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Abstract

Network traffic analysis is using metadata to infer information from traffic flows. Network

traffic flows are the tuple of source IP, source port, destination IP, and destination port. Additional

information is derived from packet length, flow size, interpacket delay, Ja3 signature, and IP header

options. Even connections using TLS leak site name and cipher suite to observers. This metadata

can profile groups of users or individual behaviors.

Statistical properties yield even more information. The hidden Markov model can track

the state of protocols where each state transition results in an observation. Format Transforming

Encryption (FTE) encodes data as the payload of another protocol. The emulated protocol is called

the host protocol. Observation-based FTE is a particular case of FTE that uses real observations

from the host protocol for the transformation. By communicating using a shared dictionary according

to the predefined protocol, it can difficult to detect anomalous traffic.

Combining observation-based FTEs with hidden Markov models (HMMs) emulates every

aspect of a host protocol. Ideal host protocols would cause significant collateral damage if blocked

(protected) and do not contain dynamic handshakes or states (static). We use protected static

protocols with the Protocol Proxy–a proxy that defines the syntax of a protocol using an observation-

based FTE and transforms data to payloads with actual field values. The Protocol Proxy massages

the outgoing packet’s interpacket delay to match the host protocol using an HMM. The HMM

ensure the outgoing traffic is statistically equivalent to the host protocol. The Protocol Proxy is a

covert channel, a method of communication with a low probability of detection (LPD). These covert

channels trade-off throughput for LPD.

The multipath TCP (mpTCP) Linux kernel module splits a TCP streams across multiple

interfaces. Two potential architectures involve splitting a covert channel across several interfaces

(multipath) or splitting a single TCP stream across multiple covert channels (multisession). Splitting
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a covert channel across multiple interfaces leads to higher throughput but is classified as mpTCP

traffic. Splitting a TCP flow across multiple covert channels is not as performant as the previous

case, but it provides added obfuscation and resiliency. Each covert channel is independent of the

others, and a channel failure is recoverable.

The multipath and multisession frameworks provide independently address the issues associ-

ated with covert channels. Each tool addresses a challenge. The Protocol Proxy provides anonymity

in a setting were detection could have critical consequences. The mpTCP kernel module offers an ar-

chitecture that increases throughput despite the channel’s low-bandwidth restrictions. Fusing these

architectures improves the goodput of the Protocol Proxy without sacrificing the low probability of

detection.
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Chapter 1

Introduction

Traffic analysis is the process of using metadata to infer the purpose of network traffic,

even if it is encrypted. There are several applications for network traffic analysis–security, data

mining, and censorship. Every enterprise network has some form of traffic analysis to ensure the

network is secure and protect critical systems. Most Internet Service Providers (ISPs) participate in

data mining [55]. They use traffic analysis techniques to profile their customers, and they sell this

information to other companies for a profit. The final use-case is censorship. Authoritarian regimes

use traffic analysis to find citizens posting sensitive content that differs from their preferred reality

[63].

1.1 Motivations

Traffic analysis is necessary for enterprise networks. According to a recent report, 2.6 billion

internet users live in a country where people were imprisoned for posting controversial content [63].

More alarmingly, 38 countries bought telecommunications surveillance equipment from China [63].

While internet access is a fundamental human right, according to the United Nations [31], the

internet is not a safe place for all users. There are many areas where traffic analysis resistant

infrastructure is needed, but we examine two key areas:

1. Individual users who are operating in a contested network.

2. Users who wish to protect their personal information from ISPs.
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By examining these pragmatic cases, we can provide a theoretical framework for addressing the

challenge of ensuring unfettered access to the internet.

1.2 Organizations

• Chapter 2 provides an overview of traffic analysis, covert communications, and network-based

moving target defense. We examine effective traffic analysis methods and compare them with

recent developments in covert communications. Network-based moving target defense is a new

subset of covert communication that focuses on randomizing host communication to foil traffic

analysis.

• Chapter 3 describes the mathematical background behind the methods we present. This work

builds on hidden Markov models (HMMs), and we discuss the basic principles behind inferring

and comparing HMMs. We also discuss format transforming encryption (FTE), which encodes

information in a medium that appears benign in most traffic analysis.

• Chapter 4 discusses our novel observation-based FTE, and our experimental results when using

this encryption for various network activities.

• Chapter 5 details an approach for increasing the throughput of covert communication channels.

• Chapter 6 provides a succinct summary of the contributions and application of these technolo-

gies and discusses future work and open research challenges.
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Chapter 2

Background

Traffic analysis is the process of using metadata to infer the purpose of network traffic,

even if it is encrypted. Figure 2.1 shows examples of this metadata. Traffic flows are the four-

tuple of source IP, source port, destination IP, and destination port. Metadata includes packet size,

interpacket delay, flow duration, flow size, ja3 fingerprint, and various packet header options. Various

tools aggregate this metadata and provide analysts with summaries that help identify anomalies.

Other tools attempt to detect anomalies automatically from high volumes of traffic.

2.1 Traffic Analysis

Network traffic analysis is the process of using metadata to infer latent information from

traffic flows. More specifically, it is the process of analyzing network communications to determine

patterns, fingerprints, and properties that will aid in securing and optimizing the network. There

are many tools for network traffic analysis, such as NetFlow [2], Zeek [19], Suricata [15], Suricata

[15], Moloch [7], Wireshark [22], and tcpdump [16]. In this range of software, NetFlow is the most

log-centric, and tcpdump is the most PCAP centric. NetFlow only samples several packet metadata

fields and is designed to handle large volumes of traffic. Zeek takes this a step further and provides

protocol analysis and an in-depth analysis of all packet metadata. Suricata and Snort focus on

signature-based detection. Any incoming packet that matches a rule will trigger an alert. Moloch’s

primary focus is PCAP memorialization. Packet metadata is extracted and stored locally to facilitate

searching large volumes of PCAP quickly. Wireshark provides protocol analysis but does not focus
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on processing large volumes of PCAP or storing packet metadata. On the other end of the spectrum,

tcpdump’s main focus is packet capture with minimal protocol analysis. Software focused on PCAP

analysis (Wireshark, Moloch, or Zeek) should be used to view tcpdump’s packet captures.

Nation-states often employ several of these tools (or their commercial equivalents) to provide

a full range of coverage. A comprehensive network surveillance system would include NetFlow

for network engineers, Zeek for detailed log generation, Suricata or Snort for in-line PCAP-based

alerting, and Moloch for PCAP memorialization. The most robust covert channels must withstand

scrutiny at each of these levels.

2.2 Circumventing Traffic Analysis

The simplest way to avoid traffic analysis is to use a single-hop proxy to encrypt traffic and

mask the real destination. Psiphon [13] and Lantern [6] are such solutions that fill this niche. While

proxies usually only deal with web browsing traffic, VPNs encrypt all traffic, potentially saving users

from side-channel information leakage [80, 46]. As [24] and [80] found, these solutions are imperfect.

There are also solution specific issues–Lantern is only active when a website is blocked [64], leading

to a myriad of potential attacks. In practice, VPN companies must choose between turning over

logs or facing federal charges [70]. In all of these cases, the users’ privacy is in the hands of their

chosen solution. Additionally, these solutions are easily detected with IP blacklist or PCAP-based

rules to detect VPNs.

Since proxies and VPNs fail to provide sufficient privacy in several cases, anonymity networks

like Tor [17] and I2P [5] have arisen. Tor’s Onion Routing encrypts traffic at least three times, letting

only the current node know the next destination. I2P is not widely used, despite being similar to Tor

in many ways. There have been proof-of-concept attacks against the anonymity of Tor users [32],

[23]. In order to combat attacks on anonymity and PCAP-based detections, Tor employs pluggable

transports, which are modular proxies that mask the underlying protocol. For example, Marionette

[35] has configurable ciphertext formats, protocol features, and statistical properties.

While both Tor and I2P are client-centric approaches, there have also been developments

surrounding infrastructure–TapDance (Decoy Routing) employs control sequences embedded in in-

nocuous traffic streams to reroute traffic to an undisclosed location [75]. While this proves to be a

significant advance over the existing technology, TapDance flows must route through a TapDance

4



Figure 2.1: Traffic analysis using metadata.

node, which is not guaranteed.

2.3 Convert Communications 1

Creating covert online communication tools has been the focus of many privacy advocacy

groups. Since the data in covert channels is encrypted, the goal is to balance the probability of

detection with throughput based on the desired application [65]. Timing side-channels prioritize

low-probability of detection over throughput [45, 76]. However, this is not appealing to users who

may prefer jail time over a slow connection [56].

Tor’s anonymity network wraps network traffic in layers of encryption. Each layer can only

be decrypted by the next hop in the onion network. While it provides anonymous access to the

Internet, the Tor protocol is easy to detect and block [72, 32]. Undetectable communication was

not one of Tor’s goals, and as previously mentioned, it spawned the Pluggable Transport project to

address this challenge and encourage the development of other covert communication tools [44].

GNUnet [4], I2P, and Freenet [3] all seek to provide anonymous access to the Internet.

GNUnet is a toolbox for developing secure decentralized applications. I2P uses a Tor-like onion-

based routing protocol to route traffic securely but was intended to be a self-contained network.

1This section has been adapted from [54].
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Freenet focuses on using prior knowledge to form connections. It arguably provides more anonymity,

but it is resource-intensive. Many governments block access to these tools, which makes the first-hop

important.

Pluggable Transports (PTs) [12] address this concern. PTs offer a generic way to obfuscate

traffic. Shape-shifting PTs transform traffic into a different protocol. SkypeMorph [50] makes

network traffic resemble a Skype session. StegoTorus [69] demultiplexes connections to avoid traffic

analysis and uses steganography to hide information in different protocols (including Skype). In The

parrot is dead: Observing unobservable network communications, Houmansadr et al. [43] found both

approaches fell short of true protocol mimicry. In both cases, handshake packets were incorrect.

StegoTorus’s implementation of HTTP steganography contained other flaws [43]. Censorspoofer

mimics the Ekiga VoIP software, but it also falls short of mimicking protocol intricacies [43].

A number of PTs scramble traffic to remove fingerprints. Obfs2 [11], Obfs3 [11], Obfs4

[10], and ScrambleSuite [73] each attempt to remove a network fingerprint by scrambling the data.

Dust2 and its previous version (Dust) change the statistical properties of traffic to bypass firewalls

[71]. With technologies like software-defined networking (SDN), an adaptive firewall will block these

statistical PTs.

Recent PTs use domain fronting. Traffic is sent to a known-good destination (Google,

Amazon, Azure, CloudFront) and allowed through the firewall because blocking an entire domain

would cause unintended collateral damage. FlashProxy [51], SnowFlake[14], and meek [37] all use

variations of domain fronting. The companies that own the domains do not condone this practice

because of potential backlash.

As previously discussed, Refraction Networking (TapDance) [75] spoofs the destination IP

address. If the packet is routed through a decoy router, the real destination IP address is substi-

tuted for the spoofed address. Recent work has shown it may be inexpensive to censor decoy routers

[60]. Alternatively, TARN [79, 68, 29, 66] provides an approach that mixes traffic from different au-

tonomous systems at the software-defined exchange (SDX) level. This SDX-based approach provides

a high level of anonymity and is resistant to a malicious ISP or BGP injection, but it is not realistic

for a covert channel. Network-based moving target defense solutions have also been proposed [42]

for covert channels.

Traditional Virtual Private Networks (VPNs) are not usually effective in a contested en-

vironment because encrypted data can indicate malicious activity [27]. As a result, Psiphon [13],
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Lantern [6], and Ultrasurf [18] have started using PTs. With Lantern, traffic is only forwarded

through the PT if it is likely to be blocked.

FTE PTs are a subset of shape-shifting PTs that steganographically encode traffic using

values typical of the host protocol [34]. It is best to use a widely adopted protocol, such as DHCP

[58] or VoIP [59]. Marionette [35] is a shape-shifting PT that uses a probabilistic context-free

grammar (PCFG) and production rules to mimic the host protocol. The PCFG ensures the traffic

is syntactically and semantically correct, and the production rules occur at the expected frequency.

Marionette ensures interpacket timing, packet size, and session count mimic the host protocol.

Image steganography is an effective means of covert communication. Fridrich investigated

the relationship between distortion and information capacity [38]. Unfortunately, the model derived

in [38] does not directly apply to FTE-based covert channels.

2.4 Bandwidth Limitations

Covert channels trade-off throughput for a low probability of detection. Traditionally, low

throughput covert channels are tough to detect. In the observation-based FTE example, simpler

protocols are much less likely to be detected, since there are no complex handshakes and limited

fields. According to [56], users are less likely to use tools with higher latency, even if they are aware

of the security implications.

Consider using observation-based FTE with the Network Time Protocol (NTP) [9], which

is widely used, and blocking it would cause serious collateral damage. An example NTP packet is

shown below in Figure 2.2. The client sends a request with only the transmit timestamp set, and

the reply contains the same transmit timestamp, the receive timestamp, the originate timestamp,

and the reference timestamp.

The timestamp fields are not conducive to replaying observed values since the observed

timestamps will all be significantly outdated. In practice, this is still hard to detect due to the diverse

nature of the Internet–many devices have internal clock drift, and their timestamps are wrong, and

some NTP services (like chrony) use random timestamps [1]. However, it would be desirable to

encode data in clock drift. When masquerading as a client, only the transmit timestamp can be

used to encode data, and it needs to be relatively close to the actual time. Similarly, the server

only encodes information in the receive, originate, and reference timestamp. A conservative channel

7



Figure 2.2: The structure of an NTP packet.
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would only encode data in the fractional part of the timestamp (32 bits) and use the actual seconds.

With this toy channel, a client could encode 32 bits of information with every request and

would expect 96 bits in every reply. Additional bits may be encoded in other fields, but these fields

would hold the vast majority of the information. Requests occur roughly every three seconds, making

the effective throughput of information approximately 10.6 bps upstream, and 32 bps downstream.

This throughput does not include the overhead described in the previous section.

There are two approaches to this challenge. Both approaches employ a Linux kernel module

that splits TCP flow across all mpTCP-enabled interfaces–mpTCP [8]. One approach is to split the

covert channel into separate TCP streams. The second approach is to use multiple covert channels.

Both are useful in particular cases, but for this example, consider the latter. When splitting a

single TCP stream across N covert channels, the throughput should scale linearly. Consider a user

masquerading as an NTP server instead of an NTP client. A private NTP server with a small

number of unique clients in not abnormal. Each client provides a channel with 32 bps upstream and

10.6 bps downstream. With ten bonded channels, the effective channel is 320 bps upstream and 106

bps downstream. While this is still very slow, it provides a path forward for a very secure covert

channel that would previously have been unusable.

9



Chapter 3

Mathematical Background 1

Stochastic processes can model traffic flows. Depending on the underlying application,

some of these models are a better fit than others. For our work, we consider protocols that have

probabilistic state transitions. Each state transitions generates observable metadata. For instance,

a transition from state ‘a’ to state ‘b’ will consistently generate an interpacket delay between 0.026

seconds and 0.031 seconds.

3.1 HMM

A Markov model is a tuple G = (S, T, P ) where S is a set of states of a model, T is a set of

directed transitions between the states, and P = {p(si, sj)} is a probability matrix associated with

transitions from state si to sj such that:

∑
sj∈S

p(si, sj) = 1,∀si ∈ S (3.1)

A Markov model satisfies the Markov property, where the next state only depends on the

current state. An HMM is a Markov model with unobservable states. A standard HMM [36, 57] has

two sets of random processes: one for state transition and the other for symbol outputs. HMMs can

model time series data [25]. This work uses a deterministic HMM [48, 47, 61, 30], and it has one

random process for state transitions. Different output symbols are associated with transitions with

1This chapter has been adapted from [54].
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Figure 3.1: Stream of incoming packets with timing denoted [54].

different probabilities. This representations is equivalent to the standard HMM [67, 48].

3.1.1 Inferring Deterministic HMMs

Deterministic HMM inference is depicted in Figures 3.1-3.4. A stream of network packets,

Figure 3.1, is observed. We calculate the interpacket delay (time between each packet) and plot the

values in a histogram. Peaks in the histogram define the different states of the HMM. In Figure 3.2,

there are three peaks, and we assign each peak a unique label. The stream of interpacket delays

is re-interpreted using the assigned labels. A stream of labels, as shown in Figure 3.3, is used to

infer the deterministic HMM shown in Figure 3.4. Each state in the HMM corresponds to a label,

and each transition represents an output expression. The probability of an ‘a’ output expression

from state ‘b’, divide the number of ‘ba’ strings by the number of ‘b’ strings. If there were 1000

occurrences of the string ‘b’, and we know the string ‘ba’ occurred 250 times, then 25% of the time

we transitioned to state ‘a’. The complete process for inferring deterministic HMMs is detailed in

[40, 62]. Given a deterministic HMM, it is possible to generate a stream of packet timings.

3.1.2 Comparing Deterministic HMMs

In [48], the authors develop a normalized metric space for comparing HMMs, and in [78], the

authors show a method for ensuring an HMM is significant. We use an alternative approach tailored

to this challenge. Before determining whether two deterministic HMMs are equal, it is desirable

to ensure the probability distribution functions (PDFs) used to generate the HMM are equal. To

do this, we use the two-sample Kolmogorov-Smirnov (KS) test [20], which tests the null hypothesis

(two sets of samples come from the same underlying distribution) against the alternate hypothesis

(two sets of samples come from different underlying distributions). The KS statistic is the empirical
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Figure 3.2: The timing values plotted in a histogram [54].

Figure 3.3: The packet timings converted to a stream [54].
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Figure 3.4: The deterministic HMM inferred from the stream of labels [54].

distribution function Fn, defined below.

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi) (3.2)

Here, n refers to the number of identically independently distributed samples (Xi) taken

from the sample space (X). Samples (Xi) are randomly chosen observations from Figure 3.1. The

indicator function, I(−∞,x](Xi), is defined in Equation (3.3).

I[−∞,x](Xi) =


1, Xi < x

0, otherwise

(3.3)

The two-sample KS test compares the distance between the two empirical distribution func-

tions using Equation (3.4).

Dn,m = sup
x
|F1,n(x)− F2,m(x)| (3.4)
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We reject the null hypothesis at the 5% confidence level using the following criterion.

Dn,m > 1.36

√
n+m

nm
(3.5)

For show equivalence between two deterministic HMMs are equivalent, it is sufficient to show

all corresponding states in the deterministic HMM are equivalent. If all states are equivalent, the

HMMs are equivalent. To show two states of a deterministic HMM are equivalent, we use the χ2 test

for homogeneity to test if the probability distributions for outgoing state transitions are statistically

equivalent. Equation 3.6 shows the generic expression for the χ2 statistic for homogeneity given P

populations and C levels of the categorical variable.

χ2 =
∑
i∈P

∑
j∈C

(Oi,j − Ei,j)2

Ei,j
(3.6)

In this representation, Oi,j is the number of occurrences observed in the state corresponding

to i and the output expression corresponding to j. Similarly, Ei,j is the number of expected occur-

rences for the combination of state and output expression. Equation (3.7) provides the expected

number of occurrences.

Ei,j =
ninj
n

(3.7)

Here, ni is the number of observations in state i, nj is the number of observations at that

level of the categorical variable, and n is the sample size. For threshold testing, Equation 3.8 gives

the degrees of freedom (DF ).

DF = (P − 1)(C − 1) (3.8)

In this work, we compare two states (populations), so P is 2. Therefore, the DF for any

given state is simply the number of output expressions (C) minus one.

3.2 Observation-based FTE

Directly sending UDP packets to a specific port is not enough. Capturing the packet in an

analysis tool like Wireshark [22] will reveal the packet is malformed. While this rises to the level

14



Figure 3.5: Example protocol to illustrate observation-based FTE [54].

of existing obfuscation PTs, it does not solve the problem. Traditional FTE takes the syntax of a

protocol and creates a PCFG to map raw binary data to that protocol’s syntax [33]. Determining the

appropriate PCFG to model a protocol is left as an open research question, making it unrealistic to

deploy [34, 35]. We propose observation-based FTE as a simple alternative. We collect a substantial

amount of traffic and record all the unique observations for each field in the protocol. Zhong et al.’s

work [81] used a primitive version of observation-based FTE that did not consider the upper bound

on an FTE channel’s information capacity.

Consider the fundamental information theory problem: Alice and Bob want to encode in-

formation using the protocol shown in Figure 3.5. Assume both Alice and Bob have the same list

of unique observed values for each field in the protocol.

Theorem 1. For a given protocol, the maximum amount of information that can be encoded in a

packet using observation-based FTE is given by:

S =
∑
γi∈Γ

log2(|γi|) (3.9)

Where Γ = {γ1, γ2, ..., γn} is the set of n fields in the protocol, and |γi| is the number of unique

observations in that field.

Proof. The Shannon entropy of that field gives the maximum amount of information encoded in a
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particular field using observation-based FTE.

H(γi) = −
∑
x∈γi

p(x)log2(p(x)) (3.10)

Each stream of n bits is equally likely–since the data mapped to the protocol is encrypted

using AES encryption and AES produces a high-entropy bitstream [49], we can assume 0 and 1 are

equally likely in practice. Therefore, the choice of each observation is equally likely. This simplifies

Equation (3.10) as follows.

H(γi) = −
∑
x∈γi

1

|γi|
log2

(
1

|γi|

)
= −|γi|

1

|γi|
log2

(
1

|γi|

)
= −log2

(
1

|γi|

)
= log2(|γi|)

(3.11)

The maximum amount of information encoded in a single packet is the sum of information

encoded in each field in the packet.

S =
∑
γi∈Γ

log2(|γi|)

Performing these calculations on the Synchrophasor protocol finds a single UDP packet can

contain 516 bits. Since this is smaller than the typical TCP packet, it is necessary to segment

TCP packets for transmission. The optimal average goodput (Gavg) can be calculated with Equa-

tion (3.12), where S is found using Equation (3.9), and Tavg is the average interpacket delay, which

is 0.03334 seconds for Synchrophasor traffic. Equation 3.12 yields an theoretical average goodput of

15,477 bits per second.

Gavg =
S

Tavg
(3.12)

Figure 3.6 shows data segmentation:

16



Figure 3.6: Process for segmenting TCP packets for transmission [54].
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1. The original TCP packet.

2. Prepend the packet length to the beginning of the packet as a four-byte unsigned integer.

3. Break the packet into 63-byte chunks and prepend each chunk with a one-byte sequence num-

ber. The sequence number allows the chunks to be reassembled later into the original TCP

packet. Depending on the packet’s size, there may not be enough payload data to fill the final

chunk. In this case, append random data to the end.

4. Encrypt each 64-byte chunk with Electronic Code Book (ECB) encryption. Since packets may

arrive out-of-order, cipher block chaining (CBC) is impractical.

5. Encode each 64-byte (512 bit) chunk into a 516 bit UDP payload using the observation-based

FTE method.
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Chapter 4

Developing an Observation-based

FTE Covert Communication

Channel 1

We combined the insights from Chapter 2 with the tools from Chapter 3 to inform a frame-

work that will transform arbitrary network traffic into statistically equivalent traffic that can be

dissected by a protocol analyzer without errors. For this framework, we consider protected static

protocols. Nation-states cannot block these protocols without significant collateral damage, and

they are stateless at the transport layer (typically UDP).

There are two main challenges–payloads and timing. We must convert arbitrary TCP traffic

into the host protocol’s UDP payloads. Next, the outgoing UDP packets must conform to the host

protocol’s timing. In Section 4.1, we discuss how to convert arbitrary TCP traffic into UDP payloads,

and in Section 4.2, we discuss how to adjust the interpacket delay to emulate the host protocol.

4.1 Transport Converter

The transport converter encapsulates the TCP header and payload in a UDP packet.

We use Scapy [26] (a Python library for packet capture, manipulation, and injection) to

1This chapter has been adapted from [54].
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capture TCP packets. The captured packet includes both the TCP header and payload. We send

traffic to a closed loopback port, and Scapy sniffs the loopback interface looking for traffic destined to

that port. By default, when a closed port receives a TCP packet, it responds with a TCP RST (reset)

packet. The RST packet immediately terminates the connection and ceases all communication with

the other host. The firewall dictates this low-level response, so we modified it (iptables on Linux)

to disable sending these packets. The following command disables RST packets on all ports on

Linux.

1 sudo iptables -A OUTPUT -p tcp --tcp-flags RST \

2 RST -j DROP

Listing 4.1: The iptables command to disable RST packets [54].

In Figure 4.1, an application on the client sends a packet to a closed local port (8001 in

our example). Scapy sniffs the network stack and captures the entire packet. Then, we strip the

Ethernet and IP layers and send the packet to an encapsulator. The encapsulator performs the

transformation described in Section 4 and generates new Ethernet, IP, and UDP layers. We send all

UDP packets to the port that corresponds to the host protocol, and we massage he packets timing

as described in Section 4.2.

On the server, the decapsulator listens to the predetermined port for the UDP packet.

Once it receives the UDP packet, it takes the UDP payload, reverses the transformation described

in Section 4, and sends it to a Scapy packet injector. The Scapy packet injector creates new Ethernet

and IP layers to make the packet look like it originated from the local machine. Then, Scapy injects

the new packet into the local network stack, and the application listening on Port 8001 receives

it. While this example is unidirectional, it is trivial to make a bidirectional example–the client and

server include both sides of this design.

4.2 Packet Timing

The HMM timing model described in Section 3.1 was input to the Protocol Proxy, which

queries the timing model for a timing value. When a timing value is requested, we examine the

current state, choose an output expression based on the probability distribution of the current state,

and choose a timing value from the output expression group. The model advances to the chosen
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state. The Protocol Proxy waits for the allotted time before sending a packet. If there are no packets

to send, random data are encoded and sent. The server drops these packets. The Protocol Proxy

sends placeholder packets to maintain the host protocol’s timing model.

4.3 Experiment Setup

We collected 770,000 samples from the PMUs in Clemson’s RTPIS Laboratory [21] and

used these samples to build the timing model described in Section 4.2. All testing was performed in

Clemson’s security lab with clean installations of Arch Linux (kernel version 4.17.2-1). Figure 4.2

shows the experiment setup. We used scp to transfer data over the Protocol Proxy to an SSH server

on a remote machine. We launched the Protocol Proxy server using the following command.

server# protocol proxy server 192.168.10.23 8001

Since the Protocol Proxy requires privileged access because it uses raw sockets. The ‘server’

option tells the Protocol Proxy to expect packets originating from the specified port (8001). The IP

address (192.168.10.23) is the client’s IP address that will connect to the server. The next step is

We execute the iptables command shown in Listing 4.1 to disable reset packets (TCP RST) sent

in response to a connection attempt on a closed port (8001). Next, we configure the SSH server

to listen to port 8001 for incoming connections in the /etc/ssh/sshd_config file. We used SSH

(OpenSSH 7.7p1) for the server. It was necessary to configure a non-standard port to avoid conflict

when forwarding the traffic. We launched the Protocol Proxy client as a privileged user with the

following command.

client # protocol proxy client 192.168.10.24 8001

The ‘client’ option tells the transport to expect packets destined for the specified port (8001).

The IP address (192.168.10.24) is the IP address of the host executing the program. The client also

does not open a local port, so we must apply the same rules in Listing 4.1 to the client.

A one-kilobyte data file was transferred from the client to the server using scp as shown

below.

client # scp -P 8001 file 127.0.0.1: file

We captured traffic between the client and the server to infer another HMM using this

generated traffic. The χ2-test tested equality between this second HMM to the original HMM
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used by the Protocol Proxy. Finally, we measured goodput as the time required to transfer the

one-kilobyte data file.

4.4 Results

Figure 4.3 shows the histogram of interpacket delay times for the Synchrophasor traffic

captured in Clemson’s RTPIS laboratory. The prominent peaks in the histogram are the output

expressions. Using the techniques described in Section 3.1, we inferred the deterministic HMM in

Figure 4.4.

With this HMM, it was then possible to generate Synchrophasor traffic with observation-

based FTE and accurate timing. Figure 4.5 shows a Wireshark deconstruction of the traffic generated

with our Protocol Proxy. Wireshark correctly identifies the Protocol Proxy traffic as Synchrophasor

traffic and can parse the values from the payload. The checksum is also correctly calculated.

Figure 4.6 shows the histogram of interpacket delay times for the generated traffic with the

output expressions labeled. Figure 4.7 shows the deterministic HMM inferred from the histogram

to model the timing patterns of the Protocol Proxy traffic. Visually, this model appears almost

identical to the model used to generate the traffic.

Before determining if the two deterministic HMMs were equal, we used the two-sample KS

test to compare the two distributions (shown in Figure 4.3 and Figure 4.6). We applied this test

to 100 random samples from each distribution. The p-value for the two-sample KS test was 0.21,

so with a threshold of 0.05, we fail to reject the null hypothesis. The Protocol Proxy’s interpacket

delay times are from the same probability distribution as the interpacket delay times of the original

Synchrophasor traffic.

We checked the HMMs for state-wise equality using the χ2 test for homogeneity to determine

if the two deterministic HMMs were equal. The p-values for the χ2 test are shown in Table 4.1. The

first comparison (inferred-inferred) infers two HMMs using 10,000 samples and a random starting

point in the original traffic. From these values, we fail to reject the null hypothesis (with an α value

of 0.05) for every state and are left to conclude the traffic is homogeneous, which means it does not

change over time. The second comparison (generated-inferred) infers one HMM from the Protocol

Proxy traffic and another HMM from the original Synchrophasor traffic. From these values, we fail

to reject the null hypothesis (with an α value of 0.05) for every state and are left to conclude the

22



Table 4.1: State-wise χ2 test for homogeneity comparing HMMs [54].
State Comparison Inferred-Inferred Generated-Inferred

(p-value) (p-value)

a-a 0.75 0.82
b-b 0.19 0.37
c-c 0.06 0.15

Table 4.2: Comparison of observed and theoretical goodputs through the Protocol Proxy [54].
Baseline Theoretical Observed

Goodput 54 Mbps 15,477 bps 182 bps

traffic from the Protocol Proxy is equivalent to the homogeneous Synchrophasor traffic.

We measured the baseline goodput (link speed) at 54 Mbps and the goodput through the

PMU Protocol Proxy at 182.2 bits per second. These values are compared to the theoretical goodput

in Table 4.2. The difference between theoretical and observed goodput is attributed to retransmission

and packet overhead (sending the TCP header through the Protocol Proxy).
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Figure 4.2: The Protocol Proxy integrated for use with SCP [54].
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Figure 4.3: Histogram of the interpacket delay of real Synchrophasor traffic with states labeled [54].
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a a(0 .007)

c

c (0 .443)

b

b(0 .55)

a (0 .507)

c (0 .007)

b(0 .485)

a (0 .038)

c (0 .041)

b(0 .921)

Figure 4.4: HMM generated from the interpacket delay of Synchrophasor traffic [54].

Figure 4.5: Wireshark decoding of the Protocol Proxy traffic [54].
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Figure 4.6: Histogram of the interpacket delay of generated Synchrophasor traffic with states labeled
[54].

a a(0 .004)

c

c(0 .47)

b

b(0 .526)

a(0 .5)

c (0 .004)

b(0 .496)

a (0 .038)
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Figure 4.7: HMM generated from the interpacket delay of the generated Synchrophasor traffic [54].
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Chapter 5

Increasing Throughput of Covert

Channels

There are two notable mpTCP-based approaches to increasing the bandwidth of a covert

channel. The first approach is to split the covert channel into multiple TCP streams, and the second

approach is to bond multiple covert channels. Each approach has benefits and limitations and is

suited to a particular use-case.

Both architectures leverage multipath TCP (mpTCP) [8], a Linux kernel implementation.

This native support for multipath routing enables multipath TCP on certain interfaces. The mpTCP

kernel module splits TCP connections with mpTCP-enabled servers across those interfaces.

5.1 Multipath Architecture

The multipath bonded channel architecture takes a single TCP stream from Tor, a VPN,

or a PT, and splits it into several mpTCP streams as shown in Figure 5.1. We route each of these

streams through an intermediary node in a separate legal jurisdiction. The intermediary nodes

re-route traffic back to a proxy server, which forwards the traffic to its final destination.

The main advantage of this approach is increased throughput. If a client uses separate

interfaces that avoid a shared bottleneck, it is possible to increase the throughput of tools like Tor

and OpenVPN. Even without separate interfaces, this approach still increases the bandwidth of some
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covert channels. Coincidentally, this makes fingerprinting some covert channels more difficult. Some

traffic analyzers may classify these streams as split-routing traffic. Split routing occurs whenever a

traffic analyzer sees only part of a stream, and it is a common struggle for network traffic engineers

and security researchers alike.

Leveraging these multipath TCP streams, clients can effectively increases and anonymity

and throughput. However, these TCP streams are identifiable as mpTCP traffic

The mpTCP protocol is legitimate, and its use is not inherently suspicious. However, it has

not seen widespread adoption, and no critical services rely on it yet, so blocking it would not cause

enough collateral damage to deter a nation-state actor.

5.2 Multisession Architecture

The multisession bonded channel architecture improves upon the multipath bonded channel

architecture by splitting a TCP stream across encrypted or covert channels, as shown in Figure 5.2.

For example, instead of having an OpenVPN connection split into N different mpTCP streams,

a regular TCP connection is split into N different mpTCP streams, and we tunnel each of those

streams through OpenVPN. OpenVPN was necessary because mpTCP is only capable of splitting

a TCP stream across multiple tun interfaces. We used socat, a Linux utility that created a tun pair

between the client and the server for testing the PP. OpenVPN could not initialize over the PP,

but socat had a (relatively) low overhead and was able to establish the tunnel in the low-bandwidth

environment. In all use-cases, the channels would pass through intermediary nodes in different legal

jurisdictions.

This approach also has the advantage of increased throughput, and in some cases, it will

improve throughput where the multipath architecture does not. For instance, with covert-channels

that massage timing, such as the PP, the multipath architecture permutes the timing observed by

an attacker, and since both architectures are transparent to the client, the timing model limits the

effective throughput. However, in the case of the multisession bonded channel architecture, N inde-

pendent covert channels can be instantiated, and each one has its timing model. This architecture

is still transparent to the client, but in this case, the throughput scales linearly.

It is also possible to combine different covert channels to increase anonymity or improve

resiliency. Often, PT servers experience outages or nation-states block specific transports. This
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Table 5.1: Experiment Network Topology.
Host Device IP

Client

IFace-1 10.1.0.1
IFace-2 10.2.0.1

tun1 10.11.0.6
tun2 10.12.0.6

Node-1
IFace-1 10.1.0.2
IFace-2 10.3.0.2

Node-2
IFace-1 10.2.0.2
IFace-2 10.4.0.2

Server

IFace-1 10.3.0.1
IFace-2 10.4.0.1

tun1 10.11.0.1
tun2 10.12.0.1

approach allows users to try a wide range of techniques simultaneously and adaptively respond to

channels taken offline. This approach provides the most benefits with the fewest drawbacks.

5.3 Experiment

To measure the performance of the multipath and multisession architectures, we conducted

several baseline experiments. The experiments allowed us to determine the baseline performance

and assess the performance increase of each architecture. We conducted the experiments on GENI

with XenVM Ubuntu 16.04 hosts. The client and the server used kernel 4.19.55 and the multipath

TCP (mpTCP) kernel module installed. The topology is shown below in Figure 5.3.

The IP address assignments are shown below in Table 5.1. Table 4.2 shows the results of

all experiments.

5.3.1 Baseline

The first experiment, shown in Figure 5.4, was conducted to determine the link speed

through the intermediary nodes using Iperf.
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Figure 5.3: GENI experimental setup.
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From Listing 5.1, we ran Iperf with the server flag on the server, and we disabled mpTCP

on eth0, eth1, and eth2 on the client before running Iperf in client mode and connecting to ‘10.1.0.2‘.

The client leverages the NAT forwarding on the intermediary nodes to route the traffic to from the

client-facing interface (‘10.1.0.2‘, Table 5.1) to the server (‘10.3.0.1‘, Table 5.1).

1 server$ iperf -s

2

3 client$ sudo ip link set dev eth0 multipath off

4 client$ sudo ip link set dev eth1 multipath off

5 client$ sudo ip link set dev eth2 multipath off

6 client$ iperf -c 10.1.0.2 -t 1

Listing 5.1: Commands to run the baseline throughput experiment.

5.3.2 Baseline VPN

Next, we conducted the experiment shown in Figure 5.5 to establish the baseline goodput

through a VPN. We used OpenVPN in client-server mode with the default settings. The client was

assigned ‘10.11.0.6’ on tun1, and the server was assigned ‘10.11.0.1’ on tun1, as shown in Table 5.1.
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From Listing 5.2, we start OpenVPN and Iperf on the server, then start OpenVPN on the

client. Next, we disable multipath TCP on all interfaces on the client and start the Iperf client.

1 server$ sudo openvpn --config openvpn-server/server-1.conf

2

3 server$ iperf -s

4

5

6 client$ sudo openvpn --config openvpn-server/client- 1.2. conf

7

8 client$ sudo ip link set dev eth0 multipath off

9 client$ sudo ip link set dev eth1 multipath off

10 client$ sudo ip link set dev eth2 multipath off

11 client$ sudo ip link set dev tun1 multipath off

12

13 client$ iperf -c 10.11.0.1 -t 15

Listing 5.2: Commands to run the baseline VPN throughput experiment.

5.3.3 Baseline PT

Figure 5.6 shows the experiment to calculate baseline goodput through the obfs4 PT. The

obfs4 PT is widely used, easily configurable, and one of the first successful PTs. We used shapeshifter-

dispatcher to enable obfs4.
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As shown in Listing 5.3, we start the Iperf server and the PT server. The PT server

uses the ‘-transparent’ option to forward traffic, and it specified ‘-ptversion 2’ as the standard

interface version. We specify transports using ‘-transports obfs4’, and we specify the state directory

(certificate location) using ‘-state state’. The bind-address (‘-bindaddr obfs4-10.3.0.1:1190’) specifies

that the PT server listen on eth0 (Table 5.1) port 1190 for incoming PT connections. The ‘orport

10:3.0.1:5001’ specifies where the PT server will forward incoming connections after decoding.

On the client, multipath TCP is disabled on all interfaces. We start the PT client with

shapeshifter-dispatcher using the previously described options. The PT client listens on ‘prox-

ylistenaddr 127.0.0.1:5001’ and forwards traffic to ‘-target 10.1.0.2:1190’. The intermediary node

translates ‘10.1.0.2’ to ‘10.3.0.1’. The ‘-options’ specify JSON options containing the certificate

fingerprint. The Iperf client is then run to determine the throughput through the PT.

1 server$ iperf -s

2 sudo shapeshifter-dispatcher - server -transparent -ptversion 2

3 -transports obfs4 - state state -bindaddr obfs4-10.3.0.1:1190

4 -orport 10.3.0.1:5001 -logLevel DEBUG -enableLogging

5

6

7 client$ sudo ip link set dev eth0 multipath off

8 client$ sudo ip link set dev eth1 multipath off

9 client$ sudo ip link set dev eth2 multipath off

10

11 client$ shapeshifter -dispatcher - client -transparent -ptversion 2

12 -transports obfs4 -proxylistenaddr 127.0.0.1:5001 - state state

13 -target 10.1.0.2:1190 -options

14 ’{”cert”: ”<FINGERPRINT>”, ”iat-mode”: ”0”}’

15 -logLevel DEBUG -enableLogging

16

17 client$ iperf -c 127.0.0.1 -t 15

Listing 5.3: Commands to run the baseline PT throughput experiment.
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5.3.4 Baseline VPN-PT

Figure 5.7 shows the experiment to calculate the baseline goodput through a VPN using a

PT for obfuscation. We used OpenVPN obfuscated with obfs4 because of their extensive utilization.

In this experiment, we calculate the goodput of a single TCP stream between the client and the

server.
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As shown in Listing 5.4, we start the PT server as described in Section 5.3.3. Then, we

start the OpenVPN server listening on port 1190, where the PT server sends traffic. On the client,

multipath TCP is disabled on all interfaces. The PT client is started with shapeshifter-dispatcher

using the same options described in Section 5.3.3. The Iperf client is then run to determine the

goodput through the VPN-PT.

1 server$ sudo openvpn --config openvpn-server/server-1.conf

2

3 server$ sudo shapeshifter-dispatcher - server -transparent -ptversion 2

4 -transports obfs4 - state ∼/shapeshifter-dispatcher/state -bindaddr obfs4-10.3.0.1:1190

5 -orport 10.3.0.1:1194 -logLevel DEBUG -enableLogging

6

7 server$ iperf -s

8

9

10 client$ sudo ip link set dev eth0 multipath off

11 client$ sudo ip link set dev eth1 multipath off

12 client$ sudo ip link set dev eth2 multipath off

13 client$ sudo ip link set dev tun1 multipath off

14

15 client$ sudo openvpn --config openvpn-server/client-1.conf

16

17 shapeshifter -dispatcher - client -transparent -ptversion 2 -transports obfs4

18 -proxylistenaddr 127.0.0.1:1191 - state state -target 10.1.0.2:1190

19 -options ’{”cert”: ”<FINGERPRINT>”, ”iat-mode”: ”0”}’

20 -logLevel DEBUG -enableLogging

21

22 client$ iperf -c 10.11.0.1 -t 15

Listing 5.4: Commands to run the baseline VPN-PT throughput experiment.
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5.3.5 Baseline Socat

Next, we conducted the experiment shown in Figure 5.8 to establish the baseline goodput

through a socat. Socat created a paired tun connection between the client and the server. The

client was assigned ‘10.11.0.6’ on tun1, and the server was assigned ‘10.11.0.1’ on tun1, as shown in

Table 5.1.
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From Listing 5.5, we start socat and Iperf on the server, then start socat on the client. Next,

we disable multipath TCP on all interfaces on the client and start the Iperf client.

1 server$ sudo socat -d -d TCP-LISTEN:9001,reuseaddr TUN:10.11.0.1/24,up,tun-name=tun1

2

3 server$ iperf -s

4

5

6 client$ sudo socat TCP:10.1.0.2:9001 TUN:10.11.0.6/24,up,tun-name=tun1

7

8 client$ sudo ip link set dev eth0 multipath off

9 client$ sudo ip link set dev eth1 multipath off

10 client$ sudo ip link set dev eth2 multipath off

11 client$ sudo ip link set dev tun1 multipath off

12

13 client$ iperf -c 10.11.0.1 -t 15

Listing 5.5: Commands to run the baseline socat throughput experiment.

5.3.6 Baseline PP

Figure 5.9 shows the experiment to calculate baseline goodput through the PMU PP. The

PMU channel is very low throughput, so we elected to test throughput by curling a 500B file instead

of using Iperf, which does not function over the PP.

44



F
ig

u
re

5
.8

:
B

a
se

li
n

e
so

ca
t

th
ro

u
g
h

p
u

t
ex

p
er

im
en

t.

45



As shown in Listing 5.6, we start the HTTP server and the PP server. We pass the PP

server a config file and tell it to use the ‘-p pmu’ protocol in server mode, and we forward traffic on

port 9001 to 10.1.0.1.

On the client, multipath TCP is disabled on all interfaces. We start the PP client using the

previously described configuration file and protocol. The PP client listens on port 9001 and forwards

traffic to 10.1.0.2. The intermediary node translates ‘10.1.0.2’ to‘10.3.0.1’, and then we POST data

with curl to determine the throughput of the channel.

1 server$ python3 ./http server.py

2 server$ sudo ./protocol proxy.py -c config/protocol-proxy.cfg -p pmu

3 server 10.1.0.1 9001

4

5

6 client$ sudo ip link set dev eth0 multipath off

7 client$ sudo ip link set dev eth1 multipath off

8 client$ sudo ip link set dev eth2 multipath off

9

10 client$ sudo ./protocol proxy.py -c config/protocol-proxy.cfg -p pmu

11 client 10.1.0.2 9001

12

13 client$ time curl -X POST --data-binary ”@500B.data” 127.0.0.1:9001/store.data

Listing 5.6: Commands to run the baseline PP throughput experiment.

5.3.7 Baseline socat-PP

Figure 5.10 shows the experiment to calculate the baseline goodput through a VPN using a

PT for obfuscation. We used OpenVPN obfuscated with obfs4 because of their extensive utilization.

In this experiment, we calculate the goodput of a single TCP stream between the client and the

server.
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As shown in Listing 5.7, we start the PP server as described in Section 5.3.6. Then, we

start the socat server listening on port 9001, where the PP server forwards traffic. On the client,

multipath TCP is disabled on all interfaces. We start the PP client using the same options described

in Section 5.3.6. We used curl to test the goodput through the socat-PP.

1 server$ sudo ./protocol proxy.py -c config/protocol-proxy.cfg -p pmu server 10.1.0.1 9001

2

3 server$ sudo socat -d -d TCP-LISTEN:9001,reuseaddr TUN:10.11.0.1/24,up,tun-name=tun1

4

5 server$ python3 ./http server.py

6

7

8 client$ sudo ip link set dev eth0 multipath off

9 client$ sudo ip link set dev eth1 multipath off

10 client$ sudo ip link set dev eth2 multipath off

11 client$ sudo ip link set dev tun1 multipath off

12

13 client$ sudo ./protocol proxy.py -c ./ config/protocol-proxy.cfg -p pmu client 10.1.0.2 9001

14

15 client$ sudo socat TCP:127.0.0.1:9001 TUN:10.11.0.6/24,up,tun-name=tun1

16

17 client$ time curl -X POST --data-binary ”@500B.data” 10.11.0.1:8080/store.data

Listing 5.7: Commands to run the baseline socat-PP throughput experiment.

5.3.8 Baseline mpTCP

Figure 5.11 shows the experiment to calculate the baseline goodput through a mpTCP

connection. In this experiment, we calculate the goodput of two TCP streams between the client

and the server.
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As shown in Listing 5.8, we repeat the commands in Section 5.3.1 but we enable mpTCP

on the external interfaces eth1 and eth2.

1 server$ iperf -s

2

3 client$ sudo ip link set dev eth0 multipath off

4 client$ sudo ip link set dev eth1 multipath on

5 client$ sudo ip link set dev eth2 multipath on

6 client$ iperf -c 10.1.0.2 -t 1

Listing 5.8: Commands to run the baseline mpTCP throughput experiment.

5.3.9 mpTCP VPN

In order to assess the performance mpTCP offers over a traditional VPN, we use the ar-

chitecture shown in Figure 5.12 to split a single TCP stream over two separate VPN tunnels using

mpTCP.
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In Listing 5.9, two separate OpenVPN servers are started. On the client, we set up two

separate OpenVPN tunnels. Then, we disable mpTCP on every interface except tun1 and tun2

(the OpenVPN tunnels). We start the Iperf client, and mpTCP splits the TCP stream across each

OpenVPN connection and effectively increases the throughput.

1 server$ sudo openvpn --config openvpn-server/server-1.conf

2 server$ sudo openvpn --config openvpn-server/server-2.conf

3

4 server$ iperf -s

5

6

7 server$ sudo openvpn --config openvpn-server/client- 1.2. conf

8 server$ sudo openvpn --config openvpn-server/client- 2.2. conf

9

10 client$ sudo ip link set dev eth0 multipath off

11 client$ sudo ip link set dev eth1 multipath off

12 client$ sudo ip link set dev eth2 multipath off

13 client$ sudo ip link set dev tun1 multipath on

14 client$ sudo ip link set dev tun2 multipath on

15

16 client$ iperf -c 10.11.0.1 -t 15

Listing 5.9: Commands to run the mpTCP VPN throughput experiment.

5.3.10 Multisession (mpTCP VPN-PT)

Testing the goodput through multiple VPN-PTs is the next logical progression shown in

Figure 5.13.
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From Listing 5.10, we start two obfs4 PT servers and setup two OpenVPN servers to forward

traffic to each. On the client, we set up the corresponding PT clients and configure them to connect

to the PT server and listen on port 1191 and 1192 for the OpenVPN clients. Then, we start the

OpenVPN clients, and they connect to the server through the PTs. Next, mpTCP is disabled on all

interfaces except tun1 and tun2. When we start the Iperf client, the TCP stream is split between

tun1 and tun2, increasing the effective goodput through the obfuscated VPN.

1 server$ sudo openvpn --config openvpn-server/server-1.conf

2 server$ sudo openvpn --config openvpn-server/server-2.conf

3

4 sudo shapeshifter-dispatcher - server -transparent -ptversion 2

5 -transports obfs4 - state state -bindaddr obfs4-10.3.0.1:1190

6 -orport 10.3.0.1:1194 -logLevel DEBUG -enableLogging

7 sudo shapeshifter-dispatcher - server -transparent -ptversion 2

8 -transports obfs4 - state state -bindaddr obfs4-10.4.0.1:1190

9 -orport 10.4.0.1:1194 -logLevel DEBUG -enableLogging

10

11 server$ iperf -s

12

13

14 client$ shapeshifter -dispatcher - client -transparent -ptversion 2

15 -transports obfs4 -proxylistenaddr 127.0.0.1:1191 - state state

16 -target 10.1.0.2:1190 -options

17 ’{”cert”: ”<FINGERPRINT>”, ”iat-mode”: ”0”}’

18 -logLevel DEBUG -enableLogging

19 client$ shapeshifter -dispatcher - client -transparent -ptversion 2

20 -transports obfs4 -proxylistenaddr 127.0.0.1:1192 - state state

21 -target 10.2.0.2:1190 -options

22 ’{”cert”: ”<FINGERPRINT>”, ”iat-mode”: ”0”}’

23 -logLevel DEBUG -enableLogging

24

25 client$ sudo openvpn --config openvpn-server/client-1.conf
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26 client$ sudo openvpn --config openvpn-server/client-2.conf

27

28 client$ sudo ip link set dev eth0 multipath off

29 client$ sudo ip link set dev eth1 multipath off

30 client$ sudo ip link set dev eth2 multipath off

31

32 client$ iperf -c 10.11.0.1 -t 15

Listing 5.10: Commands to run the mpTCP VPN-PT throughput experiment.

5.3.11 mpTCP Socat

To assess the performance mpTCP offers over a single socat connection, we use the archi-

tecture shown in Figure 5.14 to split a single TCP stream over two separate socat tunnels using

mpTCP.
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In Listing 5.11, two separate socat servers are started. On the client, we set up two separate

socat tunnels. Then, we disable mpTCP on every interface except tun1 and tun2 (the socat tunnels).

We start the Iperf client, and mpTCP splits the TCP stream across each socat connection and

effectively increases the throughput.

1 server$ sudo socat -d -d TCP-LISTEN:9001,reuseaddr TUN:10.11.0.1/24,up,tun-name=tun1

2 server$ sudo socat -d -d TCP-LISTEN:9002,reuseaddr TUN:10.12.0.1/24,up,tun-name=tun2

3

4 server$ iperf -s

5

6

7 client$ sudo ip link set dev eth0 multipath off

8 client$ sudo ip link set dev eth1 multipath off

9 client$ sudo ip link set dev eth2 multipath off

10 client$ sudo ip link set dev tun1 multipath on

11 client$ sudo ip link set dev tun2 multipath on

12

13 client$ sudo socat TCP:10.1.0.2:9001 TUN:10.11.0.6/24,up,tun-name=tun1

14 client$ sudo socat TCP:10.2.0.2:9002 TUN:10.12.0.6/24,up,tun-name=tun2

15

16 client$ iperf -c 10.11.0.1 -t 15

Listing 5.11: Commands to run the mpTCP socat throughput experiment.

5.3.12 Multisession (mpTCP socat-PP)

Testing the goodput through multiple socat-PPs an extension of the mpTCP VPN-PT

architecture. The experiment is shown in Figure 5.15.
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From Listing 5.12, we start two PP servers and setup two socat servers to forward traffic

to each. The second PP server uses a different config file, which allows it to send the host protocol

traffic over a different port to avoid confusion. On the client, we set up the corresponding PP clients

and configure them to connect to the PP server and listen on port 9001 and 9002 for the socat

clients. Then, we start the socat clients, and they connect to the server through the PPs. Next,

mpTCP is disabled on all interfaces except tun1 and tun2. When we curl the file to the server, the

TCP stream is split between tun1 and tun2, increasing the effective goodput through the obfuscated

socat tunnel.

1 server$ sudo socat -d -d TCP-LISTEN:9001,reuseaddr TUN:10.11.0.1/24,up,tun-name=tun1

2 server$ sudo socat -d -d TCP-LISTEN:9002,reuseaddr TUN:10.12.0.1/24,up,tun-name=tun2

3

4 server$ sudo ./protocol proxy.py -c config/protocol-proxy.cfg -p pmu server 10.1.0.1 9001

5 server$ sudo ./protocol proxy.py -c config/protocol-proxy-2.cfg -p pmu server 10.2.0.1 9002

6

7 server$ python3 ./http server.py

8

9

10 client$ sudo ip link set dev eth0 multipath off

11 client$ sudo ip link set dev eth1 multipath off

12 client$ sudo ip link set dev eth2 multipath off

13 client$ sudo ip link set dev tun1 multipath on

14 client$ sudo ip link set dev tun2 multipath on

15

16 client$ sudo ./protocol proxy.py -c ./ config/protocol-proxy.cfg -p pmu client 10.1.0.2 9001

17 client$ sudo ./protocol proxy.py -c ./ config/protocol-proxy-2.cfg -p pmu client 10.2.0.2 9002

18

19 client$ sudo socat TCP:127.0.0.1:9001 TUN:10.11.0.6/24,up,tun-name=tun1

20 client$ sudo socat TCP:127.0.0.1:9002 TUN:10.12.0.6/24,up,tun-name=tun2

21

22 client$ time curl -X POST --data-binary ”@500B.data” 10.11.0.1:8080/store.data
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Listing 5.12: Commands to run the mpTCP socat-PP throughput experiment.

5.3.13 Multipath (PT mpTCP)

An alternative to the architecture in Section 5.3.10 is a single PT split across multiple paths

as shown in Figure 5.16.
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From Listing 5.13, we start the PT server, and we enable mpTCP on eth1 and eth2 on

the client. When we start the PT client, mpTCP splits the connection over both eth1 and eth2.

Running Iperf on the client realizes this effective increase in throughput.

1 server$ iperf -s

2

3 sudo shapeshifter-dispatcher - server -transparent -ptversion 2

4 -transports obfs4 - state state -bindaddr obfs4-10.3.0.1:1190

5 -orport 10.3.0.1:5001 -logLevel DEBUG -enableLogging

6

7

8 client$ sudo ip link set dev eth0 multipath off

9 client$ sudo ip link set dev eth1 multipath on

10 client$ sudo ip link set dev eth2 multipath on

11

12

13 client$ shapeshifter -dispatcher - client -transparent -ptversion 2

14 -transports obfs4 -proxylistenaddr 127.0.0.1:5001 - state state

15 -target 10.1.0.2:1190 -options

16 ’{”cert”: ”<FINGERPRINT>”, ”iat-mode”: ”0”}’

17 -logLevel DEBUG -enableLogging

18

19 client$ iperf -c 127.0.0.1 -t 15

Listing 5.13: Commands to run the baseline PT mpTCP throughput experiment.

5.3.14 Results

The baseline goodput results are shown in Tables 5.2. Given our GENI architecture, the

upper bound on goodput was approximately 96.6 Mbps. Interestingly, the PT by itself did not

introduce significant overhead, as the goodput was still 96.6 Mbps. However, the introduction of a

VPN reduced the goodput by 12.7%. The introduction of an obfuscated VPN (VPN-PT) reduced

throughput even more substantially (37.1%). Introducing mpTCP improved the baseline goodput
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Table 5.2: Baseline throughput results.
Use-Case Goodput (Mbps)

baseline 96.6
VPN 84.3
PT 96.6

VPN-PT 60.8
mpTCP baseline 109

Table 5.3: Baseline Protocol Proxy throughput results.
Use-Case Goodput (bps)

PP 104.1
socat 468,000

socat-PP 26.7

by 12.8%.

Table 5.3 shows the baseline throughput results for the Protocol Proxy. The Protocol Proxy

goodput was limited to 104.1 bps, and obfuscating a socat tunnel with the PMU Protocol Proxy

reduced the goodput to 26.7 bps. The goodput of the socat tunnel alone was 468 kbps, which is

substantially lower than the baseline throughput.

The multipath (PT mpTCP) use-case provided improved goodput over the PT use-case

(105 Mbps vs. 96.6 Mbps) for an increase of 8.7%. Adding a second VPN connection improved the

goodput over a single VPN connection (110 Mbps vs. 84.3 Mbps) for an increase of 30.5%. It follows

that the multisession (mpTCP VPN-PT) use-case also offered a significant increase in goodput (69.0

Mbps vs. 60.8 Mbps) for an increase of 13.5%.

The multisession architecture improved both the socat tunnel obfuscated with the PMU

Protocol Proxy. The multisession socat channel increased goodput by 78.6%, and the multisession

socat-PP tunnel increased goodput by 22.8% over the PMU Protocol Proxy.

In both the multipath and multisession use-cases, mpTCP improved the effective goodput.

In the case of multisession, the baseline goodput better than the obfuscated VPN, but mpTCP

improved this with independent tunnels. In the multipath use-case, the goodput also improved

Table 5.4: Experimental throughput results.
Use-Case Goodput (Mbps) Change

Multipath (PT mpTCP) 105 +8.7%
mpTCP VPN 110 +30.5%

Multisession (mpTCP VPN-PT) 69.0 +13.5%
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Table 5.5: Experimental Protocol Proxy throughput results.
Use-Case Goodput (bps) Change

mpTCP socat 836,000 +78.6%
Multisession (mpTCP socat-PP) 32.8 +22.8%

beyond the baseline PT goodput. Through the baseline experiments, it appears the upper bound

for outgoing traffic is approximately 110 Mbps. This limitation is likely due to the limitations of

generating traffic locally. Since the single baseline throughput is 96.6 Mbps, and the baseline mpTCP

throughput is only 109 Mbps, we can conclude another limiting factor beyond the packet network

interface. Due to the nature of GENI, there may have been other complicating factors that limited

throughput.

While the multipath use-case provided a higher goodput than the multisession use-case

(105 Mbps vs. 69.0 Mbps), there are additional considerations. One major disadvantage of the

multipath use-case is the mpTCP headers. The mpTCP protocol broadcasts headers containing the

server’s IP address over all mpTCP-enabled interfaces. This broadcast makes the protocol easy to

fingerprint, and it can also reveal information about the bridge node depending on the configuration

of the intermediary nodes. However, since mpTCP is a legitimate protocol and actively used for

research, this risk is mitigated in certain circumstances. The multisession use-case avoids this entirely

by tunneling each mpTCP flow through independent covert channels. The VPN encapsulates the

mpTCP header, and the PT obfuscates the VPN traffic. Any observer would only see PT traffic

originating from the client. The multipath use-case also requires a TCP-based PT. Since the PMU

Protocol Proxy is UDP-based, the mpTCP kernel module is unable to split the session. Since some

PT development is moving towards UDP, this is an important consideration.

The multisession architecture improved the performance of both obfs4 and the PMU Pro-

tocol Proxy, but on very different scales. Obfs4’s is avoiding firewalls, not detection. The PMU

Protocol Proxy trades off goodput for a very low probability of detection. The resulting goodput is

unusable in most circumstances. However, it serves the purpose of a very low probability of detec-

tion transport. Using the socat tunnel introduced additional overhead and decreased the goodput.

In reality, such a tunnel is often necessary, as it may be desirable to tunnel multiple applications

or protocols through a covert channel, so it is often a necessary sacrifice. The multisession ar-

chitecture improves this goodput by 22.8%. Downloading a one kB file would be 1 minute faster

using the multisession architecture. Since files are larger than one kB, the aggregate improvement
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is substantial.
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Chapter 6

Conclusions

The protocol proxy illustrates the trade-off between enhanced anonymity and goodput. Our

observed goodput is on the order of 200 bits per second, while typical users expect megabits per

second. We note that our observed goodput differs from the theoretical goodput, and it is likely

due to implementation choices in the Protocol Proxy. There are areas for improvement that would

increase the covert channel’s capacity, but even the theoretical capacity is far below what most users

would consider tolerable. Therefore, the Protocol Proxy is most applicable in extreme conditions

when detection could have critical consequences.

In order to address goodput concerns, we presented two novel architectures for improving

PT goodput. The multipath (PT mpTCP) architecture tunnels a single PT connection through

multiple paths using the mpTCP protocol, which provided an 8.7% increase in goodput over a lone

obfs4 PT. The multisession (mpTCP VPN-PT) architecture tunnels a TCP stream through multiple

independent VPNs, each obfuscated with their own obfs4 PT. This approach provides significantly

more obfuscation since the client will appear to be running multiple PTs. The multisession approach

afforded a 13.5% increase in goodput and a lower overall goodput than the multipath approach (69

Mbps vs. 105 Mbps). The multisession PMU Protocol Proxy results mirrored the multisession obfs4

results. The multipath (PT mpTCP) architecture was not possible as the PMU Protocol Proxy

is UDP-based, but the multisession (mpTCP socat-PP) architecture resulted in a 22.8% goodput

improvement over the obfuscated socat tunnel (socat-PP).

Both approaches have ideal use-cases. Without the OpenVPN overhead, the multipath use-

case has significantly more goodput overall. However, depending on the network traffic analyzer
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in question, the traffic may appear as split-routing traffic or mpTCP traffic. The former is much

harder to run detection against, and the latter may not be suspicious in all circumstances. MpTCP

will likely become much more common in the future, and this may be even more desirable. The

multisession use-case has lower goodput than the baseline, but it affords more obfuscation by allowing

the client to run multiple independent PTs. When a PT is identified or disconnected, mpTCP will

resume using the remaining PTs. The multipath use-case does this as well, but the result here

manifests itself as the client using N − 1 independent PTs.

These approaches to increase goodput address one of the critical issues surrounding PT

development: the trade-off between detection probability and goodput. It is nearly impossible to

detect a single bit. It is much easier to detect several trillion. The multipath and multisession

use-cases provide viable alternatives for PTs that are traditionally low goodput, such as the PMU

Protocol Proxy. These techniques drastically improve the usability and reduce the download times

of a one kB file by up to a minute. Improving usability is key to adoption [56], and the multisession

PMU Protocol Proxy provides improved goodput while maintaining the same low probability of

detection.
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Appendix A Protocol Proxy Code

1 #!/usr/bin/env python3
2 """ Protocol Proxy
3
4 This file implements the threads necessary to transform network traffic into a
5 different protocol.
6
7 Read in a protocol and HMM
8
9 Thread 1: Generate HMM timings

10
11 Thread 2: Filter incoming packets to be forwarded
12
13 Thread 3: Encoding incoming packets to be forwarded
14
15 Thread 4: Generate placholder packets to be forwarded
16
17 Thread 5: Forward UDP packets
18
19 Thread 6: Receive incoming UDP packets
20
21 Thread 7: Decoding the incoming UDP packets
22
23 Thread 8: Forward the resulting TCP packets
24
25
26 Author:
27 Jon Oakley
28
29 File:
30 protocol_proxy.py
31
32 Date:
33 2017-06-22 Version 0.0
34 2019-06-15 Version 1.0
35 """
36
37 import signal
38 import multiprocessing as mp
39 import configparser
40 import argparse
41 import socket
42 import time
43 import sys
44 import os
45 import psutil
46 import scapy.all as scapy
47 # pylint: disable=wrong-import-position
48 # pylint: disable=import-error
49 # pylint: disable=no-name-in-module
50 sys.path.append(’./src’)
51 import iputils
52 from hmm import HMM
53 from encoder import Encoder
54 from decoder import Decoder
55 # pylint: enable=wrong-import-position
56 # pylint: enable=import-error
57 # pylint: enable=no-name-in-module
58 # pylint: disable=no-member
59
60 ## Number of timings in the Q
61 Q_THRESHOLD = 100
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62 ## Seconds to sleep after Q is full
63 TIMING_SLEEP = .005
64 ## Global threads
65 PROCESSES = []
66
67 def generate_timings(hmm_model, timing_q):
68 """Thread 1: Generate HMM timings
69
70 Use a HMM to generate interpacket delay timings according to the host
71 protocol. Runs in an infinite loop, constantly making sure there are
72 q_threshold timings in
73
74 Args:
75 hmm_model (HMM): an HMM model that has been inferred
76 timing_q (queue): A queue to hold the generated timings
77 """
78 while True:
79 if timing_q.qsize() >= Q_THRESHOLD:
80 time.sleep(TIMING_SLEEP)
81 else:
82 val = hmm_model.get_observation()
83 timing_q.put(val)
84 # print val
85
86
87 def filter_packets(incoming_tcp_q, duplicate_packets):
88 """Function to use on filtered packets
89
90 This structure is used so that additional arguments can be passed
91 to the function
92
93 Args:
94 incoming_tcp_q (queue): A queue that holds incoming TCP packets
95 duplicate_packets(queue): A queue to holds duplicate packets
96 """
97 def send_filtered_packets(packet):
98 data = bytes(packet[’TCP’])
99 if not data in duplicate_packets:

100 print("New Packet!")
101 incoming_tcp_q.put(data)
102 duplicate_packets.append(data)
103 else:
104 duplicate_packets.remove(data)
105
106 return send_filtered_packets
107
108
109 def receive_tcp_data(fwd_port, direction, incoming_tcp_q):
110 """Thread 2: Filter incoming packets to be forwarded
111
112 Scapy is used to filter incoming packets and apply the filter_packets
113 function to all of the packets that match the filter.
114
115 Args:
116 fwd_port (int): The port to forward traffic to/from
117 direction (string): If TCP port is ’src’ or ’dst’
118 incoming_tcp_q (queue): the queue to store incoming packets in
119 """
120 duplicate_packets = []
121 filt = "host 127.0.0.1 and ( tcp {} port {} )".format(direction, fwd_port)
122 print(filt)
123 scapy.sniff(filter=filt,
124 prn=filter_packets(incoming_tcp_q, duplicate_packets), iface="lo")
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125
126
127 def encode_tcp_data(incoming_tcp_q, encode_q, enc):
128 """Thread 3: Encoding incoming packets to be forwarded
129
130 Incoming packets are encoded using FTE
131
132 Args:
133 incoming_tcp_q (queue): the queue to store incoming packets in
134 encode_q (queue): the queue to store encoded payloads
135 enc (Encoder): The FTE encoder
136 """
137
138 while True:
139 if incoming_tcp_q.qsize() > 0:
140 b_packet = incoming_tcp_q.get()
141 data = enc.encode(b_packet)
142 encode_q.put(data)
143
144
145 def generate_placeholders(placeholder_q, enc):
146 """Thread 4: Generate placholder packets to be forwarded
147
148 This process creates placholder packets that can be sent to
149 maintain uniform timing
150
151 Args:
152 placeholder_q (queue): the queue to store placeholder payloads
153 enc (Encoder): The FTE encoder
154 """
155 while True:
156 if placeholder_q.qsize() >= Q_THRESHOLD:
157 time.sleep(TIMING_SLEEP)
158 else:
159 placeholder_q.put(enc.encode_placeholder())
160
161 # pylint: disable=too-many-arguments
162 def send_udp_data(timing_q, encode_q, placeholder_q, udp_send_socket, fwd_addr,
163 use_timing):
164 """Thread 5: Forward UDP packets
165
166 The main forwarding function. This process waits for a given time (specified
167 by the time in the timing_q) and either sends an encodeed data packet or a
168 placeholder packet using the UDP)socket to the fwd_addr.
169
170 Args:
171 timing_q (queue): A queue to hold the generated timings
172 encode_q (queue): the queue to store encoded payloads
173 placeholder_q (queue): the queue to store placeholder payloads
174 udp_send_socket (socket): Outgoing UDP socket
175 fwd_addr (tuple): Outgoing UDP socket
176 use_timing (bool): Whether or not to send placeholder packets
177 """
178 psutil.Process(os.getpid()).nice(-19)
179 data_l = []
180 while True:
181 start = time.time()
182 timing = timing_q.get()
183
184 # Wait until timing is right
185 while timing > (time.time() - start):
186 pass
187
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188 # Check for data more data
189 if data_l == []:
190 if not encode_q.empty():
191 data_l = encode_q.get()
192
193 # Check if there is data available
194 if data_l != []:
195 # Send data
196 data = data_l.pop()
197 udp_send_socket.sendto(data, fwd_addr)
198 print("sending_data")
199 elif use_timing:
200 # Send junk
201 data = placeholder_q.get()
202 udp_send_socket.sendto(data, fwd_addr)
203 else:
204 pass
205
206
207 # pylint: enable=too-many-arguments
208 def receive_udp_data(recv_addr, incoming_udp_q):
209 """Thread 6: Receive incoming UDP packets
210
211 This process simply receives incoming UDP packets
212
213 Args:
214 recv_addr (addr): Address that UDP packets are arriving on
215 incoming_udp_q (queue): Queue to store incoming UDP packets
216 """
217
218 udp = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
219 udp.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
220 udp.bind(recv_addr)
221 while True:
222 (data, _) = udp.recvfrom(4096)
223 pkt = scapy.Ether(data)
224 incoming_udp_q.put(bytes(pkt))
225
226
227 def decode_udp_data(incoming_udp_q, decode_q, dec):
228 """Thread 7: Decrypt the incoming UDP packets
229
230 This process decodes the incoming UDP data.
231
232 Args:
233 incoming_udp_q (queue): Queue to store incoming UDP packets
234 decode_q (queue): Queue to store decroded payloads
235
236 Note:
237 Junk data is identified by the three bytes: ’#\\x04\\x08’
238 at the beginning of the data sequence
239 """
240 while True:
241 if incoming_udp_q.qsize() > 0:
242 data = incoming_udp_q.get()
243
244 # Check for junk data
245 if not data[0:3] == ’#\x04\x08’:
246 b_packet = dec.decode(data)
247 if not b_packet is None:
248 print("received_data")
249 decode_q.put(b_packet)
250
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251
252 def send_tcp_data(decode_q, mode, fwd_port):
253 """Thread 8: Forward the resulting TCP packets
254
255 This process sends the decodeed data as spoofed TCP packets using
256 scapy.
257
258 Args:
259 decode_q (queue): A queue to hold the decoded UDP traffic
260 """
261 # This socket type is required to inject packets in the ’lo’
262 sock = scapy.L3RawSocket(iface="lo")
263 while True:
264 if decode_q.qsize() > 0:
265 b_pkt = decode_q.get()
266 pkt = scapy.TCP(b_pkt)
267 tcp = scapy.IP(dst=’127.0.0.1’)/pkt[’TCP’]
268
269 if mode == iputils.SERVER:
270 tcp.dport = int(fwd_port)
271 else:
272 tcp.sport = int(fwd_port)
273
274 del tcp[’TCP’].chksum
275 sock.send(tcp)
276 print("Sending TCP!")
277
278 # pylint: disable=unused-argument
279 def signal_handler(sig, frame):
280 """Signal Handler
281
282 Iterates over all of the running processes and terminates them.
283
284 Args:
285 signal (int): Signal to handle
286 frame (?): unused?
287 """
288 for proc in PROCESSES:
289 proc.terminate()
290
291
292 # pylint: enable=unused-argument
293 def main():
294 # pylint: disable=too-many-statements
295 # pylint: disable=too-many-locals
296 """Main
297
298 Main function that starts the threads and closes things when the server
299 is stopped.
300
301 """
302 # Ensure user is root
303 if os.geteuid() != 0:
304 print("Must be ROOT!")
305 sys.exit()
306
307 parser = argparse.ArgumentParser(description="Protocol Proxy framework.")
308 parser.add_argument(’--version’, action=’version’, version=’%(prog)s 0.3’)
309 parser.add_argument(’-c’, ’--config’, nargs=1, required=False,
310 type=str, dest=’config’, help=’Configuration file’,
311 default=’config/protocol-proxy.cfg’)
312 parser.add_argument(’--no-timing’, required=False, action=’store_false’,
313 dest=’timing’, help=’Use host protocol timing?’,
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314 default=True)
315 parser.add_argument(’-l’, ’--local’, required=False, default=False,
316 action=’store_true’, dest=’local’,
317 help=’Local dev mode -- increment host port’)
318 parser.add_argument(’-p’, ’--proto’, nargs=1, required=False, default=’PMU’,
319 type=lambda s: s.upper(), dest=’proto’,
320 help=’Host protocol to emulate’)
321 parser.add_argument(’mode’, choices=[iputils.SERVER, iputils.CLIENT],
322 type=lambda s: s.lower(), help=’Client or Server mode’)
323 parser.add_argument(’dest_ip’, type=iputils.valid_ip,
324 help=’IP to forward traffic to’)
325 parser.add_argument(’fwd_port’, type=int, help=’Port to forward traffic from’)
326
327 # Add config file to command line args
328 # Check protocol command line arg against config file
329 # Add dev mode
330
331 args = parser.parse_args()
332 # Eventually, this should be specified from the command line
333 #config_file = ’config/protocol-proxy.cfg’
334 config_file = args.config
335 # Also specified from the command line (and verified)
336 host_proto = args.proto[0]
337
338 # fwd port optional from cmd line (override config file)
339
340 config = configparser.ConfigParser()
341 config.read(config_file)
342
343 if not host_proto in config.sections() or host_proto == ’DEFAULT’:
344 print("Invalid protocol")
345 parser.print_help()
346 sys.exit()
347
348 ## The default port for the syncrophasor protocol
349 # Later configured via config file
350 # Rename
351 host_port = int(config[host_proto][’port’])
352
353 # UDP Ports client/server are listening to
354 client_udp_port = host_port
355 # Only for local testing
356 if args.local:
357 server_udp_port = host_port + 1
358 else:
359 server_udp_port = host_port
360
361 if args.mode == iputils.CLIENT:
362 direction = ’dst’
363 fwd_addr = (args.dest_ip, server_udp_port)
364 print("Sending traffic to %s on port %d" % fwd_addr)
365 recv_addr = (’0.0.0.0’, client_udp_port)
366 print("Receiving traffic to %s on port %d" % recv_addr)
367 elif args.mode == iputils.SERVER:
368 direction = ’src’
369 fwd_addr = (args.dest_ip, client_udp_port)
370 print("Sending traffic to %s on port %d" % fwd_addr)
371 recv_addr = (’0.0.0.0’, server_udp_port)
372 print("Receiving traffic to %s on port %d" % recv_addr)
373
374 # UDP Socket
375 udp_send_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
376 udp_send_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
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377
378 # HMM Setup
379 # Determine this from protocol config
380 proto_config = configparser.ConfigParser()
381 proto_config.read(config[host_proto][’config’])
382 proto_base = os.path.dirname(os.path.abspath(config[host_proto][’config’]))
383
384 hmm_folder = os.path.join(proto_base, proto_config[’HMM’][’hmm_folder’])
385 #hmm_file_list = proto_config[’HMM’][’hmm_files’].split(’,’)
386 hmm_object = proto_config[’HMM’][’hmm_object’]
387
388 hmm_model = HMM().load_hmm(os.path.join(hmm_folder, hmm_object))
389 hmm_model.import_observations(hmm_folder)
390 hmm_model.print_txt_graph()
391
392 # Encoder/Decoder Setup
393 keyfile = config[’DEFAULT’][’aes_key’]
394 protocol_cfg = config[host_proto][’config’]
395
396 enc = Encoder(protocol_cfg, keyfile)
397 placeholder_enc = Encoder(protocol_cfg, keyfile)
398 dec = Decoder(protocol_cfg, keyfile)
399
400 iputils.add_iptables_rules(args.mode, args.fwd_port)
401
402 # Handle interrupt
403 signal.signal(signal.SIGINT, signal_handler)
404 # Create the processes
405 # Try loop catches keyboard interrupts for clean stop
406 print(’Generating Timings’)
407 print(’Done’)
408 # Thread 1
409 timing_q = mp.Queue()
410 timing_p = mp.Process(target=generate_timings,
411 args=(hmm_model, timing_q,))
412 timing_p.start()
413 PROCESSES.append(timing_p)
414
415 # Thread 2
416 incoming_tcp_q = mp.Queue()
417 incoming_tcp_p = mp.Process(target=receive_tcp_data,
418 args=(args.fwd_port, direction,
419 incoming_tcp_q,))
420 incoming_tcp_p.start()
421 PROCESSES.append(incoming_tcp_p)
422
423 # Thread 3
424 encode_q = mp.Queue()
425 encode_p = mp.Process(target=encode_tcp_data,
426 args=(incoming_tcp_q, encode_q, enc,))
427 encode_p.start()
428 PROCESSES.append(encode_p)
429
430 # Thread 4
431 placeholder_q = mp.Queue()
432 placeholder_p = mp.Process(target=generate_placeholders,
433 args=(placeholder_q, placeholder_enc,))
434 placeholder_p.start()
435 PROCESSES.append(placeholder_p)
436
437 # Thread 5
438 udp_send_p = mp.Process(target=send_udp_data,
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439 args=(timing_q, encode_q, placeholder_q,
440 udp_send_socket, fwd_addr, args.timing,))
441 udp_send_p.start()
442 PROCESSES.append(udp_send_p)
443
444 # Thread 6
445 incoming_udp_q = mp.Queue()
446 incoming_udp_p = mp.Process(target=receive_udp_data,
447 args=(recv_addr, incoming_udp_q,))
448 incoming_udp_p.start()
449 PROCESSES.append(incoming_udp_p)
450
451 # Thread 7
452 decode_q = mp.Queue()
453 decode_p = mp.Process(target=decode_udp_data,
454 args=(incoming_udp_q, decode_q, dec,))
455 decode_p.start()
456 PROCESSES.append(decode_p)
457
458 # Thread 8
459 tcp_send_p = mp.Process(target=send_tcp_data,
460 args=(decode_q, args.mode, args.fwd_port,))
461 tcp_send_p.start()
462 PROCESSES.append(tcp_send_p)
463
464 # Joining threads
465 for proc in PROCESSES:
466 proc.join()
467
468 iputils.del_iptables_rules(args.mode, args.fwd_port)
469
470 print("Exiting")
471
472 if __name__ == ’__main__’:
473 main()

Listing 1: The main protocol-proxy code.

1 #!/usr/bin/env python3
2 """ Encoder Module
3
4 These classes allow data to be encoded as a given protocol.
5 All elements of the protocol are maintained, mainly timing and payload values.
6
7 Author:
8 Jon Oakley
9

10 File:
11 encoder.py
12
13 Date:
14 2017-06-22
15 2019-06-15
16 """
17
18 import sys
19 import random
20 import os
21 import struct
22 import configparser
23 from Crypto.Cipher import AES
24
25 ## Encode data into the payload for any given protocol
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26 class Encoder():
27 """A class to encode a static network protocol
28
29 This class can take arbitrary data and encode it using FTE as a
30 static network protocol.
31
32 Args:
33 protocol_cfg (string): absolute path to the protocol config file
34 keyfile (string): path to the AES public/private keypair
35 """
36 def __init__(self, protocol_cfg, keyfile):
37 ## Protocol configuraiton options
38 config = configparser.ConfigParser()
39 config.read(protocol_cfg)
40 ## The size of each block
41 self.aes_encrypted_block_size = int(config[’DEFAULT’][’aes_chunk_size’])
42 ## The size of each AES chunk (minus seq num size)
43 self.aes_chunk_size = int(config[’DEFAULT’][’aes_chunk_size’]) - 4
44
45 with open(keyfile, ’rb’) as key:
46 ## AES key data
47 self.aes_key = key.read()
48
49 ## The AES cipher
50 self.cipher = AES.new(self.aes_key, AES.MODE_ECB)
51 ## The protocol instance
52 sys.path.append(os.path.dirname(protocol_cfg))
53 cls = getattr(__import__(config[’DEFAULT’][’mapper’]),
54 config[’DEFAULT’][’class’])
55
56 # Load protocols from here.
57 if config[’DEFAULT’].getboolean(’load’):
58 proto_base = os.path.dirname(protocol_cfg)
59 proto_obj = os.path.join(proto_base,
60 config[’DEFAULT’][’protocol_object’])
61 self.proto = cls().load_protocol(proto_obj)
62 else:
63 self.proto = cls()
64 self.proto.import_protocol(protocol_cfg)
65 # self.proto.print_stats()
66
67 # get the number of bits that can be encoded in the protocol
68 # payload and leave 8 bits for the sequence number
69 ## Number of data bits per protocol payload
70 self.binary_chunk_size = self.proto.get_enc_protocol_size() - 8
71
72 print("Encoder Initialized")
73
74
75 def encode(self, data):
76 """Encode
77
78 Encode data using FTE and the defined protocol. Chunks data into
79 ECB-sized chunks (with a prepended sequence number. Then encrypts those
80 chunks. Each encrypted chunk is then broken up into smaller chunks that
81 can fit into a single payload (with a sequence number prepended). These
82 smaller chunks are mapped to a payload (Protocol) and returned.
83
84 Args:
85 data (string): Binary data of arbitrary length to encode.
86
87 Returns:
88 Array of binary payloads
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89 """
90 # Prepend data length
91 data = struct.pack(’i’, len(data)) + data
92
93 # Breaks the data into chunks to be encrypted
94 encrypted_blocks = [block for block in self.encrypt(data)]
95
96 # Converts each encrypted chunk to a binary string
97 str_chunks = [self.bin2str(block) for block in encrypted_blocks]
98
99 # Map binary strings to Protocol payloads

100 payloads = [payload for payload in self.map_payloads(str_chunks)]
101
102 # Reverse so that list.pop() can be used
103 payloads.reverse()
104
105 return payloads
106
107
108 def encode_placeholder(self):
109 """Encode placeholder
110
111 Create a dummy payload that will be ignored because of sequence of
112 ’11111111’ at the beginning.
113
114 Returns:
115 Binary payload (with inidicator sequence)
116 """
117
118 # Generate random data to transmit
119 length = self.binary_chunk_size + 8
120 rand_str = ’’.join([random.choice([’1’, ’0’]) for x in range(length)])
121
122 # add delimeter
123 payload = ’11111111’ + rand_str[8:]
124
125 return self.proto.map_data(payload)
126
127 @staticmethod
128 def chunk(data, step):
129 """Chunk
130
131 Chunks data into length-n chunks.
132
133 Args:
134 data (iter): Data to chunkify
135 length (int): Chunk length
136
137 Returns:
138 generator with the next chunk
139 """
140 for i in range(0, len(data), step):
141 yield data[i:i + step]
142
143
144 def encrypt(self, data):
145 """Encrypt
146
147 Encrypt an arbitrary blob of data. Breaks data into chunks, prepends
148 sequence number, and encrypts using AES ECB encryption.
149
150 Args:
151 data (bytes): b’\x01\x02...’
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152
153 Returns:
154 generator object of encrypted chunks
155 """
156 idx = -1
157 for block in self.chunk(data, self.aes_chunk_size):
158 idx += 1
159 yield self.encrypt_chunk(struct.pack(’>I’, idx) + block)
160
161
162 def encrypt_chunk(self, block):
163 """Encrypt Chunk
164
165 This function handles the actual encryption. The block is padded to the
166 appropriate length and then encrypted.
167
168 Args:
169 block (bytes): b’\x01\x02...’
170
171 Returns:
172 Encrypted block
173 """
174 # Calculate number of bytes to pad
175 pad_len = (self.aes_encrypted_block_size) - len(block)
176
177 # Pad with random data
178 padding = os.urandom(pad_len)
179
180 # encrypt and return the result
181 return self.cipher.encrypt(block + padding)
182
183 @staticmethod
184 def bin2str(data):
185 """bin2str
186
187 This function converts binary data to a string of ’1’s and ’0’s. This
188 is necessary because the protocol mapping happens at the bit level, and
189 this is the easiest way to track bits in Python.
190
191 Args:
192 data (bytes): b’\x01\x02...’
193
194 Returns:
195 String: ’1010..11’
196 """
197 binstr = ""
198 for byte in data:
199 binstr += ’{:08b}’.format(byte)
200
201 return binstr
202
203
204 def map_payloads(self, data_strings):
205 """Map Payloads
206
207 Maps data strings (’1011...01’) to Protocol payloads using the protocol
208 class. Sequence numbers are prepended to each sub-chunk (the AES chunk is
209 too big to fit in a single payload). The data is mapped to the target
210 payload and returned as a generator object.
211
212 Args:
213 data (list of bytes): b’\x01\x02...’
214
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215 Returns:
216 generator object: contains binary payload for target protocol
217 """
218 # Iterate through each byte string
219 for data in data_strings:
220 idx = -1
221 for block in self.chunk(data, self.binary_chunk_size):
222 # Add sequence number
223 idx += 1
224 chunk = self.bin2str(bytes([idx])) + block
225 # Generate padding
226 pad_len = self.proto.get_enc_protocol_size() - len(chunk)
227 padding = ’’.join([random.choice([’1’, ’0’]) for x in range(

pad_len)])
228 # Map to target protocol
229 yield self.proto.map_data(chunk + padding)

Listing 2: The protocol-proxy encoder.

1 #!/usr/bin/env python3
2 """ Decoder Module
3
4 These classes allow data to be decoded from a given protocol.
5
6 Author:
7 Jon Oakley
8
9 File:

10 decoder.py
11
12 Date:
13 2017-06-22
14 2019-06-15
15 """
16
17 import sys
18 import os
19 import struct
20 import configparser
21 from Crypto.Cipher import AES
22
23 # pylint: disable=too-many-instance-attributes
24 class Decoder():
25 """A class to encode a static network protocol
26
27 This class can take arbitrary data and encode it using FTE as a
28 static network protocol.
29
30 Args:
31 protocol_cfg (string): absolute path to the protocol config file
32 keyfile (string): path to the AES public/private keypair
33 """
34 def __init__(self, protocol_cfg, keyfile):
35 ## Config file
36 config = configparser.ConfigParser()
37 config.read(protocol_cfg)
38 ## The size of the AES block after encryption
39 self.aes_enc_size = int(config[’DEFAULT’][’aes_chunk_size’])
40
41 with open(keyfile, ’rb’) as key:
42 ## AES cipher
43 self.cipher = AES.new(key.read(), AES.MODE_ECB)
44

81



45 ## The protocol instance
46 protocol_path = os.path.dirname(protocol_cfg)
47 sys.path.append(protocol_path)
48 cls = getattr(__import__(config[’DEFAULT’][’mapper’]),
49 config[’DEFAULT’][’class’])
50
51 # Load protocols from here.
52 if config[’DEFAULT’].getboolean(’load’):
53 proto_base = os.path.dirname(protocol_cfg)
54 proto_obj = os.path.join(proto_base,
55 config[’DEFAULT’][’protocol_object’])
56 self.proto = cls().load_protocol(proto_obj)
57 else:
58 self.proto = cls()
59 self.proto.import_protocol(protocol_cfg)
60 # self.proto.print_stats()
61
62 # Initialize Session Variables
63 ## The current AES chunk sequence number
64 self.aes_chunk_seq = 0
65 ## The current payload sequence number
66 self.proto_chunk_seq = 0
67 ## Data in the binary chunk
68 self.str_encrypt_blk = ’’
69 ## The length of the packet
70 self.packet_len = 0
71 ## Data in the packet
72 self.packet_data = bytes()
73
74 print("Decoder Initialized")
75
76
77 def reset(self):
78 """Reset
79
80 Called whenever a malformed packet is received or it’s time to process
81 a new packet
82 """
83 ## The current AES chunk sequence number
84 self.aes_chunk_seq = 0
85 ## The current payload sequence number
86 self.proto_chunk_seq = 0
87 ## Data in the binary chunk
88 self.str_encrypt_blk = ’’
89 ## The length of the packet
90 self.packet_len = 0
91 ## Data in the packet
92 self.packet_data = bytes()
93
94
95 def decode(self, payload):
96 """Decode
97
98 Decode data using FTE and the defined protocol. Data is unmapped
99 from the host protocol. The payload sequence number is stripped

100 and checked to determine if the packet was a placeholder. The data
101 is aggregated until an AES block is assembled. The AES block is
102 decrypted and the AES sequence number is checked to determine if
103 packets arrived out of order. If the AES sequence number is 0,
104 the packet length is separated from the decrypted AES block. The
105 remaining data is appended to the existing packet data and returned once
106 the packet data is longer than the packet length. Before returning the
107 packet, any extra data that was appended to make the AES block size is
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108 stripped.
109
110 Args:
111 payload (bytes): A binary payload from Protocol
112
113 Returns:
114 Binary data that was encoded in the payload
115 """
116 # Get the data encoded in the payload
117 payload_seq, data = self.proto.unmap_data(payload)
118
119 if payload_seq is None:
120 return None
121
122 # Check to see if the payload seq number is in order
123 if not payload_seq == self.proto_chunk_seq:
124 self.reset()
125 return None
126
127 self.proto_chunk_seq += 1
128
129 # append the new binary data to the existing binary data
130 self.str_encrypt_blk += data
131
132 # Check to see if all the data for one AES block has arrived
133 # There should be 64B/AES block, therefore, 512 bits
134 if len(self.str_encrypt_blk) >= self.aes_enc_size*8:
135 # Reset the payload sequence number
136 self.proto_chunk_seq = 0
137 # Strip any padding
138 self.str_encrypt_blk = self.str_encrypt_blk[:self.aes_enc_size*8]
139 # Convert the binary string to a byte string
140 # Note that random data was sent in order to fill the last payload
141 # this data is removed here
142 bin_encrypt_blk = self.str2bin(self.str_encrypt_blk)
143 # Reset the incoming binary data
144 self.str_encrypt_blk = ’’
145 # Decrypt the data
146 decrypt_blk = self.decrypt(bin_encrypt_blk)
147 # Set the AES sequence number
148 aes_seq = struct.unpack(’>I’, decrypt_blk[:4])[0]
149 data = decrypt_blk[4:]
150
151 # Check to see if the AES chunk is valid
152 if not aes_seq == self.aes_chunk_seq:
153 self.reset()
154 return None
155
156 self.aes_chunk_seq += 1
157
158 # Parse the length of the packet
159 if aes_seq == 0:
160 self.packet_len = struct.unpack(’i’, data[:4])[0]
161 data = data[4:]
162
163 # Store the packet data
164 self.packet_data += data
165
166 # Check to see if all the packet data has arrived
167 if len(self.packet_data) >= self.packet_len:
168 # Extra data may have been added to fill the last
169 # AES block. This data is removed here
170 packet = self.packet_data[:self.packet_len]
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171 self.reset()
172 return packet
173
174 return None
175
176
177 def decrypt(self, block):
178 """Decrypt
179
180 Decrypt a binary AES block
181
182 Args:
183 block (bytes): Encrypted AES block
184
185 Returns:
186 Decrypted binary block
187 """
188 return self.cipher.decrypt(block)
189
190
191 @staticmethod
192 def str2bin(data):
193 """str2bin
194
195 This function converts a string of ’1’s and ’0’s to binary data. This
196 is necessary because the protocol mapping happens at the bit level, and
197 this is the easiest way to track bits in Python.
198
199 Args:
200 data (string): ’1010..11’
201
202 Returns:
203 Binary data: b’\x01\x02...’
204 """
205 return bytes([int(data[i:i+8], 2) for i in range(0, len(data), 8)])

Listing 3: The protocol-proxy decoder.

1 #!/usr/bin/env python3
2 """ Protool Module
3
4 This class is used to model a static protocol. Implementaitons of the static
5 protocol should inherit this class and implement the ’map_data’ and ’unmap_data’
6 functions.
7
8 Author:
9 Jon Oakley

10
11 File:
12 protocol.py
13
14 Date:
15 2017-06-22 Version 0.0
16 2019-06-16 Version 1.0
17 """
18
19 import os
20 import math
21 import configparser
22 import pickle
23
24 class Protocol():
25 """A class to represent a static network protocol
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26
27 This class contains the attributes of a protected static protocol.
28 Data is transformed in to the protocol using Format Transforming
29 Encryption (FTE).
30
31 """
32 def __init__(self):
33 ## Number of encoded bits that can fit in each field
34 self.enc_field_size = []
35 ## Number of bytes in the protocol field
36 self.field_size = []
37 ## Total number of bytes in the protocol
38 self.protocol_size = 0
39 ## number of observations for each field
40 self.num_obs = []
41 ## Total number of bits that can be encoded in the payload
42 self.enc_protocol_size = 0
43 ## multidimensional array of observations for each field
44 self.field_obs = []
45 # print the protocol’s statistics
46 #self.print_stats()
47
48 def map_data(self, data):
49 """Template function to map data into a protocol’s payload
50
51 This function assumes data is a string of enc_protocol_size with ’1’
52 and ’0’ characters for example, 0x07 would be the string ’00000111’.
53 A template is used because the mapping will depend heavily on the specific
54 protocol. An implementation of the mapping should be included in the
55 protocol’s directory.
56
57 Assumptions:
58 len(data) == enc_protocol_size
59
60 Args:
61 data (string): ’1011..10’
62
63 Returns:
64 Binary payload
65 """
66
67
68 def unmap_data(self, data):
69 """Template function to map a protocol’s payload to data
70
71 This function assumes data is a string of enc_protocol_size with ’1’
72 and ’0’ characters for example, 0x07 would be the string ’00000111’.
73 A template is used because the mapping will depend heavily on the specific
74 protocol. An implementation of the mapping should be included in the
75 protocol’s directory.
76
77 Assumptions:
78 len(data) == sum(self.field_size)
79
80 Args:
81 data (bytes): b’\x01\x02’
82
83 Returns:
84 The string of ’1’s and ’0’s stored in the payload.
85 """
86
87
88 def get_enc_protocol_size(self):
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89 """Gets the information capacity of the protocol
90
91 Returns:
92 number of bits that can be encoded in the protocol
93
94 """
95
96 return self.enc_protocol_size
97
98
99 def print_stats(self):

100 """Print Statistics
101
102 Display the various statistics about the protocol
103
104 """
105
106 print(f’Observations: {self.num_obs}’)
107 print(f’Number of bits: {self.enc_field_size}’)
108 print(f’Total size: {self.enc_protocol_size}’)
109 print(f’Number of bytes in each field: {self.field_size}’)
110 print(f’Total Bytes: {self.protocol_size}’)
111
112
113 def import_protocol(self, protocol_cfg):
114 """Import Protocol
115
116 Import the protocol based on it’s configuration file
117
118 Args:
119 protocol_cfg (string): A path to the protocol config file
120
121 """
122
123 ## Configuration parser
124 config = configparser.ConfigParser()
125 config.read(protocol_cfg)
126 base = os.path.dirname(os.path.abspath(protocol_cfg))
127
128 #file_count = config[’section’][’value’]
129 file_count = int(config[’DEFAULT’][’fields’])
130
131 for idx in range(1, file_count+1):
132 field_file = os.path.join(base, f"fields/field{idx}")
133 binary_obs = []
134
135 with open(field_file, ’r’) as in_file:
136 # Read in observations
137 obs = in_file.read().splitlines()
138 # Number of payload bytes in the field
139 num_bytes = len(obs[0].split(’+’))
140 self.field_size.append(num_bytes)
141 # store the total protocol size
142 self.protocol_size += num_bytes
143 # store the length of the list in an array
144 self.num_obs.append(len(obs))
145 # Number of bits to represent a base10 number
146 enc_field_size = int(math.floor(math.log(len(obs), 2)))
147 # store the field capacity
148 self.enc_field_size.append(enc_field_size)
149 # total amount of data that can be stored with this payload
150 self.enc_protocol_size += enc_field_size
151 # create an array of all the binary observations
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152 for val in obs:
153 # Calculate the binary value of the observation
154 binary_value = bytes([int(x) for x in val.split(’+’)])
155 # Append observation to list of all observation for this
156 # field
157 binary_obs.append(binary_value)
158
159 # Append the all the observations for this field to
160 # list of all other observations
161 self.field_obs.append(binary_obs)
162
163
164 def save_protocol(self, savefile):
165 """Save Protocol
166
167 Saves the protocol as a pickle object
168
169 Args:
170 savefile (string): Location to save the file
171
172 """
173
174 with open(savefile, ’wb’) as out_file:
175 pickle.dump(self, out_file)
176
177
178 @classmethod
179 def load_protocol(cls, filename):
180 """Load Protocol
181
182 Load the protocol and return the object
183
184 Args:
185 filename (string): Path to the protocol’s pickle file
186
187 Return:
188 A Protocol object
189
190 Notes:
191 Untested. May break things.
192
193 """
194
195 with open(filename, ’rb’) as in_file:
196 obj = pickle.load(in_file)
197 return obj

Listing 4: The protocol-proxy protocol mapper.

1 #!/usr/bin/env python3
2
3
4 ## \package hmm
5 # \brief Everything needed to utilize an HMM FSA.
6 # \author Jon Oakley
7 # \date 06/22/2017
8 #
9 # Read in data into an HMM, advance through states, and generate data

10 # from the HMM.
11 #
12 # The term ’Expression’ or ’expr’ is used to reference the output of a state

transition.
13 # The need for this arises from the fact that states are collapsed and output can
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no
14 # longer be determined by the last letter of a given state
15
16 import random
17 import pickle
18 import itertools
19 import math
20 from graphviz import Digraph
21 import sys
22
23 class HMM():
24 def __init__(self):
25 self.hmm_symbols = ’’
26 self.L = 1
27 self.collapse = True
28 self.current_state = None
29 self.states = {}
30 self.alpha = 0.05
31 self.observations = {}
32 self.expressions = []
33
34 ## Reset the graph for re-inferencing
35 def reset(self):
36 self.expressions = []
37 self.current_state = None
38 # Delete old states
39 for k in self.states.keys():
40 del self.states[k]
41 self.states = {}
42 self.alpha = 0.05
43
44
45 ## Infer the HMM from a symbol file
46 #
47 # \param data_file The file that contains the string
48 # \param L The length of the window to use
49 # \param merged A dictionary of state subsitutions (when states are deamed

equal)
50 # \param Alpha The confidence value to use for state collapsing
51 #
52 # \bug May not work for multiple state substitutions (’aa,bb’ -> ’aa,bb,cc’)
53 def infer(self, data_file, L, merged={}, alpha=.05,collapse=True):
54 self.hmm_symbols = data_file
55 self.L = L
56 self.alpha = alpha
57 self.collapse = collapse
58 with open(self.hmm_symbols,’r’) as f:
59 for item in f.read().strip().split(’\n’):
60 self.add_observation(item,L,merged)
61
62 self.print_txt_graph()
63 if self.collapse:
64 self.collapse_equal_states(merged)
65
66 ## Use an observation to adjust the HMM
67 #
68 # \param item The observation
69 # \param L The window length
70 # \param merged The dictionary of state substitutions
71 def add_observation(self, item, L, merged):
72 # Break up the input sequence into chunks of length L
73 str_states = [item[i:i+L] for i in range(0,len(item)-L)]
74 for s in str_states:
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75 # Substitute each state if applicable
76 sub = s
77 expr = s[-1]
78 while sub in merged.keys():
79 sub = merged[sub]
80
81 # Add the occurence of the state
82 self.update_state(sub,expr)
83
84 # This state doesn’t actually occur since
85 # since it’s the state after the last letter
86 self.current_state.decrement_occurences()
87
88 ## Incrementing the number of occurences for a given state
89 #
90 # \param state The state to increment
91 # \param expr The label expressed between states
92 def update_state(self, state, expr):
93 if not expr in self.expressions:
94 self.expressions.append(expr)
95
96 # Check for start condition or new state
97 # condition
98 if self.current_state == None:
99 self.states[state] = State(state)

100 self.current_state = self.states[state]
101 # Increment the number of occurences of the starting letter
102 self.current_state.increment_occurences()
103 else:
104 next_state_keys = self.current_state.get_next_states()
105
106 # Increment the occurences of the next state
107 if state in next_state_keys:
108 occ,s,expr = self.current_state.next_states[state]
109 s.increment_occurences()
110 self.current_state.next_states[state] = (occ+1,s,expr)
111 self.current_state = s
112 return
113 elif not state in self.states.keys():
114 # Create a new state
115 self.states[state] = State(state)
116
117 # Increment the overall occurences
118 self.states[state].increment_occurences()
119 # Create a new link to the new state
120 self.current_state.next_states[state] = (1,self.states[state],expr)
121 # Set the current state
122 self.current_state = self.states[state]
123
124 ## Merge all the equal states
125 #
126 # \param merged The dictionary of state substitutions
127 def collapse_equal_states(self, merged):
128 # Check every combination of states
129 for s1,s2 in itertools.combinations(self.states.keys(),2):
130 # Check to see if the states have the same distribution
131 #if self.check_distribution(self.states[s1],self.states[s2]):
132 if self.chi_square_test(self.states[s1],self.states[s2],self.alpha,’

state’):
133 print(’Merge: ’ + s1 + ’ and ’ + s2)
134 # Create a new dictionary entry
135 s_new= s1+’,’+s2
136 merged[s1] = s_new
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137 merged[s2] = s_new
138 # Reset the graph an re-infer using the new state substitutions
139 self.reset()
140 self.infer(self.hmm_symbols, self.L, merged, self.alpha)
141 break
142 ## Run a chi-squared test on two states
143 #
144 # \param s1 first state
145 # \param s2 second state
146 # \param alpha Alpha value to use
147 # \param method Either ’expression’ or ’state’. By ’expression’ compares the

probabilities of a
148 # tranisitions. By ’state’ compares the two states for equality
149 #
150 # Uses the formula $\sum_{r,c} \frac{(O_{r,c} - E_{r,c})^2}{E_{r,c}}$
151 # where E_{r,c} = \frac{n_r*n_c}{n}$
152 # and n_r is total number of occurrences of a state (s1 or s2),
153 # n_c is the total number occurences s1 and s2 transition to a
154 # given state, and and n is the sum of the occurences of s1 and s2
155 @staticmethod
156 def chi_square_test(s1,s2,alpha,method):
157 # Get a list of the number of occurrences of outgoing transitions
158 s1_next = s1.get_next_states()
159 s1_occ = [s1.next_states[x][0] for x in s1_next]
160 s1_exp = [s1.next_states[x][2] for x in s1_next]
161
162 s2_next = s2.get_next_states()
163 s2_occ = [s2.next_states[x][0] for x in s2_next]
164 s2_exp = [s2.next_states[x][2] for x in s2_next]
165
166 # Set the identification method
167 if method == ’expression’:
168 s1_id = s1_exp
169 s2_id = s2_exp
170 elif method == ’state’:
171 s1_id = s1_next
172 s2_id = s2_next
173
174 # List of unique transitions or states
175 sym_diff = list(set(s1_id) ^ set(s2_id))
176
177 # Add missing transitions or states
178 for s in sym_diff:
179 if not s in s1_id:
180 s1_id.append(s)
181 s1_occ.append(0)
182 elif not s in s2_id:
183 s2_id.append(s)
184 s2_occ.append(0)
185
186 # Sort by the identification method
187 s1_z = sorted(zip(s1_id,s1_occ))
188 s2_z = sorted(zip(s2_id,s2_occ))
189
190 # Calculate the $X^2$ statistic
191 df = len(s1_z)-1
192
193 nr1 = s1.total_occurences
194 nr2 = s2.total_occurences
195 n = nr1+nr2
196
197 X2 = 0
198 for idx in range(len(s1_z)):
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199 occ1 = s1_z[idx][1]
200 occ2 = s2_z[idx][1]
201 nc = occ1 + occ2
202 E1 = float(nr1*nc)/float(n)
203 E2 = float(nr2*nc)/float(n)
204 X2 += (pow(occ1-E1,2)/E1) + (pow(occ2-E2,2)/E2)
205
206 p = chi2.sf(X2,df)
207
208 # Accept the null hypothesis
209 if p > alpha or X2 == 0:
210 return True
211 # Reject the null hypothesis
212 else:
213 return False
214
215 ## Setup the HMM for proxy use
216 #
217 # Loads the HMM from a pickle file
218 #
219 # \param hmm_folder The directory containing the HMM files
220 def import_observations(self, hmm_folder):
221 # Choose a random state
222 self.current_state = self.states[random.choice(list(self.states.keys()))]
223
224 # Assumes observation file exists for each expression in HMM
225 for expr in self.expressions:
226 self.observations[expr] = []
227 with open(hmm_folder + ’/’ + expr,’r’) as f:
228 for line in f.readlines():
229 self.observations[expr].append(float(line.strip()))
230
231 def get_observation(self):
232 self.current_state,expr = self.current_state.random_state()
233 return random.choice(self.observations[expr])
234
235 def set_random_state(self):
236 self.current_state = random.choice(self.states.values())
237
238 def get_state(self, state):
239 for k in self.states.keys():
240 if state in k:
241 return self.states[k]
242 return None
243
244 def save_hmm(self, savefile):
245 with open(savefile, ’wb’) as f:
246 pickle.dump(self,f)
247
248 @classmethod
249 def load_hmm(cls,filename):
250 with open(filename, ’rb’) as f:
251 g = pickle.load(f)
252 return g
253
254 def print_txt_graph(self):
255 for cs in self.states.keys():
256 print("State: " + cs + " | " + str(self.states[cs].total_occurences))
257 for ns in self.states[cs].get_next_states():
258 print(" --> " + ns + " : " + str(self.states[cs].get_prob(ns)))
259
260 def print_dot_graph(self,name):
261 dot = Digraph(comment=’HMM’,format=’pdf’)
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262 for k in self.states.keys():
263 dot.node(k)
264 for node in self.states.values():
265 for next_node in node.get_next_states():
266 occ,s,expr = node.next_states[next_node]
267 lab = expr + ’(’ + str(round(node.get_prob(next_node),3)) + ’)’
268 #lab = expr + ’(’ + str(occ) + ’)’
269 dot.edge(node.name, next_node, label=lab)
270
271 dot.render(name)
272
273
274 class State():
275 def __init__(self, name):
276 ## Name of the state
277 self.name = name
278 ## Total number of times the state occurs
279 self.total_occurences = 0
280 ## Tuple (occ, <state>, expr)
281 self.next_states = {}
282
283 def get_next_states(self):
284 return self.next_states.keys()
285
286 def get_prob(self, key):
287 occ,s,expr = self.next_states[key]
288 return float(occ)/float(self.total_occurences)
289
290 def increment_occurences(self):
291 self.total_occurences += 1
292
293 def decrement_occurences(self):
294 self.total_occurences -= 1
295
296 ## Advance the HMM and get the associated timing
297 #
298 # \returns A timing value
299 #
300 # Dartboard approach to choosing a next state. Create a probability list:
301 #
302 # [0 ... 0.X ... 0.Y ... 1]
303 #
304 # Choose a random value: V
305 #
306 # [0 ... 0.X .. V .. 0.Y ... 1]
307 #
308 # Choose state associated with probability 0.X
309 def random_state(self):
310 if self.next_states.keys() == []:
311 return None
312 # A list of transition probabilities
313 prob_range = [0]
314 # A list of choices
315 choices = []
316 # A list of next states
317 n_state = []
318 # Populate the transition probabilities, choices, and next states
319 for k,s in self.next_states.items():
320 prob_range.append(self.get_prob(k) + prob_range[-1])
321 choices.append(k)
322 prob_range[-1] = 1
323
324 val = random.random()
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325 for idx in range(0,len(prob_range)):
326 if prob_range[idx] <= val <= prob_range[idx + 1]:
327 choose = choices[idx]
328 return self.next_states[choose][1],self.next_states[choose][2]

Listing 5: The protocol-proxy hidden markov model.
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