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ABSTRACT

Applications using dedicated short-range communication (DSRC) are being 

developed to prevent automobile accidents. Many DSRC implementations, applications 

and network stacks are not mature. They have not been adequately tested and verified. 

This study illustrates security evaluation of a DSRC wireless application in vehicular 

environments (DSRC/WAVE) protocol implementation. We set up a simulation of a 

working road safety unit (RSU) on real DSRC devices. Our experiments work on the 

Cohda testbed with DSRC application wsm-channel. We extended the functionality of 

wsm-channel, an implementation of WAVE short message protocol (WSMP) for 

broadcasting GPS data in vehicular communications, to broadcast car information and 

RSU instructions. Next we performed Denial of Service attacks to determine how few 

packets need to be dropped to cause automobile crashes. Hidden Markov Models (HMM) 

are constructed using sniffed side channel information, since operational packets would 

be encrypted. The inferred HMM tracks the protocol status over time. Simulation 

experiments test the HMM predictions showing that we were able to drop necessary 

packets using side channels. The attack simulation following timing side-channel worked 

best to drop necessary packets with 2.5 % false positive rate (FPR) while the attack 

following size worked with 9.5% FPR.
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1. INTRODUCTION

Dedicated Short Range Communication (DSRC) is 802.11p based wireless

communication technology. It’s widely used for communication between vehicles and the

surrounding infrastructure. Wireless access in vehicular environments (WAVE) is one of

the communication protocols of DSRC. It provides stable, high-speed communication

between connected vehicles.

Many applications based on DSRC/WAVE are being developed to improve traffic

efficiency and assist driving [1]. Vehicle to vehicle (V2V) technology is in many new

cars. V2V is DSRC based. Vehicles use V2V and global positioning system (GPS) to

share and detect information within range. This could alert and warn drivers of

emergencies which are not easy to see. For example, Left Turn Assist (LTA) systems help

avoid blind spots when drivers turn left. It warns drivers if they are driving in front of

another vehicle traveling in the opposite direction. It could help reduce traffic collisions.

With DSRC becoming the accepted automotive wireless mobility standard, DSRC

development groups have the concern that DSRC protocols, applications, and stacks are

not mature [1]. Similarly, many applications using the DSRC protocol have not been

adequately tested and verified. In this thesis, we are interested in “black box” analysis of

WAVE short message protocol (WSMP), the messaging protocol used by DSRC/WAVE.

We assume the WSMP packets are encrypted and analysis does not depend on the
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contents. We designed a traffic control system simulation of autonomous vehicles to

analyze. The system can run on DSRC devices to replace traffic lights.

The application works to avoid crashes for automatic driving. We did side-

channel analysis of the sniffed WSMP traffic. A Hidden Markov Model (HMM) was built

using sniffed packet traces. We identified and predicted critical packets in the system

using the HMM. The critical packet refers to the stop instruction packet which sent from

RSU to ask a car stop. With the known weak points, we can do a targeted attack. We

performed the flooding attack with HMM predictions in off-line simulation experiments.

We dropped the important packets and caused car crashes.

The rest of this thesis is organized as follows: In Chapter Two, we provide

background information and related work; in Chapter Three, we describe our

experimental set-up and the testbed testing results and analysis; in Chapter Four, we build

HMM to describe traffic in the experiment of Chapter Three and predict the key point to

attack; and in Chapter Five, we provide a summary of the work and some prospects from

future work.
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2. BACKGROUND AND RELATED WORK

2.1. DSRC Status

At this time, DSRC is the only communication technology that could be used on

connected vehicles [1][16]. As DSRC provides reliable and real-time communication

between DSRC-equipped vehicles, it starts to be widely used to coordinate driving and

road management. From the U.S. Department of Transportation (USDOT) report, we

know that most lights and traffic signals will enable DSRC in twenty years [1]. It’s

reasonable because DSRC could provide real-time crash-avoiding alerts. DSRC-equipped

vehicles can share critical information, so it provides the possibility of un-obstructed

awareness.

Figure 2.1 shows the architecture of DSRC implement standard [2]. The physical

protocol, including PHY layer and medium access control (MAC) sublayer, is defined in

IEEE 802.11p WAVE [22] which enhance IEEE 802.11 (WIFI- standard) to support

Intelligent Transportation System (ITS). It provides a real-time data exchanging by

removing the general channel-establish in network communication. It defines the

spectrum of channels for DSRC in US. Authentication and data confidentiality

mechanisms provided by the IEEE 802.11 standard cannot be used. DSRC equipped

vehicles in a certain sight range can receive data frames as soon as they arrive on the

communication channel.
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Figure 2. 1 DSRC layers and standards [2]

Although the IEEE1609.2 DSRC/WAVE stack standard defines mechanisms for

authenticating and encrypting messages, WAVE implementations are still in field-test.

these security mechanisms are not implemented in practice. This makes DSRC/WAVE

systems particularly susceptible to wireless attacks.

Various DSRC security issues have been studied, such as message falsification,

impersonation, message tampering, etc.[3][14][16] There is also research for DSRC

network attack detection and prevention [4]. However, “black box” WSMP traffic

analysis is lacking.
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2.2. Traffic Analysis Tools

To perform the “black box” attack on WAVE short message protocol (WSMP), we

use the hidden Markov model (HMM) approach. In probability theory, a Markov model

is a stochastic model used to describe random process. It is assumed that future states

depend only on the current state. The hidden Markov model is a Markov chain where the

state is hidden or partially observable. Researchers need to determine the state from the

Markov chain.

2.2.1. HMM concepts

A standard HMM has two sets of random processes, one governing state transition

and the other governing symbol outputs. In this paper, we use the representation of an

HMM in [17] where output symbols are associated with transitions. The two approaches

are equivalent [13]. This representation uses a tuple G = <A, V, E, P>, where A is a finite

alphabet of observations, V is a finite set of nodes or states, E ⊆ V ×A×V is a transition

relation, and P : E→[0, 1] is a probability function such that  
,

,  ,    1 
j

i j
a A v V

p v a v
 

 .

Each element ,  i jp P expresses the probability the process transitions to state jv once it is

in state iv . For each pair of ( , )i jv v , ( , )i j iE v v a . It should also meet the requirement

that if ( , )i jE v v a , then ( , )i kE v v a , where , ,i j kv v v V .

Both state transition probability matrix P and state output probability matrix O

can be constructed from G. The state output probability matrix refers to the matrix

described the probability distribution of next observation for each state. We use state
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transition probability matrix for steady state probability calculation and figure plotting.

We use state output probability matrix for generating a string from the HMM and HMM

acceptance checking. Following are some important variable calculations in an HMM.

1) Conditional probability , Pr( | )i j j ip v v

2) Transition count , # _ _ _ _ _i jc transition from i to j happened

State count , # _ _ _i i j
j

c c state i is entered 

3) Asymptotic probability (steady-state probability) matrix 1 2( , ,..., ) 'n   


can

be calculated from 1i
i

P 



 
 


 

4) Confidence interval for each transition , ,
/2

(1 )i j i j

i

p p
CI Z

n


 [20], where ,i jp is

the conditional probability of the transition, /2Z is from either the normal or t-

distribution, α is the significance level of confidence, in is the times of state iv .

2.2.2. Model confidence test

After deriving a model from the data, we need to know whether the data is enough

to derive this model. If not enough, how much more data do we need. Thus, we take the

model confidence test algorithm from [17] to check the model.

With input of transition probability matrix P, transition count matrix C, and

asymptotic probability matrix 


, we do the test as following:
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1) Null hypothesis: data is not enough for any transitions

Alternative hypothesis: data is enough for any transitions

2) Test statistic: ,

, ,

=min( )
(1 )
i j

i j i j

i

p
z

p p
n


, where ,0 1i jp  is the conditional

probability of the transition, ,i i j
j

n c is the total counts of state i, ,i jc is the

element from transition count matrix C.

3) Rejection region: Reject Ho if z z that we don’t need to collect more data.

4) Otherwise we need to collect more data. Enough data
2

,

,

(1 )
max( )i j

i j s

z p
D

p





 ,

where ,0 1i jp  .

2.2.3. Related work

C. R. Shalizi et al. [23] proposed Causal State Splitting and Reconstruction

(CSSR) algorithm to generate HMMs from discrete sequences of data. The algorithm

makes no prior assumptions about the model structure. The algorithm infers the model

structure (the number of hidden states and their transition structure) from the sequence of

observation and a maximum data window size. The derived HMMs from CSSR have

predictive optimality properties.

R. R. Brooks et al.[7] proposed using confidence intervals (CI) with HMM to

detect a behavior in a data stream. The novel approach of using CI and receiver operating
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characteristic (ROC) determines whether or not a given HMM adequately matches a

sequence of data.

Based on the approach of [23], J. M. Schwier et al. [13] presented a method for

automatically inferring the maximum data window size from training data as part of the

model construction process. Thus, they proposed a method inferring HMMs only from

the sequence of observation.

J. M. Schwier et al.[20] considered detecting patterns in data streams in which

two or more Markov model exists. They proposed methods of finding the proper sliding

window size that can best detect changes when the behavior switches from one

Markovian process to another.

L. Yu et al.[17] focused on the sufficiency of training data to infer an HMM. They

proposed a method to determine if the observation data and constructed model fully

express the underlying process with a given significant level. The method also included

the calculation of an upper bound on the number of samples required to guarantee the

sufficiency.

C. Lu et al.[18] presented a normalized statistical metric space for HMMs. With

the proposed metric space, they were able to compare HMMs with a given level of

statistical significance. The metric space can also provide calculation of distance between

two HMMs.

Many researchers used HMM for network traffic analysis. A. Dainotti et al.[26]

applied HMM to model Internet traffic of Age of Mythology, SMTP, and HTTP. The

HMM built from inter-packet time and packet size side-channels of the traffic. Craven
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Ryan [21] built an HMM according to the inter packet time of Tor data. Then he used the

HMM for detecting the traffic through Tor. Yingbo Song et al.[24] used HMM for

network behavior recognition. They modeling the dynamics of network traffic and detect

the transitions between specific application layer protocols

H. Bhanu et al.[19] proposed timing side-channel analysis for detecting protocol

tunneling. They used zero-knowledge approach [23] to extract HMMs for extracted

keystroke dynamics of languages. They then used the HMM for language detection.

X. Zhong et al.[8][9] proposed the side-channel analysis of Phasor Measurement

Unit (PMU) protocol used by the communications network of smart grid. They isolated

the packets of the target PMU sent through a VPN channel shared with other PMUs,

followed Denial-of-Service (DoS) attacks that selectively drops packets from the target

PMU.
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3. EXPERIMENT SET-UP AND RESULTS

We set up a simulation experiment of OBU and RSU working on DSRC devices.

We performed penetration testing to show the communication is insecure. We consider

Denial of Service (DoS) attacks. Important legitimate packets can be disrupted by

flooding unexpected packets. Without instruction from RSU, we detected crashes in the

intersection.

We describe our simulation road model of section 3.1 and introduce the flow of

packet transmission in section 3.2. In section 3.3 we discuss how the OBU and RSU in

the simulation work together to avoid crashes. In 3.4, we run simulations and perform

DoS attacks.

3.1. Simulation Model

We set up a traffic light model for experiments. As shown in Figure 3.1, the traffic

light is for bi-directional single lanes. Cars running on the road are following:

1) No pedestrians allowed in this crossroad.

2) Car can come from one of the four directions North (N), South (S), West (W), or

East (E) and go straight, left or right. U-turn is not permitted in this crossroad.

3) All cars are autonomous vehicles and controlled by on board unit (OBU) speed

control. There is a central RSU in the center of the intersection.
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4) We set the center of the intersection as the origin ‘O’.

5) The roads are each 4 meters wide.

6) As shown in Figure 3.1, the exit points of each lanes are A, B, C, and D.

Coordinates are A (-4, -2), B (4, 2), C (-2, 4), D (2, -4). Cars would start to report

information 50 meters away from the RSU (O in Figure 3.1).

7) As shown in Figure 3.1, the entry points are A’, B’, C’, D’. Coordinates are A’ (-4,

2), B (4, -2), C (2, 4), D (-2, -4).

8) The path of the car in the intersection is calculated by linear distance from exit

points to entry points. The distance a car should drive in the intersection is

calculated by sum of path distance and car length. For example, if a car driving

from East to North, the path in the intersection should be line BC’ (Figure 3.1).

Figure 3. 1 Crossroad graph
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3.2. Protocol Communication Flow

Our research group member, Jon Oakley, implemented a reliable WAVE short

message protocol (WSMP) communication application wsm-channel. WSMP, IEEE

1609.3, is a DSRC based communication protocol which allows data rates parameters [2].

Wsm-channel could broadcast GSP information of host OBU on a WSMP channel. We

implement the modes “FWDTX” and “FWDRX” on WSM-CHANNEL to forward

packets through different protocols. FWDTX is forwarding received UDP packets to

WAVE protocol. FWDRX is forwarding received WAVE packets to UDP protocol. Thus,

using this extended application, processes on different OBUs can exchange data.

The flowchart of communication is in Figure 3.2. For example, if Process A on

DSRC1 needs to send packet A to Process I on DSRC2; Process II receives packet A and

need to send back packet B to Process I. The communication steps are as following:

1. WSM-CHANNEL FWDTX mode and FWDRX mode are running on DSRC1

and DSRC2. Process I and Process II are listening to UDP for receiving

packets.

1a. DSRC1: Process I sends packet A to UDP.

1b. DSRC1: WSM-CHENNEL FWDTX thread receives packet A and send it to

WSMP at interface “wave-raw”. Packet A is broadcasting at wave-raw.

2a. DSRC2: WSM-CHENNEL FWDRX thread receives packet A at wave-raw

and send it to UDP.
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2b. DSRC2: Process II receives packet A.

3a. DSRC2: Process II generates packet B and sends it to UDP.

3b. DSRC2: WSM-CHENNEL FWDTX thread receives packet B and send it to

WSMP at interface “wave-raw”. Packet B is broadcasting at wave-raw.

4a. DSRC1: WSM-CHENNEL FWDRX thread receives packet B at wave-raw

and send it to UDP.

2b. OBU1: Process I receives packet B.

Figure 3. 2 Flowchart of packet within DSRC communication

3.3. Traffic Light Simulation Scenarios

In our simulation, we focused on the communications between an onboard unit

(OBU) and a roadside unit (RSU). The OBU stores the information of all the cars
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approaching the intersection; and the RSU serves as the road safety unit for the

intersection. Thus, we observe communication between cars and RSU over the DSRC

channel as illustrated in Figure 3.3.

The OBU has three modules: the traffic module (TM), the speed adjustment

module (SAM), and the crash detection module (CDM). TM sends vehicle information to

SAM, which then forwards the information about the vehicles around the intersection to

the CDM. The OBU and RSU communicate via the WSMP channel interface – Wave-

Raw (WR). The OBU can broadcast each vehicle’s information over WR. The RSU can

send stop instruction over WR. Module details are described in the following subsections.

Figure 3. 3 Communication between OBU and RSU.

3.3.1. Traffic module

The traffic module (TM) generates car information in a predefined rate, which

includes vehicle ID, timestamp, lane, moving direction, location, vehicle length, speed,

and acceleration. Lane is chosen from West (W), East (E), North (N), South (S). Cars
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coming from each direction may go straight, turn left or turn right. Note that U-turn is

forbidden at an intersection.

Each car reports sends its information to when they are 50 meters away from the

intersection. The length of the car is a random number between 3 m to 5 m. The initial

speed is randomly chosen between 11 m/s to 14 m/s. The initial acceleration is set to 0

m/s2. In each scenario, we assume there are at most three cars approaching the

intersection. The goal is to avoid car crashing. No more than one car should be moving in

a direction at one time. The interval between cars in one scenario is 0.1 to 0.3 seconds.

The interval between two scenarios is a random choice of from 5.0 seconds to 8.0

seconds.

3.3.2. Speed adjustment module

The speed adjustment module (SAM) receives the vehicles data from the traffic

module and then forwards it to the RSU. A car may receive a “stop” instruction while it is

approaching the intersection. After the car coming into the intersection, the SAM sends

the car information to the crash detection module. The communication is shown in Figure

3.4.

Figure 3. 4 Speed adjustment module



16

The speed adjustment module traces car information updates per unit time (0.1s),

including the vehicle’s location, speed and acceleration. Vehicles adjust their speed and

acceleration following the received instructions.

1) When the speed adjustment module receives a car’s information from the traffic

module, it starts tracing the car and sends the collected data to RSU.

2) The speed and acceleration of a vehicle changes according to the received stop

instructions.

3) If a car stops before the intersection as instructed, it later starts with initial speed

of 8 m/s at the instructed time.

A car will run as instruction from RSU, or with the initial parameters until it

receives an instruction.

3.3.3. Road Safety Unit (RSU)

The RSU stops vehicles from crashing at the intersection. It receives the vehicles’

information from the OBU and sends “stop” instructions to the cars as needed. Refer to

Figure 3.5 for the traffic data received and sent on this module.

Vehicles come from any direction and go into one of the other three directions.

This results in 12 types of car transitions in total. details of transitions are in Table 3.1.

We list the forbidden behaviors for vehicles coming from different directions in Table 3.1.

For example, for a car coming from west street and going through the intersection,

behaviors with ID numbers {1, 2, 3, 6, 7, 8, 10, 11, 12} (Table 3.1) are forbidden to

avoiding accidents.
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Table 3. 1 Driving rules for vehicles approaching the intersection.

Figure 3. 5 Traffic Controller Module

Lane ID Number Driving Direction Yield To

West (W) 1 Forward (from west to east) 1, 2, 3, 6, 7, 8, 10, 11, 12

2 Left Turn (from west to north) 1, 2, 3, 4, 5, 7, 8, 11, 12

3 Right Turn (from west to south) 1, 2, 3, 6, 8

East (E) 4 Forward (from east to west) 2, 4, 5, 6, 7, 8, 9, 11, 12

5 Right Turn (from east to north) 2, 4, 5, 6, 11

6 Left Turn (from east to south) 1, 3, 4, 5, 6, 7, 8, 11, 12

North (N) 7 Left Turn (from north to east) 1, 2, 4, 6, 7, 8, ,9, 10, 11

8 Forward (from north to south) 1, 2, 3, 4, 6, 7, 8, ,9, 12

9 Right Turn (from north to west) 4, 7, 8, ,9, 12

South (S) 10 Right Turn (from south to east) 1, 7, 10, 11, 12

11 Forward (from south to north) 1, 2, 4, 5, 6, 7, 10, 11, 12

12 Left Turn (from south to west) 1, 2, 4, 6, 8, 9, 10, 11, 12
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The RSU keeps a list of reservation time for each driving direction. When the first

packet of a car arrives, the traffic module estimates the arrival time of the car at the

intersection. The calculation is based on the distance of the car from intersection (Figure

3.1), its speed, acceleration, and the length of the car. The RSU compares the car’s arrival

time with the reservation time of its driving direction in the list. If the arrival time is later

than the reservation time, RSU will estimate the car’s exiting time at the intersection and

update the reservation time for its moving direction and associate forbidding moving

directions. If the arrival time is earlier than the reservation time, RSU will send the stop

instruction which includes the available time into the intersection. Then it will allocate

the reservation time for this transition. The car that received a stop instruction should not

enter the intersection until the available time.

3.3.4. Crash detection module (CDM)

When a car enters the intersection, crash detection module reports the simple road

condition and keeps tracking the new arrived car. As shown in figure 3.4(a), the road

condition reports the driving direction ID numbers of cars in the intersection.

Figure 3. 6 Collision detection module (a) without crash (b) report a crash
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The CDM updates car position every 0.1s and calculates the distance between any

two cars. If the distance is smaller than 2 meters, CDM reports a crash (Figure 3.4 (b)).

As a car drives away from the intersection, the CDM stops tracing it.

3.4. Simulation Experiments and Results

We ran the simulation on DSRC devices as Figure 3.3: on the first DSRC device,

we ran car processes; on the second DSRC device, we ran the traffic controller.

First, we did the test for the simulation function. In continuous 2000 scenarios of

cars arrival, the RSU works well to avoid crashes. We captured the traffic using tcpdump.

From figure 3.7 of stop instruction packet details, we can see the time shift for this packet

is approaching 0 seconds which shows the real-time data exchange.

Figure 3. 7 Stop instruction packet
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Then we performed Denial of Service attack by packet flooding. We kept the

simulation running with GPS information broadcasting on OBU at a very high speed rate

to cause packet dropping on the RSU (figure 3.8). While the flooding attack is ongoing,

the Collision Detection Module detected several crashes immediately (figure 3.9). With

110 packets from RSU dropped, 27 crashes are detected by Collision Detection module.

Figure 3. 8 Flooding GSP information

Figure 3. 9 Collision detected while drop stop instructions



21

4. SIDE-CHANNEL ANALYSIS AND RESULTS

In addition to the “white-box” testing in Section 3.4, we also look at the side-

channel characteristics (packet size, packet inter-delay) of WAVE short message protocol

(WSMP). Even if encryption and authentication are implemented as specified in the IEEE

1609.2 standard, DSRC/WAVE may still be susceptible to such “black box” analysis that

does not depend on in the contents.

From the sniffed traffic (Figure 4.1), the packets are not arriving at the same rate

all the time, which means the protocol is not active all the time. If we perform the attack

at an inactive time, we cannot cause any trouble. Moreover, since flooding traffic is easy

to recognize, the devices may lose access to the channel. Therefore, we build Hidden

Markov Model (HMM) for the system protocol to understand the protocol regulations. As

we are assuming that the WAVE packets will be encrypted, we apply size and timing side

channels. We sniff traces of DSRC network protocols. We can identify network protocol

states by using observed packet characteristics to associate each sniffed packet with a

class. Protocol participants are known. Transitions between protocol states are given by

their positions in the sequence. With the HMM, we successfully isolate the target packets

of stop information sent by RSU, followed Denial-of-Service (DoS) attacks that

selectively drops packets from RSU. The goal of is to side-channel vulnerabilities of

WAVE protocol assuming all the security services are implemented.
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Figure 4. 1 Sniffed DSRC traffic

In this chapter, we develop a network protocol analysis method based on side

channel and HMM. The overall process flow is shown in figure 4.2. In section 4.1, we

discuss the method to symbolize side channel information. In section 4.2, we propose our

HMM inference method. In section 4.3, we sniff DSRC traffic of training data and apply

the analysis method. In section 4.4, we test the HMM on the training data and new

collected data.

Figure 4. 2 Flowchart of inferring HMM [21]
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4.1. Side Channel Symbolization

According to the sniffed traffic (figure 4.1), we can get two important side

channels: timing and size. We use inter-packet time instead of receive time for analysis.

The inter-packet time, also known as delta time t , is calculated by subtracting the

receive time of the previous packet from the time of the current packet. In other words,

1i it t t    , where it is the receive time of packet i. To exclude 0t  of first packet, we

start with i=2.

We have two side channels, so we can build an HMM for each side channel. First,

we build the timing HMM. We group the data by plotting histogram of timing and finding

different ranges. We assign anything in a timing range a unique symbol. Finally, we can

get a long sequence string from the data. Later we will do the same for size when build

the size HMM.

4.2. HMM Inference

We use HMM to analyze side channel information. We extend previous

approaches [21][13], adding hypothesis tests when determine the HMM. We apply z-test

to HMMs to determine the statistical significance of the inferred model, which indicates

data sufficiency [17]. Pearson chi-square test proves the significance of evidence to

merge two similar states [6]. Confidence interval approach provides level of acceptance

for putting a string into an HMM [20].
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4.2.1. Inferring an HMM from sequence with significance level α

1) i=2.

2) State space parameter L=i.

3) a) Infer Gn = <A, V, E, P> from the sequence .

b) Merge states in V using Algorithm 1 Pearson chi-square test.

c) Do model confidence test for Gn. If doesn’t enough, get more data and start over.

Details of Model confidence test are described in section 4.2.3.

4) Get output confidence interval matrix CI from Gn

5) a) Infer Gn+1 = <A’, V’, E’, P’> from the sequence .

b) Merge states in V’ using Pearson chi-square test in section 4.2.2.

c) Do model confidence test for Gn+1. If the training data doesn’t enough, get more

data and start over.

6) Generate a long sequence  from Gn+1 whose length longer than the result from

model confidence test. The generation method see section 4.2.3.

7) Put the sequence into Gn. Get match probability matrix F.

8) Calculate | |P F CI  , the elements less than zero in the result matrix donates the

rejection proportion. Determine the rejection proportion by , *rj i j i
i

P d p , where

, , , { ( ) | 0}i j i jd D CI D D P F D      , ip is the probability of state i is entered.

9) If rjP greater than α, i++. Repeat steps from 2).
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10) Otherwise, quit with Gn as the correct HMM for sequence .

4.2.2. State merging algorithm

We use pairwise Pair wise Pearson chi-square test for state merging. The test

result shows whether two states are coming from the same state. We merge the pair of

most likelihood at one time and update the merging in output count matrix. We keep

doing the pairwise test until all pairs reject the null hypothesis of two states from the

same state. With input of state transition count matrix M, state output matrix O, and

significant confidence level α, we do the state merging as:

1) Do Pearson pairwise chi-square test of independence [6] of rows in transition

count matrix M as following:

a. Denote the population proportion (or probability) falling in row i, column j as

ij . The total proportion for row i is i . . and the total proportion for column

j is .j . If the row and column proportions are independent, then ij . .= i j   .

b. The estimated expected value in row i, column j is

. . .. ( )( )j i ji
ij ij

n n nnE n n
n n n

  

c. Test statistic:
2

2

i,j

( )
= [ ]ij ij

ij

n E
E






2) Determine the 2
,df statistic for the 2 test with significant level α and df = (r -

1)(c - 1) where r = number of rows, c = number of columns.
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3) If 2 2
,df  for any pairwise tests, the test accepts with significant level α the

hypothesis that the two rows are from same state. Find the minimum 2 value

2
min , and index i, j (i< j) of the pair of states it comes from.

a. In the state transition count matrix M, add column j to column i, add row j to

row i. Set zero of column j and row j.

b. In the state output count matrix O, add row j to row i. Set zero of column j.

4) Repeat steps 1), 2), 3) until 2 2
,df  for all pairwise tests.

5) Remove zero columns and zero rows in M and O. Then quit with merged states

transition count matrix and output count matrix.

4.2.3. Generate a sequence of length l from an HMM G

We restrict our discussion to ergodic Markov processes, which for all states

possibly going to any states.

1) Randomly choose an initial state 0  iv v from state set V

2) Using the probabilities of the outgoing transitions, select a transition ,i jp to

move to state jv from state iv .

3) Record the label ( , )i i ja E v v , where ia is associated with the chosen transition

,i jp .

4) Repeat steps 2) and 3) until l labels have been recorded.
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4.2.5. Put sequence into an HMM G [13]

For every state iv in V of G, we calculate the state transition probability F in

sequence . If there’s no transition in G for a window in sequence  going to the next

window, record it as a rejection and turn to next window.
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4.3. Experiment Data Analysis

We ran the simulation as described in chapter 3. In addition, we used tcpdump on

the third DSRC device to sniff the OBU/RSU traffic. Since tcpdump is less stable than

DSRC based communication software, the pipe on the third DSRC was broken after

captured about 3,000 packets. In order to get enough data, we did the experiment twice.

In total, we got 3197+3236 = 6433 packets.

4.3.1. Timing side channel analysis

We followed the steps in section 4.1 and 4.2 to process the data. First, we did the

symbolization of timing side channel information. We plotted histograms of inter-packet

timing (figure 4.3) and got three normal distribution curves in range (0, 0.06), (0.06, 1),

(1, 9). So, we conclude there are three types of packets according to inter-packet time

features.

Figure 4. 3 Histogram figure of timing (i) range (0,9) (ii) range (0,1)
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We labeled the traffic flow with different letters and get a long string of

observations. Each letter in the string represents a packet and we want to build a model to

find states (hidden) and transition between states. Symbolization range details as shown

in table 4.5.

Observation type timing range
a 0.06t 
b 0.06 1t  
c 1t 

Table 4. 1 Timing observation ranges

Then we applied our HMM inference approach (Algorithm 3). We got correct

HMM with state space parameter L=2 since it accepted the sequence  generated by

HMM with L=3. The plotted figure is shown in Figure 4.4. The HMM with L=2 states

detail is shown in Table 4.2. The transition probabilities matrix Pi=2 and its confidence

interval size CIL=2 is shown in Table 4.3. The inferred transition probability matrix F of

is shown in Table 4.4. We calculated |F – PL=2| and compared it with CIL=2. Each

element of |F – PL=2| is less than associated element of CIL=2, in turn indicates the HMM

of i=2 accept the sequence generated from HMM of i=3.

State Asymptotic probability Strings
1 0.1528 ab
2 0.2289 ba
3 0.2061 ac
4 0.1301 ca
5 0.0342 bb
6 0.1237 cb
7 0.0159 aa
8 0.0608 cc
9 0.0476 bc
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Table 4. 2 Timing HMM of i=2 states

Figure 4. 4 Timing HMM of i=2
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Table 4. 3 Timing transition probability matrix of HMM with L=2

States a b c

1 0.8800 0.0364 0.0836
2 0.0194 0.2972 0.6835
3 0.5873 0.2723 0.1404
4 0.0438 0.6321 0.3241
5 0.7300 0.0114 0.2586
6 0.5957 0.2066 0.1977
7 0.4000 0.2339 0.3661
8 0.0645 0.6150 0.3205
9 0.1634 0.5673 0.2693

Table 4. 4 Inferred transition probability matrix F

4.3.2. Size side channel analysis

We plotted histogram figure of inter-packet time (figure 4.5) and got three normal

distribution curves in range (175, 190), (190, 200), (200,260). So, we conclude there

are three types of packets (table 4.5) according to inter-packet time features.

Output a b c
States PL=2 CIL=2 PL=2 CIL=2 PL=2 CIL=2

1 0.8708 0.0210 0.0387 0.0210 0.0905 0.0179
2 0.0204 0.0072 0.2937 0.0072 0.6859 0.0237
3 0.5774 0.0266 0.2838 0.0266 0.1389 0.0186
4 0.0383 0.0130 0.6304 0.0130 0.3313 0.0319
5 0.7318 0.0585 0.0136 0.0585 0.2545 0.0576
6 0.5723 0.0344 0.2252 0.0344 0.2025 0.0279
7 0.3922 0.0948 0.2255 0.0948 0.3824 0.0943
8 0.0460 0.0208 0.6419 0.0208 0.3120 0.0459
9 0.1732 0.0424 0.5490 0.0424 0.2778 0.0502
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We got sequence generated by i=3 HMM accepted by i=2 HMM with significant

level 0.05. The plotted figure (figure 4.6), state detail (table 4.6), and output probability

matrix are as followed.

Figure 4. 5 histogram figure of packet size

Table 4. 6 Size HMM state

Table 4. 7 Size HMM output probability matrix

Observation type size range
a 190s 
b 190 210s 
c 210s 

State Asymptotic probability Strings
1 0.2688 aa(0.6665), bb(0.0312), ab(0.1462), ba(0.1561)
2 0.3644 ac(0.8241), bc(0.1759)
3 0.3644 ca(0.8168), cb(0.1832)
4 0.0023 cc(1)

a b c
S1 0.4960 0.1110 0.3931
S2 0.8117 0.1819 0.0064
S3 0.2408 0.0491 0.7101
S4 0.8000 0.2000 0

Table 4. 5 Observation ranges
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Figure 4. 6 size HMM

4.3.2.1. Discussion of size HMM

With the state detail table (table4.6) and the HMM (figure 4.6), it’s easy to find

packet a and b playing the same role. In the state table, if a string X containing the

symbol ‘a’ is in the state S, the string Y which replacing any ‘a’ in X with ‘b’ is also in the

state S. In the HMM figure, the transition between states are output ‘c’ or ‘a/b’ which

means symbol ‘a’ and ‘b’ are leading same transitions. So, we merge symbol ‘a’ and

symbol ‘b’ into one symbol ‘x’. We mark symbol ‘c’ as symbol ‘y’. See Table 4.8 the

merged packet size classification and Figure 4.7 the merged packet size HMM.

Table 4. 8 Merged packet size classification

Observation type size range
x 210s 
y 210s 
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Figure 4. 7 merged packet size HMM

Table 4. 9 Merged packet size HMM state detail

State Asymptotic probability Strings
1 0.2688 xx
2 0.3644 xy
3 0.3644 yx
4 0.0023 yy
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4.4. Targeted Attack Simulation with HMMs Prediction

In our simulation, four attack scenarios are defined, including the control group,

timing side-channel analysis, size side-channel analysis, and attacks combining both

timing side-channel and size side-channel. We describe the different states of the target in

section 4.4.1. In section 4.4.2, we introduce the experiment set-up. In, The simulation

results and the analysis of the results are presented in section 4.4.3 and section 4.4.4,

respectively.

4.4.1. Target states

We first constructed the transition probability matrix (shown in Table 4.10) from

the timing HMM in section 4.3.1. Type ‘a’ packet is sending by the RSU, which includes

the “stop” instruction. According to Table 4.9, the packet leaving state S1 has the highest

likelihood (0.8708) to be an ‘a’ packet. And the packet leaving state S5 has the second

highest likelihood (0.7718) to be an ‘a’ packet. According to Table 4.6, state S1 refers to

string ‘ab’ and state S5 refers to string ‘bb’.

Table 4. 10 Timing HMM transition probability matrix

Timing Packet a b c
S1 0.8708 0.0387 0.0905
S2 0.0204 0.2937 0.6859
S3 0.5774 0.2838 0.1389
S4 0.0383 0.6304 0.3313
S5 0.7318 0.0136 0.2545
S6 0.5723 0.2252 0.2025
S7 0.3922 0.2255 0.3824
S8 0.0460 0.6419 0.3120
S9 0.1732 0.5490 0.2778
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Table 4. 11 Size HMM transition probability matrix

We then constructed the transition probability matrix (Table 4.11) from the size

HMM in section 4.3.2. Type ‘y’ packet sent by the RSU includes the “stop” instruction.

According to Table 4.11, we found the packet leaving state S3 has the highest likelihood

(0.7101) to be a ‘y’ packet. According to Table 4.9, state S3 refers to string ‘yx’.

As shown in Table 4.12, we have three target states: timing state ‘ab’, timing state

‘bb’, and size state ‘yx’. We set up attack simulation to test the HMMs prediction by

dropping the packets leaving the target states.

Table 4. 12 Target states

4.4.2. Attack simulation set up

In the simulation, we set five processes: traffic, speed adjustment, crash detection,

wave-raw, and RSU. The network topology is shown in Figure 3.3. We used the wave-

Size packet x y
S1 0.6069 0.3931
S2 0.9936 0.0064
S3 0.2899 0.7101
S4 1 0

Target State Category Strings
1 Timing ab
2 Timing bb
3 Size yx
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raw process to simulate the DSRC/WAVE communication channel. The wave-raw

process sends packets from the speed adjustment module and RSU to each other.

To perform the attack, we need to recognize the timing type and size type for each

packet. For every received packet i, the wave-raw process calculates the delta time for it

by 1i it t t    . The corresponding timing symbol (‘a’, ‘b’ or ‘c’) was assigned to each

delta time according to Table 4.1. The size of each packet is symbolized in the same way

using data size range of Table 4.13. The real WSMP packet consists of the header and the

payload. Take the packet shown in Figure 4.9 as an example, the data length for the

packet is 97 bytes while the packet size is 177 bytes . So, we fix this difference when

doing the off-DSRC simulation experiment (as shown in Table 4.13).

Observation type Packet size range Data size range

x 190s  ' 110s 
y 190 210s  110 ' 130s 

Table 4. 13 Simulation data size range

Figure 4. 8 The WSMP packet
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Given the string of timing symbols and the string of size symbols. The wave-raw

process detects the states by looking at the two symbols in the end of each . If the target

state (Table 4.12) is recognized, the next received packet is dropped, and is not forwarded

to its destination protocol. After a packet is ignored, the wave-raw process starts over to

detect the next defined state.

The attack was simulated under six different scenarios. The first scenario is a

control group to see the crash rate if all packets from RSU dropped. In this scenario, the

wave-raw process didn’t forward any packets from RSU to OBU. In the second scenario,

we dropped the packet after the first timing state ‘ab’ (see Table 4.12) was observed. In

the third scenario, we dropped the packet after either timing state ‘ab’ or ‘bb’ (see Table

4.12) was seen. In the fourth scenario, we dropped the packet after size state ‘yx’ (Table

4.12) occurred. In the fifth scenario, we dropped the packet after any defined target state.

In the sixth scenario, we dropped the packet after the state is recognized as a combination

of a target timing state and a size state.

4.4.3. Simulation results

We targeted the packets containing the “stop” instruction in this simulation. We

mark packets from RSU as positive packet, packets from OBU as negative packets. The

true positive (TP), true negative (TN), false positive (FP) and false negative (FN) of our

attack as defined as:

 TP is the attack drops a packet sent from RSU.

 TN is the attack doesn’t drop a packet sent from OBU.
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 FP is the attack drops a packet sent from OBU.

 FN is the attack doesn’t drop a packet sent from RSU.

We record the packets numbers of these four types. We also record the number of

car crashes in each experiment scenario.

For each scenario, there are 2000 cars approaching the intersection in total. The

simulation results are shown in Table 4.14. The second column shows the target state for

each scenario. The third column shows the portion of crashes in dropped packets

#
#c
crashp
dropped

 . The fourth column shows the false positive rate (FPR) calculated by

FPFPR
FP TN




. The fifth column shows the true positive rate (TPR) calculated by

TPTPR
TP FN




.

Table 4. 14 Timing side channel attack simulation results

Scenario Attack target state Crash
proportion(%)

FPR (%) TPR (%)

1 Control group 22.74 0 100

2 Most likelihood timing state 11.46 2.50 28.48

3 Any target timing states 16.14 3.05 35.81

4 Target size state 13.74 9.45 39.53

5 Any defined target state 16.69 9.29 45.09

6 Combination of a target
timing state and a size state.

9.70 1.9 28.29
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4.4.4. Analysis of the simulation results

To evaluate different attack scenarios, we plotted column chart of true positive

rate (TPR), false positive rate (FPR) and crash proportion with the confidence interval

(CI) for each scenario. The confidence interval is calculated by 1
(1 )p pp Z
N


 ,

where .95 1.96Z  . The charts are shown in Figure 4.9.

Figure 4. 9 Scenario Evaluation

As shown in the Figure 4.9, the control group is the first group of charts where the

TPR is 100%, FPR is 0% and crash proportion is 22.74%. This means that each RSU

packet dropping has about 22.74% of crash if the attacker only drops RSU packets and no

drops all RSU packets. The goal of side-channel analysis is to cause vehicle crashes with

less unnecessary packets dropping. Each scenario caused crashes and did targeting attack.
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The FPR are less than 10% for all scenarios. The effective of side-channel analysis is

proved. We evaluate the attack scenarios based on crash proportion and FPR.

We firstly compare the attacks based on one type of side channel information:

timing side channel attack for the most likely state, timing side channel attack for two

most likely states and size side channel attack. As shown in the Figure 4.9, the second

and third scenarios have the lowest FPR in second, third and fourth scenarios. With the

windows of confidence interval, there’s no significant difference of FPR between the

second scenario and the third scenario. Moreover, the third scenario also has the highest

crash proportion. So we can conclude the third scenario of timing side channel attack for

two most likely states is best in side channel analysis based on one type of information.

Then we compare all attack scenarios to find the best attack method for this

application. As shown in Figure 4.9, the third scenario and the fifth scenario have the

highest value of the crash proportion while the third scenario has much lower FPR than

the fifth scenario. So the third scenario is the best in five attack scenarios.

As a conclusion, timing side channel analysis has better performance on predicted

states. The attack targeting the packet leaving two most likely timing states worked best

to cause crashes while avoid dropping unnecessary packets.
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5. Conclusion and Future Work

This thesis focuses on the evaluation analysis of DSRC/WAVE applications. To

do this, we set up a DSRC stop light application based on a developed WSMP implement.

We sniffed the data through WSMP. The sniffed result of clear-text WSMP data content

shows the current implement is unsecure. Lack of security services, such as content

encryption, makes it easy for attackers knowing critical car/road information with DSRC

equipped devices. Then we performed DoS attack and successfully dropped packets at the

communication channel and caused crashes.

Assuming all the security services will be implemented in the future, we did

“black box” attack. Hidden Markov Models (HMM) are constructed using sniffed inter-

packet timing and packet size side channels, since operational packets would be

encrypted. We set up attack simulation to test the HMM predictions of important packet

arrival. The simulation result shows the effectivity of the side channel analysis. And

timing side channel analysis worked better in the attack experiments.

The DoS result of packet dropping shows neither the application nor WSMP has a

detection or prevention mechanism for DoS attack. In DSRC communication, entropy

based DoS detection could be a good tool against DoS attack. In DoS attack detection,

entropy measures the amount of disorder in the observed data. For example, in this

application, the road safety unit (RSU) system could calculate the entropy value of packet

rate and packet size. The RSU can also detect abnormal network traffic from vehicle by

cooperating with other RSU nearby. The vehicle volume could be estimated according to
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the information from other RSU. To prevent DoS attack, DSRC should add the

authentication mechanism to the standard.

To prevent side-channel attack, the WSMP of DSRC should improve the packet

formatting. For example, it could define the length of packet through WSMP to prevent

packet size side-channel attack.

In the future, we will do following work:

1. Collect more data and do the joint side channels analysis;

2. Apply this evaluation approach on more DSRC applications;

3. Test other attack method, e.g. radio signal jamming.
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