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Abstract

Hydrogels are complex materials that are typically utilized as bioinks in the emerging 3D

bioprinting technology. Gels are distinguished by an elasticity that introduces complexity into the

pinch-off process. The distinguishing feature of soft gels is that capillarity (surface tension) and

elasticity are comparable which can induce an abundance of new phenomena in the elastocapillary

regime. Unfortunately, elastocapillary instabilities are not fully understood because classical theories

of fluid mechanics and solid mechanics can not capture the crossover between capillary-dominated

and elasticity-dominated dynamics. Herein, elastocapillary surface phenomena on hydrogels are ex-

perimentally characterized and new theoretical models are proposed to interpret the discrepancies

between classical theories and new experimental observations. Many first observations of dynamic

elastocapillary phenomena are reported including the experimental observations of i) gel drop oscil-

lations in ultrasonic levitation and ii) Faraday waves on mechanically-vibrated gels. The mechanism

of pattern formation is investigated and the role of elasticity is revealed. By relating theory to

experiment, a new diagnostic technique to measure the surface tension and rheology of soft gels is

developed, which can directly support many emerging 3D bioprinting technologies.
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Chapter 1

Introduction

Capillary instabilities have been a historically significant problem in modern physics and

have aroused a wide range of interests for several generations, primary because relatively simple

fluidic systems can induce intrinsically nonlinear spatial and temporal patterns [49, 32]. Generally,

capillary forces control the dynamics of a fluid system when the characteristic length l is smaller

than the capillary length scale lc =
√
σ/gρ where σ is the surface tension of the fluids, ρ is the

density of the liquid, and g is the gravitational acceleration. When instability occurs, the reconfig-

uration dynamics occur on time scales associated with the capillary time tc =
√
ρl3/σ. The most

easily observed capillary phenomenon are gravity-capillary surface waves, which follow the dispersion

relationship

ω =

√
gk +

σ

ρ
k3, (1.1)

where k is the continuous wavenumber. Surface tension effects dominate for small wavelengths

λ ∼ 1/k � lc and gravitational effects for long wavelengths λ� lc. Surface waves can also occur on

an inviscid liquid drop and induce shape oscillations when an integer number of wavenumbers exist

on the drop. The resonance frequency prediction for the shape oscillation on an inviscid liquid drop

was given by Lord Rayleigh

f =
1

2π

√
σn(n− 1)(n+ 2)

ρR3
, (1.2)

where n represents the discrete oscillation mode number and R is the equilibrium drop radius [129].

In both of these cases, surface tension resists deformation and is a stabilizing force. Surface tension

can also drive instability, as with the Plateau-Rayleigh instability describing the breakup of a liquid

1



column into drops to minimize surface area [125, 129]. Gravitational force can similarily drive

instability resulting in the finger-like patterns between two fluids of different densities when the

gravitational acceleration is directed into the lighter one, as in the Rayleigh Taylor Instability[85].

Interfacial instability can also occur in systems driven by periodic forcing. Faraday waves can be

excited on the free surface of liquid when the vertical excitation amplitude exceeds a threshold[42]

and theses are synonymous with pattern selection phenomena and can exhibit hexagons, squares or

stripe symmetry, to name a few[76, 75, 14].

The aforementioned are all canonoical hydrodynamic instablities and extensions have been

made in the literature to account for liquid viscosity, wetting, and nonlinear effects. Capillary-

gravity waves constrained with different wetting boundaries, e.g., free-end edge and pinned-end edge

can exhibit frequency shifts and damping due to dynamic wetting effects even for inviscid liquids

[135, 56]. Material properties can affect mode selection and change the thresholds of Faraday waves

patterns [76, 43] and nonlinear analysis is used to study the pattern formation on Faraday waves

[163]. For example, thin viscous films subject to vertical vibration have been shown to exhibit

a harmonic response as opposed to the classic subhamonic response of Faraday waves and this is

attributed to the strong viscous effects for this system [112]. Notably, sessile drop oscillations can

be viewed as an extension to Rayleigh drops but with wetting effects and it has been recently shown

that the oscillation spectrum fills a droplet motion periodic table [140, 28].

Research into capillary phenomena has moved many industrial process forward, as the study

of droplet oscillation facilitates numerous technologies, such as atomization [127], pulmonary drug

delivery[166], aerosol scavenging[46], and inkjet printing [24], to name a few. The dynamics in the

Rayleigh-Taylor instability is similar to some mixing processes in atmospheric flows resulting from

varible density[84] and it is reponsible for nuclear bubbles formed in central heavy-ion collisions[109].

Viscous effects in Plateau-Rayleigh breakup aid in delaying the onset of instability and plays an im-

portant role in precision inkjet processes [19, 65]. Capillary-gravity waves can enhance the mass

and heat transfer across the gas-liquid interface[158, 121], and the formation of which is crucial in

oceangraphy to understand the process of wind energy inputting through the ocean surface [4, 161].

The dispersion relationship of capillary-gravity waves is utilized to develop some non-contacting

detection techniques for different purposes[59, 100]. This approach has been extended to the rhe-

ological measurements in viscoelastic materials and shows advantage over traditional measurement

methods[138, 137, 26].

2



The goal of this thesis research is to investigate capillary instabilities in soft gels. It is hope-

ful that the fundamental questions addressed in this dissertation will influence the emerging field

of elastocapillarity and associated industrial processes in the same manner as the aforementioned

canonical hydrodynamic instabilities have done.

1.1 Motivation of this dissertation

The motivation of this dissertation comes from recent developments in biomaterials and

bioprinting technology [115], which has been applied to wound regeneration and has the poten-

tial to build human organs and viable tissue. A bioprinting device is a computer-assisted process

to accurately deliver bioink drops which are typically cell-laden hydrogels to create complex 3D

biostructures [44, 160]. The bioinks pinch off into drops from the printer nozzle with appropriate

size and speed and are deposited in a desired pattern. The physical process is similar to traditional

inkjet printing with the exception that hydrogels are capable of sustaining biological functions and

are characterized by complex rheological properties, including both viscosity and finite elasticity

[13, 51]. In spite of tremendous advancement, bio-printing technology often suffers from low resolu-

tion of the printed structures. For example, uncontrollable instability happens when the bioink is

extruded through the nozzle that compromises the geometrical fidelity of bio-printed constructs and

the unpredictable pinch off drop sizes can cause damage to the cell encapsulated [40]. The reason

for the unstable printing process lies in the existence of an elasticity in the printing materials that

makes the dynamics more challenging to control than pure liquids, and which is an obstacle to design

a more precise and reliable 3D bio-printer.

Bioinks are complex materials and there are generally two methods to study the dynamics

on a viscoelastic medium with finite capillarity. The first is to treat the soft materials from a fluid

mechanical perspective and incorporate the shear modulus as the imaginary part of the viscosity[52].

The other method is an elasticity based approach where the viscosity is added as the imaginary part

of the shear modulus. Surface tension is related to Young-Laplace’s law and is incorporated into

the boundary at the interface[113, 118]. Unfortunately, none of the existing theories are capable

of integrating the dynamics of fluids with a finite bulk elasticity. Onodera and Choi developed a

model based on isotropic materials with elasticity and surface tension effects to study the dispersion

3



Figure 1.1: Schematic of three types of bio-printers (a) inkjet, (b) microextrusion, (c) laser-assisted.
The bioinks pinch off into drops from nozzle onto a collector substrate. The pinch off process is
crucial to the printing accuracy [114].

of capillary and elastic wave on the surface of soft gels, but they neglected viscous effects in their

model [118]. Chakrabarti et al [26] characterized the elastocapillary effect on a soft gel slab by scaling

analysis and developed an empirical model to predict the spheroidal mode (n = 2) of a sessile gel drop

[27]. A recent theoretical model is developed to predict the elasto-capillary dispersion relationship

of an elastic gel drop whose interface is held by capillary force[146].

For these reasons, systematical analysis are required to fully interpret these instability phe-

nomenon on soft materials. This is the main motivation for this dissertation.

1.2 Definition of soft solids

The material properties of bioinks play an essential role in bio-prinitng technology. Hydro-

gels such as alginate, hyaluronic acid and agarose have become attractive candidates to bioinks owing

to their crosslinking mechanical properties are capable of supporting appropriate cellular activity,

rapid gelation process, highly biocompatibility and biodegradability over the long term [40]. In this

dissertation, the focus is on instabilities and pattern formations on agarose gels, which is a sub-class

of complex fluids defined by the complex modulus G = G′ + iG′′ where G′ is the storage modulus

and G′′ is the loss modulus. The storage modulus G′ measures the energy stored in the material,

representing the elastic part, and the loss modulus measures the energy dissipated in the material,

representing the viscous part. The loss modulus G′′ and storage modulus G′ are related by

tan δ =
G′′

G′
, (1.3)

4



where tan δ defines the damping of the material. The storage modulus G′ of gels has a constant

value and is typically one order of magnitude higher than the G′′ over a wide range of oscillation

testing frequencies[151, 107]. Figure 1.2 is a plot of the oscillatory rheology measurements results

of a typical agarose gel used in this dissertation. The results enable us to simplify the agarose gels
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Figure 1.2: Rheology measurements of a typical agarose gel with shear modulus G = 204.4 Pa. The
storage modulus G′ is one order of magnitude higher than the loss modulus G′′ over a range of
oscillation testing frequencies ω = 4− 105 rad/s.

as inviscid elastic fluids with constant shear modulus G = G′ and negligible G′′ for the range of

frequencies explored here.

In general, a complex fluid possesses both a viscosity and elasticity and it is worthwhile

to analyze the problem using dimensional analysis to determine the dominate balance of forces

controlling the dynamics. For fluids with a free surface, the capillary force dominates flows and the

dynamics are characterized by three time scales; relaxation time tp = τ which describes the time

scale needed for the material to reach equilibrium stress state after it has been deformed, a viscous

time scale tv = µl/σ with µ the viscosity, and an inertial time scale tc =
√
ρl3/σ. Two dimensionless

numbers are defined by characterizing the relative balances of these three time scales: the Deborah

number De ≡ tp/tc = τ/
√
ρl3/σ, which represents the elasticity of materials; the Ohnesorge number

Oh ≡ tv/tc = µ/
√
ρl3/σ, which balances the viscosity to the materials inertial and surface tension.
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For the special case of inviscid elastic fluids, the three time scales are ordered as tp > tc > tv, which

corresponds to De > 1 > Oh. The agarose gels studied in this dissertation belong to this category

of inviscid elastic materials with finite surface tension.

One novel and distinguishing feature of soft gels is that capillarity can dominate the dynamic

response [144, 2]. Some preliminary experiments have highlighted the surface tension effect in the

smoothing of features on soft solids which is known as elastocapillarity. This is readily seen in a

soft rod with asymmetic cross section that can be bent significantly by surface tension[106], the

wetting of droplets on soft substrates that can deform the three phase contact-lines[86, 142], and the

flattening of the corner of a soft gel after being released from a square pattern mold[119]. The physics

behind these results can be understood by considering the relative balance between the elasticity and

surface tension, which is defined as the elastocapillary length Le = σ/E. Consider an elastic solid

with E as the shear modulus and mean curvature K, under a strain ε, the elastic force is balanced

by the capillary force so that σK ∼ εE. For significant deformations, 1/K ∼ εE, which suggests

the capillary effect becomes important when the geometric length 1/K is smaller than Le[144]. The

elastocapillary length for common materials is smaller than the atomic scale and this is the reason the

surface tension effects on most materials like metal and glass are negligible. But the elastocapilary

length on a typical agarose gel (E=30Pa) can be millimeter sized, which means the role of capillarity

is observable when the geometrical length is also on the order of millimeters. Alternatively, surface

tension can deform thin sheets with large shear modulus when 1/K � εE. For example, a slender

elastic structure with thickness b is deformed by a liquid droplet of characteristic length R[126, 131].

To avoid confusion with elastocapillarity, this new phenomenon refers to bendocapillarity, which

corresponds to a new length scale Lb =
√
Eb3/σ [144].

Some canonical capillary phenomenon on liquids have been observed on soft solids, and it

is perhaps unsurprising that theories based solely on either fluid mechanics or solid mechanics can

break down in the elastocapillary regime. Mora et al. observed Plateau-Rayleigh Instability (PRI)

on soft gels and a dimensionless elastogravity number which relates the elastocapillary length with

the material density is put forward to predict the thresholds of PRI on soft solids [107]. Rayleigh-

Taylor instabilities were reported on a soft gel whose interface facing downwards is consistent with

the required adverse density gradient[108]. Monroy and Langevin observed elastocapillary dispersion

relationship for surface waves on gels, which covers the crossover for the capillary waves to elastic

waves [104]. Their results indicate the classic Rayleigh elastic waves theory which can successfully
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(a)

(b)

Figure 1.3: (a) Examples of bendocapillarity [126]. Elastic sheets are deformed by surface tension
of a liquid droplet and the evaporation of the droplet manipulates a self-folding effect to the capillary
origami sheet. (b) Example of elastocapillarity [107]. Plateau-Rayleigh instability is observed on a
soft gel rod when the elastic energy of the gel is comparable to surface energy.
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predict non-dispersive surface waves on solids is not applicable when the material is in the elasto-

capillary regime. Chakrabarti and Chaudhury reported elastocapillary dispersion relationships in

a vibrational sessile gel drop [26], which is beyond the prediction of the purely elastic theory of a

solid drop oscillation. The classic Young’s equation for wetting can no longer predict the droplet

contact angle on a soft solid substrate, because the droplet surface tension can deform soft solid

substrates[91, 61]. Similarly, the Johnson-Kendall-Roberts theory which is the basis of modern con-

tact mechanics breaks down on very soft solids, which is a consequence of neglecting the role of

surface tension [143]. Soft solid composites are stiffened by spherical liquid droplet inclusions when

the elastocapillary number σ/RE � 1, which contradicts the classic Eshelby theory in composite

mechanics [141]. These discrepancies between theories of classical mechanics and experimental ob-

servations on soft solids motivate further investigation into dynamic elastocapillary effects in new

experiments and the corresponding development of new theories to interpret those observations.

This is the focus of this dissertation.

1.3 Summary of this dissertation

In this dissertation, elastocapillary instabilities on soft gels are studied from both the exper-

imental and theoretical perspective for four physical systems. Several fundamental elastocapillary

instabilities are discovered and the corresponding theoretical models are developed to predict these

newly discovered phenomenon. The main contributions include:

1. The experimental observation of the crossover between capillary-dominated and elastic-

dominated planar waves over a large range of shear modulus, which agrees favorably with an asymp-

totic closed-form dispersion relationship.

2. The first experimental observation of shape mode oscillations in a gel drop using ultrasonic

levitation. A technique is then developed to measure the rheological properties of soft gels using the

frequency response of droplet oscillations.

3. Experimentally quantification of the effects of viscosity, shear modulus, and surface

tension on the frequency response of harmonically-excited axisymmetric edge waves.

4. The first experimental observation of Faraday waves on soft gels and cataloging of a large

number of surface modes.
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Chapter 2

Extracting surface tension on soft

gels from mechanically-excited

planar surface waves

Reproduced from [Shao X, Saylor JR, Bostwick JB. Extracting the surface tension of soft gels from

elastocapillary wave behavior. Soft matter. 2018;14(36):7347-53] with permission from the Royal

Society of Chemistry.

2.1 Introduction

Capillary instabilities in Newtonian fluids are widely used in industrial processes such as

spray cooling, inkjet printing/rapid prototyping, turbulent mixing, and the float-zone method of

crystal growth. Recent interest in bio-printing technologies such as cell printing and tissue engineer-

ing use these basic principles but adapted to bioinks [67, 145], which are typically hydrogels with

complex rheologies characterized by non-trivial elasticity that are capable of sustaining biological

function. In this paper, the experimental observation of parametrically-excited surface waves on

soft agarose gels is reported and the dispersion relationship over a large range of shear modulus is

characterized. A new technique is presented for measuring the surface tension of soft hydrogels.

Traditional surface tension measurement techniques, such as the Du Nüoy tensiometer or
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Wilhelmy plate, work well for liquid interfaces but are difficult to apply to soft hydrogels. Alternative

methods measure the solid surface tension as a fitting parameter that characterizes an observed

property of the interface, such as the geometry the wetting ridge [142], the shape of the solid

meniscus during indentation [165, 164], or the statistical distribution of delay times during fracture

nucleation [50]. Notably, a bridge tensiometer has recently been used to measure the surface tension

of yield stress materials, such as Carbonpol gel. Specifically, the surface tension is extracted from

an elastoplastic model that delineates elastic from yield stress effects[68]. Here a technique which

uses the dispersion relationship of mechanically-excited surface waves to measure the solid surface

tension of soft gels is established. The technique is distinguished by its simplicity, as the experiments

use equipment that is both common and inexpensive.

Recent work has shown that surface tension forces can dominate the dynamics of soft gels,

leading to Rayleigh-Taylor [108] and Plateau-Rayleigh [106] instabilities. Capillary-gravity waves

travel on a liquid/gas interface endowed with surface tension [128, 79] and obey the dispersion

relationship

ω =

√
gk +

σ

ρ
k3, (2.1)

where ω is the angular frequency, k is the wavenumber, g is the gravitational constant, σ is the

liquid/gas surface tension, and ρ is the liquid density. Capillary-gravity waves have been well-studied

because they are relevant to numerous technologies that occur over many length scales; e.g. gravity

waves are responsible for momentum exchange between atmospheric layers [47], whereas capillary

waves are utilized in pulmonary drug delivery systems such as nebulizers [139] and are prevalent in

wave dissipation (breaking) [99] and gas/momentum exchange [98, 34, 132, 133] in oceanography.

In contrast to capillary-gravity waves, Rayleigh surface waves on linear elastic solids are

non-dispersive or have constant wave speed [130]. The dispersion relationship is given by

ω = C

√
G

ρ
k (2.2)

where G is the shear modulus, and can be used to measure shear elasticity in solids [21, 168]. The

constant C encompasses properties such as material compressibility and finite-depth effects. For

reference, C = 0.955 for incompressible materials of semi-infinite extent. The non-dispersive nature

of Rayleigh waves is used in non-destructive material testing to identify cracks [80, 94], geotechnical
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analysis of underwater [87] and subsurface [120] features, and the food science industry for quality

control and sorting [62, 55], and in magnetic resonance elastography (MRE) [116, 90].

Waves on soft materials are known to possess properties of both capillary and elastic waves.

The crossover from capillary to elastic waves has been experimentally observed in electrically-excited

traveling waves on agarose gels [104, 30, 29], and in ultrasonically-excited soft viscoelastic layers

[149]. Observations, in general, match a predicted dispersion relationship derived from either an

elastic [118] or fluid [52] based model, both of which include elastic and surface tension effects. More

complex models for capillary waves that account for viscoelastic substrate effects have also been put

forth [54, 117, 70]. A historical perspective is given in the recent article by Monroy[103]. For ultra-

soft solids, the self-weight of the gel can become important as seen in gravity-driven instabilities

[108] and the results reported here.

Herein Faraday waves are used to investigate the dispersion relationship of soft hydrogels

and to study the transition from capillary to elastic waves. Faraday waves are formed at an interface

by a parametric instability when the system is vibrated in the vertical direction, resulting in a wave

having a frequency half that of the forcing frequency[41]. For Newtonian fluids, the literature on

Faraday waves is vast (see review in Miles & Henderson[101]), whereas that for viscoelastic liquids

is comparatively small [110, 159, 7, 22, 6]. Notably, Kumar[78] studied this system analytically,

exploring the relative strengths of elastic and viscous forces on the onset amplitude and showing the

existence of harmonic forcing (not the expected subharmonic) when the elastic forces are strong.

However, to the best of our knowledge, Faraday waves have not been used as a means to investigate

the dispersion relationship for soft hydrogels.

This project develop an experimental protocol for exciting and characterizing surface waves

on soft agarose gels with shear modulii ranging from G = 1Pa–260Pa. The experiments yield a

dispersion relationship for each shear modulus from which the transition from capillarity-dominated

to elasticity-dominated dynamics is captured. A theoretical dispersion relationship is developed and

a method of extracting the solid surface tension [66, 142, 15] is shown from the experimental data.

This new technique is a relatively simple way to measure the surface tension of soft hydrogels. It

is concluded by discussing the relevance of the experimental technique and analysis to technologies

that concern the dynamics of soft hydrogels.
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Figure 2.1: Schematic of the experimental apparatus with typical surface wave image with wave-
length λ.

2.2 Experimental procedure

Faraday waves are investigated on soft agarose gels using the experimental setup shown

in Figure 2.1. A 9 cm ×9.5 cm plexiglass container filled with agarose gel is vertically driven

by a shaker over a range of driving frequencies fd = 60 − 200Hz. The shaker is driven by a

function generator/amplifier combination. Surface instabilities with square wave symmetry, shown

in Figure 2.1, were observed above a threshold forcing amplitude. Images are captured using a

strobe light and digital camera mounted above the container.

The hydrogels are prepared by dissolving agarose powder (Sigma Aldrich Type VI-A) in

deionized water using the method of [151]; the liquid mixture is kept at 90◦C for 1 hour before being

cast into the container and allowed to cool at room temperature overnight. A gel height h = 24mm

is chosen to minimize finite-size depth effects, such that the solid can be treated as semi-infinite. The

concentrations are investigated in the range φ = 0.06 − 0.275%w, which is above the gel transition

φc = 0.013%w at 20◦C and corresponds to a shear modulus G = 1− 260Pa. The complex modulus

G = G′+ iG′′ characterizes the rheology of agarose gels, which are known to have a loss modulus G′′

that is many orders of magnitude smaller than the storage modulus G′ over the range of frequencies

used in the experiments [151, 104]. This implies that the gels behave as a linear elastic solid for the

purposes of this study.

Surface waves were observed having a frequency fo where fo = fd/2, as is expected for
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Figure 2.2: (a) Dispersion relationships plotting angular frequency ω against wavenumber k for a
range of shear modulus G. Symbols are experimental data and lines are best fit power-laws. (b)
Typical surface waves for ω = 377rad s−1, and G = 4, 137, and 260Pa.

Faraday waves[41, 12]. A strobe light is used to ‘freeze’ the wave surface, allowing us to obtain

images at a fixed phase of the wave cycle, by setting the strobe frequency to fo. Herein, I focus on

the dispersion relationship and will refer to the wave frequency as f ≡ fo. A fast Fourier Transform

(FFT) technique was used to analyze the spatial structure of the wave pattern, from which an

averaged wavelength λ was extracted. To eliminate edge wave effects, I crop the image to 0.8 times

its original size.

2.3 Experimental results

The experimental protocol allows us to extract the dispersion relationship from the data

(f, λ), as it depends upon the shear modulus G. Herein the results are presented in terms of
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Figure 2.3: Power law exponent α fitted to experimental data against shear modulus G with limiting
cases for Rayleigh α = 1 and capillary-gravity α = 1.41 waves annotated. Error bars represent 95%
confidence intervals.

angular frequency ω ≡ 2πf and wavenumber k ≡ 2π/λ to compare with the dispersion relationships

for capillary-gravity (2.1) and Rayleigh (2.2) waves. For the ultra-soft agarose gels, I expect the

dynamics to lie between these two extremes [104, 30]. The focus is on the role of the substrate

elasticity G.

Figure 2.2(a) is a plot of the dispersion relationship, ω against k, for the range of shear

moduli G explored here. Typical surface wave patterns are shown in Figure 2.2(b) for fixed frequency

ω and three values of modulus G. The dispersion curves show the frequency ω is monotonic with

wavenumber k, whereas the curves are non-monotonic with shear modulus G. This can be seen

by ordering the curves by G as the graph is traversed from left to right; note especially that the

experimental data for G = 1Pa lies to the left of the G = 4Pa curve. This observation highlights

the interplay between elasticity and capillarity, as well as the prominent role of surface tension in

gels with small G.

The raw experimental data is fitted to a power-law having the form ω = Ckα, to gain

insight into the transition from capillary-dominated to elasticity-dominated regimes. These curves

are overlayed on the experimental data in Figure 2.2(a). Figure 2.3 is a plot of the power-law

exponent α against shear modulus G with vertical bars equal to the 95% confidence interval for
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Figure 2.4: Rayleigh wave scaling (Eq. 2.2): angular frequency ω against k
√
G/ρ shows a collapse

of experimental data for shear modulus G > 85Pa. A best fit line for G > 85Pa is plotted to guide
the eye.

each data point. For reference, capillary-gravity waves have a power-law exponent α = 1.41 and

Rayleigh waves α = 1 over this range of frequencies. As seen in Figure 2.3, the majority of data

lies within these bounding curves implying that both surface tension and elasticity are important to

understand the dynamics. Note that gravity, which manifests itself through the self-weight of the

gel, is an important factor in the dispersion relationship—pure capillary waves would have α = 1.5.

In the limit G → 0 Pa, the waves behave as capillary-gravity waves, whereas for G > 85 Pa, the

exponent α = 1 within the 95% confidence interval (with the exception of one outlier) indicating

Rayleigh wave behavior. In Figure 2.4, the experimental data is rescaled with respect to the form

of the Rayleigh wave dispersion relationship (2.2) and show a collapse of the data for G > 85 Pa,

implying that surface tension forces do not affect the dynamics in this “high” G regime.

So, while surface tension forces seem to become unimportant with sufficiently large G, the

converse cannot be said for elasticity effects which are important even for small G. For example, as

shown in Figure 2.3, it is not until G = 1Pa that α approaches 1.41.
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Figure 2.5: Definition sketch. A linear elastic solid occupies a semi-infinite half-space in the presence
of a gravitational field g and has an interface z = 0 endowed with surface tension σ that is perturbed
by a wave ei(kx−ωt).

2.4 Theoretical model

I am interested in developing a closed-form dispersion relationship to compare with the

experiments, because existing theories of elastocapillary waves [52, 118] involve the solution of a

complex nonlinear characteristic equation. I briefly sketch the details of this model, which builds

upon the work of [118].

Consider a linear elastic solid that occupies a semi-infinite half-space and deforms due to

its self-weight (gravitational constant g). The gel surface is endowed with surface tension σ and

perturbed by a wave of the form ei(kx−ωt), as shown in Figure 2.5. The displacement field u(x, z, t) ≡

(u,w) obeys the elastodynamic Navier equations,

ρ
∂2u

∂t2
= (λ+G)∇(∇ · u) +G∇2u (2.3)

where λ,G are the Lamé parameters. Continuity of stress τ is enforced at the free surface z = 0;

τxz = 0, τzz = −σ∂
2w

∂x2
+ ρgw. (2.4)

The first equation ensures the interface is free of shear stress, while the second is the Young-Laplace

equation which relates the normal stress to the linearized mean curvature. The ρgw term is the

disturbance to the pre-stress due to the gravitational body force or self-weight. Lastly, the solution
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is required to be bounded |u| → 0 as z →∞.

To construct a solution to the field equations (2.3)–(2.4), the Helmholtz decomposition

theorem is used to write the displacement field

u = ∇φ+∇×ψ (2.5)

in terms of the scalar potential φ and vector potential ψ = ψĵ. Equivalently, u = (u,w) =

(φx − ψz, φz + ψx) in component form. Sometimes φ and ψ are referred to as the compressional

and shear wave potentials, respectively. Substituting (2.5) into (2.3) delivers a set of uncoupled

equations,

∂2φ

∂t2
= α2∇2φ,

∂2ψ

∂t2
= β2∇2ψ, (2.6)

where α ≡
√

(λ+ 2G)/ρ and β ≡
√
G/ρ. Normal modes ei(kx−ωt) taking the form of steady waves

propagating in the x-direction are assumed with k the wavenumber and ω the wave frequency. The

solution of (2.6) is then given by

φ = Ae−γzei(kx−ωt), ψ = Be−δzei(kx−ωt), (2.7)

where γ ≡
√
k2 − ω2/α2 and δ ≡

√
k2 − ω2/β2 and (A,B) are unknown coefficients to be deter-

mined from the stress boundary conditions (2.4). Substituting (2.7) into the displacement form of

the stress boundary conditions (2.4),

G

(
∂u

∂z
+
∂w

∂x

)
= 0, λ

∂u

∂x
+ (λ+ 2G)

∂w

∂z
= −σ∂

2w

∂z2
+ ρgw, (2.8)

gives a set of linear equation for the constants A,B,

 i2kγ 2k2 − ω2

β2

2k2 − ω2

β2 + γ
β2

(
σk2

ρ + g
)
−i2kδ − i kβ2

(
σk2

ρ + g
)

A
B

 =

0

0

 . (2.9)
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The resulting characteristic equation

4

√
1− 1− 2ν

2(1 + ν)
c2
√

1− c2 − (2− c2)2

+c2

√
1− 1− 2ν

2(1 + ν)
c2
(
Lek +

1

Lgk

)
= 0.

(2.10)

is written with respect to the scaled Rayleigh wave speed c ≡
√
ρ/G(ω/k), Poisson ratio ν, elasto-

capillary length Le = σ/G and elastogravity length Lg = G/ρg.

The agarose gels used in the experiments can be considered incompressible ν = 1/2 which

allows the following simplification of the characteristic equation (2.10),

4
√

1− c2 − (2− c2)2 + c2
(
Lek +

1

Lgk

)
= 0. (2.11)

Note that (2.11) is a nonlinear equation for the wave speed c that depends upon the wavenumber k,

elastocapillary length Le and elastogravity length Lg. Assuming the agarose gels have solid surface

tension close to that of water σ = 72mN/m, I estimate Le ∼ 10−2 − 10−4m in the experiments.

Similarly, Lg ∼ 10−2 − 10−4m but with the opposite trend of Le implying there is range of shear

moduli where Lg ∼ Le. Equating Lg = Le yields the critical shear modulus G ≈ 26Pa, which is

clearly in the transition zone between capillary-gravity and Rayleigh waves shown in Figure 2.3. A

simple scale analysis between the surface wavelength 1/k and the elastocapillary length Le gives

capillarity-dominated Le � 1/k and elasticity-dominated 1/k � Le regimes. In terms of the data

set, the observed wavelengths for G = 1Pa are all an order of magnitude smaller than Le and are

capillary waves, whereas for G > 85Pa the observed wavelengths are an order of magnitude larger

than Le and are Rayleigh waves (cf. Figure 2.2). These scaling arguments are consistent with the

transition zone 1 < G < 85Pa shown in Figure 2.3. In the transition zone, both capillarity and

elasticity affect the dynamics in a way that cannot be predicted a priori from scale analysis.

The disadvantage of (2.11) is that it is nonlinear and the dispersion relationship must be

computed numerically. I seek to develop an approximate solution to more simply compare and

analyze the experiments. I do this by series expanding Eq. (2.11) about Lek � 1, keeping the lowest
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order terms, and solving the resulting equation to deliver the dispersion relationship

ω =

√
2

3
gk +

2

3

σ

ρ
k3 +

4

3

G

ρ
k2, (2.12)

It is noted that Figure 2.4 shows the experimental data collapses upon scaling with the Rayleigh

wave dispersion, Eq. (2.2), for large G > 85Pa and the slope of that line is approximately 1.17,

which is close to the predicted coefficient
√

4/3 ≈ 1.15, thus validating Eq. (2.12). For all the

experimental data with the exception of G = 1Pa, Lek ≤ O(1) and I expect Eq. (2.12) to be faithful.

For G = 1Pa, however, Lek ≈ 10 and I might expect Eq. (2.12) to breakdown at this Lek � 1

limit. This is confirmed by the fact that Eq. (2.12) does not recover the G → 0 limit, Eq. (2.1).

The advantage of Eq. (2.12) is a readily available closed-form solution for use in interpreting the

experiments.

The experimental data is fitted to (2.12) treating surface tension σ as a parameter. Figure 2.6

is a plot of the resulting surface tension σ versus shear modulus G. The experimental data completely

collapses in this case, as shown in Figure 2.7, which validates the use of the proposed dispersion

relationship (2.12) in determining the surface tension of soft gels. The average value over the entire

range of G produces σ = 45.6mN/m (cf. Figure 2.6). For reference, I show how the experimental

data scales with the dispersion relationship (2.12) for this fixed surface tension value in the Appendix

(Figure 2.8). Figure 2.6 shows the predicted σ values tend to become more scattered for G > 137Pa,

which is firmly in the Rayleigh wave regime (cf. Figs 2.3,2.4) where the particular value of σ is

largely irrelevant because of the dominant elastic forces. Other potential sources of scatter may

include edge effects associated with large wavelength patterns in this regime and uncertainty in the

shear modulus of the stiffest gel (G = 260Pa) which I have extrapolated from the data of [151].

Finally, It is noted the relatively large surface tension σ = 83.2mN/m predicted for the softest gel

G = 1Pa, which I attribute to the range of validity of Eq. (2.12) mentioned above. It is concluded

that (2.12) does a good job of predicting the experimental observations allowing us to extract the

surface tension of soft gels, and may serve as a useful tool to other workers in this field.

19



Figure 2.6: Predicted surface tension σ[mN/m] against shear modulusG[Pa] by fitting the dispersion
relationship (2.12) to the experimental data. The average value over the entire range of G gives
σ = 45.6mN/m. Error bars represent 95% confidence intervals.

■

■

■

■

■

■

■

■

○

○

○

○

○

○

○

○

○

●

●

●

●

●

●

●

●

□

□

□

□
□

□

□

□

▼

▼

▼

▼

▼

▼

▼

▼

▯

▯

▯

▯

▯

▯

▯

▯

▲

▲

▲

▲
▲

▲

▲

▲

△

△

△
△

△

△

△

★

★

★

★

★

★

▽

▽
▽

▽

▽

▽

✶

✶

✶
✶

✶

✶

✶

▲

▲

▲

▲

▲

▲

△

△

△

△

△

△

△

△

◆

◆

◆

◆

◆

◆
◆

▲

▲

▲

▲

▲

▲

▲

▲

♣

♣

♣

♣

♣

♣

□

□

□

□
□

□

□

□

△

△

△

△

△

△

△

△

♡

♡

♡

♡
♡

♡

♡

♡

♠

♠

♠

♠
♠

♠

♠

♠

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

ωthy

ω

♠ 260
♡ 202

△

156
□ 146
♣ 145

▲

137
◆ 85

△ 50

▲ 45
✶ 40
▽ 37
★ 33
△ 31
▲ 26
▯ 17
▼ 13
□ 10
● 4
○ 2

Figure 2.7: Elastocapillary wave scaling: angular frequency ω against proposed dispersion relation-
ship ωthy, Eq. 2.12, shows a collapse of experimental data for all shear modulus explored here.

20



2.5 Comparison to experimental data for average surface

tension value

In Figure 2.7 I showed how the proposed dispersion relationship (2.12) collapsed the entire

data set when treating the surface tension as an unknown parameter. The average value of surface

tension over the entire data set was computed to be 45.6mN/m. Figure 2.8 plots the experimental

data ω against the dispersion relationship ωthy (2.12) using this value of surface tension, i.e. no

fitting parameter. As shown, the comparison is worse than Figure 2.7, where I compute surface

tension for each data set, but still does a reasonable job of reproducing the experimental results.

The only significant exceptions are the limiting cases of G = 1Pa and 260Pa, where the predicted

surface tension is furthest from that average value (cf. Figure 2.6).
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Figure 2.8: Angular frequency ω against proposed dispersion relationship ωthy, Eq. 2.12, using the
average surface tension value σ = 45.6mN/m for all G.

2.6 Discussion

Experiments of mechanically-excited surface waves on soft agarose gels are conducted and

the dispersion relationship over a large range of shear moduli is characterized. Capillarity can

dominate the dynamics for soft materials and the results capture the transition from capillary-

gravity to Rayleigh waves as it depends upon the shear modulus. In addition, a new technique have
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been developed to measure the surface tension of soft hydrogels by using a theoretical dispersion

relationship for elastocapillary waves. It is expected that this new measurement technique, as well as

the analysis of the dynamics of soft materials, to be highly relevant to a number of other technologies

and to be useful to researchers working in the area of soft hydrogels.

Capillary instabilities in Newtonian fluids are widely used in industrial processes such as

spray cooling, inkjet printing/rapid prototyping, turbulent mixing, and the float-zone method of

crystal growth, all of which operate using the basic physical principles of the respective instabilities.

For example, the formation of aerosols using vibrating transducers delivers drops with size related to

the capillary frequency. Recent interest in technologies such as cell printing and tissue engineering

use these basic principles but adapted to viscoelastic materials, such as bioinks [67, 145], which are

typically hydrogels with complex rheologies (i.e. both liquid and solid properties) [35]. The agarose

gels used in the experiments are also used in cell printing, making the results potentially applicable

to the dynamics of pinch-off in single cell epitaxy [35].

Surface tension forces are important for gels with shear modulus G < 137Pa in the exper-

iments, whereas elasticity affects the dispersion relationship for even the softest gels. In contrast,

solid capillarity [3] can affect elastocapillary or soft wetting phenomena in much stiffer substrates;

e.g. droplet spreading on silicone gel substrates with G ∼ 3kPa can exhibit rich behaviors, such

as stick-slip and stick-breaking motions, which are linked to the formation of a wetting ridge at

the three-phase contact-line [122]. Viscoelastic effects can be expected to further complicate the

dynamics of pattern formation in the experiments when the gel has a complex rheology. Future

experiments could investigate the ability to control a dominant mode in viscoelastic gels for precise,

robust and repeatable cell printing.
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Chapter 3

Determining rheological properties

of ultrasonically levitated gel drops

Reproduced from:

1. [Shao X, Fredericks SA, Saylor JR, Bostwick JB. Elastocapillary Transition in Gel Drop Oscil-

lations. Physical review letters. 2019 Oct 31;123(18):188002] with the permission from American

Physical Society;

2. [Shao X, Fredericks SA, Saylor JR, Bostwick JB. A method for determining surface tension,

viscosity, and elasticity of gels via ultrasonic levitation of gel drops. The Journal of the Acoustical

Society of America. 2020 Apr 22;147(4):2488-98] with the permission of AIP Publishing.

3.1 Introduction

The ultrasonic levitation of a drop has been used to obtain rheological properties of a

substance for some time. Marston and Apfel[92] levitated a liquid drop in another immiscible

liquid and excited the drop into quadrupole shape oscillations, showing how interfacial tension could

be obtained from the resonance characteristics of these drops. This approach was later executed

by Hsu and Apfel[60] who also developed an approach to account for finite viscosity effects and

conducted preliminary measurements of changes in interfacial tension with increasing surfactant

concentration on the drop surface. Further studies on surfactant measurements were conducted by
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t=0 t=T/4 t=T/2 t=3T/4 t=T

1 mm

Figure 3.1: Typical drop oscillation over a cycle of period T . Note the static drop (t = 0) is slightly
flattened (aspect ratio W/H = 1.15) due to the acoustic pressure required to levitate the drop.

Tian, Holt, and Apfel,[147, 148] who measured both the surface elasticity (not to be confused with

the bulk elasticity examined herein) and surface dilational viscosity of surfactants on levitated drops.

Trinh and Hsu[155] suggested the possibility of obtaining the surface tension σ of an ultrasonically

levitated drop by measuring the outline of the equilibrium shape of the drop and extracting σ using

the equation for the shape of a levitated drop due to the balance of the weight, acoustic radiation

pressure, and surface tension. Trinh [156] showed that surface tension of an ultrasonically levitated

liquid drop in air could be obtained by measuring the resonant frequency of the drop and extracting

σ from Rayleigh’s equation for the natural frequency of a spherical, inviscid liquid drop in air:

ωR =

√
n(n+ 2)(n− 1)σ

ρR3
(3.1)

where n is the mode number, ρ is the density of the liquid, and R is the drop radius[79]. Of note is

the fundamental n = 2 mode which has the lowest non-zero frequency and undergoes oblate-prolate

oscillations, as shown in Figure 3.1.

Surface tension and viscosity can be obtained by ultrasonically levitating drops. This is

typically done via one of two methods. The first, referred to as the finite decay approach, involves

forcing prolate-oblate shape oscillations in the drop (n = 2 in Eq. (3.1), above) and then eliminating

the excitation source and measuring the decay in drop oscillations. The frequency and damping

constant of the decaying signal are then used to obtain surface tension and viscosity. This approach

was reviewed and used in a recent publication by Kremer [74]. This approach was shown to be

effective in measuring the difference in the blood viscosities of normal blood and the blood of

individuals with sickle cell disease[57]. The second approach is termed the steady-state frequency

response function where the modulation frequency is scanned through a range near the natural

frequency of the drop and the response of the drop is observed. Both the surface tension and

viscosity can be obtained by first obtaining the natural frequency and the damping coefficient from
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the equation:

x =
A√(

1−
(
ω
ωn

)2)2
+
(

2ζ
(
ω
ωn

))2 (3.2)

where A is the driving amplitude, ω and ωn are the driving frequency and natural frequency, respec-

tively, ζ is the damping coefficient, and x is the amplitude of drop oscillation. Obtaining ωn and

ζ from the experimentally obtained (x,A, ω) data, values for µ and σ can then be obtained from

Lamb’s equations for the n = 2 mode of spherical drop oscillation:

ωn
2 =

8σ

ρR3
(3.3)

and

ζ =
5µ

ρR2ωn
(3.4)

It is noted that Eqs. (3.3) and (3.1) are equivalent for n = 2. This approach has been used by Trinh

and co-workers [152, 153], Hosseinzadeh and Holt[58], and others.

In the above investigations, liquid drops were studied which lack elasticity. Herein the rhe-

ological properties of a drop composed of a hydrogel which has significant surface tension, viscosity,

and elastic modulus are studied. I am unaware of attempts to do this using ultrasonically levitated

drops. It is noted that McDaniel and Holt[95] obtained the elasticity of aqueous foam drops via

the acoustic levitation approach. Viscous dissipation and surface tension was not considered in that

work.

The present work focuses on gels, specifically hydrogels. These materials, often referred to

as soft solids, are unique in that both surface tension and elasticity can be roughly comparable in

magnitude. Drops composed of a gel material, therefore, differ from the studies discussed above

which concern liquids for which surface tension is essentially the only restoring force during drop

oscillation since elasticity is negligible. Because gels are important materials in their own right, and

also because they are often used as proxies for mammalian tissue, knowledge of the viscosity, surface

tension, and elasticity of these materials is important. Herein the method of obtaining rheological

properties of liquid drops and foams via ultrasonic levitation is extended to gel drops. While viscosity,

elasticity, and surface tension are all important, only surface tension and viscosity are obtained by
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the method presented herein, and elasticity is measured independently via a standard method. This

is due to the moderate amount of noise in the system and the relatively small range in R in the drops

studied; this precluded obtaining all three parameters although the theory developed herein enables

this in principle. It is noted that surface tension, which is obtained by this method, is of especial

importance, given that the standard Du Nüoy ring and Wilhelmy plate measurement methods[48, 1]

are not possible for gels, since the measurement itself would break the gel.

3.2 Experimental section

3.2.1 Droplet levitation and modulating the acoustic force

The experimental setup used is illustrated in Fig. 3.2. As indicated, an ultrasonic transducer

is used to levitate the gel drop. A camera and LED illumination source was used to image the gel

drop and obtain its size, with the illumination source backlighting the drop. The transducer consists

of a horn and reflector, following the general procedure of Trinh[154]. The horn and reflector are

separated by an integer number of half wavelengths, with the drop levitated at one of the nodes.

The pre-stressed PZT transducer used in the horn had a diameter of 3.5cm and was driven by an

Agilent 33220A function generator, Kron-Hite amplifier (7500) combination. The function generator

creates a sinusoidal carrier wave at the resonant frequency of the transducer, about 30.3 kHz, and

this carrier wave was amplitude modulated at a range of frequencies near the resonant frequency of

the drop, two orders of magnitude lower in frequency than the carrier wave. During an experiment,

the AM frequency was swept from below to above the drop resonant frequency. A code written

in LabView was used to control the drop levitation and AM frequency sweep. The AM frequency

sweep typically took 3 minutes.

The transducer was initially tuned by adjusting the distance between the reflector and horn

to most effectively levitate a drop. Then, the carrier wave frequency was adjusted to do the same.

The process was iterated to achieve maximum levitation. From this point forward, resonance of the

transducer could drift due to heating of the transducer and changes in temperature and humidity of

the air. This drift would rarely exceed 10Hz, but was large enough to prevent effective levitation of

drops. To address this, a software control in LabView was used to adjust the carrier wave frequency

between AM frequency sweeps to maintain transducer resonance as shown in Fig. 3.3. The applied

voltage and current to the transducer were measured with a Measurements Computing USB-2020
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Figure 3.2: Schematic of the experimental apparatus

DAC at a sample rate of 10MHz. The phase shift α between these two signals was calculated, and

the carrier wave frequency adjusted to keep α as close as possible to zero which maximizes the

power applied to the ultrasonic levitation system. The carrier wave frequency was adjusted 3 times

per second. The overall method for drop levitation is similar to that presented in Fredericks and

Saylor[45].

Figure 3.3: Flow chart illustrating method for adjusting the carrier wave frequency.
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The amplitude of gel drop oscillation was measured using a laser light extinction approach

similar to that of Marston[93], as shown in Fig. 3.2. A helium-neon laser beam (632.8nm wavelength)

is expanded to ∼5 mm and directed at the levitated gel droplet. The resulting occluded beam strikes

the detector of a laser sensor. This detector is actually a position sensitive detector with an x and a

y output designed to report the centroid of the light striking the detector. However the unit also has

a sum output that is proportional to the overall intensity of the light striking the detector, and this is

the signal used herein. By placing a plate with a 3 mm diameter hole in front of the detector, this sum

output is proportional to the fraction of the laser light that is occluded by the oscillating drop. The

cross-sectional area of a levitated droplet should be proportional to its oscillation amplitude when

oscillating in its quadrupole mode, and the frequency of the detector signal equal to the oscillation

frequency of the levitated drop. For each frequency in the AM scan, 5 sec of data were acquired.

Then the frequency was increased and another 5 sec of data were obtained. These frequencies

were separated by 1 Hz, and during an experiment, a total of 30 frequencies were considered. The

amplitude of the resulting drop oscillation at each excitation frequency was obtained by taking the

FFT of the last 4 seconds of each 5 sec time trace. The first second of each trace was discarded to

remove any influence of the previous AM frequency. The amplitude obtained from this FFT at the

driving frequency is referred to as x and the amplitude of the driving frequency is referred to as A

in Eq. (3.5) presented below. Each experiment resulted in a point in the plot of the amplitude of

drop oscillation versus excitation frequency. The natural frequency was taken to be the frequency at

which a maximum in drop oscillation was observed. This procedure was implemented in the Matlab

programming environment.

3.2.2 Materials and methods

Following the approach of Tokita and Hikichi[151], hydrogels were prepared by dissolving

agarose powder (Sigma Aldrich Type VI-A) in doubly distilled water1 at 90◦C for 1 hour at the

desired concentration. The goal was to create gelled drops that were as close to spherical as possible.

The drop is initially allowed to gel on a Teflon surface, and also experimented with letting the drop

gel while ultrasonically levitated. However both of these approaches resulted in relatively oblate

drop shapes along with significant changes in the drop size due to evaporation. Herein I followed

the method of Aditi[25] and created a liquid mixture having a density gradient spanning the density

1Though Tokita and Hikichi used deionized water
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of the gel. Specifically, I partially filled a beaker with silicone oil (PDM-7040, Gelest) having a

density of ρ = 1.07 g/ml, and above this I poured n-octane (Acros Organics), having a density of

ρ = 0.7 g/ml. Both silicone oil and n-octane are not miscible in agarose. The agarose solutions used

had a nominal density of ρ = 1.0 g/ml and when placed in the beaker the agarose drops quickly

migrated to the interface of the two liquids and exhibited a highly spherical shape. In addition

to the resulting spherical shape, this approach also has the strength of allowing gelation without

evaporation, ensuring that the agarose/water concentration did not change during gelation. After

allowing these drops to gel at room temperature for at least 3 hours, a drop was removed from the

silicone oil/octane beaker after which it was carefully washed in n-heptane (Fisher Chemicals) for

2 minutes to remove any excess silicone oil or octane. The drop was then washed once more with

a fresh solution of n-heptane. After this, the drop was inserted into the levitation system and an

experiment was initiated after allowing 15 seconds to pass so that any remaining heptane evaporated.

Multiple drops were made from the same agarose solution ensuring that the concentration and hence

the elasticity were the same when doing multiple runs. Drops made in this way were kept in the

silicone oil/octane beaker until needed.

For each concentration of agarose gel used in these experiments, the complex modulus

G = G′ + iG′′ for that gel was obtained using an Anton Paar rheometer (MCR 302). This method

employs a small Petri dish in which the gel solution is placed and allowed to gel. The rheometer then

contacts the surface of the gel with a disk. Dynamic oscillatory shear tests over a range of frequencies

are then obtained. Prior to these measurements, a small amount of silicone oil was placed over the

annular region between the disk and the edge of the Petri dish, preventing evaporation during the

course of the measurement. For the gels used here, the loss modulus G′′ is many orders of magnitude

smaller than the storage modulus G′. Thus, the agarose hydrogels used in our experiments behave as

linear elastic solids. For simplicity, the storage modulusG′ is referred to asG hereinafter. For the gels

investigated here, G ranged from 12.2 Pa to 200.3 Pa. The 95% confidence interval for measurement

of G was 5.6 Pa which included the instrument uncertainty and experimental uncertainty obtained

from measuring several samples of the same gel.
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3.3 Theoretical model

Obtaining surface tension, elastic modulus, and viscosity, σ, G, and µ from the results

presented above requires a model relating the driving frequency and drop oscillation amplitude, to

the natural frequency and damping coefficient as was done for just σ and µ using Eqs. (3.2) - (3.4),

in Section(3.1). This is done by developing an equation for the oscillations of a sphere having finite

elasticity, viscosity, and surface tension.

The model follows that of Hosseinzadeh and Holt[58] by exploiting the similarity of the

oscillating drop with the damped-driven oscillator

ẍ+ 2ζωnẋ+ ω2
nx = A cosωt, (3.5)

with ζ the damping ratio, ωn the natural frequency and (A,ω) the driving amplitude and frequency,

respectively. The harmonic oscillator structure of the field equations has been formally proven for

liquid drops [16], rivulets [33, 18], and the more general capillary surface [17] using a boundary

integral approach. Here the inertia acts as the ‘mass’, the resistive force of surface tension as

the ‘spring constant’, and the combination of viscous and contact-line dissipation as the ‘damping

constant’, all of which appear as operators that depend on the linearized surface deformation y.

They become constants upon projection onto a particular interface shape. The drop oscillates in

the fundamental mode y(θ, ϕ) = Y 0
2 (θ, ϕ) ≡ P2(θ), where Y 0

2 is the spherical harmonic of order

n = 2 and index l = 0, and P2 the Legendre polynomial [88], and I project onto this mode, which is

axisymmetric and oscillates between an oblate and prolate shape.

Each component of the essential physics that enters into the model is schematically viewed as

a spring or dashpot whose constant is normalized with respect to the drop mass. These relationships

have been individually determined in the literature [129, 79, 39]. Damping is associated with viscous

dissipation of a fluid which was computed by Lamb using the potential flow solution for the spherical

drop [79]; this gives ζ in Eq. (3.4). Both surface tension and elasticity resist deformation like a spring

and I idealize these two forces as springs in parallel so that I can superimpose their effects. The

spring constant due to surface tension is given by Eq. (3.3) assuming an inviscid liquid drop [129].

The spring constant due to elasticity is computed from a nonlinear characteristic equation

η
(
η2 − 10

)
j2(η)− 2

(
η2 − 16

)
j3(η) = 0 (3.6)
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for the scaled elastic frequency

η = ωR
√
ρ/G (3.7)

with jl the spherical Bessel function, assuming an incompressible spherical globe [39], which admits

a numerical solution η = 2.665 that when rearranged gives the spring constant due to elasticity

ω2
n = (2.665)

2 G

ρR2
. (3.8)

Note that there is no explicit coupling between surface tension and elasticity in the above devel-

opment, and to our knowledge no such model exists for a spherical drop. Combining the spring

constants due to surface tension and elasticity gives an effective spring constant

ωn
2 =

1

ρR3

[
8σ + (2.665)2GR

]
, (3.9)

which can be combined with the damping ratio ζ in Eq. (3.4) in the system response, Eq. (3.2). This

enables a relationship between driving frequency and drop oscillation amplitude to (σ, ζ,G). Hence,

by taking the driving amplitude, drop oscillation amplitude, and driving frequency data (A, x, ω)

from any given gel drop levitation run and fitting it to Eq. (3.2) using ωn and ζ as fitting parameters,

the resulting (ωn, ζ) can be obtained and used to get µ from Eq. (3.4), and G and σ from Eq. (3.9)

by doing multiple runs with gel drops having different R.

3.4 Results

3.4.1 The elastocapillary transition in gel drop oscillations

Figure 3.4 plots the frequency response for a 1.54mm drop with shear modulus G = 75Pa.

The curve shows a single peak at f = 121.1Hz which is the natural frequency for that particular

drop. Note the peak exhibits a small bandwidth, indicative of weak viscous effects. The frequency

response curves for the other gels similarly exhibit a single peak but at a different frequency. 66

experiments are performed to quantify the dependence of the natural frequency on G and R. The

elastocapillary number Σ ≡ σ/RG defines the relative importance of surface tension to elastic effects

and its value ranges from Σ = 0.22− 21.07 in the experiments.
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Figure 3.4: Frequency response plotting light intensity I against excitation frequency f for a R =
1.54mm drop with shear modulus G = 75Pa yields a resonance frequency of 121.1Hz.

Before analyzing the data further, it will be useful to discuss the physics of drop oscillations

and the relevant scaling laws in the distinguished limits, elasticity Σ→ 0 and surface tension Σ→∞.

This will be useful in interpreting the crossover between the two limits. The origin of any oscillation

is the competition between inertia and a restorative force. For gel drops, both surface tension and

elasticity resist deformation and it is natural to view these forces schematically as springs in a simple

harmonic oscillator whose normalized spring constant k/m is simply the natural frequency squared

ω2
n = k/m of the oscillator. Here the normalization is with respect to the inertia. I am interested

in the n = 2 shape oscillations observed in the experiments. Unfortunately, no theoretical model of

free drop oscillations exists in the literature which couples surface tension and elasticity, although

[27] propose a model for sessile drops. There are uncoupled models for free drops that incorporate

surface tension [129] and elasticity [39, 8] separately and I simply state those results. The natural

frequency for an inviscid liquid drop held by surface tension is given by

ω2
σ =

8σ

ρR3
, (3.10)

whereas that of an incompressible elastic globe is

ω2
G = C

G

ρR2
, (3.11)

with different constants C reported in the literature. For example, a linear elasticity model for
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Figure 3.5: Scaled angular frequency ω/ωσ against elastocapillary number Σ exhibits a transition
between the capillary (dashed line) and elasticity (dot-dashed line) limits. The solid line is the
best-fit composite expansion (3.12).

the spheroidal modes of oscillation predicts C = 7.1 [39], while a low-order approximate method of

the continuum mechanics yields C = 10 in the low-frequency limit [8]. Prestress can also affect C.

Henceforth, C is treated as a fit parameter noting that the scaling law remains unchanged. I expect

to recover the appropriate scaling laws, (3.10) and (3.11), in the distinguished limits, Σ → ∞ and

Σ → 0, respectively. The crossover between these two regimes is determined by setting ω2
σ = ω2

G

which yields a critical elastocapillary number Σc = C/8 that separates capillary-dominated Σ > Σc

and elasticity-dominated Σ < Σc motions. I am particularly interested in the crossover region where

both surface tension and elasticity affect the oscillation dynamics. Using the oscillator perspective,

surface tension and elasticity effects can be idealized as springs coupled in parallel and this coupling

admits an effective natural frequency for the drop

ω

ωσ
=

√
1 +

(
C

8

)
1

Σ
, (3.12)

where I have scaled the frequency by the capillary frequency (3.10). This composite expansion yields

an explicit dependence of the natural frequency on the elastocapillary number Σ. By construction,

Eq. (3.12) recovers the limiting cases Σ→∞ (3.10) and Σ→ 0 (3.11).

I scale the experimentally-observed frequency by the capillary frequency (3.10), ω/ωσ, and

plot the entire data set against the elastocapillary number Σ in Figure 3.5. The results capture the

transition between elasticity-dominated (dot-dashed line type) and capillary-dominated (dashed line
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type) regimes and I recover the appropriate scaling laws in the respective limits. The data is fitted

to the composite dispersion relationship (3.12) which yields a best-fit parameter value C = 12.75

which is slightly larger than that predicted by existing elastic theories C = 7.1, C = 10 [39, 8] but

still reasonable. The order of magnitude agreement suggests the composite dispersion relationship

(3.12) reproduces the essential physics and yields a critical elastocapillary number Σc = 1.59 using

the data.

3.4.2 Extracting the rheological properties in gel drops

While experiments were indeed conducted at different R for gels of the same concentration,

the range in R was small and increasing this range was challenging due to difficulties in forming

small drops and in stably levitating large drops. This, combined with scatter in the data made

difficult the extraction of (σ, ζ,G) from the experiments using the approach outlined above. Instead,

G is measured as described in Section 3.2, and is used as an input while (σ, ζ) are extracted from

the experimentally obtained (ωn, ζ).

Figure 3.6 is a plot of drop oscillation amplitude versus driving frequency for a sample run

where the elasticity of the gel was 32 Pa. The solid line in Figure 3.6 was obtained by fitting the

data using Eq. (3.2). As noted in Section 3.2 the frequency at which the peak in this plot is observed

is taken as the natural frequency. This peak was identified using the fit to the data as opposed to

the data alone, since the fit incorporated information from multiple data points and was therefore

less sensitive to a spurious measurement. In Fig. 3.6, the peak is located at a frequency of 99.32

Hz. It is also noted that while measurements were obtained at 30 excitation frequencies for each

drop, only 21 were used (and presented in Fig. 3.6) because data points farther from the natural

frequency tended to exhibit greater scatter. The y-axis in Fig. 3.6 is x/A where x and A are the

same as presented in Eq. (3.5). As noted above, x is the magnitude of the peak in the FFT of the

optical sensor data, and A the excitation amplitude.

The results of all the runs are presented in Figs. 3.7 and 3.8 showing how the natural

frequency of the gel drop varies with G. In Fig. 3.7, the natural frequency is scaled to the capillary

natural frequency given in Eq. (3.3), and is designated ωσ in the figure. In Fig. 3.8 the natural

frequency is scaled to the elastic frequency, Eq. (3.8), and is designated ωG in the figure. The fact

that neither Fig. 3.7 or Fig. 3.8 shows a plot where the scaled frequency is constant demonstrates that

both surface tension and elasticity are playing a role in the gel drop dynamics, which is expected.
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Figure 3.6: Plot of oscillation amplitude versus excitation frequency f for a sample run where the
elasticity was G = 32 Pa.

It also shows that σ must be varying with the agarose concentration since a constant value for σ

independent of that concentration (which would translate to a constant σ independent of G) should

give a horizontal line in the plot of ωn/ωG in Fig. 3.8, which is not the case. As noted in Section 3.2,

the 95% confidence interval for G was 5.6 Pa. Horizontal error bars are not included in Figs. 3.7

- 3.10 since this magnitude in uncertainty is so small, comparable to the width of the symbols in

these figures.
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Figure 3.7: Plot of the gel drop natural frequency scaled to the capillary natural frequency versus
elasticity G.
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Figure 3.8: Plot of the gel drop natural frequency scaled to the natural frequency of a purely elastic
drop versus elasticity G.

Applying the theory developed in the previous section, each data point presented in the

above plots can be translated into a viscosity and surface tension, and these are presented in Figs. 3.9

and 3.10, respectively. The linear fits presented in Figs. 3.9 and 3.10, are:

µ = 6.005× 10−5G+ 0.008384 (3.13)

and

σ = 0.001022G+ 0.07229 (3.14)

respectively.

It is noted that obtaining µ via the method described above is more sensitive to errors in

data points that were far from the natural frequency. Hence, in obtaining µ, a total of 9 data points

were used, the data point at the natural frequency and four above and below that frequency. This

resulted in less scatter in the data than when using the entire data set since data farther from the

resonance point was sometimes spurious in nature, occasionally exhibiting an amplitude higher than

that at the natural frequency. This was not done when obtaining surface tension since, as shown in

Eq. (3.9), σ depends on ωn and not on ζ.
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Figure 3.9: Plot of viscosity µ versus elastic modulus G with linear curve fit.
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Figure 3.10: Plot of surface tension σ versus elastic modulus G with linear curve fit.

3.5 Discussion

The experimental observation of an oscillating gel drop over a range of experimental con-

ditions where elastocapillary effects are important are reported. This is a canonical problem in

elastocapillary dynamics and has the potential to impact this emerging field in the same manner

in which the analysis of the Rayleigh drop has influenced the field of capillary dynamics, and asso-

ciated applications, for more than a century. Scaling laws are recovered in the appropriate limits

and a proposed relationship is shown for predicting the natural frequency of an elastocapillary drop,
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that depends upon a nondimensional elastocapillary number, captures the essential physics in the

crossover region. The experimental results yield a precise value of the elastocapillary number which

delineates the elastic and capillary wave regimes. These results, as well as an interpretation of the

physics, can help improve the aforementioned bioprinting and drop deposition technologies.

The experimental technique could also be used for material characterization of soft gels.

Figures 3.9 and 3.10 demonstrate the ability of the described method to obtain (σ, ζ) for levitated

gel drops. The ability to obtain σ is especially noteworthy since no other means have been reported

for obtaining surface tension for a gel. Of course this also means that it is unable to compare the

results to other data or methods. However, by setting G = 0 in Eq. (3.14), an extrapolated value

of σ = 0.0723 N/m is obtained for the pure water case, which is essentially the exact value of σ for

pure water at STP[162]. It is noted that the viscosity presented here is not the viscosity as it is

typically understood, viz. the constant which relates the shear stress to the velocity gradient in a

flowing liquid, since I am considering gels, which do not flow. Hence, µ is simply the quantity which

accounts for energy dissipation in the deforming gel drop. Indeed, when G = 0 is set in Eq. (3.13),

µ = 0.00838 Pa·s is obtained which differs from the value of pure liquid water at STP by almost

a factor of ten, a result which is likely due to the change in what µ in Eq. (3.4) represents when

a liquid becomes a gel and ceases to admit flow, even at very small G. As noted in Section 3.3,

only (σ, ζ) are obtained herein from the experimental data. It is possible to obtain (σ, ζ,G) from

the data, taking advantage of small differences in R for the droplets used at each value of agarose

concentration. However the range in R for these experiments was small, and the scatter in the

data presented in Figs. 3.9 and 3.10 was not insignificant. A likely cause of the scatter is the low

frequency oscillation (on the order of a few Hz) of the drop position within the ultrasonic standing

wave field. Future work should focus on stabilizing the drop position, perhaps by including a shroud

around the standing wave field and the development of a method for making gel drops capable of a

large range in R. Success in these steps would enable obtaining measurements of (σ, ζ,G) via this

method.

Lastly, it is noted that the dynamics of soft materials are naturally more complex than the

statics due to the time scale associated with shape reconfiguration. The situation can become even

more complicated for gels with a more complex rheology than the agarose gels used here due to the

additional relaxation time scale, leading to interesting behaviors. This difference is readily seen in

classical elastocapillary studies of static [66, 142, 15] and dynamic [69, 71, 122] wetting ridges with
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the latter exhibiting complex stick-slip and stick-breaking behaviors. It is hopeful that this study

inspires many follow on studies of dynamic elastocapillary phenomena to move this field forward.
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Chapter 4

Edge waves on viscoelastic

materials

4.1 Introduction

Mechanically-excited capillary-gravity waves can exhibit resonance when constrained in a

finite tank, which is theoretically a boundary value problem with a series of eigenfrequencies[96, 23].

One method for forming these waves involves filling a tank and oscillating the tank in the vertical

direction so that a pinned meniscus at the tank edge causes waves to propagate inward, in a direction

normal to the tank edge. These waves have a frequency equal to that of the vertical tank oscillation,

as long as the amplitude of vertial oscillation does not exceed the Faraday threshold, which is the

case for the work presented herein. In a circular tank, the waves propagate inward, and reflect

back out at the tank center. When the excitation frequency is tuned so that an integer number of

wavenumbers exist in the tank, a standing wave will result and a fixed number of circular nodes form.

As will be shown herein, this is a convenient method for experimentally determining the dispersion

relationship for a material, since each observed mode represents a point in wavenumber-frequency

space and can thereby be used to confirm such a dispersion relationship. This approach is somewhat

similar to that of Saylor et al. (2000) wherein surfactant properties were obtained in a vertically

vibrated cylindrical tank. In that work, wave slope was measured along a radial section of the wave

field, and the wave slope along that line section was used to infer the surface tension of the interface.
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Herein, full images of the circular wave surface were used, and the nodes identified and used to

confirm the dispersion relationship and extract material properties; surfactants were not invetigated

herein.

Both liquids and gels are investigated here. Due to the elasticity of gels, all other things being

equal, the surface deformation of waves are smaller and the method developed herein is sensitive

to very small deformations. Moreover, attempts to increase the deformation of gels could result in

damage to those materials and hence these small amplitudes are in actuality desirable.

In this Chapter, the frequency responses of standing waves on water/glycerol mixtures

and agarose gels are systematically studied in a circular tank and ascertain the effect of viscosity

and elasticity on resonance. Agarose gel, a type of complex fluids characterized with a finite but

relatively small elasticity, is the fundamental printing material for the emerging 3D bioprinting

technology[114, 40]. Recent experiments report some capillary induced surface instabilities occurring

on soft solids highlighting the elasticity effects in rearranging the threshold conditions, dispersion

relationships and pattern formation behaviors of purely hydraulic instabilities [107, 105, 104]. These

precursor experiments lead the subsequent interests in exploring the crossover between elasticity

E and capillarity σ on soft solids defined as the elastocapillary length Le = σ/E entering the

macroscopic region Le ∼ 10−3m [26, 15, 136, 138]. These fundamental experimental shedding light

to the unknown physics of the elastocapillarity on gels that is sometimes coupled with the hydraulic

viscous effect, which is crucial to improve the precision and reliability of the current 3D bioprinting

technology. The experimental protocol is outlined which characterize the resonance frequencies and

corresponding amplitudes for the resonance modes on concentric meniscus waves on water/glycerol

mixtures and soft agarose gels. A theoretical dispersion relationship is developed based on the

governing equation of fluid mechanics with the appearance of surface tension incorporated as normal

interface boundary, which can predict the resonance modes and amplitudes on viscoelastic materials

by adding complex viscosity comprising viscosity part G′′ and elasticity part G′. It is concluded

that by highlighting the experiments and theory reveal the elasticity effect in changing the frequency

response on capillary surface waves, which to our knowledge no previous literature has addressed.

It is noted that the general approach taken here where edge waves are used could also be

extended into the use of Faraday waves which has been extensively studied[124, 12, 163, 42, 37, 31,

76]. However, the goal herein has been to determine if the dispersion relationship of a gel can be

derived, confirmed experimentally, and then presented as a method for experimentally measuring
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elasticity, surface tension, and viscosity. Due to the more complex dynamics inherent in Faraday

waves, they were not pursued for this task. However, it is clear that a study of Faraday waves,

including Faraday onset is an important future step since the richness of dynamics even for pure

liquids is clear and hence the presence of elasticity in gels is likely to open more complex behavior.

4.2 Experimental procedure

Edge waves were investigated for glycerol/water mixtures and for agarose gels. The experi-

mental setup used for this is presented in Fig. 4.1.

~~~~~~~~~~~~~~~~ ~~~~
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Figure 4.1: Schematic of the experimental apparatus used to obtain the frequency response of edge

waves. An image of the typical wave pattern is presented in the inset.

The setup consists of a circular plexiglass tank of radius R = 35mm and depth d = 22mm mounted on

a Labworks ET-139 electrodynamic shaker which provides vertical vibration of the tank, controllable

in amplitude and frequency. Experiments were conducted for a range of driving frequency fd =

4.0 − 22.9Hz. The shaker is driven by an Agilent 33220A function generator, Labworks PA-141

amplifier combination. The forcing amplitude of the shaker A was monitored using an PCB 352C33

accelerometer and a PCB 482C05 signal conditioner combination.

To characterize the wave pattern for a given liquid/gel and frequency, wave slope images
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were obtained via the following procedure. A white light source was collimated by a lens located one

focal length f = 300mm from the light source. To improve the degree of collimation, a plate with a

2 mm diameter hole was placed in front of the light source (a flashlight consisting of a white LED).

This hole was located at the focal point of the lens providing a closer approximation to a point

light source. The resulting collimated light beam was directed at the wave surface. The reflected

light was captured by a digital camera (Canon EOS Rebel T3i, with a Canon EF-S 18-55 mm lens).

The optical axis of the camera was oriented to coincide the reflection of the colllimated light beam

from the flat fluid surface. In this way, when a wave field exists on the fluid surface, those locations

where the slope is zero (peaks and troughs) exhibit a high intensity in the image whereas those

regions where the wave slope is non-zero have a low image intensity. The more sloped the surface,

the dimmer the image. Accordingly, the images presented herein are wave slope images where the

intensity is inversely related to slope. This approach relies sensitively on the orientation of the camera

optical axis with the spectral reflection of the collimated light from the flat surface. Similarly, it

is dependent on the degree of collimation of the light source. To ensure that these conditions were

met, images were periodically acquried of the flat, unexcited fluid surface, an example of which is

presented in Fig. 4.2. This image, which is typical of these test images, has an average intensity

I = 250.5 and an rms of ±4.46, or ±1.8%.

Figure 4.2: An example of reflection of the collimated light source as seen by the camera for a flat

free surface.

To determine the locations in frequency space where resonant modes occur, frequency sweeps

were performed for the liquids and gels investigated, vibrating the tank over a range of frequencies

and obtaining a wave slope image at each frequency visited. To ensure that adequate resolution was

obtaining in the region of resonance, a preliminary sweep was performed in each case, identifying the

approximate location of the resonance frequencies. Then, the actual frequency sweep was conducted,
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incrementing the frequency in 0.5Hz increments which shrink to 0.2Hz near the anticipated location

of resonance. A wait time of 5 sec was imposed at each frequency before obtaining a wave slope

image in order to ensure a fully developed wave pattern. A typical experiment took 30 minutes.

The camera exposure was set to one second so that each image consisted of the integrated average

of multiple wave periods. In this way, only standing wave modes resulted in a clear pattern and

frequencies at which traveling waves exhisted were blurred over, revealing little structure to the

image.

n=1 n=2 n=3 n=4 n=5

16.6 16.9 17.2 17.5=16.3Hz

(b)

(a)

Figure 4.3: (a) Wave slope images for driving frequencies fd =16.3Hz to 17.5Hz. Resonance is

observed at fd = 16.9Hz where a standing wave is attained for the n = 4 mode. Note that the image

is progressively less clear as fd deviates from 16.9Hz since the waves are not standing; (b) Wave

slope images at the resonance frequencies corresponding to modes n=1, 2, 3, 4, 5. All images here

are for water.

Figure 4.3(a) presents a sequence of wave slope images as the system approaches and departs

resonance with fd increasing from left to right. Here, resonance occurs at fd = 16.9Hz which

corresponds to the fourth resonance mode. The wave slope image for mode numbers n=1, 2, 3, 4, 5

are presented in Fig. 4.3(b). Note that the mode number n corresponds to the number of dark rings

in the image. The bright regions are wear the standing wave alternates between being a peak and

a trough, while the dark regions are the regions of maximum slope. The regions of maximum slope

are the nodes, the locations where the surface elevation is unchanging.
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Figure 4.4: Plot of azimuthally-averaged light intensity I versus radius r. The maxima in the plot

correspond to the flat locations on the wave pattern, i.e the locations where these standing waves

oscillate between being a peak and trough during the course of a wave period. The minima in

the plot are the nodes, locations where the wave slope oscillates between the largest positive and

negative values. Arrows indicate E1 and E2, the intensities of the first two extrema in the I versus

r plot, which are the intensities of the first flat region and the first node, respectively.

For each image of a resonant wave pattern, the light intensity I within the area of the

circular tank in the image was azimuthally averaged to give an intensity I versus radius r plot, an

example of which is presented in Fig. 4.4. The maxima on these plots correspond to locations in

the wave field which oscillate between being peaks and troughs during the course of a wave period;

locations in the actual wave pattern where the water surface is flat and most effectively reflects light

to the camera. The minima on the I versus r plots correspond to the nodes of these standing wave

fields, locations where the wave slope oscillates between a peak maximum slope and a peak negative

slope. Stated another way, the minima in the I versus r plots are where the light reflected from the

fluid surface has a direction that (referring to Fig. 4.1) oscillates from below the optical axis of the

camera to above the optical axis of the camera and back again, during the course of a wave period.

It is desirable to quantify the overall amplitude of the wave field. Here I do this via the

quantity E1 −E2, where E1 and E2 are intensities at the first and second extrema in the I versus r

plot, as indicated in Fig. 4.4. The intensity E1 is that of a flat surface and will attain a maximum
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value, once resonance is attained. E1 should approach the intensity of a flat, un-vibrated tank.

And, at resonance, E1 should differ little from the other peak intensities, since once the surface is

flat, the intensity observed by the camera should be at its maximum. This is supported by Fig. 4.4

which shows that the peaks have more or less the same intensity of about 250. The intensity at the

second extrema E2 is that of the first node in the wave field and is the time integrated average of

the intensity observed by the camera as the wave slope oscillates between a peak positive and peak

negative value. The difference E1 − E2 is a good quantifier of the amplitude of the field because it

should decrease away from resonance. Away from resonance, I have traveling wave patterns which

average out over multiple wave periods to give an intensity field with lower peaks and higher toughs.

On the other hand, as resonance approaches, the peaks attain their maximum flat surface value,

while the troughs attain a minimum due to the fact that the sloped surface is directing light away

from the camera’s optical axis for most of the wave period. Of course E1 − E2 will also increase

with the driving amplitude A, which is the max-min acceleration, measured in units of m/s2. Since

I wish to compare the intensity of the wave field at different frequencies without any sensitivity to

the driving amplitude, the proximity of the wave field to resonance is characterized as X, where:

X = (E1 − E2)/A (4.1)

Also, since there may be slight variations in the intensity of the light source and day-to-day deviations

of the geometric setup of the camera and light source, E1 and E2 are both first scaled to the average

intensity of the most recent flat image (e.g. Fig. 4.2) prior to insertion into Eq. (4.1). For each

frequency sweep conducted, I identify the location of resonance frequencies as the locations of the

peaks in plots of X versus fd, an example of which is Fig. 4.6, presented in Section4.3.

Both liquids and gels were explored here. Specifically, glycerol/water mixtures having a

range of volume ratios were explored, as well as agarose gels, linear elastic solids, over a range

of agarose concentrations, giving a range of shear modulus. Doubly distilled water was used in

preparation of both the glycerol/water mixtures and the agarose gels. The material properties of the

five glycerol/water mixtures explored here are listed in Table 4.1. Agarose powder (Sigma Aldrich,

Type VI-A) was used to prepare the hydrogels in the experiments. The powder was dissolved in

doubly distilled water and kept at 90◦C for an hour and then poured into the circular plexiglass

tank. The concentration of the gel solutions ranged from φ = 0.06− 0.13%w which corresponds to
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Glycerol/water ratio 0:1 1:5 1:3 1:2 2:3 3:1

Surface tension (N/m) 0.0717 0.0702 0.0695 0.0687 0.0681 0.0658
Viscosity (mPa·s) 0.96 1.5 2.1 3.0 4.4 41.3
Density (kg/m3) 1000 1045.4 1070 1093 1117.6 1202.4

Table 4.1: Material properties of the glycerol/water mixture ratios explored in this work.

a shear modulus G = 2.6− 13.2Pa. The solution is allowed to gel at 25◦C for 3 hours. The complex

modulus of the agarose gels were measured using an rheometer (Anton Paar, MCR 302) which gave,

for all gels in the experiment, a storage modulus G′ many orders of magnitude larger than the loss

modulus G′′ implying that the gels in the experiments behave as linear elastic solids.

3

Wall

Free surface

Materials

Figure 4.5: Illustration of the free surface showing the contact angle.

To ensure experimental repeatability, it is important to maintain the same contact angle α

from run-to-run, where α is defined i Fig. 4.5. To ensure that this was the case, I first filled the

tank with the glycerol/water mixture or gel solution so that the surface was pinned to the edge of

the tank and was perfectly flat, giving a contact angle α = 90◦. This was checked by observing the

image of surface giving a perfect uniform white field at the beginning of the experiment. A pipette

was then used to carefully remove 2 ml of the fluid. This ensured the same contactt angle for each

experiment.
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4.3 Experimental results

The results from the glycerol/water mixture experiments are presented in Fig. 4.6 which is

a plot of X versus fd for the five different mixture ratios considered here, as presented in Table 4.1.

Each of the frequency response curves presented in Fig. 4.6 exhibits several peaks each of which is

located at the resonance frequency of one of the modes, with mode number increasing from n = 1

to n = 6 as fd increases. Four general trends can be seen in Fig. 4.6.

1. For a given µ, as n increases the width of the peak increases.

2. For a given mode number n the peak shifts to the left with increasing µ.

3. As µ increases, the amplitude of each peak decreases.

4. As µ increases, the width of each peak increases.

The first observation shows that damping effects are positively correlated to the radial wave

number. The second point, that for a given n, the location of the peak shifts to the left with µ

proves this point again.
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Figure 4.6: Frequency response plotting scaled wave amplitude against driving frequency fd for

concentric waves on the glycerol/water mixtures with glycerol/water volume ratio=3 : 1, 2 : 3, 1 :

2, 1 : 3, 1 : 5, 0 : 1.
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To better explore the above observations, I plot in Fig. 4.7 X versus fd for just the fourth mode. The

decrease in amplitude, broadening, and leftward shift of these peaks with viscosity is characteristic

of a driven damped harmonic oscillator. For concentric waves, surface tension and viscosity work

as restorative force and damping respectively for the system. Comparing the curves for different µ,

the resonant mode shift to lower frequencies with increasing viscosity and the magnitudes of wave

amplitude X on each curve shows a monotonic decrease with µ. These observations highlight the

damping effect of viscosity the dynamics.
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Figure 4.7: A plot of X versus driving frequency fd for just the n = 6 mode of the data presented

in Fig. 4.6.

By considering gels, materials with finite elasticity, a shift in natural frequency is expected

to see due to a more robust restoring force existing in gels than the case for liquid where only surface

tension serves in this capacity. Agarose gels behave as linear elastic solids, ideal for validating this

hypothesis. Figure 4.8 exhibits the frequency response of edge waves on agarose gels with shear

modulus G =1.2, 3.6, 8.4 Pa. Similarly to the liquids explored in Figs. 4.6 and 4.7, where the

resonant mode frequencies shift to the higher locations with surface tension, here, the resonance

frequencies shift to higher values as G increases. This can be attributed to the elasticity working as

a restorative force and thereby shifting the resonance frequency of a dynamic system higher. Note

the wave amplitude on the gels is much smaller than that of glycerol/water mixtures. Additionally,

the wave amplitude decreases with n for gels, where it increased with n for most of the range of
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n in the glycerol/water mixtures. These two observations imply a much stronger damping effect

existing on gels which suggests a much higher viscosity for gels than for the glycerol/water mixtures.

Note the frequencies for the first four resonance modes for G =1.2Pa are fd =5.8, 8.5, 10.9, 13.0Hz

which is fairly close to that of water fd =5.7, 8.3, 11.0, 13.8Hz, but the wave amplitude X on water

is about 10 times larger than the gel because of the larger viscosity. This interesting observation

highlights the significance of elastic effects in the dynamics. So, I could say the elasticity effect which

is important even for G as small as 1.2Pa which could still counterbalance a great viscous effect in

shifting resonance frequencies.
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Figure 4.8: Frequency response plotting wave amplitude X against driving frequency fd for concen-

tric waves on agarose gels with shear modulus G =1.2, 3.6, 8.4 Pa.

Figure 4.9 is a plot of X versus fd for n = 2 on agarose gels with shear modulus G =1.2,

3.6, 8.4, 15.3Pa respectively. The peak moves to higher frequency with increasing G. This follows

the observation on Fig. 4.8. Whereas peaks in X vary non-monotonically with G, which indicates a

positive correlation between viscosity and elasticity in agarose gels. A purely elastic response would

have caused a monotonic increase in wave amplitude. This correlation between material properties

can be proven by rheological measurements on agarose gels which shows the magnitude of storage
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modulus G′ which characterize the elasticity is always about 10 times than that of loss modulus G′′

representing viscosity, regardless of the shear modulus.

7 8 9 10 11 12 13

f
d
 [s

-1
]

0

0.005

0.01

0.015

0.02

0.025

0.03

X

G=1.2 Pa

3.6

8.4

15.3

Figure 4.9: Plot of wave amplitude X against driving frequency fd for the second resonance mode

of concentric waves on agarose gels with shear modulus G =1.2, 3.6, 8.4, 15.3Pa.

4.4 Discussion

To better understand the relationship between mode frequency and viscosity, surface tension,

and elasticity, a dispersion relationship is developed for surface waves on viscoelastic materials in

Eq. (4.2). The following non-dimensional dispersion relationship, developed in the Appendix, is

valid for both the viscous liquids and gels:

λ = iOhk2 ±
√
Bok + k3 + k2Ec−Oh2k4 (4.2)

1. λ = ω
√
ρR3/σ, in which the wave frequency is scaled to the capillary time

2. Bond number Bo = ρgR2/σ

3. Ohnesorge number Oh = µ/
√
ρσR
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4. Elastocapllary number Ec = GR/σ

The Ohnesorge number Oh in Eq. (4.2) defines the interplay between viscosity and surface

tension effect in the dispersion relationship, the elastocapillary number Ec describes the elastocap-

illary effect, and the Bond number Bo representing the self-weight of the material which varies in

a narrow range for the materials in the experiments. The wave number k is determined from the

velocity condition at the side wall and is the root of the Bessel function J1.

The resonance frequency fd predicted by Eq. (4.2) for the first six modes on the six glyc-

erol/water mixtures are compared with those obtained experimentally and listed in Table 4.2. Oh

ranges from 0.00064 to 0.0145, Ec = 0 , and Bo has a relatively narrow range from 170.8 to 223.7.

The shift of resonance frequency for different glycerol/water mixtures illustrated in Fig.4.6 is mainly

a consequence of Oh. The differences between the experiments and theory are within 10% in Table

4.2, which suggests Eq. (4.2) can predict the surface waves dispersion relationship on a wide range

of viscous liquids reasonably well.

The resonance frequencies fd for the first four modes on gels from Eq. (4.2) are compared

with experiments on the 4 gels whose properties are listed in Table 4.3. The gels in the experiments

are treated as inviscid solid thus giving Oh=0 and assume surface tension on gels σ=0.072N/m.

Ec ranges from 0.585 to 7.469 for the four gels. The wide range of Ec enables us to explore the

elastocapillary effect in the dispersion relationship. Bo is equal to 170.8 for all the gels. In Table

4.3, the theory predicts the first three resonance frequencies pretty well and the differences are

within 10%. However, the differences are relatively high for the n = 4 mode. It is assumed that the

difference comes from the inviscid hypothesis in our model, which gives more discrepancy on higher

resonance mode where the viscous effect can be more important. In addition, nonlinear effect is

observed in the dispersion relationship on gels. Two n = 2 modes are observed on G=8.4 Pa and

this multiple appearance of n = 2 mode has been observed consistently for gels with G ≥ 3.6 Pa.

The existence of nonlinear effect can add more complexity in defining the mode number, which can

definitely give rise to the error to the comparison.

4.5 Conclusion

The frequency responses for edge waves in glycerol/water mixtures and gels are experimen-

tally studied, in which the surface tension, viscosity, and elasticity effects are characterized in shifting
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Glycerol/water ratio Oh Ec Bo n=1 n=2 n=3 n=4 n=5 n=6

0:1 0.00064 0 170.8 3% 4% 1% 3% 3% 4%
1:5 0.00093 0 182.4 2% 0% 3% 3% 6% 6%
1:3 0.00129 0 188.6 2% 0% 3% 6% 6% 9%
1:2 0.00184 0 194.9 2% 0% 4% 6% 7% 9%
2:3 0.00267 0 200.9 2% 0% 4% 6% 7% 10%
3:1 0.0145 0 223.7 1% 2% 4% 6% OD OD

Table 4.2: Comparison of resonance frequencies of edge waves from Eq. (4.2) and experiments on
glycerol/water mixtures.

G (Pa) Oh Ec Bo n=1 n=2 n=3 n=4

1.2 0 0.585 170.8 2% 2% 7% 15%
3.6 0 1.757 170.8 3% 5% 6% 21%
8.4 0 4.100 170.8 5% 5% 3% 17%
15.3 0 7.469 170.8 7% 9% 4% 12%

Table 4.3: Comparison of resonance frequencies of edge waves on gels from Eq. (4.2) and experiments

the resonance amplitude and resonance frequency. A non-dimensional equation is also proposed for

predicting surface wave dispersion relationships on viscoelastic materials, which relates surface ten-

sion, viscosity, and elasticity to the two non-dimensional number Oh and Ec. The comparisons

of the resonance frequencies obtained from experiments and theory indicate the theory can predict

the dispersion relationships very well for most of the materials. The relatively large discrepancy on

n = 4 mode on gels are resulted from the inviscid hypothesis on gels is not able to predict the rela-

tively larger dissipation in higher modes and the nonlinear effect makes the mode number definition

difficult.

It is noted the role of Ec in shifting the resonance modes for edge waves on gels is similar to

that on gel droplets in Chapter 3. Both of the resonances for a gel droplet and the gel edge waves are

shifted to higher frequency with increasing Ec. This suggests that the surface tension and elasticity

should also work as the restorative force in the edge waves system. In Chapter 3, a higher viscosity is

extracted from the frequency response curve of a gel drop with wider bandwidth. This observation

also follow the edge waves results in Fig.4.6 where wider bandwidths of the frequency response

curves are obtained on higher viscosity mixtures. For edge waves, the viscosity effect is studied in

shifting the resonance modes as the dissipation of the system. These results are considered as the

complementary study to Chapter 3 and further interpret the interplay of surface tension, elasticity,
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and viscosity in the dynamics on gels.

Lastly, in Fig.4.8 two n = 2 modes are observed on G=8.4 Pa; The first n = 2 mode at

fd=8.5 Hz and the second n = 2 at fd=10 Hz. This indicates possible nonlinear effects in gels.

It is noted that the first n = 2 mode frequency is very close to that of water fd = 8.4Hz and the

second n = 2 mode is close to the prediction from Eq. (4.2). This could indicate purely surface

tension induced resonance mode is obtained in the first n = 2 mode and the emergence of the second

n = 2 mode is determined by the coupling of elasticity and surface tension. The result highlights

the complex interplay of surface tension and elasticity in gels and bears further investigation. This

observation is generally true for gels with G ≥ 3.6 Pa.
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Chapter 5

Faraday waves on viscoelastic

materials

5.1 Introduction

Pattern formation phenomena are ubiquitious in numerous fields including physics [49], bi-

ology [97, 63], and geology [73, 5]. For example, patterns of pathogen adhesion to host cells suggest

the mechanism of onset of infection [83] and the revelation of striped pigmentation patterns on

zebrafish skin shed light in the study of genetics [89]. Recently, innovative work in regenerative

medicine has employed biocompatible polymers to print tissue scaffolds, which are typically hydro-

gels, e.g., agarose and alginate, and used to support cell growth in damaged organs [167]. Faraday

waves are a canonical example of pattern formation on liquid surfaces [14, 123, 124]. In this chapter,

mechanical-excited surface waves are used to study the pattern formation on ultra-soft agarose gels

with a shear modulus range G = 0.4 − 12.2Pa. The onset of Faraday waves and the corresponding

wave pattern are characterized and the effect of elasticity in shifting the Faraday waves tongues is

revealed by comparison with pure liquids. A table of mode shapes is constructed from the exper-

imental observation of the first 50 resonant modes. The observation of Faraday waves in soft gels

has not been previously observed, to our knowledge.

Faraday waves are parametrically excited surface waves that are generated by vertical oscil-

lation of a fluid-filled vessel[42]. In most Newtonian fluids, these are subharmonic waves that oscillate
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at half the external driving frequency [150, 111]. However, if the layer is sufficiently thin and the

driving frequency is low, a harmonic response has been reported [112]. Various wave patterns, such

as stripes, squares, and hexagons have also been observed for different fluids and driving frequencies

[75]. For some special cases, rotating spiral wave patterns have been observed on a circular container

when the near wall shear stress disturbs the bulk flow [72], and a quasi-harmonic pattern can be

excited with two frequency forcing introduced simultaneously [38].

A threshold in forcing amplitude accompanies the emergence of a Faraday wave pattern, and

a fixed wave pattern is observed for each mode. The early experiments of Benjamin and Ursell showed

an “instability tongue” in the driving amplitude-frequency space, the shape of which is determined

by the Mathieu equation[12]. The minimum amplitude of the tongue occurs at the natural frequency

of that wave mode. Bechhoefer [10] and Douady [36] observed multiple instability tongues which

highlight the importance of the mode discretization on Faraday waves in containers. Due to viscous

damping, the threshold tongues can be shifted to higher amplitude and lower frequency[12, 53]. The

source of damping includes viscous dissipation at the surface, boundary layers at the bottom and the

sidewall, and the moving contact line on the sidewall [157, 102], the combination of these different

phenomena makes the modeling extremely challenging. Sorokin added linear viscous damping into

the Mathieu equation, which turned out to be much smaller than the experimentally measured

threshold values by Brand and Nyborg [157, 38]. To address the discrepancies attributed to damping

effects in the system, efforts have been made to design idealized experiments which could create

free slip sidewall conditions. Bechhoefer [10] developed a Faraday waves setup by using a highly

viscous fluid to eliminate the effects of sidewalls, which agreed fairly well with sidewall stress-free

viscous linear theory from Kurmar and Tuckerman [77]. Baston [9] produced an experiment which

suppressed the sidewall stress and enabled them to appropriately compare the measured threshold

with the theory of Kumar and Tuckerman.

There is comparatively very little literature on Faraday waves on viscoelastic materials

where elastic effects are significant. Wagner observed a variety of novel coexisting wave pattern

on polyacrylamide-co-acrylic acid [159]. Kumar theroetically analyzed the critical amplitude for

Faraday waves on viscoelastic fluids and suggested a harmonic response could be observed when the

elastic force is relatively strong when compared to surface tension and the driving frequency is close

to the liquid relaxation time [78]. More recent work has used planar Faraday waves to study the

elasto-capillary dispersion on soft solids [138]. Despite these preliminary studies, the role of elasticity
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in pattern formation on Faraday waves is still not clear. As stated earlier, successful prediction of

the onset of surface instability on gels is crucial to improve the 3D bioprinting resolution [40]. The

goal of this chapter is to experimentally characterize the effect of elasticity on the shape of Faraday

instability tongues for gels with shear modulus G = 0.4 − 12.2 Pa. In comparison, the Faraday

instability tongues are also studied on water and glycerol/water mixtures in the same experimental

setup to determine the viscosity and surface tension effect in the system. These complementary

experiments demonstrate how viscosity, elasticity and surface tension affect Faraday wave pattern

formation phenomena.

5.2 Experimental Procedures

Faraday waves are excited on soft agarose gels in a circular container with radius r = 35mm

and height H = 22mm, as shown in the vibration system in Fig. 5.1. The container is filled to

the edge to ensure a 90◦ contact angle between the surface and sidewall. A function generator and

amplifier combination is used to generate the vibration on an electromagnetic shaker for a range

of forcing frequencies and amplitudes. An accelerometer is installed perpendicular to the container

to measure the vertical acceleration of the shaker. For a given Faraday wave mode, a frequency

sweep is performed with driving frequency interval I = 0.2Hz. The threshold amplitude for a given

frequency is measured using a laser light system for the surface wave response. A helium-neon laser

beam (632.8nm wavelength) is directed to the free surface and reflected to the detector of a laser

sensor, which gives analog voltage output proportional to the position of the centroid of the light

striking the sensor in Y-direction. The time traced output signal is transmitted to an oscilloscope

and processed immediately through a FFT operation. The main frequency of the time traced signal

is obtained which corresponds to the dominated surface frequency. In the experiment, the wave

frequency measured is always identical to the driving frequency fo = fd in the beginning of each

experiment, which indicates meniscus waves are excited from the sidewall of the container. The

Faraday wave threshold is approached by increasing the output amplitude from the amplifier until

the rapid growth of frequency peak at fo = 0.5fd is observed, which is a signature of Faraday waves.

The corresponding output amplitude Au is the upper limit of the threshold amplitude in that driv-

ing frequency. I then decrease the amplitude until the moment that the frequency peak on FFT

disappear and note this the lower limit of the threshold amplitude Al. The threshold amplitude lies
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between Au and Al . The amplitude sweep operations are iterated several times until the difference

between Au and Al is smaller than 0.2m/s2. The experimental obtained threshold amplitude is

computed as the average value A = (Au +Al)/2.

~~~~~~~~~~~~~~~~ ~~~~
Function 

Generator

Amplifier
Electromagnetic 

Shaker

Gel
Accelerometer

Signal 

Conditioner

Vibration

Optical Bench

PSD Oscilloscope

Figure 5.1: Experimental setup

An optical system consists of a white flash light, a convex lens and a camera (Canon EOS

Rebel T3i) is developed to capture the slope of the Faraday waves pattern which is used to charac-

terize the spatial structure, as illustrated in Fig. 5.2. A white flash light is placed at the focal point

of a convex lens (f = 300mm) to produce collimated light and the beam is wide enough to illuminate

the entire free surface. The images are obtained by setting the camera to be oriented normal to the

reflected light. A long exposure time t = 0.6s is used to distinguish the Faraday wave pattern from

those traveling parts originated from the sidewall.

A typical image of Faraday waves pattern observed in a circular container is shown in Fig. 5.3

and exhibits a spatial structure defined by a radial mode number n and polar mode number l. The

2-D cross correlations are computed between the wave pattern image and a table of Bessel functions
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Figure 5.2: Optical system consists of a collimated light reflecting off the gel surface and collected
by camera

l

n

Figure 5.3: A typical radial-azimuthal wave pattern with radial n and azimuthal l mode

η = Jn(lr) cos(nθ). The maximum value for the cross-correlation coefficient corresponds to the

observed wave pattern. Because of the existence of a phase difference in the azimuthal direction

between the wave pattern and the test pattern, the test pattern is rotated about its center by 1◦

in each computation and compute the associated cross correlation. There are 360 cross correlations

calculated for a fixed n and l combination and the maximum within the results corresponds to the

zero phase difference condition between the two images. The computational routine is illustrated in

Fig. 5.4; 2-D cross correlations between three wave pattern images and the test pattern matrix with
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n, l = 1, 2, 3, 4 are computed. The maximum cross-correlation coefficient for the first

Figure 5.4: 2-D cross correlations between experiment and Bessel function surface modes

pattern corresponds to the (n = 1, l = 2) mode, for the second (1, 3), and for the third (1, 4).

Two types of materials are studied; 1) glycerol/water mixtures and 2) agarose gels. Glyc-

erol/water mixture is a type of Newtonian fluid (with E = 0) whose viscosity is tunable by changing

the volume ratio between glycerol and water. Three different viscosities µ = 0.96, 2.3, 4.2 mPa·s are

explored in the experiments by fully mixing the glycerol with doubly distilled water. The agarose

gels are prepared by dissolving agarose powder Sigma Aldrich Type VI-A in doubly distilled water.

The mixture is kept in 90◦C for an hour to ensure the powder is fully dissolved and then poured into

the circular container. The mixture is allowed to be cooled at room temperature for 4 hours and

completely covered to avoid evaporation before starting the experiment. I investigate the agarose
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gels with a range of shear modulus G = 0.4−12.2Pa, which corresponds to the powder concentration

φ = 0.045−0.108%w. The agarose gels in our experiments exhibit a constant storage modulus over a

range of frequencies used in experiment, which is one order magnitude larger than the loss modulus

G′′ . Therefore, the gels are concluded behave as linear elastic solids characterized only by a shear

modulus G = G′ within a range of frequencies.

5.3 Experimental results

First, the Faraday wave patterns are studied on water. The first 50 Faraday waves mode

shapes are obtained by performing a frequency sweep with fd = 7.1 − 46.8Hz. The corresponding

50 mode shapes are shown in Fig. 5.5 with the associated observed frequency range. All patterns

exhibit sub-harmonic response fo = 0.5fd. The range of frequencies can be associated with the

bandwidth of this particular mode and the resonance frequency can be associated with the mini-

mum value of the tongue. Fig. 5.6 is a plot of the threshold amplitude versus driving frequency

for the 17 threshold tongues obtained within the frequency range from fd = 10.2− 28.1Hz. 5 com-

plete instability tongues are obtained in the range of driving frequencies fd = 10.2 − 16.0Hz, but

for higher frequencies incomplete tongues are observed, e.g., (2, 2), (1, 5), (2, 3), (1, 6), (3, 1), (2, 5),

(3, 0), (1, 8), (4, 1). The exceptions are (2, 0),(2, 4), (3, 2), (2, 0), (3, 3), (2, 6) for which a resonance

frequency can be identified. This observation indicates that very complicated mode competition

exists in higher fd. Mode (1,2) is the first mode plotted in Fig. 5.6 and is located a relatively large

distance away from the lower frequency (1,1) mode in frequency space. Since the (1,2) mode faces

the least mode competition, this mode is targeted in the investigations of the role of viscosity and

elasticity on the shape of the instability tongues.
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Figure 5.5: Mode table defined by the mode number pair (n, l) of observed Faraday waves. The
frequency range over which that mode was excited is given below the mode shape.
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Figure 5.6: Faraday waves tongues on water in the amplitude-driving frequency space
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Glycerol/water ratio 0:1 1:3 5:8

Surface tension (N/m) 0.072 0.068 0.062
Viscosity (mPa·s) 0.96 2.3 4.2
Density (kg/m3) 1000 1070 1109

Ohnesorge number Oh 0.000605 0.00144 0.00271

Table 5.1: Material properties of the glycerol/water mixture ratios explored in this work.

5.3.1 Viscous effect in Faraday instability tongues

Glycerol/water mixtures are used to investigate the role of viscosity on the shape of the

instability tongue. Here viscosity works as the dissipation while surface tension works as restorative

force. Fig. 5.7 is a plot of the threshold amplitude against driving frequency for wave modes (1,2),

(1,3) and (1,4) whose shapes are shown in Fig. 5.8. The material properties and the Ohnesorge num-

ber Oh = µ/
√
ρRσ of each material are listed in Table. 5.1. Since the densities for the materials

are within a narrow range, Oh here represents the interplay of viscosity and surface tension in the

experiments. For fixed mode number, the threshold amplitude increases with Oh, whereas the nat-

ural frequency is shifted to lower regime for increasing Oh. This follows the previous understanding

of the role of of viscosity (dissipation) and surface tension (restorative force) in gel drops and edge

waves discussed in Chapters 3 and 4. The fact that the threshold amplitude increases with mode

number indicates higher dissipation associated with more complex surface patterns that delays the

onset of Faraday waves in these higher modes.

5.3.2 Elastic effect in Faraday instability tongues

Elastic effects are investigated on agarose gels. The modes (1,2), (1,0), (1,3), (2,1), (1,4),

(2,2), (2,0) are obtained on a gel with shear modulus G = 3.9 Pa within the driving frequency

range fd = 9.8 − 19.2Hz and plot the instability tongues in Fig. 5.9. Here there are five complete

instability tongues for modes (1,2), (1,0), (1,3), (2,1), (2,2), from which the resonance frequency

fn and threshold amplitude an can be extracted. Values for fn and an are listed in Table. 5.2 and

contrasted with the associated values for water. It shows a consistent trend of increasing threshold

amplitude with frequency and a dramatic difference in threshold amplitude for even small values of

elasticity. Notably, the threshold amplitudes for the five modes on gels are almost 10 times larger

than that on water. The order of the appearance of each mode follows the sequence of that on water
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Figure 5.7: Faraday wave tongues on glycerol/water mixtures showing (1,2), (1,3), and (1,4) mode,
as they depend upon Ohnesorge number

Figure 5.8: Typical (1,2), (1,3), (1,4) modes

although incomplete tongues are observed for modes (1,4),(2,0). It is noted there is a tendency

that the threshold amplitude for gels is markedly higher than that for glycerol/water mixtures (cf.

Fig. 5.7).

The role of elasticity is systematically studied on the instability tongue of (1,2) mode over

the range of shear modulus G = 0.4 − 12.2 Pa. The plot of the threshold amplitude versus the

driving frequency is shown in Fig. 5.11. The threshold tongue for water is added to Fig. 5.11 for a

zero elasticity reference. For agarose gels, both elasticity and surface tension work as the restorative

force to the system. Note the shift of threshold tongues on gels are much more complicated than

that on viscous liquids. For ultra-soft gels, G = 0.4 − 3.1Pa, the resonance frequency is slightly

shifted to lower frequency compared to that of water. This suggests surface tension decreases in
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Figure 5.9: Faraday waves tongues for a gel with G =3.9 Pa in the amplitude-driving frequency
space

Figure 5.10: Typical (1,2), (1,0), (1,3), (2,1), (1,4), (2,2), (2,0) modes on gel with G = 3.9 Pa.

this range and the interplay gives rise to a smaller overall restorative force on ultrasoft gels than

that on water and thus decreases the resonance frequency. It is noted that this surface tension

decrease hypothesis follows the result of surface tension measurements on gels in Chapter 2. For

larger shear modulus G = 3.5 − 12.2Pa, the resonance frequency increases monotonically with G.

The threshold amplitude increases with G and quickly plateaus to a constant value for G > 3.5 Pa.

Further theoretical analysis is needed to full understand the role of elasticity in Faraday waves.
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mode number (1,2) (1,0) (1,3) (2,1) (2,2)

an(m/s2) /water 0.32 0.4 0.49 0.35 0.35
an(m/s2) /gel 3.1 2.22 4.8 3.75 5.52
fn (Hz) /water 10.6 11.6 13.2 14.4 17.0
fn (Hz) /gel 10.8 11.8 14.0 15.2 17.8

Table 5.2: Resonance frequency fn and amplitude an for the first five modes for water and a gel
with G = 3.9 Pa.
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Figure 5.11: Instability tongue for the (1,2) mode as it depends upon the shear modulus G

5.4 Discussion

Experiments have been conducted to characterize the effect of material properties in chang-

ing the shape of Faraday instability tongues and highlight the role of elasticity in shifting the

resonance frequency of Faraday wave mode by exploring gels over a range of shear modulus. To our

knowledge this is the first observation of Faraday wave instability tongues on gels. For the ultra-soft

gels (G < 5 Pa), elasticity also exhibits a relatively strong effect in increasing the threshold ampli-

tude and a complicated interplay between capillarity and elasticity exists in this regime observing

the non-monotonic shift of resonance frequency with shear modulus. In comparison, in liquids, vis-

cosity shows a consistent damping effect in increasing the threshold amplitude and decreasing the

resonance frequency. The experiments emphasizes the role of surface tension and elasticity as the

restorative force and viscosity as dissipation to the system. Further theoretical analysis is needed to
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quantified the elasticity impact in the restorative force and dissipation in the onset mechanism for

Faraday waves.

Henderson and Miles [53] reported the corner effect of a rectangular tank can significantly

increased the damping rates of Faraday waves on liquids and which is not observed on a circular

container. It is worthwhile to study the Faraday waves on gels in a rectangular tank and explore

the higher dissipation effect in reconfiguring the pattern formation on gels and changing the shape

of Faraday instability tongues. The combination of Faraday wave studies in a circular tank and

rectangualr tank can reveal more details about potential contact-line dynamics in gels. It has

also been noted that for viscoelastic materials, there is a relaxation time scale tp and it has been

shown that harmonic Faraday waves can be observed when the time scale of the forcing frequency

approaches 1/tp[112]. The harmonic response has not been observed in this study since tp in gels

is beyond the driving frequency range in this experiment, but it is definitely an important part in

future works to study the instability tongues on harmonic Faraday waves.

The agarose gels used in the experiments exhibit constant rheological behaviors over a wide

range of driving frequencies. It is meaningful to study the pattern formation of Faraday waves on

other gels with complicated frequency dependent rheological properties. It is expected that the

frequency dependent viscosity and elasticity can change the shape of Faraday instability tongue

in a completely new manner from previous experiments in literature featuring multiple resonances

for one mode and odd tongue shapes. In addition, it is noted many new interesting phenomena

in particle separations have been observed on non-Newtonian fluids such as xantham gum and

polyacrylamide solutions whose viscosity can change with external forcing shear rate[82, 64]. For

strong shear thinning and shear thickening materials, it is possible to obtain some new pattern

formation phenomena by exciting Faraday waves in higher frequency regime. These hypotheses

should be validated through further experimental and theoretical studies on this area.

Lastly, it is noted that an interesting observation of mode mixing of edge waves and Faraday

waves in the experiments with water as working material. Recall in Chapter 4 that the protocol of

generating the edge waves has been demonstrated by slightly under filling the tank and thus leaving

a meniscus at the pinned edge, which will excite edge waves propagating inward. In contrast, to

excite pure Faraday waves, the container is perfectly filled to the edge to eliminate the meniscus. By

slightly underfilling the tank, mixing mode patterns will be observed when the forcing amplitude and

driving frequency are in the Faraday wave regime. In Fig. 5.12 (a), the evolution of a mixing mode

67



pattern is exhibited from pure edge waves at a fixed frequency by increasing the forcing amplitude.

The first picture displays the pure edge waves excited when the forcing amplitude is below the

Faraday wave threshold and the second picture displays the emergence of mixing mode by setting

the forcing amplitude near threshold. The final three images illustrate the evolution of the mixing

mode with increasing forcing amplitude Fig. 5.12 (b) illustrates a number of mode mixing pairs and

the corresponding frequency. These beautiful images of pattern formation exhibit complex dynamics

dynamics and further theoretical analysis is needed to understand the complex interplay between

the two types of waves.

Figure 5.12: Mode mixing. (a) Evolution of a pure edge wave into a mixed mode of edge wave
and Faraday wave upon increasing forcing amplitude; (b) Various mode mixing patterns have been
observed at varying driving frequencies.
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Chapter 6

Conclusion

In this dissertation, the elastocapillary phenomena on soft gels have been studied from both

experimental and theoretical perspectives. A number of first experimental observations are reported

including i) gel drop oscillations and ii) Faraday waves on gels. The elastocapillary transition

has been successfully characterized through dispersion relationships for both planar surfaces and

spherical droplets, of which capillary waves and elastic waves naturally arise as the two limiting

cases. Periodic forcing is shown to give rise to pattern formation phenomena which are characterized

i) the frequency response of harmonic edge waves and ii) the instability tongues for sub-harmonic

Faraday waves, as it depends upon the elasticity for soft hydrogels. There is a complex interplay

between capillarity, elasticity, and viscosity in soft hydrogels and a diagnostic technique has notably

been developed to measure each of these material properties using the surface waves dynamics.

Rayleigh-Taylor instability (RTI) has been observed on the free surface of gels when the

elastogravity length Lg = ρg/G is smaller than the height of the gel h[108]. This highlights the

interplay between elasticity and gravity in determining the pattern formation on ultrasoft gels (G ≤

40Pa) in low wave number regime. In Chapter 2, the role of gravity in the dispersion relationship

of elastocapillary waves has been revealed when G → 0. The proposed closed-form dispersion

relationship in Eq. (2.12) can be used to study RTI on gels by predicting the wave number k for a

given G by reserving the orientation of the gravity.

In Chapter 3, an empirical dispersion relationship is proposed for oscillating gel droplets

from a 1-D damped driven oscillator model by idealizing the restorative force of surface tension and

elasticity as spring constants in parallel, and viscous dissipation as a damping constant. This model
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neglects the coupling between elasticity and surface tension that would appear naturally in linear

elasticity model. Furthermore, to include viscous effects would require the introduction of a full

viscoelastic model with characteristic viscous relaxation time scale through the Deborah number.

This is particularly needed for gels with more complex rheology. In addition, the aspect ratio of the

levitated gel droplets deviate from sphericity in the drop levitation experiments, even through gel

drops have been made spherical by using the neutral buoyancy approach. This is due to the acoustic

pressure needed to levitate the drop. The model does not account for this deviation in sphericity.

A rigorous theoretical model which accounts for these factors is needed for further analysis.

The radius of the gel droplets explored in the experiments was in a narrow range 1.2mm<

r < 1.6mm and this is primarily due to the technique for making large droplets (surface tension

tend to pinch off the pendant droplet attached on the nozzle). The narrow radius range limits the

technique for simultaneously measuring the surface tension σ and shear modulus G from Eq. 3.9.

The shear modulus G had to be measured separately in a rheometer in this study, whereas if the drop

radius could be varied over a large range, G should be measured independently with the approach.

This should be the focus of future work.

In addition, the higher resonance modes n > 2 for gel droplets were not explored, but

the study of higher order resonance modes can be advantageous, e.g., the higher wave number can

weaken the non-sphericity geometry effect and might display more disspation within a gel droplet

oscillation. Also, the transition from underdamped to overdamped oscillations in these modes can

be useful in characterizing the dissipation in the system. However, it is challenging with the current

laser light detection approach to determine the resonance for higher modes, since the deformations

for modes n > 2 are much more complicated and do not follow the maximum projected area as mode

n = 2 does [146]. This would mostly likely need to be done via high-speed imaging.

In Chapter 4, multiple n = 2 modes are observed for edge waves on gels with G > 3.6

Pa. In Chapter 5, multiple (1,2) modes are obtained for G > 12.2 Pa and the different (1,2)

modes are separated by (1,0) mode in the driving frequency space. These experimental observations

indicate nonlinear dispersion relationships exist on gels. The nonlinear dispersive behavior has been

reported on deep-water gravity waves, which is known as the Benjamin-Feir instability (BFI) [11].

The BFI describes a uniform train of oscillatory waves in moderate amplitude loses energy to a small

perturbation and evolves into a narrow-banded spectrum of waves. The wave trains are stable when

the dissipation of the wave system stabilizes this narrow-banded surface waves by suppressing the
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growth of further nonlinear perturbations and spreads energy from this initially narrow bandwidth

to a broader bandwidth [134, 20]. In Chapter 3, the viscosities on gels are shown to be about thirty

times larger than that on water over a wide range of shear modulus, which can provide the larger

dissipation for stabilizing the BFI and preventing the further nonlinear wave interactions. However,

there is no conclusion about the mechanism of the nonlinear dispersion relationship on gels yet. This

should be pursued further in future studies.

Lastly, agarose hydrogels have been purposefully used in the experiments, because it exhibits

a constant rheological behavior over a wide range of driving frequency and the competition between

surface tension and elasticity is studied in a relatively simple material. More complex materials

exhibit a frequency dependent material properties such that the complex modulus G = G′ + iG′′

depends on the frequency in a complex functional way. The rheological measurement protocol

developed in Chapter 3 is not able to determine G and µ of frequency dependent materials. It is

noted that non-Newtonian viscoelastic materials such as xanthan gum (XG) solution, Polyacrylamide

(PAA) solution, and Hyaluronic acid (HA) solution have exhibited enormous advantages in particle

separation in microchannels, because the additional hydrodynamics force induced by elasticity and by

side wall from shear thinning effect[82, 81]. In addition, harmonic Faraday waves were generated on

the PAA solution and gave rise to new pattern formation phenomena not yet observed in Newtonian

fluids[159]. The frequency dependent material properties have the potential to influence the pattern

formation in a similar manner as the non-Newtonian fluids does since inherent material induced

elastic and viscous force difference over a range of frequencies can add more complexities to the

system. This would be explored in future studies.
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Appendix A

The dispersion relationship Eq. (4.2) which presented in Chapter 4 is derived in this ap-

pendix.

Consider a fluid with interface at z = 0, endowed with surface tension σ, in a cylindrical

container with radius R that extends to infinity in negative z direction. The flow is assumed to be

irrotational v = ∇φ where φ is the velocity potential which satisfies Laplace’s equation

∇2φ = 0. (1)

The no-penetration condition is enforced on the lateral boundary r = R,

∂φ

∂r
= 0, (2)

and a kinematic condition at the free surface z = 0,

∂φ

∂z
=
∂η

∂t
, (3)

which relates φ to the linearized interface disturbance η. The jump in normal stress across the

interface is related to the curvature there via the Young-Laplace equation,

p− 2µ
∂2φ

∂z2
= − σ

R2

(
d2η

dr2
+

1

r

dη

dr

)
. (4)

Note that the viscosity µ has been kept in the boundary condition and this is sometimes referred to

as viscous potential flow. Elasticity G is introduced through the complex viscosity µ → µ + G/iω,
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where ω is the oscillation frequency and this gives

p− 2µ
∂2φ

∂z2
− 2G

iω

∂2φ

∂z2
= − σ

R2

(
d2η

dr2
+

1

r

dη

dr

)
. (5)

Lastly, the linearized Bernoulli equation is written as

ρ
∂φ

∂t
= −p− ρgη. (6)

Normal modes are assumed,

η(r, t) = AJ0(kr)eiωt, φ(r, z, t) = BJ0(kr)e−kzeiωt, (7)

where J0 is the Bessel function and k the wavenumber, and applied to the governing Equations (1,2,3,5,6).

Lengths are scaled by R, time by the capillary time scale
√
ρR3/σ, and this gives rise to the following

dispersion relationship

λ = iOhk2 ±
√

Bok + k3 + 2k2Ec−Oh2k4 (8)

where λ =
√
ρR3ω2/σ is the scaled frequency , Oh = µ/

√
ρRσ the Ohnesorge number, Bo = ρR2g/σ

the Bond number, and Ec = GR/σ the elastocapillary number. The wavenumber k is determined

by the boundary conditions at the sidewall J ′0(k) = 0.
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