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ABSTRACT 

In this work, the dynamic generation of structured light modes was demonstrated 

using coherent, co-aligned beams carrying orbital angular momentum (CCOAM). These 

modes are created using sources with blue/green wavelengths to study the effects of 

propagation and applications underwater maritime environments. Three techniques are 

discussed and are compared to simulation using a Rayleigh-Sommerfeld propagation 

kernel: concentric phase plates, Mach-Zehnder Interferometry, and the HOBBIT (Higher 

Order Bessel Beams Integrated in Time). These three systems are used to examine the modal 

integrity, controllability, and unique applications. 

Structured CCOAM modes were first demonstrated using a 450 nm source and 

concentric phase plates and were propagated through 3 meters of turbid underwater 

environments. Beam coherence was measured using image registration, and the wavefronts 

were found to maintain their structure despite propagation through extreme turbidity. In 

addition, the source was amplitude modulated to verify that the mode structure can carry an 

amplitude modulation signal.  

Next, an interferometry approach is used so that the two interfering modes can be 

controlled separately. The relative phase is controlled between the two interfering modes by 

manipulating the optical path length that each mode travels using an electro-optic phase 

modulator. Phase modulation allows for precise yet limited control of the wavefront and 

structure. Two setups were examined, a fiber-to-free-space Mach-Zehnder interferometer, 

and a HOBBIT system with two inputs. Phase only control was demonstrated using 

sinusoidal modulation and an orthogonal frequency division multiplexing (OFDM) signal 
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applied to the phase modulator. The modulated signals were successfully transmitted 3 and 

6 meters through turbid water. Phase only modulation allowed for the transmission of a 

constant-amplitude signal, which provides nonlinear manipulation of the signal, such as 

amplification and harmonic generation, which are both crucial in creating high-power 

signals in the visible regime. The interferometry setups are very sensitive and a phase drift 

was found to occur due to temperature fluctuations and small movements of optical fiber in 

the setup, so a preliminary phase-lock loop was designed and tested to eliminate the phase 

drift. Without applied modulation, a RMS phase error of less than λ/30 was measured.  

Lastly an acousto-optic deflector (AOD) was added to the HOBBIT setup, which 

adds mode tunability in addition to amplitude and phase control. The traveling acoustic 

wave also induces a frequency shift in the optical signal producing a continuous modulation 

of the output CCOAM mode. This is demonstrated by using a pulsed 450 nm diode to strobe 

the signal. Operation in pulsed mode enables the system to perform a self-referencing 

wavefront recovery from which the total OAM was extracted.  
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CHAPTER ONE 

INTRODUCTION 

1.1.  Background  

Orbital angular momentum (OAM) describes the component of angular momentum 

an electromagnetic field can carry due to the spatial distribution of the field, not the 

polarization. Since it was first measured in 1992 by Allen et. al. [1], the study of this 

phenomena has significantly grown due to their unique spatial distributions, orthogonality, 

and other characteristics. More recently, OAM has been brought into underwater 

environments to explore its utility in underwater optical links. 

Underwater acoustic signals have been studied for over 100 years, predating the 

1800s. In the early 1900s, after the sinking of the Titanic, acoustic systems were studied to 

detect icebergs. Since then, human activity underwater has grown and the technology has 

had decades of study and development to include sonar radar and acoustic communications 

which can reach distances in excess of 100 km at rates on the order of 1 kb/s. Still, there are 

several drawbacks to acoustic signals, including low directionality and therefore multipath 

loss, latency, and beam spread. As human presence in the underwater environment 

increases, these acoustic background noise levels are ever increasing as well. This not only 

affects marine life, but also can impact acoustic sensors and networks.  

There is a growing interest in utilizing underwater optical links as a supplementation 

to acoustic networks due to their potentially high bandwidths, data rates, stealth, and 

significantly lower impact on marine life. Acoustic signals can travel kilometers, but they 

have an extremely long wavelength that limits modulation rates to the kHz. In addition, 
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these signals have very poor directionality. On the other hand, optical signals can be 

modulated at extremely high rates, but at much shorter ranges due to the attenuation of 

electromagnetic waves underwater. Because of this, the wavelengths typically used for free 

space communication links—such as infrared, radio waves, and microwaves—are only able 

to travel very short distances underwater.  

Accordingly, the study of optical signals underwater is relatively new. Cochenour 

et. al have demonstrated that for a system with a wide field of view, high-frequency 

modulated signals experience greater latency affects due to scattering particulates than 

lower frequency amplitude modulation due to photons scattering out of the ballistic signal, 

then scattering back into the field of view (FOV) of the detector, decreasing signal fidelity 

[2]. One solution is to use structured light instead of a typical Gaussian beam, which 

facilitates filtering scattered photons out of the FOV and recovering transmitted information 

at extremely low photon levels. This can be done using an optical correlation, a simple and 

elegant solution to wavefront matching that has been utilized in optical signal processing 

since at least the late 1960s [3, 4, 5]. The general idea is that incoherent light, such as solar 

background will not be transformed while coherent light which may or may not include 

scattered photons from the source will not match and will be transformed out of the detector 

FOV. 

Structured light can also be useful in increasing informational capacity of a photon, 

which is why we are particularly interested in using beams carrying OAM. There are several 

dimensions of an electromagnetic wave which can be controlled to extract or impart 

information. These include time, frequency, spatial structure, polarization, and complex 



3 

amplitude [6]. When used in a communication system, these control dimension are known 

as time division multiplexing, frequency division multiplexing (FDM), space division 

multiplexing (SDM) or mode division multiplexing, polarization division multiplexing 

(PDM), and quadrature amplitude modulation (QAM). Each of these dimensions can be 

combined without loss of information thus increasing the information carried by each 

photon. It is common practice to increase the data rate of a bandwidth limited system by 

combining as many of these controllable dimensions as possible. For example, SDM can be 

combined with PDM and QAM to maximize data transmission [7, 8, 9]. This is desirable 

because of the harsh environment as will be discussed in the following section. 

1.2. Underwater Communications 

Underwater acoustic transmissions have been well established for long distance 

underwater communications, but are lacking in data rate and security, making optical signals 

an attractive supplement for underwater wireless communications. Fiber-optic 

communications are a viable option for static transmitters and receivers but can be 

unsuitable for underwater vehicles, divers, etc., where tethering would limit operation. As 

mentioned above, traditional radio and microwave frequencies exhibit significant 

attenuation in seawater due to absorption, conductivity, and turbidity of the environment 

which is caused by impurities such as salts, floating sediment, or even microscopic 

organisms. The composition of the environment can significantly impact the optical signals. 

Generally, light in the blue/green range has been found to exhibit minimal absorption 

through water with wavelength depending on the composition [10, 11]. Visible light in the 

blue and green wavelengths have been used to successfully demonstrate links with 
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propagation distances of over 100 meters underwater [12, 13] and is therefore an exciting 

possible option for short-ranged wireless underwater optical (WUO) systems. 

WUO links are primarily affected by absorption and scattering [2].  The attenuation 

of non-scattered light is characterized by the attenuation coefficient, c, which is the sum of 

the absorption coefficient and the scattering coefficient. Typical scattering coefficients for 

common underwater environments are shown in Table 1.2.1.   

Table 1.2.1 Typical Ocean attenuation coefficients [14]. 

Water Type Absorption (m-1) Scattering (m-1) c (m-1) 

Pure Sea  0.053 0.003 0.056 

Clear Ocean 0.069 0.080 0.150 

Coastal 0.088 0.216 0.305 

Turbid Harbor 0.295 1.875 2.170 

 

The non-scattered or ballistic signal attenuates exponentially according to the Beer-Lambert 

law [15]:  

   expoP P cz  , (1.1) 

where P  is the received power, 
oP  is the initial power of the transmitted signal, and z  is 

the physical range that the signal travels.  The product, cz , is the attenuation length.  The 

absorption spectrum of water promotes operation of WUO links at blue/green wavelengths, 

with the ideal wavelength varying depending on the properties and particulate composition 

of the local water source. In fact, simply switching to a 1 μm source increases the attenuation 

coefficient by over 3 orders of magnitude. Most optical communication components and 

systems are designed and optimized at 1064 nm and 1550 nm, while devices for operation 
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at blue/green wavelengths are rare. For this reason, some of the work presented in this 

dissertation is presented using infrared wavelengths to demonstrate the proof of concept. 

The Beer Lambert law gives the power attenuation of only the ballistic photons.  The 

received power given in equation 1.1 decays exponentially proportionally to the attenuation 

length cz of the environment. In reality, the receiver can have a large field-of-view (FOV) 

such that some of the scattered photons can end up collected by the receiver. For higher 

particulate concentrations or long propagations distances, where cz is significantly large 

receivers can collect photons that have scattered multiple times. For illustration, this is 

typically noticeable when cz >~10 for a FOV of ~5°, and is commonly referred to as the 

multiple-scattering regime and results in scattered light dominating the total received signal. 

The start of this region changes depending on the scattering properties of the particulates 

and the system FOV [2, 16, 17].  

An example is shown in Figure 1.2.1 from [18]. In this work we examined the 

propagation of beams carrying OAM through laboratory simulated underwater scattering.   

The scattering environments were simulated using Equate® liquid antacid and polystyrene 

beads to create mie scattering. The liquid antacid is comprised of aluminum hydroxide and 

magnesium hydroxide particles which vary in size and shape but are on the order of 10-100s 

of microns. The polystyrene beads were 930 nm in diameter and are spherical. Thus, the 

scattering properties are expected to be different and show that the receiver collects a higher 

amount of scattered light for the liquid antacid than the beads. Interestingly there is more 

power collected at the receiver that is dependent on charge number, a value used to quantify 
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the degree of OAM that a beam carries and will be described in the next section, but this is 

most likely due to beam size after propagation than an effect of the OAM. 

 

Figure 1.2.1 Underwater propagation of amplitude modulated spatial modes 

carrying orbital angular momentum, showing the attenuation divergence from 

the Beer-Lambert law after cz is greater than ~10 [18]. 

The underwater environment is bandlimited by scattering and absorption. By 

encoding information onto different photon dimensions – such as its complex amplitude, 

polarization, spatial structure, frequency, or in time – we can increase the spectral efficiency 

of the link, where the spectral efficiency η of the link is defined as the channel capacity in 

bits per second divided by the link bandwidth. Shannon’s theorem limits the data capacity 

of a given link  2log 1 /  S N   , where S/N gives the signal-to-noise ratio (SNR) of the 

link. When examining the maximum spectral efficiency of a modulation scheme, in general 

the more complex the modulation scheme, the closer the scheme can approach Shannon’s 

limit but at the cost of a higher SNR requirement. This work will primarily focus on 
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encoding information in the spatial structure of a photon in combination with the beams 

complex amplitude. 

1.3. Orbital Angular Momentum 

In 1992, Les Allen et. al. showed that light beams with helical wavefronts can carry 

OAM [1]. The helical wavefront is commonly expressed using the OAM phase term       

exp(-imθ), where i is the imaginary unit, θ is the azimuthal angle and m is the charge number. 

The charge number m in this work is used to describe the average OAM carried by each 

photon, it can be thought of as the number of 2π helical twists over one wavelength. A 

linearly polarized monochromatic electric field, propagating in the +z direction and carrying 

OAM, can therefore be expressed in vector form by 

       , , , , , cos 2 , , ˆ
m mr z t A r z kz t r z m x          (1.2) 

where k = 2πnν/c, n is the refractive index of the dielectric medium in which the light is 

propagating, c represents the velocity of light in vacuum,  is the optical frequency and 

Am(r,θ,z) and ϕ(r,θ,z) are the amplitude and phase, respectfully of the wave at any position 

(r,θ,z). In this work, we are able to use a scalar representation of the electric field because 

the diffracting structures are very large compared with the wavelength of light [5]. Therefore 

we can generally use the scalar representation in phasor form: 

       , , , , , exp , ,m mU r z t A r z i r z im        (1.3) 

The OAM term imparts an azimuthal phase dependence on the beam that appears as 

a 2π phase that ramps m times over one wavelength as shown in Figure 1.3.1. This spiraling 

of the wavefront gives OAM-carrying beams unique properties such as handedness, angular 
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momentum proportional to m, and mode orthogonality for integer values of m. For these 

reasons, OAM has been explored for use as optical tweezers [19, 20], imaging [21, 22], 

quantum information processing [23, 24], and also in atmospheric free space optical links 

[25, 26].   

 

Figure 1.3.1 Three beams carrying OAM are illustrated, one without OAM 

(m=0), one with m=1, and one with m=2. Illustrations of the wavefront are 

shown, in addition to cross-sectional intensity profiles and optical wavefronts. 

i. Incoherent underwater propagation 

By taking advantage of the modal orthogonality, we were the first to demonstrate 

the use of OAM states in a SDM WUO link to increase the bandwidth of the underwater 

link despite an optically and temporally bandlimited channel [7]. In this work we 

demonstrate the incoherent superposition of two OAM states and successful modulation and 

separation of the signals after propagation through a turbid underwater environment. The 

setup is shown in Figure 1.3.3. The optical sources are two ThorLabs LDM9LP pigtailed 

laser diode mounts and output unpolarized light at 445 nm. The transmitter is comprised of 

two beams co-aligned using a non-polarizing beamsplitter. OAM is imparted onto each 

beam using spiral phase plates, the operation of which is illustrated in Figure 1.3.2 where 

the planar wavefront passes through the spiral phase plate. This phase plate has a varying 

azimuthal thickness, which produces the helical wavefront after the optical signal 
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propagates through due to the refractive index of the material. More details on optical 

fabrication are found in appendix A. The receiver is comprised of another non-polarizing 

beamsplitter to split the signal into two parts, where each is sent to an optical correlator 

designed to correlate with each transmitted mode. The beam profiles at one of the receivers 

are shown in Figure 1.3.4, where the bright center is collected on a detector. From this figure 

it is clear that there is minimal crosstalk between the modes because the correlator pushes 

the non-correlated beam outside of the detector field of view.  

 

Figure 1.3.2. Generation of OAM beams using spiral phase plates for charge 

numbers            (a) m = +1 and (b) m = -1 

  

Figure 1.3.3. Photographs of the (a) transmitter and (b) receiver 
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Figure 1.3.4 Demultiplexed image distribution of a (a) m = -8, (b) m = +8 and 

(c) m = ±8, all after propagating through the correlation optic for m = +8 and a 

(d) m = -4, (e) m = +4 and (f) m = ±4, all after propagating through the 

correlation optic for m = +4.  

In this work, we demonstrated the successful simultaneous transmission and 

recovery of two 1.5 Gbps amplitude modulated signals using the incoherent combination of 

different OAM states. This is possible due to the orthogonality of different OAM charges, 

but also demonstrated that the wavefronts are minimally impacted by the scattering 

environments. More recently, this method was used to demonstrate a 40-Gbps link [9] and 

was also combined with PDM [8]. 

The study of the propagation of OAM states in underwater environments is of 

growing interest and there are many interesting discoveries. The optical wavefront is 

recoverable and are orthogonal despite propagation through turbid environments [25, 7]. It 

has also been shown that different OAM states have different scattering cones depending 

on the charge number [18, 27, 28]. The main question is to what extent we can exploit the 
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spatial aspects of OAM while still recovering the signal such that we can improve WUO 

links. 

1.4. Structured Light 

In order to exploit the spatial properties of OAM, we need easy ways to generate the 

modes. There are several common techniques used to create structured light using both 

passive and active techniques. For the purpose of this work we will focus on methods that 

are used to generate beams carrying OAM. Passive techniques include cylindrical lenses 

[29], spiral phase plates [30], metamaterials [31], and geometrical transformations such as 

the log-polar transformation [32, 33, 34].  Active techniques include spatial light modulators 

[35, 36, 37],and liquid-crystal q-plates [38].  

By coherently superimposing beams carrying OAM, the spiraling wavefronts 

interact to create unique azimuthally periodic interference patterns. An example is shown 

below 

 

Figure 1.4.1 The coherent combination of two opposite-handed helical 

wavefronts produce azimuthally distributes interference fringes. 

There are countless interesting applications of structured light including structured 

light illumination for computational imaging, compressive sensing, wavefront control 
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through turbid/turbulent media. On the communications side, structured light can be used 

in space-division multiplexing or mode-division multiplexing in addition to use as a carrier 

for amplitude modulation.  

When using optical signal underwater, it is important to have elements that can 

handle higher power applications due to the high attenuation of the environments. 

Therefore, spatial light modulators and liquid crystal devices are not ideal due to their lower 

damage thresholds. These elements are also relatively slow, having modulation rates on the 

order of 30 Hz for most common devices.  

This work will present four techniques of generating structured light, each with their 

own advantages and disadvantages and all exploiting the wavefront of beams carrying OAM 

to generate the structured light modes. The first employs a single optical phase plate etched 

with two concentric OAM wavefronts. The second employs a Mach-Zehnder interferometry 

system to create two different and coherent and co-aligned OAM (CCOAM) wavefronts 

and then combine them using superposition. The final two use a series of geometrical 

transformations including two cylindrical lenses known as the HOBBIT (Higher Order 

Bessel Beams Integrated in Time) system.  

The HOBBIT system uses optical geometrical transformations to creates beams that 

carry OAM. The first implementation of the HOBBIT system linearly converts a 

displacement into beams carrying OAM. For example, a fiber array with four outputs could 

be used as the input to the system to create four OAM beams with equally spaced charge 

numbers. The second implementation utilizes the HOBBIT system in conjunction with an 

acousto-optic deflector (AOD) cell, combining both passive and active elements to create a 
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highly dynamic system that linearly translates the deflection from the AOD into a 

corresponding OAM charge. This second system can be used both to rapidly switch modes 

and also precisely control the wavefront.  

1.5. Peer work and state of the art 

As mentioned above, there is a plethora of applications using structured light and 

OAM states; therefore the generation and control of structured light has been studied in 

various systems. 

In 2018,  we demonstrated a multilevel quadrature amplitude modulation (QAM) 

equivalent technique without using amplitude modulation to increase data throughput by 

mapping spatial structure to a 2D vector space using interferometry and phase modulators 

[39]. Later in 2018, we showed that by adding amplitude control we can create a 3D-QAM 

equivalent scheme by mapping spatial structure to a 3D-vector space that is a higher-order 

Poincaré equivalent sphere for these structured modes [40]. In 2019, Zhao et. al. 

demonstrate an interesting technique of generating beams with spatiotemporal control using 

multiple optical frequency comb lines [41]. 

On the sensing side, structured light has been used in computational imaging 

applications. In 2009, Jack et. al. demonstrated ghost imaging using a spatial light modulator  

(SLM) to create coupled OAM states [22]. In 2013, Lavery et. al. used coupled OAM states 

generated using an SLM to detect a rotating object [42]. In In 2016, Ryabtsev et. al. 

demonstrated the use of OAM states to measure vorticity in fluids also using an SLM to 

generate the modes [43]. In 2017 Akhlagi and Dogariu demonstrated the use of stochastic 

structured light to track objects that are visually obscured by turbid environments [44].  In 
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2017, Cochenour et. al. demonstrated object detection in a turbid underwater environment 

using beams carrying OAM [45]. In 2020, Watkins et. al. showed the potential application 

of characterizing atmospheric turbulence using a continuous scan of OAM states [46].  

In 2014, Strain et. al. demonstrated OAM mode switching at speeds of 10 and 20 μs 

using a compact vortex emitter operational at near-infrared wavelengths [47]. In 2017, Lei 

et. al. demonstrated a high capacity router that was able to create 49 OAM channels with 

switching speeds of 6.9 μs [48]. Log-polar optics designed to perform a geometrical 

transformation of an optical signal from Cartesian coordinates to a log-polar coordinate 

system were first presented in 2010 by Berkhout et. al. [49], though the optical 

transformation had been studied in other optical applications previously to create rotation 

invariant optical systems [50]. In 2016, Ruffato et. al. demonstrated using the optics in 

reverse to create OAM states [34]. In 2019, Li et. al. demonstrated a tunable OAM generator 

with a switching speed of 2.3 μs [32]. In 2019, Ruffato et. al. explored overcoming 

limitations of the log-polar optics [51]. In 2020, Dai et. al. demonstrated wavelength 

scalability of OAM generation using the HOBBIT system and second harmonic generation 

[52]. 

For higher degrees of control, coherent combinations of OAM states have been 

explored. In 2001, Mair et. al studied entangled OAM states using spontaneous parametric 

down conversion to generate the states [53]. In 2014, Krenn et. al. used these same modes 

in a 3 km atmospheric communication link using a SLM to generate the wavefronts of OAM 

combinations at speeds of 20 s [36]. In 2014, Anguita et. al. explored various combinations 
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of OAM states to create highly complex intensity profiles using a spatial light modulator 

[54].  

1.6. Motivation 

Principally, the work presented in this dissertation has the goal of controlling 

structured light modes created with CCOAM states for underwater environments in order 

to increase the spectral efficiency of a given link. In the future, we will utilize the control of 

these mode to create sensor systems to characterize the underwater and maritime 

environments. It has been well established that electromagnetic communication and sensing 

systems are flip sides of the same coin. They both face the similar environmental issues, 

only one is trying to compensate or work around environmental factors, while the other 

quantifies those same factors. In addition, modulation rates can be vastly different. Also, 

visible light signals can provide higher resolution than is achievable through the traditional 

acoustic signals, has better directionality and therefore security, and finally has a much 

lower impact on marine life.  

The primary areas of interest are as follows: how well do these beams hold up in 

harsh underwater environments and how precisely can we control and manipulate the 

beams. Answering these questions will pave the way for the use of these beams. First we 

must examine the spatial structure of these modes after propagation through harsh 

environments and determine whether or not this spatial structure is compromised when 

controlled and manipulated at high rates. Second, we must examine how precisely we can 

control and manipulate these basic combinations. Thirdly, we must ensure the power 

scalability of mode generation for future applications by combining the system with a pulsed 



16 

source. Answering these three questions will promote and enable the future study of 

CCOAM states as a remote sensor, imager, or communications tool. 

1.7. Dissertation Outline 

In this dissertation, chapter one discusses the motivation and background of our 

work as well as the state of the art of related works. 

Chapter two will introduce a passive optical element called a concentric phase plate 

that can be used to create structured light by creating CCOAM modes. The resulting 

wavefronts will be compared to simulation to explore beam development during 

propagation as a result of concentric phase plate design. Three different concentric phase 

plates will be used to create structured light that will then be propagated through a turbid 

environment to explore how robust these modes are. We will also apply an amplitude 

modulation to the signal to demonstrate communication capabilities of these specific beams 

in maritime  environments. 

Chapter three will discuss two alternative systems that can generate light in a similar 

manner to the concentric phase plates but will open up additional degrees of freedom in the 

control of the wavefront. The first is a Mach-Zehnder interferometry system used to create 

CCOAM states and the second is a geometrical transformation system referred to as the 

HOBBIT system which uses a series of optical transformations to create both OAM and 

CCOAM states. System and modal similarities and differences will be explored as well as 

system drawbacks. The results show that phase control can add an additional degree of 

control that can be precisely manipulated in order to increase data capacity of a link even 

through high scattering environments. 
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Chapter four will introduce an acousto-optic deflector (AOD) to the HOBBIT 

system and discuss the functionality of this system for generating multiple CCOAM states. 

It will introduce optical Doppler effects on the electromagnetic wave as a result of 

propagation through a traveling acoustic wave. Finally it will cover the combination of the 

system with a pulsed source to demonstrate imaging of the AOD-HOBBIT system. 

Chapter five will summarize the studies throughout the dissertation and outline the 

future research.   
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CHAPTER TWO 

STRUCTURED LIGHT USING PASSIVE OPTICS 

2.1. Introduction 

Previously we have examined the propagation and modulation capabilities of 

incoherent OAM states with symmetric profiles in WUO systems [7, 18].  In this chapter 

we will explore spatial profiles generated using concentric spiral phase plates to create 

combinations of coherent OAM states. The concentric OAM states produce interference 

patterns with azimuthally periodic locations of constructive and destructive interference due 

to the OAM phase terms. Typically, CCOAM states are created through free space 

interferometric setups such as the Mach-Zehnder interferometer and require extremely 

precise alignment [20, 54]. Free space interferometry is heavily dependent on coherence 

length and therefore, precision of alignment and optical path length are typically critical.  

Instead, the states can be generated using a single diffractive phase plate (DPP), which 

allows us to use a source with short coherence length to study these beams.  Diffractive 

optical elements are designed and fabricated to realize three different CCOAM states at 450 

nm. The propagation of these beams through turbid water is studied to determine their 

suitability for future underwater optical links.    

2.2. Passive optical elements: diffractive phase plates 

In this work, we use DPPs to generate the CCOAM states. These optics operate 

similar to the spiral phase plates introduced in section 1.3. These passive optics have several 

advantages over SLMs. First, the optics have 100% fill factors, which have unparalleled 

efficiency. The resolution of SLMs is limited to the pixel size and coding scheme, whereas 
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the resolution of diffractive optics is limited only by the fabrication technique used. 

Additionally, because these devices are comprised of fused silica glass, they can be utilized 

in high-power optical systems, whereas SLMs could sustain damage. Additionally, using a 

fused silica DPP does not have any thermal or electrical requirements since it is a purely 

passive optical component. 

The DPPs consist of the concentric combination of two spiral phase plates, one 

inside the other. The inner portion has counter-clockwise phase wrap of  1 2m   and the

outer region has a clockwise phase wrap of  2    2m  , where m1 and m2 represent the 

respective OAM mode indices. The phase profile of a concentric DPP is given by 
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where θ and r are polar coordinates. The values of r1 and r2 determine the radius of the inner 

and outer OAM phase plate respectively. The three fabricated phase plates are shown in 

Figure 2.2.1 with more details given in Appendix A. 

Figure 2.2.1 Schematic drawing of the concentric DPPs with (a) m1 = 1 and m2 

= -2 (b) m1 = 1 and m2 = -4 and (c) m1 = 2 and m2 = -4.  
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 If the phase element represented in equation (2.1) is illuminated with a Gaussian beam, the 

resulting beam at the optic planecan be represented in scalar form as: 
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(2.2) 

A proportionate percent of power is passed through the inner and outer portions of 

the DPP in order to form the interference patterns, illustrated in Figure 2.2.2. The limits of 

equation 2.1 and 2.2 are derived from the power in a normalized Gaussian Beam. When the 

ratio of r to w0 are altered, the resulting interference patterns change as shown in Figure 

2.2.3(a-c).  
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Figure 2.2.2. Schematic diagram for concentric vortex beam generation by the 

DPP with (a) m1=1 and m2=-2, (b) m1=1 and m2=-4, and (c) m1=2 and m2=-4 

showing propagation of a Gaussian beam through the optical element 

(Dimension unit: mm) 
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Figure 2.2.3. Three meter propagation of a Gaussian after passing through DPPs 

with (a) m1 = 1 and m2 = -2 (b) m1 = 1 and m2 = -4 and (c) m1 = 2 and m2 = -4 

for three different power ratios passing through the inner and outer OAM plate. 

(d) Bucket power of a Gaussian beam as a function of bucket radius r

normalized by the Gaussian beam waist w0. 

Figure 2.2.3 shows that by changing r/w0, the intensity profiles are minimally 

impacted. Additionally, the resulting power passing through the inner portion as a function 

of incident Gaussian beam waist is plotted in Figure 2.2.3(d). The concentric vortices 

examined in this paper and the interference of OAM modes are quite similar in nature and 

have yet to be investigated for their propagation properties through turbid media or 

underwater propagation.  

As the beam propagates, the two portions diverge and combine both as a result of 

the divergence of the OAM beam [55] and the discontinuity at r1. 
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Figure 2.2.4. Illustration of beam development for the propagation of the three 

concentric vortices through a lens with focal length = 1.0 m. (Dimension unit: 

mm) (a) m1 = 1 and m2 = -2 (b) m1 = 1 and m2 = -4 and (c) m1 = 2 and m2 = -4

The resulting intensity profiles shown in Figure 2.2.4 experience a slight left-handed 

rotation due to the natural divergence of the beam components [20]. By exploiting Gouy 

phase, this handed nature can be used to determine distance protection. When these profiles 

are passed through a lens, the beam appears to rotate until the focal plane where the phase 

shifts and the resulting output appears to rotate in the opposite direction, shown in Figure 

2.2.4. Additionally, it can be observed that the interference fringes also rotate with 

propagation. For the case of superimposed optical vortices where the relative phase of the 

two beams, δ, remains constant, the resulting angular change in the profile position between 

two points along the direction of propagation is defined as 
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where  1tan / Rz z   is the Gouy phase and Rz  describes the Raleigh range [20]. By 

combining this property with image processing technologies, these intensity profiles could 
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be used to probe an environment and obtain ranging information. It is important to note that 

the relative phase cannot be changed on the optics after fabrication. In order to induce 

rotation, one can simply rotate the optic. 

2.3. Simulation results 

A numerical implementation of the Rayleigh-Sommerfeld diffraction integral [5] is 

used to simulate the development of these beams through a non-scattering environment, and 

given by 
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where  ,pU x y  is the electric field at the observation point  ,p x y ,  ,u    is the electric

field within the aperture and in this case is defined by equation 2.2, and z  is the propagation 

distance from the input plane where the phase optic is illuminated to the plane where the 

point  ,p x y  is located.

For this simulated propagation,  ,u    has r1 = 0.625 mm, r2 = 2.5 mm and w0 =

1.15 mm, matching the design specifications used in the experiment. In this case, 

approximately 45% of the Gaussian power passes through the inner vortex while 55% 

passes through the outer.  

Additionally, these beams must travel some distance before the interference patterns 

form properly as can be seen in Figure 2.2.2. Intensity profile images were captured in air 

at different distances from the phase plate and compared to simulation results for the same 
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corresponding distances, illustrated in Figure 2.3.1, in order to demonstrate the development 

of the spatial profile. These intensity profiles are imaged in the near-field. Therefore, the 

profiles will continue to morph as they travel through the link, yet from Figure 2.3.2 it is 

apparent that after propagation of 1 meter through water, the change in intensity profile is 

negligible. At a wavelength of 450 nm, water has a refractive index of approximately 1.34  

and was utilized to extend the optical path length of the simulation after the propagation 

through air. 

 

Figure 2.3.1. Propagation simulation in air of the development of concentric 

vortex beams of intensity profiles after propagation through corresponding 

concentric phase plate (a). 
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Figure 2.3.2. Simulated concentric vortex development after (a) 0.5 m, (b) 1.0 

m, and (c) 3.0 m through water channel after 1.11 m propagation through air. 

2.4. Experimental results 

To examine the effects of a turbid environment on the propagation of these 

concentric vortex beams, two types of measurements were performed with a free-space link. 

The first type of measurement was performed using a setup illustrated in Figure 2.4.1. The 

light source was a mounted ThorLabs LDM9LP laser diode operating at 450 nm, 

corresponding to the approximate absorption minimum in clear ocean water. The output 

power was controlled electrically with a DC Bias current. The output from the fiber pigtail 

is connected to a collimator and then expanded using a Keplerian telescope system to 

achieve a collimated Gaussian with a 2.3 mm diameter. The Gaussian beam is then passed 

through the diffractive phase plate and propagates approximately 1.11 meters before 

entering the water channel. This distance was selected such that the interference between 
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inner and outer generated vortex beams have propagated far enough to give a distinct pattern 

when comparing constructive and destructive interference, seen in Figure 2.3.1, while still 

able to capture the entire beam on the CCD (charge coupled device) array after propagation 

through the water channel as simulated in Figure 2.3.2. This also tells us that these beams 

are still partially developed until propagation of about 1 meter into the water channel. 

Afterwards, these beams continue to propagate the remaining 1.96 meters through the water 

channel.  

 

Figure 2.4.1. Schematic overview of the link. 

Liquid antacid was used to increase turbidity in the water channel, this substance 

has long been used to emulate oceanic conditions [56]. The attenuation coefficient of each 

solution was determined by measuring the laser power before and after the water channel, 

and attenuation according to the Beer Lambert law was verified. After transmission through 

the channel, the attenuated beam is imaged onto a WATEC 902-H2 visible CCD camera. 

The collected images are processed to calculate the correlation coefficient between the 

clear-water case and turbid cases.  

The calculation of the coefficient was done using the 2-dimensional form of the 

Pearson Product moment, given by 
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In this equation, A and B are two D by E images, where 
deA corresponds to the pixel

value in image A at location [d,e], 
deB gives the pixel value in image B at location [d,e], and 

the first moment of image A and image B are expressed as 
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The correlation coefficient is calculated for the whole image where D = 512 pixels 

and E = 480 pixels and the pixel pitch is 9.8 μm. Individual shifts in the image were 

corrected for prior to computing the correlation coefficients. It is important to adjust for any 

slight misalignments of the CCD array from successive measurements which can be caused 

by replacing the water in the channel. Rotation of the images was not an issue, since these 

beams do not show any rotation with increasing turbidity and the optical path length does 

not significantly change between runs. 

The intensity profiles of the propagated concentric vortices after propagation 

through clear and highly turbid water are shown in Figure 2.4.2. These images are 

juxtaposed with the corresponding simulated beam using the optic described in equation 

2.1. The clear water images approximately match that of these simulations. The irregular 
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intensity distribution between the interference fringes can be attributed to a slightly oblong 

incident Gaussian beam. After propagation through the turbid environment the low 

frequency information in the intensity profile sees very little distortion. The scattering is 

obvious from the high frequency intensity profile information as a result of the scattering 

medium.  To quantify this scattering contribution, a correlation coefficient is computed for 

the beams without scattering agents added to the water and at various points with increasing 

scattering as a result of increasing the liquid antacid concentration. 

 

Figure 2.4.2. Intensity profiles for (a) simulated propagation through air with 

an equivalent optical path length (OPL) of approximately 5.1 m from the phase 

plate, (b) propagation with through cz ≅ 0.2, and (c) cz ≅ 13. 

The correlation coefficients calculated for each case are compared in Figure 2.4.3. 

As the attenuation coefficient of the water channel is increased, the correlation coefficient 

for each beam decreases. This is a result of light scattering into the CCD array, which 
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produces distorted images while reducing the contrast of the image. These correlation 

coefficients are comparable to that of a Gaussian beam despite having a more complex 

intensity profile. Each calculated coefficient is well over 0.9, where 1 corresponds to perfect 

correlation and 0 to no correlation. This indicates excellent preservation of the spatial 

profiles despite propagation through extremely turbid conditions. 

Figure 2.4.3. Comparison of correlation coefficients after propagation through 

3 meters of turbid media showing excellent correlation (>>0.9)  

In addition to investigating the integrity of the spatial beam patterns, a second 

measurement was made to characterize the temporal characteristics of the link. Amplitude 

modulation will determine whether the increase in turbidity will impact data rates of 

standard binary amplitude modulation of the 450 nm laser. The original setup was modified 

to the design indicated in Figure 2.4.4. A signal consisting of a 32-bit, pseudo-random, M-

series, on-off keying, non-return-to-zero (OOK-NRZ) bit sequence operating at 1.5 GHz 

was generated using a Tektronix AWG615, Arbitrary Waveform Generator. This signal was 
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then amplified using a 10 dB Picosecond Pulse Labs 5828-MP amplifier, and combined 

with a DC bias current through a bias tee located in the ThorLabs LDM9LP pigtailed laser 

diode mount. The AWG output signal was optimized for the diode such that after the 

amplifier the AC current was 50 mA peak-to-peak with a DC bias of 60 mA.  

 

Figure 2.4.4. Schematic overview of setup modification for modulation 

implementation. 

 

After propagation through the link, the optical signal was focused onto a Menlo 

Systems APD210 Si Avalanche PhotoDetector (APD) using a 300 mm focal length lens. 

The converted electrical signal was fed directly into a Tektronix TDS8200 digital sampling 

oscilloscope. An eye diagram was created using a collection of 1000 waveforms and is 

shown in Figure 2.4.5, for each concentric vortex. The mean and standard deviation of the 

upper and lower rails were measured on these eye diagram using a histogram. The window 

used was measured from 40% to 60% of the bit period. These values were used in estimating 

the bit error ratio (BER) of the signal using the formula below for equal probability signals 

for “1” and “0”: 
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where j and j  are the mean and standard deviation of the signals j  = 0 or 1, 
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and 
thV is the threshold voltage of the received signal given by 

0 1 1 0

0 1

thV
   

 





. 

(2.10) 

The BER was measured for clean and turbid water with an attenuation coefficient 

of approximately 0.27cz   and 1.48cz  , respectively. Higher coefficients were not 

measured due to the low signal power at these higher turbidities causing a decrease in the 

signal-to-noise ratio of the APD. The field of view was limited by the 300 mm focal length 

lens and the 0.5 mm detector diameter. The full-angle field of view was calculated to be 

0.02 using  1AFOV 2 tan / 2h f   were h is half of the detector diameter and f  is 

the focal length of the lens. 

Figure 2.4.5. Eye diagrams from the CCOAM stats with (a) m1=1 and m2=-2, 

(b) m1=1 and m2=-4, and (c) m1=2 and m2=-4

The BER of each eye diagram was estimated using equation 2.8 and is reported in

Table 2.4.1. It is most likely that the higher BERs for the larger charge numbers can be 

attributed to the increased divergence. This will result in a higher percentage of the signal 
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collected by the APD. Additionally, signal modulation at 1.5 GHz showed no degradation 

over the turbidities tested. The consistencies are promising, but because measurements were 

limited, more work needs to be done exploring the effect of higher turbidity on modulation. 

Widening the field of view and decreasing the photon count would lend more insight into 

the characterization of temporal scattering.  

Table 2.4.1. BER of propagated beams. 

State cz=0.27 cz=1.48 

Gaussian 5.96⋅ 10−4 5.96⋅ 10−4 

m1=1 and m2=-2 5.47⋅ 10−4 5.34⋅ 10−4 

m1=1 and m2=-4 5.39⋅ 10−4 5.71⋅ 10−4 

m1=2 and m2=-4 6.32⋅ 10−4 6.74⋅ 10−4 

 

 

The BERs are below the limit of 410  for a system utilizing forward error correction 

(FEC) techniques. The consistency of the correlation coefficient, in addition to successful 

modulation demonstrates the ability to maintain the more complex spatial profile despite 

extreme turbid conditions. It is important to note that these beams encountered minimal 

turbulence and it would be interesting to examine the response of these beams to turbulence 

as well. Furthermore, it will be useful to examine other combinations of concentric vortices 

in order to further explore the propagation properties 

2.5. Summary 

The use of a single optical element, the concentric DPP, is a simple method of 

generating the CCOAM states through interferometry.  Segmenting the optical element 

eliminates the need for free space interferometric methods, which minimizes alignment 

constraints when studying non-dynamic modes.  This is also important for optical sources 

with short coherence lengths, as is typical in GaN laser diodes in the 450-470 nm spectral 
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range.  DPP elements are also very efficient in the generation of such beams and can 

withstand high power densities if necessary.  In this chapter, three different concentric DPPs 

were designed to generate three combinations of CCOAM states; however, more complex 

beams could be possible, such as the combination of 3 or more states. 

The three CCOAM states were propagated through a water channel to investigate 

the spatial and temporal characteristics of a free-space underwater communication link 

using CCOAM structured light modes through highly turbid environments. The scattering 

levels investigated herein are comparable to that of highly turbid ocean harbors. Despite the 

propagation through approximately 13 attenuation lengths, well within the multiple 

scattering regime, the spatial profiles were maintained as demonstrated with correlation 

coefficients in excess of 0.97 as when compared with the lowest attenuation case. This 

preservation of beam quality and temporal modulation is quite promising for 

communication, imaging, and sensing applications in oceanic environments.   

In addition, to understand the impact on directly modulating the optical source and 

its impact on a binary data communication channel, high data rate modulation was 

demonstrated at 1.5 GHz for conditions exceeding that of a coastal ocean.  The BERs 

realized were on the order of 10-4 for the OOK-NRZ pulses from a directly modulated 450 

nm GaN laser diode. Increasing receiver aperture and field of view stands to extend the 

operating range of the optical link, though the contribution of multiply scattered light will 

warrant additional study on the behavior of OAM states as well as the high speed data it 

carries. One feature of this approach is that multiple concentric vortices can be used to 

increase the data rate by realizing parallel optical channels.  
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In this chapter we were the first to examine the propagation of these CCOAM beams 

through underwater turbid environments. We showed that these structured light modes can 

be easily created using DPPs consisting of concentric spiral phase plates, even for sources 

with low coherence. In addition, we found that the spatial structure of these modes is well 

maintained even after propagation through extreme turbidity. Finally we demonstrated that 

information can still be transmitted using these structured modes in a manner similar to the 

incoherent SDM OAM system presented in chapter 1. The spectral efficiency of the link 

created in this work is not improved (η ≤ 1) over that of a simple amplitude modulated 

Gaussian beam, because there is no dynamic control over the mode structure, but we do 

know that physically rotating the DPPs produces a rotation in the interference fringes. 

Naturally, this led us to wonder if there could be an advantage to using a different setup so 

that we can more dynamically control these modes, such as a Mach-Zehnder interferometry 

setup.  
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CHAPTER THREE 

DYNAMIC STRUCTURED LIGHT USING 

COHERENT COALIGNED OAM 

3.1. Introduction 

From the previous chapter, we found that we can easily create CCOAM beams using 

a single optical element. If instead we use separate components to create the OAM beams 

then coherently couple them together using interferometric techniques such as a Mach-

Zehnder interferometer (MZI), we gain an additional degree of freedom for dynamic control 

[57, 58]. The MZI setup is not ideal because combinations are not limited to two beams 

[59], alignment can get complex, and each additional beamsplitter will produce a 3 dB 

power loss. By using interferometry we will be able to control the relative phase between 

the two interfering modes at rates that well exceed that of a SDM. These types of signals 

are commonly used in the study of quantum entanglement and the control is used to verify 

the Bell inequality. CCOAM beams for quantum entanglement are typically generated at 

very low powers using an SLM, neither of which are acceptable for communications.  

Phase control will enable CCOAM modes to be used to rapidly manipulate the beam 

profile in space and time, opening up an additional dimensionality for encoding information 

using phase modulation [60, 40]. Traditional methods of encoding information on the 

amplitude of the signal are highly effective in typical cases, but can be disadvantageous in 

underwater environments where power scalability is important. 

As discussed in the previous chapter, CCOAM beams can be created using 

concentric DPPs and result in azimuthally periodic locations of constructive and destructive 
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interference depending on the OAM charge numbers chosen. The same is true for two 

interfering OAM states combined using an MZI. For the most basic case of two identical 

beams with equal but opposite charge numbers, equation 1.3 can be re-written as 
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(3.1) 

where Am(r,θ,z) defines the amplitude profile of the beam and is dependent on the method 

of mode generation in spatial coordinates, ρ controls the total power of the signal, χ controls 

the power ratio between the two states, and δ is an additional phase difference. Equation 

(3.1) shows that we have temporal control of (ρ,χ,z) in addition to our choice of m. For a 

beam propagating through a spiral DPP, the amplitude profile can be represented by a 

Laguerre-Gaussian component given by [61]: 

       

 
  

2 2

0
02 2

2

2 2 2
exp

( )!

exp exp

( , , )

2

m

m

m

w r r r
A L

w z w z w z w zm

r
ik i z

R z

r z






     
            

     

 
  
 

(3.2) 

where 0

m

pL   are the generalized Laguerre polynomials, w(z) is radius at which the field 

amplitude falls to 1/e, w0 is the beam waist, R(z) is the radius of curvature, and ζ(z) is the 

Gouy phase at z. These modal combinations can be mapped to a Hilbert space similar to the 

higher-order Poincaré sphere used to map polarization vector beams. Instead we will be 

using the higher-order Poincaré equivalent sphere (HOPES) [62] to represent the modal 
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combination given by equation 3.1. A general concept is given in Figure 3.1.1 which 

illustrates control of both the relative phase δ and total amplitude ρ for the coherent 

combination of m = +1 and m = -1 with equal powers.  
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Figure 3.1.1 (a) Modulation concept illustrating Generation of CCOAM states. 

(b) Simulated output images for an 8-symbol system compared to (c)

corresponding experimental images, which can then be mapped to (d) 

constellation space on the equator of a higher-order Poincaré sphere equivalent, 

with symbol locations indicated on the equator plane where χ=π/2, and ρ and δ 

are controlled. 

For the case where both beams have equal power, χ = π/2, so the beam is mapped to the 

equator of the HOPES sphere shown in Figure 3.1.1 (d). Equation 3.1 can be simplified to 
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The two combined beams have identical intensity profiles Am and only differ in the 

helical rotation of the wavefront illustrated in Figure 3.1.1 (a). When they are coherently 

co-aligned, the equal but opposite wavefronts cancel producing a binary wavefront with an 

intensity profile defined by  
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(3.4) 

The intensity profile will therefore rotate on axis proportional to δ/2m, as can be seen in 

Figure 3.1.1 (b,c).  

In this chapter we will explore two interferometry techniques to create the CCOAM 

modes: a Mach-Zehnder interferometry system and a series of geometrical transformations 

known as the HOBBIT system which creates Higher Order Bessel Beams Integrated in 

Time. Both systems have their own unique advantages and disadvantages and create slightly 

different output modes.  

First we will demonstrate proof-of-concept work at 1550 nm using the MZI setup. 

Here we will demonstrate both amplitude and phase control which will allow us to fully 

access the Poincaré equivalent space. Next we will demonstrate a similar system at 532 nm. 

To create high-powered CCOAM beams in the green regime, the phase modulated CCOAM 

beam at 1064 nm is used to pump a nonlinear period poled lithium niobate (PPLN) crystal 

to generate a 532 nm signal. This complex process and its full effect on beams carrying 
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OAM is not within the scope of this work, but in general and for the following applications, 

the charge number m is doubled and this is briefly discussed in section 3.3. This is a 

nonlinear process, and is therefore extremely amplitude sensitive so this experiment will 

demonstrate precise phase-only control as these signals are used in an underwater 

communications link. 

3.2. Amplitude and phase control 

In this section we present a proof of concept for precise and rapid amplitude and 

phase control using a 1550 nm source [40]. As the basis of this work, the modulation concept 

of OAM beams is shown in Figure 3.2.1. The actual setup uses fiber-to-free space 

interferometry setup with a 1550 nm source attached to 1x2 fiber coupler. The two outputs 

of the coupler are each attached to a fiber coupled amplitude and phase modulator. The 

output s of the phase modulators are collimated and propagated through an m = +2 spiral 

phase plate which are then superimposed and co-aligned using a non-polarizing 

beamsplitter. Both optics have the same helicity because one will be flipped after reflection 

through the beamsplitter.  
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Figure 3.2.1. Setup illustration for the interference of OAM beams with 

opposite spiral phase with both amplitude and phase modulation with the 1x2 

splitter coupled into the amplitude modulators (AM) and phase modulators 

(PM). 

The relative phase delay δ between the two OAM beams is controlled using the 

phase modulators and will change the azimuthal locations of the interference fringes. As 

mentioned in section 3.1, a HOPES can be used to represent any combination of these two 

modes using the relative phase and powers of the two CCOAM states. The states are mapped 

to the HOPES using equivalent Stokes parameters [63]. By using these parameters we can 

map the position on the HOPES using four optical correlations. For more details on optical 

correlations and the HOPES, see appendix B. The full setup schematic is shown in Figure 

3.2.2 
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Figure 3.2.2. The experiment setup of the CCOAM communication system and 

the actual receiver picture. 

In this work, a discrete set of point locations on the HOPES are used as symbol 

locations in a 3D constellation map, similar to the image shown in Figure 3.1.1 (d), with 

modulation information carried on the amplitude and phase of the beam profile. To 

implement the above mentioned concept into an optical communication system, a more 

general expression can be derived for an arbitrary symbol pulse representing the complex 

field of two co-polarized coherent OAM beams, with a total power, ρ, power ratio between 

each beam, α. 
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In this case, g(t) is Gaussian pulse shaping function for the amplitude and phase and, where 

χ is the polar coordinate used to map to the Poincaré sphere. Using this expression for a 

symbol in time, a pulse train with amplitude and phase modulation can be generated by 

encoding a symbol pulse every T seconds resulting in the following 

( ) ( , , , ) ( )KNL K N L impulse

n

p t U t t nT      . (3.6) 

( , , , )KNL K N LU t   is the complex field of the CCOAM optical signals which carry the 

multidimensional amplitude and phase modulation information encoded by the phase and 

amplitude modulators using the discrete power levels, discrete power ratios and the discrete 

phase levels mapped as 3D symbol locations denoted by combination of index K, N, and L. 

When the complementary power ratios N  and 21 N  is satisfied such that the total power 

is constant with K , the symbols lie on the Kth sphere. N denotes the number of lateral 

symbol levels on Kth sphere, or the number of latitude positions of the symbols: changing 

N  moves the Nth symbol along the Z-axis between the two poles. This can be determined 

using the elevation angle of the symbols, N , using  cos / 2N   and  21 sin / 2N   , 

where [0, ]N  . The values of
N are chosen so that the mapped symbol latitudes are

equally spaced and are far enough from the poles to distinguish the azimuthal symbols. 

Experimentally, changing 
N  is accomplished by picking the proper working voltage for 

the chosen amplitude modulators shown in Figure 3.2.2, AM1 and AM2, so that the 

amplitude ratio for the two states is satisfied. On the Nth latitude, symbols are discretized 

by phase location 
L  with equal phase spacing of 2π/L where L is the number of discrete 
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phase positions of the symbols on each latitude. The relative phase [0,2 ]L  is equally 

split between the two CCOAM states by using the proper working voltages for both phase 

modulators PM1 and PM2 simultaneously and in synchronization. The function 

  2 2( / 2 )g t exp t   is the Gaussian shaping function and has a 30% pulse width τ and

pulse period of T for both the amplitude and phase modulation signals. In this work, the 

modulation rate 1/T is 1.0 GBd. 

Thus, through the amplitude and phase control of the two CCOAM states, symbols 

are mapped into 3D spherical space with K-sphere, N-latitude and L-phase. A total MKNL-

QAM equivalent 3D constellation scheme, where M=KNL. Data comprised of log2(M) bits 

can be mapped into M symbols with different spherical radius, latitude and phase positions. 

Experimental Results 

To recover the modulation information, the position of the symbols on 3D spherical 

space must be projected onto the three orthogonal axis set, which are equivalent to the 

Stokes parameters, S1, S2 and S3. The recovery of both amplitude and phase modulation 

signals utilizes an optical correlation setup similar to our previous works [7, 39]. Optical 

correlators are commonly used in many mode detection applications where a phase-match 

element is designed to match and cancel the phase profile of the incident beam to form a 

correlation peak in the detection plane by exploiting the Fourier-transformation property of 

lenses. In order to recover the 3D information, four detections are necessary: two to recover 

the amplitude modulation and two to recover the phase modulation. The on-axis correlation 

spot power in the Fourier-plane indicates how closely the phase of the incident mode 

matches that of the phase-match element. As we have shown in previous work [39], the 
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phase difference between the CCOAM beams, δ, is recoverable through two optical 

correlations with the azimuthally offset cosine functions, Фa and Фb. 
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For the detection of the amplitude modulation θ, spiral phase plates are used as the 

match filter, given by Ф-m and Ф+m. 
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The optical correlation of the incident beam through these four optics produces on-

axis correlations spots with varying intensities given by 
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Using these four expressions we can map the four signals to Cartesian coordinates using 
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where m mP P    . For more details on the HOPES sphere, see appendix C. 
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In order to demonstrate the feasibility of this communication link, multidimensional 

64- and 128-star QAM maps are used to transmit symbols at 1.0 GBd. MATLAB is used to 

create a uniform pseudorandom bit sequence (PRBS) using a Mersenne Twister 

pseudorandom number generator. The experimental results for both 64- and 128-QAM 

equivalent star constellations are shown in Figure 3.2.3 at the corresponding highest 

measured signal-to-noise (SNR) level, 16.8 and 17.3 dB, respectively. The symbols of 

different latitudes are represented by alternating dark and light colors. Sphere radii are 

represented with blue, orange, or purple colors. The 64-QAM constellation represents K=2, 

N=4, L=8 and M=KNL=64. This system has a spectral efficiency of η ≤ 6 bits/s/Hz. The 

128-symbol constellation should ideally represent K=2, N=8 and L=8. However, due to the 

limited optical power of the transmitter, an alternative with K=3, N1=2, N2=8, N3=6, L=8 

yielding M=(N1+N2+N3)L=128 symbols is shown. This system has a spectral efficiency of 

η ≤ 7 bits/s/Hz. The separation on both Z-axis and azimuthal direction are distinguishable 

and therefore enables decoding of each symbols. In order to visualize the 3 spheres of the 

128-QAM constellation, symbols on each sphere are separated and plotted individually. 
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Figure 3.2.3. The measured double sphere 64-QAM and triple-sphere 128-

QAM 3D star constellations plotted in a normalized optical power scale. For 

128-QAM constellation, individual spheres are also shown in different scales. 

 The experimental constellation plots do not have perfect symmetry and 

distributions; multiple parameters could change the symmetry and distort the sphere which 

could cause additional errors in decoding. One defect is a tilt of the sphere axis, subtle but 

present in all experimental measured constellations. This is caused by a small amount of 

crosstalk between the two detections, P+m and P-m, mainly due to pinhole mis-alignment 

before the photodetector yielding an imperfect optical correlation. From section 1.3, recall 

that a higher separation of charge numbers minimizes channel crosstalk and should be 

explored in the future. Along the z-axis, errors will be caused by latitude level distortion, or 

uneven level spacing due to uneven power between the two OAM modes. As long as the 



49 

uneven balance of optical powers is minimal, the symbol locations will remain separable in 

Z-axis and will therefore minimally affect the BER.

3.3. Phase-only control for underwater signals 

In this section, a phase-only modulated CCOAM beam is used to pump the nonlinear 

PPLN crystal to activate the second-harmonic generation process. This is necessary to create 

a high-powered optical signal with green light while maintaining modal control due to the 

nonlinear process of the second harmonic generation. Not only would amplitude modulation 

become distorted through the second-harmonic generation, but this process becomes more 

efficient for signals with higher power densities. This is why we are interested in using phase 

only modulation: the total beam power is ideally unchanged which we can see from the total 

power ρ. 

The setup for this experiment is as follows: the CCOAM beam is generated using 

fiber-to-free space interferometry as in the previous section but without amplitude 

modulators in line, as illustrated in Figure 3.3.1. The CCOAM beam is focused through the 

PPLN crystal and collimated on the output. For simplicity, linearly polarized Laguerre-

Gaussian modes are used in the theoretical analysis to approximate the incident mode. 
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Figure 3.3.1. Setup visualization. The transmitter with m = +1 beams (rings) 

which are combined (two-lobes) using a beam splitter and transmitted to the 

frequency doubling crystal (three lobes). The 532 nm signal is then transmitted 

through a 3 meter water channel to the receiver comprised of a correlation setup 

and high-speed PIN detector. In addition, a portion of the signal is used to 

monitor and correct the phase drift from the fiber-based interferometry system. 

The 1064 nm incident mode can be represented in scalar form by the sum given in 

equation 3.1, where Um are the Laguerre Gaussian components and is given by equation 3.2, 

According to the nonlinear theory discussed in [64], the frequency doubled field of an OAM 

beam with charge number m can be approximated by 
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(3.11) 

where the coefficients of the three generated modes, c2m, c-2m, and c0 are based on different 

phase-matching conditions for different modes. Here we use the theory presented in [65] to 

compute the coefficients for three modes. For m=1, the doubled output creates the 

combination of U+2, U-2 and a radial mode U0 which is given by the third term in Eq. 3.11. 

Each mode has coefficients 0.52, 0.52 and -0.68 for c2m, c-2m and c0 respectively and are 
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compared with experimental results in Figure 3.3.2. Here it can be seen that a change in δ 

produces a rotation of the interference intensity patterns as a result of the combined OAM 

wavefronts.  

 

Figure 3.3.2. (a) Experimental pump intensity profile with m = 1 and simulated 

pump beam profiles for (b) φ = 0 (c) φ = π/2 and (d) φ = π. (e) Experimental 

frequency doubled intensity profile and simulated intensity profiles for (f) φ = 

0 (g) φ = π/2 and (h) φ = π. 

As can be seen in Figure 3.3.2 and equation 3.4, any change in δ produces an 

apparent rotation of the interference fringes but does not impact the amplitude of the fields, 

as there is no magnitude term that has δ dependence. Therefore, a change in δ will produce 

a beam with a constant total power regardless of the phase modulation δ applied. This allows 

the use of the frequency doubling system, otherwise any amplitude modulation would 

become distorted in the nonlinear process.  

i. Geometrical Transformation System 

Another method of generating CCOAM states is through a series of geometrical 

transformations, though the concept of creating and controlling coherent combinations of 

OAM beams is the same. A fiber-to-free space interferometer is built with a 1x2 fiber 

splitter, the outputs of this are each attached to a fiber-coupled phase modulator. The outputs 
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after the phase modulators are collimated and propagated through the HOBBIT system. The 

HOBBIT utilizes a series of optical transformations to generate OAM states [32, 66]. The 

setup consists of two coherent 1064 nm beams collimated and transmitted through the 

HOBBIT system as illustrated in Figure 3.3.3: 

 

Figure 3.3.3 Schematic for HOBBIT design 1. F1 and F2 are the focal lengths of 

two spherical lenses, F3 and F4 are the focal lengths of two cylindrical lenses 

oriented in the x- and y- directions respectfully, and Φw and Φu are the two log 

polar optics with built-in lens function with focal length F5.  

The system above transforms two physical displacements of input beams into a 

corresponding higher-order Bessel beams of charge ±m. The input to the HOBBIT design 

is a 1064 nm laser split using a 1:2 fiber splitter. A fiber coupled electro-optic phase 

modulator is placed along each path. By using D-shaped mirrors, as shown in Figure 3.3.3 

two input beams can be sent through the HOBBIT system.  
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The first four lenses are used to generate an elliptical Gaussian beam, taking the 

input beam with a 0.5 mm diameter and converting it to a 0.5 mm by 2.5 mm distribution 

in the x- and y- axis respectively. This beam is then transmitted to a series of two optics, Φw 

and Φu, which perform a log-polar transformation, wrapping the elliptical Gaussian into an 

asymmetric ring. For more information on the log-polar transform, see [42, 66, 32] and 

Appendix C. To produce a charge m beam, the an input beam to the system shown in Figure 

3.3.3 must be displaced along the y-axis off the center of the first lens by a specific amount, 

Δd in order to produce the desired linear phase gradient. This displacement is calculated 

using the lens focal lengths and the design parameters of the log-polar transformation optics: 
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where F4 is the focal length of the Fourier lens (100 mm given in Fig. 3.4.1) and 2πa = 3.6 

mm and is a design parameter of the log-polar optics. Note that in this system m does not 

have to be an integer value.  

The ideal near-field expression for a linearly polarized beam at the output of this 

system can then be written as 

       ˆ, , , , exp ,m mU r z t yA r im     (3.13) 

where r and θ are polar coordinates and the ideal case of A(r,θ) for the HOBBIT system is 

identical for all modes and is defined by [32]:  
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where r0 is the ring radius, wring is the ring half-width, β=0.694 is the near-field asymmetry 

defined by the ratio of the elliptical Gaussian line length to the log-polar design parameter 

2πa, and kz is the longitudinal wavenumber. In reality,  , , ,mU r z t  is distorted due to 

paraxial limitations of the system but the exploration of this phenomena is not within the 

scope of this work. 

For a CCOAM combination of two conjugate states where m2 = -m1, ρ=1, and χ=π/2 

becomes 
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where δ is the phase delay of the second mode relative to the first. The OAM terms in 

equation 3.15 can be simplified as  
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which generally the same result from the previous section so that the intensity profile has 

the distribution 
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where again, we can see that changes in δ produce a rotation of the azimuthally distributed 

interference fringes according to the cosine term as can be seen in Figure 3.1.1 (b, c). 

ii. Phase drift 

In this work, interferometry is used to coherently combine and manipulate beam 

structure. This typically requires a source beam with a coherence length that well exceeds 

any path length differences. The source beam is then split into multiple copies. For the sake 
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of simplicity this work will describe a system that uses two coherent legs, such as a Mach-

Zehnder Interferometer. Depending on the application, there are several methods of creating 

coherent copies including non-polarizing beamsplitters, one-to-many fiber couplers, and 

diffractive gratings. Each of these devices spatially separate the coherent copies. This is so 

that optical elements can be placed along the paths before they are then combined using 

similar techniques. Because the beams travel along different paths, the resulting interference 

patterns are highly sensitive to slight differences in path length that can be caused by 

environmental factors such as temperature fluctuations, vibrations, or even gravitational 

waves in some cases. Small phase differences on the order of the optical wavelength are all 

that is required. Keep in mind, for these applications we are using visible and infrared 

wavelengths which are on the order of hundreds to thousands of nanometers. In the systems 

above, laboratory environmental fluctuations such as air drafts produce phase changes on 

the order of π radians/second but can be faster during abnormal strain such as when a 

research assistant jumps nearby or bangs on the optical table. While laying optical fiber is a 

common sensing technique, such as in gyroscopes or strain measurements, it does require 

an invasive form of measurement where the fiber must be applied to the area. We are more 

interested in preventing these fluctuations from altering our transmitted signal so that we 

can probe the environments using a non-invasive method. 

The slight changes in optical path length produces uncertainty in the system which 

adds an additional term to the output mode. This means that there is actually a phase term 

δdrift applied to the system in addition to the desired controlled phase δapplied so that the total 

relative phase of the system δ=δapplied+δdrift. This makes the output mode unpredictable 
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because of the random drift term. This is not an issue in the communications setup presented 

in section 3.4, because we are mapping to the full HOPES and can detect a relative phase 

between the symbols. If instead we wish to minimize splitting of the signal, such as is 

desirable in the highly absorbing underwater environment, we may wish to recover the 

signal with as few measurements as possible.  

It is possible to use a single detector to maximize detector power. For equally 

balanced modes, the recovered phase modulation is approximately given by 

 1 cosaP   . The inverse cosine can be used to recover δapplied, but only for [0, ]   

meaning that the applied phase modulation δapplied cannot exceed π, and the drift term δdrift 

must not make the total relative phase δ exceed the bounds otherwise the signal will not be 

fully recoverable. A feedback loop is one solution to control δdrift so that a single detector 

can be used at the receiver.  

As presented in section 3.4, we can measure the drift using equivalent Stokes 

parameters to map the spatial structure to a HOPES. We can then use a feedback loop to 

control a phase modulator placed on the other coherent line to compensate for the drift term 

and lock the beam to the desired output. Using a detection setup similar to the ones found 

in [39, 40], two optical correlations can be used to map the state to the HOPES and recover 

the phase drift because we know that the state lies on the equator of the sphere.  

For phase-only recovery, only two measurements are necessary because we know 

that the CCOAM mode we are sending does not have amplitude modulation and will lie on 

the equator of the HOPES because χ = π/2. The two necessary correlations for a CCOAM 

state comprised of conjugate charge numbers require phase optics given by Φa and Φb which 
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are identical except  Φb has a rotation angle of π/(4m). For more information on full HOPS 

eqivalent amplitude control see [39, 40]. 

Recovery of the phase-locked signal shows a root-mean-squared phase error of less 

than λ/46 for 1 second worth of data, collected every minute for five minutes. When 

modulation is added, the recovery needs to be timed such that the feedback loop is inactive 

when data is sent and periodically checks the phase using a reference signal. This can be 

achieved using a reference signal to activate and deactivate the Arduino output. Further 

details on the phase-locking loop algorithm are given in appendix D. 

iii. Experimental Results  

The signals are collected after transmission through a 6-meter (double-pass) and 3-

meter (single-pass) turbid underwater environment respectively, whose attenuation 

coefficient was varied by adding an aluminum hydroxide, magnesium hydroxide and 

simethicone solution. Recall that the optical signal is attenuated exponentially according to 

Beer’s law. Before propagation through the water channel, the input signal power was 

approximately 600 mW.  

After transmission through the water channel, the phase modulated signal is 

collected using a single optical correlator as the phase demodulator. The phase match optic 

is designed to correlate with the phase of U+2+U-2 where δ=0. The electrical signal is then 

exported to a computer for processing. 

First, we want to measure the beam quality after propagation through a highly turbid 

environment. A single sinusoidal signal of 1 GHz  was applied to the transmitter to apply a 

phase modulation index of approximately 0.45π and sent though the 6-meter (double-pass) 
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water channel. This signal was sent through a double pass of the 3m channel and recovered 

using the receiver setup shown in Figure 3.3.4. The spectral power was measured at the 

receiver using a Menlo Systems APD 210 as well as the total power into the receiver. Both 

measurements are shown in Figure 3.3.5. The attenuation coefficient is estimated based on 

the amount of scattering agent added.  

 

Figure 3.3.4. Receiver schematic showing phase match filter for two CCOAM 

beams with |m|=2 with correlation incident on the detector DET 

 

Figure 3.3.5. Sinusoid signal recovered after propagation through 6m turbid 

water showing Beer’s law for estimating ballistic signal power, total power 

entering the receiver and the measured 1 GHz signal power received. 
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The total receiver power shown in Figure 3.3.5 follows the prediction given by 

Beer’s Law from Eq. 1.1 up to around 6 attenuation lengths then curves up above the 

prediction, though not by much. This indicates that the receiver is collecting both ballistic 

and scattered light but because this setup uses a double pass, much of the forward scattered 

light is lost at the retroreflector. The correlator power follows more closely to Beer’s law as 

is expected due to the ability of the optical correlator to filter out any light that does not 

correlate with the match-filter, essentially functioning as a method of narrowing the receiver 

field of view by pushing scattered light out of the field of view of the detector.  

As shown in previous works [16, 67], amplitude modulation of a signal degrades at 

high modulation rates due to a wide field of view accepting multiply-scattered photons. This 

is analogous to acoustic latency at the receiver but is more commonly referred to spatial and 

temporal dispersion in free-space optical links. This effect becomes more severe as turbidity 

increases. The receiver has a narrow field of view and therefore turbidity primarily 

attenuates optical signals. This is as expected due to our previous work examining the 

propagation of structured light modes through scattering underwater environments [18]. 

Expanding the field of view would decrease the signal-to-noise ratio of the system due to 

the optical correlator, but would increase the power collected at the receiver. A sinusoidal 

signal was transmitted through highly turbid conditions, verifying successful transmission 

and recovery of a 1 GHz modulated signal through extreme environments.  

Next, we want to demonstrate phase control using a more complex waveform to 

transmit information. Orthogonal frequency division multiplexing (OFDM) uses a 

summation of orthogonal frequencies to increase the data throughput of an otherwise limited 
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system. Typically, OFDM signals do not respond well to nonlinear transformation, such as 

second-harmonic generation or amplification, due to a high peak-to-average power ratio 

(PAPR). By using phase modulation to apply the OFDM signal, the total signal power 

remain constant, creating an ideal PAPR = 1. A modulated signal containing random 

information was transmitted through the 3-meter (single pass) water channel using the phase 

modulation of the CCOAM beams. The chosen modulation scheme is an OFDM signal 

carrying 16-QAM data symbols. The OFDM signal used in this work employed 192 data 

carriers and 8 pilot carriers with a subcarrier spacing of 5 MHz, a central frequency of 1 

GHz, and a 25% cyclic prefix for a data rate of 3.072 Gbps. The signal is generated using a 

Tektronix AWG5028. Approximately 0.9x  of the half-wave voltage is applied to the high-

speed phase modulator. The output modes have a constant amplitude due to the radial 

symmetry of the two interfering modes, producing a constant envelope (CE)-OFDM signal. 

For more details on the OFDM and CE-OFDM modulation signals see appendix E. 

The optical power collected by the high-speed PIN detector is then amplified by 

approximately 29 dB and transmitted to a Tektronix oscilloscope where the OFDM signal 

was recovered using SignalVu™ demonstrating successful recovery of a CE-OFDM signal 

applied onto the phase of coherent OAM modes.  In this setup, a 400 mm lens is used to 

perform the Fourier-transform. The active area of the UPD is 100 μm, so a 25.4 mm imaging 

lens is then used to image and magnify the correlation plane by 40x for a correlation spot 

diameter of 200 μm. 

As mentioned above, the optical correlation of the receiver helps to narrow the field 

of view of the detector. The active area of the detector is 100 μm, so a 25.4 mm imaging 
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lens is then used to image the correlation plane onto the PIN detector with a magnification 

of 40x, in order to enlarge the correlation spot to 200 μm, which is filtered out from the rest 

of the beam by the PIN aperture. This allows for the collection of primarily the on-axis 

photons, which will consist of photons that matched the optic. 

The power collected by the high-speed PIN detector is then amplified approximately 

29 dB and transmitted to a DPO73304DX Tektronix oscilloscope where the 16-QAM CE-

OFDM signal is recovered using SignalVu, and the results are shown in Figure 3.3.6 for 

different underwater attenuation coefficients, showing successful signal recovery through 3 

m of typical oceanic conditions according to Table 1.2.1. The first point on the plot shows 

the recovered results for clear deionized water. In this case, there are minimal particulates 

and we predict that refractive index fluctuations dominate over the scattering effects present 

in the subsequent data points.  
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Figure 3.3.6. BER measured through varying degrees of turbid water with 

equivalent marine conditions indicated with z = 3 m. 

From Figure 3.3.5 it is clear that a signal can be successfully recovered well beyond 

the turbid harbor conditions. The last datapoint in Figure 3.3.6 is below the FEC limit due 

to photon conversion limitations of the high-speed PIN detector and we believe that with a 

more sensitive detector, we could explore CE-OFDM modulation in the multiple scattering 

regime. 

In this work, we exploit the radial symmetry and helical phase of OAM modes to 

create a constant-power dynamic spatial mode. We demonstrate the CE-OFDM using phase 

modulation of CCOAM beams to produce a 3.07 Gbps underwater free-space optical link 

with a bandwidth of 1.5 GHz, for a system with This system has a spectral efficiency of η ≤ 

2.048. The modes are generated at 1064 nm and frequency doubled to produce modes at 
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532 nm that can be spatially and temporally controlled at high speed, which will be 

explained in further detail below. 

3.4. Summary 

In this chapter we demonstrate the first successful transmission of high speed 

amplitude and phase modulation using CCOAM beams at rates of 1 GHz. Using 1550 nm 

light we are able to demonstrate a proof of concept that could be translated to the blue/green 

region using different optical components. Control of both the total power levels, ratio of 

the two states, and relative phase of the CCOAM modes are demonstrated and analyzed. 

Next we demonstrated the first propagation of these modes through underwater turbid 

environments. To translate the system to work for in a WUO link, phase only modulation 

was necessary to get the power levels required to transmit through 3 m of turbid water. This 

was due to the nonlinear process of generating the green wavelengths. CE-OFDM is a 

modulation scheme commonly used to circumvent nonlinear processes in communications 

links because it has a constant amplitude. In addition, OFDM allows us to increase the data 

capacity of the link using signal processing techniques.  

Phase modulation is demonstrated in an underwater turbid environment using 

frequency doubling. Frequency doubling the 1064 nm mode to 532 nm enables power-

scalability at visible wavelength so that absorption in the underwater environment is 

minimized. In addition, the amplification allows for high speed phase modulation, and 

presents an interesting output mode that can still be recovered with a simple phase-only 

optical correlation. In this proof-of-concept work, modulation rates are limited by the 

available electrical components and 10 GHz modulation rates have been demonstrated in 
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underwater environments [25] and phase modulators are available with bandwidth of 40 

GHz. 

Three modulation schemes were demonstrated. First, a spatial QAM equivalent 

communications system was demonstrated using both amplitude and phase modulation. 

Second, a sinusoidal signal was applied as phase modulation only to verify successful 

transmission in the multiple scattering regime. This is a result of the correlation filter 

successfully filtering out the scattered light by directing it outside the field of view of the 

detector. Second, a data-carrying OFDM signal was demonstrated. Modulation of the signal 

occurred before two nonlinear components, an optical amplifier and a PPLN crystal 

demonstrating the capability of using phase modulation in nonlinear systems. Successful 

transmission is shown with bit error ratios (BER) below the FEC, excepting the data point 

close to turbid harbor conditions due to low signal power. At this highest turbidity the peak 

optical power incident on the detector produces a voltage signal that is on the order of the 

noise of the scope and does not demonstrate a degradation of optical coherence.  

As mentioned in section 3.5 there is a phase drift in these interferometric systems 

that adds a degree of randomness, but with proper monitoring this can be compensated for. 

The monitoring technique requires at least two optical correlations to recover the phase 

information, and are designed for a specific mode. For systems of CCOAM combinations 

of more than two beams, alternative techniques need to be explored for efficiency and 

practicality, especially when transmitting through harsh environments where signal power 

can be rapidly attenuated by scattering particulates or water absorption.  
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In this work we have presented a demonstration of both amplitude and phase control 

of the CCOAM beams using a variety of modulation schemes chosen to increase the data 

capacity of the link. Phase and amplitude modulation was presented at 1 Gbaud, but 

components are available with higher modulation rates. We found that switching to an 

underwater link required system changes due to the photon-limiting environment including 

switching to a HOBBIT generation system to minimize losses, using a phase-only 

modulation scheme, and using a single detector at the receiver. Because of these changes, 

the random phase drift caused by the interferometry setup, required a phase-locking 

feedback loop to be built so that the single receiver could function optimally. In the next 

chapter we will examine how to obviate the fiber-to-free space interferometry setup and 

remove the random phase drift.  
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CHAPTER FOUR 

TUNEABLE DYNAMIC STRUCTURED LIGHT  

USING ACOUSO-OPTICAL CELL 

4.1.  Introduction 

As mentioned in the previous chapter, the HOBBIT system can be used to efficiently 

generate beams with OAM. It uses a set of optical elements to perform a geometrical 

transformation of Cartesian coordinates into log-polar coordinates. This transformation is 

performed on an elliptical Gaussian beam which is then wrapped to a ring. A tilt is applied 

to the wavefront using a physical displacement of the input beam by exploiting the Fourier 

transformation property of lenses. In the previous chapter we developed a method of 

creating the CCOAM states using fiber-to-free space interferometric techniques and ended 

up discovering a random phase drift due to environmental factors altering the optical path 

lengths for each interferometry leg.  

Interferometry is not the only method of generating coherent tilted planar 

wavefronts. Acousto-optic cells have been long employed to rapidly and efficiently deflect 

optical signals and have even been employed in high-power systems [68], pulsed systems 

[69], and q-switched lasers [70, 71]. In our previous work, we used the HOBBIT system 

combined with an acousto-optic deflector (AOD) to probe a turbulent environment with an 

OAM chirp using a bucket detector to characterize the channel [46]. Unfortunately, AOD 

cannot reach the control speeds of the lithium niobate amplitude and phase modulators 

presented in the previous chapter because they are fundamentally limited by the acoustic 
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velocity of the traveling wave, therefore this system might be better applicable for 

sensing/imaging applications.  

In addition to creating WUO communication links, one of our primary interests is 

utilizing these structured modes to probe turbid and turbulent environments. To do this, we 

need the ability to send out and recover a vast number of structured wavefronts that greatly 

exceed the environmental rate-of-change in order to extract information about the 

environment. The AOD is an attractive alternative to the amplitude and phase modulators 

because it has switching speeds that well exceed the rate-of-change of the environment. In 

addition, as we will show below, the AOD will provide much more precise control of the 

amplitude and phase of the CCOAM states than was previously achievable with the 

amplitude and phase modulators presented in chapter 3. 

Imaging and controlling the interference pattern of multiple output modes does 

present an issue because the AOD adds a Doppler shift to the output modes as a result of 

the traveling acoustic wave. When creating multiple output modes with the AOD, each 

mode has a different optical frequency and produces a modulating interference pattern [72]. 

This is problematic only when the receiver sampling rate is slower than the pattern’s rate of 

change and will be described in further detail in the following section. 

4.2. Optical Doppler shift due to traveling acoustic wave 

A single-tone sinusoid can be applied to the AOD to generate a specific OAM mode. 

The corresponding linearly polarized electromagnetic wave carrying OAM and propagating 

along the z-direction can be represented by 



68 

            0, , , , , exp 2 exp expˆ
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where A(r,θ,z) is the amplitude function and is defined in equation 3.14, ν0 = c/λ0 is the 

optical frequency of the input beam where c is the speed of light, km is the wavenumber, and 

m is the OAM charge number. S(t) is the piston phase added to the wavefront as a result of 

the RF signal s(t)=Re{S(t)} applied to the AO cell and is defined by  
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where 2πfn is the frequency required to create a beam with any OAM charge within system 

limitations, and cn is used to control the total power 

This represents a multitoned signal with N components, where δn is a constant phase 

shift and the frequency fm is the is the frequency required to create a first-order deflection 

corresponding to any desired charge m beam. An AOD with acoustic velocity VA and applied 

frequency fm produces a first order deflection with angle ξm equivalent to 
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where M is the magnification factor of a telescope placed after the AOD. The optical 

elements are aligned to the deflection angle
0 . The output wavelength changes as a result 

of deflection through the AOD and can be computed using 
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The wavelength and optical frequency change proportional to the applied frequency 

and therefore the wavenumber can be calculated using 
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Therefore, in order to produce a beam with desired charge number m, the deflection 

angle needs to be equivalent to 2πm over the active region of the log-polar transformation 

optics. Therefore the frequency of the RF signal applied to the AOD is: 
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where a is a design parameter for the log-polar transformation, and fc is the center frequency 

of the AOD and corresponds to m=0. 

From equation 4.2 we can also apply more than one tone to the AOD using a 

summation of sinusoids with arbitrary starting phases δ. This produces a coherent 

superposition of corresponding OAM charges with a Doppler effect resulting from the 

optical interaction with the AOD. For illustration, we will theoretically examine an N=2 

signal traveling through the AOD. The RF signal can be defined as s(t)=Re{S(t)}: 

      1 1  1 2 2 2cos 2 cos 2s t c f t c f t        (4.7) 

which produces a combination of two different signals, 
1 2m mU U . The relative phase 

between 
1mU  and 

2mU  is simply defined by the difference between the phases of each wave 

given in equation 4.1: 
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From equation 4.8 , the relative phase is easily predictable. The interference profile 

resulting from the OAM terms (m2-m1)θ and the initialization phase (δ2-δ1) is constant. As 

mentioned above, as the signal propagates through the AOD, it experiences a Doppler shift 

proportional to the frequency applied to the cell, both the wavenumber and optical frequency 

will shift resulting in the z- and t- dependent terms in equation 4.7. The difference between 

wavenumbers is extremely small and is therefore negligible except when propagating 

extremely long distances. The most significant impact is the change in the angular 

frequencies, producing a relative phase proportional to the difference between f2 and f1 that 

continuously changes with time.  

Depending on the specifications of the AOD, the difference in angular frequencies, 

2πfn, can easily range from 100 kHz to a few MHz and is very difficult to analyze these 

modal combinations using traditional imaging techniques. Typically, when these beams are 

imaged with a camera, which typically have integration times on the order of milliseconds 

and frame rates on the order of 30 frames per second (fps), these changes are blurred and an 

average intensity profile is generally collected as shown in the frequency doubling study of 

HOBBIT beams [52]. Even with high speed cameras that can reach framerates above 1000 

fps, the integration time is still too long to image these beams properly. This makes it 

essentially impossible to image the interference fringes using a continuous wave source, as 

illustrated in Figure 4.2.1. Here, because the interference fringes are rotating over the entire 

exposure, we end up seeing what appears to be the incoherent combination of the two OAM 

modes. 
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Figure 4.2.1 Illustration of pulsed beams integrated over 8 ms for (a) m=±1 and 

(b) m=±2 and integrated over 10 μs with a 1 ns pulse for (c) m=±1 and (d) m=±2. 

Still, it is well known that the co-aligned interference patterns of beams carrying 

OAM produce periodic locations of constructive and destructive interference that are highly 

predictable based on the OAM terms [67, 39, 40] and can be seen in Figure 4.2.1 (b,c). 

Combining these signals with a pulsed source will enable the beam to appear frozen. The 

pulse will not only have to be much faster than the rate of change of the beam, but also have 

enough power to be imaged by the camera. This will enable the beam profile analysis by 

using the pulse as a strobe signal but will require precise control of the signals in time. 

4.3. Continuous-wave (CW) operation 

The  CW HOBBIT system is designed similar to the system described in section 3.3 

with some minor changes to accommodate the insertion of the AOD. The CW setup is 

detailed below in Figure 4.4.1 and is the same setup given in [32]. In this section, we will 

demonstrate the predictability and control of the CCOAM modes using the AOD.  
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Figure 4.3.1. Setup diagram showing the (a) transmitter comprised of the AOD 

and the HOBBIT setup and (b) the receiver comprised of four optical correlators 

for mapping to the HOPES. 

In order to control the amplitude and phase using the AOD, an N=2 state is created 

using m1 = +2 and m2 = -2. An electrical signal is created to match this beam using equation 

4.7 

       1, 1  2, 2cos 2 cos 2 KK K m K ms t c f t c f t      (4.9) 

where each symbol K can have a different total amplitude, amplitude ratio, and phase, 

similar to the 3D constellation work presented in section 3.2. Two constellations will be 

used to demonstrate both 2D and 3D mapping of the CCOAM states in the HOPES space. 

The amplitude values given by cn were determined by measuring the diffraction efficiency 

for various voltage levels through the system. The first is a 16-PSK equivalent and the 

second is a 512, 3D-QAM equivalent consisting of 8 levels of 8x8 symbol locations. The 

amplitude of the source is not manipulated by any other device besides the AOD.  

For this setup, with m = ±2, fc = 125 MHz, f-1 = 125.36 MHz, so that the beat 

frequency, fb, is 1.44 MHz. Because we are unable to image the interference with a camera, 

an optical correlation was used to verify our results as is shown in Figure 4.3.2. 
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Figure 4.3.2. Illustration showing experimental vs simulated beam profiles. The 

simulated beam profile is instantaneous when in reality it is rotating at a rate of 

1.44 MHz, which the experimental camera integrates.  

The peak of the recovered spectrum matches our beat frequency, verifying rotation 

of the beam. Therefore, we know that with precise timing, we will be able to map and 

recover the CCOAM state to the HOPES space. 

Experimental Results 

A 532 nm (Hz) laser is sent through the HOBBIT system to generate two coherent 

OAM charges of m = ±2, with f+2 ≈124.28 MHz and f-2 ≈ 125.72 MHz, resulting in a 

theoretical rotational frequency of 1.47 MHz. The AOD crystal used operates in longitudinal 

mode, meaning the 1st order output has a rotated polarization. The 0th order output is 

blocked from transmitting through the system. Two different modulation schemes are 

applied to the acoustic cell to control the output beam using the method described above, a 

512-QAM signal and a 16-PSK signal with a modulation rate fs = 1/T of 200 kBd. The 
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repetition rate of the transmitted symbols is fundamentally limited by the switching speed 

of the AOD, which in this case is 2.3 μs. 

The output signal from the transmitter is propagated through 3.0 m of turbid water 

with attenuation coefficients of 0.22 m-1, 0.28 m-1, 0.36 m-1, and 0.56 m-1, measured using 

total beam attenuation of a 0th order Bessel beam. At the receiver, the signal is split into four 

legs, each necessary for mapping to the HOPES as explained in the previous chapter. Each 

of the four signals is sampled exactly 3.0 μs after the start of the transmitted signal to allow 

for the rise time of the AOD. The four signals are recovered using the same technique 

presented in section 3.4. The recovered 512-QAM and 16-PSK constellations are shown in 

Figure 4.3.3 and have spectral efficiencies of η ≤ 4 and η ≤ 9 bits/s/Hz.  Bit error ratio (BER) 

analysis is done by converting the symbol error ratio to bits assuming ideal gray encoding. 

The SNR of the signal is estimated by measuring the modulation error ratio [40]. This plot 

is also shown in Figure 4.3.3 along with simulated BER measurements done using a Monte-

Carlo estimation assuming white Gaussian noise.  
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Figure 4.3.3. Figure showing BER results of three-dimensional 512-QAM 

constellation and two-dimensional 16-PSK constellation with attenuation 

coefficient indicated in m-1. Each case is simulated using a Monte-Carlo 

algorithm. Experimentally recovered constellation plots are also shown. 

Interferometer drift is eliminated in this mode generation system compared to a 

traditional Mach-Zehnder interferometry setup because the photons are travelling very close 

to the same path. Mode recovery is shown to be successful in for all turbidities, with 

increasing turbidity having a negligible effect on the BER of the signal as a result of SNR. 

Higher turbid water simply attenuates the signal, so more power is required to be sent to the 

receiver. This is likely due to the small field of view of the receiver, which will likely filter 

out any non-ballistic photons.  In fact, the variance of the received BER is most likely caused 

by a slight misalignment of the beam into the receiver, as there were four different 

correlations to align.  

In summary, we have demonstrated an extremely precise method of controlling the 

amplitude and phase of the CCOAM states using an AOD. The AOD is controlled using an 
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applied voltage signal whose frequency and amplitude determine the output state. Because 

the beat frequency of the CCOAM state is well known and constant, we are able to recover 

the relative states. Still this method is not perfect, if the selected charge numbers were also 

changed for each transmitted symbol, the beat frequency would change resulting in a 

different phase measurement. Therefore timing needs to be further examined, especially for 

future use with N>2. In addition, the switching speeds are not ideal for underwater 

communications and are more suitable for sensing and imaging applications. Therefore it 

would be of great interest to minimize the uncertainty of the transmitted beam, which we 

will do in the next section using a pulsed source 

4.4. Pulsed Source Operation 

In this section we will demonstrate the combination of the HOBBIT system with a 

pulsed source. The HOBBIT system is designed similar to that described in section 3.3 with 

some minor changes to accommodate the insertion of the AOD as well as a different 

wavelength. The setup is detailed below in Figure 4.4.1.  
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Figure 4.4.1 Schematic diagram showing fiber-coupled pulsed source, 

collimator, line generation lenses, acousto-optic deflector (AOD) with blocked 

0th order, a 4F imaging system to image the center of the AOD onto the first 

log-polar optic, and the set of log-polar optical elements used to wrap the ellipse 

into a ring. 

For this HOBBIT build, a 3 mm by 0.3 mm elliptical Gaussian beam is created with 

a set of cylindrical lenses. This elliptical distribution is then propagated through a tellurium 

dioxide AOD which has a clear aperture of 10 mm by 10 mm and acoustic velocity of 0.65 
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mm/μs. The aperture is large, so we are able to put the elliptical Gaussian generation optics 

before the AOD. According to the equations in section 4.2, this reduces the beat frequency 

of the device. In this section, the beat frequency is on the order of kHz, where in the previous 

section it was on the order of MHz. In addition, the large aperture will allow us to transmit 

a larger beam through the cell, reducing the power density and increasing the maximum 

output of the system before components get damaged. While this work is at a low power, 

we are interested in eventually transitioning to higher power applications.  

The center frequency of 120 MHz was chosen to correspond to m=0. The center of 

the AOD is reimaged onto the first log-polar optic using a 4-F imaging system with F3 = F4 

= 50 mm producing a magnification M=1. The log-polar optics have the same design 

parameters mentioned in section 3.4 with 2πa =3.6 mm and b = 2 mm, such that the 

frequency required to change one charge number is approximately 180.56 kHz when 

calculated using equation 4.5.  

According to equation 4.7, the rate of change of the modal combinations will be on 

the order of 10 MHz or less, so we want to probe the signals with a pulse that is over 100x 

shorter than the maximum rate of change, and have chosen to create an optical pulse with a 

full-width-half-max (FWHM) on the order of 1 ns. For this work we chose an OSRAM 

PLT5 450B blue laser diode, which we mounted to an EPC9126 board. The output 

wavelength was measured to be 454 nm with a FWHM of approximately 1 nm. The 

coherence length of this diode is therefore 65.8 μm.  

The pulse width was approximately 1 ns and is shown in Figure 4.4.2. For a 

repetition rate of 1 kHz, and a driving voltage of 18.0 V, the output has an average power 
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of 5 mW. Integrating over the pulse shape shown, the peak power is approximately 100 

mW, with a pulse energy of approximately 200 pJ. Figure 4.4.2 also shows a tail that decays 

exponentially over approximately 5 μs. This is significantly longer than the pulse width and 

therefore precise timing is required to minimize integration on the camera over this range.  

 

Figure 4.4.2.  Optical pulse created with the EPC9126 board. 

The Miro C210 high-speed camera will be used to collect images with a frame rate 

of 1000 fps for a 512x512-pixel area and an integration time of 10 μs and a timing accuracy 

of 20 ns. As mentioned above, there is a slow exponential decay that is on the order of this 

integration time and therefore precise timing is required not only to synchronize the camera 

shutter with the pulse and AOD, but is also necessary to minimize integration on the camera. 

A Tektronix 5208 AWG was used to control the timing of the diode pulse, AOD RF signal, 

and camera shutter as illustrated in Figure 4.4.3. Because of the long integration time, the 

timing between the pulse and the camera must be precise such that the pulse is near the end 
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of the 10 us window due to the tail mentioned above. This is to minimize integration of the 

undesired signal, which will appear as a blurring of the interference pattern due to the 

rotation caused by the Doppler shift. 

 

Figure 4.4.3 Timing visualization of signals with respect to pulse. Plotted pulse 

width and RF signal frequency are exaggerated for illustration purposes. 

Figure 4.4.3 illustrates that t=0 is located at the optical pulse peak. Therefore s(t) 

given in equation 4.7 can be modified as follows: 
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where t0 is greater than 6.6 μs, the rise time of the AOD and shifts sinusoid so that t=0 is 

aligned with the pulse, and g(t) is a rectangular envelope.  

Experimental Results  

In order to verify spatial and temporal alignment of the system, N=2 conjugate 

combinations were first examined to demonstrate interference patterns matching previous 

results [39, 40]. As mentioned in chapter 3, when conjugate pairs with OAM charge number 

|m| are combined, 2m locations of complete destructive interference are formed and produce 

an azimuthal periodic intensity pattern.  Creating an interferogram with the OSRAM 450 

diode would be extremely difficult with its coherence length of approximately 66 μm, 
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because the optical path length differences need to be less than the coherence length in order 

to see interference fringes. 

This is why the HOBBIT optical transformation system is so elegant: the beams 

travel along approximately the same optical path rather than separating as in the Mach-

Zehnder interferometer in chapter 3. In fact, the only changes in optical path length that the 

coherent beams experience is a result of the acoustic waves traveling through the AOD and 

the resulting deflection. The deflection angles can be computed using equation 4.3 and are 

extremely small: on the order of 100 μRad. From Figure 4.4.1 we can see that the beam 

travels from the AOD to the first log-polar element approximately 200 mm for m=0. 

Theoretically the system is limited by the paraxial approximation to around m=±16 as has 

been shown [66]. This would correspond to an angular difference Δξ≈2 mRad. Through this 

system, the optical path length difference for the m=0 and m=16 beam would be 

approximately 407 nm which is still well within the coherence length of the diode.  

Next we want to further examine the time-dependent term in equation 4.8. For two 

sinusoids, the difference in frequencies is commonly referred to as the beat frequency, 

fB=|fm2-fm1|. This determines the rate of change or the rotational speed of the interference 

patterns. Recall from chapter 3 that phase modulation of 2π produces a rotation equivalent 

to π/m for conjugate modes where m2 = -m1 so that one full rotation requires 4mπ applied 

phase. In this case the beat frequencies become fBm=2m(f1-fc) and therefore the angular 

rotation will be the same. For |m|=1, fB1 is approximately 361 kHz, well in excess of any 

traditional imaging system. 
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Therefore it is impossible to image using even a high speed camera in CW operation. 

By using a pulsed source, the camera is prevented from integrating over extended periods 

of time and we are able to see the expected patterns as shown in Figure 4.2.1. 

The AOD signal period s(t) is approximately 6.7 μs and it is important to determine 

the proper timing alignment between the optical pulse and s(t). Using equation 4.9 to create 

N=2 conjugate combinations with m2 = -m1 = [1, 2, 3, 4] and δ1=δ2=0, timing offsets would 

produce different angular errors for each beam according to the table shown below, these 

errors correspond to the azimuthal orientation of the interference fringes. The results are 

aligned within ±10 ns. 

Table 4.4.1. Angular error resulting from timing misalignment  

Misalignment 

(ns) 

|m|=1 |m|=2 |m|=3 |m|=4 

0 0.00% 0.00% 0.00% 0.00% 

1 0.36% 1.44% 3.25% 5.78% 

10 1.44% 5.78% 13.00% 23.11% 

20 3.61% 14.44% 33.50% 57.78% 

50 5.42% 21.67% 48.75% 87.67% 

100 7.22% 28.89% 65.00% 115.56% 
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Figure 4.4.4. (a) Simulated and (b) experimental profiles for N=2 beams with 

m2 = -m1 and δ1=δ2=0.  

The collected images have the correct orientation and interference fringes but are 

slightly blurred which is most likely caused by integration on the camera. As mentioned 

above, there is a 5 μs tail that will be integrated unless the camera shutter is timed properly. 

Wavefront recovery is now possible where previously we needed to perform several optical 

correlations [39, 40]. In addition to controlling the combination of OAM states, we can 

control the relative phase between the two beams using the phase shift term given in 

equation 4.9. For a signal with N=2, Figure 4.4.5 and Figure 4.4.6 shows phase control and 

the apparent rotation of the interference fringes compared with the ideal case. The 

orientation was calculated using image registration to track the bright lobes. 
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Figure 4.4.5 Experimental intensity profiles for m1=+1, m2=-1,and δ1=0, and (a) 

δ2=0, (b) δ2=π/2, (c) δ2=π, (d) δ2=3π/2 and m1=+2, m2=-2,and δ1=0, and (a) δ2=0, 

(b) δ2=π/2, (c) δ2=π, and (d) δ2=3π/2. 

 
Figure 4.4.6. Measured angular rotation relative to the starting condition with 

δ1=0, and δ2 given by the x-axis. 

Now that we are able to image the interference patterns, this opens up the possibility 

for wavefront recovery using interferometric techniques. Direct phase measurement 

interferometry (DPMI) can be employed using the 0th order HOBBIT beam as a reference 



85 

signal. For further details, see appendix G. By combining the 0th order HOBBIT beam with 

a charge m HOBBIT beam we can recover the wavefront relative to the reference beam. 

This was done with m2 ranging from -2 to +2 in increments of 0.25. The relative phase is 

set according to the equations given in the appendix. The phase of the reference beam δ1=0 

is held constant while the phase of the second beam δ2 is set to [0, π/2, π, 3π/2] corresponding 

to interference intensity profiles I1, I2, I3, and I4. Ten frames of each interference pattern 

were collected in addition to the single m-beam. Using the four interference patterns, we are 

able to compute the wavefront relative to the reference beam using basic trigonometry 
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(4.11) 

Simulated results are shown in Figure 4.4.7 and experimental results are shown in 

Figure 4.4.8. Simulations are done using a numerical propagation of the HOBBIT nearfield 

output approximation given in chapter 3. Numerical propagation is done using the Rayleigh-

Sommerfeld propagation kernel given in [5].  
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Figure 4.4.7. (a) Simulated intensity profiles for N=1 beams created using 

HOBBIT system with the wavefronts shown using (b) DPMI, and (c) the 

simulated wavefront. 

Examining Figure 4.4.7 (c), we can see that the wavefront of the reference beam 

m=0 is not planar. This results in the recovered wavefronts shown in Figure 4.4.7 (b) and 

Figure 4.4.8 (b) having an actual wavefront computed using  

      0, , ,m x y x y x y     (4.12) 

where ϕm is the actual wavefront of the OAM beam, and ϕ0 is the wavefront of the reference 

beam. 
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Figure 4.4.8. (a) Experimentally collected intensity profiles for N=1 beams 

created using HOBBIT system (b) experimentally recovered wavefronts ϕ(x,y) 

collected using DPMI 

Using the recovered wavefront we can estimate the total OAM of the beam. Using 

the technique presented in [73], the total OAM charge was computed using the intensity and 

phase information. The resulting total OAM measurement is shown in Figure 4.4.9. 
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Figure 4.4.9. Recovered OAM using DMPI wavefront combined with the 

intensity profile. 

The simulation total OAM was recovered using DPMI to compare with the 

experimental results. There is a distortion about m=0 and offset of the total OAM that has 

good agreement with the simulated OAM measurement. The reference line in figure 4.5.5 

shows the recovered OAM using the true simulated wavefront, which is computed using a 

Rayleigh-Sommerfeld propagation kernel.  

4.5.  Summary 

Previous implementations of the HOBBIT system have used CW laser sources, 

where an inherent Doppler shift can corrupt the beam if a detector is unable to precisely 

sample above the beat frequency of the combined modes. By properly sampling the signal 

in time, we can circumvent this issue, but this does not address the overarching issue of a 
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continuously modulating beam and demonstrate a link with very good spectral efficiency of 

η ≤ 9. This will become particularly apparent when trying to create combinations of more 

than one beam due to multiple changing beat frequencies.  

Instead, by combining the system with a pulsed source, this system is able to 

circumvent this issue while simultaneously providing precise amplitude and phase control 

of the CCOAM states. In addition, by using the pulsed source to collect images of 

interference patterns, we are now able to use the system to self-reference and successfully 

recover the approximate wavefront of the generated modes, which we had previously 

verified using multiple optical correlations. By using a pulsed source, we are able to study 

the beam profile at precise moments in time using a simple setup that only requires a camera 

and a Fourier lens in addition to the AOD-HOBBIT build. 

Pulsed sources have several applications in nonlinear optics and machining, such as 

filament generation and control, environmental probing, and single photon sources. All 

cases where precise control can be key. Still, it important to note that the pulse width must 

be much shorter than the beat frequencies of the applied RF signal which are determined by 

the specifications of the AOD. Depending on the application, it may be desirable to utilize 

an AOD with a slower acoustic velocity, which from equation 4.6 produces a smaller change 

in required frequencies. On the other hand, with access to ultrashort pulses, a faster acousto-

optic velocity may be acceptable. In addition, it would be interesting to explore alternative 

degrees of AOD control so that both the longitudinal and transverse wavevectors can be 

manipulated. This may enable the precise control and study of these beams along the axis 

of propagation in addition to the spatial control presented herein. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

This work, driven by desired for increased data capacity in the underwater and 

maritime environments, structured light modes were generated and manipulated in the 

visible blue/green regime. Experiments show that structured light can easily be created with 

CCOAM states. Not only can these states be amplitude-modulated but phase modulated as 

well to dynamically control the structure.  

First, concentric spiral phase plates were introduced. Simulation and experimental 

results show that we can create CCOAM modes using a single optical element that exploits 

the divergence of OAM beams with propagation. This technique is important when 

generating interference patterns with optical sources that do not have long coherence 

lengths, typical of GaN blue laser diodes. Three different interference patterns were 

examined and propagated through a turbid underwater environment, where we found that 

despite propagation through extremely turbid environments similar to those found in 

harbors, spatial structure was extremely well maintained showing that beam quality is 

maintained despite the presence of scattering particulates. In addition, amplitude modulation 

was applied to the source to examine the modulation capabilities of such beams, 

demonstrating that the spatial structure of the beam seems to be more robust than the 

temporal coherence of the amplitude modulation signal.  

Then, dynamic control was added to the structured light using interferometry. By 

creating coherent superpositions of co-propagating OAM states, complex wavefronts can 

be created and precisely controlled. Two systems are discussed: a Mach-Zehnder 
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interferometry system and the HOBBIT system both using frequency doubling of a 1064 

nm source to create a higher power 532 source with a long coherence length so that the  

interferometric techniques are possible underwater. These two systems enable high-speed 

phase modulation that can be recovered with a very simple receiver setup. In this work, two 

different phase modulation schemes are presented: a 1 GHz sinusoidal signal and an OFDM 

signal with a 1 GHz bandwidth and 200 carrier frequencies. Both results concur with those 

from the previous chapter, showing that the spatial structure of the beams are maintained 

despite propagation through highly turbid environments and the modal information is 

recoverable with a phase-only optical correlation. This phase-only optical correlation is able 

to aid in filtering out the scattered photons, allowing the receiver to collect predominantly 

ballistic, non-scattered photons and can operate much faster than computational image 

processing techniques. Still, there are some issues present with MZI setups, namely a phase 

drift that occurs due to environmental factors of the two propagating signals. By adding in 

a second phase control term, we are able to minimize the drift and lock the desired mode. 

Still, the number of detectors required for the phase locked loop is dependent on the number 

of mode combinations and for 3+ combinations of beams, this would require a large number 

of beam splitters, creating undesirable power loss for systems that are already power-limited 

such as in the underwater environment. 

Finally, a modified HOBBIT system that includes an AOD was introduced. The 

AOD enables a higher degree of control that the displacement system cannot achieve at high 

speed: we are able to tune arbitrary combinations of OAM states. The traveling wave 

produces a Doppler shift that produces a continuous change of intensity profile in time at 
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high speeds. The states are easily predicable because the Doppler shift is well defined, which 

was verified using a pulsed source to strobe the continuously rotating image on a high speed 

camera, set to integrate exactly one pulse. This imaging technique enables us to perform a 

self-referencing wavefront recovery method, which has potential applications in turbulence 

and turbidity sensing.  

Overall, structured light can be used to increase the spectral efficiency of a link that 

is otherwise bandwidth limited. In fact, we demonstrated structured light control in air at 

rates of 1 GHz [40]. In addition, all the experiments presented in this work were linearly 

polarized monochromatic signals, meaning they could be combined with a wavelength 

division multiplexing system and polarization division multiplexing, not to mention 

orthogonal CCOAM pairs for SDM. 

5.1. Future Work 

In the future, applications of structured light in high power environments should be 

explored as well as their application in the single photon regime. The AOD is a very 

powerful tool that can be precisely controlled in order to attenuate optical signals, enabling 

single-photon power levels that would be particularly interesting to explore in combination 

with a pulsed source but is also robust enough to withstand high-power signals. 

In addition, higher degrees of AOD control can be explored. The results presented 

in this work only included two-beam combinations generated with the AOD. These devices 

are not limited to two, but can be expanded to several-toned signals. Still, with multitoned 

signals there is an issue with the harmonic generation interacting with the electromagnetic 

wave known as inner-modulation products. These inner-modulation products reduce the 
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efficiency of the designed signal by deflecting a small portion of the signal along a different 

diffraction path. This is a problem that has commonly been studied when using acousto-

optic devices and will need to be further explored before higher-order CCOAM states can 

be created and controlled. We also only explored single-axis deflection using the AOD. 

Preliminary simulation results have shown that utilizing a second axis of AOD deflection 

would enable control along the propagation axis in addition to the structured wavefront 

control presented in this work. We also demonstrated wavefront recovery through self-

referencing. This may be useful to recover refractive index changes in an environment but 

preliminary work shows that we need to explore an initial separation of the two beams at 

the transmitter in order to recover this information. There are several ways that this could 

be achieved either by using the zeroth order output from the AOD or by using different 

output radiis.  

Another area of exploration is the receiver setup for these CCOAM modes. Similar 

to how the HOBBIT system can be used in reverse as a mode sorter, the AOD-HOBBIT 

system could also be used in reverse to recover information about the system. One main 

goal of this work is to eventually use the structured light modes as a probe, gaining 

environmental information about a 3-dimensional environment so accurate mode recovery 

is crucial for determining minute changes in the transmitted beam.  

Not only can the AOD-HOBBIT system be used in high-power applications but it 

can also be used in extremely low-power applications, such as the single photon level. The 

pulse presented in chapter 4 had an energy of approximately 200 pJ, while the energy of a 

single 454 nm photon is approximately 0.438 attojoules. While we are still approximately 
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eight orders of magnitude away from single photon levels, it is a rather simple change to 

attenuate the signal levels using the AOD or other components and would only require a 

single photon detector to measure and recover signals.  

5.2. Major Contributions 

First we explored how CCOAM states can be created and how their spatial structure 

is affected after propagation through extreme turbidity. We were the first to demonstrate the 

use of these modes in an underwater environment and that they are able to maintain 

modulation information. In chapter 1, we demonstrated the maintenance of the spatial 

structure of two incoherent superimposed OAM states. Chapter 2 demonstrated the spatial 

structure of static CCOAM states using image registration. The concentric phase plates 

provide a static framework for the CCOAM states so that we can easily study them under 

various conditions. Chapter 3 demonstrated the spatial structure of dynamic CCOAM states 

using an optical correlation whose relative power closely follows the Beer Lambert Law 

with increasing turbidity. The interferometry and dynamic control complicates this method 

but using a PLL can improve measurement accuracy. 

The second fundamental question related to how we can control and manipulate the 

CCOAM states. In chapter 2, we have limited control because we use a single passive optical 

element to generate the states. In this case, we could only rrapidly control the amplitude 

control, demonstrated and was demonstrated using high and low signal levels. In chapter 3, 

fiber-to-free space interferometry is used which opened up the ability to not only control the 

amplitude, but the phase as well. We ended up finding that, due to the fiber present in the 

interferometry, there is a phase drift that must be compensated for in order to accurately 
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transmit the proper state if we wish to use a recovery method that minimizes photon loss. In 

Chapter 4, we are able to replace the fiber-to-free space interferometry system with an AOD 

which eliminates the random phase drift issue while providing extremely precise amplitude 

and phase control, but the traveling acoustic wave introduces a Doppler shift which 

produces a continuous but predictable modulation of the system. This AOD control is 

precise enough to recover wavefront information using a self-referencing interferometry 

technique.  

Finally, the third question related to power scalability when controlling the CCOAM 

states. In underwater environments, optical power is rapidly lost due to absorption and 

scattering. Chapter 3 presented two systems. The first uses a MZI setup, which consists of 

a beamsplitters meaning that half the power is thrown away. This is unacceptable for high 

power applications. The second system uses the HOBBIT geometrical transformation 

system which has low losses, and the losses are well understood. For this reason, the setup 

is used in chapter four, where we are extremely photon starved because of the pulsed source. 

In the future we hope to have access to an ultrashort pulse, and the optics are all fabricated 

out of fused silica glass which has an extremely high damage threshold. Finally, we also 

demonstrate using this system as a pump signal in a second-harmonic-generation process to 

generate high power visible light signals in the green regime to maximize transmission 

underwater while maintaining phase control. This allowed the use of standard 

communications components to control the CCOAM states with low damage thresholds to 

be used because they are placed before the optical amplifier. In chapter 4, the interferometry 

setup is replaced with an AOD and a single pulsed source. While the source is not high-
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powered, it is used to verify the feasibility of combining and aligning the system with a 

pulse. The AOD has a large active area, and AODs can be fabricated out of robust materials 

such as quartz, also known as crystalline silica which has very high damage thresholds.  

As you can see, there is a wide range of future applications that can stem from this 

work just for the underwater environment, ranging from communications to sensing and 

applications. This work examined the precise amplitude and phase control needed to predict 

and control the output CCOAM state. By creating a predictable state that can be precisely 

and rapidly controlled, we are closer to the goal of combining several OAM states to 

remotely probe an environment.   
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Appendix A 

Optical Fabrication of Concentric Phase Plates 

Three different diffractive phase plate designs are used to convert a Gaussian beam 

into the desired interference patterns. The concentric DPPS used in this work have a phase 

profile defined by equation 2.2 with r1 = 0.625 mm and r2 = 2.5 mm.  

The phase delay, ∆φ, experienced by a phase front traveling a distance h through a 

medium with refractive index 
1n   can be calculated using 
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(A.1) 

where λ describes the wavelength of light and n0 is the refractive index of the surrounding 

medium. The modulus 2π is taken of the phase profile, P(θ), in order to compress the optical 

element. Therefore, the maximum phase delay experienced by the phase front will be 2π 

radians. Utilizing this fact, equation A.1 can be manipulated to find the optical depth 

corresponding to a phase delay of 2π radians: 
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The ideal height profile h(θ) of a concentric DPP is derived from equation (2.2) and 

is expressed as 
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where 𝑟 gives the radius in milimeters, 𝑛1 is the refractive index of the substrate, and n0 

gives the refractive index of the surrounding medium. For this work, n0 = 1for air. The phase 

profile of the diffractive optics was designed by taking the modulo 2π of h(θ) 

This profile is then divided into 16  discrete levels, indicating four iterative etches 

in the fabrication process. This results in a calculated diffraction efficiency of 98.7% using 

equation (1). Similarly, the diffraction efficiency is 95.0% for an 8-level DPP and is 99.7% 

for a 32-level device. The 16-level devices, as can be seen in chapter 2, Figure 2.2.1, are 

chosen over the other options to balance the ease of fabrication and diffraction efficiency. 

A photolithographic method is used to expose a pattern onto photosensitive resist  

wafer, which is then etched in an Inductively Coupled Plasma tool to transfer this profile 

into a fused silica. For each depth in the etching process the wafer is cleaned, coated in 

photoresist, exposed using an i-line projection lithography tool, developed, and plasma 

etched. An etch process consisting of three steps resulting in an 8-level device is illustrated 

in figure A-1. 

For operation at 450 nm, the refractive index of fused silica is 1.466. Using equation 

(3), a phase delay of 2π radians occurs after propagation through approximately 960 nm of 

fused silica glass. This depth is divided into four etches: 60 nm, 120 nm, 240 nm, and 480 

nm. The total etch depth is therefore approximately 900 nm. This is to ensure a proper phase 

wrapped profile. Precise etch depths and alignment of each layer is crucial, especially when 

designed for operation at shorter wavelengths. In this case, any small deviation may be on 

the same order of magnitude as the wavelength. This will result in a loss of efficiency. The 
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etch depth profile of the fabricated devices is given in figure A-2, where errors can result 

from fabrication errors, too high etch rates, or inconsistent plasma matching times. 

 

 
Figure A-1. Illustration of a 3-step etch process creating 8 levels, where Δ  is 

the desired step size and is given by the total etch depth divided by the number 

of levels. The mask leaves a protective layer of photoresist which protects the 

substrate from being etched. Each subsequent layer is etched twice as deep as 

the previous layer for the a) first etch, b) second etch, and c) third etch. 
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Figure A-2. The etch depths for each level of the device are compared to the 

ideal etch depths for a 16-level device operating at 450 nm.  
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Appendix B 

Higher-order Poincaré Sphere (HOPS) Equivalent  

CCOAM modes, when comprised of orthogonal OAM states, i.e., integer values of 

m, can be mapped to a vector space representing all possible combinations of the two states. 

The Poincaré sphere is most commonly used to represent polarization states resulting from 

two orthogonal polarization states: right and left hand circular. The HOPES is an analogous 

to this where instead we will look at two orthogonal left and right hand OAM states with 

equal OAM magnitudes [62]. Figure C.1 shows a Poincaré sphere for m = 2, where the poles 

represent pure OAM states, the equator represents a combination of the two with equal 

powers and a relative phase δ, and the rest of the surface of the sphere represents various 

ratios of the two, where the radius of the sphere represents the total power of the CCOAM 

mode [40].  
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Figure C-1: HOPES for Um which is the expression for the coherent 

combination of m=+2 and m=-2 with the three stokes parameter projections 

along (a), (b), and (c) 

For a polarization Poincaré sphere, Stokes parameters are used to map a received 

mode into the vector space. For the HOPES, Stokes equivalent parameters will be used to 

recover the necessary modal information. Four measurements are typically needed to map 

the state. Two are used to map the signal to map to the axes given in Fig. C.1 (a) and (b), 

and two measurements are used to map to the axis given in Fig. C.1 (c) and to measure the 

total power of the signal. 

Recall that the CCOAM state  , ,mU   
 can be generalized as [74]: 
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(C.1) 
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where (ρ,χ,δ) represent the spherical coordinates of the Poincaré equivalent sphere and θ is 

the azimuthal coordinate of the spatial profile. The projection of  , ,mU   
 along the 

axis given in Fig. C.1 (a) has δ = 0 and χ = π/2, The projection along the axis given in Fig. 

C.1 (b) has δ = π/2 and χ = π/2.  The power proportional to the top pole given along Fig. C.1 

(c) requires χ = 0. The power proportional to the bottom pole requires χ = 2π so that equation 

C.1 becomes  
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(C.2) 

The corresponding phase-only correlation optics can therefore be defined by the 

conjugate of the phase of the four profiles given in Eq. C.2 
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The phase profiles are shown in Fig. C-2 for m=2.  
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Figure C-2. Phase profiles of the phase-only correlation optics given in equation 

C.3 for (a) Φa, (b) Φb, (c) Φc1, and (d) Φc2. Note that (a) and (b) have the same 

profile with a relative rotation of π/4 radians for m = 2.  

Using these four optical components as phase-match optics in a correlation setup 

produces on-axis powers given by the convolution of  , ,mU   
 and the optics given in 

equation C.3 which can be easily calculated using convolution theorem property of Fourier 

Transforms:  
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where Ptot gives the total power of the CCOAM mode, the position on the sphere can be 

determined using  
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Note that Ptot is the radius of the sphere. Equivalently, the state can easily be 

represented in Cartesian coordinates: 
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B.1. Optical Correlation Overview 

Similar to the correlators in our previous work [7, 39, 40], the optical setups utilize 

a single optical correlation to recover phase modulation information by transforming the 

phase modulation information into an amplitude modulation that is then collected with a 

detector as shown in Figure 5.2.1. These setups exploit the convolution property of Fourier 

transforms. Propagation of a beam through an optical element can mathematically be 

represented as a multiplication of the two. Propagation through a lens produces a Fourier 

transform one focal length away from the lens.  This produces a mathematical convolution 

whose on-axis intensity contains the correlation coefficient. 
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Figure 5.2.1. Receiver schematic showing phase match filter for two CCOAM 

beams with |m|=2 with correlation incident on the detector DET 

The phase match optic corresponds to the argument of equation 3.3 which appears 

as a binary optic with four wedges with alternating phase values of 0 and π as shown in Fig. 

3.2.1. The active area of the detector is aligned to collect the on-axis correlation information. 

As shown in [39, 40], the power contained in the correlation spot, P, can be analytically 

expressed by P ∝ cos(δ)+1 such that as the relative phase δ is changed, the receiver power 

will hit a maximum value when δ=0 and a minimum value when δ=π. More details can be 

found in Appendix B, which fully describes mode recovery. 
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Appendix C  

Log-polar transformation and optical design 

The work presented in this document references a set of log-polar transformation 

optics that perform a geometrical transformation of an incident beam from Cartesian 

coordinates to Polar coordinates or vice-versa depending on the direction of propagation 

through the set [66, 49, 34, 33].  

In this work, we are primarily concerned with the generation of OAM states. The 

two optics have phase profiles defined by  
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where the (x,y) coordinates are transformed into (u,v) or vice versa depending on the 

direction of propagation through the optics, f is the focal length of a built in lens and 

determines the separation of the optics, 2πa determines the line length, and b determines the 

shift of the line on ΩW. For the λ = 450 nm build, f = 200 mm, 2πa = 3.6 mm, and b = 2 mm. 

For more detection the optics are placed ΩU  ΩW. For mode generation the signal is 

propagated in the reverse direction. 
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Appendix D   

Phase Locked Loop 

 

Mechanically, techniques such as cage systems and enclosures can be used to 

minimize system vibrations, temperature fluctuations, and air currents but this will not 

completely eliminate the issue, only slow it down. The measured rate of change of the phase 

drift is typically on the order of 1 Hz or slower, but could easily reach rates in excess of 

hundreds of Hz due to any vibrations or disturbances present. 

In this work we create a phase-locked loop (PLL) to recover the phase delay of a 

known transmitted signal using the detection techniques presented in Appendix C. The 

beam generation setup is given in Figure 3.3.3. A small portion of the transmitted beam is 

collected using a 10% pickoff. This is then sent to a receiver setup, shown in Fig. D.1 to 

recover the beam orientation using two optical correlations. The optical correlation power 

is captured using two photo detectors. This signal is then collected using two ADC ports on 

an Arduino Due. A simple algorithm is then employed to normalize the signals and compute 

the phase information using the computations given in Appendix C. This is compared to the 

desired setpoint to calculate the error. This error is integrated over time and sent to an 

amplifier before being applied to a slow modulator on one leg of the system. See the 

following sections for a more detailed explanation of the algorithm and code. . In this work 

we apply a phase bias using a PI-control loop to achieve a system with RMS phase error of 

< λ/46. 
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Figure D-1 Schematic diagram of receiver setup where the optical elements Φa 

and Φb are placed in the Fourier plane of the lens. A non-polarizing beam 

splitter (NPBS) is used to split the signal into two equal parts 

D.1. Optical Correlation 

This subsection will briefly cover the optical correlation used in the phase locked 

loop as it is slightly different than the setup given Appendix B. Both function on the Fourier 

transform convolution theorem which states that multiplication in the spatial domain 

produces a convolution in the frequency domain and vice-versa. The setup shown in Figure 

D-1 is simplified and the ideal case is shown in Figure D.2.  

Figure D.2 shows a 4F system with a magnification of 1. It is well known that lenses 

take the Fourier transform of an input beam. In addition, the Fourier-transformation will 

have an additional parabolic phase term if the object or image you are trying to transform is 

not placed 1F before the lens. By placing the correlation filter at the focus of the lens, we 

are performing a multiplication of the Fourier transform of the incident mode by the phase 

component of the optic placed in this plane. As the beam propagates to the second optic, an 

additional 1F away, the inverse Fourier transformation is performed. Thus we have just 
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performed a convolution of the input beam with the phase-match optic. A convolution 

produces a correlation surface, whose on-axis information as mentioned in section 3.2 gives 

the correlation coefficient proportional to the total power of the beam. 

In reality, 4F systems can have two different lens values. This produces a 

magnification of the output beam, where M = L2/L1. Therefore, by increasing the focal 

length of the second lens we can magnify the system, creating a larger correlation spot. In 

addition, because we are not interested in the wavefront of the correlation, we can remove 

the second optic. This was done in the setup, where the photodetectors were placed 

approximately 500 mm after the correlation optics such that the active area of the detectors 

could be used to collect only the correlation power.  

D.2. Algorithm Implementation 

The implemented PLL algorithm is shown in Figure C-1.  

 

Figure D-2. General flow diagram overview for PLL. Two optical correlations 

are done to collect the orientation information. The Arduino code normalizes 

the signals so that the inverse tangent can be taken to recover the relative phase 

δ. δ is then compared to a setpoint in the code which determines the error 

relative to the desired orientation. The cumulative sum of the error is then 

applied to the phase modulator. 
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The actual implementation of the algorithm is slightly more complex, for two 

reasons. First, phase modulation is cyclical. Generally speaking, control loops need to be 

linear, time invariant systems. Therefore, when the inverse tangent is taken of the two 

correlation signals, the output is limited between [-π,π]. This means that the system no 

longer appears linear, instead there is a modulo 2π of the phase drift, meaning the system 

no longer has one to one mapping and is not linear. The inverse tangent produces apparent 

instantaneous phase jumps that cause unnecessary integration instability. Therefore, if the 

program looks at the difference between the current and previous values and if it sees a 

magnitude change greater than π, the signal is shifted up or down by 2π accordingly, creating 

a linear system.  

First, the measured phase must be converted to a voltage signal applied to a phase 

modulator. Next the Arduino Due has a DAC output limited between 0.55 V and 2.2 V 

while the phase drift is unlimited. Therefore, after calculating the phase driftthe output is 

confined between -3π/2 and 3π/2, and when the signals hit these thresholds they are shifted 

by 2π in the proper direction. This not only limits the output voltage but allowing the range 

to exceed 2π prevents the output voltage from switching rapidly between positive and 

negative values when it is near the thresholds. Lastly, this signal is converted to a voltage 

value and scaled such that π modulation is equal to Vπ, the voltage required by the 

modulator. 
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Figure D-3. Circuit schematic for Arduino Due feedback loop with 

amplification of the output signal. 

 

Figure D-3 shows a simple operational amplifier chip, LT1222, used in an inverting 

operational amplifier setup. The schematic diagram is shown in Fig. D-4, where the gain of 

the circuit is calculated using. 
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where Vin is the signal output by the DAC0 pin, Rf and Ri are given in Figure D-1 

and produce a 5x gain. 

 

Figure D-4. Circuit schematic for operational amplifier design.  

The LT1222 chip was selected for its high Gain-Bandwidth product of 500 MHz, 

so for a gain of 5x, the bandwidth of the amplifier is 100 MHz.  

D.3. Code 

#include <math.h> 

 

//input and output pins  

int analogINPin1 = A3; 

int analogINPin2 = A2; 

int analogINPin3 = A0; 

int analogOUTPin_D0 = DAC0; 

int analogOUTPin_D1 = DAC1; 

 

//Value storage 

int DET1 = 0;  // variable to store the value read 

int DET2 = 0;  // variable to store the value read 

int PHASE_out = 0;  // variable to store the value read 

int max_val1 = 0; 

int max_val2 = 0; 

int min_val1 = 0; 

int min_val2 = 0; 

int dt; 

int out1 = 0; 

int out2 = 0; 

double amp1; 

double amp2; 

double amp3; 

double DET1_scaled; 

double DET2_scaled; 
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double Theta; 

double Theta2; 

double ERROR1; 

double ERROR2; 

double OUTPUT_value; 

double cumulative_error = 0; 

double SHIFT1 = 0; 

double SHIFT2 = 0; 

double Prev_Theta = 0; 

double Error_diff = 0; 

double setpoint = 0; 

double prev_error1 = 0; 

double prev_error2 = 0; 

bool TIMEOUT = 0; 

int v2pi = 1655; //2pi value out of arduino 

int v2pi_shift = 3500 - v2pi; // center voltage signal 

int t_start = millis(); 

int t_end = t_start; 

 

void setup() { 

  // put your setup code here, to run once: 

  Serial.begin(9600);      // open the serial port at 9600 bps: 

 

  // set read and write resolution 

  analogReadResolution(12); 

  analogWriteResolution(12); 

  t_start = millis(); 

} 

 

void loop() { 

  // put your main code here, to run repeatedly: 

    //Test Timing 

    digitalWrite(13,TIMEOUT); 

    TIMEOUT = !TIMEOUT;  //Measure the output on pin 13 to get the 

runtime for this code 

 

    // read in voltages from two detectors 

    DET1 = analogRead(analogINPin1);  // read the input pin 

    DET2 = analogRead(analogINPin2);  // read the input pin 

 

 

    //Compute total elapsed time 

    t_end = millis(); 

    dt = t_end - t_start; 

 

 

    //COMPUTE MAX AND MIN VALUES OF EACH DETECTOR for 1 second 

    if (dt < 1000) { 

 

      //Ramp output voltage 

        PHASE_out = PHASE_out + 10; 

       

        if (out1 >= 4000) { 

          PHASE_out = 50; 
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        } 

     

      analogWrite(analogOUTPin_D0, PHASE_out); //write ramp 

     

      //STORE MAX AND MIN VALUES 

      if (DET1 > max_val1) { 

        max_val1 = DET1; 

      } 

      if (DET2 > max_val2) { 

        max_val2 = DET2; 

      } 

      if (DET1 < min_val1) { 

        min_val1 = DET1; 

      } 

      if (DET2 < min_val2) { 

        min_val2 = DET2; 

      } 

    } 

 

    //BEGIN PHASE RECOVERY 

    if (dt >= 1000) { 

      

       

      amp1 = DET1; 

      amp2 = max_val1; 

      amp3 = min_val1; 

      DET1_scaled = ((amp1 - amp3) / (amp2 - amp3) - 0.5) * 2; 

 

      amp1 = DET2; 

      amp2 = max_val2; 

      amp3 = min_val2; 

      DET2_scaled = ((amp1 - amp3) / (amp2 - amp3) - 0.5) * 2; 

 

 

      //Calculate phase 

      Theta = atan2(DET2_scaled,DET1_scaled); 

 

      //Change in measured phase from previous step 

      Error_diff = Theta - Prev_Theta; 

 

      //CORRECT FOR MOD2pi of inverse tangent and rework where the 

modulo is taken 

        if (Error_diff > 2 * M_PI * 0.8) { 

          SHIFT1 = SHIFT1 + 2 * M_PI; 

        } 

       

        if (Error_diff < -2 * M_PI * 0.8) { 

          SHIFT1 = SHIFT1 - 2 * M_PI; 

        } 

 

          Theta2 = Theta - SHIFT1; 

          Prev_Theta = Theta; 
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          ERROR1 = setpoint - Theta2; 

          ERROR2 = ERROR1 + SHIFT2; 

 

          //LIMIT OUTPUT (rework modulo) 

          if (ERROR2 < -M_PI) { 

            SHIFT2 = SHIFT2 + 2*M_PI; 

          } 

          if (ERROR2 > M_PI) { 

            SHIFT2 = SHIFT2 - 2*M_PI; 

          } 

 

          //FINAL OUTPUT FOR ONE TIMESTEP 

          ERROR2 = ERROR1 + SHIFT2; 

 

          //CALCULATE CUMULATIVE ERROR 

          cumulative_error = ERROR2 + prev_error2; 

          prev_error2 = cumulative_error; 

 

          //CONVERT OUTPUT PHASE TO ARDUINO VALUE (integer between 0 

and 4092) 

          OUTPUT_value = (cumulative_error / ( M_PI) + 1)/2 * v2pi + 

v2pi_shift; 

          out1 = (int) round(OUTPUT_value); 

 

          //WRITE VOLTAGE OUT 

          analogWrite(analogOUTPin_D0, out1);   

          //analogWrite(analogOUTPin_D1, out2);  //Here you can put any 

other voltages you want to monitor. Make 

sure to do a voltage conversion! 

 

    } 

  }  
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Appendix E 

Constant Envelope OFDM 

 

Orthogonal frequency division multiplexing (OFDM) is another common technique 

used to expand the data rate of a bandwidth limited system and has been successfully 

demonstrated in the underwater environment using blue laser diodes [11,12]. The data rates 

presented in [11,12] are extremely high for free-space underwater links, but the authors 

allude to potential spatial and temporal dispersion issues caused by optical propagation 

through turbid environments. In OFDM, bits of complex data are encoded using several 

orthogonal frequency carriers whose orthogonality minimizes crosstalk between the 

frequencies. In the time-domain, this signal appears as the summation of several shifted 

sinusoids of various amplitudes at each of the carrier frequencies. This summation typically 

results in a large peak to average power ratio (PAPR), which can be a major issue, 

particularly when applying any nonlinear manipulation of the signal such as amplification 

or other harmonic generation processes.  

Constant envelope OFDM (CE-OFDM) is a technique that reduces the PAPR by 

modifying the OFDM signal [13]. This is extremely advantageous in an underwater 

environment for many reasons. OFDM signals are robust to latency effects and is an 

effective means of transmitting large quantities of data over short periods of time. In 

addition, CE-OFDM promotes power-scalability, and when combined with OAM, the 

delivered power is constant, promoting power delivery in addition to information transfer. 

CE-OFDM uses phase modulation to transform a typical OFDM signal into a signal that 
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can be used in nonlinear processes. At the receiver, phase demodulation must be used to 

perform the inverse transformation. 

 

 

Fig. E-1. CE-OFDM illustration for s(t) with 2πh=0.5 and δ=π/4 where s(t) with 

corresponding beam profiles are shown at (a) φ(t) = 0, (b) φ(t) = π/2, (c) φ(t) = 

π, and (d) φ(t) = 3π/2. 

A typical OFDM signal can be expressed as [14] 
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over -Tcp ≤ t < T, where Tcp is the cyclic prefix duration, T is the duration of the OFDM 

block, 2πh is the modulation index in radians such that the variance of φ(t) is σ2 = (2πh)2, C 

is a constant, and X[k] is a vector of N complex data symbols. This is the real-valued 
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information-carrying message signal that is transformed into the CE-OFDM signal given by 

[14]. 

   0( ) exps t A i t      (E.2) 

over -Tcp ≤ t < T, where A is the signal amplitude, and δ0 is an arbitrary phase offset, and is 

ideally 0. Visually, this signal can be represented as shown in Fig. E-1 as a signal with 

constant amplitude and is encoded into the phase difference between the two CCOAM 

beams. 

Instead of phase demodulation, direct detection is a technique used to reduce 

receiver complexity using a single measurement to recover the OFDM signal [15-17]. To 

do this optically, optical correlators are commonly used to very efficiently recover and 

identify mode structures [18] in which the recovered signal becomes  

   0( ) cos 1driftr t t      
 

 (E.3) 

where δdrift is an additional phase drift that can occur when combining the OAM modes. 

This can be caused by random temperature fluctuations, vibrations, ect. that cause small 

differences in the optical paths of each coherent mode resulting from most interferometric 

combination techniques. In order to successfully recover the phase modulation on the signal, 

ideally this would be a 1-to-1 mapping of the φ(t) to r(t). Since only a single detector is used 

to recover the signal, the receiver will recover a distorted signal.  When 2πh increases to 0.5 

and beyond, the fidelity of the signal decreases as we leave the 1-to-1 mapping region. In 

fact, the recovered signal will begin to double. This can also occur if the reference phase 
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drifts too far. This is why the phase- locked control loop is necessary, otherwise the signal 

fidelity and distortion will randomly drift due to the cosine mapping at the receiver.  
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Appendix F 

Pulsed Source 

 The EPC9126 board is able to create short optical pulses by charging and 

discharging capacitors. The discharged current flows through the laser diode and produces 

an optical pulse proportional to the current. A square wave signal operating at 1 kHz controls 

the repetition rate by switching on and off a transistor. The FWHM of the pulse is calculated 

using the equation given in [75]: 
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Appendix G 

Direct Phase Measurement Interferometry 

Direct phase measurement interferometry (DPMI) is a coherent technique employed 

to calculate the wavefront of an optical signal using interferometric intensity patterns and is 

typically used to measure the quality of optical surfaces. Typically, the reference signal has 

a planar wavefront and it is used to measure the optical flatness of substrates. There are 

several techniques and algorithms, but in this work we are using the four-measurement 

technique where each interference pattern is created with a phase difference of 0, π/2, π, and 

3π/2 relative to the reference signal as given in [76]. The four intensity profiles can be 

described as 
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where the reference beam is given by 

 
 

      0 0 0, , exp ,U x y U x y i x y 
 

(F.2) 

and the expression for the beam with the wavefront we are trying to measure given by 

 
 

      , , exp ,m m mU x y U x y i x y 
 

(F.3) 

where U0 and Um represent the amplitude and ϕ0 and ϕm represent the wavefront of the 

respective beams. 
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Plugging equations F.2 and F.3 into the equations given in F.1 give 
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Using basic trigonometry we can combine the four equations given in F.4 so that  
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Therefore, the recovered wavefront ϕ(x,y) is actually the difference between the 

reference and unknown wavefronts.  
       0, , ,  mx y x y x y    . (F.5) 
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