5.00 (0.82) 0%
Inpainting 20% 5.73 (1.23) 33%
Avatar 18% 5.87 (1.24) 28%
Silhouette 3% 5.71 (0.95) 3%
Morphing 7% 5.38 (1.41) 6%
Blurring 26% 5.55 (1.23) 28%
As is 22% 6.04 (1.32) 1%

Table 5.4: Obfuscation preference, willingness to use, and preference given privacy concerns. Stan-
dard deviations appear in parentheses beside the means. Obfuscations are ordered from most to
least effective.

5.3.4 Obfuscation Preference

After rating the likability of each obfuscation, participants responded which obfuscation

they would like to use on their photos posted on a SNS. As shown in the second column of Table 5.4,

the majority of participants chose blurring (26%), inpainting (20%), and avatar (18%). Twenty-two

percent of them preferred not to use obfuscation. In accordance with the likability scores, only a

few participants preferred masking (3%), silhouette (3%), and morphing (7%). Participants were

generally willing to use the obfuscations they selected, with the means all above five. Besides as is,

they reported the highest willingness to applying avatar on their photos (M = 5.87, SD = 1.24).
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Figure 5.7: Social presence rating (M and SE ). Obfuscations ordered from most to least effective.

5.4 Discussion

5.4.1 It is Easier to Identify Familiar People

Neuropsychological studies show that humans process familiar and unfamiliar faces differ-

ently [131]. People rely more on so-called “internal features” (e.g. facial features) rather than

“external features” (e.g. body or head contour) when identifying familiar people. On the other

hand, people rely on both internal and external features equally when identifying unfamiliar people

[81]. In our study, we found that for both obfuscation-free photos (i.e., as is) and photos with

ineffective obfuscations (e.g. blurring, where both external and internal features remain visible to

some extent), participants were more easily and more confidently able to identify people who were

familiar to them. This replicates prior work on obfuscation-free photos (e.g., [36]), and extends this

prior work to obfuscated photos. On the other hand, silhouette and avatar have lower identification

rate in familiar cases than in unfamiliar cases. This is because the four choices (ID photos) gave

participants a hint about whether the obscured target was familiar or unfamiliar. When identify-

ing a familiar target, they were inclined to search for precise internal features, however avatar and

silhouette provide few or no internal features.
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Figure 5.8: Obfuscation likability (M and SE ) from most to least effective.

5.4.2 Obfuscating Familiar People in Online Photos

To summarize, when there are familiar people in online photos, inpainting, avatar, silhouette,

and morphing maintain their effectiveness against human recognition. For these effective obfusca-

tions, high familiarity with the people in photos decreases neither the effectiveness nor the user

experience, suggesting that these obfuscations are robust and can be applied to any online photos

including photos in SNSs. Second, our results confirm that blurring, though used commonly both

in prior research and in practice, is not effective against identification of unfamiliar people, and

performs even worse when a viewer is familiar with the obfuscated person. In the following sections,

when discussing inpainting and morphing, we do not consider familiarity, because familiarity does

not affect their effectiveness and user experience.

5.4.3 Effective and Likable: Inpainting and Avatar

Aside from morphing, inpainting achieves the best balance between effectiveness and user

experience compared to the other three effective obfuscations (masking, avatar, and silhouette, see

Figure 5.9). Inpainting ’s performance in likability is even better (see Figure 5.10). Inpainting has

a low identification rate across familiar (22%) and unfamiliar cases (24%) (Table 5.3). This low

rate includes an uncharacteristically high number of correct rejections in “target absent” cases (84%

for familiar and 76% for unfamiliar cases) where we assume that, despite no evidence, participants

were tempted to choose “None of above” due to the literal absence of a target. If instead we only
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Figure 5.9: Scatterplot of Satisfaction (X axis) against Identification Rate (Y axis) which shows the
general trade-off between effectiveness and satisfaction. Morphing, inpainting and avatar are below
the regression line, which means they are relatively effective and satisfying.

focus on target present cases, the identification rate of inpainting goes down well below chance to

3% (familiar) and 7% (unfamiliar). Moreover, people feel unconfident about their identifications

when viewing inpainted photos. Inpainting removes all possible clues of the target that may lead to

identification as our participants pointed out in responses to open ended questions. They said, “it’s

the perfect camouflage ‘invisible ink’ option, ” and it “completely leaves out any traces.”

The user experience with inpainting is not as high as as is, blurring and morphing, but

inpainting is more satisfying, enjoyable, and provides more information and human contact than the

similarly effective obfuscation masking. It also has equivalent user experience with avatar. Excluding

as is, inpainting has the second highest likability score, and 20% of participants prefer it to all other

obfuscations. After we reminded participants about their privacy concerns when uploading photos,

33% reported they would rather use inpainting than any other obfuscation.

We might expect the user experience of inpainting to approach as is, if the obfuscation

was indeed so good that viewers might not realize that a target was removed from the photo.

However, because of the space left between the adjacent background people in our stimuli, viewers

understand that a person was removed from the photo. Unlike many photos shared online, in our

stimuli target and background people were not engaged in interactive gestures; when they are, the

missing target may be even more obvious than in our stimuli. For example, imagine a photo with
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Figure 5.10: Scatterplot of Likability (X axis) against Identification Rate (Y axis) which shows
the trade-off between effectiveness and obfuscation likability. Inpainting and avatar are below the
regression line, and morphing is effective but not likable.

a person’s floating arm which is supposed to be on the target’s shoulder (Figure. 5.11). In this

case, the missing target would be obvious and perhaps disturbing to viewers. In addition, the

unnatural space damages the photo composition [167]. Fortunately, emerging image reconstruction

techniques can solve this issue and further improve user experience [58, 104]. For example, using

these techniques, a future photo obfuscation mechanism could first identify all people in a photo,

distinguish each person from the background, remove the target, patch the missing background,

modify the remaining people’s gestures if necessary, then reconstruct a seamless photo. There are

some existing commercial applications that may facilitate this process to improve inpainting ’s user

experience, such as Photoshop’s “content Aware Patch [4]” and Snapseed’s “Expand [276].”

The second obfuscation that is a relatively good balance between effectiveness and user

experience is avatar. From the user experience ratings, likability, and users’ preference, there is

almost no difference between avatar and inpainting, which both score highly on all these measures.

Avatar hides the identity, but preserves the facial expression and gesture of the target. It combines a

common online social behavior—adding cartoon stickers on their photos on social media to enhance

the aesthetic, emotions, and communications [117]—with their privacy protection goals. Participants

mentioned that avatar “seems fun and different,” “looks cute,” is “the most visually appealing,”

and is “ hilarious and doesn’t ruin the photos.”
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Figure 5.11: Example of awkward inpainting.

One thing that cannot be ignored is avatar ’s surprisingly lower effectiveness in familiar

cases compared to unfamiliar cases (27% vs. 39% identification). As we discussed in the second

subsection of this Discussion, people identify familiar targets mostly using internal features, while in

unfamiliar cases, they rely on both internal and external features [81]. Avatar provides some general

clues (long/short hair, skin tone etc.), but no detailed internal features such as exact eye- and nose-

shapes. Hence when the obscured person is familiar, people fail to acquire the detailed internal

features that they need to make an accurate identification. In addition, when given three famous

people as choices, participants arguably retrieved person-identity information from their long-term

memory rather than comparing the avatar details with each choice carefully [38, 44], thus resulting

in incorrect choices.

In most usage scenarios, this high identification rate in unfamiliar cases should not be a

problem. First, when viewers try to identify an unfamiliar person’s avatar in a photo outside of our

study, they are not provided several choices to compare with this avatar. Moreover, the identification

rate is likely related to the level of detail in the avatar. Reducing the details will likely increase

the effectiveness, for example, changing the hair color of the avatar from brown to blond, or even

switching the gender of the avatar. The confidence scores also show that people are not very confident

in identification when the avatar obfuscation is used. In short, both inpainting and avatar are good

options to protect photo privacy with a good user experience.
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5.4.4 A Promising Obfuscation: Morphing

For both familiar and unfamiliar cases, morphing is effective against human recognition.

It also has the potentially desirable characteristic that it looks un-obscured; when participants see

it in trials, they are likely unaware that the photo is morphed and may think it is as is. There

are no obvious visual occlusions like in masking, or indicators of a person missing like the space

left in inpainting. We speculate this characteristic is what we see reflected by its high satisfaction,

information sufficiency, enjoyment, and social presence ratings, which are almost as high as as is.

This indicates that morphing has the potential to be among the most preferable obfuscations (see

Figure 5.9).

However, when participants are made explicitly aware that the image they are viewing has

been morphed, and subsequently asked whether they would like to apply morphing on their own

photos, we found that morphing was not at all preferable. It had a much lower likability score and

preference percentage than inpainting and avatar (see Figure 5.10). These contradictory findings

suggests that people may be skeptical about the concept of morphing, or may be unwilling to “blend”

themselves or friends with other people, which is required for morphing. One participant mentioned

morphing makes the photo look “ridiculous.” However, other participants saw real promise in the

idea, saying, “Morphing is better for maintaining an anonymous ‘persona’ online. I think it’ll be

easier to use morphing to show others that a person ‘exists’ behind my profile, but without revealing

my real identity.” Another participant said that morphing was the obfuscation that “best keeps the

integrity of the photograph while removing identity in a seamless way,” indicating the participant

saw aesthetic value in this obfuscation.

Another possible reason for the low likability of morphing may be that we used a single

person from the three “known person” choice options, rather than either an unknown person or

an aggregate face, comprised of many people, to merge with the target. This may have enabled

participants to identify both potential images that were morphed together. Consequently, people

might have thought they would be easier to identify using morphing themselves. The high confidence

scores indicate that participants were confident with their identifications of morphed photos. If their

goal was to be obfuscated, they might assume others could also identify them if they used morphing.

Another intriguing possibility for the low likability could be something akin to the uncanny

valley effect [202]. The images generated by morphing look somewhat like the target and somewhat

93



like a non-target, which could result in an erie sense of the image being almost, but not exactly a

known person. This possibility deserves additional attention. If, for example, the uncanny valley

effect [202] is the reason for the low likability scores, we may be able to improve morphing by creating

an “average” person by merging hundreds of people to create a more general target. This could push

the new image further out along the similarity axis so that it is less similar to any one person, and

thus out of the uncanny valley. Moreover, people tend to judge average faces as attractive [160],

thus a morph that uses averages may make the person in the photo be viewed as more beautiful.

5.5 Limitations and Future Work

First, as we admitted in the method section, celebrities may not be a perfect representative of

familiar people let alone friends. Moreover, in a SNS environment people’s recognition ability may be

different under different levels of familiarity, which may affect the performance of the obfuscations,

for example, there may be a difference in obfuscating close friends versus persons one has met

only once. Future studies should test the effectiveness of obfuscations under different familiarity

conditions.

Second, morphed photos were rated by participants to be satisfying, enjoyable, and able

to provide sufficient information and human contact, but when applied on their own photos, they

reportedly did not like morphing. We provided some possible explanations for this difference in the

Discussion section, but we did not ask participants directly to describe their dislikes. Now that we

know that morphing is promising, we will probe more deeply into this difference to gather feedback

about how we might enhance the likability of morphing. Next, the intensity of blurring affects

obfuscation effectiveness against both human and machine recognition [106, 158]. We used the

blurring intensity level from [158]. Changing the intensity of blurring could increase identification

rate and/or lead to a lower user experience. Last, there are two aspects of our social presence

measurement: the human contact between viewers and people in a image and the human contact

within the people in a image. In future research, we would like to distinguish them.

94



5.6 Chapter Conclusion

Controlling content using obfuscation may be an effective strategy for enhancing privacy

while maintaining or increasing the potential audience. Of these obfuscations, inpainting and avatar

are robust to the increased likelihood of recognition associated with familiarity and provide a good

viewer experience. Another effective obfuscation, morphing produced complicated and contradictory

results; it has the highest user experience scores when viewers are unaware of its use, but it is not

likable or preferable when viewers know the resulting image is a combination of two images. We

suggest that inpainting and avatar are useful tools for photo privacy enhancement. With a solid

understanding of obfuscations, we need to explore whether they could combat photo self-censorship,

help reduce people’s privacy concerns, and encourage photo sharing. The following two chapters

answer this question.
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Chapter 6

Study 4: Obfuscation May Combat

Self-Censorship

Note: This work was rejected from CHI 2020.

6.1 Introduction

We know that when people feel that certain content in their photos is risky, they are likely

to turn to the self-censorship strategy, which refers to the act of withholding information from oth-

ers without formal obstacles, is a sociopsychological phenomenon that may cause negative effects

on both the personal level (personal distress) and the collective level (decreasing the free informa-

tion flow) [18]. As a boundary regulation strategy, self-censorship is prevalent on SNSs [60]. SNSs

contain few visual cues about the audience [48], so SNS users imagine an audience to share cor-

responding content. However, they may censor content if they feel the imagined audience is not

appropriate [191]. For example, people censor content that may harm their self-representation to-

wards certain social groups, content may offend others, or bore their audience [255]. Existing work

on online self-censorship investigates the common topics that people censor (e.g., entertainment,

politics, personal opinion [255]), and much work specifically focuses on the political self-censorship

phenomenon (e.g., [18, 99]), but there have been few studies that investigate specific types of content

under censoring.

96



In this work, we particularly explore photo self-censorship. Visual data in SNSs carries

more information than textual data, hence photo sharing plays an important role in online social

communication. While enjoying the benefits of photo sharing, users also suffer from privacy leakage.

Though most SNSs allow users to control their audience (e.g., share with only friends) [84], users

are likely to censor photos as a safer option [191], in turn reducing the communicative ability of

SNSs. Very few prior studies quantify the prevalence of online self-censorship. One work did a large-

scale exploratory analysis and found out that post and comment censorship is common (71% of the

participants have self-censored at least one post or comment) [60], but photo self-censorship, as a

likely target for self-censorship, is still under-examined. Additionally, from the first three studies, we

understand obfuscations can be usable and help prevent humans from recognizing sensitive content

in photos. Hence, in this study, we would like to investigate whether obfuscation can combat photo

self-censorship.

In this study, we aim to achieve three goals introduced below. We (1) quantified the preva-

lence of online photo self-censorship with 230 SNS users. Furthermore, because from previous chap-

ters, we know that photo obfuscation can be an effective tool to protect online photo privacy, we also

(2) interrogated whether privacy-preserving obfuscations such as blurring, might be useful for com-

bating photo self-censorship. We know that there are gender and age differences in post/comment

censorship, so we would like to know (3) if photo self-censorship had similar age or gender difference

patterns compared to prior work [60], and if other factors such as privacy preference affected photo

self-censorship.

First, we found that over half of the participants have self-censored photos due to privacy

concerns on SNSs, which indicates that photo self-censorship is indeed prevalent. Among the par-

ticipants who had censored photos, half of them would like to share that photo they had previously

self-censored if they could apply obfuscations on it, which suggests that photo obfuscations may

be useful to combat photo self-censorship. Next, we observed that people with higher privacy con-

sciousness were more likely to censor photos. Last, we also found that women were more willing

to share obfuscated photos about which they previously had privacy concerns. Additionally, people

with higher privacy consciousness about their personal information were also inclined to share a pre-

viously censored photo after obscuring it, which implies that obfuscations could potentially address

their concerns on photos containing sensitive information. Through this work, we gain a better un-

derstanding of photo self-censorship, and suggest that in addition to SNSs’ current recipient control
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approach, researchers can adopt obfuscations that may combat photo self-censorship.

6.2 Method

We conducted an online survey and elicited data from 230 participants to investigate 1)

the prevalence of photo self-censorship on SNSs, 2) whether photo obfuscations can be a potential

solution to reduce photo self-censorship, and 3) what factors may be associated with photo self-

censorship and the intent to share photos with obfuscations.

6.2.1 Participants

We recruited 285 participants located in the United States through the Amazon Mechanical

Turk crowd-sourcing service. Participants were paid $2.00 to complete the study based on a sug-

gested payment on MTurk [239]. We set recruiting restrictions to ensure high data quality: MTurk

workers must have a good reputation (above 95% approval rate) with more than 1000 HITs ap-

proved [223]. We inserted three attention check questions in the Qualtrics survey. After collection,

we excluded the data from participants who failed more than one attention check question and the

final sample size was 230.

One hundred and twenty-two reported being male, 107 being female, and one person pre-

ferred not to reveal their gender. Participants’ ages ranged from 18 to 55+ years, with 13% age

18-24, 47% age 25-34, 23% age 35-44, 10% age 45-54, and 7% age 55+. Seventy-two percent were

White. This sample is demographically representative of the US population [281]. Ninety-nine per-

cent of participants reported using the Internet several times or most most of the day; and 73% used

SNSs several times or most of the day.

We also collected three aspects of participants’ privacy preferences or consciousness: the

information receiver, the information content, and the privacy preference in social contexts. Similar

to the findings from the Pew Research Center [186], 97% of the participants considered “being

in control of who can get information about you” as important, from which 86% consider it very

important. Eight-one percent of the participants rated “controlling what information is collected

about you” as important or very important. Ninety percent considered not revealing highly personal

information on SNSs as important.
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6.2.2 Obfuscation Methods

We selected six obfuscations from prior work on online photo or video surveillance privacy

(Table 6.1).

Example Name & Definition Related
Work

Example Name & Definition Related
Work

Blurring. Reduces
image detail by gener-
ating a weighted aver-
age of each pixel and
its surrounding pixels.

[24, 180,
301, 149,
158, 178]

Morphing. Merging
two people’s bodies to
create an average repre-
sentation.

[76, 147,
127]

Silhouette. Re-
places content with
a monochrome visual
object that mirrors the
extracted shape of the
original content.

[49, 180,
149, 216,
305]

Avatar. Replaces con-
tent with a graphical
representation that pre-
serves some elements of
the underlying content.
For example, a human
avatar can preserve fa-
cial expression and ges-
ture, but hide biomet-
rically unique elements
(e.g., face) of identity.

[180,
216, 235,
262]

Masking. Re-
places content with a
monochrome solid box
that covers the content
to be protected and
surrounding image
content.

[180,
148, 149,
179, 305]

Inpainting. Com-
pletely removes content
fills in the missing part
of the image in a visually
consistent manner.

[180,
149, 216,
272, 305]

Table 6.1: Six obfuscation methods. Study participants were shown images, but not provided name,
definition, or related work citations.

6.2.3 Variables

The demographic variables in our models include: 1) gender, 2) age, 3) Internet usage

frequency (from ‘most of the day’ to ‘never’), 4) SNS usage frequency (from ‘most of the day’

to ‘never’), and 5) privacy preference/consciousness about personal information (four-point Likert

scale). The two binary outcome variables are 1) if the user has declined to upload a photo to an

online social network for privacy reasons, and 2) if the user is willing to upload the photo which

he/she has previously refused to share if they are able to obscure the sensitive portion.
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Figure 6.1: The percentage of people who have censored photos and who have not.

6.2.4 Procedure

First, after providing consent, participants answered six demographic questions and two

social network usage frequency questions. Next, they were shown six example photos with six types

of obfuscations in a randomized order. The example photos were composed of one target person to be

obscured, three background people, and a campus scene. We included each obfuscation’s introduction

on each example photo. To study the prevalence of photo self-censorship, we then asked participants

“Have you ever declined to upload a photo to an online social network for privacy reasons?” There

were three options: “Yes,” “No,” and “I don’t know.” Next, to uncover if obfuscations may be

useful for reducing photo self-censorship, we asked participants who answered “Yes” in the last

question: “In the last question, you said you had declined to upload a photo to an online social

network for privacy reasons. If you had access to one of the privacy filters here, would you be willing

to upload this photo using one of the filters?” Again, they responded “Yes,” “No,” and “I don’t

know.” Afterwards, they answered three questions to measure their privacy preference or privacy

consciousness. After completing all tasks, a random code was generated. Participants copied this

code to MTurk to receive remuneration.

6.3 Results

6.3.1 Prevalence of Photo Self-Censorship

Just over half of participants (54%) reported they had self-censored photos on SNSs. Fourty-

three percent reported they had never declined to upload a photo due to privacy concerns, and 3%
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Figure 6.2: The percentage of people who are willing to share photos which they previously had
privacy concern using obfuscations and who are still withholding even with obfuscations.

Coefficient (SE) Odds Ratio OR 95% CI

Intercept -4.16 (1.81)
Gender -0.25 (0.28) 0.78 [0.45, 1.35]
Age 0.22 (0.14) 1.24 [0.96, 1.64]
Internet usage 0.35 (0.30) 1.43 [0.80, 2.58]
SNS usage 0.03 (0.16) 1.04 [0.76, 1.41]
Privacy preference 0.68 (0.31)* 1.97 [1.09, 3.70]

Table 6.2: Coefficient, standard error, and odds ratio of photo censorship model (if participants have
declined to share a photo due to privacy concern)

answered “I don’t know” (Figure. 6.1).

We constructed a logistic regression model to investigate whether gender, age, Internet usage

frequency, SNS usage frequency, and participants’ privacy preferences influence photo censorship.

As shown in the first model (Table 6.2), only privacy preference has an effect on photo

self-censorship. This indicates that people who have higher privacy consciousness are more likely to

censor their photos (b = 0.68, p = .03). Controlling for other variables, each one point increasing

in privacy consciousness leads to a 97% increase in the odds of photo self-censorship (Odds Ratio

(OR) = 1.97).

6.3.2 Could Obfuscation Encourage Sharing?

We asked the 124 participants who reported they had self-censored photos whether they

would share the photo they self-censored if they had obfuscation options available. Half (51%) of

them reported they would be willing to share the self-censored photo on a SNS if they were able

to apply an obfuscation to the sensitive content. However, 26% maintained that they would still
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Coefficient (SE) Odds Ratio OR 95% CI

Intercept -3.62 (3.08)
Gender 1.15 (0.49)* 3.16 [1.27, 8.70]
Age -0.20 (0.27) 0.82 [0.48, 1.40]
Internet usage -0.15 (0.47) 0.86 [0.34, 2.17]
SNS usage -0.31 (0.30) 0.73 [0.41, 1.34]
Privacy preference 1.17 (0.54)* 3.23 [1.19, 10.47]

Table 6.3: Coefficient, standard error, and odds ratio of the model of willingness to share the photo
again with obfuscations applied

refuse to share the self-censored photo even if obfuscation options were available. Nearly one fifth of

participants (23%) were not sure if they would share the self-censored photo if obfuscation options

were available (Figure. 6.2).

We constructed another logistic regression model to investigate whether gender, age, Internet

usage frequency, SNS usage frequency, and privacy preferences have effects on users’ willingness to

share a self-censored photo with obfuscations applied.

This model (Table 6.3) suggests that people with higher privacy consciousness about their

personal information were more inclined to report they would share a previously censored photo if

they could obscure sensitive content (b = 1.17, p = .03). Controlling for other variables, for each one

point increase in privacy consciousness there is a 223% increase in the odds of photo self-censorship

(OR = 3.23). We also find that gender influences willingness to share a previously self-censored

photo when an obfuscation is applied (b = 1.15, p = .02). Specifically, women are more willing than

men to share a photo they had previously self-censored if they were able to obscure the photo to

improve privacy. Controlling for other variables, the odds of willingness for women are 3.16 times

higher than men (OR = 3.16).

6.4 Discussion

6.4.1 Self-Censorship of Photos Is Prevalent Among SNS Users

Photo sharing is an important activity on SNSs. It helps users maintain a real-world re-

lationship with their family and friends [211]. Beyond their existing off-line social networks, users

also expand their social graph through sharing photos, for example, receiving attention from a wider

audience, even from the public [211]. Users also manage their impression via photo sharing, such as
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selecting photos that emphasize socially desirable characteristics to show an ideal version of them-

selves [74]. However, privacy issues often hamper photo sharing [6]. The results of our study show

that over half of the participants did censor their photos, which is very prevalent. Some common

sensitive content that they have concerns about include the identity of people, nudity, appearance,

facial expression, inappropriate behavior, and personal identity information [25, 175]. Beyond the

sensitive content, there are three main reasons behind photo self-censorship: first, maintaining a

good impression; second, personal, family, and property safety; third, sharing certain content may

get photo posters into trouble, for example, sharing a confidential work photo [175].

6.4.2 Photo Obfuscations May Be Useful For Encouraging Photo Sharing

From previous chapters, we know that photo obfuscations can be an effective and satisfying

tool to protect users’ privacy. Two promising obfuscations–avatar and inpainting–can achieve a very

low identification rate and a good user experience. In this study, half of the participants who had

declined to upload a photo with sensitive content changed their mind and were willing to share the

photo if they could apply one of the obfuscations to their photo. This result suggests that photo

obfuscations may have the potential to encourage photo sharing. However, we can see that 23% of

participants had no idea if they would like to share the obscured photo. A possible reason may be

that in the experiment, the obfuscation photo examples they saw were not their own photos, hence

they might be skeptical about the actual application on their own photos. Overall, the result shows

users’ positive attitudes towards photo obfuscations in photo sharing on SNSs.

6.4.3 People With Higher Level of Privacy Consciousness And Women

Are More Willing To Share Privacy-Enhanced Obfuscated Photos

Which They Previously Had Privacy Concerns

First, for photo self-censorship, as we expected, people with higher levels of privacy con-

sciousness of their personal content are more likely to censor photos. Regarding the gender, previous

studies do not agree as to the impact of gender difference in self-disclosure that may lead to distinct

photo self-censorship patterns. One work suggests that men are likely to disclose more about them-

selves and possibly have fewer privacy concerns [189], while other work indicates that men are less

comfortable to disclose themselves, and men censor more posts than women [60, 246]. However, in
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the context of photo sharing, gender does not have an effect on photo self-censorship. Additionally,

we know that older users censor fewer posts than younger users [60], so we expected to find similar

patterns on photo self-censorship. However, the results indicate that age does not have an effect.

Second, when we asked if they were willing to share the photo with the access to one of

the obfuscations, people who have higher privacy-consciousness are more likely to be willing to

share photos which they previously refused to share due to privacy concerns, if they could apply

obfuscations. This result again suggests that from the users’ perspective, photo obfuscations may

sufficiently reduce their privacy concerns on sensitive portions of their photos, and thereby encour-

aging or enabling sharing. Objectively, from a technical perspective, some promising obfuscations

(e.g., inpainting, avatar) are indeed effective in hiding the sensitive content, so it seems reasonable

that participants would be willing to share more photos if they had privacy-enhancing obfuscations

available for use.

Besides the privacy consciousness, there was a difference between men and women. Women

are more willing to share obfuscated photos about which they previously had privacy concerns.

This finding may be in line with the statement that men are still less comfortable to disclose their

personal information [246], even if they are given the choice to obscure the sensitive content in a

photo. Women use SNSs more frequently [139] and they are more likely to post photos than men on

SNSs [184, 204]. On the other hand, they are also more concerned about their self-presentation [67,

159] and safety [171], and usually actively seek strategies to protect privacy [184]. Hence, women

may have more demand for effective privacy protection mechanisms, such as obfuscation, that allow

them to share more photos while at the same time preserving privacy. Other possible reasons may

be that men consider that altering their photos has a negative effect on their self-representation

(e.g., not a true self). While compared to men, women reported editing and beautifying photos

more frequently before posting [97], such as using photographic filters or Photoshop, so there is less

resistance when adopting obfuscations. These potential explanations offer a rich space for additional

exploration about privacy, photo sharing, and the potential of obfuscations to differentially benefit

different user groups.
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6.5 Limitations and Future Work

First, our study is based on a participants’ self-report, which is very prevalent in most areas

of the social sciences [194]. However, self-report has weaknesses, for example, people may respond

in a way that presents them in a positive light [221], or respond without carefully considering the

question [222]. This concern can be addressed by directly observing users’ self-censorship behavior

on SNSs. Next, though we uncovered half of the participants were willing to upload a previously self-

censored photo if they could use obfuscation, the obfuscation example photos they saw were not their

own sensitive photos. Our results can be strengthened if we ask them to upload their own photos

about which they have privacy concerns, then apply different obfuscations to their photos. Moreover,

the best solution would be to create an obfuscation mechanism on Facebook combining with their

existing recipient control approach and let participants actually upload photos as they usually do, in

which we can confidently conclude if photos obfuscations reduce photo self-censorship and encourage

sharing. This was implemented in my next study. Moreover, though the 230 participants in our

study are representative in which most of the participants were frequent SNS users, compared to

the previous Facebook self-censorship study which has five million Facebook users [60], we believe

increasing the sample size may further strengthen our results. Lastly, because we used standardized

demographic questions from Pew Research Center [227], we only offered participants gender response

options that do not reflect the spectrum of gender identities. Because of this limitation we were

only able to analyze gender difference between men and women. In future studies we will include

an option “Other: specify [text box]” as suggested in [128].

6.6 Chapter Conclusion

Photo self-censorship is common. In our study of of 230 participants from the United

States, over half of the participants have self-censored photos due to privacy concerns. Further, we

found that privacy-conscious people were more likely to self-censor photos. We also uncovered that

photo obfuscations might be useful for combating photo self-censorship. Among the participants who

reported they had self-censored photos, half of them were willing to share the previously self-censored

photo if they would be able to obfuscate portions of the photo to enhance privacy. Additionally, we

learned that people with higher levels of privacy consciousness and women were more willing to share

photos about which they previously had privacy concerns if they were able to apply obfuscations on
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them. This work indicates that obfuscations are a promising photo privacy protection mechanism.

However, as I stated in the Limitation section, self-report has its own limitations. Hence, in the

next chapter, I describe a study in which participants were allowed to see the effect of obfuscations

on their own photos which they had privacy concerns with.
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Chapter 7

Study 5: An Experiment to

Determine Whether Obfuscation

Reduces Privacy Concerns and

Increases Willingness to Share

Note: We plan to submit this chapter to CHI2021.

7.1 Introduction

In the previous chapters, I described the phases of identifying sensitive content in photos,

understanding people’s sharing preferences, investigating effective and usable obfuscation methods,

understanding sharing loss due to self-censorship, and understanding obfuscation’s potential to pre-

vent sharing loss. The next step is to, based on our prior studies, design and test an interface

that enables privacy-enhanced photo sharing. We propose a privacy-enhanced photo sharing in-

terface which helps users identify potentially sensitive content and provides them with easy to use

obfuscation options.

Specifically, in this chapter, I present a study in which we compare three possible interfaces
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for a photo-sharing system: control, warning, and obfuscation. The control condition is a replica of

Facebook’s current photo-sharing interface. The warning condition identifies sensitive content and

provides a visual privacy warning about it to users. The warning condition is similar to work by

Want et al. [290]. The obfuscation condition identifies sensitive content in photos and offers users

the opportunity to choose an obfuscation to obscure the sensitive content in the photo. This is a

novel interface option we have invented on the basis of the work described in this dissertation.

We evaluated the three conditions using the following set of metrics: perceived privacy

risks, willingness to share, ease of use, perceived system effectiveness, and system satisfaction. We

found that the obfuscation condition performs the best among all three versions in terms of reducing

perceived privacy risks and increasing willingness to share. People also perceive it to be effective and

satisfying. On the other hand, perhaps because the warning version does not provide any actionable

solutions to protect privacy, it increases the perceived privacy risks, and in turn, decreases willingness

to share.

7.2 Photo Privacy Protection Interface Design

The obfuscation interface includes two core design features—detecting and highlighting any

potentially sensitive content in a photo and obfuscating the sensitive content. The first step is for

a user to identify a photo they would like to share. The photo could be stored on their phone for

example. Next, the user receives a prompt via the interface that potentially sensitive content has

been detected in the photo (e.g., the sensitive content in the example Figure 7.1 is the face of a

user’s brother). The identification of sensitive content can happen on the users’ phone (for maximum

privacy) or on an SNS’s server upon upload with cryptographic guarantees in place that processing

will not reveal the content to the SNS [71, 275], for example.

Next, the user can choose which obfuscation method they would apply to the identified

sensitive content (Figure 7.2). In this study, we provided users five obfuscation options—blurring,

masking, avatar, inpainting, and no filter. In previous studies, we identified that avatar, inpainting,

and masking are effective against human recognition. Though blurring is not as effective as the

other three obfuscation methods, it is used extensively and people perceive it likable [180]. Finally,

the user can make a decision about sharing the obfuscated photo.

The primary option for users to manage the privacy of photos on SNS has been untag-
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Figure 7.1: Photo protection interface– content detection and obfuscation options.

ging [25]. Untagging is when a user removes the link between a photo and their identity. Researchers

have also explored soft paternalism or nudging. For example, a privacy wizard nudges users to adjust

their privacy settings [88]. It asks users to assign privacy labels to selected friends, then the trained

classifier automatically categorizes the remaining friends. Wang et al. proposed three nudging sys-

tems that encourage users to make adjustments to their Facebook posts in real-time [290]. However,

our work, to the best of our knowledge, is the first to propose using obfuscation to enhance the

privacy of shared photos using obfuscation.

7.3 Method

This is a two-step experiment. In the first step, we collected photos that people wanted to

share via an SNS but have not due to privacy concerns. During this step, we also asked participants

to identify the sensitive portion in their photos. These photos were subsequently used as stimuli in

the second step to providing participants with a personal, realistic experience that we expect will

have more ecological validity than if we had used generic photos. The photo that each participant

was asked to make decisions about and provide input about their perceptions was were their own

photo. We did not have to ask participants to assume it was their own photo as is a common

method in many photo privacy studies. Between the two steps, I manually processed and obfuscated
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Figure 7.2: Photo protection system interface—obfuscation options.

110



participants’ photos so that these would be available as stimuli for the second step.

In the second step, participants were randomly assigned to one of three conditions: the

control interface, the warning interface, or the obfuscation interface. After using the interface they

were randomly assigned to they evaluated the interface. We used these data to determine whether

there the obfuscation interface can 1) reduce users’ perceived privacy risks, 2) prevent sharing loss,

and 3) be usable. In the following subsections, I will describe the two steps in detail.

All studies were IRB approved.

7.3.1 Step One: Photo Collection

In the first step, we collected photos from participants via Qualtrics. We first asked par-

ticipants demographic questions, Internet usage frequency, SNS usage frequency, Facebook usage

frequency, photo uploading frequency, and whether they have ever declined to upload a photo to

an SNS such as Facebook due to their privacy concerns. They also needed to provide their email

addresses to be contacted for the second step of the study.

For participants who passed the screening questions (see inclusion criteria in the “Partici-

pants” subsection), they then provided one to five photos that they would like to upload to an online

social network such as Facebook, but have NOT because of privacy concerns. We used these photos

to create photo stimuli for the second step. If they were not willing to share a personal photo with

us, they could upload an online photo that had similar content. For each photo, we asked two follow

up questions:

• What content prevents you from posting this photo?

• What about this photo makes you want to upload if you did NOT have privacy concerns?

Through the first follow up question, we were able to identify the sensitive content they

had concerns about. In the second step, we applied privacy-enhancing obfuscations to participants’

self-identified sensitive content. By looking at the answers to the second question, we were able to

assess the reasons participants had for wanting to share the photo if only the privacy concerns about

the photo could be reduced.
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7.3.1.1 Participants

We recruited participants in two rounds. In total, we recruited 439 participants (126 in the

first round and 313 in the second round) located in the United States through the Qualtrics sourcing

platform. We included screening questions to identify suitable participants. Please see the inclusion

criteria in the parenthesis after each question.

• Please browse your photo album for at least three minutes. How many photos are there in

your album that you would like to upload to an online social network such as Facebook, but

have NOT because of privacy concerns? (Must have at least one such photo)

• Are you willing to provide us these photos so that we can use them as your study material in

the second step–Facebook study? (Must be willing to provide us these photos)

• Are you available to participate in the Facebook study a week later? (Must be willing to

participate in the second step study)

• About how often do you use or visit Facebook? (Must have a Facebook account and use it at

least a few times a year)

• About how often do you upload photos to an online social network such as Facebook? (Must

have the experience of uploading photos to Facebook)

We paid Qualtrics $17 per qualified participant. To ensure high data quality, we included

three attention check questions in the Qualtrics survey. After excluding the participants who did

not pass the screening and attention check questions, the final sample size was 310 (86 in the first

round and 224 in the second round). The demographics can be found in Table 7.1.

7.3.2 Step Two: Experiment

For the second step in this study, we conducted a mixed between and within-subjects ex-

periment with a pre-test post-test design. The between-subjects factor is the three experimental

conditions (control, privacy warning, and obfuscation) and the within-subjects factors are group-

ing, rather than independent variables: two personal characteristic variables – interpersonal privacy

concerns and trust in SNSs. Both were measured on 7-point Likert scales and then converted to

categorical variables with two levels – high and low for analysis.
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No. %

Male 108 35%
Gender

Female 202 65%
18-24 44 14%
25-34 124 40%
35-44 93 30%
45-54 35 11%

Age

55+ 15 5%
White 217 70%
Hispanic or Latino 24 8%
Black or African American 45 15%
Native American or American Indian 1 0%
Asian/Pacific Islander 22 7%

Ethnicity

Other 2 0%
Most of the day 211 68%
Several times a day 98 32%
About once a day 2 0%
A few times a week 0 0%
A few times a month 0 0%
A few times a year 0 0%

Internet Usage Frequency

Never 0 0%
Most of the day 105 34%
Several times a day 168 54%
About once a day 28 9%
A few times a week 8 3%
A few times a month 2 0%
A few times a year 0 0%

SNS Usage Frequency

Never 0 0%
Many times a day 42 14%
Several times a day 29 9%
About once a day 31 10%
A few times a week 102 33%
A few times a month 57 18%
A few times a year 50 16%

Photo Uploading Frequency

Never 0 0%

Table 7.1: Participants’ demographics in step one.

113



Figure 7.3: A screenshot of the control condition. The control condition mimics Facebook current
photo sharing interface.

The five dependent variables are perceived privacy risks, willingness to share, ease of use,

perceived system effectiveness, and system satisfaction. More details about the scales can be found

in the “Measurements” subsection below.

Participants were randomly assigned to one of three groups. In the control group, partici-

pants used a prototype which mimics Facebook’s current photo uploading feature (Figure 7.3 and

Figure 7.4). In the privacy warning group, participants used a prototype that identified sensitive

content and provided a privacy warning (Figure 7.5). In the obfuscation group, participants used

a prototype that identifies sensitive content and provides an opportunity to obfuscate that content

(Figure 7.1 and Figure 7.2). Please note that in all three versions, we kept the recipient control

feature that is available on Facebook. Participants could choose “public,” “friends,” or “only me”

when they decided to share a photo.

We used the wizard of oz approach to simulate how the interface for each condition would

perform. Simulating the functionality of a prototype allows researchers to explore and evaluating

designs to test aspects of them and improve them before investing the considerable time, effort,

and money in implementing the system [75]. We simulated the photo-sharing interface for all three

conditions. We pre-selected one photo from photos that participants had shared with us during the

first step. Then, during the second step, when participants clicked the “Photo/Video” button, the

folder contained that photo. We also simulated the obfuscation step by manually obfuscating all
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Figure 7.4: A screenshot of the control condition. The control condition mimics Facebook current
photo sharing interface.

Figure 7.5: Privacy warning condition.

115



Figure 7.6: Results of the power analysis.

photos for participants in the obfuscation condition and stored them in a SQL database. Then when

participants in the study chose an obfuscation option, it was available for them to view during the

study period. To the participant, it seemed like the photo was being obfuscated in real-time.

7.3.3 Participants in Step 2: Experiment

We conducted a power analysis using the data from a pilot study with 15 participants. The

power analysis indicated that to find a difference for variables we are interested in such as willingness

to share with sufficient power, a sample size of 153 would be required (Figure 7.6).

We contacted participants who were in the first step via email. From the 310 qualified

participants, 158 returned for the second step of the study resulting in a 51% return rate.

Participants were randomly assigned into three condition groups—54 in the control group,

51 in the privacy warning group, and 53 in the obfuscation group. Participants were given a $10.00

Amazon eGiftcard upon completion of the 30-minute study. The demographic data can be found in

Table 7.2.
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No. %

Male 55 35%
Gender

Female 103 65%
18-24 19 12%
25-34 63 40%
35-44 49 31%
45-54 18 11%

Age

55+ 9 6%
White 120 76%
Hispanic or Latino 5 3%
Black or African American 19 12%
Native American or American Indian 0 0%
Asian/Pacific Islander 13 9%

Ethnicity

Other 1 0%
Most of the day 104 66%
Several times a day 52 33%
About once a day 2 1%
A few times a week 0 0%
A few times a month 0 0%
A few times a year 0 0%

Internet Usage Frequency

Never 0 0%
Most of the day 50 32%
Several times a day 84 53%
About once a day 16 10%
A few times a week 7 4%
A few times a month 1 0%
A few times a year 0 0%

SNS Usage Frequency

Never 0 0%
Many times a day 17 11%
Several times a day 17 11%
About once a day 13 8%
A few times a week 56 35%
A few times a month 29 18%
A few times a year 26 16%

Photo Uploading Frequency

Never 0 0%

Table 7.2: Participants’ demographics in step two.
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7.3.4 Measurements

A Qualtrics survey was constructed which included two portions: 1) a pretest consisting of

four parts (trust in Facebook, interpersonal privacy concerns, perceived privacy risks of the photo,

and willingness to share), and 2) a posttest consisting of six parts (perceived sensitivity of the photo,

willingness to share, ease of use, perceived system effectiveness, system satisfaction, and qualitative

feedback). All the responses used 7-point Likert scale from 1 ‘Strongly disagree’ to 7 ‘Strongly

agree.’ Please note that trust in Facebook and interpersonal privacy concerns are between-subjects

covariates that were only measured at pre-test. All the measurements can be found in Table 7.3.

At the end of the post-test survey, participants provided their qualitative feedback by an-

swering the following two questions:

• What did you like the most about using this system? Please tell us the reasons.

• What did you like the least about using this system? Please tell us the reasons.

7.3.5 Procedure

In the emails I sent to participants, besides introducing the goal of this study, I included

a photo that would be used as photo stimuli, so that they could answer the two pre-test questions

about perceived privacy risks and willingness to share this photo. I also provided participants with

login credentials so that they could access the prototype designed for them after finishing the pre-test

questions. Participants then went to the Qualtrics survey link and completed the pre-test questions.

Afterward, they were guided to the prototype they had been randomly assigned to, performed the

photo uploading task. Participants in the obfuscation condition could play around with the four

obfuscation options provided – blurring, masking, avatar, and inpainting. They could see the effects

of applying each obfuscation on their own photo. They got a validation code when they successfully

finished the task, and went back to the survey. Participants pasted random codes generated by

the prototype in the survey to show that they had finished the task. Next, they completed the

post-test questions and received another validation code at the end of the survey. Upon completion,

participants contacted me for incentives. I checked their survey data and prototype back-end data to

ensure data quality and distributed Amazon eGiftcards. Data from nine participants were excluded

either because they did not interact with the interface or failed more than one attention check

question.
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Scale Item

Pre-test

Trust in SNS
[78]

- I trust that Facebook will not use my personal information for any
other purpose.
- I feel that the privacy of my personal information is protected by Facebook.
- I believe most of the profiles I view on Facebook are exaggerated
to make the person look more appealing.
- I believe most of the profiles I view on Facebook are exaggerated
to make the person look more appealing.

Interpersonal
privacy
concerns
[144]

- It usually bothers me when people ask me something personal.
- I will tell people anything they want to know about me.
- I have nothing to hide from other people.
- I am concerned that people know too many personal things about me.
- To me, it is the most important thing to keep things private from others.
- When people ask me something personal, I sometimes think twice
before telling them.
- I think it is risky to tell people personal things about myself.
- I feel safe telling people personal things about me.
- I feel comfortable sharing my private thoughts and feelings with others.

Perceived
privacy risks
[90]

- How risky would you say it would be to post this photo on Facebook?
(Not risky at all - very risky)
- Posting this photo on Facebook would be risky.
- Posting this photo on Facebook is dangerous.
- Sharing this photo on my Facebook would add great uncertainty to
my privacy.
- Sharing this photo on my Facebook exposes me to an overall risk.

Willingness
to share [188]

- I am willing to share this photo on my Facebook.

Post-test

Perceived
privacy risks
[90]

- How risky would you say it would be to post this photo on Facebook?
(Not risky at all - very risky)
- Posting this photo on Facebook would be risky.
- Posting this photo on Facebook is dangerous.
- Sharing this photo on my Facebook would add great uncertainty to
my privacy.
- Sharing this photo on my Facebook exposes me to an overall risk.

Willingness
to share [188]

- I am willing to share this photo on my Facebook.

Ease of use
(usage effort
reversed) [142]

- The system is convenient.
- I do not have to invest a lot of effort in the system.
- It takes many mouse-clicks to use the system.

Perceived
system
effectiveness
[142]

- This system has no real benefit for me.
- This system is useful.
- I can protect my privacy better using this system.
- I can protect my privacy better using other approaches without the
help of this system.

System
satisfaction
[205]

- I am very satisfied when using this system.
- I am very pleased when using this system.
- Using this system made me contented.
- I feel delighted when using this system.
- I will strongly recommend it to my friends.
- I will most likely use this system again.

Table 7.3: Pre and post-test measurements.
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7.4 Results

For the analysis, we used path analysis which is a special case of Structural Equal Mod-

eling (SEM) and also can be viewed as an extension of a regression model [267]. A path model

allows us to test the structural relations between all variables in a single model. For example, via

regression models we can see the direct effects of experimental conditions on perceived privacy risks

and willingness to share, while a path model also allows us to examine the relationship between the

experimental conditions, perceived privacy risks, and willingness to share. In this way, we are able

to see how variables are related to one another.

We first conducted a confirmatory factor analysis (CFA) which allows us to test whether

measures of a construct are consistent with our understanding of the nature of that construct. From

the results of CFA, we found that system effectiveness is highly correlated with system satisfaction

(r = 0.80), which means they are essentially measuring the same thing, hence we decided to remove

system effectiveness from analysis. After removing effectiveness, the model fit was good: χ2/df =

2.207; RMSEA = 0.050, 90% CI : [0.024, 0.074], CFI = 0.996, TLI = 0.995.

Please note that in the obfuscation condition, when asked to select an obfuscation, 13

participants chose “no filter,” hence I removed their pre- and post-test data of perceived privacy

risks and willingness to share from all the analysis in this section.

7.4.1 Effects of Experimental Conditions on Dependent Variables

Since we are interested in the differences between experimental conditions, before looking

at the path model, I will show the effects of experimental conditions on the four dependent variables

and the interaction effects between conditions and the two characteristic variables – interpersonal

privacy concerns and trust in SNS (if there is one).

To test the interaction effects, I used median split to convert interpersonal privacy concerns

and trust in SNSs into categorical variables (7-point Likert scale to binary high vs. low). Median

splits are useful when examining interaction effects because it is easier to create dummy variables

for the interactions between two categorical variables. Perceived privacy risks, usage effort, and

system satisfaction are latent variables that have more than one item. To be able to analyze the

data, we need composition scores for each scale. Instead of calculating the means of the items, we

chose to calculate their factor scores which are more accurate [70]. In Figure 7.7, all the numbers
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Figure 7.7: Marginal effects of between-subjects independent variable interface condition on per-
ceived privacy risk, usage effort, and system satisfaction. All three metrics were measured in post-
test.

Figure 7.8: Marginal effects of privacy enhancing conditions on willingness to share (measured in
post-test)
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are factor scores and we are focusing on the comparisons among the conditions but not the numbers

themselves. The scale of willingness to share only has one item, so I used means to plot the bar

chart (Figure 7.8).

I created two linear regression models for each dependent variable. In the first model, I

tested the main effects of conditions and interpersonal privacy concerns and the interaction effects

between them. In the second model, I tested the main effects of conditions and the trust in SNS

and the interaction effects.

For perceived privacy risks, the effect of experimental conditions is neither dependent on

interpersonal privacy concerns nor trust in SNS. It shows that participants in the warning condition

felt more privacy risks regarding their photos than participants in the control condition (p = .03),

while there is no difference between the obfuscation condition and the control condition (p = .89)

(Figure 7.7).

Similarly, for willingness to share, there is no interaction effect between the conditions and

the two characteristic variables. Participants in the privacy warning condition were less willing to

share their photos compared to those in the control condition (p = .02), but there is no difference

between the obfuscation condition and the control condition (p = .97) (Figure 7.8).

Regarding ease of use, no interaction effect was found between the conditions and interper-

sonal privacy concerns. On the other hand, we found that the effect of conditions on ease of use is

dependent on the trust in SNS (Figure 7.9). Specifically, people who have high trust in SNS feel

that it is easier to use the warning version compared to the control version (p = .04); and people

who have low trust in SNS felt more effort was required in the warning version than the control

condition (p = .04); while for the obfuscation version, there is no difference in perceived ease of use

between people who have low and high trust in SNS (p = .25).

For system satisfaction, similar to ease of use, there is no interaction effect between the

conditions and interpersonal privacy concerns. However, we found that the effect of experimental

conditions on satisfaction is dependent on the trust in SNS (Figure 7.10). People who have high

trust in SNS perceive the warning version to be more satisfying compared to the control version

(both p = .04). Additionally, people who have low trust in SNS perceive the warning version to be

less satisfying than the control version (p = .03).
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Figure 7.9: Interaction effects between experimental conditions and trust in SNS on ease of use
(measured in post-test).

Figure 7.10: Interaction effects between experimental conditions and trust in SNS on system satis-
faction (measured in post-test).
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Figure 7.11: The path model shows that experimental conditions has effect on perceived privacy
risks, and the increased privacy risks decreases willingness to share.

7.4.2 Path Model Results

To investigate the relationships among all variables, we constructed a path model. We

started with a saturated model with all possible paths including the interaction effects between

experimental conditions and the two characteristics variables (pre and post), then trimmed the

insignificant paths. Figure 7.11 shows the final model. The model fit is acceptable: χ2(34) = 56.921,

p = .008; RMSEA = 0.069, 90% CI : [0.035, 0.100], CFI = 0.952, TLI = 0.929. Please note that

I created two dummy variables for privacy enhancing conditions – privacy warning and obfuscation

(vs. control) – to look at the differences between the two experimental conditions and the control

condition, one for interpersonal privacy concerns (high vs. low), one for trust in SNS (high vs. low),

and four for interaction effects between the conditions and the two personal characteristics variables.

I will first start by looking at perceived privacy risks and willingness to share. Figure 7.11

shows that the overall experimental condition has a significant effect on perceived privacy risks. Af-

ter using the system, participants in the privacy warning condition felt more risks about their photo

compared to those in the control condition, while there is no difference between the obfuscation con-

dition and the control condition. Additionally, as we expected, pre perceived privacy risks increases
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Figure 7.12: Pre and post tests results of perceived privacy risks.

post perceived privacy risks. Perceived privacy risks is in turn negatively related to willingness to

share and system satisfaction. Between the two pre-test variables, we also found a relationship that

pre perceived privacy risks decrease pre willingness to share. Similarly, pre willingness to share has

a positive effect on post willingness to share.

In terms of the characteristics variable – interpersonal privacy concern, it has indirect effects

on post perceived privacy risks and pre willingness to share, but I also find its direct positive effect

on system satisfaction. Regarding the other characteristics variable – trust in SNS, for people have

low trust in SNSs, they felt it is harder to use the warning condition compared to the control (p =

.04), while for people have high trust in SNSs, they considered it easier to use the warning (p =

.04) and obfuscation (p = .02) versions compared to the control version (see Figure 7.9). Ease of

use in turn increases the system satisfaction. There is also a positive direct effect of trust in SNS on

system satisfaction.

7.4.3 Comparison Between Pre and Post Tests

Participants rated their perceived privacy risks and willingness to share before and after

using the system. First, by looking at the pre-test results in each experimental condition, we can

see that the random assignment we conducted spread participants evenly across conditions. We

expected to see no difference in pre-test scores across the three groups. Regarding perceived privacy

risks, we did not find differences between pre-test scores of experimental conditions (warning vs.

control: p = .70, obfuscation vs. control: p = .27). Similarly, there is no difference between pre-test
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Figure 7.13: Pre and post tests results of willingness to share.

scores for willingness to share (warning vs. control: p = .82, obfuscation vs. control: p = .51). The

results confirm that participant assignments were successfully randomized.

Second, we conducted factorial ANOVA to test the differences between pre- and post-tests

for the three conditions. Figure 7.12 shows the line chart of pre- and post-test scores of perceived

privacy risks on which the y-axis is the rating of willingness to share on a 7-point Likert scale (since

this scale only has one item instead of several, it is not a factor score as perceived privacy risks chart

shows). There is an interaction effect between experimental conditions and pre- and post-test. For

the control condition, there is no difference between the pre and post-tests in terms of the perceived

privacy risks (p = .50), For the privacy warning condition, participants perceived more privacy risks

after using the system than before using the system (p = .01), while in the obfuscation condition,

the rating for perceived privacy risks in the post-test is lower than in the pre-test (p= .02). We can

see a larger difference between pre- and post-test scores in the obfuscation condition (pre mean =

0.20 vs. post mean = -0.31) than in the control condition (pre mean = -0.16 vs. post mean = -0.25),

and this difference is significant (p = .02).

Regarding willingness to share, again there is an interaction effect between experimental

conditions and pre- and post-test. We noticed that participants reported they would be more willing

to share the photo after using the control system (p = .0004) (Figure 7.13). It is probably because

when participants thought of a photo that they really want to share but have not due to privacy

concerns, they did not consider the privacy-enhancing tool – recipient selection – that Facebook

currently provides. After participants used the control system and were reminded they could select
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Recipient
Whether post
to Facebook

Only me Friends Public Yes No

Control 6% 92% 2% 88% 12%
Warning 17% 83% 0% 81% 19%
Obfuscation 10% 90% 0% 88% 12%

Table 7.4: Percentages of each recipient group and whether or not participants posted photos.

recipients, they perceived the privacy risks slightly lower than when they were considering sharing

this photo without considering recipient selection. Therefore, we find some evidence that recipient

selection does provide some sense of privacy protection. For example, some participants reported

they would not want to share their children’s photos because strangers might identify them, in

such cases they could select sharing with “friends” instead of “public.”. For the privacy warning

condition, there is no difference in the willingness to share (p = .26). For the obfuscation condition,

participants are more willing to share after using the obfuscation system than before using it (p

= .00). However, as we speculate for the control condition, recipient selection might have also

contributed to the differences in the obfuscation condition. Additionally, unlike perceived privacy

risks, the difference between pre- and post-test scores in the obfuscation condition and the difference

in the control condition are similar (p = .16).

7.4.4 Behavioral Data

Besides the subjective measurements I discussed above, we also collected behavioral data via

the prototype. Specially, we recorded 1) which recipient group participants chose (Only me, Friends,

Public) and 2) whether the participant clicked on the “Post to Facebook” button or “Cancel posting”

button. To understand the effects of interface versions on these two behavioral measurements, I cre-

ated two (generalized) linear mixed-effects models in which I used the two behavioral measurements

as dependent variables and included experimental conditions as an independent variable.

Regarding the recipient variable, from Table 7.4, we can see that across all three conditions,

the majority of the participants chose sharing with friends, while in the warning condition, more

participants (17%) chose “only me” compared to the control (6%) and obfuscation conditions (10%).

The significance test also confirmed the above statement. I re-coded “Only me,” “Friends,” “Public”

to numeric values based on the level of sharing. The result indeed shows that when using the warning

version, participants were less likely to share with more people compared to the control version (p=
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% selected N

No filter 25% 13
Blurring 36% 19
Masking 6% 3
Avatar 26% 14
Inpainting 8% 4

Table 7.5: Percentages of obfuscation options selected.

.047), while there is no difference between the obfuscation and the control versions (p= .33).

In terms of whether participants chose to post to Facebook, Table 7.4 demonstrates that

fewer people (81%) in the warning condition chose to post photos to Facebook compared to the other

two conditions (both 88%), however from the test results, we did not find any differences between

conditions.

Additionally, to understand whether recipient selection has an effect on the outcome of

sharing, we constructed another generalized linear mixed-effects model where the dependent variable

is whether participants posted photos and the independent variables are recipient and experimental

conditions. There is no interaction effect found between recipient and conditions, and the effect of

recipient is not significant either (p= .99).

All participants’ selection of obfuscation options was recorded as well. Table 7.5 shows the

percentages of obfuscation options selected. For people who chose an obfuscation, the majority of

chose blurring and avatar, which is in line with study two of this dissertation that showed that

people consider blurring and avatar likable.

7.4.5 Qualitative Data About What Made People Like Most and Least

about the Systems

We collected participants’ qualitative feedback about what they like most and least about

the system. In this subsection, I discuss the identified trends for each interface version.

For the control version, since it mimics the Facebook without privacy features added, the

most common category of responses about what participants like most about the system were that

the system was easy to use and intuitive. Participants commented that “it is a light and fast

system, very easy to understand” “I like that it was easy and straightforward. I didn’t have any

problems, nothing froze up, and I felt like it was easy to use.” Additionally, there were a few

participants said they liked the photo sharing functionality and interface design. While when
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asked about what they like least, the majority of participants stated that they disliked nothing about

the system. However, a few participants noted that the system needs the ability to customize

privacy setting and the aesthetics of interface design should be improved.

In terms of the privacy warning version, participants reported that they liked the sensitive

content highlight feature. For example, one participant stated “It pointed out risks for me. It

made me aware of the little things I might not have noticed before.” The other two reasons are

ease of use and good interface design. Even older adults could use it without efforts “it was

simple enough to use and even this 73-year-old senior adult figured it out and was able to post the

picture.” However, when thinking about what they like least, participants mentioned that they need

solutions to protect content in addition to warning. For example, one participant reported

“there weren’t any privacy settings. I felt like I had no control over anything. I knew that whatever

I posted could and would be seen by others.” They also complained that it takes extra time to

upload a photo, “I can see how some users could get annoyed with the little extra time it takes to

use.” Two participants stated that they do not feel the need for privacy warning because “I

would never attempt to post anything with questionable or risky content.” Notably, one participant

raised concerns about the service provider who could store their sensitive photos when

analyzing them.

Regarding the obfuscation version, participants appreciated the effectiveness of obfus-

cation feature and available obfuscation options. For example, one participant said “it auto-

matically flags what might be sensitive content so it can apply the filter directly to the correct area

of the photo. The available filter options are very effective.” They also considered the system easy

and intuitive and efficient. Participants commented “I loved that it was done automatically. you

didn’t have to go out of your way to edit the picture and spend all kinds of extra time to change it

just to feel comfortable with uploading it.” However, they were skeptical about sensitive con-

tent detection. Participants stated “maybe it’s getting too intelligent detecting private things in

your photos” “I’m not completely sure I trust a computer program to tell me where the sensitive

information is.” They also felt that the system was inflexible and they expected “more avatars

available, and that I can move the avatar by myself, or that I can change the size of the avatar.” Ad-

ditionally, similar to the warning condition, participants complained that it is “took a lot longer

to post a picture then I normally would.”

129



7.5 Discussion

7.5.1 The Obfuscation Version Performs the Best among All Three Con-

ditions In Terms of Reducing Perceived Privacy Risks and Increas-

ing Willingness to Share

The path model in Figure 7.11 indicates that among the three versions, people using the

privacy warning version perceived more privacy risks than people using the control version, which in

turn, reduced their willingness to share. Moreover, from Figure 7.12, we can clearly see that before

using the privacy warning version, when the sensitive content in their photos was not highlighted,

their perceived privacy risks were lower than after using the system; while once they were reminded

of the sensitive content in their photos, their privacy risks increased. This result is in line with prior

work on the relationship between content sensitivity, privacy concerns, and willingness to disclose

information [17, 188, 229]. For example, Bansal et al. found that perceived health information

sensitivity is positively related to privacy concern about disclosing health information and higher

privacy concern is negatively related to the intention to disclose health information [17]. Our result

further emphasizes that in the field of online photo privacy, this relationship holds true.

Both the obfuscation and warning conditions identified sensitive content. The only dif-

ference between the obfuscation and warning conditions is that the obfuscation condition provided

obfuscation options. Therefore, the lower perceived privacy risks in the obfuscation condition can be

attributed to the application of the obfuscation. [295] shows similar results that privacy-enhancing

technology increases people’s perceived control and in turn decreases privacy concerns. The compar-

ison between the pre- and post-test for perceived privacy risks also demonstrates that obfuscation

leads to a larger decrease in perceived privacy risks compared to the control condition. In terms

of willingness to share, while another work find that people are more likely to share a photo when

they received a warning that asked them to think about the privacy of the person in a photo [12],

our results show that people are less willing to share photos after receiving the privacy warning in

general.
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7.5.2 Obfuscation Increases System Satisfaction

The results of marginal effects show that the obfuscation version outperforms the warning

version in terms of system satisfaction. People consider it satisfying and they feel their privacy is

protected when obfuscations are available as a privacy-preserving option. For example, from the

qualitative feedback about why they liked the obfuscation system, participants reported “it was

amazing,” and made, “me feel comfortable with the system and very secure” “the available filter

options are very effective” “its different and unique compared to the older system.” Participants

also qualitatively expressed a willingness to use it in the future “This is a very good quality system

that I could see myself using in the future to better my Facebook experience and to protect the

privacy of myself and family.”

In early studies on self-disclosure behavior in SNSs, researchers found that people disclose

a greater amount of personal information than they intend to [19, 209]. This phenomenon is termed

the privacy paradox and refers to the seeming inconsistency between privacy attitudes and privacy

behavior. Lee et al. stated that both expected benefits and expected risks have effects on peo-

ple’s intentions to share. Sometimes the numerous benefits, such as social validation, relationship

development, self-presentation [163], and gaining social capital [83], motivate people to share more

even at risks to themselves. But, people also used privacy-enhancing strategies to maximize benefit

and minimize risk rather than passively accepting it (e.g., adjusting privacy settings) [163]. Other

protection strategies people adopt on SNSs include deleting photos and tags [300], providing false

information [198], and limiting access to their profiles [32]. While many of these strategies are not

applicable to online photo sharing, obfuscation could be a mitigation to the tension between the

sharing risk and benefit.

It is interesting that though the privacy warning version does provide some sort of privacy

enhancement and increases people’s privacy awareness, due to the lack of protection methods, it

appeared to be the least satisfying among the three conditions we studied (see Figure 7.7). Partici-

pants seemed to want or expect additional steps “the system identified the risky content by enclosing

the identifying features of the subjects in a red box. Does the system then do something to that

content? Remove it? Blur it? Log it somewhere?” “there wasn’t any privacy settings. I felt like I

had no control over anything. I knew that whatever I posted could and would be seen by others”

“what I like most could also be what I like least, too simple and lacking options. Maybe more
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complexity would help users feel more safety with privacy.” This indicates that it is not enough for

systems to point out privacy issues. For systems to be perceived as effective, they must offer users

an easy-to-implement solution that reduces privacy concerns. Our finding is supported by prior

work on the impact of privacy nudges on user behavior on Facebook [290]. In this study, researchers

evaluated three types of privacy nudge including picture nudge which shows the potential audience

for the post, timer nudge which gives users 10 seconds to cancel posting after post an update, and

sentiment nudge which shows the potential attitude that viewers may have. Participants perceived

privacy nudges effective and most of them changed their privacy settings or edited posts after re-

ceiving nudges, which indicates that, indeed, people prefer to take privacy-protective actions after

identifying the privacy issues. Another work also pointed out that privacy warnings should not

only provide information about data practices but also include control options which could make

the information in privacy warning actionable and allow users to set their privacy preferences [243].

However, our warning version does not provide actionable further steps besides identifying sensitive

content and people could only choose to cancel their posting. On the other hand, beyond identifying

sensitive content, the obfuscation condition provides obfuscation options and shows the photo effect

after applying obfuscations.

On the other hand, participants might feel the warning version more effective and satis-

fying if it could provide detailed information about the sensitive content. Many prior studies in

HCI and Human Factors show that warnings that further explain the risks that the user faced and

with the options presented result in higher perceived effectiveness and compliance (e.g., [196, 280]).

For example, in our case, instead of showing “we’ve highlighted the content we think may be sen-

sitive,” it could be “the highlighted content is potentially sexually inappropriate and it is highly

not recommended to share on Facebook. We suggest you cancel posting.” Additionally, person-

alizing warning to the specific user such as including the user’s name in the notice also enhances

effectiveness [77, 243].

7.5.3 The Effect of Interpersonal Privacy Concerns and Trust in Facebook

Regarding the first characteristic variable – interpersonal privacy concerns, we found it has

an indirect positive effect on perceived privacy risks and a direct positive effect on system satisfaction

(Figure 7.11). In study four of this dissertation about self-censorship, we learn that people with

higher levels of privacy consciousness about their personal content are more likely to censor photos.
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It is similar to what we’ve found here – people who have more interpersonal privacy concerns (who

might be more privacy-conscious) perceive more privacy risks over their personal content. Hence,

they may be more likely to appreciate a privacy-enhancing system and consider it satisfying.

The second characteristic variable – trust in Facebook – has effects on system satisfaction

and ease of use. Trust of a commercial site influences personal information disclosed to that site

significantly [288]. Many parameters are in play with trust, for instance, users’ regard for a company

and perceived site privacy protection [197]. Though we do not find a relationship between trust in

Facebook and perceived privacy risks, we do see the general effect of trust on willingness to share.

Additionally, aligning with prior work on information system evaluation (e.g., [137, 143, 165]), we

do see trust in Facebook is positively related to system satisfaction. The other two effects on the

usability also indicate that people who trust in Facebook are more likely to look on the bright side

of it. For example, even if both privacy warning and obfuscation warning required extra clicks,

participants who had high trust still felt the obfuscation system “was easy and intuitive” and they

“didn’t have to go out of your way to edit the picture and spend all kinds of extra time to change it

just to feel comfortable with uploading it”; and the warning system “was very easy and user-friendly.”

7.6 Limitation

A possible limitation of our study design is that participants’ behavior might be biased by

the pre-test questionnaire since they knew from the questions that it would be a study about photo

privacy and they might pay special attention to privacy aspects of their photos.

7.7 Chapter Conclusion

To summarize, in this study we conducted a two-part experiment to determine whether

obfuscation reduces privacy concerns and increases willingness to share while maintaining good

usability. The primary contributions of this study are threefold.

First, we create interfaces that integrate obfuscation into SNS photo sharing feature.

Second, through an experiment, we understand that obfuscation does reduce users’ privacy

concerns about their photos and increase their willingness to share.

Third, though the proposed interfaces require users to perform extra tasks, it is still per-
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ceived as usable.
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Chapter 8

Discussion of all Five Studies of

the Dissertation

Increasing awareness of online privacy increases the tension between photo sharing and

privacy protection. People actively seek solutions to protect their privacy and self-censorship tends

to be a prevalent strategy (see Chapter 6) though it leads to large sharing loss and goes against the

nature of SNSs [255]. Researchers have built systems to address photo privacy issues using different

approaches. Most of the systems fall into the category of recipient control (e.g., [95, 168, 307]).

With recipient control, the entire photo is inaccessible to certain recipients. This creates a sharing

loss. Some systems have begun to attempt content control (e.g., [121, 124, 251]). For example,

one system obscures sensitive content and shows a partial photo. However, these systems either

apply ineffective obfuscations such as blurring or only obscure limited types of sensitive content

such as faces. Moreover, many of prior studies are focused on system building, but rarely take users’

perceptions into consideration.

This dissertation focused on controlling sensitive content to protect photo privacy. Specifi-

cally, the aim of the dissertation was to understanding different aspects of content control – inves-

tigating sensitive content, identifying effective and usable obfuscations, understanding photo self-

censorship, and studying whether obfuscation can reduce privacy concerns and increase willingness

to share. In this chapter, I first describe the contributions of the five studies, then discuss the im-

pacts on privacy research and industry, the considerations during implementation, and the potential
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ethical issues of obfuscations.

8.1 Contributions

This dissertation consists of three parts – identifying sensitive content in photos, identify-

ing effective and usable obfuscation, and investigating the ability of obfuscation to reduce privacy

concerns and increase willingness to share. In the following paragraphs, I discuss the contributions

of each part.

First, I created a human-centered taxonomy that describes what content is sensitive based

on a much larger data set collected from a larger sample size than prior work. This taxonomy

provides a more granular level of detail about sensitive content categories which may be more

practical for privacy researchers, computer vision researchers, and practitioners. Additionally, the

method we introduced and used for the first time overcomes the limitations of prior machine learning

approaches. For example, many photo privacy protection systems were trained using a Flickr data

set which is not suitable for photo privacy research (see Chapter Three).

Second, knowing what content is sensitive, we then identified obfuscations that are both

effective and provide a good user experience. Obviously masking would be more effective than

blurring, but considering the trade-off between effectiveness and utility, would people prefer masking?

Are there any obfuscation methods that meet both needs? The second study answers most questions

we had for obfuscations. We learned that avatar and inpainting appear to be effective against human

recognition and are likable. From the third study, we know that the performance of these two

obfuscation methods is equally good when applied to familiar and unfamiliar people in photos.

Third, self-censorship is a common strategy to avoid privacy leakage. Though researchers

have explored self-censorship on SNSs in general, photos are a likely, but unexplored, area of self-

censorship research. I wanted to understand whether obfuscation has the potential to reduce sharing

loss due to self-censorship. Therefore in study four, we quantified the prevalence of self-reported

photo self-censorship, and results show that over half of participants have self-censored photos on

SNSs. Furthermore, we learned that obfuscations may be useful for helping users achieve photo

sharing goals while maintaining privacy and reducing self-censorship. In the last study, we asked

participants to make assumptions or predictions about how they would feel about photo sharing

with obfuscations. For example, we asked “if you have access to obfuscations will you be willing

136



to share the previously censored photo?”. On the other hand, in study five, we created interfaces

that allow participants to apply various obfuscations to their own photos. The results indicate that

the obfuscation does have the ability to reduce people’s privacy concerns about their photos and

increases the willingness to share. Though the system requires users to perform extra tasks (e.g.,

selecting obfuscation), its usability is as good as the original Facebook interface, which does not

offer any content control; it only offers recipient control.

To summarize, the contributions of my dissertation are:

• Studying the two privacy parameters in the behavioral privacy model with the focus on the

content parameter (e.g., obfuscation)

– Investigating user-defined sensitive content in photos

– Learning users’ sharing preferences with different recipients

– Examining effective and usable obfuscations which can successfully de-identify both fa-

miliar and unfamiliar people in photos

– Understanding how obfuscation might combat photo self-censorship

• Creating effective and usable photo privacy protection interfaces based on the knowledge

learned in the series of studies above

– Create interfaces

– Evaluating the system’s ability to reduce privacy concerns, the ability to encourage photo

sharing, and overall usability

8.2 Impact on Privacy Research

In terms of sensitive content, some work in machine learning has tried to identify and classify

sensitive content (e.g., [303, 304]), but it has lots of problems (see Sensitive Content subsection in

Chapter Two).

Machine learning approaches failed because they did not adopt a human-centered perspec-

tive. For example, researchers used a public Flickr dataset to elicit sensitive content. While the set

was labeled as “private,” it did not contain users’ most sensitive photos. The label “private” might

not mean the same as how people think of “private.” People understand that when they upload
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photos, they are sharing them with the organization hosting the photos. Hence, they are likely to

censor their most sensitive or “private” photos and not share on Flickr, which means that the photos

in this dataset may not represent the most sensitive photos.

Moreover, researchers used a binary classification [304], “private” versus “public,” which

we know does not fit with how people think about privacy. This work found that the outdoor or

landscape images are generally public and indoor or images with people are private, which obviously

is too broad a classification to be useful.

Our work could benefit privacy research which uses the machine learning approach in two

ways. First, the photo-elicitation method that we introduced can be a way to supplement existing

datasets or to create a new dataset of sensitive photos from scratch. For example, privacy researchers

could gather and add new images that contain private content to existing general-purpose image

datasets which could then make them useful for image privacy research tasks. Second, we provide

a user-defined taxonomy of sensitive content that can be used to compare with and validate other

ML generated sensitive content classifications.

In terms of obfuscations, blurring is the most widely adopted obfuscation method, while in

my second and third studies, we know that blurring is ineffective in de-identifying both familiar and

unfamiliar people. In prior work, researchers consider it as a default or even the only option when

building a photo privacy protection system (e.g., [124, 166, 297]). Though the system design might

be successful, the flawed obfuscation selection could lead to the failure of systems. Our work can

benefit these systems by suggesting substitute obfuscations that are effective and usable – avatar

and inpainting instead of blurring.

Our work in this area is already having an important impact. We published a CSCW

paper in 2017 in which we identified effective and usable obfuscations. We are pleased to see that

privacy researchers have cited this paper and discussed content control and obfuscation options

(e.g., [7, 9, 35, 80, 156, 238]). However, some of these researchers only discuss it in the literature

review section [9, 35, 80], rather than taking the suggestions to their designs. Moreover, when coming

to choosing obfuscations, researchers still often chose an ineffective obfuscation - blurring [9, 80].

Besides the work that cited our paper, some other work about photo privacy protection published

later than 2017 used blurring as well without explaining how researchers chose obfuscations and the

reasons for choosing blurring (e.g., [138]). On the other hand, a recent study proposed morphing

as a privacy protection tool and compared it with blurring and pixelating [172]. However, from the
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third study, we know that though morphing is relatively effective, it is not likable as people are

skeptical about its concept and it might lead to ethical issues.

The selection of obfuscations limits these systems’ practicability when applied in reality.

It’s possible that the barriers might be related to obfuscation implementation. For example, the

implementation of blurring is mature. There are numerous algorithms or applications that can

create blurring effects with little human effort. However, avatar and inpainting are not as accessible

as blurring. We see privacy researchers are at least discussing obfuscation methods before building

systems which we believe is a good starting point. In the future, we hope to see more computer

vision researchers understand the importance of effective and usable obfuscations and work on the

implementation of them, which could lower the barriers of integrating them into photo privacy

protection systems for other privacy researchers.

8.3 Impact on Industry

Obfuscation selection is also problematic in the industry. Signal is considered the most

secure, privacy-centric messaging application compared to other mainstreaming messaging applica-

tions [252]. All messages are end-to-end encrypted and neither Signal nor anyone can read users’

messages or listen to their calls. It also hides all of the metadata, including who sent the message.

In brief, its selling point is privacy and security. However, we found that Signal uses blurring which

is ineffective and easy to be re-identified by both humans and machines. Furthermore, Signal only

blurs faces in photos; in our second study, we demonstrated that face obfuscation is generally less ef-

fective than body obfuscation. Similarly, another privacy-centric application – Anonymous Camera

– allows users to seamlessly “anonymize” photos and videos [13]. All processing is done in real-time,

locally on device without uploading to the cloud. However, it again uses face blurring which is in-

effective. The other obfuscation option it provides is silhouette which we know from the first study

is not likable. Users may trust the ability of these applications to protect their privacy based on

their positive publicity, hence these apps could mislead users to share photos with sensitive content,

in turn, compromise users’ privacy, which goes against the mission of these privacy applications.

My dissertation could provide guidance on privacy application design from identifying the sensitive

content to choosing effective and usable obfuscations. For managers or designers in the industry, it

is important that every design decision that they make should be supported by research evidence.
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On the other hand, self-censorship on SNSs has been extensively investigated. Prior work has

focused on political self-censorship [120, 157] and post self-censorship [60, 255], while we conducted

the first study that investigated photo self-censorship and also provided solutions to combat it. We

found that over half of the participants have censored photos due to privacy concerns which might

have caused big sharing loss to SNSs and reduced SNSs’ sociability. It should alarm SNSs such as

Facebook to put more effort into the photo privacy protection features, which might help increase

users’ engagement and their trust in SNSs.

8.4 Practical Considerations for System Implementation

Though my thesis is not focused on system building, it is worth mentioning some consider-

ations for system implementation. How to detect each piece of sensitive content in our taxonomy is

still an open question. Some categories can be easily addressed. For example, regarding our category

“other people,” Hasan et al. created an automated system to identify bystander (vs. subject) in

photos [108]. For “online account and password” and “video game” that is shown on screens, they

can be identified using the system proposed in [145]. For some common objects in our taxonomy

such as “toilet” and “necklace,” Microsoft COCO, which is a large-scale object detection dataset,

could be used to detect them [182]. However, there are some complicated categories that are hard

to detect. For example, while “naked child” is easy to detect, “child in inappropriate clothes” is

very subjective as users may have their own opinions on inappropriate clothes. Another example is

“other people’s information.” People’s own to-do list is not sensitive but they consider their friends’

to-do list very sensitive. In such a case, it is difficult to automatically determine whether an object

belongs to photo owners or other people. Furthermore, in the last study, one participant expressed

concerns that the system “is getting too intelligent detecting private things in your photos.” The

other participant said he/she should be able to “move the avatar by myself, or that I can change the

size of the avatar.” The qualitative data indicate that people might not want automatic detection.

We believe that in the future, with the advances in technology, object detection would not be a

barrier anymore and the system can be smart enough to perform fully automated detection. Yet for

now, full automation is not very feasible. Hence, using sensitive content taxonomy as suggestions

for users to identify sensitive content in their photos might be better than automatic detection at

the current stage.
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On the other hand, one participant in the last study concerned that “I’m not completely

sure I trust a computer program to tell me where the sensitive information is.” Indeed, though

artificial intelligence (AI) approaches show great practical success in many domains, its decision

making is still in a “BlackBox, ” and people consider it not trustworthy, hence explainable AI is

necessary [57, 73]. In our system, we need to provide sufficient information that is interpretable and

comprehensible to draw an explanation of why a particular decision is made [73]. Once the system

highlights a piece of sensitive content, it should offer explanations of why the system considers it

sensitive. For example, “this photo shows you are holding a Bud Light beer can in an office setting.

Your workplace may have their own policy on the consumption of alcohol and posting this photo

may have negative effects on your career.”

Regarding the implementation of obfuscation, avatar is more accessible than inpainting

as it just adds content to images. Inpainting will require more sophisticated image reconstruction

techniques to recompose an image after removing the sensitive content [58, 104]. Current commercial

applications only have limited functions for inpainting, such as Photoshop’s “content aware patch,”

Snapseed’s “Expand[276],” Byebye Camera’s “people removal [46]” features. However, the generated

photos are unnatural and appear obviously to have been altered. With the development of new

computer vision techniques, the implementation of inpainting is likely to be addressed in the near

future. A recent study presents a learning-based method for seamlessly removing obstructions such

as windows, fences, and raindrops and recovering clean images [185]. This technique could be used

to inpaint sensitive content.

8.5 Ethical Issues Related to Obfuscation

Knowing the impacts of my dissertation, the potential ethical issues should not be ignored.

Photo manipulation could be risky. Imma, a fashion model from Japan, is very popular on Instagram.

She posts her styles daily and has almost 200k followers [125]. However, she is computer generated

and completely virtual. Her photos are extremely realistic and her facial features are perfectly

rendered. Since people are bad at detecting and locating manipulations within images [206], people

without prior knowledge are unlikely to know she is fake. After knowing the truth, people’s attitudes

were mostly positive. They were surprised, but they thought it was fun and entertaining. Indeed, on

Instagram, no matter whether it is an actual fashion model or virtual person, the use of an entirely

141



virtual character is unlikely to have an important impact on people’s lives. However, when such AI

techniques are applied to people themselves, they have privacy concerns. For example, Deepfakes is a

deep-learning system that can produce realistic fake videos by studying photos and videos of a target

person from multiple angles and then mimicking its behavior and speech patterns. Deepfakes has

been used to generate fake politician videos or celebrities’ pornography. However, Deepfakes is open-

sourced and everyone can use it to generate videos of anyone, for example, having porn revenge by

swapping porn performers’ faces with ex-girlfriends’ faces [115]. As people are getting more exposure

to such video or photo manipulation technologies and understanding these technologies could harm

their privacy, they raise concerns around the authenticity and ethic of manipulated photos. For

example, participants in our second study stated that “[obfuscations] still provides context that

could be misconstrued,” “the photos look disingenuous and photoshopped.” We can clearly tell that

people were worried that viewers might misinterpret their obfuscated photos and the photos might

look deceptive. These concerns might be roadblocks adoption.

Especially for certain types of obfuscations, the ethical issues are more prominent. Morphing

may mislead the viewers into mistaking a morphed person for somebody else, and avatar has the

same problem. In terms of inpainting, if a person or an object is removed, the meaning of a photo

may dramatically change. For example, a party photo with multiple people may look like a dating

photo if only two people remain after other people are removed via inpainting. Though participants

in our studies reported liking avatar and inpainting, it is still unknown whether the ethical issue will

impede users’ adoption of obfuscation in the long run. A possible solution could be adding indicators

in inpainted photos to show that there was somebody or something removed; or in morphed photos,

an indicator could inform viewers that the person is being morphed for privacy reasons. In study

two, we evaluated “body bar” and “body point-light” obfuscation which are types of indicators,

however, they were shown to be not likable, perhaps because they affect the aesthetics and reduce

perceived photo quality. Prior work on video surveillance privacy protection introduced dot as an

indicator [305] which might be a better option as it does not disturb nor provide any additional

information to identify the target. In future studies, researchers should evaluate different variations

of indicators and explore approaches to alleviate ethical issues.
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Appendix A Study 1 Online Experiment Questions

A.1 Demographics

• What is your gender?

– Male

– Female

– Other

– I prefer not to answer

• What is your age?

– 18-24 years old

– 25-34 years old

– 35-44 years old

– 45-54 years old

– 55+

• What is your ethnicity?

– White

– Hispanic or Latino

– Black or African American

– Native American or American Indian

– Asian / Pacific Islander

– Other

• Which of the following best describes your current employer?

– Government

– Educational institution

– Business or industry
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– Non-profit organization

– Other

• What is the highest level of school you have completed or the highest degree you have received?

– High school incomplete or less

– High school graduate or GED (includes technical/vocational training that doesn’t count

towards college credit)

– Some college (some community college, associate’s degree)

– Four year college degree/bachelor’s degree

– Some postgraduate or professional schooling, no postgraduate degree

– Postgraduate or professional degree, including master’s, doctorate, medical or law degree

– I prefer not to answer

• Which of these best describes you?

– Married

– Living with a partner

– Divorced

– Separated

– Widowed

– Never been married

– I prefer not to answer

• About how often do you use Internet either on a computer or on a mobile device like a

smartphone or a tablet?

– Most of the day

– Several times a day

– About once a day

– A few times a week
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– A few times a month

– A few times a year

– Never

– I prefer not to answer

• About how often do you visit social media sites such as Facebook, Twitter or LinkedIn?

– Most of the day

– Several times a day

– About once a day

– A few times a week

– A few times a month

– A few times a year

– Never

– I prefer not to answer

• About how often do you upload photos to social media sites such as Facebook, Twitter or

LinkedIn?

– Many times a day

– Several times a day

– About once a day

– A few times a week

– A few times a month

– A few times a year

– Never

– I prefer not to answer
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A.2 Collect Photos That People Do Not Want to Share with Anyone

• Please take out your phone. If you have an iPhone, please go to “Photos” and look at the

“Camera Roll” album. If you have an Android phone, please look at the “Gallery.” Approxi-

mately how many photos do you have in this album? [open-ended question]

• Are there any photos on your phone that you consider private (those you do not want to share

with anyone)?

– Yes

– No

• Please look through the photos on your phone and find one of your most private photos.

– Okay, found one!

• Are you willing to share it with us (the researchers conducting this study)? As a reminder, we

won’t share it with anyone.

– Yes

– No

If Yes Please upload the photo. [upload button]

If No That’s okay, we understand. But, we’re trying to understand the kinds of photos people

consider private. Please tell us about the photo and/or find a photo online which has similar

sensitive content. [open-ended question]

• Please upload the photo you found online that has similar sensitive content to your photo.

[upload button]

• What content in this photo do you consider sensitive? [open-ended question]

• How likely are you to keep this photo private, meaning not share it with anyone?

– 1 - Very unlikely

– 2

– 3
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– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with your significant others (spouse / girlfriend /

boyfriend)?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

– I do not have significant others

• How likely are you to share this photo with household members?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with relatives who are close with you?

– 1 - Very unlikely

– 2
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– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with relatives who are NOT close with you?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with friends who are close with you?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with friends who are NOT close with you?

– 1 - Very unlikely

– 2

– 3
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– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with ex-girl/boyfriends?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

– I do not have ex-girl/boyfriends

• How likely are you to share this photo with colleagues/classmates who are close with you?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

– I do not have colleagues/classmates who are close with me

• How likely are you to share this photo with colleagues/classmates who are NOT close with

you?

– 1 - Very unlikely
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– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

– I do not have colleagues/classmates who are NOT close with me

• How likely are you to share this photo with your supervisor who is close with you?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

– I do not have a supervisor who is close with me

• How likely are you to share this photo with your supervisor who is NOT close with you?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

– I do not have a supervisor who is NOT close with me
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• How likely are you to share this photo with friends of friends?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with people you’ve only met online?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with people you’ve only met once or twice?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with people of your age?
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– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with people younger than you?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with people older than you?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with people of the same gender as you?

– 1 - Very unlikely
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– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

• How likely are you to share this photo with people of different gender?

– 1 - Very unlikely

– 2

– 3

– 4

– 5

– 6

– 7 – Very likely

A.3 Collect Photos That People Do Not Want to Share with Their Family

The questions in this section are the same as the ones in the first photo collection section.

The only difference is that at the beginning we asked participants to find one photo that they do

NOT want to share with at least one of the following groups: significant others, household member,

close relatives, relatives who are NOT close with you.

A.4 Collect Photos That People Do Not Want to Share with Friends

The questions in this section are the same as the ones in the first photo collection section.

The only difference is that at the beginning we asked participants to find one photo that they do

NOT want to share with at least one of the following groups: close friends, friends who are NOT

close with you, ex-girl/boyfriends.
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A.5 Collect Photos That People Do Not Want to Share with Colleagues

/ Classmates / Supervisors

The questions in this section are the same as the ones in the first photo collection section.

The only difference is that at the beginning we asked participants to find one photo that they

do NOT want to share with at least one of the following groups: close colleagues/classmates, col-

leagues/classmates who are NOT close with you, close supervisors, supervisors who are NOT close

with you.

A.6 Collect Photos That People Do Not Want to Share with Acquain-

tances

The questions in this section are the same as the ones in the first photo collection section.

The only difference is that at the beginning we asked participants to find one photo that they do

NOT want to share with at least one of the following groups: friends of friends, people you’ve only

met online, people you’ve only met once or twice.
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Appendix B Study 2 Online Experiment Questions

B.1 Demographics

• What is your gender?

– Male

– Female

– Other

– I prefer not to answer

• What is your age?

– 18-24 years old

– 25-34 years old

– 35-44 years old

– 45-54 years old

– 55+

• What is your ethnicity?

– White

– Hispanic or Latino

– Black or African American

– Native American or American Indian

– Asian / Pacific Islander

– Other

• Which of the following best describes your current employer?

– Government

– Educational institution

– Business or industry
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– Non-profit organization

– Other

• What is the highest level of school you have completed or the highest degree you have received?

– High school incomplete or less

– High school graduate or GED (includes technical/vocational training that doesn’t count

towards college credit)

– Some college (some community college, associate’s degree)

– Four year college degree/bachelor’s degree

– Some postgraduate or professional schooling, no postgraduate degree

– Postgraduate or professional degree, including master’s, doctorate, medical or law degree

– I prefer not to answer

• Which of these best describes you?

– Married

– Living with a partner

– Divorced

– Separated

– Widowed

– Never been married

– I prefer not to answer

• About how often do you use Internet either on a computer or on a mobile device like a

smartphone or a tablet?

– Most of the day

– Several times a day

– About once a day

– A few times a week
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– A few times a month

– A few times a year

– Never

– I prefer not to answer

• About how often do you visit social media sites such as Facebook, Twitter or LinkedIn?

– Most of the day

– Several times a day

– About once a day

– A few times a week

– A few times a month

– A few times a year

– Never

– I prefer not to answer

B.2 Browser Testing

Next two screens will be the browser resizing test.

On the first screen, you need to see if you can view all of the photos, the confidence level

question, and the red next page button on your screen at the same time without scrolling. At this

point, you do NOT need to answer the two questions.

On the second screen, you will answer the question ”Can you view all of the photos, the

confidence level question, and the red next page button on your screen at the same time without

scrolling on last screen?”

• Please identify the person indicated by the orange arrow. [An example photo was shown. The

face of the target person was pixelated.]

– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown
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– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?

– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

• Can you view all of the photos, the confidence level question, and the red next page button

on your screen at the same time without scrolling on last screen?

– Yes

– No

Next screen is a question example for the browser adjusting. Please zoom your browser to a

point where you can see all four photos, the confidence level question, and the red next page button

at the same time on your screen.

For Windows users, please press CTRL + PLUS SIGN (+) to zoom in; press CTRL +

MINUS SIGN (-) to zoom out. For Mac users, please press COMMAND + PLUS SIGN (+) to

zoom in; press COMMAND + MINUS SIGN (-) to zoom out.

After adjusting your browser, please go to next page. At this point, you do NOT need to

answer the two questions.

• Please identify the person indicated by the orange arrow. [An example photo was shown. The

face of the target person was pixelated.]

– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown
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– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?

– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

B.3 Fourteen obfuscation conditions’ examples

On next screen, you will see 14 privacy filters. The orange arrow in each photo points to

the filter effect area. Please read and understand the description for each privacy filter before going

on to the next page.

[Fourteen obfuscation conditions’ examples were shown.]

B.4 Training

In this section, we will teach you about the task you will perform. First, on the next screen,

you will see a photo with an orange arrow pointing to an area (person) in a photo. Your job is to

identify the person the orange arrow is pointing at.

There are four possible answers. Possible answers include images of three people, and “none

of above.” Your job is to identify the person in the obscured photo (pointed out by the orange

arrow). If you do not see the person pointed out by the orange arrow, please choose ‘none of above.’

You may be able to identify the person easily. Or, it may be difficult or impossible to

identify the person. Either way, please try your best, and choose only one answer.

After you have answered, you will then tell us how confident you are that your answer was

correct.

• Please identify the person indicated by the orange arrow. [An example photo was shown. The

face of the target person was pixelated.]
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– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown

– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?

– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

[If participants’ answers were correct:]

Great job! You correctly identified the person. Notice that in the actual test later, you will

not know if your choice is correct or wrong. Next, you will do one more identification training.

[If participants’ answers were wrong:]

Your identification is not correct. The correct choice is below: [show the correct ID photo]

Notice that in the formal test, you will not know if your choice is correct or wrong. Next, you will

do one more identification training.

• Please identify the person indicated by the orange arrow. [An example photo was shown. The

face of the target person was blurred.]

– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown

– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?
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– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

[If participants’ answers were correct:]

Great job! Your choice is correct. Congratulations! You finished the training. Please go to

the next page, and begin the test.

[If participants’ answers were wrong:]

The correct choice is “None of above.” Congratulations! You finished the training. Please

go to the next page to begin the test.

B.5 Pre-trials

• Please identify the person indicated by the orange arrow. [An example photo was shown. No

obfuscation was applied.]

– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown

– None of above [note that the four choices’ order is randomized]

Considering the filter used in this photo, please rate the photo on the four statements below.

• The photo is satisfying.

– Strongly disagree

– Disagree

– Somewhat disagree
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– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• This photo provides sufficient information.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• I enjoy the photo at this moment.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• There was a sense of human contact when I saw the photo.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

163



– Somewhat agree

– Agree

– Strongly agree

[Afterward, participants went through the second pre-trial which included the same set of

questions and was very similar to the first one above.]

B.6 Actual Testing: 14 Trials

[The actual testing includes 14 trials and participants saw all 14 obfuscation conditions.]

• Please identify the person indicated by the orange arrow. [An example photo was shown. One

of the 14 obfuscations was applied.]

– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown

– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?

– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

Considering the filter used in this photo, please rate the photo on the four statements below.

• The photo is satisfying.

– Strongly disagree
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– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• This photo provides sufficient information.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• I enjoy the photo at this moment.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• There was a sense of human contact when I saw the photo.

– Strongly disagree

– Disagree
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– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

[Participants then went through the other 13 trials.]

B.7 Rating the Likability of Obfuscations

Imagine that online social networks (Facebook etc.) adopted privacy filters so that users

could better manage the privacy of their photos. In that case, which privacy filter would you prefer?

Please rate your preference for each privacy filter.

• I like the “blurring” privacy filter. [An corresponding example obfuscation photo was shown.]

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

[Participants then rated the other 13 obfuscations using the same scale as above shows.]

B.8 Follow-up Questions

• If you could use any of the privacy filters for photos you post on online social networks, which

one, if any, would you like to use?

– As is (no filter)

– Face blurring
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– Face pixelating

– Face silhouette

– Face avatar

– Face masking

– Body blurring

– Body pixelating

– Body silhouette

– Body avatar

– Body point-light

– Body masking

– Body bar

– Body inpainting

• Please tell us the reason [open-ended]

• I am willing to upload photos to online social networks using the filter I selected.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• Have you ever declined to upload a photo to an online social network for privacy reasons?

– Yes

– No

– I don’t know
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• In the last question, you said you had declined to upload a photo to an online social network

for privacy reasons. If you had access to one of the privacy filters here, would you be willing

to upload the photo using one of the filters?

– Yes

– No

– I don’t know

• If you answered ”Yes” in above question, which privacy filter would you prefer to use? If you

answered ”No” or ”I don’t know” , please select ”NA”.

– As is (no filter)

– Face blurring

– Face pixelating

– Face silhouette

– Face avatar

– Face masking

– Body blurring

– Body pixelating

– Body silhouette

– Body avatar

– Body point-light

– Body masking

– Body bar

– Body inpainting

• Please tell us your reasons why you chose this filter.

B.9 Adoption Willingness

Please rate two statements about your adoption willingness.
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• I want online social networks (Facebook etc.) to adopt these privacy filters SO that I can be

obscured in certain photos my friends upload (group photo etc.).

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• Please tell us the reason [open-ended]

• I want online social networks (Facebook etc.) to adopt these privacy filters SO that some

people can be obscured in certain photos I view (group photo etc.).

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• Please tell us the reason [open-ended]

B.10 Attitudes Towards Privacy and Security

Privacy means different things to different people today. In thinking about all of your daily

interactions - both online and offline - please tell us how important each of the following are to you:

• Being in control of who can get information about you.

– Not at all important
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– Not very important

– Somewhat important

– Very important

– Don’t know

• Being able to share confidential matters with someone you trust.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Not having someone watch you or listen to you without your permission.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Controlling what information is collected about you.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Not being disturbed at home.

– Not at all important

– Not very important
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– Somewhat important

– Very important

– Don’t know

• Being in control of who can get information about you.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Being able to have times when you are completely alone, away from anyone else.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Having individuals in social / work situations not ask you things that are highly personal.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Being able to go around in public without always being identified.

– Not at all important

– Not very important

– Somewhat important
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– Very important

– Don’t know

• Not being monitored at work.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

B.11 Additional Feedback

• Do you have any comments, confusions, and suggestions about this survey? [open-ended]
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Appendix C Study 3 and 4 Online Experience Questions

[Please note that the results of Study Three and Four came from the same experiment.]

C.1 Demographics

• What is your gender?

– Male

– Female

– Other

– I prefer not to answer

• What is your age?

– 18-24 years old

– 25-34 years old

– 35-44 years old

– 45-54 years old

– 55+

• What is your ethnicity?

– White

– Hispanic or Latino

– Black or African American

– Native American or American Indian

– Asian / Pacific Islander

– Other

• Which of the following best describes your current employer?

– Government

– Educational institution
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– Business or industry

– Non-profit organization

– Other

• What is the highest level of school you have completed or the highest degree you have received?

– High school incomplete or less

– High school graduate or GED (includes technical/vocational training that doesn’t count

towards college credit)

– Some college (some community college, associate’s degree)

– Four year college degree/bachelor’s degree

– Some postgraduate or professional schooling, no postgraduate degree

– Postgraduate or professional degree, including master’s, doctorate, medical or law degree

– I prefer not to answer

• Which of these best describes you?

– Married

– Living with a partner

– Divorced

– Separated

– Widowed

– Never been married

– I prefer not to answer

• About how often do you use Internet either on a computer or on a mobile device like a

smartphone or a tablet?

– Most of the day

– Several times a day

– About once a day
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– A few times a week

– A few times a month

– A few times a year

– Never

– I prefer not to answer

• About how often do you visit social media sites such as Facebook, Twitter or LinkedIn?

– Most of the day

– Several times a day

– About once a day

– A few times a week

– A few times a month

– A few times a year

– Never

– I prefer not to answer

C.2 Browser Testing

Next two screens will be the browser resizing test.

On the first screen, you need to see if you can view all of the photos, the confidence level

question, and the red next page button on your screen at the same time without scrolling. At this

point, you do NOT need to answer the two questions.

On the second screen, you will answer the question ”Can you view all of the photos, the

confidence level question, and the red next page button on your screen at the same time without

scrolling on last screen?”

• Please identify the person indicated by the orange arrow. [An example photo was shown. The

face of the target person was pixelated.]

– First ID photo was shown

– Second ID photo was shown
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– Third ID photo was shown

– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?

– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

• Can you view all of the photos, the confidence level question, and the red next page button

on your screen at the same time without scrolling on last screen?

– Yes

– No

Next screen is a question example for the browser adjusting. Please zoom your browser to a

point where you can see all four photos, the confidence level question, and the red next page button

at the same time on your screen.

For Windows users, please press CTRL + PLUS SIGN (+) to zoom in; press CTRL +

MINUS SIGN (-) to zoom out. For Mac users, please press COMMAND + PLUS SIGN (+) to

zoom in; press COMMAND + MINUS SIGN (-) to zoom out.

After adjusting your browser, please go to next page. At this point, you do NOT need to

answer the two questions.

• Please identify the person indicated by the orange arrow. [An example photo was shown. The

face of the target person was pixelated.]

– First ID photo was shown

– Second ID photo was shown
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– Third ID photo was shown

– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?

– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

C.3 Seven Obfuscation Conditions’ Examples

On next screen, you will see 7 privacy filters. The orange arrow in each photo points to the

filter effect area. Please read and understand the description for each privacy filter before going on

to the next page.

[Seven obfuscation conditions’ examples were shown.]

C.4 Training

In this section, we will teach you about the task you will perform. First, on the next screen,

you will see a photo with an orange arrow pointing to an area (person) in a photo. Your job is to

identify the person the orange arrow is pointing at.

There are four possible answers. Possible answers include images of three people, and “none

of above.” Your job is to identify the person in the obscured photo (pointed out by the orange

arrow). If you do not see the person pointed out by the orange arrow, please choose ‘none of above.’

You may be able to identify the person easily. Or, it may be difficult or impossible to

identify the person. Either way, please try your best, and choose only one answer.

After you have answered, you will then tell us how confident you are that your answer was

correct.
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• Please identify the person indicated by the orange arrow. [An example photo was shown. The

face of the target person was pixelated.]

– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown

– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?

– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

[If participants’ answers were correct:]

Great job! You correctly identified the person. Notice that in the actual test later, you will

not know if your choice is correct or wrong. Next, you will do one more identification training.

[If participants’ answers were wrong:]

Your identification is not correct. The correct choice is below: [show the correct ID photo]

Notice that in the formal test, you will not know if your choice is correct or wrong. Next, you will

do one more identification training.

• Please identify the person indicated by the orange arrow. [An example photo was shown. The

face of the target person was blurred.]

– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown
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– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?

– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

[If participants’ answers were correct:]

Great job! Your choice is correct. Congratulations! You finished the training. Please go to

the next page, and begin the test.

[If participants’ answers were wrong:]

The correct choice is “None of above.” Congratulations! You finished the training. Please

go to the next page to begin the test.

C.5 Pre-trials

• Please identify the person indicated by the orange arrow. [An example photo was shown. No

obfuscation was applied.]

– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown

– None of above [note that the four choices’ order is randomized]

Considering the filter used in this photo, please rate the photo on the four statements below.

• The photo is satisfying.

– Strongly disagree
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– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• This photo provides sufficient information.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• I enjoy the photo at this moment.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• There was a sense of human contact when I saw the photo.

– Strongly disagree

– Disagree
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– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

[Afterward, participants went through the second pre-trial which included the same set of

questions and was very similar to the first one above.]

C.6 Actual Testing: 14 Trials

[The actual testing includes 14 trials and participants saw all seven obfuscation conditions

applied to both familiar and unfamiliar targets. They saw 7 familiar and 7 unfamiliar targets.]

• Please identify the person indicated by the orange arrow. [An example photo was shown. One

of the obfuscations was applied.]

– First ID photo was shown

– Second ID photo was shown

– Third ID photo was shown

– None of above [note that the four choices’ order is randomized]

• How confident do you feel that you correctly identified the person?

– Completely unconfident

– Mostly unconfident

– Somewhat unconfident

– Neither unconfident nor confident

– Somewhat confident

– Mostly confident

– Completely confident

Considering the filter used in this photo, please rate the photo on the four statements below.
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• The photo is satisfying.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• This photo provides sufficient information.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• I enjoy the photo at this moment.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• There was a sense of human contact when I saw the photo.
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– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

[Participants then went through the other 13 trials.]

C.7 Rating the Likability of Obfuscations

Imagine that online social networks (Facebook etc.) adopted privacy filters so that users

could better manage the privacy of their photos. In that case, which privacy filter would you prefer?

Please rate your preference for each privacy filter.

• I like the “blurring” privacy filter. [An corresponding example obfuscation photo was shown.]

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

[Participants then rated the other six obfuscations using the same scale as above shows.]

C.8 Follow-up Questions

• If you could use any of the privacy filters for photos you post on online social networks, which

one, if any, would you like to use?
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– As is (no filter)

– Blurring

– Morphing

– Silhouette

– Avatar

– Masking

– Inpainting

• Please tell us the reason [open-ended]

• I am willing to upload photos to online social networks using the filter I selected.

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• Have you ever declined to upload a photo to an online social network for privacy reasons?

– Yes

– No

– I don’t know

• In the last question, you said you had declined to upload a photo to an online social network

for privacy reasons. If you had access to one of the privacy filters here, would you be willing

to upload the photo using one of the filters?

– Yes

– No
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– I don’t know

• If you answered ”Yes” in above question, which privacy filter would you prefer to use? If you

answered ”No” or ”I don’t know” , please select ”NA”.

– As is (no filter)

– Blurring

– Morphing

– Silhouette

– Avatar

– Masking

– Inpainting

• Please tell us your reasons why you chose this filter.

C.9 Adoption Willingness

Please rate two statements about your adoption willingness.

• I want online social networks (Facebook etc.) to adopt these privacy filters SO that I can be

obscured in certain photos my friends upload (group photo etc.).

– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• Please tell us the reason [open-ended]

• I want online social networks (Facebook etc.) to adopt these privacy filters SO that some

people can be obscured in certain photos I view (group photo etc.).
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– Strongly disagree

– Disagree

– Somewhat disagree

– Neither agree nor disagree

– Somewhat agree

– Agree

– Strongly agree

• Please tell us the reason [open-ended]

C.10 Familiarity

Please note that you will be required to write down the names of the people in below images.

Please try to answer as accurate as you can. If you cannot remember someone’s name accurately,

you may write anything that help us understand you are familiar with this person.

[We showed participants seven familiar targets that they saw during the testing and asked

them to write down their names and rate the familiarity]

[Familiar target’s photo was shown]

• Who is this person? Please write down his/her name. [open-ended]

• How familiar are you with this person?

– Completely unfamiliar

– Mostly unfamiliar

– Somewhat unfamiliar

– Neither unfamiliar nor familiar

– Somewhat familiar

– Mostly familiar

– Completely familiar

[Participants then answered the same two questions for the rest of the six familiar targets.]
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C.11 Attitudes Towards Privacy and Security

Privacy means different things to different people today. In thinking about all of your daily

interactions - both online and offline - please tell us how important each of the following are to you:

• Being in control of who can get information about you.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Being able to share confidential matters with someone you trust.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Not having someone watch you or listen to you without your permission.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Controlling what information is collected about you.

– Not at all important

– Not very important

– Somewhat important
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– Very important

– Don’t know

• Not being disturbed at home.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Being in control of who can get information about you.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Being able to have times when you are completely alone, away from anyone else.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Having individuals in social / work situations not ask you things that are highly personal.

– Not at all important

– Not very important

– Somewhat important

– Very important
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– Don’t know

• Being able to go around in public without always being identified.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Not being monitored at work.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

C.12 Additional Feedback

• Do you have any comments, confusions, and suggestions about this survey? [open-ended]
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Appendix D Study 5 Online Experience Questions

This study had two steps – photo collection and system evaluation. The questions during

the first step were shown below.

D.1 Notice

This survey is the first step in a two-step study. Please take this survey ONLY IF you are

willing to join the next study a few weeks later. We’ll contact you via email prior to the next study.

1) Please read the instruction and questions on each screen carefully. We randomly insert

some attention check questions. You will not get paid if you fail more than one attention question.

We will check how many attention check questions you fail, and your answer quality before approving.

2) Please do NOT upload the same photo for all the photo uploading questions or have low-

quality answers. We will consider those as low-quality answers, and exclude your data WITHOUT

any payment.

3) Please do NOT take this survey repeatedly, we will recognize the answers from the same

participant and only pay once.

D.2 Participants Screening

• Please take out your phone. If you have an iPhone, please go to “Photos” and look at the

“Camera Roll” album. If you have an Android phone, please look at the ”Gallery”. Approxi-

mately how many photos do you have in this album? [open-ended]

• Please browse your photo album for at least three minutes. How many photos are there in

your album that you would like to upload to an online social network such as Facebook, but

have NOT because of privacy concerns. If you have MORE than 5, please choose “5.”

– 1

– 2

– 3

– 4

– 5
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– I don’t have any

• Are you willing to provide us these photos so that we can use them as your study material in

the second step – Facebook study?

– Yes

– No

• This photo collection study is the first step in a two-step study. We will invite some participants

who provide qualified photos for a second study–Facebook study. We’ll send you a reminder

via email once the Facebook study is ready for you (may take two or three weeks). Are you

available to participate in the Facebook study a few weeks later?

– Yes

– No

• About how often do you use or visit Facebook?

– Most of the day

– Several times a day

– About once a day

– A few times a week

– A few times a month

– A few times a year

– Never

– I don’t have a Facebook account

• About how often do you upload photos to an online social network such as Facebook?

– Most of the day

– Several times a day

– About once a day

– A few times a week
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– A few times a month

– A few times a year

– Never

• Have you ever declined to upload a photo to an Online Social Network such as Facebook due

to your privacy concerns?

– Yes

– No

D.3 Demographics

• What is your gender?

– Male

– Female

– Other

– I prefer not to answer

• What is your age?

– 18-24 years old

– 25-34 years old

– 35-44 years old

– 45-54 years old

– 55+

• What is your ethnicity?

– White

– Hispanic or Latino

– Black or African American

– Native American or American Indian
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– Asian / Pacific Islander

– Other

• Which of the following best describes your current employer?

– Government

– Educational institution

– Business or industry

– Non-profit organization

– Other

• What is the highest level of school you have completed or the highest degree you have received?

– High school incomplete or less

– High school graduate or GED (includes technical/vocational training that doesn’t count

towards college credit)

– Some college (some community college, associate’s degree)

– Four year college degree/bachelor’s degree

– Some postgraduate or professional schooling, no postgraduate degree

– Postgraduate or professional degree, including master’s, doctorate, medical or law degree

– I prefer not to answer

• Which of these best describes you?

– Married

– Living with a partner

– Divorced

– Separated

– Widowed

– Never been married

– I prefer not to answer
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• About how often do you use Internet either on a computer or on a mobile device like a

smartphone or a tablet?

– Most of the day

– Several times a day

– About once a day

– A few times a week

– A few times a month

– A few times a year

– Never

– I prefer not to answer

• About how often do you visit social media sites such as Facebook, Twitter or LinkedIn?

– Most of the day

– Several times a day

– About once a day

– A few times a week

– A few times a month

– A few times a year

– Never

– I prefer not to answer

D.4 Contact

• What is your email address that we can reach out for the second step study? [open-ended]

• What is your Facebook profile name? [open-ended]
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D.5 Upload Instruction

Please read the instructions below carefully:

In the next few questions, you will provide us [the number of photos participants chose

in screening questions] photo(s) that you would like to upload to an online social network such as

Facebook, but have NOT because of privacy concerns.

We STRONGLY recommend that you choose a photo you took with the camera on your

mobile phone. The photo you choose will be shown to you during the second step – Facebook study.

Please note that only you and the researchers will see your photos.

D.6 Photo Collection

• Please browse your photo album for at least two minutes and find a photo that you would like

to post on your Facebook but have NOT because of privacy concerns.

– Okay, found one!

• Are you willing to share it with us (the researchers conducting this study)? As a reminder, we

won’t share it with anyone.

– Yes

– No

[If participants answered “Yes”:]

• Please upload the photo. [Photo uploading button]

[If participants answered “No”:]

• That’s okay, we understand. If you feel uncomfortable to upload the original photo, please

upload a photo you found online that has similar sensitive content to this photo. [Photo

uploading button]

• What content prevents you from posting this photo? (Minimum 100 Characters Required)

[open-ended question]

• What about this photo that makes you want to upload if you didn’t have privacy concerns?

(Minimum 100 Characters Required) [open-ended question]
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[If participants indicated that they had more photos, they would keep looping, provide more

photos, and answer the same set of questions.]

D.7 Attitudes Towards Privacy and Security

Privacy means different things to different people today. In thinking about all of your daily

interactions - both online and offline - please tell us how important each of the following are to you:

• Being in control of who can get information about you.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Being able to share confidential matters with someone you trust.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Not having someone watch you or listen to you without your permission.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Controlling what information is collected about you.
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– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Not being disturbed at home.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Being in control of who can get information about you.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Being able to have times when you are completely alone, away from anyone else.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Having individuals in social / work situations not ask you things that are highly personal.

– Not at all important

197



– Not very important

– Somewhat important

– Very important

– Don’t know

• Being able to go around in public without always being identified.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

• Not being monitored at work.

– Not at all important

– Not very important

– Somewhat important

– Very important

– Don’t know

[The questions for the second-step study are shown below.]

D.8 Confirming Email

• What is your email address that I contacted for this study? We will use your email address as

a reference for your response. [open-ended]

• Please confirm your Facebook profile name. [open-ended]

D.9 Pre-test Questions: Trust in SNSs

• I trust that Facebook will not use my personal information for any other purpose.

– 1 - Strongly Disagree
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– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I feel that the privacy of my personal information is protected by Facebook.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I believe most of the profiles I view on Facebook are exaggerated to make the personal look

more appealing.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I worry that I will be embarrassed by wrong information others post about me on Facebook.

– 1 - Strongly Disagree
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– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

D.10 Pre-test Questions: Interpersonal Privacy Concerns

• It usually bothers me when people ask me something personal.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I will tell people anything they want to know about me.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I have nothing to hide from other people.

– 1 - Strongly Disagree
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– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I am concerned that people know too many personal things about me.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• To me, it is the most important thing to keep things private from others.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• When people ask me something personal, I sometimes think twice before telling them.

– 1 - Strongly Disagree

– 2
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– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I think it is risky to tell people personal things about myself.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I feel safe telling people personal things about me.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I feel comfortable sharing my private thoughts and feelings with others.

– 1 - Strongly Disagree

– 2

– 3
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– 4

– 5

– 6

– 7 - Strongly Agree

D.11 Pre-test Questions: Perceived Privacy Risks

In the invitation email we sent to you, you have seen a photo that you provided us about a

month ago. (If you forget which photo it is, please check your email)

Regarding that photo, please answer the following questions.

• How risky would you say it would be to post this photo on Facebook?

– 1 - Not risky at all

– 2

– 3

– 4

– 5

– 6

– 7 - Very risky

• Posting this photo on Facebook would be risky.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• Posting this photo on Facebook is dangerous.
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– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• Sharing this photo on my Facebook would add great uncertainty to my privacy.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• Sharing this photo on my Facebook exposes me to an overall risk.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree
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D.12 Pre-test Questions: Willingness to Share

• I am willing to share this photo on my Facebook.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

D.13 Interacting with Prototype

• You will use a Facebook prototype we create (you will get paid ONLY IF you go to the link

below and actually interact with the prototype, we’ll check the backend data). Please read the

instruction carefully when first landing on the prototype.

• After successfully finishing the task, you should see a random code that proves you’ve finished

the task. Please paste the code to the field below.

• Now using your laptop or PC (NOT the phone), please open a new tab, copy this link (do NOT

click on it or you will exit your survey): https://clemsonphotos.sites.clemson.edu/login.php

Open the site, you’ll log in using the email address and password in the invitation email.

• After using the prototype and pasting the code, please continue to finish the remaining ques-

tions. [open-ended question]

D.14 Post-test Questions: Perceived Privacy Risks

Regarding the photo you saw in the prototype, please answer the following questions.

• How risky would you say it would be to post this photo on Facebook?

– 1 - Not risky at all

– 2
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– 3

– 4

– 5

– 6

– 7 - Very risky

• Posting this photo on Facebook would be risky.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• Posting this photo on Facebook is dangerous.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• Sharing this photo on my Facebook would add great uncertainty to my privacy.

– 1 - Strongly Disagree

– 2

– 3
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– 4

– 5

– 6

– 7 - Strongly Agree

• Sharing this photo on my Facebook exposes me to an overall risk.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

D.15 Post-test Questions: Willingness to Share

• I am willing to share this photo on my Facebook.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

D.16 Post-test Questions: Perceived System Effectiveness

Regarding the Facebook prototype that you just used, please answer the following questions.

• This system has no real benefit for me.

207



– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• This system is useful.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I can protect my privacy better using this system.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I can protect my privacy better using other approaches without the help of this system.

– 1 - Strongly Disagree
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– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

D.17 Post-test Questions: Usage Efforts

• The system is convenient.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I do not have to invest a lot of effort in the system.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• It takes many mouse-clicks to use the system.

– 1 - Strongly Disagree
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– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

D.18 Post-test Questions: System Satisfaction

• I am very satisfied when using the system.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I am very pleased when using the system.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• Using this system made me contented.

– 1 - Strongly Disagree
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– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I feel delighted when using this system.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I will strongly recommend it to my friends.

– 1 - Strongly Disagree

– 2

– 3

– 4

– 5

– 6

– 7 - Strongly Agree

• I will most likely use this system again.

– 1 - Strongly Disagree

– 2
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– 3

– 4

– 5

– 6

– 7 - Strongly Agree

D.19 Qualitative Feedback

• What did you like the most about using this system? Please tell us the reasons. (Minimum

100 characters required) [open-ended question]

• What did you like the least about using this system? Please tell us the reasons. (Minimum

100 characters required) [open-ended question]

• Do you have any other comments or suggestions on this system? (Minimum 100 characters

required) [open-ended question]
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