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Abstract

Thanks to advanced technologies like Connected and Autonomous Vehicles, platooning is becom-

ing more and more useful as a method to potentially increase road capacity and reduce energy consumption.

While there are many studies in the literature reporting significant fuel and energy savings as a result of pla-

tooning, these studies are ignoring the extra energy required to maintain vehicles in close formation referred

to as string stability. Also, there are other factors many of the current studies are not considering such as the

position of a vehicle in a platoon, the background traffic that may complicate the process of forming platoons,

and the vehicle type. Thus, optimizing and quantifying the savings that may be gained from platooning is

challenging. In this study, we develop a simulation-optimization framework to tackle this challenge. The

simulation model simulates real traffic conditions for individual vehicles and platoons. Additionally, the sim-

ulation model implements platoon forming decisions obtained from an optimization model. Vissim is used

to simulate the actions taken by all the vehicles and platoons and capture the energy expended by each ve-

hicle over its entire trip duration. Our optimization model determines vehicle-to-platoon assignments given

the locations, speed, and acceleration of vehicles and platoons. Particularly, we concentrate two different

optimization models. One is a centralized model to make platooning decisions with aim to maximize po-

tential energy savings system-wide. On the other hand, a decentralized model utilizing a competition game

is developed to make decisions for individual vehicle energy saving purpose. In addition to the simulation-

optimization framework, an accurate energy consumption model is developed, which is inspired by the work

of Tadakuma and colleagues. The energy consumption model utilizes a hybrid prediction formula for aerody-

namic drag reduction in multi-vehicle formations unifying both physical mechanisms and existing empirical

study data. In addition to the centralized and decentralized decision making models, we track a single pla-

toon to observe the energy consumption for this one platoon under different parameters in order to better

understand the factors that impact energy savings. Our results show that a system-wide savings of about 3%

in centralized model, and 1.5% in decentralized model can be realized over 100 miles when platoons are
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formed strategically. Comparison between two models also confirm, as expected, that the centralized model

forms better platoons in terms of energy savings.
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Chapter 1

Introduction

As Intelligent Transportation Systems (ITS) and Connected and Autonomous Vehicles (CAVs) are

becoming more and more advanced, vehicle platooning could potentially become a reality in the near future.

A platoon is a fleet of vehicles that travel together at the same speed with uniform short following inter-

vehicle space. With short following distances, both front vehicle and following vehicle can obtain air drag

reduction benefits which in turn reduce energy to move these vehicles. In addition, short following distances

potentially increase traffic throughput. On the other hand, however, vehicles may consume more energy as

they accelerate or decelerate to form platoons. In addition, it is impractical to have a large number of vehicles

in each platoon due to safety, control issues, locally congestion, and not providing sufficient space for vehicles

in adjacent lanes to switch lanes. Hence, we would like to study the practical benefits of platooning.

1.1 Overview of this study

In this paper, we mainly investigate the effect of platooning on energy consumption for a fleet of

connected and autonomous trucks traveling over a long freeway stretch with on- and off-ramps. Two type of

formulations are used to make platooning decisions. For centralized model, given the destination for each

vehicle in the system, the target is to identify best possible opportunities for entire system such that individual

CAVs can dynamically join and leave platoons. Unlike the centralized model, decentralized formulation find

best strategies for locally single vehicles. Thus, so as to optimize and quantify the potential savings, a

simulation-optimization framework is built in this study. In this framework, the optimization model forms

platoons with different approaches and the simulation model captures the realistic vehicle movements, traffic
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conditions, and energy consumption. A comparison between two optimization models is conducted in this

study to evaluate the effectiveness of these two models.

In order to obtain more precisely energy consumption information, we develop a prediction energy

consumption model in this study. In addition, we focus on energy consumption instead of fuel consumption

since energy consumption eliminates the need to specify engine types for various vehicles. In other words,

energy consumption and fuel consumption are closely related, but the latter depends on the specifications of

the engine on each vehicle. Fuel consumption can be calculated according to energy consumption and engine

type. Existing research either focuses on assessing aerodynamic forces through simulation, scaled testing

in wind tunnels, or limited full-scale track testing by involving the use of actual vehicles, pressure sensors

to measure drag, and scales to measure the change in fuel (e.g., [1]–[5]). To date, models to predict energy

consumption of vehicles in a platoon traveling at the same speed with very short inter-vehicle distances are

limited. These types of models are of paramount importance for cooperative adaptive cruise control (CACC)

applications. Our prediction energy consumption model fulfills this gap in the literature by proposing a model

that combines empirical data and physics-based modeling.

Additionally, we observe the energy consumption of one selected platoon driving through this entire

freeway. Several experiments are conducted with different factors such as desired travel speed, inter-vehicle

distances, platoon size. Meanwhile, data is recorded to analyze the energy situation of that platoon. With

results, we better understand energy composition for an individual platoon.

The remainder of the research is organized as follows. In 1.2, we provide a brief review of the liter-

ature related to optimization, simulation, and energy models for platooning. Chapter 2 provides details of our

simulation-optimization approach and our energy consumption model. In particular, section 2.1 introduces

simulation-optimization framework. Simulation and network settings are present in section 2.2. In addition,

sections 2.3 and 2.4 states our prediction energy model and results. Chapters 3 and 4 detailed present our

centralized and decentralized formulations with experiments and results respectively. With similar format,

sections 3.1 and 4.1 present a linear programming model (centralized) and a dynamic game model (decentral-

ized). Sections 3.2, 3.3, and 3.4 show experiments, traffic condition results, and energy consumption results

for centralized model. Same as sections 4.2, 3.3, and 4.4 for decentralized model. Moreover, information and

analysis of that one platoon observed is shown in chapter 5. Lastly, comparison, evaluation and conclusion

are provide in chapter 6, including a detailed analysis of the difference of two models in section 6.1, and

conclusions with future research.
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1.2 Literature Review

Vehicle platooning is not a new concept. Researchers have been investigating platooning since the

early 1950s. However, due to the technology of the time, these research efforts were mostly theoretical with-

out any real-life applications. In recent years, more project were conducted to research platooning method.

From mid 1990s to early 2000s, the “Chauffeur” group within the European Union (EU) project T-TAP ([6],

[7]) studied automation in trucks. A longitudinal control concept and a two layered control structure were

established for controlling platoons. An experiment was created with three vehicles travelling along the Bren-

ner Pass as a platoon for field test. From 2005 to 2009, the German project KONVOI conducted a study on

a platoon of four trucks [8]. The platoon drove on German highways (lead vehicle was driven by a human

driver) with a gap of 10 meters (m) between vehicles. They reported an increase of up to 9% in road capacity

and a decrease of up to 10% in fuel consumption. The Japanese project “Energy ITS” starting in 2008 built a

platoon of 3 heavy trucks and 1 light truck with a gap of 4.7m between and an average speed of 80 kilometer

per hour (kph) [9]. The project reported a 15% savings in fuel consumption based on their field experiments.

In addition, they also concluded that a 40% penetration in heavy trucks can result in 2.1% CO2 emission

reduction with a gap of 10m in a simulation study. In 2011, the California PATH program conducted a test

with a platoon of three trucks at a gap of 6m [10]. The results showed an average of 4-5% fuel savings for the

lead truck and 10-14% for the following trucks.

As known in theory of aerodynamic, platooning can reduce energy consumption primarily due to

changes in aerodynamics. As can be seen in Figure 1.1, air drag reduction mainly depends on inter-vehicle

distance and position in platoon. While not shown in Figure 1.1, air drag reduction also depends on the

speed at which the platoon is traveling. Other research studies confirm these observations. For example,

Browand et al. [11] report fuel savings of 8-11% for a platoon with two trucks. Bonnet and Fritz [2] study

a platoon of two trucks travelling at 60 kph and 80kph on a highway with additional traffic. They show that

the decrease in fuel consumption ranged from 15% to 21% at 80kph and 10% to 17% at 60kph for the tail

truck, and 3-10% at 80kph and 3-7% at 60kph for the lead truck. Tsugawa [12] shows a 14% decrease in

fuel consumption in a study with three trucks driving at 80kph with 10m inter-vehicle gaps. Lammert et al.

[3] provided experiments and statistical analyses for platoons with different inter-vehicular distances, speeds,

and masses. The paper provided a range of 3-9% fuel reduction for tail trucks and 2.5-5.5% for lead trucks.

With respect to quantifying vehicle fuel consumption, majority of the models are either statistical or

physical. Statistical models establish a relationship between vehicle system inputs and fuel consumption. The
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consumption is usually estimated every second, which requires input data at the same time resolution. Barth

et al. [14] were the first to build a linear regression model to estimate energy consumption and emissions of

vehicles based on engine output power. Later, Rakha et al. [15] developed the VT-Micro model, which esti-

mates fuel consumption based on a vehicle’s second-by-second travel speed and acceleration. Physics-based

models, on the other hand, simulate the physical powertrain working processes to quantify fuel consumption.

FASTSim, used in a study by Brooker et al. [16], and autonomy, used in a study by Halbach et al. [17], are

examples of physics-based models. Since these models are based on physical simulations, the drag coefficient

is included as an influencing factor that determines energy consumption. Some studies (e.g., [18], [19]) have

utilized physical models to assess energy consumption of many driving cycles. The physics-based approach

provides the flexibility to comprehensively examine the effects of inter-vehicle distance, speed, vehicle type,

and other factors on fuel savings. One of the major factors that significantly affects a vehicle’s fuel savings is

its coefficient of drag. Hence, Tadakuma et al. [20] establish a prediction formula for estimating aerodynamic

drag reduction which considers different vehicles types and inter-vehicle distances. Based on their model, a

hybrid prediction formula is provided for energy calculation.

In addition to the energy studies provided above, there are also some optimization and simulation

studies on fuel/energy savings. Tsugawa et al. [21] developed a computational fluid dynamics (CFD) simu-

lation with a platoon of three vehicles traveling at 80kph with an inter-vehicle gap of 4m. Their results show

that all three trucks consumed less fuel compared to when they were traveling singly, but the middle truck

Figure 1.1: Air drag reduction for buses in a platoon at 80kph (Source: [13])
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had the highest fuel savings. Deng [22] provided a simulation framework for a platoon with two vehicles

to study different platoon forming methodologies and concluded that platooning can improve traffic flows.

Johansson [23] developed a speed control approach to maximize fuel savings and used a simulation model to

test fuel consumption, throughput, and safety where safety issues mainly depend on acceleration distribution

and time gaps to front vehicles. Optimal deceleration trajectories are used in their simulation to avoid crashes.

The above mentioned papers focus on controlling existing platoons (not forming new platoons) in real traffic

conditions to optimize fuel consumption or flow capacity. On the other hand, Heinovski and Dressler [24]

set up centralized and distributed approaches to optimize travel time and fuel efficiency of platoons based on

their desired speed and current position. Larson et al. [25] developed a distributed method for optimizing

platoon routing with a local controller. Their work focuses on speed control, and they do not consider the

position of the vehicles in a platoon. In a similar study, Liang et al. [26] develop an optimization model for

two vehicle formations. Dao et al. [27], [28] studied a platooning problem similar to ours. They provided an

optimization-simulation model in which the objective function is to maximize the total distance that platoons

stay intact with the aim to improve lane throughput.

In terms of using decentralized model in platooning problem, several studies concentrate on setting

up decentralized control schemes. For examples, Han et al. [29] established a longitudinal tracking control

law for Cooperative Adaptive Cruise Control (CACC) to improve safety with capability of tracking inter-

vehicle spacing, velocity and acceleration. Renzler et al. [30] provide decentralized dynamic platooning

architecture to maintain safety based on network reliability, environmental. In addition, Rupp et al. [31]

and Kumaravel et al. [32] study a merging problem of vehicles and platoons on changing from two lanes

to one lane. Rupp et al. [31] establish a decentralized cooperative algorithm for vehicles to merge lane

safely with shorter inter-vehicle distance. While Kumaravel et al. [32] provide a optimal schedule and a

decentralized control algorithms for cooperative merging of platoons at freeway on-ramps. Refer to game

theory in platooning problem, there are plenty of games are used in different area of platooning. For examples,

Sajjad et al. [33] formulate a zero-sum game to determine the optimal strategy of attackers and defenders,

who try to disrupt or maintain the operation of platoon respectively. Gattami et al. [34] study a safety problem

of heavy duty vehicle platooning. A pursuit-evasion game is built in their model to set safety criteria for heavy

duty vehicle. They conclude a minimum 1.2m inter-vehicle distance without causing collision. Moreover,

Farokhi and Johansson [35] develop an atomic congestion game with cars and trucks as players. In their

research, car only considers own benefits such as preferred time, traffic flow velocity, and congestion penalty,

while trucks also consider platooning benefit such as fuel efficiency. Johansson et al. [36] and Johansson and
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Mårtensson [37] formulate a games of platoon matching problem. Trucks as players with same origin, but

different destinations want to departure at the same time to benefit from platooning, but not cost more.

Based on this review of the relevant literature, it is evident that a study is needed to look at system-

wide improvement opportunities under developing CAVs framework. Building an centralized optimization

system-wide can potentially yield to great savings. However, considering a large system, sometimes, it may

be difficult to optimize and make decisions through a centralized horizon. Although centralized decision

model can provide better results, the cost to make decisions, such as information sharing, information col-

lection, and time to obtain optimal solution, may not acceptable. Therefore, a decentralized model should

be considered based on locally information set as well. In addition, better platoon forming and maintaining

method can reduce energy waste due to acceleration. Thus, in our study, we mainly focus on (1) optimiz-

ing energy savings system-wide via centralized decisions to form platoons (2) optimizing potential energy

savings for each individual vehicles via decentralized game formation, (3) simulating the traffic stream that

consists of platoons and individual vehicles from the microscopic simulation model, (4) determining actual

energy consumption based on our prediction energy model, and (5) comparing differences of results between

centralized optimization and decentralized strategic game. (6) Energy consumed of that observed platoon is

also be analyzed.
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Chapter 2

Research Design and Methods

In this chapter, we detailed present the simulation-optimization framework as our primary research

design. Systematically, whether centralized, decentralized model, or the observation of one picked platoon is

based on the interaction in simulation-optimization framework. In addition, specific simulation environments

and settings are introduced here. Note that, all experiments utilize this presented simulation model with same

or similar parameters in order to conduct fair comparison and analysis. Since different formulations in this

research concentrate on energy consumption, prediction energy consumption model is elaborate presented

too.

2.1 Simulation-Optimization Framework

We develop a simulation-optimization framework to quantify the potential energy savings for a

fleet of autonomous trucks as they travel on a long highway stretch. This framework contains two major

parts, simulation model and optimization model. More specifically, a microscopic simulation model is set up

that realistically simulates the movements of this fleet of vehicles and other traffic status of vehicles on the

freeway. The optimization model, from another point of view, partitions the traffic network into platooning

zones around each on- and off-ramp. For each zone created, the model finds the best possible assignment of

each single vehicle to a platoon by considering either whole shared information set or some locally limited

information set. There is a feedback loop between the simulation and optimization models. In other words,

two models interact with each other in order to provide precise information of platooning utilizing in real

traffic. Figure 2.1 below provides a flow chart showing how the optimization and simulation models interact.
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As can be seen in Figure 2.1, we simulate the system for T periods. The optimization model is run

every τ period. Each time the optimization model is run, single vehicles are potentially assigned to nearby

platoons according to decisions made in centralized or decentralized model. The simulation model takes

these platooning decisions as input and simulates the traffic until the next optimization period. In the mean

time, traffic situation changes continuously such that new vehicles may enter the highway and some vehicles

may reach their destinations. This dynamic process is repeated until the end of the planning horizon at which

point system performance measures are collected.

2.2 Simulation Model

Vissim (http://vision-traffic.ptvgroup.com/en-us/products/ptv-Vissim/), a micro-

scopic simulation environment, is utilized to generate the network and simulate the traffic. Thus, our simu-

lation model is established in Vissim. In terms of traffic network and vehicles settings, mainly, the default

settings were adopted in Vissim. The COM interface via Python scripts are used to manage the platoons. The

following sections provide more details about the settings.

2.2.1 Vehicle and network settings

Since the main objective of this study is to quantify energy savings via platooning, we created a

100-mile highway stretch in Vissim as our basic network framework. This highway stretch is designed as a

Start
Initialize the planning horizon
T and the platooning interval

τ (t is the time index)
Start simulation

Collect platoon and vehicle
information from the simulation

for input to the optimization model

Solve the optimization model
to determine vehicle-to-
platoon assignments for
input to the simulation

Implement the platooning
decisions and continue
simulating the system

Is t a
multiple

of τ?

Is t = T ?

Stop simulation
and collect results

Continue running
the simulation model

End

Yes

No

Yes

No

Figure 2.1: Flow chart of the simulation-optimization framework
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Figure 2.2: Desired speed distribution

level terrain with no curves, and has three lanes in the same direction. We will refer the right lane as Lane 1,

the middle lane as Lane 2, and the left lane as Lane 3 throughout the paper. There are 36 on- and 36 off-ramps

distributed almost evenly over this highway stretch. The default freeway settings are applied (e.g., 12 f t lane

width) in Vissim. All vehicles, entering the highway individually or in a platoon, are Heavy Goods Vehicles

(HGVs), where single vehicles follow a desired speed distribution in Vissim (shown in Figure 2.2) with an

average of 62.5 miles per hour (mph) or 100kph.

In this network, platoons are allowed only in Lanes 2 and 3 for the reason that, in our preliminary

simulations, allowing platoon to travel in Lane 1 led to heavy congestion and traffic jams. From a practical

perspective, it is also a reasonable assumption, since allowing platoons in Lane 1 would impact the entry and

exit of vehicles from the ramps. Unlike the single vehicles, desired speed of platoons are fix. The desired

speed of the platoons in Lane 3 is set to 65mph and those in Lane 2 is set to 60mph or 55mph based on

different experiments. The Vissim screenshots in Figure 2.3 show the driving behaviour settings. As can be

seen from Figure 2.3, the HGVs in a platoon drive at close inter-distance (i.e., 0.5 second (s) time headway).

Similar to the network settings, we use the default Vissim values for many of the vehicle character-

istics. For example, the length and the width of the HGVs in our system are 33.51 f t and 8.19 f t, respectively.

We also use the default acceleration, deceleration and other parameters for the HGVs. Figure 2.4 shows the
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distributions for the desired and maximum acceleration for the HGVs in which the x-axis and y-axis represent

speed (mph) and acceleration ( f t/s2), respectively. In these figures, the middle curve (with red dots) shows

the mean acceleration values at different speeds. The curve above (below) the middle one shows the maxi-

mum (minimum) acceleration values. We enforce these upper and lower bounds so that the vehicles are not

using unrealistic accelerations. Another factor in energy consumption is the weight of the vehicle. We used

the mean total vehicle weights from two published reports ([38], [39]) in our simulations.

2.2.2 Vehicle and platoon control methods

In the simulation, platoons enter the highway at mile zero every 60s for each lane. The first platoon

in Lane 3 is generated as soon as the simulation begins, while the first platoon in Lane 2 enters after 30s.

Hence, platoons enter this highway in turn from Lane 3 and Lane 2. Platoon sizes are generated uniformly

between 2 and 5 vehicles and the headway between vehicles is set to 0.5s for both control and energy savings

proposes. Each vehicle (single or in a platoon) is randomly assigned a destination once it enters the highway.

In our initial set of experiments, vehicles pick remaining off-ramps as destinations based on a uniform dis-

tribution, which led to extreme congestion especially in the latter of freeway. To eliminate this problem, we

experimented with several different distributions before finally developing a probability mass function that

Figure 2.3: Following and lane changing behavior
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Figure 2.4: Desired and maximum acceleration distributions in Vissim

resembles a geometric distribution.

Let ND−1 be the number of off-ramps in the network after the on-ramp from which a vehicle enters

the highway. This vehicle will exit the system either from one of these off-ramps or the end of the highway.

Thus, there are ND potential destinations for the vehicle. For a vehicle that enters the highway from mile zero

all 36 off-ramps and the end of the highway are potential destinations, i.e., ND = 37. On the other extreme,

for a vehicle that enters the highway from the last on-ramp ND = 1. Our function of geometric distribution

ensures that vehicles do not leave the highway too soon (i.e., they get an opportunity to join a platoon),

and they do not stay too long to cause congestion. Let pl (l = 1,2, . . . ,ND) be the probability that potential

destination l is assigned as the final destination for this vehicle. The probability mass function developed is

as follows:

p1 =
ρ(1+ρ)ND−3

(1+ρ)ND −1
, p3 =

ρ(1+ρ)ND−1

(1+ρ)ND −1
, (2.1)

pl =
ρ(1+ρ)ND−l

(1+ρ)ND −1
, l = 2,4,5, . . . ,ND (2.2)

where 0 < ρ < 1 is the shape parameter. After experimentation with different values, ρ = 0.2 was chosen

as it resulted in stable traffic flow with opportunities for platooning. Figure 2.5 shows the probability mass

function when ND = 10. As shown in this figure, it does not look like a geometric shape since we switch the

probability of the first and the third possible exits in original geometric distribution so as not to encourage
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vehicles leave too soon. In addition, far destinations have small probabilities to ensure more stable traffic

flow.

To minimize energy consumption due to acceleration of platoons and single vehicles, we only allow

single vehicles to join platoons that are behind them. Thus, in our optimization model, for each single vehicle

in a platooning zone only those platoons that are behind the vehicle are considered. Once the optimization

model determines which platoon a particular vehicle needs to join, that vehicle moves to Lane 1 and slows

down to 40mph. We make single vehicles adjust their speed instead of platoons due to the reason that platoons

will consume more energy by changing speed comparing an individual vehicle. When the platoon is within

a certain distance (S0) of the vehicle then the vehicle starts to speed up and move to Lane 2 or 3 depending

on where the platoon is. On one hand we want the single vehicle to join the platoon as soon as possible

so that it can travel with the platoon for a longer period of time. On the other hand, however, we don’t

want the vehicle’s acceleration to be too high during this joining process because that will increase its energy

consumption. To ensure a smooth joining process we use the following process and the equations:


v j = vi +at,

v jt = vit +
1
2

at2 +S0 .

Assume that platoon j and single vehicle i will merge in Lane 3. This means the desired speed of

the platoon is 65mph (v j=65). Recall that the desired speed of the single vehicle is initially 40mph (vi=40).
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Figure 2.5: Probability mass function when ND = 10
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Vissim determines the acceleration of the vehicle using the distribution given in Figure 2.4. In terms of this

distribution, an average acceleration (a) is calculated for that vi. Now, using the first equation above, we can

calculate the time (t) it will take vi to increase to 65 with acceleration (a). Then, using the second equation

we can calculate S0. Thus, when platoon j is within S0 feet of vehicle i then vi is increased by 5mph. Since

acceleration picked from distribution may larger or smaller than average, it may take different time to reach

new vi. Then, we use the new value of vi and average acceleration a for new vi to calculate a new t value

and eventually a new S0 value. The advantages of increasing speed step by step (5mph) are to make Vissim

pick another acceleration in order to avoid too bad choice. This process of increasing vi is repeated until the

vehicle joins the platoon.

As mentioned above, to minimize energy consumption, each platoon should ideally travel at a con-

stant speed (i.e., avoid accelerating or decelerating). However, this is not an easy task even in a simulation.

One of the things we implemented is to enforce the platoons to stay in the same lane. Individual vehicles

change lanes to join or leave a platoon, but platoons are forced to stay in their lanes. Also, we assume that

the HGVs in our fleet have cooperative adaptive cruise control (CACC). This allows us to have the vehicles

travel at closer inter-vehicle distances. Yet, each vehicle in the platoon still has to accelerate or decelerate to

maintain the 0.5s headway. In particular, when a vehicle approaches its destination it begins to move to Lane

1 and get ready to leave the highway. The other vehicles (if any) in the platoon that are behind the leaving

vehicle begin to accelerate to close the gap. When vehicles accelerate or decelerate Vissim determines the

exact value based on the distributions shown in Figure 2.4.

2.3 Prediction Energy Consumption Formulation

Energy consumption depends on many factors such as speed, acceleration, mass, gradient, road

condition, wind, and frontal area of the vehicle. We focus on three important energy consumption areas that

account for the main difference between vehicles traveling singly or in a platoon: (i) acceleration, (ii) rolling

friction, and (iii) aerodynamic drag.

The total energy consumed in truck platooning is usually reported in terms of fuel consumption.

Yet, the operating fuel consumption of a vehicle depends on a multitude of factors, i.e., the efficiency of the

engine, transmission characteristics, weight of the vehicle, aerodynamic resistance, rolling resistance of the

tires, driving cycle, and driver behavior [40]. While engine and transmission losses are significant, they can

be represented in the simplified form of a constant scaling factor (for driving with or without platooning).
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Hence, this study focuses only on the energy necessary to physically move a vehicle, which can be converted

to fuel consumption. The forces which need to be overcome to maintain a constant speed, i.e., the road load,

yield

R(t) = [mg cos(α)−FL] ·
(

f0 + kR v(t)2)
+ FD +mg sin(α) (2.3)

with m and g being the mass and the gravitational constant, α representing the grade of the road, FL denoting

the aerodynamic lift force, f0 and kR being constant and velocity dependent rolling resistance coefficients, and

FD designating the aerodynamic drag. For heavy-duty vehicles, the effect of aerodynamic lift on the rolling

resistance can be neglected. As the goal of this study is to provide a drag reduction ratio (DRR) prediction

(and subsequently an energy reduction rate) for platooning operations, the development of this ratio will be

independent of the road grade. It is therefore acceptable, without loss of generality, to limit the analysis to a

level road. Hence, the vehicle specific power ([41]) reduces to

V SP = [R(t) + m a(t)] · v(t)

=
[

f0 + kR v(t)2] · v(t)+m a(t) · v(t)+ FD · v(t). (2.4)

Here, v(t) is the instantaneous speed at time t and a(t) the instantaneous acceleration. As the promised

fuel savings in platoon operations arise from reduced aerodynamic drag, the following sections will detail the

methodology to arrive at a hybrid prediction formula for the DRR. This equation includes energy from rolling

friction (first term), energy from acceleration (second term), and energy from drag reduction (third term) as

we mentioned.

The terms for energy from rolling friction and acceleration are straight forward. However, energy

savings from drag reduction are complex. To supply an assessment model for drag coefficient reduction, this

part modifies the prediction formulas developed by Tadakuma et al. [20] and adapts them to experimental

data for heavy-duty vehicles. In order to maintain consistency of the prediction model for long, medium,

and short inter-vehicle distances, several phenomena must be included: reduction of the main flow velocity

in a vehicle’s wake, stagnation pressure created in front of a follower vehicle as well as behind a leading

vehicle, nonuniformity of flow at short distances, and unmodeled effects for long platoons. We partially

utilize functional forms from [20] while expanding the relationship for stagnation pressure and introducing
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a concatenation correction. The introduced shift parameter effectively removes the previous unrealistically

high reduction in aerodynamic drag for short distances while the concatenation term allows for omitting the

nonuniform flow correction. For parameter estimation and fitting of the physical model to data from heavy-

duty truck testing, a least squares regression is employed.

In general, the force resulting from aerodynamic drag in the context of single vehicle driving is

expressed via the following relationship:

FD =
1
2
·ρ ·CD ·A f · v(t)2. (2.5)

Here, ρ denotes the density of air, CD the drag coefficient, A f the total projected frontal area, and v(t) the

velocity of the vehicle. The utilization of the drag coefficient - reflecting the aerodynamic behavior resulting

from the shape of the vehicle - allows for this simplified representation. Additionally, the drag coefficient for

a given vehicle can be easily obtained experimentally (e.g., in a wind tunnel) by measuring the perceived drag

force for a given air velocity. As Eq. (2.5) only holds for single vehicle driving, the travel velocity coincides

with the air velocity received by the frontal area of the vehicle. This will, in general, not be true for vehicles

driving in a platoon. Furthermore, Eq. (2.5) is subject to additional assumptions: (i) uniform flow; (ii) no

atmospheric wind; and (iii) no skin friction. All employed coefficients of drag within this study should be

interpreted as coefficients of pressure drag.

With the goal of a hybrid expression for fuel savings in mind, the role of aerodynamics under pla-

tooning can be expressed by comparing pressure drag between solo driving, FDs, and platooning, FDp, to

arrive at the DRR, i.e.,

DRR =
FDs−FDp

FDs

=
CDs ·A f ·qs−CDp ·A f ·qp

CD,s ·A f ·qs

= 1−
[

qp

qs
·
CDp

CDs

]
. (2.6)

Here, the dynamic pressures (velocity pressures) received at the frontal area of the vehicle under solo driving

and under platoon driving, qs and qp, are utilized instead of the vehicle velocity v as q = 1
2 ρu2 for com-

pressible fluids at low Mach numbers (with u being the flow speed). Note that this ratio will be 1 for the

first vehicle. The dynamic pressure ratio qp/qs as well as the uniform flow equivalent drag coefficient under

platooning CDp need to be determined by including correction terms for four distinct effects apparent for each

15



vehicle in the interior of the platoon:

1. The wake of a leading vehicle reduces the main flow velocity and, thereby, the dynamic pressure

received by a follower. This phenomenon can be expressed via the ratio of the center line air velocities

for a vehicle in the wake and solo driving, uw/us. This effect appears over a wide range of distances

(long, medium, and short).

2. For short inter-vehicle distances, stagnation pressure is created in the front of the ego vehicle (if the

ego vehicle is not the lead vehicle of the platoon). The increase of pressure over the frontal area raises

the main flow velocity again, thereby adversely affecting the ratio of the center line velocities uw/us.

Thus, a correction factor for the previous wake velocity deficiency needs to be introduced.

3. On the other hand, stagnation pressure is also created by a follower vehicle at the rear base of the ego

vehicle for short distances in a platoon. This rear base pressure lowers the pressure drop over the body

of the ego vehicle, and thus, the flow. Hence, another correction term reflecting this effect is needed

for the drag coefficient CDp. In contrast to the stagnation pressure created in the frontal area of the ego

vehicle, this phenomenon yields a pushing effect, i.e., increases DRR.

4. The expression in Eq. (2.5) inherently assumes uniform flow to allow for the simplifying use of the

drag coefficient CD. However, if inter-vehicle distances in a platoon are short to medium, nonuniform

flow effects arise. Therefore, Tadakuma et al. introduced a flow correction term in the modified drag

coefficient CDp in [20]. As will be specified later, our approach does not necessitate this correction

term, but requires a concatenation factor for long platoons, i.e., those with 3 or more vehicles.

Stagnation Pressure: The stagnation pressure created at the base of the ego vehicles by a following

vehicle leads to a pushing effect reflected in a decrease of the drag coefficient under platooning. This is the

only platooning impact apparent for the lead vehicle. Tadakuma et al. [20] introduce an analytical expression

for the base pressure of the ith vehicle that is “based on a formula that expresses the changes in the coefficient

of pressure caused by a potential flow” as

∆CDb,i

CDs,i
= 1−

[
1−
[

ε

di(i+1)+ε

]3]2

. (2.7)

Here, ε is an empirically established constant (determined as ε = 6.3 for sedan-type vehicles), whereas di(i+1)

is the distance between vehicles at positions i and (i+ 1) in the platoon. However, the reasoning for this
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expression cannot be confirmed as the referenced work in [20] is only available in Japanese. Additionally, the

functional form of Eq. (2.7) requires adjustments when used to assess the fuel saving benefits of platooning

at small inter-vehicle distances: ∆CDb/CDs approaches 1 for di(i+1) going to 0, i.e., the lead vehicle in the

platoon will have no drag for very small distances. This does not correspond to physical reality. Especially

for the small inter-vehicular distances to be exploited in platooning when utilizing CACC, the expression

in Eq. (2.7) becomes highly erroneous and over-promises fuel savings. This is one of the reasons that the

prediction formula in [20] fails to follow the trend of the empirical data obtained, for instance, by McAuliffe

et al. [1]. Hence, we suggest a new functional form for the stagnation pressure correction that maintains a

hyperbolic character, but introduces a second parameter for horizontal shift. This new expression does not

exhibit a singularity at di(i+1) = 0 and yields

∆CDb,i

CDs,i
= 1−

[
1−
[

X1
di(i+1)+X1X2

]3]2

. (2.8)

The parameters X1 and X2 will be determined by a least-squares fit from empirical data in section 2.4.

Wake Effect and Centerline Deficit Velocity: The wake effect of a leading vehicle yields a reduced

air velocity, and hence reduced dynamic pressure, received by a follower vehicle. This velocity deficit can be

expressed for a 2-vehicle combination via the maximum deficit velocity rate occuring at the centerline of the

wake, i.e.,
uw

us
= 1−ξ . (2.9)

The maximum deficit velocity rate in the wake of a vehicle, ξ , is the ratio between the velocity drop at the

centerline of the wake and the air velocity received by the vehicle under solo driving. Tadakuma et al. provide

an analytical expression in [20] for this maximum deficit velocity rate at distance d12 between two vehicles

at positions 1 and 2 as

ξ1 = α · (CDs,1)
β ·
(

1−
∆CDb,1

CDs,1

)β

·

(
d12√
A f ,1

)− 2
3

(2.10)

where, the additional index in the subscripts denotes the corresponding vehicle with 1 leading and 2 following.

Then, CDs,1 represents solo driving drag coefficient of the lead vehicle, ∆CDb,1/CDs,1 is the stagnation pressure

correction at the rear base of the lead vehicle, A f ,1 the projected frontal area, and d12 the distance of the

follower vehicle. The coefficients α and β have been empirically determined in [20] as α = 1.05 and β =

0.2 for sedan-type passenger vehicles. Note that it is important not to double count effects: although the

stagnation pressure is a coupled effect between leader and follower, the drag increasing (negative) effect on

17



the pushing vehicle is completely absorbed in the maximum velocity rate, while the (positive) impact from

being pushed is entirely captivated in the drag coefficient correction. The purpose of this study is the creation

of a hybrid prediction model for energy savings in a platoon based upon fitting of a simplified physical

model to experimental data. Unfortunately, most studies do not publish drag coefficients or frontal areas of

the utilized vehicles employed. One solution could be to estimate the corresponding vehicle parameters in

Eq. (2.10) and to only fit α and β to the experimental outcomes. However, we suggest a different approach

by decoupling the first two bracketed expressions in Eq. (2.10) and by collecting all vehicle parameters into

one unknown variable, yielding

ξi = X3 ·
(

1−
∆CDb,i

CDs,i

)X4

·d−
2
3

i(i+1) . (2.11)

In order to incorporate Eqs. (2.10) and (2.11) into Eq. (2.6), it should be noted that these velocity drops

have been derived for a 2-vehicle combination in which the first vehicle is subject to uniform main flow

corresponding to the actual vehicle speed. The ratio qp,i/qs,i in Eq. (2.6), on the other hand, reflects the ratio

of the received dynamic pressure by vehicle i in platooning and its dynamic pressure under solo driving. A

concatenation of pressure drops would be possible if the ratio of uniform flow equivalent velocities Ui+1/Ui

were available which include all accumulated effects caused by vehicles in front of the ego vehicle i. Yet,

this uniform flow equivalent (corresponding to the actually experienced aerodynamic drag) can precisely be

determined from the previously calculated DRRs up to vehicle i−1. Hence, the concatenation of the velocity

drops yields

qp,i

qs,i
= (

U2

us,1
·U3

U2
· · ·Ui−1

Ui−2
·

uw,i

Ui−1
)2

= (1−DRRi−1) · (1−ξi−1)
2 . (2.12)

As previous considerations have been performed under the assumption of uniform flow, a correction

factor accounting for the span-wise parabolic pressure distribution around the centerline of a sedan-type

vehicle has been suggested by Tadakuma et al. [20]. This correction factor corresponds to an increase of

the coefficient of forebody pressure to counteract overestimated wake effects. Yet, the correction value as

suggested in [20] is not bounded and exceeds 1 for small inter-vehicle distances. Not only is this a physically

inconsistent modification, but it has also been evident that this suggested correction for passenger vehicles

is not directly applicable for our approach. However, when concatenating vehicles in a long platoon, a
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significant dampening factor must be introduced to keep predictions consistent with real data. This heuristic

term is more pronounced for short distances. The observed behavior is potentially due to the considerable

differences in aerodynamics between passenger vehicles and heavy-duty trucks with significant unmodeled

effects (turbulence) at short distances. As the velocity deficit will be maximum at the center line, the ratio

qp/qs will overestimate the dynamic drag reduction rate. We achieve excellent results when comparing

prediction to actual data from testing with the following concatenation damping for vehicles at position 3 and

higher:

∆CDc,i = 1 + min
[
0.23391, X5 · eX6·d(i−1)i

]
. (2.13)

Complete Drag Reduction Model: The unknown ratios qp/qs and CDp/CDs in Eq. (2.6) can now

be expressed via the correction terms modeled above, yielding the following complete model for the drag

reduction rate of the ith vehicle in the platoon:

DRR1 =
∆CDb,1

CDs,1

DRR2 = 1−
{
(1−ξ1)

2 [1−∆CDb,2/CDs,2
]}

DRRi = 1−
{(

1−DRR(i−1)
)(

1−ξ(i−1)
)2

× (∆CDc,i)
[
1−∆CDb,i/CDs,i

]}
DRRN = 1−

{(
1−DRR(N−1)

)(
1−ξ(N−1)

)2
(∆CDc,N)

}
. (2.14)

2.4 Prediction Formula Results

The prediction model in Eq. (2.14) has been fitted to the results from the SAE J1321 fuel consump-

tion tests which are summarized in [1]. Here, particularly the data from the 2017 3-Truck and 2-Truck as well

as the 2016 3-Truck configurations has been utilized. As existing on-road tests of heavy trucks only report

reduction in total fuel consumption, however, data cannot directly be employed for fitting the DRR model. In

order to isolate the DRR from total fuel savings, the contribution of the rolling resistance as part of the road

load has to be removed, i.e.,

DRR = FRR · [1+FR/FD] . (2.15)
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Here, FRR is the published fuel reduction rate (fuel savings) in [1], FR corresponds to the load due to rolling

resistance, and FD is the nominal drag force apparent under solo driving. For the nominal drag force, a

frontal area of A f = 10m2 has been determined from the specifications of the truck and trailer combination

employed in [1]. No information for the nominal drag coefficient of the utilized truck and trailer combination

has been published. Therefore, a low nominal value of CD = 0.568 has been assumed according to [40] as the

trailers were outfitted with side-skirts and a boat-tail. The international standard atmosphere at sea level and

at 15 degrees Celsius has been applied for the air density, yielding ρ = 1.225kg/m3. For an assessment of the

rolling resistance, velocity dependent (dynamic) components have been neglected as their contribution is only

a very small fraction compared to the static resistance. A static rolling resistance coefficient of f0 = 0.0055

has been assumed. Whereas the static rolling resistance coefficient is highly tire and surface dependent and

varies widely in literature, this particular choice for concrete surfaces has been based upon the average value

in a recent study [42]. For the necessary normal forces, the published vehicle mass of 29,400kg in [1] has

been implemented.

In order to render parameter fitting more robust, the experimental data has been preprocessed by a

nonlinear transformation to allow for the application of linear least squares. The stagnation pressure coeffi-

cients X1 and X2 in Eq. (2.8) have been determined based solely on lead truck data as stagnation pressure is

the only apparent effect. For the unknown parameter X3 and X4 in Eq. (2.11), the data for the trailing vehicle

in 2-vehicle platoons as well as the data for the middle vehicle in 3-vehicle platoons has been utilized. The

experimental drag reductions have again been pre-processed by a nonlinear transformation and by removing

the stagnation pressure effects via the previously fitted Eq. (2.8). At this point, the residual error between the

predicted DRR and the experimental data was examined for the 2nd vehicle. Tadakuma et al. [20] suggested

to include a nonuniform flow correction for the drag coefficient in Eq. (2.6) for small distances as experi-

mental analysis for sedan-type vehicles exhibited a parabolic shape of the actual velocity distribution. Yet,

our fitting approach yielded such a small and unstructured residual error that no further inclusion of their

unconstrained nonuniform flow correction has been deemed necessary.

Table 2.1: Summary of Fitting Variables and Parameters

X1 X2 X3 X4 X5 X6
0.1821 1.5216 0.6643 8.9340 0.3371 -0.0419

m[kg] f0 k ρ CD A f [m2]
25370 0.0055 0.00055 1.225 0.686 10

20



0 10 20 30 40 50 60 70 80 90

Intervehicular Distance

-0.1

0

0.1

0.2

0.3

0.4

0.5

D
R

R

1st Truck Data
2nd Truck Data
3rd Truck Data
1st Truck Prediction
2nd Truck Prediction
3rd Truck Prediction

Figure 2.6: DRR Prediction / Experimental Results

A comparison of the predicted results for the last vehicle in 3-vehicle platoons with the experimental

data exhibited discrepancies as previously discussed. While this discrepancy was initially thought to be of

hyperbolic character in accordance with the physical flow models, a semi-logarithmic plot revealed almost

perfect exponential character. With the parameters in Eq. (2.13) fitted to the concatenation error for the 3rd

vehicle, the performance of the introduced hybrid prediction model for energy savings in heavy-duty platoons

is depicted in Figure 2.6. Here, the developed prediction model exhibits excellent consistency with the actual

data for 3-vehicle platoons from [1]. Table 2.1 summarize fitted variables as well as suggestions for all other

parameters in Eqs. (2.4) and (2.14). To complete the vehicle specific power model in Eq. (2.4), we suggest

to employ an average vehicle mass for simulation in Table 2.1 based upon the average observed mass of

class 9 to class 13 vehicles weighted by their actual distribution on road group J as published in [38]. The

nominal drag coefficient in Table 2.1 corresponds to the average value for the different tractor-semitrailer

configuration as shown in [40].
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Chapter 3

Centralized Approach

In this chapter, we mainly present our centralized optimization model, experiments and results. The

centralized model is formed as a linear programming model with the aim to make best possible platooning

decisions in order to obtain potential maximum energy savings. Plenty of experiments are designed with

different parameter combinations. We will present our results grouped according to two criteria: (i) Traffic

Conditions, (ii) Energy Savings. The results related to “Traffic Conditions” will show the number and distri-

bution of vehicles and platoons on the highway. The results related to “Energy Savings” will demonstrate the

potential reduction in energy consumption under various traffic conditions.

3.1 Linear Programming Model

Refer to our centralized model, it attempts to find the best vehicle-to-platoon assignments to reduce

energy consumption as much as possible. The highway network is divided into platooning zones that are

about 1 mile in radius. For each zone the location, speed, and destination of each vehicle and platoon are

collected from the simulation model. Then the linear programming model below is solved and output the

platooning decisions. Note that, these decisions are considered to maximum estimate energy savings for each

platooning zone, which also lead to a maximum for whole system. To ease the exposition of the model, we

first introduce the following sets, parameters, and decision variables:
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Sets
P : set of all platoons in a given zone ( j ∈ P)
Vs : set of all single vehicles in a given zone (i ∈ Vs)
Pi : set of all platoons that vehicle i can join
V j : set of all vehicles in platoon j

Parameters
di : current location of vehicle i (including those in a platoon)
n j : number of vehicles in platoon j
C : maximum number of vehicles allowed in a platoon
M : a large constant (e.g., length of the highway)
wq : weight assigned to each component of the objective function
Sr : total energy saved (in percentage) by a platoon with r vehicles
Di : destination of vehicle i
D j

k : destination of the kth vehicle (sorted by destination) in platoon j
Di, j

k : destination of the kth vehicle (sorted by destination) in platoon j
if single vehicle i is also part of the platoon

Decision variables
xi j : 1 if vehicle i joins platoon j, 0 otherwise

Given this notation, the optimization model can now be written as

min
x ∑

i∈Vs

{
w1

(
∑
j∈Pi

xi j

n j
∑

k∈V j

(|Di−Dk|−M)

)
(3.1a)

+w2
∑
j∈Pi

xi j

([
(D j

1−di)Sn j +

n j−2

∑
k=1

(D j
k+1−D j

k)Sn j−k

]

−
[
(Di, j

1 −di)Sn j+1 +

n j−1

∑
k=1

(Di, j
k+1−Di, j

k )Sn j−k+1

])}

s.t. n j + ∑
i∈Vs

xi j ≤C, ∀ j ∈ P, (3.1b)

∑
j∈Pi

xi j ≤ 1, ∀i ∈ Vs . (3.1c)

As seen from the mathematical formulation above, the objective function in our optimization model

has two terms. The first term is assigned a weight of w1 and the second a weight of w2. Because minimizing

energy consumption directly would lead to a nonlinear model, which are generally more difficult to solve

compared to linear models, we chose to minimize the energy consumption indirectly. To that end, the first

term in the objective function is simply creating platoons in which the vehicles have destinations that are close

to each other. The intent here is to minimize the number of times vehicles have to join or leave a platoon

so that energy is not expended unnecessarily. The second term in the objective function is maximizing the

savings of vehicle to platoon assignments. The first half of this term estimates the energy savings for platoon

j when vehicle i is not part of the platoon, and the second half estimates the savings with vehicle i as part
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of platoon j. Note that since we modeled this as a minimization problem we are considering the negative

of the savings. The constraints are relatively straight forward. The first constraint (3.1b) simply says that

the current number of vehicles in a platoon plus all the new vehicles that are assigned to join this platoon

should not exceed the capacity which is set to 5 (C = 5). The second constraint (3.1c) ensures that each

single vehicle is assigned to at most one platoon. The Sr values used in the objective function are compiled

from the experimental results mentioned in our literature review and shown in Table 3.1.

Table 3.1: Estimated energy savings based on position in the platoon∗

Number of vehicles in the platoon
Position 2 3 4 5

1 3% 3% 3% 3%
2 10% 12% 12% 12%
3 13% 14% 14%
4 14% 15%
5 15%

S2 = 13% S3 = 28% S4 = 43% S5 = 59%
∗ values reflect an estimate of accumulated savings for the entire platoon
with respect to a single vehicle’s consumption as a base value

3.2 Experiments and Parameters

To evaluate our centralized linear model, we conducted 16 experiments and a limited sensitivity

analysis. In each experiment, the simulation model begins with an empty system and runs for 4 hours (T =

4 hrs). The results are recorded and computed with both a 4 hour period and a last two hour period because

it takes about two hours for the system to reach steady-state. Only results for the last two hours are reported

considering the number of experiments are large. Single vehicles enter the highway from each of the on-

ramps at a flow rate of 150 (or 100) vehicles per hour (vph) for different experiments. The first number in

column three of Table 3.2 shows the input flow rate for each experiment. The second number in column three

lists the rate with which platoons enter the highway. When this number is 180 (120), it indicates that a platoon

enters the highway section in Lane 2 at mile zero 20 (30) seconds after a platoon has entered in Lane 3 at

mile zero. In other words, 180 (120) platoons enter the highway each hour (half from Lane 2 and the other

half from Lane 3). Each experiment is initialized with the same random seed to ensure a fair comparison and

analysis, and a total of exactly 24,095 (16,034) vehicles go through the system in each simulation run based

on the input rates in column three of Table 3.2. The fourth column shows the desired speed of the platoons in

Lane 2. Notice that, the platoons in Lane 3 travel at a desired speed of 65mph for all experiments.
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Table 3.2: Summary of Experimental Parameters

Vehicle†/Platoon‡ Speed?

Experiment w1∗ Input (mph) Optimization
1 0.25 150 / 180 55 On
2 0.25 150 / 180 60 On
3 0.25 100 / 120 55 On
4 0.25 100 / 120 60 On
5 0.125 150 / 180 55 On
6 0.125 150 / 180 60 On
7 0.125 100 / 120 55 On
8 0.125 100 / 120 60 On
9 0 150 / 180 55 On
10 0 150 / 180 60 On
11 0 100 / 120 55 On
12 0 100 / 120 60 On
13 NA 150 / 180 55 Off
14 NA 150 / 180 60 Off
15 NA 100 / 120 55 Off
16 NA 100 / 120 60 Off

∗ coefficient of the first term in objective function (3.1a)
† vehicles per hour from each on-ramp, ‡ platoons per hour from mile zero
? desired speed of platoons in Lane 2

As seen in the last column of Table 3.2, in experiments 1-12 the optimization model is active indicat-

ing that single vehicles on the highway are allowed to join platoons. In experiments 13-16 the optimization

model is turned off, i.e., single vehicles are not allowed to join platoons. Note, however, that there are still

platoons in experiments 13-16, but these are platoons that enter from mile zero and are not newly formed.

The optimization model is run every 20 seconds (τ = 20s) in experiments 1-12 and provide essential informa-

tion to optimization. Recall that our optimization model has two terms in its objective function with weights

w1 and w2 (with w1 +w2 = 1), where w1 weights the first term in our objective function assigning vehicles

to platoons based on their destinations. The second term, with weight w2, distributes vehicles to platoons

based on estimated savings. The second column in Table 3.2 lists the different weights w1 (with w1+w2 = 1)

employed in our optimization.

As shown in Figure 2.1 and summarized 2.1, the simulation and optimization models interact con-

tinuously in experiments 1-12. Throughout this iterative process, data is collected every 0.5s. Specifically,

we record the vehicle ID, current speed, acceleration, location, headway, platoon ID, and position in platoon

for each vehicle every 0.5 simulation seconds resulting in large amounts of data. To ease the analysis of the

data collected, we developed a Matlab routine that generates figures and tables some of which are presented

in Sections 3.3 and 3.4. Part of this post-analysis includes the energy savings calculations which utilize the

prediction models detailed in Section 2.3.

25



3.3 Traffic Results

In this section, we primarily concentrate on reporting 4 different distributions referring to distribu-

tion of vehicles, distribution of vehicles by platoon size, distribution of platoons by size, and distribution of

vehicle by position in platoon.

Table 3.3 lists the average distribution of the vehicles over the last two simulation hours, i.e., in

steady-state. For example, for the last two hours of Experiment 1, vehicles traveled in a platoon on average

41% of the time and were single vehicles for the remainder of time. As expected, vehicles spent the least

amount of time in a platoon in Experiments 13-16 as the optimization model is not active in these runs and,

thus, new platoon formations are not allowed.

Table 3.3: Distribution of Vehicles in the System∗

Experiment Single Vehicles in
Vehicles Platoons

1 59% 41%
2 61% 39%
3 64% 36%
4 66% 34%
5 58% 42%
6 61% 39%
7 64% 36%
8 65% 35%
9 55% 45%

10 57% 43%
11 61% 39%
12 64% 36%
13 90% 10%
14 91% 9%
15 90% 10%
16 91% 9%

∗ in steady-state, i.e., average over the last two hours

We also observe a difference in the average amount of time spent in a platoon in Experiments 1-4

vs. 5-8 vs. 9-12. In Experiments 9-12, where w1 = 0, vehicles spent more time in platoons (e.g., on average

45% for Experiment 9). This suggests that the first term in the objective function of our optimization model

is not contributing to the formation of more platoons. Recall that the first term forms platoons based on

vehicle destinations. Thus, increasing w1 creates platoons that stay together for longer periods of time, but

this comes at the expense of forming fewer platoons overall. As will be discussed later, lower values of w1

also seem to lead to more energy savings. Hence, it is reasonable to assign more weight to the second term in

our optimization model, i.e., yielding high w2 and low w1. The full results, including averages and standard

deviations of the number of vehicles on the highway (in addition to the percentage distribution), are provided
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Figure 3.1: Number of vehicles and platoons for Experiments 9 and 13

in the Appendix A in Table 10.

Whereas Table 3.3 provides the average distribution over the last two hours for all experiments,

Figure 3.1 depicts the exact number of vehicles for Experiments 9 and 13 over the full four hours. The top

(yellow, dashed) graph shows the number of single vehicles in Experiment 13 varying between 1000 and

1200. The line below it (solid blue) illustrates the number of single vehicles in Experiment 9. Then, the

orange, dotted graph right below depicts the number of vehicles in platoons in Experiment 9. Finally, the

purple line at the bottom shows the number of vehicles in platoons in Experiment 13. Note that the average

values reported in Table 10 match what is observed in Figure 3.1. In Experiment 13, we reach steady-state

after approximately 40 minutes, but in Experiment 9 it takes about 80 minutes to arrive at steady-state. For

those experiments with platooning decisions, platoons take around 80 to 90 minutes from mile zero to close

to the end of the highway if they are not disbanded. Thus, these experiments need more time to reach steady-

state. Nevertheless, we consistently consider the first two hours as our warm-up period for all experiments, as

mentioned earlier. We choose to focus on Experiment 9 in more detail as it resulted in the highest percentage

of vehicles traveling in platoons. Since Experiment 13 corresponds to the same settings of Experiment 9

but without the optimization, the comparisons provide valuable insights. For example, Experiments 1 and

5 utilize the same settings as 9, but with differing values for w1. Examining the percentage of vehicles in

platoons in Experiments 13, 1, 5, and 9 (in that order), we can notice a significant increase with 10% to 41%

to 42% to 45%, respectively.

Table 3.4 details the distribution of vehicles by platoon size. Clearly, the percentage of vehicles
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in platoons of size 5 is the smallest in Experiments 13-16 as new platoon formations are not allowed. In

Experiments 9-12, we observe not only more vehicles in platoons (see Table 3.3), but also an increased

number of them in platoons of size 5 (see Table 3.4). In Experiment 9, for instance, approximately 45% of all

vehicles are in a platoon at any point in time, and of those in a platoon about 49% are in one with 5 vehicles.

Table 3.4: Distribution of Vehicles by Platoon Size∗

Experiment Size
5 4 3 2

1 46% 30% 17% 7%
2 46% 30% 17% 7%
3 43% 30% 19% 8%
4 40% 31% 21% 8%
5 48% 30% 16% 6%
6 45% 30% 17% 8%
7 44% 30% 18% 8%
8 41% 30% 21% 8%
9 49% 30% 15% 6%

10 47% 30% 16% 7%
11 45% 30% 18% 7%
12 42% 30% 20% 8%
13 15% 21% 29% 35%
14 15% 21% 29% 35%
15 15% 19% 26% 40%
16 15% 19% 26% 40%

∗ in steady-state, i.e., average over the last two hours

Figure 3.2 illustrates the breakdown of platoons (not vehicles in platoons) by size for Experiments 9

(left) and 13 (right). In Experiment 9, most of the platoons are of size 5 followed by platoons with 4 vehicles

then 3- and 2-vehicle platoons. As expected, larger platoons are encouraged in our centralized model on

account of more energy savings. Notice that there is a limited number platoons of size 1 appearing for short

periods of time as shown at the bottom of the figure. If a single vehicle, for instance, is in the process of joining

a 3-vehicle platoon and two of the vehicles leave this platoon before the joining operation is completed, then

the Vissim output records this as a 1-vehicle platoon. This occurs less than 1% of the time. Thus, we do not

report the 1-vehicle platoons in Tables 3.4, 3.5, 11, and 12. In contrast to Experiment 9, we see that most of

the platoons are of size 2 followed by 3-, 4-, and 5-vehicle platoons in Experiment 13. It also makes sense

since no other vehicles join platoons, but vehicles leave when reaching destinations.

Similar to what we observe in Figure 3.1, we can see in Figure 3.2 that it takes longer to reach

steady-state in Experiment 9 compared to 13. In any case, the system is stable during the last two hours for

all experiments. Whereas Figure 3.2 depicts the exact number of platoons by size over the full four hours,

Table 3.5 provides the average distribution for all 16 experiments over the last two hours. Once again, in

Experiments 13-16 the number of 2-vehicle platoons (around 50 %) is higher than any other platoon size
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Figure 3.2: Number of platoons by size for Experiments 9 (left) and 13 (right)

whereas in Experiment 9 we observe more 5-vehicle platoons (39 %).

Table 3.5: Distribution of Platoons by Size∗

Experiment Size
5 4 3 2

1 36% 29% 22% 13%
2 35% 28% 22% 15%
3 33% 28% 24% 15%
4 30% 28% 26% 16%
5 37% 30% 21% 12%
6 34% 28% 21% 17%
7 34% 29% 23% 14%
8 31% 28% 26% 15%
9 39% 29% 20% 12%

10 36% 29% 22% 13%
11 35% 28% 23% 14%
12 32% 28% 25% 15%
13 8% 15% 28% 49%
14 8% 15% 28% 49%
15 9% 13% 24% 54%
16 9% 13% 24% 54%

∗ in steady-state, i.e., average over the last two hours

We also assessed statistics on the number and percentage of vehicles by their position in a platoon

as given in Tables 3.6 and 13. Comparing Experiments 1-12 with 13-16, we see a clear difference in the

total time vehicles spend in specific positions in platoons (again due to the optimization being turned off in

Experiments 13-16). Among Experiments 1 to 12, we did not observe significant differences, thus indicating

that different parameters we tested did not impact the average time a vehicle spends in a specific position.

Pay attention to positions 1 and 2, since platoons own a minimum size which is 2, the percentage of position

1 and 2 should equal. However, as we mentioned before, a little bit platoons temporarily have size 1. Thus,

percentage of position 1 can be equal or slightly larger than percentage of position 2. In particular, the
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percentage of time spent in position 5 in Experiment 9 results as 10% being slightly higher than the rest of

the experiments. Also, more other figures are shown in Appendix B.

Table 3.6: Distribution of Vehicles by Position in Platoon∗

Experiment Position
1 2 3 4 5

1 26% 26% 22% 17% 9%
2 26% 26% 22% 17% 9%
3 26% 26% 23% 16% 9%
4 27% 27% 22% 16% 8%
5 26% 26% 22% 17% 9%
6 27% 26% 22% 16% 9%
7 26% 26% 23% 16% 9%
8 27% 27% 22% 16% 8%
9 26% 25% 22% 17% 10%

10 26% 26% 22% 17% 9%
11 26% 26% 23% 16% 9%
12 27% 27% 22% 16% 8%
13 35% 35% 18% 9% 3%
14 35% 35% 18% 9% 3%
15 36% 36% 17% 8% 3%
16 36% 36% 17% 8% 3%

∗ in steady-state, i.e., average over the last two hours

Before we continue to discuss our results related to energy savings, we would like to point out some

specific traffic conditions we observed in our simulations.

1. Some vehicles assigned to join platoons reach their destinations before the joining process with their

corresponding target platoons is completed. In this case, these vehicles cancel their joining processes

and prepare to leave the system.

2. During the time in which some vehicles attempt to join a target platoon, all but one vehicle in this target

platoon leave. This platoon does not disband and waits for others to join. This is the reason why there

exists platoons with only one vehicle.

3. Since there is a difference in desired speed between lane 2 and lane 3, some single vehicles affect

platoons by blocking platoons with lower speed. Additionally, some platoons driving in different lanes

can cause localized congestion. Under these circumstances, single vehicles will take longer to cover a

distance to complete the joining procedure. This situation is similar to the scenario when heavy trucks

cause localized delay on a freeway where other vehicles are queued up behind it.

4. Since acceleration is randomly distributed (assigned by Vissim), some vehicles may accelerate very

slowly in catching up with other vehicles ahead in platoons when a gap appears. Due to these slow
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accelerations, the gap distances may increase before the following vehicle’s speed exceeds the leading

vehicle’s, at which point the gap distances will gradually reduce.

3.4 Energy Consumption Results

As mentioned in Section 2.3, three distinct and important energy consumption phenomena account

for the main difference between vehicles traveling singly or in a platoon. These are acceleration, rolling

friction, and aerodynamic drag reduction. The drag reduction ration (DRR) as determined in Section 2.3 is a

ratio based upon the original drag coefficient for solo driving CD for each vehicle. Thus, we consider typical

low (0.568), average (0.686), and high (0.863) values for CD when assessing energy consumption.

Table 3.7: Energy Savings over the Last Two Hours

Experiment
Total Energy Acceleration Time in

Low CD Avg CD High CD Energy Platoon∗

1 vs. 13 1.01% 2.18% 3.52% -48.99% 41 vs. 10%

5 vs. 13 1.28% 2.47% 3.84% -48.99% 42 vs. 10%

9 vs. 13 1.40% 2.68% 4.15% -52.56% 45 vs. 10%

2 vs. 14 -0.10% 0.98% 2.22% -49.09% 39 vs. 9%

6 vs. 14 -0.92% 0.35% 1.81% -60.80% 39 vs. 9%

10 vs. 14 0.43% 1.60% 2.94% -51.74% 43 vs. 9%

3 vs. 15 1.57% 2.46% 3.48% -39.64% 36 vs. 10%

7 vs. 15 1.62% 2.54% 3.58% -40.64% 36 vs. 10%

11 vs. 15 1.58% 2.63% 3.81% -47.20% 39 vs. 10%

4 vs. 16 1.29% 1.96% 2.72% -29.94% 34 vs. 9%

8 vs. 16 1.52% 2.18% 2.93% -28.56% 35 vs. 9%

12 vs. 16 1.61% 2.31% 3.11% -30.72% 36 vs. 9%

9 vs. 10 1.17% 1.33% 1.53% -1.65% 45 vs. 43%

11 vs. 12 0.08% 0.48% 0.94% -15.08% 39 vs. 36%

∗ average percent time a vehicle spent in a platoon in steady-state

Table 3.7 summarizes the energy savings results. Note that Experiments 1, 5, and 9 are compared to

13 since they employ the same problem parameters. Here, the only differences are in the objective function

coefficients w1 and w2. Likewise, Experiment 14 is compared to 2, 6, and 10, Experiment 15 to 3, 7, 11,

and Experiment 16 to 4, 8, and 12. Columns 2, 3, and 4 in Table 3.7 show the savings realized as a result

of optimized platoon assigning, respectively for low, average, and high values of CD. The largest savings are
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observed in Experiment 9 with a high CD, as expected. Recall that Experiment 9 is the one in which vehicles

spent a higher percentage of their time in platoons and a higher percentage of the platoons were 5-vehicles

platoons. Naturally, a high drag coefficient yields higher absolute savings when platooning. Specifically, in

Experiment 9 vehicles spent on average 4.15% less energy compared to Experiment 13. While this may not

seem a large improvement at first sight, it is important to note that in Experiment 9 vehicles spent 52.56%

more energy to maintain vehicles in formation through acceleration losses. Even with this increased effort, the

system as a whole still yields energy savings when our proposed optimization model is activated. Moreover,

experiments with larger w2 values seem to consume a bit more energy from acceleration due to more forming

process. However, Experiment 6 is an exception. The primary reason for Experiment 6 consuming more

energy in acceleration is that some locally congestion happens as well as more blocking situations occur

in order that more acceleration engages in. In addition to that, if we compare Experiment 9 with 10, and

Experiment 11 with 12, Experiments 9 and 11 result less total energy consumed and more energy consumed

by acceleration. Nevertheless, we cannot conclude that such experiments have better energy savings because

they are not compare with the same experiment with optimization turned off. For example, experiment 12

saves more energy than 11 in low CD. The exact energy consumption values are detailed in the Appendix A

in Tables 14 and 15. The savings reported in Table 3.7 correspond to the energy consumed during the last

two hours as reported in Table 14.
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Chapter 4

Decentralized Approach

Unlike the centralized control method, when individual vehicles enter the freeway, they prefer to

picking the most valuable choice for themselves to save energy. Thus, their aims are not to obtain the most

potential savings for some platoons or entire road traffic, however, they focus on optimizing their own savings.

Therefore, a decentralized agent-based model will be introduced in this Chapter. With similar organization as

Chapter 3 for centralized model, besides the decentralized formulation, experiments and two types of results

(i) Traffic Conditions results, (ii) Energy Savings results are presented here as well.

4.1 Dynamic Game Formulation

In this decentralized formulation, these individual vehicles and platoons are not related. Then, they

cannot share their information such as destinations. They only know those information can be observed when

they enter the main freeway. Based on this precondition, we would like to consider each individual vehicle as

a player of this decentralized model. These players are actual competitors in order to obtain self best profits.

Such being the case, we formulate our decentralized model as a dynamic game. In this game,

assume each player is rational, and only seeks its maximum potential profit. As we defined in Section 2.2,

single vehicles (players) are only allowed to join platoon behind. Hence, when an individual (player) decides

to join a platoon, it will become the lead vehicle of the new platoon. In addition, we assume that players notice

some locally observed information such as the number of vehicles in available platoons, the desired speed

of platoons for different lanes, the number of players, and order of players to take action, which depends on

relative location of these individual vehicles (players). We also assume that players are not able to predict

33



future profit. Thus, rewards of players in this game only depend on best current result, which contain two

parts: primarily, potential energy savings, and, secondarily, time to destinations. If and only if there is a tie

in primary part of rewards, secondary part of rewards will be compared for decision. Similarly, simulation-

optimization framework is utilized here, and simulation and energy settings remain same too.

According to these settings, we then introduce our dynamic game model with complete information.

Indices
i : Player (Individual vehicle) index
j : Action (Platoon) index

Sets
Vs : set of all players (single vehicles) in a given zone (i ∈ Vs)
Pi : set of all actions (platoons) that player (vehicle) i can take

(join) when they move including the action, which is stay as an
individual vehicle ( j ∈ Pi)

Parameters
Oi : moving sequence of player (vehicle) i
ni

j : number of vehicles in platoon j include those players (individual
vehicles) took (decided to join) actions (platoons) j before i

C : maximum number of vehicles allowed in a platoon
p j

l : energy saved (in percentage) in position l by taking action j (platoon),
where j (platoon) has a size r = 2,3,4,5 after all players take actions

t j : time to reach destinations by taking action j (platoon)
(there is only two choices: fast and slow)

Decision variables
ai : action of player (individual) i takes

Players: All individual vehicles in each platooning zone (Vs) are the players of the dynamic game

in that zone.

Sequence of move: According to relative current locations for all players in one platooning zone,

the player who has the closest distance to available platoons will firstly take action. Then, the player with

second closest distance will take action next and so on. In other words, players take actions in order from

back to front since available platoons are always behind.

Actions of players when they move: When player moves, all available platoons (Pi) are optional

actions for that player. Note that, this set of available platoons may change with previous players taking

actions so that some platoons reach their capacity. In addition to this, not to join any of available platoons is

also an action. If player takes this action to stay as a single vehicle, then, ai = 0.

Payoffs: vi(.)i∈Vs represents the payoff of player i. Based on preceding players’ actions, when

player i moves, player i will know current size of available platoons, and current lanes those platoons on. If
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available platoons on Lane 3, time to destination will be represented as fast because desired platoon speed

is larger on that lane. Otherwise, if available platoons on the Lane 2, time to destination will be marked as

slow. If player i takes an action to join an available platoon, player i will also notice its position in that target

platoon. Then, the payoff of player i can be written as vi(a1,a2, ...,an) = (p j
l , t j). For instance, if player 4

becomes the third vehicle of a platoon with 5 vehicles in Lane 3 after all players finishing their moving, the

payoff of player 4 will be v4(a1,a2, ...,an) = (14%, f ast) according to Table 4.1. The p j
l values are compiled

from the experimental results shown in Table 4.1.

Table 4.1: Estimated energy savings based on position in the platoon∗

Number of vehicles in the platoon
Position 2 3 4 5

1 3% 3% 3% 3%
2 10% 12% 12% 12%
3 13% 14% 14%
4 14% 15%
5 15%

∗ values reflect an estimate of savings with respect
to a single vehicle’s consumption as a base value

According to current consideration, if there exists at least one available slot in any of optional pla-

toon, player always chooses one action to join a platoon instead of staying alone.

Proof: Since we do not consider energy consumed or wasted during the process to enter a platoon

in our payoffs, for potential platooning energy savings according to Table 4.1, the minimum payoff of energy

saving percentage is 3%, which is greater than 0 (no saving). As we mentioned before, only if there is a

tie exists in primary part of payoff, secondary part, time to destination, will affect the decision. Therefore,

no matter those remaining platoons with a fast speed or not, rational player will select one action to join a

platoon for better payoff. In other words, as long as there exists available slot, the action, stay individual, is

dominated by other actions. Hence, to simplify our model, we won’t consider stay individual as a positive

action. This action will only exist when there is no other options.

Game tree: The extensive-form of this game is diagrammatic described as a game tree in Figure 4.1.

In this game tree, each layer records one player’s information. Nodes in each layer represents the player’s

different statuses just before its move. For example, the layer 0, which only includes root, represents the

situation of the first player in sequence just before its move. All nodes are named based on their layers. For

example, xln−1,1 can be explained as the first nodes in layer n− 1. Branches under root or each leaf node,

represent all actions that moving player can take at that time. For instance, those branches under root represent

different actions that the first player can take. This tree, from top layer to bottom, shows the sequence from
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Figure 4.1: Game Tree of Dynamic Game

first player to last player. All nodes, after the last player’s actions, are terminal nodes. For each of these

terminal nodes, payoff of each player will be recorded based on the path from root to this node.

Method and Nash equilibrium: As we mentioned before, all players should be rational at every

stage of the game. More specifically, players use strategies that are the best responses to their opponents’

strategies at every information set in our game tree. This principle is called sequential rationality [43]. Ac-

cording to Tadelis [43], a proposition and a corollary are introduced below:

Proposition 1. Any finite game of perfect information has a backward induction solution that is sequentially

rational, Furthermore if no two terminal nodes prescribe the same payoffs to any player then the backward

induction solution is unique.

Corollary 1. Any finite game of perfect information has at least one sequentially rational Nash equilibrium

in pure strategies. Furthermore if no two terminal nodes prescribe the same payoffs to any player then the
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game has a unique sequentially rational Nash equilibrium.

Refer to our dynamic game, our game is a finite game with perfect information since there are

finite number of individual vehicles in every platooning zone, and every player knows exactly where it is in

the game based on what happened before. Therefore, as shown in the proposition and corollary, backward

induction is a method to retrieve sequentially rational Nash equilibrium in pure strategies.

In addition to this, we introduce the definition of subgame-perfect Nash equilibrium in Tadelis [43].

A strategy profile is a subgame-perfect Nash equilibrium if it represents a Nash equilibrium for every proper

subgame of the extensive-form (original) game. Note that, every subgame-perfect Nash equilibrium is a Nash

equilibrium, but not all Nash equilibria are necessarily subgame-perfect equilibrra. For finite game of perfect

information, a fact from Tadelis [43] explained below:

Fact 1. For any finite game of perfect information, the set of subgame-perfect Nash equilibria coincides with

the set of Nash equilibria that survive backward induction.

Hence, backward induction is used to solve our dynamic game with perfect complete information.

Nevertheless, the complexity of utilizing backward induction is not good. Considering our game tree of

extensive form, time complexity to solve this game using depth-first implementation is O(bh), and space

complexity to store this tree is O(bh). Notice that, b is the branching factor, while h is the height of the tree.

More precisely, b represents the number of platoons available (actions), and h represents the number of single

vehicles (players) in each platooning zone. Although the time complexity is exponential, in each platooning

zone, there are not too many platoons since platoons are generated every 20 (30) seconds. On the other hand,

vehicle input rate for each ramp is not large so that there are not too many single vehicles as well.

4.2 Experiments and Parameters

To evaluate our decentralized model using our simulation-optimization framework, 4 pairs of ex-

periments are set up. Each pair of experiments include one experiment with dynamic game model, and one

without. All experiments begin with empty network and run for a 4 hour period (T = 4 hrs). Table 4.2 shows

the summary of experimental parameters.

The second column shows the vehicle and platoon input flow rate per hour. The single vehicle input

flow rate (vph) 150 (or 100), which is the first number in column two, represents there is an average of 150

(or 100) single vehicles enter this freeway through each on-ramp per hour. As we mentioned in Section 2.2,
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Table 4.2: Summary of Experimental Parameters for Dynamic Game Model

Vehicle†/Platoon‡ Speed?

Experiment Input (mph) Game
1 150 / 180 55 On
2 150 / 180 60 On
3 100 / 120 55 On
4 100 / 120 60 On
5 150 / 180 55 Off
6 150 / 180 60 Off
7 100 / 120 55 Off
8 100 / 120 60 Off

† vehicles per hour from each on-ramp, ‡ platoons per hour from mile zero
? desired speed of platoons in Lane 2

platoons are generated in both Lane 2 and Lane 3. Hence, the second number in the second column, 180 (or

120) shows the number of platoons entering from the beginning of the freeway (half from Lane 2 and the

other half from Lane 3). In other words, 180 (or 120) indicates that a platoon enters the highway section in

Lane 2 at mile zero 20 (30) seconds after a platoon has entered in Lane 3 at mile zero. Same with settings in

Section 3.2, to ensure a fair comparison, each experiment is initialed with same random seed. According to

different input flow rates, a total of exactly 24,095 (16,034) vehicles go through the system in each simulation

run.

The third column indicates the desired speed of platoons while driving in Lane 2. Note that the

desired speed of platoons in Lane 3 is always set up to 65mph for all experiments.

Experiments (1,5), (2,6), (3,7), (4,8) are 4 pairs with and without our optimization game model. Note

that, for experiments 5 to 8, although the optimization is turned off, there are still platoons in the simulation,

but these platoons are entering from mile zero.

4.3 Traffic Results

Traffic condition result will show the number and distribution of vehicles and platoons on the free-

way. As we discussed before, simulation starts with an empty network. Thus, there exists a warm up period,

in which traffic flows reach steady-state gradually. Similar to Section 3.3, we mainly report results of steady-

state during the last two hours. In Table 4.3, average distribution of vehicles is reported over the last two

hours (in steady-state). For instance, average 43% of vehicles travelled in a platoon at a time step, for the last

two hours of Experiment 1. The rest is for individual vehicles. In the way that was expected, Experiments

1-4 show that more number of vehicles travel in a platoon comparing Experiments 5-8 due to the game model
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is not active, in other words, individual vehicles are not able to join platoons. In addition, Experiments 1-2

provide more platooning opportunities for single vehicles than Experiments 3-4, thus, higher percentages of

vehicles appear in platoons in Experiments 1-2.

Table 4.3: Distribution of Vehicles in the System∗

Experiment Single Vehicles in
Vehicles Platoons

1 57% 43%
2 57% 43%
3 62% 38%
4 65% 35%
5 90% 10%
6 91% 9%
7 90% 10%
8 91% 9%

∗ in steady-state, i.e., average over the last two hours

On the other side, Figure 4.2 and Figure 4.3 depicts the exact number of vehicles for Experiments

pair (1,5) and (3,7) over the full four hours. From the left graphs of both figures, it is clear that steady-state

will be reached after 80 minutes for Experiments 1 and 3. Otherwise, it takes 40 minutes for Experiments 5

and 7 to reach steady-state. Therefore, we consistently consider the first two hours as our warm-up period

for all experiments. After steady-state reached, the lines representing number of single vehicles and vehicles

in platoons become stationary. The top (blue, solid) lines show the number of individual vehicles, while the

bottom (red, dashed) lines show the number of vehicles travelling in a platoon. Figures 4.2 and 4.3 have

similar shapes, but different numbers of vehicles sole or in platoons. In particular, there is a larger gap

between single vehicles and vehicles in platoons in Experiment 3 by contrast to Experiment 1. In other word,

the average percentages reported in Table 4.3 match what is observed in Figures 4.2 and 4.3.

Figure 4.2: Number of vehicles and platoons for Experiments 1 (left) and 5 (right)
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Figure 4.3: Number of vehicles and platoons for Experiments 3 (left) and 7 (right)

Table 4.4 provides details on distribution of vehicles by positions in platoons. For all experiments,

it is distinct that the percentage of front vehicles in platoons is larger than the percentage of back vehicles

except the comparison between the first and the second position. The reason is that the number of vehicles in

platoons within a range from 2 to 5. In other words, all platoons with a lead vehicle, first position, and may

not have latter positions (e.g., a platoon with size 3 has position 1 to 3, but not 4 and 5). Moreover, there is

some but not many platoons with only one vehicle in the system on account of the reason some individual

vehicles under process to join these platoons. Therefore, the percentage of position 1 is equal to or slight

larger than position 2. Comparing Experiments 1-4 with 5-8, we see a obvious difference for the proportion

of vehicles in specific positions in platoons (due to the game model being turned off in Experiments 5-8).

Among Experiments 1-4, there is not a significant difference, thereby indicating that different parameters we

tested did not impact the proportion of vehicles in a specific position.

Table 4.4: Distribution of Vehicles by Position in Platoon∗

Experiment Position
1 2 3 4 5

1 27% 26% 22% 16% 9%
2 27% 26% 22% 16% 9%
3 27% 27% 22% 16% 8%
4 27% 27% 23% 15% 8%
5 35% 35% 18% 9% 3%
6 35% 35% 18% 9% 3%
7 36% 36% 17% 8% 3%
8 36% 36% 17% 8% 3%

∗ in steady-state, i.e., average over the last two hours

One of the most important factors to illustrate traffic conditions is the platoons with different sizes.

Tables 4.5 and 4.6 state the distribution of vehicles by platoon size and distribution of platoons by size,
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respectively. From Table 4.5, explicitly, there is an increase as the size of platoon becoming larger in Ex-

periments 1-4. Oppositely, a decrease exists in Experiments 5-8. For Experiments 5-8, since new platoons

are not permit to form, existing platoons, which are generated from beginning, will eventually disband after

vehicles leave one by one. In Experiments 1-4, not only more vehicles are in platoons (see Table 4.3), but

also an increased number of them in platoons of size 5 (see Table 4.5). For example, approximately 43%

of all vehicles are in a platoon at any point in time, and of those in a platoon about 43% are in one with 5

vehicles for Experiment 1. Note that, although there are more vehicles in platoons with larger size based on

Table 4.5, we may not observe more platoons with larger size. According to Table 4.6, for Experiments 1-4,

percentages of number of platoons with size 5 are slightly larger than platoons with size 4.

Table 4.5: Distribution of Vehicles by Platoon Size∗

Experiment Size
5 4 3 2

1 43% 31% 18% 8%
2 43% 31% 18% 8%
3 40% 32% 20% 8%
4 38% 31% 22% 9%
5 15% 21% 29% 35%
6 15% 21% 29% 35%
7 15% 19% 26% 40%
8 15% 19% 26% 40%

∗ in steady-state, i.e., average over the last two hours

Table 4.6: Distribution of Platoons by Size∗

Experiment Size
5 4 3 2

1 33% 29% 23% 15%
2 33% 30% 23% 14%
3 30% 29% 25% 16%
4 28% 28% 27% 17%
5 8% 15% 28% 49%
6 8% 15% 28% 49%
7 9% 13% 24% 54%
8 9% 13% 24% 54%

∗ in steady-state, i.e., average over the last two hours

Figures 4.4 and 4.5 illustrate the breakdown of platoons by size for Experiments pair (1,5) and (3,7),

respectively. For both figures, green line, purple line, yellow line, orange line, and blue line represent platoons

with size 5,4,3,2, and 1. As we mentioned before, there is a limited number of platoons of size 1 (blue line)

appearing for short periods of time as shown at the bottom of the graph. Recall that, if a single vehicle, for

instance, is in the process of joining a 2-vehicle platoon and one vehicle leaves this platoon before the joining

process is completed, then the Vissim output records this as a 1-vehicle platoon. The average percentage of
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Figure 4.4: Number of platoons by size for Experiments 1 (left) and 5 (right)

Figure 4.5: Number of platoons by size for Experiments 3 (left) and 7 (right)

platoons with size 1 is usually less than 2% in these experiments. Thus, we ignore reporting the 1-vehicle

platoons in Tables 4.5, 4.6. Comparing two blue lines in Figures 4.4 and 4.5, the number of platoons with size

1 in Experiment 1 is larger than in Experiment 3 primarily based on larger traffic flow and locally congestion.

For platoons with other sizes in Experiments 1 and 3, most of the platoons contain 5 and 4 vehicles (i.e.

green line and purple line are intertwined), followed by 3- and 2- vehicle platoons. It is clear that 5-vehicle

platoons in Experiment 1 is slight more than 4-vehicle platoons. However, this situation is not very clear in

Experiment 3. Table 4.6 also proves this feature. On the contrary, in Experiments 5 and 7, we observe that

most of the platoons are of size 2 followed by 3-, 4-, and 5-vehicle platoons, and no 1-vehicle platoon.

We can observe that in both Figures 4.4 and 4.5 that it takes more time to reach steady-state in

experiments with platoons forming compared to experiments without. Similar to Figures 4.2 and 4.3, it takes

around 80 minutes for experiments with optimization, and around 40 minutes for without. In any case, the
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system is stable during the last two hours for all experiments. In terms of Table 4.6, it records distribution of

platoons for all experiments, while Figures 4.4 and 4.5 depicts the exact number of platoons over the entire

simulation period. Other figures are provided in Appendix B.

4.4 Energy Consumption Results

Energy savings result will demonstrate the potential reduction in energy consumption under various

traffic conditions. In Section 2.3, we develop a prediction energy model based on the formula in Tadakuma et

al. [20]. Recall that three distinct and crucial energy consumption phenomena, which are aerodynamic drag

reduction, acceleration, and rolling friction, account for the primary difference between vehicles traveling

individually or in a platoon. As we shown in Section 2.3, we define the drag reduction rate (DRR) as a ratio

on account of the original drag coefficient for solo driving CD for each vehicle. For this part of results, three

types of values,low (0.568), average (0.686), and high (0.863), for CD are considered to calculate energy

consumption. Differing from the way we report energy consumption results in centralized formulation, since

there are not too many experiments, energy consumption results are analyzed in detail for both entire four

hour time period and last two hour (steady-state) period.

Table 4.7: Energy Savings of Experiment Pair (1,5)

Experiment 1 and 5
Total Energy

Acceleration Energy
Percentage in Platoon

Low CD Average CD High CD Mileage Time

1 (last two hours) 351,023 388,616 445,004 70,960 41% 43%
1 (entire four hours) 661,651 734,390 843,500 124,244 37% 39%

5 (last two hours) 349,417 392,632 457,453 42,276 9% 10%
5 (entire four hours) 662,594 744,433 867,192 80,809 9% 10%

1 vs. 5 (last two hours) -0.46% 1.02% 2.72% -67.85% 454% 440%
1 vs. 5 (entire four hours) 0.14% 1.35% 2.73% -53.75% 399% 390%

Table 4.8: Energy Savings of Experiment Pair (2,6)

Experiment 2 and 6
Total Energy

Acceleration Energy
Percentage in Platoon

Low CD Average CD High CD Mileage Time

2 (last two hours) 350,698 389,337 447,297 65,633 43% 43%
2 (entire four hours) 662,021 736,541 848,321 115,876 38% 39%

6 (last two hours) 350,101 393,556 458,738 41,807 9% 9%
6 (entire four hours) 664,097 746,416 869,895 79,951 9% 10%

2 vs. 6 (last two hours) -0.17% 1.07% 2.49% -56.99% 476% 468%
2 vs. 6 (entire four hours) 0.31% 1.32% 2.48% -44.93% 414% 409%
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Although our decentralized decisions are determined by dynamic game among individual vehicles,

where each single vehicle pays attention to its own payoff, we want to evaluate whether entire system is

benefit from these individual decisions. Tables 4.7, 4.8, 4.9, and 4.10 summarize energy consumption and

savings results for each pair of experiments. Note that, Experiments (1,5), (2,6), (3,7), (4,8) are four pairs

including an experiment which allows to form platoon and the other prohibits with same parameters. Tables

4.7, 4.8, 4.9, and 4.10 contain three major parts, which are energy consumption of first experiment (i.e. row

2 and 3), energy consumption of second experiment (i.e. row 4 and 5), energy savings by contrast with two

experiments (i.e. row 6 and 7). For every part, we report both results over the last two hours (i.e. in steady-

state) and over entire four hours. Columns 2, 3, and 4 in Tables 4.7, 4.8, 4.9, and 4.10 provide the energy

consumption in kilowatt hour (kWh) of the whole system, respectively for low, average, and high values of

CD. In addition, column 5 shows the energy consumption from acceleration perspective. Pay attention to the

first and the second part of these tables, energy consumed over four hours is always less than twice energy

consumed over the last two hours on account of warm-up process. During the warm-up period, vehicle and

platoon amount is less than usual since network starts with empty traffic. Third part of these tables record

the percentage of energy savings comparing to experiments with and without platoon forming. According to

column 2, 3, and 4 in these tables, energy consumption reduced from -0.46% to 3.40% for the whole system,

Table 4.9: Energy Savings of Experiment Pair (3,7)

Experiment 3 and 7
Total Energy

Acceleration Energy
Percentage in Platoon

Low CD Average CD High CD Mileage Time

3 (last two hours) 223,639 249,260 287,691 35,038 36% 38%
3 (entire four hours) 428,482 478,446 553,393 63,538 31% 33%

7 (last two hours) 226,578 255,078 297,828 24,107 9% 10%
7 (entire four hours) 433,574 488,145 570,001 46,184 9% 10%

3 vs. 7 (last two hours) 1.30% 2.28% 3.40% -45.35% 393% 386%
3 vs. 7 (entire four hours) 1.17% 1.99% 2.91% -37.57% 342% 337%

Table 4.10: Energy Savings of Experiment Pair (4,8)

Experiment 4 and 8
Total Energy

Acceleration Energy
Percentage in Platoon

Low CD Average CD High CD Mileage Time

4 (last two hours) 224,028 250,615 290,494 30,772 34% 35%
4 (entire four hours) 429,590 481,044 558,225 57,312 30% 31%

8 (last two hours) 226,817 255,476 298,464 23,588 9% 9%
8 (entire four hours) 434,117 489,007 571,341 45,166 9% 9%

4 vs. 8 (last two hours) 1.23% 1.90% 2.67% -30.46% 372% 369%
4 vs. 8 (entire four hours) 1.04% 1.63% 2.30% -26.89% 329% 327%

44



where negative percentage represents more energy consumed instead of savings. Based on column 5, energy

savings from acceleration within a range from -67.85% to -26.89%. In other words, experiments with platoon

forming always consume more energy in acceleration prospective. Tables 4.7 and 4.8 summarize results for

experiments with same platoons and vehicles input rate. Thus, these experiments all have 24095 vehicles in

total. As shown in Tables 4.7 and 4.8, total energy consumed in experiments with faster speed in Lane 2 is

a bit more than with slower speed. Oppositely, energy consumed from acceleration is smaller. Tables 4.9

and 4.10 have similar results. This mainly depends on locally congestion according to slow speed in Lane 2.

Referring to total energy savings, Table 4.7 offers a range (-0.46%,2.73%), while Table 4.8 provides a range

(-0.17%,2.49%). For the reason we did not make decisions based on system level, more entering and leaving

processes happen causing more energy waste from acceleration. Therefore, for low value of CD, platooning

gives rise to a little bit energy waste with 0.46% and 0.17%. Energy savings in consideration of high value of

CD are fairly good. Unlike previous experiments, Tables 4.9 and 4.10 show results of experiments with 16034

vehicles. Percentages of total energy savings for these experiments offer better performance of platooning

with ranges (1.17%,3.40%) and (1.04%,2.67%). Comparing 4.7 and 4.8 with 4.9 and 4.10, it is obviously

that percentages of energy loss from acceleration are much different. For example, energy consumed from

acceleration for Experiment 1 is 67.85% more than it for Experiment 5. On the other hand, energy consumed

from acceleration for Experiment 3 is 45.35% more than it for Experiment 7. Moreover, column 6 and

7 record the percentage of mileage and time travelled in platoons, respectively for different experiments.

The percentage of time perfectly matches those values in Table 4.3. The percentage of mileage travelled in

platoons usually equal or a little bit less than the percentage of time. Additionally, around 4.5 (3.8) times

platoons are in Experiments 1 and 2 (3 and 4) by contrast with Experiment 5 and 6 (7 and 8). Based on these

results, we indeed observe energy savings through platooning, even though decisions are made decentralized

and concentrate on personal profits.
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Chapter 5

Energy Consumption of One Single

Platoon

Our simulation traffic network contains a lot of platoons and single vehicles. In order to understand

energy consumed by platoons in-depth, instead of analyzing global consumption, we would like to pay at-

tention to observing an individual platoon in this chapter. Different factors, which potentially are able to

impact energy consumed by a platoon, are applied to experiments desired in this chapter so as to evaluate

performance of the particular platoon. Results are then provided for analysis.

5.1 Problem Description and Experiments Desired

In our simulation-optimization framework, through our prediction energy consumption model, we

are able to calculate precise energy consumption in system-wide. In other word, total energy consumed by all

vehicles during entire time period are reported. As we know, this energy consumption illustrates performance

of all single vehicles and platoons under real traffic conditions. However, we cannot know how much a

platoon contributes in term of total energy consumption. In particular, we won’t know the detail of energy

consumption in those three main factors, aerodynamic drag, acceleration, and rolling fraction, mentioned in

Section 2.3. In addition, we would like to observe the energy consumption based on vehicle position in a

platoon.

There are several factors could potential affect platoons, not only in energy consumption, but also
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in traffic capacity and safety. In our paper, we mainly focus on energy aspect. As we described in Chapter 1,

inter-vehicle distance and speed can potentially impact air drag reduction as well as acceleration. Addition-

ally, platoons with larger size can yield to more energy savings on account of accumulated air drag reduction

effect. Thus, we would like to observe that individual platoon according to these three factors.

We design these experiments utilizing our simulation-optimization framework as a background traf-

fic situation. Refer to simulation model, we apply parameters from Experiment 12 in Section 3.2, including

vehicle and platoon input rate as 100 and 120, and desired speed 60mph on Lane 2. On the other hand, new

platoons forming are on with centralized approach containing weight w1 = 0. Based on these settings, we

record traffic background information in simulation model at the end of hour 2 as initialization for experi-

ments of individual platoon. To do so, we can initialize these experiments in steady-state rather than starting

with a warm-up period. In other word, we only need to run experiments for two hours in steady-state so as to

reduce simulation time. With these presetting, we generate a single platoon for observing at time 10 second

to avoid collision with current entering platoon. This individual platoon enters from mile zero on Lane 3,

and travels to the end of highway. Thus, it needs to drive 100 miles to reach their destinations. Note that, all

vehicles in this platoon have destinations at the end of highway, and no vehicle will leave the platoon until

they reach their destinations. Then, no other vehicle can join this platoon as well. Information of vehicles in

this platoon is recorded every 0.5 seconds for further analysis.

Table 5.1: Summary of Experimental Parameters for an individual platoon

Experiment Factor∗ Headway (s) Speed (mph) Platoon Size
1 Base 0.7 60 4
2 Headway 0.5 60 4
3 Headway 0.6 60 4
4 Headway 0.8 60 4
5 Headway 0.9 60 4
6 Headway 1.0 60 4
7 Speed 0.7 55 4
8 Speed 0.7 57.5 4
9 Speed 0.7 62.5 4
10 Speed 0.7 65 4
11 Platoon Size 0.7 60 2
12 Platoon Size 0.7 60 3
13 Platoon Size 0.7 60 5
14 Platoon Size 0.7 60 6
15 Platoon Size 0.7 60 7

∗ factors that different from base setting

In term of three factors mentioned above, we design 15 experiments shown in Table 5.1 with different

parameters settings. There is a base experiment setting. By contrast, every other experiment contains only one

parameter which is different from base value. Column 2 provides the factor that is different from base setting,
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Figure 5.1: Energy consumption from aerodynamic drag (top) and acceleration and rolling friction (bottom)
for different Headway

while column 3,4, and 5 show parameters of headway, speed, and platoon size respectively. For example,

Experiment 10 includes a different speed 65mph other than base value 60mph, but other parameters are same.

Notice that, we use headway with unit second instead of actual inter-vehicle distance here. Additionally, since

speed of the platoon is vary, in order not to block platoons behind, desired speed of platoons on Lane 3 are

set to the same speed of this single platoon.
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Figure 5.2: Energy consumption from aerodynamic drag (top) and acceleration and rolling friction (bottom)
for different Speed

5.2 Results and Analysis

In this section, using the data collected from simulation, MATLAB scripts are applied to compute

energy consumed for each vehicle in that individual platoon. Recall that, in Section 2.3, three major factors

impact energy consumption. Therefore, we separate total energy into three parts, which are energy from

aerodynamic drag, acceleration, and rolling friction. Moreover, we group our experiment results into three

sections in order to compare the influence of different values for the same factor. Experiments 1 to 6 are in a

group for headway, and Experiments 1, and 7 to 10 are in section for speed, finally, Experiments 1, and 11 to

15 are in group for platoon size.
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Figure 5.1 illustrates energy consumption for different headway, where top graph provides energy

from air drag with low, average, and high coefficient, and the bottom graph shows the energy from accel-

eration and rolling friction. In the top graph, orange, blue, and purple bar represent low, average and high

drag coefficient. As expected, for each experiment and each vehicle in the single platoon, high drag coeffi-

cient lead to the largest energy consumption, followed by average, and low. In addition, considering every

experiment, position 1 consumes the largest energy, followed by 2, 3, and 4. It perfectly matches what is

shown in Figure 2.6, since inter-vehicle distance for 60mph with 0.5 seconds headway is around 15 meters.

In addition, inter-vehicle distances become larger when we enlarge headway. Hence, it indeed follows this

decreasing trend. Additionally, there is no much difference for same position in this single platoon among

these experiments. This also makes sense on account of gentle descent in Figure 2.6. There is some distinc-

tion in values shown in Table 16 in Appendix A. On the other hand, orange bar in the bottom graph illustrates

energy from acceleration, while blue bar represents for rolling friction. According to these orange bars, for

each experiment, front vehicles consume less energy from acceleration comparing with back vehicles. Par-

ticularly, the last vehicle consumed obviously more energy in acceleration prospective. This may depend on

more adjustments made for the last vehicle to maintain proper headway. Comparing different experiments,

energy from acceleration for same position in this single platoon are similar. Refer to energy from rolling

friction, all blue bars shown here are almost same. Thus, rolling friction is not affected by position in platoons

as well as inter-vehicle distance.

In terms of speed, results are offered in Figure 5.2. Same with Figure 5.1, top graph has same format

for energy from air drag, and bottom graph has same format for energy from acceleration and rolling friction.

Based on the top graph here, comparing different positions in the single platoon for every experiment, we can

obtain a similar result as shown in Figure 5.1, which is front position consumed more in energy from air drag.

Nevertheless, by contrast with different experiments, it is clear that experiments with larger speed consume

more energy in all (low, average, and high) drag coefficients. Note that, this is not the energy savings for each

vehicle in the individual platoon. It is true that faster speed leads to larger energy consumption. Switching to

the bottom graph, energy from rolling friction represented as blue bars are still almost same. It means rolling

friction is not impacted by speed as well. However, considering energy from acceleration, the patter that front

vehicles consume less than back still exists except experiment with speed 65mph. In addition, experiment

with speed 57.5mph seems to consume more energy than experiments with faster speed (i.e. 60mph and

62.5mph). Remember that we simulate our network in real traffic situation, these abnormal statuses can be

caused by some blocking issues in front of the platoon. Due to this reason, more accelerating and decelerating
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Figure 5.3: Energy consumption from aerodynamic drag (top) and acceleration and rolling friction (bottom)
for different Size

behaviors are conducted so that vehicles consume more energy from acceleration.

One other important factor here is platoon size. As shown in Table 3.1, platoons with large size

potentially make more energy savings. We would like to see what happens based on this factor. Figure 5.3

illustrates energy consumption of the individual platoon by different sizes. Similarly, top graph is for aerody-

namic drag, and bottom is for acceleration and rolling friction. For each experiment, back vehicles yield to

less energy consumption, in other words, more energy savings from air drag are obtained for back vehicles.

When we look at different experiments, vehicle in same position has approximate energy consumption from

air drag. Thus, with the decreasing trend, it is obvious that larger size of platoons can save more energy. In

consideration of the bottom graph, same status exists for rolling friction. However, there is some variation in
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energy from acceleration. It looks like that back vehicles consume more energy in acceleration prospective,

but not always. For example, experiment with platoon size 7, fourth vehicle consumes more energy from

acceleration than fifth and sixth vehicles. It is reasonable since acceleration is a factor that can be easily

influenced by traffic.

Based on these results, we can conclude that energy consumption according to aerodynamic drag

follows our prediction energy model as well as results in literature. In addition, energy consumption from

rolling friction is stable and is not impacted by these factors. Moreover, energy consumed from acceleration

can be affected in some cases, and it provides negative efforts for energy savings. To get better energy savings

by platooning, an effective method is to reduce energy consumption from acceleration. Additional complete

tables with values are reported in Appendix A.
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Chapter 6

Comparisons and Conclusions

In this chapter, a comparison is conducted between centralized and decentralized models. Both

criteria, traffic situation and energy consumption, are used to analyze and evaluate the difference. In this

comparison, system-wide energy savings are the primary evaluation criteria. After that, the conclusion and

future work will be presented in this chapter.

6.1 Comparison between Centralized and Decentralized Models

In this section, we will evaluate the performance of our decentralized formation by comparing with

our former centralized model. As described in Chapter 3, centralized model encourages vehicles to form

platoons with best possible system-wide savings. Moreover, there is a factor encourage single vehicles to

from more stable platoons too. While discussed in Chapter 4, decentralized model aims to maximize potential

personal payoffs based on local information observed by individual vehicles. In particularly, platoons formed

by this method may not offer best savings in system-wide. We would like to find out the differences between

centralized and decentralized models. Throughout our experiments in centralized model, we observed that

a weight (w1) with value zero leads to maximum energy savings. In this case, single vehicles prefer to join

platoons rather than remain individual. Therefore, similar to our decentralized setting, single vehicles try to

maximize their own savings so that they usually join platoons if possible. Hence, Experiments 1 to 4 in Table

4.2 and Experiments 9 to 12 in Table 3.2 are selected for comparison. Note that, in following comparison,

we refer Experiments 9 to 12 in centralized model as Experiments 1 to 4.
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Figure 6.1: Number of vehicles and platoons for Experiment 2 with Decentralized (left) and Centralized
(right) model

6.1.1 Traffic condition comparison

In order to analyze the difference in traffic situation, we report distribution of vehicles in Table

6.1. In Table 6.1, first column identifies experiments index. Meanwhile, second column and third column

present the percentage of single vehicles and vehicles in platoon respectively. Every two rows, starting

with the second row, provide information for both decentralized and centralized distribution. According to

these percentages, decentralized model has similar traffic composition to centralized model. For instance,

Experiment 2 has an average 57% of vehicles driving individually, and 43% of vehicles in platoons for both

decentralized and centralized results. This situation can be observed in Figure 6.1 too, that is, the shapes of

both lines in the graph of decentralized model (left) are similar to those in centralized model (right). It makes

sense since the optimization part of both models always encourage individual vehicles to join platoons. Note

that, as we mentioned above, we only consider the weight (w1) with a value of zero here for our centralized

model.

Table 6.1: Distribution of Vehicles for decentralized and centralized results∗

Experiment Single Vehicles in
Vehicles Platoons

1(Decentralized) 57% 43%
1(Centralized) 55% 45%

2(Decentralized) 57% 43%
2(Centralized) 57% 43%

3(Decentralized) 62% 38%
3(Centralized) 61% 39%

4(Decentralized) 65% 35%
4(Centralized) 64% 36%

∗ in steady-state, i.e., average over the last two hours
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Such being the case, we wonder whether both formulations have the same mean. Therefore, we

conduct a T-test to analyze the difference. Since in steady-state, traffic flow is more stable. In other words,

number of vehicles driving singly or in platoons will not change sharply. Accordingly, we partition last

two hours (120 minutes) to thirty 4 minutes intervals, and average vehicle amount in platoons of this 4

minutes period are calculated as statistical individuals. Thus, a sample is established with 30 individuals

for an experiment. Additionally, parameter settings and random seeds remain same for each experiment.

That is, traffic situation should be the same when we eliminate the effect of optimization. As shown before,

the distribution of vehicles in platoons for both centralized and decentralized model are approximate equal.

Then, we make null hypothesis as both models with the same population mean, and alternative hypothesis

as their population means are unequal. In our T-test, we present centralized sample as first sample (i.e.

with µ1), and decentralized sample as second (i.e. with µ2). The population variance of two models are

unknown, but with our calculation, the ratio of sample standard deviations between two models within a

range 0.5 < SX1/SX2 < 2. As a result, both models have similar population variances. Table 6.2 provide the

results of T-test for Experiments 1 to 4. In this table, the first row declare the hypothesis defined, and column

2 and 3 show the confidence interval (CI) we selected and α values. Additionally, column 4 and 5 calculate

the t values and p values, while column 6 and 7 provide judgements for results. Refer to confidence interval,

we pick 95 %, then α is 0.05. Based on these information in Table 6.2, it is very clear that we reject the null

hypothesis with large t value computed for Experiments 1 and 3 since the critical value for t distribution is

± 2.002. The difference between centralized and decentralized models is highly significant, confirmed by

p values. Conversely, null hypothesis cannot be rejected in Experiments 2 and 4. Notice that, t values for

these experiments are close to critical values, meanwhile, p values offer a marginally significant difference as

well. Therefore, we cannot conclude number of vehicles in platoons for both models have same population

mean even though they are observed similar. In particular, t value for Experiment 2 is negative, while others

are positive. This provides a sign that sometime decentralized model may possibly include potential more

number of vehicles in platoons than centralized model.

In addition to comparing number of single vehicles and vehicles in platoons, platoon amount by

different sizes is also an important factor for comparing two models. Table 6.3 provides the distribution of

platoons by size for both model. Columns 2 to 5 represent the average percentages of platoons with different

sizes. Each experiment also has a pair of data reported for decentralized on top, and centralized on bottom.

Based on these information, it is clear that number of 5-vehicle platoons in centralized model account for a

larger proportion by contrast with decentralized one. In view of 4-vehicle platoons, both decentralized and
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Table 6.2: T-test for number of vehicles in platoons∗

Hypothesis: H0 : µ1 = µ2,H1 : µ1 6= µ2

Experiment Confidence Interval (CI) α t p value Conclusion Significance

1 95% 0.05 5.038 0.000 reject H0 highly significant
2 95% 0.05 -1.782 0.080 fail to reject H0 marginally significant
3 95% 0.05 3.077 0.003 reject H0 highly significant
4 95% 0.05 1.975 0.053 fail to reject H0 marginally significant

∗ in steady-state, i.e., average over the last two hours

centralized formulations have almost same proportion. Moreover, decentralized model owns relatively higher

percentages for 3-, and 2- vehicle platoons. Giving an example such as Experiment 2, centralized model has

3% higher for 5-vehicle platoons than decentralized one. On the other side, 1% less for other sizes platoons.

Figure 6.2 shows number of platoons by size for both decentralized model in Experiment 2, illustrating on

the left graph, and centralized model on the right graph. It is obviously that more 5-vehicle platoons than

4-vehicle platoons in centralized model. On the contrary, the line representing 5-vehicle platoons interweaves

with the line for 4-vehicle platoons in decentralized model. If we compare both graphs, lines representing 2-,

3-, and 4- vehicles in the left graph are a little bit higher than in the right graph. Note that, both graphs have

the same scale.

Table 6.3: Distribution of Platoons by Size for Decentralized and Centralized results∗

Experiment
Size

5 4 3 2

1(Decentralized) 33% 29% 23% 15%

1(Centralized) 39% 29% 20% 12%

2(Decentralized) 33% 30% 23% 14%

2(Centralized) 36% 29% 22% 13%

3(Decentralized) 30% 29% 25% 16%

3(Centralized) 35% 28% 23% 14%

4(Decentralized) 28% 28% 27% 17%

4(Centralized) 32% 28% 24% 16%

∗ in steady-state, i.e., average over the last two hours

In this case, T-tests are proceeded to show whether they are different in mean for 5-, and 4- vehicle

platoons. Since more platoons with larger size potentially yield to larger energy savings, we only test pla-

toons with 4 and 5 vehicles. So as to design T-test for 5-, and 4- vehicle platoons, as we observed in Table
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6.3, 5-vehicle platoons should be compared whether population mean in centralized model is larger. Besides,

4-vehicle platoons can be assumed with same population mean. Therefore, with similar setting mentioned

before, we partition last two hours as thirty 4 minutes intervals, and create samples for centralized and de-

centralized models. Thus, null hypothesis of these T-tests are that both models have same population mean,

but alternative hypothesis for 5-vehicle T-test is to assume centralized model has larger mean (i.e. one side

T-test), while different means for 4-vehicle T-test. Similarly, α is 0.05 (i.e. 0.025 for one side), and both com-

paring samples have similar sample standard deviations (i.e. 0.5 < SX1/SX2 < 2). The results are illustrated in

Tables 6.4 and 6.5, which have the same format with Table 6.2. According to Table 6.4, distinctly, all t values

are greater than critical value 2.002. Alternatively, all p values are extremely small for Experiment 1 to 4. It

is an evidence that we reject null hypothesis, and observe highly significance between population means for

two models. Indeed, number of platoons with size 5 in centralized model are greater than in decentralized

model. It proves the observation in Figure 6.2. Considering the results obtained in Table 6.5, oppositely, all

t values for all experiments are negative and within critical value range ± 2.002 except Experiment 2, which

is a little bit less than the lower bound of that range. In other words, we fail to reject null hypothesis for

Experiments 1, 3, and 4, and, according to p values, we can conclude population means for centralized and

decentralized models do not have significant difference. Nevertheless, there is an exception, Experiment 2,

which shows there exists some significant difference but not too much between two population means.

Table 6.4: T-test for platoons with size 5∗

Hypothesis: H0 : µ1 = µ2,H1 : µ1 > µ2

Experiment Confidence Interval (CI) α t p value Conclusion Significance

1 95% 0.025 8.929 0.000 reject H0 highly significant
2 95% 0.025 2.581 0.006 reject H0 highly significant
3 95% 0.025 4.220 0.000 reject H0 highly significant
4 95% 0.025 3.731 0.000 reject H0 highly significant

∗ in steady-state, i.e., average over the last two hours

Table 6.5: T-test for platoons with size 4∗

Hypothesis: H0 : µ1 = µ2,H1 : µ1 6= µ2

Experiment Confidence Interval (CI) α t p value Conclusion Significance

1 95% 0.05 -0.019 0.985 fail to reject H0 not significant
2 95% 0.05 -2.146 0.036 reject H0 significant
3 95% 0.05 -0.969 0.336 fail to reject H0 not significant
4 95% 0.05 -0.333 0.740 fail to reject H0 not significant

∗ in steady-state, i.e., average over the last two hours
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Figure 6.2: Number of platoons by size for Experiment 2 with Decentralized (left) and Centralized (right)
model

6.1.2 Energy comparison

Tables 6.6, 6.7, 6.8, and 6.9 report energy results for both centralized and decentralized model.

Similarly, Tables 6.6, 6.7, 6.8, and 6.9 have same column formats with Table 4.7. Columns 2, 3, and 4

Table 6.6: Comparison between Decentralized and Centralized Model of Experiment pair (1,5)

Experiment 1 and 5
Total Energy

Acceleration Energy
Percentage in Platoon

Low CD Average CD High CD Mileage Time

1 (Decentralized) 351,023 388,616 445,004 70,960 41% 43%
1 (Centralized) 344,524 382,095 438,452 64,483 42% 45%

Difference 6,499 6,521 6,553 6,477 -2% -2%

5 349,417 392,632 457,453 42,276 9% 10%

1 vs. 5 (Decentralized) -0.46% 1.02% 2.72% -67.85% 454% 440%
1 vs. 5 (Centralized) 1.40% 2.68% 4.15% -52.53% 475% 460%
∗ in steady-state, i.e., average over the last two hours

Table 6.7: Comparison between Decentralized and Centralized Model of Experiment pair (2,6)

Experiment 2 and 6
Total Energy

Acceleration Energy
Percentage in Platoon

Low CD Average CD High CD Mileage Time

2 (Decentralized) 350,698 389,337 447,297 65,633 43% 43%
2 (Centralized) 348,591 387,255 445,251 63,436 42% 43%

Difference 2,107 2,082 2,046 2,197 1% 1%

6 350,101 393,556 458,738 41,807 9% 9%

2 vs. 6 (Decentralized) -0.17% 1.07% 2.49% -56.99% 476% 468%
2 vs. 6 (Centralized) 0.43% 1.60% 2.94% -51.74% 466% 460%
∗ in steady-state, i.e., average over the last two hours
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present energy results with different drag coefficients. Meanwhile, columns 5, 6, and 7 provide energy results

of acceleration and proportion of mileage and time in platoons. Row organization in these tables is different.

In Tables 6.6, 6.7, 6.8, and 6.9, we concentrate on comparing results for over the last two hours (i.e. in steady-

state). Hence, row 2 and 3 show the results respectively for experiments with decentralized and centralized

model. Row 4 provides the difference between two types of model. Moreover, row 5 shows the result of

reference experiment, where forming new platoons is prohibited. Row 6 and 7 calculate the percentage of

energy savings for decentralized and centralized model.

Table 6.6 shows the comparison between decentralized and centralized model of Experiment pair

(1,5). The energy savings results of centralized model here yield to the best savings in our experiments owe

to more potential platooning opportunities and optimal platooning matching. By contrast to our decentral-

ized model, energy consumption of centralized model based on acceleration is much smaller. With similar

percentage of vehicles in platoons, energy consumed by acceleration dominates total energy savings. For

example, centralized model consumes 6553 kWh and 6477 kWh respectively in total under high CD and ac-

celeration less than decentralized model. In other words, if energy consumption from acceleration reduces,

Table 6.8: Comparison between Decentralized and Centralized Model of Experiment pair (3,7)

Experiment 3 and 7
Total Energy

Acceleration Energy
Percentage in Platoon

Low CD Average CD High CD Mileage Time

3 (Decentralized) 223,639 249,260 287,691 35,038 36% 38%
3 (Centralized) 222,987 248,381 286,472 35,486 37% 39%

Difference 651 878 1,219 -448 -1% -1%

7 226,578 255,078 297,828 24,107 9% 10%

3 vs. 7 (Decentralized) 1.30% 2.28% 3.40% -45.35% 393% 386%
3 vs. 7 (Centralized) 1.58% 2.63% 3.81% -47.21% 401% 397%
∗ in steady-state, i.e., average over the last two hours

Table 6.9: Comparison between Decentralized and Centralized Model of Experiment pair (4,8)

Experiment 4 and 8
Total Energy

Acceleration Energy
Percentage in Platoon

Low CD Average CD High CD Mileage Time

4 (Decentralized) 224,028 250,615 290,494 30,772 34% 35%
4 (Centralized) 223,171 249,573 289,177 30,835 35% 36%

Difference 857 1,041 1,318 -63 -1% -1%

8 226,817 255,476 298,464 23,588 9% 9%

4 vs. 8 (Decentralized) 1.23% 1.90% 2.67% -30.46% 372% 369%
4 vs. 8 (Centralized) 1.61% 2.31% 3.11% -30.72% 381% 379%
∗ in steady-state, i.e., average over the last two hours
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decentralized model could lead to better savings. Table 6.7 shows similar situation. However, there only

exists a 2100 kWh gap between decentralized and centralized model. As shown in Table 4.2, Experiments 1

and 2 have larger vehicle and platoon input rate, and the only difference between 1 and 2 is platoon speed

in Lane 2. Therefore, the primary reason causing large different energy consumption of acceleration is that

low speed on Lane 2 can result in locally blocking and congestion. Thus, the platooning decisions made by

decentralized model generate more joining and leaving processes.

On the other hand, Tables 6.8 and Table 6.9 provide comparison of Experiment pairs (3,7) and (4,8).

Results shown in Table 6.8 and Table 6.9 differ from in Table 6.6 and 6.7. In other words, energy coming

from acceleration is not a main factor which affects total energy consumed. For instance, decentralized

model consumes 448 kWh less energy from acceleration than centralized model in Experiment 3. Oppositely,

decentralized model consumes 1219 kWh more total energy than centralized model. Similar situation appears

in Experiment 4. Since Experiments 3 and 4 have less vehicle and platoon input rate, smoother traffic flow can

be one reason that there is minor difference for energy from acceleration. Another reason is that decentralized

model and centralized model have similar amount of platoons during the simulation. Hence, the primary

reason that centralized model saving more in total energy is the better structures of platoons. Namely, a

platoon formed by centralized model offering better savings for the entire platoon other than individual. For

example, platoons with 5 vehicles are more in centralized model comparing in decentralized model. On

account of these reasons, we see there definitely exists a valuable improvement for centralized model.

6.2 Conclusions and Summary

In this study, we developed and evaluated three models: a platoon formation optimization model,

a traffic microsimulation model, and an energy prediction model. With their combination, a simulation-

optimization framework is established. The optimization model divides the freeway link into platooning

zones, then within each zone, determines whether or not each single vehicle should join a specific platoon.

Two types of optimization model are built and analyzed in this paper. One is a centralized formulation.

Decisions determined by centralized approach is based on the destination of each vehicle as well as the

estimated energy savings at the macro level. The other type is a decentralized model. Oppositely, decisions

made by decentralized approach concentrate on self payoffs of individual vehicles under competition. The

experimental results indicate that considering the destinations in the vehicle-to-platoon assignment decisions

leads to a lower total energy savings for the single freeway network. In addition, results in consideration of
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self profits also lead to some energy savings. With a comparison conducted, evaluation shows that centralized

model offers better platoons composition and system-wide energy savings.

On the other hand, the microsimulation model takes the vehicle-to-platoon assignments as input

and simulates the movement and behaviour of each platoon and each vehicle using Vissim’s car-following

model to provide realistic traffic flow and conditions. Some information is recorded such as location, speed,

and destination of each vehicle from the simulation model and utilized as input to the optimization model

every 20 seconds. This iterative process continues for four hours. From observations, it takes two hours

before steady-state is reached. Thus, our conclusions are mostly drawn from observations over the last two

simulation hours (i.e., in steady-state). Our numerical experiment results indicate that savings are maximized

if focus lies on forming as many as platoons as possible, as well as on forming longer platoons.

Every 0.5 seconds, detailed vehicle and platooning states are collected from the simulation model

which are subsequently processed utilizing the developed prediction model to determine the energy consumed

by each vehicle. Before employing the prediction model for energy consumption estimations, we validated its

accuracy through the use of a regression model. The results were encouraging as we were able to demonstrate

a significantly improved fit of our prediction model to empirical data in comparison to other models proposed

in the literature. In particular, our analytical prediction model can accurately reproduce empirical results for

short inter-vehicle distances where other existing models fail. The results, which obtained from observing

one single platoon, also prove the perfectly matching to the empirical data. Furthermore, we included the

additional energy required to form and maintain platoons in our assessment which has not been performed

in any of the previous studies. Therefore, a key contribution of this work is the developed energy prediction

model which is more applicable to real traffic systems and its reported energy savings are much more realistic

compared to previous studies.

6.3 Future Work

In this study, we limited the platoon size to a maximum of five vehicles, but as part of our future

work, we plan to study the impact of platoon size on energy savings as well as the impact of platoon speed

and associated surrounding traffic conditions. In future work, we will allow single vehicles to join any

platoon within the platooning zone instead of only considering those platoons currently behind the vehicles.

This study considered a network consisting of only freeway segment. In future work, we plan to extend

the analysis to include a network consisting of interstates and non-interstate national highway system routes
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to better quantify the potential energy savings with platooning at the regional/state level. In terms of our

dynamic game model, we would like to improve our game model based on following criteria. We could

add some preference for players in order to affect their respond strategies. Furthermore, we may consider

cooperation between single vehicles instead of just competition.
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Appendix A Other Tables

Table 10: Number of Vehicles in the System

Experiment Single Vehicles Vehicles in Platoons
Avg† Std‡ % Avg Std %

1 768 32 59 530 18 41
2 780 32 61 497 17 39
3 542 20 64 304 16 36
4 547 35 66 281 24 34
5 756 33 58 546 16 42
6 788 34 61 497 18 39
7 539 23 64 308 11 36
8 540 30 65 288 21 35
9 726 35 55 582 15 45
10 734 39 57 547 24 43
11 519 23 61 332 14 39
12 532 27 64 297 18 36
13 1115 37 90 119 14 10
14 1114 37 91 114 14 9
15 732 26 90 80 7 10
16 732 26 91 76 7 9

† denotes the average number of vehicles in steady-state, i.e., the last two hours
‡ denotes the corresponding standard deviation

Table 11: Number and Distribution of Vehicles by Platoon Size

Experiment Size 5 Size 4 Size 3 Size 2
Avg† Std‡ % Avg Std % Avg Std % Avg Std %

1 246 25 46 159 22 30 88 15 17 36 9 7
2 228 28 46 146 23 30 84 15 17 37 10 7
3 132 19 43 91 18 30 57 10 19 24 6 8
4 112 21 40 86 16 31 58 11 21 24 6 8
5 259 24 48 165 21 30 86 13 16 35 8 6
6 224 29 45 147 22 30 83 14 17 40 10 8
7 136 19 44 93 15 30 56 10 18 23 6 8
8 119 19 41 86 16 30 59 12 21 24 7 8
9 283 24 49 173 23 30 90 13 15 35 7 6

10 255 30 47 162 22 30 90 13 16 38 8 7
11 150 23 45 99 16 30 60 11 18 24 5 7
12 125 22 42 88 18 30 59 12 20 25 6 8
13 18 8 15 26 11 21 35 9 29 41 6 35
14 17 8 15 25 11 21 33 8 29 39 6 35
15 12 7 15 15 7 19 21 7 26 32 7 40
16 11 7 15 15 7 19 20 6 26 30 6 40

† denotes the average number of vehicles in a platoon of specific size in steady-state, i.e., the last two hours
‡ denotes the corresponding standard deviation
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Table 12: Number and Distribution of Platoons by Size

Experiment Size 5 Size 4 Size 3 Size 2
Avg† Std‡ % Avg Std % Avg Std % Avg Std %

1 49 5 36 40 6 29 29 5 22 18 5 13
2 46 6 35 37 6 28 28 5 22 19 5 15
3 26 4 33 23 4 28 19 3 24 12 3 15
4 22 4 30 22 4 28 19 4 26 12 3 16
5 52 5 37 41 5 30 29 5 21 17 4 12
6 45 6 34 37 6 28 28 5 21 21 5 17
7 27 4 34 23 4 29 19 3 23 12 3 14
8 24 4 31 22 4 28 20 4 26 12 3 15
9 57 5 39 43 6 29 30 4 20 18 4 12

10 51 6 36 41 5 29 30 4 21 19 4 13
11 30 5 35 25 4 28 20 4 23 12 3 14
12 25 4 32 22 5 28 20 4 25 12 3 15
13 4 2 8 7 3 15 12 3 27 20 3 49
14 3 2 8 6 3 15 11 3 27 20 3 49
15 2 1 8 4 2 13 7 2 24 16 3 54
16 2 1 8 4 2 13 7 2 24 15 3 54

† denotes the average number of platoons of specific size in steady-state, i.e., the last two hours
‡ denotes the corresponding standard deviation

Table 13: Number and Distribution of Vehicles by Position in Platoon

Position
Experiment 1 2 3 4 5

Avg† Std‡ % Avg Std % Avg Std % Avg Std % Avg Std %
1 137 4 26 136 4 26 118 5 22 89 6 17 49 5 9
2 131 3 26 129 3 26 110 5 22 82 7 17 46 6 9
3 80 4 26 80 4 26 68 4 23 49 5 16 26 4 9
4 76 6 27 75 6 27 63 6 22 44 5 16 22 4 8
5 140 3 26 139 3 26 122 5 22 93 6 17 52 5 9
6 132 3 27 129 4 26 109 5 22 82 6 16 45 6 9
7 81 2 26 81 2 26 69 3 23 50 4 16 27 4 9
8 77 5 27 77 5 27 65 5 22 45 5 16 24 4 8
9 148 3 26 147 3 25 130 4 22 100 5 17 57 5 10
10 142 5 26 140 5 26 122 6 22 92 6 17 51 6 9
11 87 3 26 87 3 26 74 4 23 55 4 16 30 5 9
12 79 4 27 70 4 27 67 5 22 47 5 16 25 4 8
13 42 4 35 42 4 35 22 4 18 10 3 9 4 2 3
14 40 4 35 40 4 35 21 4 18 10 3 9 3 2 3
15 29 3 36 29 3 36 13 2 17 6 2 8 2 1 3
16 28 3 36 28 3 36 13 2 17 6 2 8 2 1 3

† denotes the average number of vehicles in a specific position in a platoon in steady-state, i.e., the last two hours
‡ denotes the corresponding standard deviation
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Table 14: Energy Consumption for the Last Two Hours

Experiment Total Energy (kWh) Acceleration Time in
Low CD Avg CD High CD Energy Platoon

1 345,891 384,079 441,361 62,986 41%
2 350,444 389,688 448,554 62,329 39%
3 223,024 248,798 287,458 33,662 36%
4 223,884 250,468 290,345 30,651 34%
5 344,958 382,932 439,893 62,987 42%
6 353,310 392,167 450,451 67,225 39%
7 222,905 248,612 287,171 33,905 36%
8 223,366 249,907 289,719 30,324 35%
9 344,524 382,095 438,452 64,483 45%

10 348,591 387,255 445,251 63,436 43%
11 222,987 248,381 286,472 35,486 39%
12 223,171 249,573 289,177 30,835 36%
13 349,417 392,632 457,453 42,276 10%
14 350,101 393,556 458,738 41,807 9%
15 226,578 255,078 297,828 24,107 10%
16 226,817 255,476 298,464 23,588 9%

Table 15: Energy Consumption for all Four Hours

Experiment Total Energy (kWh) Acceleration Time in
Low CD Avg CD High CD Energy Platoon

1 654,479 728,035 838,367 113,023 37%
2 663,465 738,725 851,616 113,568 35%
3 427,595 477,644 552,717 62,205 32%
4 429,399 480,884 558,110 56,985 30%
5 653,183 726,309 835,999 113,789 38%
6 665,806 740,600 852,793 118,316 36%
7 427,440 477,425 552,403 62,384 32%
8 428,816 480,245 557,388 56,659 31%
9 652,872 725,327 834,008 116,806 40%

10 657,987 732,630 844,595 111,264 39%
11 427,172 476,796 551,232 63,909 34%
12 428,154 479,323 556,076 57,307 32%
13 662,594 744,433 867,192 80,809 10%
14 664,097 746,416 869,895 79,951 10%
15 433,574 488,145 570,001 46,184 10%
16 434,117 489,007 571,341 45,166 9%
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Table 16: Energy Consumption of Observed Single Platoon with Different Headway

Experiment Position
Energy from Aerodynamic Drag

Acceleration Rolling Friction
Total Energy

Low CD Average CD High CD Low CD Average CD High CD

0.5s

1 111 134 169 5 62 179 202 237
2 95 115 145 6 62 163 183 213
3 91 110 138 8 62 161 180 208
4 88 106 133 17 62 167 185 212

0.6s

1 111 134 169 5 62 179 202 237
2 96 116 146 5 62 163 183 213
3 91 110 139 6 62 160 179 208
4 88 106 133 15 62 165 183 210

0.7s Base Value

1 111 134 169 5 62 179 202 237
2 96 117 147 5 62 164 184 214
3 92 111 140 6 62 161 180 208
4 88 106 134 17 62 167 185 213

0.8s

1 111 134 169 5 62 179 202 236
2 97 117 148 6 62 165 185 216
3 92 112 140 6 62 161 180 209
4 88 107 134 15 62 166 184 212

0.9s

1 111 134 169 6 62 179 202 237
2 98 118 149 6 62 166 186 217
3 93 112 141 6 62 161 181 210
4 88 107 134 16 62 167 186 213

1.0s

1 111 134 169 6 62 179 202 237
2 98 119 149 6 62 167 187 218
3 93 113 142 6 62 162 181 210
4 89 107 135 16 62 167 186 213

Table 17: Energy Consumption of Observed Single Platoon with Different Speed

Experiment Position
Energy from Aerodynamic Drag

Acceleration Rolling Friction
Total Energy

Low CD Average CD High CD Low CD Average CD High CD

55mph

1 94 113 142 2 62 158 177 206
2 81 98 123 3 62 146 163 188
3 77 93 117 3 62 142 158 182
4 74 90 113 6 62 142 157 180

57.5mph

1 102 123 154 14 62 178 199 231
2 89 108 135 16 62 167 185 213
3 86 104 130 17 62 165 183 209
4 82 99 125 29 62 173 190 216

60mph Base Value

1 111 134 169 5 62 179 202 237
2 96 117 147 5 62 164 184 214
3 92 111 140 6 62 161 180 208
4 88 106 134 17 62 167 185 213

62.5mph

1 120 145 182 11 62 193 218 255
2 105 126 159 11 62 178 200 232
3 100 120 151 10 62 172 193 224
4 95 115 145 29 62 187 206 236

65mph

1 128 155 195 20 62 210 237 277
2 113 137 172 18 62 193 217 252
3 109 132 166 14 62 185 208 242
4 105 127 159 77 62 245 266 299
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Table 18: Energy Consumption of Observed Single Platoon with Different Platoon Size

Experiment Position
Energy from Aerodynamic Drag

Acceleration Rolling Friction
Total Energy

Low CD Average CD High CD Low CD Average CD High CD

Size 2
1 111 134 168 6 62 179 202 237
2 106 128 161 13 62 182 204 237

Size 3
1 112 135 170 1 62 175 198 233
2 97 117 147 3 62 162 182 212
3 93 112 141 8 62 163 182 211

Size 4 Base Value

1 111 134 169 5 62 179 202 237
2 96 117 147 5 62 164 184 214
3 92 111 140 6 62 161 180 208
4 88 106 134 17 62 167 185 213

Size 5

1 111 134 169 3 62 177 200 235
2 96 116 146 6 62 164 184 214
3 92 111 139 6 62 160 179 207
4 87 106 133 6 62 155 173 201
5 84 101 127 15 62 161 178 204

Size 6

1 111 134 168 9 62 182 205 239
2 97 117 147 10 62 169 189 219
3 92 111 140 15 62 169 188 217
4 89 107 135 12 62 163 181 209
5 85 103 130 13 62 160 178 205
6 82 99 124 26 62 170 187 212

Size 7

1 111 134 169 9 62 183 206 240
2 96 116 146 12 62 171 191 221
3 92 111 139 12 62 166 185 213
4 88 106 133 21 62 171 189 217
5 84 102 128 13 62 160 177 203
6 80 97 122 12 62 155 171 196
7 77 93 117 28 62 167 183 207
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Appendix B Other Figures

Figure 3: Number of vehicles (left) and number of platoons by size (right) for Experiment 1 (Centralized)

Figure 4: Number of vehicles (left) and number of platoons by size (right) for Experiment 2 (Centralized)
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Figure 5: Number of vehicles (left) and number of platoons by size (right) for Experiment 3 (Centralized)

Figure 6: Number of vehicles (left) and number of platoons by size (right) for Experiment 4 (Centralized)

Figure 7: Number of vehicles (left) and number of platoons by size (right) for Experiment 5 (Centralized)
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Figure 8: Number of vehicles (left) and number of platoons by size (right) for Experiment 6 (Centralized)

Figure 9: Number of vehicles (left) and number of platoons by size (right) for Experiment 7 (Centralized)

Figure 10: Number of vehicles (left) and number of platoons by size (right) for Experiment 8 (Centralized)
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Figure 11: Number of vehicles (left) and number of platoons by size (right) for Experiment 11 (Centralized)

Figure 12: Number of vehicles (left) and number of platoons by size (right) for Experiment 12 (Centralized)

Figure 13: Number of vehicles (left) and number of platoons by size (right) for Experiment 14 or 6 (Central-
ized or Decentralized)
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Figure 14: Number of vehicles (left) and number of platoons by size (right) for Experiment 16 or 8 (Central-
ized or Decentralized)

Figure 15: Number of vehicles (left) and number of platoons by size (right) for Experiment 4 (Decentralized)
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