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ABSTRACT 

 Multiple linear regression models were developed to predict sand and clay content 

along with soil organic matter content from RGB imagery from both commercially 

available satellite imagery as well as RGB UAV imagery. UAV Imagery was tested at two 

flight altitudes to determine if lower or higher altitude had an effect on prediction. In cases 

of sand, clay, and OM content, flight altitudes did not significantly differ in prediction 

abilities. Satellite imagery was evaluated using data from Planet Labs as well as Google 

Earth. Regression models were developed to predict sand, clay, and soil organic matter 

content from these satellite images, which captured fields with bare soil. An alternative to 

whole field data collection, referred to herein as the point sampling method, was 

introduced. A survey of currently available neural network and machine learning 

technologies was performed to establish which of these technologies could benefit the 

precision agriculture industry. A sample model was trained to detect and classify cotton 

blooms from low-altitude RGB imagery collected from a DJI Phantom 3 UAV. 
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CHAPTER ONE 

INTRODUCTION 
 

Remote sensing technologies allow for data to be collected in ways previously 

thought to be impossible. This study explores using two remote sensing technologies in 

order to predict sand, clay, and organic matter content in soil using red, green, blue (RGB) 

imagery. This study explores the development of regression models which can be used to 

predict sand, clay, and soil organic matter content from RGB imagery. Two image types 

are presented in this study; one uses imagery captured using a consumer level DJI UAV 

capturing RGB imagery, and the other uses Internet- available and free satellite imagery 

provided by Google Earth and Planet Labs. These studies were not performed to develop a 

replacement for traditional soil sampling methods, but rather as a supplement to that data, 

allowing for fast mapping of relative differences across large areas. 

When developing models based on UAV imagery, two flight altitudes were chosen 

to determine if altitude was a significant determinant of soil texture content. The UAV used 

in this study was a DJI Phantom 3 Advanced, equipped with an RGB camera. While many 

studies utilize near infrared, infrared, hyperspectral, and multispectral imaging sensors, this 

study was performed with technology that an end user (grower, crop consultant, etc) can 

purchase for roughly $1,500.  

For development of satellite imagery-based models, Planet Labs was chosen as an 

image provider because of their large constellation of satellites, which allow for images of 

a study area to be captured almost daily. These images, while frequent, offer a lower spatial 
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resolution than those found on Google Earth. Google Earth, on the other hand, does not 

provide imagery at regular intervals, but provides higher resolution imagery. 

The point sampling method for aerial data collection serves as an alternative to 

traditional, whole field image stitching and mapping. This method allows for rapid data 

collection through image analysis. An overview of common technologies associated with 

UAVs, artificial intelligence, and machine learning is presented to provide the reader with 

a broad-level view on current technologies in these areas. 
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CHAPTER TWO 
 

SOIL TEXTURE AND ORGANIC MATTER PREDICTION FROM CONSUMER 
LEVEL UAV WITH RGB CAMERA 

Introduction 

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, are 

increasing efficiency and data collecting ability in many industries throughout the world; 

the field of precision agriculture is no exception. In 2016, a market report estimated 

worldwide UAV usage in agriculture to be a 32.4 billion US dollar industry, with continued 

growth expected (Pricewaterhouse Coopers, 2016). SZ DJI Technology Co., Ltd. 

(Shenzhen, China), commonly known as DJI, holds the largest market share of UAV sales, 

reporting $2.83 billion in revenue in 2017 (Ying, 2018). The Federal Aviation 

Administration reported in 2019 that approximately 95% of UAVs that have been 

registered in the United States are considered consumer-grade, which they define as having 

a unit cost  “below US $10,000, with an average unit price of around $2,500” (Federal 

Aviation Administration, 2019). Many of these devices are equipped with cameras that 

capture images in the red, green, and blue spectra (RGB cameras). These images are 

visually similar to those captured by modern digital cameras and smartphones, making 

them extremely popular in the aerial photography and videography fields. Due to the 

quality of these images, RGB aerial imagery could provide meaningful data for many 

applications.  

Collection, aggregation, and analysis of soil texture and nutrient data is a necessity 

in the field of precision agriculture, since soil texture variability is among the most 
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consistent variables for defining crop yield potential. Soil texture is defined as the relative 

mass compositions of sand, silt, and clay particles found within a given soil sample, and is 

classified by the United States Department of Agriculture (Jaja, 2016). Soil texture and 

properties can influence physical and chemical factors such as drainage, water holding 

capacity, organic matter content, and cation exchange capacity, and nutrient retention, 

which can influence crop selection and productivity in an area. Typically, soil texture is 

determined in one of two ways: by use of the “hand-feel method” (Thien, 1979), or through 

particle size analysis, using the hydrometer (Bouyoucos, 1962) or pipette method (Miller 

et al., 1987). 

The “hand-feel method”, also known as the “ribbon test”, involves holding a wetted 

sample of soil in the hand, and drawing conclusions about its texture based upon how well 

the soil forms a ribbon between the fingers. This process allows for subjectivity in the 

determination of results; one person may consider a sample to be gritty, while others may 

consider it to be smooth. Furthermore, the ribboning process is dependent upon moisture 

levels, and different moisture contents can result in different conclusions. Farmers may 

also elect to collect soil electrical conductivity (EC) measurements across a field.  Soil EC 

results are derived through the use of an implement such as a Veris Sensor Cart (Veris 

Technologies, Salina, KS.), which utilizes coulter-electrodes to measure electrical current 

as the sensor cart is pulled through a field behind a tractor or other vehicle. While soil EC 

is generally proportional to clay content and inversely proportional to sand content, these 

relationships can be affected by properties such as soil water content and temperature at 

the time of mapping (McCutcheon et al., 2006). Therefore, making accurate soil texture 
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predictions from EC mapping is not practical. A well-defined and repeatable method for 

quantifying soil texture is referred to as the hydrometer method (Bouyoucos 1962). The 

hydrometer method is considered accurate because particle settling velocity and particle 

size are strongly correlated. In this method, dry, screened soil samples are mixed with a 

surfactant and shaken. Then a hydrometer is used at specific time intervals to measure 

apparent density of the soil-water suspension. As sand, silt, and clay particles fall out of 

suspension at different time intervals, the percentage of sand, silt, and clay can be 

calculated.  

Like soil texture classification, soil organic matter (OM) has been considered a key 

indicator of the productivity and yield potential of a soil. Soil organic matter is defined by 

the Soil Science Society of America (2020) as “the organic fraction of soil, including plant, 

animal, and microbial residues, fresh and at all stages of decomposition, and the relatively 

resistant soil humus”. Knowledge of OM content can greatly influence nutrient 

recommendations for a specific area. Reeves (1997) compiled and summarized a series of 

both short and long term studies across multiple cropping systems and soil management 

practices.  He noted a decline of crop yield and plant available nitrogen over time as soil 

OM was depleted or decreased. This makes quantifying OM content important when 

considering the addition of soil fertilizer, or reintroducing nutrients into the soil by disking. 

Soil OM content is strongly correlated to the amount of organic carbon that is contained 

within a soil. Organic carbon mostly consists of the cells of microorganisms, decomposing 

plant and animal residues, humus synthesized from residues, and highly carbonized, 

elemental forms of carbon such as charcoal, graphite, and coal (Nelson and Sommers, 
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2015). The most widely used process for determining soil organic matter is the “Loss on 

Ignition” method, during which soil samples are dried in an oven to remove moisture, 

reweighed, and then ignited in a furnace to incinerate the organic compounds (Ball, 1964). 

The samples are then weighed again, and the pre- and post-ignition weight difference is 

used to calculate the amount of organic matter present. Both Ball (1964) and Nelson and 

Sommers (2015) concede that this method is not precise, nor perfectly quantifiable, as the 

process destroys both the organic and inorganic carbon, instead of solely the organic carbon 

used to measure soil organic matter. 

In recent years, both Veris (Veris Technologies, Salina, Kans.) and Precision 

Planting (Precision Planting, Tremont Ill.) have introduced technologies to measure soil 

properties including organic matter in real time, eliminating the need for laboratory work. 

Both the Veris iScan and Precision Planting SmartFirmer utilize visible and near infrared 

(Vis-NIR) sensors to quantify soil reflectance, which can be then correlated to soil organic 

matter using the process outlined by Sudduth and Hummel (1993). The Vis-NIR module 

of the Veris iScan can be mounted to many implements including tillage tools and fertilizer 

bars (Veris.com), and records data during the course of normal field operation. The 

Precision Planting SmartFirmer mounts to compatible planters behind the seed tube 

(Precisionplanting.com), and also records data as the planter is being operated. Lund and 

Maxton (2019), found that once calibrated, the iScan module produced a RMSE of 0.22% 

OM across all sample sites, and the SmartFirmer produced a RMSE of 0.24% OM across 

all sample sites studied. Both of these technologies are currently commercially available. 
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 Although soil texture classification has been performed in studies using image 

analysis, (Zhang et al., 2005; Breul et al., 2006), limited research exists on soil texture 

classification an aerial imaging platform with an RGB camera instead of a multi-spectral 

imaging platform. Chung et al., (2010) used RGB imagery from a surface level camera to 

predict soil texture using linear regression.  The most promising model results calculating 

silt percentages, had a coefficient of determination (R2) value of 0.20. A conclusion of this 

study was that better relationships could likely be calculated by using all histograms for R, 

G, and B values, which would result in more variables to be used in the linear regression. 

Morais et al., (2019), also attempted to predict soil texture using a ground-based camera. 

This study analyzed soils at a micro level using a microscope. This study utilized multiple 

color systems, such as grayscale and HSV (hue, saturation, and value), both of which are 

derived from RGB, in addition to RGB. When compared to other colorspace models, this 

study found the lowest R2 values when using solely RGB data, whereas utilizing a 

combination of RGB, HSV, and Grayscale resulted in the highest coefficient of 

determination of 0.933. 

Development of a method to measure soil texture and organic matter percentages 

from a consumer-level UAV could allow soil texture and soil OM analyses to be completed 

at a much faster pace and on a larger scale for zone delineation used in precision 

agriculture. If an accurate method with a UAV can be derived, the cost of sampling could 

be reduced, and this methodology would provide a framework for other UAV based data 

collection. 



8 
 

The objective of this study is to develop, through the use of linear regression, 

separate equations to predict sand, clay, and soil OM content from images captured by a 

consumer-grade UAV equipped with an RGB camera. 

Methods and Materials 

Field Selection 

Fields in this study were selected based on visual observations of the variability of 

soil color across the field. Field selection was also contingent on ground and crop cover; 

only fields with bare soil conditions were selected due to the effects standing crop or crop 

residue would have on the resulting image color values. Three fields were selected for 

testing, with one site year of data used from each. Soil Survey Geographic Database 

(SSURGO) soil data (Soil Survey Staff, 2019) were used for general characterization of 

the soils present, although these data were not used for development of the models 

presented in this study. Fields C12 (Table 2.1) and E7 (Table 2.2) located at the Clemson 

University Edisto Research and Education Center in Blackville, South Carolina, were 

selected for analysis in this study. Field C12 is located at (33.34896°N, 81.32062°W), and 

Field E7 is located at (33.34465°N, 81.31752°W). These two fields consist exclusively of 

sand and loamy sand classifications, with exact soil types and percentages shown in the 

respective table below for each field. Images for these fields were collected on February 

26, 2019 using a DJI Phantom 3 Advanced UAV under fair sky conditions as reported by 

a WeatherUnderground (The Weather Company, San Francisco, Cal.) weather station 

located near the fields at the time of image collection. Both fields had been disk harrowed 
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within 10 days prior to image collection to achieve a completely bare soil condition free of 

any weeds or crop residue.  

Table 2.1: C12 Field SSURGO Soil Type Distribution  
Symbol Map Unit Name Area, ha(ac) Percent of Area 

DaA Norfolk loamy sand, 0 to 2 percent slopes 0.32 (0.8) 6.9% 

DaB Barnwell loamy sand, 2 to 6 percent slopes 1.33 (3.3) 28.5% 

FuA Wagram sand, 0 to 2 percent slopes 2.14 (5.3) 45.4% 

FuB Wagram sand, 2 to 6 percent slopes 0.04 (0.1) 1.2% 

VaB Barnwell loamy sand, 2 to 6 percent slopes 0.85 (2.1) 18.0% 
 

Table 2.2: E7 Field SSURGO Soil Type Distribution  
Symbol Map Unit Name Area, ha(ac) Percent of Area 

DaB Barnwell loamy sand, 2 to 6 percent slopes 2.22 (5.5) 29.5% 

FuC Ailey sand, 6 to 10 percent slopes 0.16 (0.4) 2.3% 

OrB Barnwell loamy sand, 2 to 6 percent slopes 5.14 (12.70) 68.2% 

 

The Pond Field (34.6561°N,82.8173°W) is located in Clemson, South Carolina, 

and is part of the Clemson University Piedmont Research & Education Center. Located in 

the Piedmont region of South Carolina, the majority of, Pond Field consists of clay loam 

type soils (Table 2.3). Images for this field were collected on April 27, 2019 under fair sky 

conditions. This field was disk harrowed within 10 days prior to image collection. 

Table 2.3: Pond Field SSURGO Soil Type Distributions 
Map Unit Symbol Map Unit Name Area, ha(ac) Percent of Area 

CeC3 Cecil clay loam, 6 to 10 percent slopes, 
severely eroded 

3.76 (9.3) 83.8% 

ClB2 Cecil sandy loam, 2 to 6 percent slopes, 
eroded 

0.73 (1.80) 16.2% 
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Soil Data Collection and Analysis 

Fields selected for this study were assigned 0.101 ha (.25 ac) grid squares using 

Trimble Ag Desktop Software (v2019.1.0, Trimble Inc., Sunnyvale, Cal.). The GPS 

coordinates of the grid centers were exported to a comma separated values (CSV) file. The 

file was then loaded into Soil Sampling Utility (v.1.0.1.10, Clemson University Precision 

Agriculture, Blackville, SC), and navigation to sample positions was conducted by using a 

BU-353S4 USB GPS Receiver (GlobalSat WorldCom, New Taipei City, Taiwan) with 

WAAS, DGPS correction. At each sample site, eight soil cores were collected from a 305 

cm (120 in.) radius around the center position of each grid square. Each sample core was 

collected from the top 15 cm (4 in.) of the soil profile using a soil probe with diameter 2.54 

cm (1 in.)  

Each sample was passed through a #10 (2 mm) sieve to remove graved sized 

particles and residue and divided into two equal subsamples, each subsample weighing at 

least 100 g. One subsample was processed to determine the percentage sand, silt, and clay 

using the Hydrometer Method as outlined by Huluka and Miller (2010). The other sample 

was processed to determine OM content using the Loss on Ignition process outlined by 

Zhang and Wang (2014). Soil texture and OM were reported as mass composition of sand, 

silt, and clay. Figure 2.1 parts (a), (b), (c), and (d) shows distributions of measured sand, 

silt, clay and OM content compositions respectively across all sample sites, as these ranges 

represent the known sand, clay, and OM values which will be represented during regression 

modeling. 
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(a) (b) 

  
(c) (d) 

Figure 2.1: Distribution of measured sand (a), silt (b), clay (c) and OM content percentages (d) across 
all sample sites used in regression modeling. Sand content ranged from 71.5% - 94.5%, silt content 

ranged from 0%-15%, clay content ranged from 1% - 19.5%, and OM content ranged from 
0.38%-3.92%. 
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Aerial Imagery Collection 

 
The CSV file containing grid point centers was used in conjunction with FlyLitchi 

Mission Hub (VC Technology LTD., London, England) to create a flight path for the UAV 

to follow (Figure 1.3). FlyLitchi was chosen as the application to be used in this study 

because it allows for UAV flight plans to be programmed before arriving at the sampling 

site. Additionally, the “Waypoint” flight planning mode allows for easy integration of GPS 

coordinates to be loaded into the flight plan. For this study, each previously saved grid 

center was loaded as a waypoint. At each grid center, the UAV was programmed to wait 

three seconds for the UAV to stabilize, then capture an image. Two separate flight plans 

were created for each field, one plan at 21 m (70 ft) above ground level (AGL), and one 

plan at 30 m (100 ft) AGL (Figure 2.2). These altitudes were calculated to ensure that 

certain areas, as discussed in the section below, could be captured in a single image. 

Additionally, different altitudes were flown to explore whether varying flight altitude 

would affect model prediction ability. Using the Pix4D Ground Sampling Distance 

Calculator (Pix4d S.A., Prilly, Switzerland), along with the camera specifications provided 

by DJI, it was calculated that the UAV was capable of capturing 0.10 ha (0.25 ac) in a 

single image at an elevation of 20 m (65 ft) AGL, and 0.20 ha (0.5 ac) at an elevation of 

29 m (95 ft) AGL. To account for slight differences in altitude sensing, the flight elevations 

of this study were selected to be 21 and 30 m (70 and 100 ft) AGL. Each field was flown 

at a single elevation, then repeated at the second flight elevation. 
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Figure: 2.2 Desktop view of FlyLitchi flight plan for Pond Field 
 
  Aerial imagery was captured using a DJI Phantom 3 Advanced UAV (SZ DJI 

Technology Co., Ltd., Shenzhen, China). The UAV was equipped with a permanently 

attached RGB Camera model DJI FC300s, which captures 12.0-megapixel images, each 

with dimensions of 4000 pixels wide by 3000 pixels tall, an aspect ratio commonly referred 

to as 4:3. The UAV was controlled using an Apple iPad model A1823 (Apple Inc., 

Cupertino, Cal.) and FlyLitchi application set in Waypoint mode. All images were captured 

from a straight-down, or nadir perspective. To fit environmental and available lighting 

conditions at the time of image capture, all images were captured with white balance set to 

sunny, ISO set to 100 and an aperture setting of f2.8. The camera automatically determined 

optimum shutter speed for each image, and shutter speeds ranged from 1/750 sec to 1/100 

sec.  
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Aerial Imagery Processing 

 
All images captured were saved in Portable Network Graphics (PNG) format. 

Captured images were not modified in resolution or compression. Some images contained 

areas outside the field boundary, to remove these areas from the images, images were 

opened in Microsoft Paint (Microsoft Corporation, Redmond, Washington), and edited to 

include either a black box, RGB (0, 0, 0), or white box, RGB (255, 255, 255), covering 

areas outside of the field boundary (Figure  2.3). The software used to process the images 

was programmed to ignore white and black pixels. This was performed to ensure pixels 

located outside of the field boundaries would not be considered for the development of 

regression models. 

 

Figure 2.3: Bare soil image including areas outside of field boundary, edited to include black box 
 

 Images were loaded into Batch Load Image Processor (BLIP) v.1.1 software 

developed by Clemson University, to extract and summarize pixel colorspace information. 

BLIP, a Windows application written in Microsoft Visual Studio Express 2013 (Microsoft 

Corporation, Redmond, Wash.), is a software application that allows either a single image, 
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or a directory of images, to be processed to extract and summarize image color data, and 

save data as a CSV file for further analysis. This software extracts colorpace values for 

each pixel in an image across three components: red, green, and blue.  

For a given pixel, each of these components can range in value from 0 to 255, with 

the number representing how much light or intensity of the color is added. A color of RGB 

(255, 0, 0), for example, is a solid red color, and RGB (255, 255, 255) represents solid 

white. By combining values across all three components, it is possible to identify over 16 

million colors. Red, green, blue imagery is the “base color model for most applications” 

(Ibraheem et al., 2012) because no additional steps are required to display the image. In 

other words, images captured look identical to those captured from a cell phone, webcam, 

or digital camera. 

Batch Load Image Processor scans each pixel of an image, and extracts the red, 

green, and blue color values for each pixel. Then the program computes an average value 

for red, green, and blue values over an entire image. BLIP computes values for other 

derived color values calculated from the red, blue, and green components such as hue, 

chroma, and brightness. In addition to these derived values, BLIP separates each of the red, 

green, blue, hue, and brightness values into further divisions, referred to as “bins” for 

further analysis. Bins for red, green, and blue colorspace values are divided into 32 equal 

divisions of the full range of possible values. Due to the values of each component ranging 

from 0 to 255, each bin represents a range equal to eight colorspace values. For example, 

bin R0 is defined as red component values between 0 and 7, with R1 counting red 

component values between 8 and 15. These bins can be used to create a histogram showing 
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the distribution of pixel counts which fall within each bin, as illustrated in Figure 2.4. All 

outputs and binned terms are stored by BLIP as a CSV file with each row representing one 

image. Each column contains values that were factors in this study for developing the 

regression models to predict sand, clay, and OM content percentages based on soil texture 

color. The CSV files containing summarized image data were appended with the soil 

texture and organic matter data corresponding to each image, or sample site. This resulted 

in a single, tabular file for each of the two flight elevations, the files containing a row for 

each unique sample site, as well as the extracted image data and soil data for that site.  

 

Figure 2.4: Sample distribution of red colorspace bins output by BLIP for an image. 
 

Regression Model Development 

All regression modeling and statistical analyses were analyzed in JMP Pro v.14.1.0 (SAS 

Institute Inc., Cary, North Carolina). Three sets of models were independently created for 

prediction of sand, clay, and OM content: one set of models for images from each of the 

two flight altitudes and a third set of models using combined image data from both flight 
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altitudes.  For each set of models, each sample site was randomly assigned to one of two 

classifications: a training class containing 80% of sample sites and a testing class 

containing 20% of samples sites. This classification was performed to ensure models were 

not tested on the same datapoints which were used to develop them. Using the stepwise 

model fitting personality, multiple linear regression models were created using both 

forward and backward direction and both minimum AICc and minimum BIC stopping 

rules. For each model, the term being predicted (e.g. sand, clay, or OM content) was 

assigned as the response variable, y, while the model effect, x, terms were assigned as being 

the image color data extracted by BLIP. Transformations of all BLIP outputs were also 

considered as model effects, including square root, square, cube root, cube, log, and 

reciprocal. Indices of the red, green, and blue component values were created using 

combinations of addition, subtraction, multiplication, and division of combinations of the 

color components. Some examples include: (R+G+B), (R+B)*(R-B), (R*G*B), and 

(R+G+B)/3. Additionally, combinations utilizing addition, subtraction, multiplication, and 

division of the red, green, and blue variables were added to the regression effect set.

 Multiple collinearity was reduced by removing any term with a variance inflation 

factor (VIF) of greater than 5, as suggested by Kutner, et al. (2005). Regression outliers, 

or heavily influential points, were removed from consideration using Cook’s Distance; any 

data point with Cook’s Distance values greater than 1.0 were excluded as suggested by 

Hair, et al (1998). Upon exclusion of a regression outlier, the stepwise model iteration was 

restarted. Terms with low significance (p-value > 0.05) were eliminated until all remaining 

terms satisfied VIF, Cook’s Distance, and p-value criteria. 
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Results and Discussion 

Models were developed to predict sand, clay, and OM content as a function of RGB, 

aerial image data. Prediction models were developed for one data subset including only 

lower altitude imagery, one including only higher altitude imagery, and one including both 

higher and lower altitude imagery. These models were evaluated to determine whether 

altitude influenced prediction model accuracy. While both elevations require the same 

flight time and post processing resources, lower altitude images can capture more details 

than higher altitude imagery, at the expense of a smaller surface area captured in each 

image. Higher altitudes and their larger ground surface areas represented may result in a 

more representative sample of soil conditions in an area being obtained, albeit with less 

resolution. At an altitude of 21 m (70 ft), captured images were of a ground sample distance 

(GSD) equal to 0.92 cm px-1 (0.36 in. px-1). At an altitude of 30 m (100 ft), GSD for images 

was 1.32 cm px-1 (0.52 in. px-1).  

Some models were able to better predict for imagery from elevations for which they 

were not trained. For example, the model for predicting OM content from imagery at the 

higher altitude demonstrated numerically less error when applied to imagery collected at  

the lower altitude than that same model when applied to imagery from the altitude with 

which it was trained. The model developed using both low and high-altitude datasets, 

combined, was evaluated for all data, as well as, for data from each altitude, independently. 

This model resulted in a lower prediction error on the low altitude imagery subset than the 

model developed solely from the low altitude imagery. Each model developed was tested 

on both datasets independently in order to compare prediction errors.  
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Model prediction error was calculated using the testing class for each component 

modeled and is presented herein in units of percent sand content, percent clay content, and 

percent OM content. Prediction error was performed only on the data assigned to the testing 

class, and was calculated using the generalized formula:  

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴|, (2.1) 

where AbsErr represents absolute prediction error of the modeled component (e.g. percent 

sand, clay, or OM content), Predicted represents the predicted value of the modeled 

component for a given image, and Actual represents the measured value of the component 

for the sample collected at that image. 

Sand Content Prediction Models 

Table 2.4 illustrates results in sand content prediction error from application of the 

three developed models as applied to the three datasets of varying altitude. The number of 

images used in each training class of low altitude, high altitude, and both (low and high) 

altitudes were 119, 123, and 242, respectively. In this table, the columns demonstrating 

error at 50% and 90% confidence represent the prediction errors for which 50% and 90% 

of all prediction errors were lower in value. For example, an “error at 90% confidence” 

value of 6.23 demonstrates that 90% of the absolute values of prediction errors were less 

than 6.23 % sand content. A means comparison (student’s t-test, α = 0.05) suggested no 

significant differences in prediction ability as related to combinations of flight altitude used 

for training and flight altitude used for testing. These results suggest that flight altitude was 

not a critical factor in model development and application in this study. While it does not 

explain results for all possible altitudes that might be used, it does suggest that the altitude 
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used for model development may not necessarily have to match altitudes used for model 

application. Figure 2.5 illustrates actual by predicted data as applied to the testing data of 

the model combination resulting in the lowest mean error, in this case, the result of applying 

the model developed using the combined altitude data to the low altitude data. A 1:1 line 

is also included in the figure. 

Table 2.4: Prediction errors for sand content prediction models. 
Training 
Basis[a] 

Testing 
Basis [b] 

n 
[c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

Low Altitude Low Altitude  32 2.30 A 1.81 6.23 

High Altitude High Altitude  28 2.51 A 1.61 7.87 

Low Altitude High Altitude  26 2.22 A 1.19 6.22 

High Altitude Low Altitude  32 2.70 A 2.57 5.99 

Both Altitudes Low Altitude  32 2.16 A 1.88 5.84 

Both Altitudes High Altitude  28 2.24 A 1.37 6.03 

Both Altitudes Both Altitudes  60 2.20 A 1.50 5.94 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 
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Figure 2.5: Actual by predicted data for sand prediction model applied to testing data of model 
resulting in lowest mean error. 1:1 line included in figure. 

 
Model terms, coefficient estimates, and standard error values for low, high, and 

combined altitude models are shown in Tables 2.5, 2.6, and 2.7, respectively. Models may 

be implemented using the generalized formula provided in Equation 2.2 using values from 

Tables 2.5, 2.6, and 2.7. 

𝑦𝑦0 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇0 ∗  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸0) +  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1 ∗  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1) … + (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 ∗  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛) (2.2) 

where y0 represents the variable being predicted (e.g. sand content), Intercept represents 

the Estimate value for the Intercept term, Term0 represents the first term below Intercept in 

the Term column, and Estimate0 represents the value in the Estimate column corresponding 

to the row containing Term0. In terms containing parentheses (e.g. G(1)), the value enclosed 

in parentheses represents the bin number, as previously discussed. 
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Table 2.5: Regression model terms and coefficients for sand content prediction using low altitude 
training data. R2 = 0.76 

Term Estimate Std Error 

Intercept 81.7 1.25 

BRT(23) 0.285 0.0553 

G(1) -119.0 53.4 

G(25) 0.159 0.0589 

G(28) 0.951 0.314 

G(30) -231.0 50.9 

B(15) -0.540 0.0536 

B(18) 0.326 0.0652 
 

Table 2.6: Regression model terms and coefficients for sand content prediction using high altitude 
training data. R2 = 0.64 

Term Estimate Std Error 

Intercept 103.0 1.58 

CHROMA -51.9 6.38 

R(30) 0.247 0.0714 

B(1) -11.2 4.06 
 

Table 2.7: Regression model terms and coefficients for sand content prediction using combined 
altitude training data. R2 = 0.78 
Term Estimate Std Error 

Intercept 92.1 0.549 

R(31) -0.124 0.0249 

BRT(29)3 0.00612 0.00176 

G(27)2 0.0105 0.00294 

∛[G(6)] -14.4 1.33 

∛[G(29)] -1.73 1.06 

BRT(22)3 0.000254 0.000131 

[R-G]3 -1.187e-5 2.093e-6 

 

Clay Percentage Prediction Models 

Clay content prediction model accuracy was evaluated using the same method used 

for sand content prediction. Number of images used in training class for low altitude, high 
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altitude, and both (low and high) altitudes were 119, 123, and 242, respectively. Similar to 

sand content prediction, no significant differences were noted when a means comparison 

of model prediction errors across altitudes was performed (student’s t-test, α=0.05). Error 

and means comparison results are illustrated in Table 2.8. Model coefficients (for 

application to Equation 2.2) for low, high, and combined altitude model predictions of clay 

content are shown in Tables 2.9, 2.10, and 2.11, respectively. In all three models, nearly 

all terms are “binned” terms. This may suggest that sorting images into color “bins” may 

help with analysis and prediction. An actual by predicted plot is provided in Figure 2.6, 

which illustrates the result of applying the combined altitude model to the low altitude data, 

a combination which, among sand, clay, and OM content prediction regularly resulted in  

low mean and error at 90% confidence. A 1:1 line is included in the figure. 

Table 2.8: Prediction errors for clay content prediction models. 
Training 
Basis[a] 

Testing 
Basis [b] 

n 
[c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

Low Altitude Low Altitude  32 2.22 A 1.44 5.86 

High Altitude High Altitude  28 1.96 A 1.30 5.86 

Low Altitude High Altitude  26 1.61 A 0.84 5.92 

High Altitude Low Altitude  32 2.21 A 1.36 5.59 

Both Altitudes Low Altitude  32 1.81 A 1.03 5.07 

Both Altitudes High Altitude  28 1.88 A 1.15 5.34 

Both Altitudes Both Altitudes  60 2.22 A 1.44 5.86 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 
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Figure 2.6: Actual by predicted data for clay prediction model applied to testing data of combined 

altitude model when applied to low altitude data model resulting in lowest mean error. 1:1 line 
included in figure. 

 
Table 2.9: Regression model terms and coefficients for clay content prediction using low altitude 

training data. R2 = 0.64 
Term Estimate Std Error 

Intercept 5.49 0.659 

√[BRT(29)] -18.1 8.92 

G(8)3 0.793 0.206 

G(30)2 4800 1030 

B(17)3 6.47e-4 9.8e-5 

B(19)3 3.55e-5 8.2e-5 

R-B3 3.1854e-6 4.6e-7 

BRT(20)3 -2.67e-3 1.21e-3 

BRT(21)3 1.27e-3 4.07e-4 

G(29)3 3.54 1.09 
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Table 2.10: Regression model terms and coefficients for clay content prediction using high altitude 
training data. R2 = 0.39 

Term Estimate Std Error 

Intercept 10.5 1.97 

B(1) 8.89 4.25 

HUE2 4.91e-3 0.0019 

∛[R(16)] -7.11 1.58 

(R-B)/(R+G+B)3 451 67.8 
 

Table 2.11: Regression model terms and coefficients for clay content prediction using combined 
altitude training data. R2 = 0.51 

Term Estimate Std Error 

Intercept 5.19 0.276 

R(31) 0.126 0.0129 

G(26)2 5.36e-3 2.37e-3 

(R-G)/(G+B)3 157 16.8 

G(28)2 0.0252 7.59e-3 

B(17)3 3.55e-4 8.117e-5 

B(28)3 14500 5080 

R2: 0.51 

OM Content Prediction Models 

 OM content prediction was evaluated in using the same methods as sand and clay 

contents, with results shown in Table 1.8. Number of images used in training class for low 

altitude, high altitude, and both (low and high) altitudes were 118, 122, and 240, 

respectively.  A means comparison revealed no significant differences between different 

flight altitudes, with error results illustrated in Table 2.8 Model coefficients for OM content 

for low, high, and combined altitude models are given in Table 2.9, Table 2.10, and Table 

2.11 respectively. An actual by predicted plot is provided in Figure 2.6 which illustrates 

the result of applying the combined altitude model to the low altitude data. A 1:1 line is 

included in the figure. 
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Table 2.12: Prediction errors for OM content prediction models. 
Training Basis 
[a] 

Testing 
Basis [b] 

n 
[c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

Low Altitude Low Altitude  31 0.43 A 0.31 1.10 

High Altitude High Altitude  27 0.49 A 0.24 1.03 

Low Altitude High Altitude  26 0.35 A 0.20 0.94 

High Altitude Low Altitude  27 0.59 A 0.35 1.33 

Both Altitudes Low Altitude  31 0.38 A 0.20 0.99 

Both Altitudes High Altitude  28 0.34 A 0.22 0.93 

Both Altitudes Both Altitudes  58 0.43 A 0.14 1.22 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 

 
Table 2.13: Regression model terms and coefficients for OM content prediction using low altitude 

training data. R2 = 0.79 
Term Estimate Std 

Error 

Intercept 3.00 0.199 

BRT(23) 0.0612 0.00734 

B(15) 0.167 0.0108 

√[BRT(25)] 0.274 0.0467 

BRT(20)2 0.00832 0.00199 

B(17)3 0.000161 2.237e-
5 

G(26)3 4.253e-5 1.935e-
5 
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Table 2.14: Regression model terms and coefficients for OM content prediction using high altitude 
training data. R2 = 0.69 

Term Estimate Std Error 

Intercept 4.12 0.318 

√[R(26)] -0.700 0.0683 

BRT(7)3 75.9 39.3 

G(28)3 0.000441 0.000122 

∛[G(6)] 2.17 0.390 

(G-B)/(R-B)3 4.10 0.939 
 

Table 2.15: Regression model terms and coefficients for OM content prediction using combined 
altitude training data. R2 = 0.74 

Term Estimate Std Error 

Intercept 5.44 0.375 

G(6) 1.85 0.445 

R(30)3 6.389e-5 1.244e-5 

√[B(31)] 0.463 0.179 

G(21)2 0.00422 0.000582 

G(17)3 0.00101 0.000175 

R(28)2 0.000674 0.000234 

∛[R(25)]  -2.01 0.160 

G(28)2 0.00944 0.00162 

B(18)2 0.00196 0.00039 

B(16)3 6.429e-5 2.477e-5 
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Figure 2.7: Actual by predicted data for OM content prediction model applied to testing data of 

combined altitude model when applied to low altitude data model resulting in lowest mean error. 1:1 
line included in figure. 

Application of Sand Content Prediction Model 

Models developed have practical application, with one being the development of 

field management zones. Field management zones in agricultural production are often 

designed to group homogeneous soils together, seeking to maximize differences [in soil 

type and/or yield potential] between the zones and minimize differences within zones to 

aid in developing variable rate or zone base management prescriptions. To demonstrate 

this application, points with known sand content from Field E7 were compared to sand 

content predictions developed from the combined altitude model, which produced the 

lowest error percentage at 90% confidence. Three contoured zones of equal area were 

created, representing relative sand content percentages: Low, Medium, and High. The 

model shown in Table 2.7 was applied to bare soil images collected from Field E7 using 

Equation 2.2. The contoured zone map developed for actual sand content can be compared 
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to that for predicted sand content in Figure 2.8. Contour maps were produced using Trimble 

Ag. Desktop Software v.2020.01.  

  

(a) (b) 

Figure 2.8: Contoured actual (a) and predicted (b) sand content zones for Field E7. For each map, 
divisions between Low, Medium, and High were set so that each of the three zones was equal in area, 

or equal to one third of the field area. 
 

Effects of Foreign Imagery and Model Bounding 

 Typical of regression modeling, a model cannot be expected to accurately predict 

response variables when applied to data unlike that with which it was developed. This 

allows the potential for two types of erroneous results: predictions that are grossly 

inaccurate, yet within acceptable range (e.g. wrong prediction), and predictions that are 

outside of possible ranges (e.g. percentages which are negative or over 100 are impossible 

values). Examples are provided to illustrate prediction errors; in the examples, the 

combined altitude sand content prediction model is applied to images unlike those with 

which it was trained, and which are generally unsuitable for soil texture prediction, such as 

crop or residue presence. To rectify such errors, model bounds must be applied to each 

image analyzed. These bounds, defining acceptable ranges of each model term (as 
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exhibited in the training dataset), allow for determination of whether the image being 

analyzed is within the range of parameters used for model development. This should 

generally suggest if a particular image of unknown soil texture would result in a plausible 

result. If the bounds determine an anomalous image, as compared to the training dataset, 

the image would be omitted from prediction. For this study, models were bounded using a 

tolerance factor applied to each regression model term. Model bounding coefficients are 

provided in Appendix A for the models producing lowest mean error for sand, clay, and 

organic matter content percentages. 

The first type of erroneous result is an inaccurate, yet realistic prediction. In this 

scenario, demonstrated in Figure 2.9, a model produces results that may not seem to be 

abnormal or out of range at first glance, but are not accurate. Both images in Figure 2.9 

were captured at a similar altitude to that which was used for model development but 

contain features that were not included in the dataset. These features include crop residue, 

grass, and a planted field, which do not satisfy the condition of training images to be of 

“bare soil”. Despite these anomalies, the model attempts to predict sand content, and the 

results are within a normal, otherwise acceptable range (0 to 100%).  
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(a) (b) 

Figure 2.9: Model making realistic prediction although image is not strictly of bare soil. (a) contains 
crop residue, (b) contains crop in field. 

 
 Another type of inaccurate prediction occurs when the model produces unrealistic 

results, or results outside of acceptable values, such as sand, clay, or OM contents outside 

of the range of 0 to 100%. Some extreme examples of such predictions are illustrated in 

Figure 2.10, but similar, erroneous predictions can be results of structures, machinery, 

roads, or water located in an image, or due to inconsistent image characteristics, such as 

shadows, overexposure, or lens flare. These results are typically outside of the possible 

range of a texture content, and errors may be extremely large in either the positive or 

negative direction. Model bounding, as discussed earlier should generally prevent such 

prediction errors. 
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(a) (b) 
Figure 2.10: Erroneous predictions outside of expected range: anomalous prediction due to lens flare 

and image overexposure (a) and anomalous prediction due to weed presence in image (b). 
 
 With either type of erroneous result, it is necessary to introduce numerical 

boundaries to model inputs and outputs, which will automatically determine if an image 

can be accurately analyzed, or whether it should be omitted. Images producing results 

either above 100% or below 0% can automatically be omitted, as they are out of bounds of 

a realistic prediction. Alternatively, these predictions within some range could be defaulted 

to the closer of 0% or 100%. Boundaries for model terms in this study were constructed 

based on the ranges observed in the training datasets; a binary output was calculated for 

each term for each processed image to determine whether the term was within the generally 

observed range of values in the training dataset. As discussed, a tolerance factor was 

applied to allow for extrapolation. Terms for an image falling within bounds were assigned 

a BoundCheck value of 1, while terms outside of bounds were assigned a BoundCheck 

value of 0. The product of the BoundCheck values for each term of a given image, was 

then used to demonstrate whether all of the terms for an image were within the model’s 

boundary. Products equal to 1 demonstrated that all terms were within model bounds; 

products equal to 0 demonstrated that the value for at least one term was out of model 

bounds.  
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Effects of Environmental and Physical Soil Properties 

Physical properties which would alter a soil’s perceived color, like soil moisture 

content, would likely influence texture prediction. These factors were not evaluated in this 

study but could be included in modeling efforts by capturing images at the same point 

under varying moisture conditions, such as at specified intervals after a rainfall or irrigation 

event. Models in this study were developed from soils exhibiting relatively narrow ranges 

of sand, clay, and OM content. An expansion of this study into different soil types may 

lead to a universally applicable model or expose the need for different models for different 

soil textures. Models in this study were constructed using data from fields exhibiting 

strictly bare soil conditions, as all fields had been recently disk harrowed. These conditions 

are not always common, this is especially the case in the Southeast due to the recent rise in 

conservation tillage practices. Development of models using images from fields prepared 

using either strip till or no till practices could expand the applicability of models. Such 

models could use pixel classification to ignore pixels not likely to be bare soil pixels. 

Conclusion 

Soil texture and OM content prediction from a consumer-grade RGB UAV could 

be accurate, efficient, and effective. In this study multiple linear regression models were 

developed to predict sand, clay and OM content percentages from RGB imagery from a 

consumer-grade UAV. While the methods presented in this study are not intended to be 

replacements for currently accepted practices, models were able to predict within 5.84% 

sand content, 5.07% clay content, and 0.93% OM content, all at 90% confidence; i.e. 90% 

of the prediction errors were less than the values listed here. The models developed in this 
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study could very easily be implemented into an end-user image analysis application, 

providing a general estimate to those who need soil texture and OM data for zone creation 

or other applications. With the high speed and turnaround, methods developed utilizing 

remote sensing could be applied to complement data commonly used for zone development 

such as SSURGO maps provided by the USDA Web Soil survey (Soil Survey Staff, 2019). 

Due to RGB being a device-dependent color model, different image capturing 

platforms will almost certainly produce different color values, even if they vary only 

slightly. As a result, models produced may only be accurate within a product family, or at 

least within a camera sensor specification. Robust models should combine imagery in the 

training datasets across product families. 

Furthermore, grouping color values into “bins” appears to be important for analysis. 

Almost all terms in all models were “binned” terms, showing there is a strong benefit to 

splitting individual image color values into groups. In this study, only red, green, blue, and 

pixel brightness values were binned. Expanding these bins into other color calculations 

(e.g. hue) has a strong potential to reduce prediction error. 

 Flight altitudes of 70 and 100ft did not significantly change prediction abilities for 

sand, clay, or OM content. Additionally, inclusion of more data points across varying soil 

textures would expand model relevance and possibly increase model accuracy. 
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CHAPTER THREE 
 

SOIL TEXTURE AND ORGANIC MATTER PREDICTION FROM INTERNET 
AVAILABLE SATELLITE IMAGERY 

Introduction 

 Satellite imaging technologies have improved vastly from their origins in the late 

1950’s when the United States Government’s CORONA program developed the first 

imaging satellite. For the first time, images were captured on film from space, and this film 

was then sent back into Earth’s atmosphere, where it was collected in mid- air by recovery 

aircraft equipped with “claws” to snag the film pod (Ruffner, 1995). Today, over 300 earth 

observation satellites orbit the earth (Mohney, 2018), operated by governments and private 

entities alike. These satellites are capable of remotely sending data from space, resulting in 

a near constant feed of imagery and information. Similar to the first satellites, many today 

are equipped with cameras, providing access to near real time data. Meteorologists track 

storms, governments conduct surveillance, millions of citizens explore faraway places on 

platforms such as Google Earth, and researchers track many features, from climate change 

and the melting of the polar ice caps (NASA 2019a), to sand intrusion along major 

coastlines (NASA 2019b). Many of these satellites capture imagery in red, green, blue 

(RGB) format, meaning their resulting images closely resemble those taken by 

inexpensive, commercially available digital cameras or smartphones.  

 Alongside the use of unmanned aerial vehicles, utilization of satellite imagery in 

the agriculture has increased in recent years with internet availability of satellite imagery. 

These platforms allow for large scale data collection that is cost effective and reduces labor 

when compared to the traditional “boots on the ground” approach. Houborg and McCabe 
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(2016) utilized data from satellite images captured via Planet Labs’ satellites and Landsat-

8 satellites to develop a corrected equation for Normalized Difference Vegetation Index 

(NDVI). NDVI is commonly associated with plant vigor, or “greenness” and is commonly 

collected terrestrially using devices such as the Trimble Greenseeker (Trimble Inc., 

Sunnyvale, Cal.). Yang et al. (2006) correlated satellite imagery to traditional aircraft-

captured imagery and found strong relationships between the two when evaluating grain 

sorghum yield, making yield predictions possible before a crop is harvested. Gholizadeh et 

al. (2018) utilized Sentinal-2 satellite imagery to, similar to this study, predict soil texture 

and organic carbon. Results from this study indicated better results when predicting soil 

organic carbon and clay when compared to results predicting silt and sand. Their study, 

however, utilized spectral bands outside of the range of the study presented in this 

document.  

Collection, aggregation, and analysis of soil texture and nutrient data is a necessity 

in the field of precision agriculture, since soil texture variability is among the most 

consistent variables for defining crop yield potential. Soil texture is defined as the relative 

mass compositions of sand, silt, and clay particles found within a given soil sample, and is 

classified by the United States Department of Agriculture (Jaja, 2016). Soil texture and 

properties can influence physical and chemical factors such as drainage, water holding 

capacity, organic matter content, and cation exchange capacity, and nutrient retention, 

which can influence crop selection and productivity in an area. Typically, soil texture is 

determined in one of two ways: by use of the “hand-feel method” (Thien, 1979), or through 
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particle size analysis, using the hydrometer (Bouyoucos, 1962) or pipette method (Miller 

et al., 1987). 

The “hand-feel method”, also known as the “ribbon test”, involves holding a wetted 

sample of soil in the hand, and drawing conclusions about its texture based upon how well 

the soil forms a ribbon between the fingers. This process allows for subjectivity in the 

determination of results; one person may consider a sample to be gritty, while others may 

consider it to be smooth. Furthermore, the ribboning process is dependent upon moisture 

levels, and different moisture contents can result in different conclusions. Farmers may 

also elect to collect soil electrical conductivity (EC) measurements across a field.  Soil EC 

results are derived through the use of an implement such as a Veris Sensor Cart (Veris 

Technologies, Salina, KS.), which utilizes coulter-electrodes to measure electrical current 

as the sensor cart is pulled through a field behind a tractor or other vehicle. While soil EC 

is generally proportional to clay content and inversely proportional to sand content, these 

relationships can be affected by properties such as soil water content and temperature at 

the time of mapping (McCutcheon et al., 2006). Therefore, making accurate soil texture 

predictions from EC mapping is not practical. A well-defined and repeatable method for 

quantifying soil texture is referred to as the hydrometer method (Bouyoucos 1962). The 

hydrometer method is considered accurate because particle settling velocity and particle 

size are strongly correlated. In this method, dry, screened soil samples are mixed with a 

surfactant and shaken. Then a hydrometer is used at specific time intervals to measure 

apparent density of the soil-water suspension. As sand, silt, and clay particles fall out of 
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suspension at different time intervals, the percentage of sand, silt, and clay can be 

calculated.  

In recent years, both Veris (Veris Technologies, Salina, Kans.) and Precision 

Planting (Precision Planting, Tremont Ill.) have introduced technologies to measure soil 

properties including organic matter in real time, eliminating the need for laboratory work. 

Both the Veris iScan and Precision Planting SmartFirmer utilize visible and near infrared 

(Vis-NIR) sensors to quantify soil reflectance, which can be then correlated to soil organic 

matter using the process outlined by Sudduth and Hummel (1993). The Vis-NIR module 

of the Veris iScan can be mounted to many implements including tillage tools and 

implement bars (Veris.com), and records data during the course of normal field operation. 

The Precision Planting SmartFirmer mounts to compatible planters behind the seed tube 

(Precisionplanting.com), and also records data as the planter is being operated. Lund and 

Maxton (2019), found that once calibrated, the iScan module produced a RMSE of 0.22% 

OM across all sample sites, and the SmartFirmer produced a RMSE of 0.24% OM across 

all sample sites studied. Both of these technologies are currently commercially available. 

Similarly to soil texture classification, soil organic matter (OM) has been 

considered a key indicator of the productivity and yield potential of a soil. Soil organic 

matter is defined by the Soil Science Society of America (2020) as “the organic fraction of 

soil, including plant, animal, and microbial residues, fresh and at all stages of 

decomposition, and the relatively resistant soil humus”. Knowledge of OM content can 

greatly influence nutrient recommendations for a specific area. Reeves (1997) compiled 

and summarized a series of short and long term studies across multiple cropping systems 
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and soil management practices.  He noted a decline of crop yield and plant available 

nitrogen over time as soil OM was depleted or decreased. This makes quantifying OM 

content important when considering the addition of soil fertilizer, or reintroducing nutrients 

into the soil by disking. Soil OM content is strongly correlated to the amount of organic 

carbon that is contained within a soil. Organic carbon mostly consists of the cells of 

microorganisms, decomposing plant and animal residues, humus synthesized from 

residues, and highly carbonized, elemental forms of carbon such as charcoal, graphite, and 

coal (Nelson and Sommers, 2015). The most widely used process for determining soil 

organic matter is the “Loss on Ignition” method, during which soil samples are dried in an 

oven to remove moisture, reweighed, and then ignited in a furnace to incinerate the organic 

compounds (Ball, 1964). The samples are then weighed again, and the pre- and post-

ignition weight difference is used to calculate the amount of organic matter present. Both 

Ball (1964) and Nelson and Sommers (2015) concede that this method is not precise, nor 

perfectly quantifiable, as the process destroys both the organic and inorganic carbon, 

instead of solely the organic carbon used to measure soil organic matter. 

Development of a series of regression models that can utilize Internet- available 

RGB satellite imagery to predict soil texture and organic matter content could aid in  

nutrient and management zone development (Basnyat et al., 2004).  The objectives of this 

study were to (1) utilize and compare different free, internet available sources for RGB 

satellite imagery to predict sand, clay and soil organic matter content, and (2) to determine 

whether these predictions can be made using representative “sample circles” consisting of 

pixel data surrounding a physical sampling site. 
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Methods and Materials 

 Satellite imagery was collected using data from Planet Labs, Inc. (Planet Labs, Inc., 

San Francisco, Cal.), and Google Earth (Google, LLC, Menlo Park, Cal.). Satellite images 

from each source were analyzed to extract RGB pixel data from within each image in order 

to develop regression models. Images were then processed to keep only pixels that occurred 

within a designated diameter “sample circle” of the selected physical sample site. Two 

sample circle sizes of 25ft and 50ft were chosen in order to determine if larger or smaller 

sample circle sizes resulted in reduced model error. Models to predict sand, clay, and OM 

content were developed independently for each image source, while combined models 

using data from both sources were also developed.  

Planet Labs Satellite Imagery 

 Images were collected using data obtained from Planet Labs’ “PlanetScope” 

satellites using the Planet Labs Earth Explorer (Planet.com). This group of approximately 

130 satellites allows for daily image capture of a specific area at a resolution of 3 

meters/pixel while orbiting at an altitude of approximately 475 km. Each satellite is 

equipped to capture red, green, blue and near infrared color bands. Planet Labs offers a 

variety of finished image types, each with varying layers of image processing. Images used 

in this study were of the “Basic Scene” product, meaning, among other steps, that a color 

curve was not applied to the imagery. For each field selected, ten separate images were 

captured using the Plant Labs “Explorer” tool in efforts to account for soil moisture 

variances due to irrigation or precipitation, as well as differences in capture quality between 

images. A sample image of variation between capture dates is illustrated in Figure 3.1. A 
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table of image capture dates for each field is given in Appendix B. Using the Planet Earth 

Explorer, images with over 15% cloud cover were eliminated from consideration. 

 

     
 

     

Figure 3.1: Ten captured images of a field using Planet Labs Data to capture average variation 
caused by time of day, soil moisture, and image sensor variability. The “Don Still” field is shown as 

an example. 
 

Google Earth Satellite Imagery 

 Imagery displayed on the Google Earth platform is collected from a variety of 

sources including high altitude balloons, aircraft, and satellites. Satellite images featured 

on the platform are collected from sources including Maxar Technologies (Maxar 

Technologies, Westminster, Colo.), images from the Landsat collection of satellites, and 

the United States Department of Agriculture Farm Service Agency. Image sources for the 

current image being viewed can be seen near the bottom of the Google Earth image within 

the program. Due to this, extracting a single specification, or even list of specifications of 

the sensors used to capture images is improbable. It is also difficult to identify what, if any, 

color correction or cloud removal was done when images were provided to Google Earth. 

The “Historical Imagery” feature of Google Earth v. 7.3.3.7699 was used to locate fields 
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with previously collected soil texture data that were known to be unplanted and tilled at 

the time of image collection. From the narrow range of image dates available for viewing 

as well as the irregularity of image capture date and availability, only one image was 

captured of each field. Dates of satellite image capture are given in Appendix B. 

Field Selection 

 Fields selected for this study were conventionally tilled and unplanted at the time 

of satellite imagery collection. Fields with bare soil provide an ideal image, as presence of 

standing crop or excessive residue of a previous crop would change pixel color values, 

affecting analysis and model development. Fields were selected based on the ability to 

visually observe color differences from captured satellite imagery. Soil texture and OM 

content prediction models were developed using two satellite imagery sources, Planet Labs 

and Google Earth. The Planet Labs dataset consists of five fields, and the Google Earth 

dataset consists of six fields. SSURGO soil data (Soil Survey Staff, 2019) were used for 

general characterization of the soils present, although these data were not used for 

development of the models presented in this study. Fields used for development of Planet 

Labs model were: Big Pivot (33.3343°N,81.0946°W) (Table 3.1), Don Still 

(33.3663°N,81.3399°W) (Table 3.2), “Market Front” (33.3782°N,81.2617°W) (Table 3.3), 

Watermelon Rd. (33.3169°N,81.0839°W) (Table 3.4), and E- (33.3446°N,81.3176°W) 

(Table 3.5). Big Pivot and Watermelon Rd. are located near Bamberg, S.C. Don Still, 

Market Back and E-7 are located near Blackville, S.C. 

  



45 
 

Table 3.1: Big Pivot Field SSURGO Soil Type Distribution 
Symbol Map Unit Name Area ha(ac) % of Area 

BaB Barnwell loamy sand, 2 to 6 percent slopes 7.7 (19.1) 19.3% 

GoA Goldsboro loamy sand, 0 to 2 percent slopes 5.6 (13.9) 14.1% 

McA McColl loam, 0 to 2 percent slopes 11.0 (27.0) 27.3% 

NaB Nankin loamy sand, 2 to 6 percent slopes 0.9 (2.3) 2.3% 

NbB2 Nankin sandy loam, 2 to 6 percent slopes 0.5 (1.3) 1.4% 

NrA Norfolk sand, 0 to 2 percent slopes 14.2 (35.0) 35.5% 
 

Table 3.2: Don Still Field SSURGO Soil Type Distribution 
Symbol Map Unit Name Area ha (ac) % of Area 

DaA Norfolk loamy sand, 0 to 2 percent slopes 3.5 (8.7) 4.6% 

DaB Barnwell loamy sand, 2 to 6 percent slopes 17.9 (44.3) 23.4% 

FaC Nankin loamy sand, 6 to 10 percent slopes 2.8 (7.0) 3.7% 

FuA Wagram sand, 0 to 2 percent slopes 0.9 (2.3) 1.2% 

FuB Wagram sand, 2 to 6 percent slopes 4.7 (11.7) 6.2% 

Mc McColl loam 15.1 (37.4) 19.7% 

OrB Barnwell loamy sand, 2 to 6 percent slopes 7.7 (19.1) 10.1% 

VaA Orangeburg loamy sand, 0 to 2 percent 
slopes 

3.9 (9.6) 5.1% 

VaB Barnwell loamy sand, 2 to 6 percent slopes 15.8 (39.0) 20.6% 

VaC Barnwell loamy sand, 6 to 10 percent slopes 2.1 (5.1) 2.7% 

VcD Neeses soils, 10 to 25 percent slopes 2.1 (5.3) 2.8% 

 

Table 3.3: Market Front Field SSURGO Soil Type Distribution 
Symbol Map Unit Name Area, ha (ac) % of Area 

DaB Barnwell loamy sand, 2 to 6 percent slopes 1.7, (4.2) 5.4% 

FuA Wagram sand, 0 to 2 percent slopes 0.8 (2.1) 2.7% 

FuB Wagram sand, 2 to 6 percent slopes 9.9(24.5) 31.3% 

Pu Plummer loamy sand 0.2 (0.6) 0.8% 

VaA Orangeburg loamy sand, 0 to 2 percent slopes 2.7 (6.6) 8.4% 

VaB Barnwell loamy sand, 2 to 6 percent slopes 16.3 (40.2) 51.4% 
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Table 3.4: Watermelon Rd. Field SSURGO Soil Type Distribution  
Symbol Map Unit Name Area, ha(ac) Percent of Area 

BaB Barnwell loamy sand, 2 to 6 percent slopes 21.6, (53.4) 69.7% 

BoB Bonneau sand, 2 to 6 percent slopes  0.8, (2.1) 2.8% 

CoA Coxville fine sandy loam, 0 to 2 percent 
slopes 

3.3, (8.2) 10.7% 

NoA Boboco fine sand, 0 to 2 percent slopes 1.1, (2.6) 3.4% 

NrA Norfolk sand, 0 to 2 percent slopes  1.7, (4.2) 5.4% 

RaA Rains fine sandy loam, 0 to 2 percent slopes 2.5, (6.1) 7.9% 
 

Table 3.5: E-7 Field SSURGO Soil Type Distribution 
Symb
ol 

Map Unit Name Area, 
ha(ac) 

% of Area 

DaB Barnwell loamy sand, 2 to 6 
percent slopes 

2.22 
(5.5) 

29.5% 

FuC Ailey sand, 6 to 10 percent 
slopes 

0.16 
(0.4) 

2.3% 

OrB Barnwell loamy sand, 2 to 6 
percent slopes 

5.14 
(12.70) 

68.2% 

 

Fields used in development of Google Earth models included: Rusty Pivot located 

in Lee County, S.C. (34.1345°N, 80.2533°W) (Table 3.6), CP4 & CP13 (32.9780°N, 

81.2811°W) (Table 3.7) located in Allendale, S.C., Chicken House (33.3343°N, 

81.3605°W) (Table 3.8), B6B (33.3576°N, 81.3288°W) (Table 3.9), C12 (33.3484°N, 

81.3193°W) (Table 3.10), and E7 (33.3448°N, 81.3158°W) (Table 3.5), all of which are 

located in Barnwell County, S.C. E7 soil data was used for construction of models from 

both sources, but imagery used in analysis was source- specific.      
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Table 3.6: Rusty Pivot Field SSURGO Soil Type Distribution  

Symbol Map Unit Name Area, ha 
(ac) 

% of Area 

CxA Coxville sandy loam, 0 to 2 percent slopes 17.8 (44.6) 35.2% 

GoA Goldsboro sandy loam, 0 to 2 percent slopes 4.1 (10.4) 8.0% 

NnA Noboco- Goldsboro complex 0 to 2 percent 
slopes 

9.4 (23.4) 18.4% 

NoA Norfolk loamy sand, 0 to 2 percent slopes 10.7 (26.5) 20.9% 

RaA Rains sandy loam, 0 to 2 percent slopes 9.0 (22.3) 17.6% 

 

Table 3.7: CP4 & 13 Field SSURGO Soil Type Distribution  

Symbol Map Unit Name Area, 
ha(ac) 

% of Area 

BaB Blanton sand, 0 to 6 percent slopes 6.7 (16.6) 9.6% 

BoA Bonneau fine sand, 0 to 2 percent slopes .08 (0.2) 0.1% 

GoA Goldsboro sandy loam, 0 to 2 percent slopes .08 (0.2) 0.1% 

NoA Norfolk loamy sand, 0 to percent slopes 47.3 (117) 67.5% 

Pe Pelham loamy sand, 0 to 2 percent slopes 4.6 (11.4) 6.6% 

Ra Rainy loamy fine sand 11.4 (28.1) 16.2% 
 

Table 3.8: ChickenHouse Field SSURGO Soil Type Distribution  
Symbol Map Unit Name Area, ha(ac) %of Area 

BaB Blanton sand, 0 to 6 percent slopes 0.1 (0.3) 3.0% 

DaB Barnwell loamy sand, 2 to 6 percent slopes 2.1 (5.2) 58.1% 

FuB Wagram sand, 2 to 6 percent slopes 1.4 (3.5) 38.9% 

 

Table 3.9: B6B Field SSURGO Soil Type Distribution  
Symbol Map Unit Name Area, ha(ac) % of Area 

DaB Barnwell loamy sand, 2 to 6 percent slopes 0.7 (1.8) 7.0% 

FaB Nankin loamy sand, 2 to 6 percent slopes 0.6 (1.6) 6.3% 

FuB Wagram sand, 2 to 6 percent slopes 2.4 (5.9) 23.2% 

VaA Orangeburg loamy sand, 0 to 2 percent slopes 2.0 (5.0) 19.7% 

VaB Barnwell loamy sand, 2 to 6 percent slopes 4.5 (11.1) 43.8% 
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Table 3.10: C12 Field SSURGO Soil Type Distribution  
Symbol Map Unit Name Area, ha(ac) % of Area 

DaA Norfolk loamy sand, 0 to 2 percent slopes 0.32 (0.8) 6.9% 

DaB Barnwell loamy sand, 2 to 6 percent slopes 1.33 (3.3) 28.5% 

FuA Wagram sand, 0 to 2 percent slopes 2.14 (5.3) 45.4% 

FuB Wagram sand, 2 to 6 percent slopes 0.04 (0.1) 1.2% 

VaB Barnwell loamy sand, 2 to 6 percent slopes 0.85 (2.1) 18.0% 

Soil Texture and OM Content Data Collection 

Fields selected for this study were assigned 0.101 ha (.25 ac) grid squares using 

Trimble Ag Desktop Software (v2019.1.0, Trimble Inc., Sunnyvale, Cal.). The GPS 

coordinates of the grid centers were exported to a comma separated values (CSV) file. The 

file was then loaded into Soil Sampling Utility (v.1.0.1.10, Clemson University Precision 

Agriculture, Blackville, SC), and navigation to sample positions was conducted by using a 

BU-353S4 USB GPS Receiver (GlobalSat WorldCom, New Taipei City, Taiwan) with 

WAAS, DGPS correction. At each sample site, eight soil cores were collected from a 305 

cm (120 in.) radius around the center position of each grid square. Each sample core was 

collected from the top 15 cm (4 in.) of the soil profile using a soil probe with diameter 2.54 

cm (1 in.)  

Each sample was passed through a #10 (2 mm) sieve to remove graved sized 

particles and residue and divided into two equal subsamples, each subsample weighing at 

least 100 g. One subsample was processed to determine the percentage sand, silt, and clay 

using the Hydrometer Method as outlined by Huluka and Miller (2010). The other sample 

was processed to determine OM content using the Loss on Ignition process outlined by 

Zhang and Wang (2014). Soil texture and OM were reported as mass composition of sand, 

silt, and clay. Figure 3.3 parts (a), (b), (c), and (d) shows distributions of measured sand, 
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silt, clay and OM content compositions respectively across all sample sites, as these ranges 

represent the known sand, clay, and OM values which will be represented during regression 

modeling. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.2: Distribution of measured sand (a), silt (b), clay (c) and OM content (d) across all Planet 
Labs image sample sites used in regression modeling. Sand content ranged from 51.5% - 95.0%, silt 
content ranged from 0%-25%, clay content ranged from 1% - 32.5%, and OM content ranged from 

0.36%-7.53%. 
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(a) (b) 

  

(c) (d) 

Figure 3.3: Distribution of measured sand (a), silt (b), clay (c) and OM content (d) across all Google 
Earth image sample sites used in regression modeling. Sand content ranged from 69.0% - 96.5%, silt 

content ranged from 0%-21.5%, clay content ranged from 1% - 16.5%, and OM content ranged 
from 0.05%-1.39%. 

 
Image Processing 

 Images of each field were loaded into Spatial Image Digitizer v2.0 (SID), software 

developed by Clemson University, for georeferencing and pixel value extraction. SID 

works to first assign each pixel within an image a set of coordinates in latitude, longitude 
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format, a process known as georeferencing. Images can be georeferenced using SID in one 

of two methods. The first method involves selecting permanent ground control points such 

as power poles, roadway centerlines, or other land features that are visible both in SID’s 

basemap image, and in the image to be analyzed. The second method involves loading an 

ArcView shapefile (Environmental Systems Research Institute, Redlands, Cal.) polygon 

definition containing the field’s outer boundary into SID, and also overlaying the same 

field boundary onto the image to be processed. Using this method, distinct features of a 

field’s boundary such as sharp corners or points can be selected for use as georeferencing 

points in both images. A sample image of this method is illustrated in Figure 3.4. SID uses 

these user-specified ground control points to build models for calculation of latitude and 

longitude as a function of x and y pixel positions. 

 

Figure 3.4: Georeferencing process within SID. Image on left represents basemap image with field 
boundary in ArcView Shapefile overlaid. Image to right shows the same field, but image captured 
from satellite imagery. User selects one point on field boundary of left image, then selects the same 

point on right image. 
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 After georeferencing, each image was processed in SID at full resolution to extract 

red, green, and blue values, as well as other color values calculated from the red, green, 

and blue components; examples of these derived values include hue, chroma, and 

brightness. SID outputs are stored in a comma separated values (CSV) file, with each row 

representing a given pixel within the image, and each column representing color 

components extracted. The data in these columns forms the foundation for model effects 

used in regression modeling in later steps.  

Pixel data extraction extracts pixel data for the entire shapefile boundary, in this 

case, the entire field. The first objective of this study was to evaluate different size “sample 

circles” for prediction. These sample circles consist only of georeferenced pixel data falling 

within a given diameter of the physical soil sampling site, with each sample circle serving 

as a representative sample of the pixel data surrounding each physical sample location. 

Two sample circle diameters were used in this study: 7.6 m (25 ft) represented the “smaller” 

sample circle, while 15 m (50 ft) represented the “larger” sample circle. These sample 

circle diameters were chosen to evaluate whether including more or less pixel data resulted 

in reduced model error. Using Circular Polygon Generator (CPG) and Point Polygon Merge 

Utility (PPMU), software developed by Clemson University, SID outputs were processed 

twice independently, once to remove all pixel data outside of a 15 m (50 ft) diameter around 

the datapoint, and once to remove all data outside of a 7.6 m (25 ft) diameter. CPG is a tool 

that constructs a shapefile of circular polygons centered on positions included in a point 

dataset. PPMU is a tool that associates each point in a point dataset with the polygon in 

which it resides, from a polygon dataset. For this study, the point dataset source was the 
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SID output and the polygon dataset source was the CPG output. The resulting output 

datasets from PPMU only contained pixel information for pixels within the diameters 

specified above; meaning models were developed using only those data. An example of 

this workflow is illustrated in Figure 3.5. 

   

(a) (b) (c) 

Figure 3.5: Example workflow of reducing SID point dataset (a) to within “sample circles”. Using 
CPG, “sample circles” of specified diameters were created (b, polygon dataset). Using PPMU, only 

data within these sample circles is retained for regression model development (figure c, point dataset, 
clipped to polygons in figure b).  

   

 For Planet Labs Imagery, this process was repeated for each of the ten images 

captured of each field. Each row in the CSV file was associated with a unique SampleID, 

which defined the point at which the physical soil sample was taken. Pixel values within 

each sample circle were then averaged, resulting in a single value for each SID output 

column, within each SampleID. These values were then averaged once again, this time 

across all ten images captured. The resulting dataset consisted of a single value for each 

column, for each data point. As an example, if SampleID “1” contained a red colorspace 

value of 100, the 100 value was derived from averaging all red colorspace values from 

pixels residing within the sample circle of SampleID “1” across all ten images captured. 
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Regression Model Development 

All regression modeling and statistical analyses were performed using JMP Pro 

v.14.1.0 (SAS Institute Inc., Cary, North Carolina). Three sets of models were 

independently created for prediction of sand, clay, and OM contents: one set of models for 

images from each of the satellite image sources (Planet Labs and Google Earth) and a third 

set of models using combined image data from both sources. Within each image source, 

models were also independently created using data from 25- and 50-ft diameter sample 

circles.  For each set of models, each sample site was randomly assigned to one of two 

classifications: a training class containing 80% of sample sites and a testing class 

containing 20% of samples sites. This classification was performed to ensure models were 

not tested on the same datapoints which were used to develop them. Using the stepwise 

model fitting personality, multiple linear regression models were created using both 

forward and backward direction and both minimum AICc and minimum BIC stopping 

rules. For each model, the term being predicted (e.g. sand, clay, or OM content) was 

assigned as the response variable, y, while the model effect, x, terms were assigned as being 

the image color data extracted by SID. Transformations of all SID outputs were also 

considered as model effects, including square root, square, cube root, cube, log+1, and 

reciprocal. Indices of the red, green, and blue component values were also created using 

combinations of addition, subtraction, multiplication, and division of combinations of the 

color components. Some examples include: (R+G+B), (R+B)*(R-B), (R*G*B), and 

(R+G+B)/3. The “3-D Function Finder” feature of ZunZun.com (James Phillips, 

Birmingham, Ala.) was utilized to create equations consisting of X, Y and Z variables. In 
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these equations, X and Y were represented by two color component combinations, and Z 

was represented by the known value of what was being predicted. A sample equation from 

ZunZun may predict sand from only red and blue. Multiple collinearity was reduced by 

removing any term with a variance inflation factor (VIF) of greater than 5, as suggested by 

Kutner, et al. (2005). Regression outliers, or heavily influential points, were removed from 

consideration using Cook’s Distance; any data point with Cook’s Distance values greater 

than 1.0 were excluded as suggested by Hair, et al. (1998). Upon exclusion of a regression 

outlier, the stepwise model iteration was restarted. Terms with low significance (p-value > 

0.05) were eliminated until all remaining terms satisfied VIF, Cook’s Distance, and p-value 

criteria. 

 
Error Reporting 

Model prediction error was calculated using the testing class for each component 

modeled and is presented herein in units of percent sand content, percent clay content, and 

percent OM content. Prediction error was performed only on the data assigned to the testing 

class, and was calculated using the generalized formula in Equation 3.1:  

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴|, (3.1) 

where AbsErr represents absolute prediction error of the modeled component (e.g. percent 

sand, clay, or OM content), Predicted represents the predicted value of the modeled 

component for a given image, and Actual represents the measured value of the component 

for the sample collected at that image. In the following tables, the columns demonstrating 

error at 50% and 90% confidence represent the prediction errors for which 50% and 90% 
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of all prediction errors were lower in value. For example, an “error at 90% confidence” 

value of 13.77 as seen in Table 3.12 demonstrates that 90% of the absolute values of 

prediction errors were less than 13.77% sand content. A means comparison (student’s t-

test α = 0.05) was performed on each dataset to establish significant differences in 

prediction ability as a related to combinations of sample circle diameter. 

Results and Discussion 

 Regression models were developed to predict sand, clay, and OM content as a 

function of data extracted from different RGB satellite imagery sources. Models were 

developed independently using data from within both 7.6m (25ft) and 15m (50ft) sample 

circles, the center of which represents the location at which the physical soil samples were 

collected. These sample circles aim to establish representative sample areas surrounding 

the point of soil data collection. Two sizes of sample circles were chosen and evaluated to 

determine whether sample circle size influenced prediction model accuracy, by way of 

including more pixel data within the larger circle. 

While a complete listing of model coefficients and terms is given in Appendix B, 

an example model is given in Table 3.11 to demonstrate each aspect of the resulting model. 

Models may be implemented using the generalized formula provided in Equation 3.2 

utilizing coefficients and terms from Table 3.11.  

𝑦𝑦0 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇0 ∗  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸0) + (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1 ∗  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1) … +  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛 ∗  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛) (3.2) 

where y0 represents the variable being predicted (e.g. sand content), Intercept represents 

the Estimate value for the Intercept term, Term0 represents the first term below Intercept in 
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the Term column, and Estimate0 represents the value in the Estimate column corresponding 

to the row containing Term0.  

Table 3.11: An example to illustrate general model construction: model terms and coefficients for 
model predicting sand content using 50-ft diameter sample circle and Planet labs data. Each estimate 

value is multiplied by the corresponding value of the given term in the dataset. 
Term Estimate Std Error 

Intercept -5989 654.2 

(R+B)/(G-B)3 0.0024 0.0008 

∛((R+G+B)/(R+B)) 5346 574.3 

Log(MeanSatHSL) 8.822 1.076 

(G-B)/(R-G)3 -38.11 3.198 

 
Sand Content Prediction Models 

For sand, clay, and organic matter content prediction, models were created in three 

“banks”, with each soil property representing an independent bank. Within each bank exist 

models created using Planet Labs, Google Earth, and Combined image source data. For 

each of these image sources, models were created for both 25ft and 50ft sample circle 

diameters, as well as a model using data form both sample circle sizes. Models were 

developed and evaluated independently, but different combinations of sample size 

diameter were evaluated within each bank. 

 Tables 3.12, 3.13, and 3.14 illustrate results from application of sand content 

prediction models developed using Planet Labs, Google Earth, and combined form data 

from both sources, respectively. None of the three image sources demonstrated significant 

difference in prediction ability in regard to sample circle diameter size. In some instances, 

models were able to better predict using data from a sample circle size different than the 

one with which it was trained. Using an example taken from the dataset, in Table 3.13, the 
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model trained on the smaller sample circle had both lower mean error and error at 90% 

confidence when tested on the larger sample circle than when tested on the testing class of 

the smaller circle. Within each “bank” of models for each source, error numbers remained 

numerically similar, with Google Earth images Table 3.13 exhibiting the lowest Error at 

90% confidence. It should be noted that there is not a direct comparison between errors, 

since data from only one field was included in modeling for both image sources, and the 

number of images that were collected is less. Figure 3.6, 3.7, and 3.8 illustrate actual by 

predicted plots for application of 25-ft sample circle data to the 25-ft sample circle testing 

class for Planet Labs, Google Earth, and combined image source models.1:1 lines are also 

included in these figures. 

 
Figure 3.6: Actual by predicted data for sand prediction model developed with Planet Labs data 
using 25-ft sample circles applied to testing data of 25-ft sample circle data. 1:1 line provided in 

figure. 
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Figure 3.7: Actual by predicted data for sand prediction model developed with Google Earth data 

using 25-ft sample circles applied to testing data of 25-ft sample circle data. 1:1 line provided in 
figure. 

 
Figure 1.8: Actual by predicted data for sand prediction model developed with Planet Labs and 

Google Earth (combined) data using 25-ft sample circles applied to testing data of 25-ft sample circle 
data. 1:1 line provided in figure. 
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Table 3.12: Prediction errors of sand content prediction models utilizing Planet Labs imagery, as 
developed and applied to various subsets of the data.  

Training 
Basis[a] 

Testing 
Basis [b] n [c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

25ft Samples 25ft Samples 78 5.04 A 3.11 13.77 

25ft Samples 50ft Samples 78 4.98 A 3.04 15.51 

25ft Samples All Samples 156 5.01 A 3.07 13.85 

50ft Samples 50ft Samples 78 5.18 A 3.49 14.16 

50ft Samples 25ft Samples 77 5.12 A 3.87 11.50 

50ft Samples All Samples 155 5.15 A 3.66 11.69 

All Samples 25ft Samples 78 5.02 A 3.14 12.93 

All Samples 50ft Samples 78 4.98 A 2.99 14.75 

All Samples All Samples 156 4.00 A 3.03 12.98 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 

 
Table 3.13 Prediction errors of sand content prediction models utilizing Google Earth imagery, as 

developed and applied to various subsets of the data.  
Training 
Basis[a] 

Testing 
Basis [b] 

n 
[c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

25ft Samples 25ft Samples 44 3.32 A 2.54 6.49 

25ft Samples 50ft Samples 44 3.14 A 2.12 6.45 

25ft Samples All Samples 88 3.23 A 2.32 6.37 

50ft Samples 50ft Samples 44 3.39 A 2.68 6.80 

50ft Samples 25ft Samples 44 3.54 A 3.06 7.98 

50ft Samples All Samples 88 3.46 A 2.73 6.99 

All Samples 25ft Samples 44 3.28 A 2.90 7.36 

All Samples 50ft Samples 44 3.16 A 2.36 6.30 

All Samples All Samples 88 3.22 A 2.55 6.85 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 
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Table 3.14: Prediction errors of sand content prediction models utilizing both Planet Labs and 
Google Earth imagery, as developed and applied to various subsets of the data.  

Training 
Basis[a] 

Testing 
Basis [b] n [c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

25ft Samples 25ft Samples 122 4.99 A 2.31 11.53 

25ft Samples 50ft Samples 122 4.95 A 2.44 10.61 

25ft Samples All Samples 244 4.97 A 2.35 10.88 

50ft Samples 50ft Samples 122 4.57 A 2.08 10.62 

50ft Samples 25ft Samples 122 4.59 A 2.15 10.77 

50ft Samples All Samples 244 4.85 A 2.10 10.55 

All Samples 25ft Samples 122 5.06 A 2.86 10.94 

All Samples 50ft Samples 122 5.57 A 2.08 10.53 

All Samples All Samples 244 5.04 A 2.83 10.58 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 

 
Clay Content Prediction Models 

Clay content prediction model results are illustrated for Planet Labs, Google Earth, 

and combined source data in Tables 3.15, 3.16, and 3.17 respectively. Significant 

differences existed only when applying the larger sample circle model to the testing class 

of the smaller circle, which caused significantly higher error percentages. Similar to sand 

content prediction, Google Earth models produced the lowest mean and error at 90% 

confidence interval percentages (Table 3.16). By applying the combined sample circle 

model to the larger sample circle data, the lowest error in this bank of models was achieved. 

The clay prediction model bank using both Google and Planet data did not produce any 

significant differences.  
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Figures 3.9, 3.10, and 3.11 illustrate actual by predicted plots for application of 25-

ft sample circle data to the 25-ft sample circle testing class for Planet Labs, Google Earth, 

and combined image source models. 1:1 lines are also included in these figures. 

Table 3.15: Prediction errors of clay content prediction models utilizing Planet Labs imagery, as 
developed and applied to various subsets of the data. 

Training 
Basis[a] 

Testing 
Basis [b] n [c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

25ft Samples 25ft Samples 78 4.00 A 2.33 10.69 

25ft Samples 50ft Samples 78 3.64 A 2.13 9.67 

25ft Samples All Samples 156 3.82 A 2.19 9.87 

50ft Samples 50ft Samples 78 3.29 A 2.48 9.55 

50ft Samples 25ft Samples 77 8.00 B 6.06 19.55 

50ft Samples All Samples 155 3.22 A 2.43 8.75 

All Samples 25ft Samples 77 3.72 A 2.71 10.15 

All Samples 50ft Samples 78 3.75 A 2.54 10.20 

All Samples All Samples 155 3.73 A 2.58 10.08 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 
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Table 3.16: Prediction errors of clay content prediction models utilizing Google Earth imagery, as 
developed and applied to various subsets of the data. 

Training 
Basis[a] 

Testing 
Basis [b] 

n 
[c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

25ft Samples 25ft Samples 35 2.58 AB 1.72 5.48 

25ft Samples 50ft Samples 34 2.56 AB 1.84 5.46 

25ft Samples All Samples 69 2.57 A 1.78 4.71 

50ft Samples 50ft Samples 44 1.98 ABC 1.40 4.45 

50ft Samples 25ft Samples 44 2.05 ABC 1.31 4.82 

50ft Samples All Samples 88 2.01 ABC 1.34 4.49 

All Samples 25ft Samples 44 1.72 AB 1.47 3.70 

All Samples 50ft Samples 44 1.69 BC 1.41 3.34 

All Samples All Samples 88 1.71 C 1.42 3.56 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 

 
Table 3.17: Prediction errors of clay content prediction models utilizing both Planet Labs and Google 

Earth imagery, as developed and applied to various subsets of the data. 
Training 
Basis[a] 

Testing 
Basis [b] n [c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

25ft Samples 25ft Samples 122 3.65 A 2.30 7.50 

25ft Samples 50ft Samples 122 3.61 A 2.28 7.65 

25ft Samples All Samples 244 3.63 A 2.29 7.40 

50ft Samples 50ft Samples 122 3.59 A 2.08 6.82 

50ft Samples 25ft Samples 122 3.62 A 2.03 7.54 

50ft Samples All Samples 244 3.61 A 2.07 7.02 

All Samples 25ft Samples 122 3.51 A 2.06 6.49 

All Samples 50ft Samples 122 3.49 A 2.07 6.54 

All Samples All Samples 244 3.50 A 2.07 6.29 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 
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Figure 3.9: Actual by predicted data for clay content prediction model developed with Planet Labs 
data using 25-ft sample circles applied to testing data of 25-ft sample circle data. 1:1 line provided in 

figure. 
 

 
Figure 3.10: Actual by predicted data for clay content prediction model developed with Google Earth 
data using 25-ft sample circles applied to testing data of 25-ft sample circle data. 1:1 line provided in 

figure. 
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Figure 3.11: Actual by predicted data for clay content prediction model developed with Planet Labs 
and Google Earth data using 25-ft sample circles applied to testing data of 25-ft sample circle data. 

1:1 line provided in figure. 
 
 
OM Content Prediction Models 

 OM content prediction model results are illustrated for Planet Labs, Google Earth, 

and combined source data in Tables 3.18, 3.19, and 3.20 respectively. Application of the 

combined sample circle model to the larger sample circle dataset resulted in significantly 

lower error values for the Planet Labs bank of models (Table 3.18). OM content prediction 

models using Google Earth data in Table 3.19 produced significantly different error values, 

however, the two combinations with the lowest error share the same T-Test value, 

signifying that although differences exist within the model bank, the two lowest error 

combinations are not significantly different. The combined source OM content prediction 

model bank (Table 3.20) did not result in significant differences except when applying the 

smaller sample circle diameter to any other data that it was trained on, which resulted in 

extremely high error in both cases.   
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 It is important to note the range of OM content values listed at the beginning of 

this document, as initially error percentages of sub- 1% may appear as though the model 

does an excellent job predicting, when in fact the range of OM content used in model 

training is only ~7%, as illustrated previously in Figure 3.2(d). Figure 3.12, 3.13, and 3.14 

illustrate actual by predicted plots for application of 25-ft sample circle data to the 25-ft 

sample circle testing class for Planet Labs, Google Earth, and combined image source 

models. 1:1 lines are also included in these figures. 

 
Table 3.18: Prediction errors of OM content prediction models utilizing Planet Labs imagery, as 

developed and applied to various subsets of the data. 
Training 
Basis[a] 

Testing 
Basis [b] n [c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

25ft Samples 25ft Samples 78 0.65 A 0.47 1.60 

25ft Samples 50ft Samples 78 0.49 ABC 0.38 0.91 

25ft Samples All Samples 156 0.57 ABC 0.42 1.33 

50ft Samples 50ft Samples 78 0.47 BC 0.35 1.01 

50ft Samples 25ft Samples 78 0.62 AB 0.44 1.36 

50ft Samples All Samples 156 0.54 ABC 0.41 1.07 

All Samples 25ft Samples 78 0.63 AB 0.47 1.47 

All Samples 50ft Samples 78 0.45 C 0.33 0.99 

All Samples All Samples 156 0.54 ABC 0.38 1.13 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 
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Table 3.19: Prediction errors of OM content prediction models utilizing Google Earth imagery, as 
developed and applied to various subsets of the data. 

Training 
Basis[a] 

Testing 
Basis [b] 

n 
[c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

25ft Samples 25ft Samples 35 0.24 D 0.12 0.77 

25ft Samples 50ft Samples 35 0.80 A 0.52 2.22 

25ft Samples All Samples 70 0.52 BC 0.28 1.44 

50ft Samples 50ft Samples 35 0.34 CD 0.32 0.72 

50ft Samples 25ft Samples 35 0.83 A 0.54 2.12 

50ft Samples All Samples 70 0.58 B 0.39 1.63 

All Samples 25ft Samples 35 0.35 CD 0.28 0.78 

All Samples 50ft Samples 35 0.33 CD 0.32 0.59 

All Samples All Samples 70 0.34 D 0.31 0.65 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 
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Table 3.20: Prediction errors of OM content prediction models utilizing both Planet Labs and Google 
Earth imagery, as developed and applied to various subsets of the data. 

Training 
Basis[a] 

Testing 
Basis [b] n [c] 

Mean 
Error [d] 

T-Test 
[e] 

Error at 50% 
Confidence [d] 

Error at 90% 
Confidence [d] 

25ft Samples 25ft Samples 113 0.71 C 0.44 1.60 

25ft Samples 50ft Samples 113 44.39 A 0.56 31.72 

25ft Samples All Samples 226 22.55 B 0.51 4.51 

50ft Samples 50ft Samples 113 0.55 C 0.38 1.14 

50ft Samples 25ft Samples 113 0.96 C 0.77 2.36 

50ft Samples All Samples 226 0.76 C 0.56 1.99 

All Samples 25ft Samples 112 0.81 C 0.54 2.28 

All Samples 50ft Samples 109 0.57 C 0.40 1.13 

All Samples All Samples 221 0.69 C 0.46 1.71 
[a] Imagery dataset whose training class was used for model development 
[b] Imagery dataset whose testing class was used for prediction error analysis 
[c] Number of images used in testing class 
[d] Unit of measure for prediction error presented as % sand content 
[e] Means with the same letters are not significantly different (α = 0.05) 

 

 
Figure 3.12: Actual by predicted data for OM content prediction model developed with Planet Labs 
data using 25-ft sample circles applied to testing data of 25-ft sample circle data. 1:1 line provided in 

figure. 
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Figure 3.13: Actual by predicted data for clay content prediction model developed with Google Earth 
data using 25-ft sample circles applied to testing data of 25-ft sample circle data. 1:1 line provided in 

figure. 
 

 
Figure 3.14: Actual by predicted data for clay content prediction model developed with Planet Labs  
and Google Earth data using 25-ft sample circles applied to testing data of 25-ft sample circle data. 

1:1 line provided in figure. 
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Anomalous Texture Predictions  

 Regression models are only able to accurately predict values that fall within the 

range of their training data and cannot be considered reliable when predicting outside of 

this range or extrapolating. In this study, the result is an anomalous texture prediction. Such 

predictions often occur in two ways: predictions that are inaccurate, yet within an 

acceptable range, and predictions that are outside of possible ranges; such as percentages 

below 0 or greater than 100. To rectify these errors, model input and output boundaries 

must be applied. These boundaries, defining acceptable ranges of each model term (as 

exhibited in the training dataset), allow for determination of whether the image being 

analyzed is within the range of parameters used for model development. This should 

generally suggest if an image of unknown soil texture would result in a plausible result. If 

the boundaries determine an anomalous image or group of pixels, as compared to the 

training dataset, the image would be omitted from prediction. Model bounds are provided 

for the model resulting in lowest mean error for sand, clay, and organic matter content 

predictions from each image source in Appendix A. The tolerance factor allowed for some 

extrapolation outside of the range of values demonstrated in the training dataset. 

 The first type of erroneous result is an inaccurate, yet realistic prediction. These 

predictions fall within an acceptable range of data but may vary greatly from points 

surrounding them. These features are often a result of features captured in the satellite 

image, such as crop residue, trees, or water falling within the sample circle. Despite these 

anomalies, the model attempts to make a prediction, and the results are within a normal, 

otherwise acceptable range (0 to 100%). 
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 Another type of inaccurate prediction occurs when the model produces unrealistic 

results, or results outside of acceptable values, such as sand, clay, or OM contents outside 

of the range of 0 to 100%. These predictions may be more likely to result from inconsistent 

image characteristics, such as shadows, overexposure, or lens flare. These results are 

typically outside of the possible range of a texture content, and errors may be extremely 

large in either the positive or negative direction. Model bounding, as discussed earlier, 

should generally prevent such prediction errors. 

 With either type of erroneous result, it is necessary to introduce boundaries to the 

models, which will automatically determine if an image can be accurately analyzed, or 

whether it should be omitted. Images producing predictions either above 100% or below 

0% can automatically be omitted, as they are out of bounds of a realistic prediction. This 

can be performed by use of an “if…then” statement, calling for images outside of those 

ranges to be marked, or flagged. Alternatively, these predictions within some range could 

be defaulted to the closer of 0% or 100%. Boundaries for model terms in this study were 

constructed based on the ranges observed in the training datasets; a binary output was 

calculated for each term for each processed image to determine whether the term was 

within the generally observed range of values in the training dataset. As discussed, a 

tolerance factor was applied to allow for some extrapolation. Terms for an image falling 

within bounds were assigned a BoundCheck value of 1, while terms outside of bounds were 

assigned a BoundCheck value of 0. The product of the BoundCheck values for each term 

of a given image, was then used to demonstrate whether all of the terms for an image were 

within the model’s boundaries. Products equal to 1 demonstrated that all terms were within 
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model bounds; products equal to 0 demonstrated that the value for at least one term was 

out of model bounds. 

Image Source Model Comparison 

A means comparison (student’s t-test, α = 0.05) was performed to establish, across 

all datapoints, which image source resulted in the lowest error. When predicting both sand 

(Table 3.21) and clay (Table 3.22), Google Earth resulted in the lowest mean error values. 

This could be a result of the increased image resolution or could be simply caused by the 

soil colors of the fields chosen for this study. When predicting OM content (Table 3.23) 

significant difference existed when using the combined model, this is likely a result of the 

extremely high error previously mentioned. Although Google Earth produces the lowest 

error values, this should not be interpreted as a direct comparison between sources due to 

the differing fields, image capture dates, and number of images captured for each source.  

Table 3.21: Sand content prediction errors across imagery sources. Google Earth resulted in lowest 
mean error, significant differences between Google Earth and both Planet Labs & combined models. 

Image 
Source[a] n [b] 

Mean 
Error [c] 

T-Test 
[d] 

Google 528 3.31 B 

Planet 924 5.05 A 

Combined 1464 4.83 A 
[a] Image source used for model construction 
[b] Number of images used in testing class 
[c] Mean error across all testing classes within an 
image source 
 [d] Means with the same letters are not 
significantly different (α = 0.05) 
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Table 3.22: Clay content prediction errors across imagery sources. Significant differences exist 
between all three model sources, with Google Earth resulting in lowest mean error. 

Image 
Source[a] n [b] 

Mean 
Error [c] 

T-Test 
[d] 

Google 490 2.06 A 

Planet 936 4.39 B 

Combined 1464 3.58 C 
[a] Image source used for model construction 
[b] Number of images used in testing class 
[c] Mean error across all testing classes within an 
image source 
 [d] Means with the same letters are not 
significantly different (α = 0.05) 

 
Table 3.23: OM content prediction errors across imagery sources. Significant differences exist only 
between Combined model and both Google Earth and Planet Labs sources. Google Earth models 

exhibit lowest mean error, while Combined model mean error is likely a result of previously 
tabulated errors resulting from combined model combinations. 

Image 
Source[a] n [b] 

Mean 
Error [c] 

T-Test 
[d] 

Google 490 0.48 A 

Planet 936 0.55 A 

Combined 1464 8.06 B 
[a] Image source used for model construction 
[b] Number of images used in testing class 
[c] Mean error across all testing classes within an 
image source 
 [d] Means with the same letters are not 
significantly different (α = 0.05) 

 
 
Effects of Environmental Conditions and Physical Soil Properties on Prediction 

 During evaluation of results, it became apparent that soil properties, such as soil 

moisture, may impact image analysis results relative to texture prediction. Figure 3.6 shows 

Field E7, in an image that was not used in regression model development. In this Google 

Earth satellite captured image, a center pivot irrigation system is operating in the field, 

resulting in one half of the field appearing wet. This image was analyzed using previously 
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described methods. Then pixel data of a point within the “wet” part of the field was 

compared to pixel data taken from the “dry” zone in the field from the same satellite image. 

These two points are within 1% known sand content, but their R, G, and B values vary 

substantially, resulting in a 10% difference in sand content prediction. Table 3.24 shows 

the results of analysis of these two points. Utilizing a Google Earth based model, it is 

apparent that these differing color values result in over a 10% difference in predicted % 

sand content. For a model to be considered robust, conditions such as these would need to 

be more completely included within the training datasets. However, an image such as the 

one shown in Figure 3.15 should not be selected for classifying relative soil differences 

within a field, such as for zone development. 

Table 3.24: Analysis of “wet” and “dry” points in Field E7. Wet soil substantially alters pixel color 
characteristics among points with 1% variation in known sand content. 

SampleID Moisture Condition  Known Sand 
% 

Predicted 
Sand % R G B 

E7A-7 Wet (Irrigated) 93.0% 78.533% 135.228 89.73 65.78 

E7B1-3 Dry (Non-Irrigated) 94.0% 89.98% 198.56 167.67 136.625 
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Figure 3.15. Wet and dry points within Field E7. The two points are within 1% known sand content, 
but exhibit substantially different R, G, and B values, highlighting the importance physical factors, 

especially soil moisture, can have on regression modeling. 
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Application of Sand Content Prediction Model in Zone Management Scenario 

Models developed have practical applications, one of these being in development 

of field management zones. Field management zones in agricultural production are often 

designed to group like soils together, seeking to maximize differences in soil type and/or 

yield potential between the zones and minimize differences within zones. To demonstrate 

this application, points with known sand content from Chicken House Field were compared 

to sand content prediction developed from the smaller sample circle area, which produced 

both the lowest mean error and lowest error percentage at 90% confidence. Three 

contoured zones of equal area were created, representing relative sand content percentages: 

Low, Medium, and High. The model shown in Appendix C was applied to bare soil images 

collected from Chicken House Field using equation 3.2. The contoured zone map 

developed for actual sand (Figure 3.16a) can be compared to that for predicted sand content 

in Figure 3.16b. Contour maps were produced using Trimble Ag. Desktop Software 

v.2020.01. When viewing the actual and predicted data, it is apparent that the predicted 

values do not align universally with the actual data.  
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(a) (b) 

Figure 3.16: Illustration of zone creation utilizing sand content prediction models. Image (a) shows 
actual sand content of contoured data, while (b) shows results of applying prediction model.  

 
 The zone creation process was performed on two additional fields not included in 

the original study as an example of model robustness when exposed to varying field types. 

Images were captured using Google Earth and processed using SID, then sand content was 

predicted using the Google Earth equation developed using all sample circle data, which 

resulted in lowest mean error when applied to testing data. As these fields were not included 

in the original study, actual soil texture is not known. Additionally, sampling circles were 

not utilized for these examples; soil texture was calculated for each and every pixel within 

field boundaries 

 The first example field is located in Screven County, G.A. (32.6019°N, 

81.5723°W). Google Earth image capture date is 3/28/2013. This field consists of mostly 

Fuquay loamy sand (USDA Soil Survey Staff), but includes areas of loamy soil which 

results in a visibly darker soil color (Figure 3.17a). When the prediction model was applied, 

these differences resulted in lower sand content predictions, and can be visualized in Figure 
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3.17b. Without applying model bounds, no image points were classified below 0% sand or 

above 100% sand. A contour map was then created of this data to simulate a management 

zone application (Figure 3.17c). 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 3.17: Application of sand content prediction model to field not included in testing dataset 
located in Sylvania, Georgia. Image (a) illustrates bare soil condition, (b) illustrates results of sand 
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prediction model, and (c) illustrates sand content data as would be utilized for zone delineation, with 
legend showing predicted percent sand content. 

 
This demonstration was performed again on a field in Boiling Springs, N.C. 

(35.1874°N, 81.7130°W). Google Earth image capture date was 4/20/2018. This field 

consists mostly of Cecil sandy clay loam, and visually appears to have more “red clay” in 

its coloration, and less variation in its bare soil image (Figure 3.18a) than the Sylvania field 

shown previously. The sand prediction model echoes these visual observations, reporting 

a lower sand content in these areas. The prediction model also accurately depicts a washout 

in the field, which would likely have an increased sand content, as illustrated in Figure 

3.18b. When contoured (Figure 3.18c), although the model reports a comparatively low 

range of sand contents, the resulting contour map still depicts relative differences and could 

be used in a zone delineation application. 
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(a) 

 
 

(b) 

  

(c) 

Figure 3.18: Application of sand content prediction model to field not included in testing dataset 
located in Boiling Springs, North Carolina. Image (a) illustrates bare soil condition, (b) illustrates 
results of sand prediction model, and (c) illustrates sand content data as would be utilized for zone 

delineation, with legend showing predicted percent sand content. 

Conclusion 

 The objective of this study was to, using multiple linear regression models, develop 

equations to predict sand, clay, and organic matter content percentages from internet 

available, RGB satellite imagery. Two sources of imagery were utilized, Google Earth and 
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Planet Labs. Separate regression models for predicting sand, clay, and organic matter 

content percentages were developed independently for each image source.  

 Because of its mass availability and ease of integration, there is promise in the 

prospect of utilizing Google Earth satellite imagery for soil texture prediction. Although 

not directly compared to Planet Labs data, Google Earth image-based models exhibited the 

lowest prediction error in almost all predictions. The main constraint of using Google Earth 

satellite imagery is the irregularity and frequency at which updated imagery is provided. 

As an example, some fields that were considered for this study did not have a bare soil 

image provided by Google Earth. Best-performing models developed using Google Earth 

imagery resulted in prediction errors, at a 90% confidence interval, of 6.30% sand, 3.34% 

clay, and 0.59% organic matter content. 

 Planet Labs imagery has an edge in that imagery is available almost daily, at the 

cost of- lower spatial resolution. Image resolution was not evaluated in this study, and as a 

result, no conclusions can be drawn from it here. Similar to Google Earth, Planet Labs has 

an application programming interface (API) which allows imagery data to be easily 

implemented into standalone applications, meaning Planet Labs remains a possible source 

for future work on this subject. Best-performing models developed using Planet Labs 

satelliet imagery resulted in prediction errors, at a 90% confidence interval, of 11.50% 

sand, 8.75% clay, and 0.91% organic matter content. 

 The concept of soil texture prediction from satellite imagery is not at a stage where 

it will replace conventional soil sampling for soil texture and organic mapping. Factors 

such as soil moisture and ground cover can have drastic impacts on the resulting image 
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colors, making an accurate prediction difficult in some cases. The importance of this study 

lies less in the ability of models to predict exact percentages, and more in the ability of 

them to recognize relative differences within a field, such as for spatial delineation of 

management zones. 

 
Future Work 

  There are many areas in which this study can be improved, from the images used 

to the range of data collected. This study only utilized data from two image sources; Planet 

Labs and Google Earth, while there are many other sources of satellite imagery available, 

such as data from the Landsat series of satellites. Inclusion of more image sources could 

improve the ability of a single model to accurately predict texture percentages across 

multiple image sources by taking into account the variations of each satellite type. 

Collection and logging of data such as soil moisture or other physical properties at the time 

of image collection may aid in model development. Additionally, inclusion of fields with 

wider texture content ranges may reduce model error, and would expand applicability of 

models developed. This study developed prediction models using data within 7.6 m (25 ft) 

and 15 m (50 ft) diameter circles. Experimentation with other diameter sizes may reveal an 

“optimal” diameter in which error is reduced. Although ten images were captured of each 

field utilizing Planet Labs data, the pixel values for all ten images were averaged for each 

sample site. Utilizing each dataset independently would likely increase variation in pixel 

values, as the method used in this study may have “averaged out” much of the naturally 

occurring variation. The concept of “binning” data has shown promise in studies using the 

same regression model process, but with imagery collected from a UAV. Binning involves 
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breaking each color component, such as the red, green, and blue, components into groups, 

with each group representing a fraction of the total range of the component. Binning aids 

in model development by highlighting “sections” of colors which may be beneficial to 

model error reduction. During development of Planet Labs data-based models, pixel values 

were averaged across all ten images captured of a specific field. Treating each image as its 

own dataset may reduce model error, while at the same time providing more datapoints for 

model development. 
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CHAPTER FOUR 
 

AERIAL IMAGERY POINT SAMPLING METHOD AND SURVEY OF UAV AND 
IMAGE ANALYSIS USING MACHINE LEARNING IN AGRICULTURE 

 
Introduction 

 The agriculture industry is actively evaluating methods to use Unmanned Aerial 

Vehicles (UAV), commonly referred to as “drones” for specific applications to increase 

efficiency. The Federal Aviation Administration reports that 1,563,263 UAVs have been 

registered, with 441,709 of those units being registered for commercial use (FAA 2020). 

The majority of UAVs are equipped with imaging sensors that capture imagery in either 

red green blue (RGB) format similar to digital cameras or using multispectral image 

sensors which capture more color bands than can be captured by RGB sensors. Many 

consumer level UAVs cost less than $1,500, therefore, for a relatively low investment they 

provide a way for imagery data to be collected over large areas in a relatively short period 

of time, for a relatively low investment when compared to traditional plane-mounted aerial 

imagery.  

Additionally, UAVs can be preprogrammed with flight patterns, allowing them to 

consistently capture the same area in an image when the flight is repeated across different 

days, growing seasons, or conditions. Since flight plans can be programmed to any legal 

altitude, UAVs are effective devices for capturing high resolution imagery in a repeatable 

way. Collected imagery can be used to spot visual differences or can be further processed 

for image analysis. Data extracted from UAVs imagery can be tied to data collected from 
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equipment during the growing season to help develop improved management decisions and 

increase profit.  

In the agricultural sector, UAVs are quickly becoming commonplace tools used by 

researchers, farmers, and crop consultants for scouting and data collection due to their ease 

of use, low investment, and efficiency. An economic report published by the Association 

for Unmanned Vehicle Systems International (AUVSI) forecasts that, during the period 

2015-2025, UAVs will have a $75.6 billion impact on the agriculture industry alone, the 

highest of any impacts in the forecast (AUVSI 2013). While many use their UAV for 

spotting visual differences within fields, this technology allows for many different 

applications. Combining data collected from UAVs with data collected from the myriad of 

sensors available in the precision agriculture market, UAVs are becoming an essential tool 

in zone creation, management, and crop monitoring. 

The objective of this paper is to introduce a “point sampling” method of aerial data 

collection, and to compare it to the traditional method of whole field, orthophoto-based 

mapping. Additionally, a review of currently existing links between the fields of machine 

learning, artificial intelligence (AI) and the use of UAVs as applied to the agricultural 

sector is included.  

   

UAV Hardware and Software 

Among the most frequently studied topics involving the use of UAV in agriculture 

is yield estimation. Dodge (2019) was able to predict cotton yield using a consumer grade 

UAV and developed yield estimation equations using 2-dimensional UAV obtained 
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orthophoto data. Bendig et al., (2014) utilized high resolution imagery captured from a 

UAV equipped with an RGB camera to estimate barley biomass, and found strong 

relationships between biomass, plant height, and crop surface models. These crop surface 

models were developed using a UAV equipped with RGB camera. Reza et al., (2019) 

utilized a UAV to estimate rice yield using an RGB camera. Several studies utilize UAVs 

from SZ DJI Technology Co., Ltd. (Shenzhen, China), commonly known as DJI. DJI holds 

the largest market share of UAV sales at a reported 72% (Lampert 2019), reporting $2.83 

billion in revenue in 2017 (Ying, 2018). Many elect to purchase UAV from DJI because of 

their low cost, ease of use, and expandability options.  

The Phantom platform of DJI UAV is equipped with a GPS module, and can be 

factory equipped with a real time kinematics (RTK) module allowing sub-inch accuracy 

which can be used for precise and repeatable navigation to study areas, as well as a 

multispectral camera sensor, allowing for data collection of parameters beyond what RGB 

lenses are capable of collecting. Sentera, Inc (Minneapolis, Minn.) has produced a retrofit 

kit for equipping UAV with a normalized difference vegetation index (NDVI) sensor, 

allowing for rapid and repeatable measurement of plant vigor and health. However, even 

the non-specialized Phantoms are very capable devices within the agriculture industry with 

the help of third-party applications and services. Third party Applications such as Pix4D 

Capture (Pix4D SA, Prilly, Switzerland), Map Pilot for iOS (Drones Made Easy, San 

Diego, Cal.), and Litchi (VC Technology Co., Ltd. London, United Kingdom) allow further 

expansion of the capabilities of the UAV. 
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Image Capture and Processing 

Orthomosaic Mapping 

Commonly, UAV data collection is performed on a whole-field basis. Because 

capturing an entire field in a single image is often impossible due to flight height 

restrictions, and because most fields would require flying at such an altitude that any level 

of detail would be lost, this process is commonly used to collect data over a large field or 

study area. The resulting image, after distortion is removed and individual images are 

stitched together, is referred to as an “orthophoto”. The orthophoto consists of many single 

frame images which have been “stitched” together, creating a single image of the entire 

area of interest. For this type of data collection, flights can be preprogrammed before 

heading to the imaging site. Users can set their desired altitude, overlap, and flight 

conditions before the UAV covers the imaging area in a grid-like pattern, capturing images 

almost continuously. These images then must be joined together using the structure from 

motion (SFM) process. The SFM process looks for features shared between images and 

places them together, creating a “stitch” of all images captured (Westoby et. al, 2012).  

This data collection method is commonly utilized by fixed-wing UAVs such as the 

AgEagle series (AgEagle Aerial Systems, Neodesha, Kans.), and is also the method utilized 

by most crop consulting services. These UAVs are commonly shaped like traditional 

aircraft, and operate under the same flight principles, meaning they require comparatively 

little energy to stay in the air when compared to multi-rotor UAVs. Fixed-wing UAVs are 

capable of covering large areas and can fly for upwards of an hour from a single battery 

charge, but are not ideally suited for low altitude or tight area flights, due to their inability 
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to hover in place and their need for a comparatively wide turning radius. Multi-rotor UAV 

produced by manufacturers such as DJI can also be utilized for orthophoto mapping, but 

generally can only achieve roughly half of the flight time of a fixed wing UAV. One 

advantage of multi-rotor UAVs is their ability to hover in place and to change direction at 

any time. This ability makes multi rotor UAV ideal for plot-scale and smaller field work. 

An example of a stitched orthophoto image overlaid with field plots is shown in Figure 4.1. 

The resulting orthophoto is of GeoTiff format, meaning it contains latitude and longitude 

information, and can be used for analysis on a plot-by plot basis. 

  



91 
 

 

(a) 

 

(b) 

Figure 4.1: Orthophoto of test plots stitched using OpenDroneMap. Orthophoto creates stitched 
image of an entire sample area. Use of georeferencing points allows for image to be analyzed on a 

plot by plot basis. 
The number of images required for an orthophoto is directly related to the output 

quality desired. In order to achieve a higher resolution image, a lower altitude is required, 

meaning the UAV will not capture as much area in a single shot, requiring more flight time. 

Additionally, overlap must be increased, meaning the UAV will capture images more 

frequently, and will travel slower. During flight, spatial events such as a sudden cloud 

covering the field may render part of the image collected of no benefit. It is not uncommon 

for the number of images captured to reach into the thousands, taking up gigabytes of 
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storage space. Additionally, the process of handling and stitching images is 

computationally intensive and time consuming, making this process unsuitable for most 

end-users. While many conclusions can be reached by looking at visual differences 

captured by aerial images, many more relationships can be established by looking below 

the surface at the data that make up each image. What exactly can be extracted from an 

image depends mostly on the sensor type used; hyperspectral and multispectral sensors 

capture color bands not visible to RGB sensors, while lacking the image quality and 

resolution to spot visual differences. RGB sensors, on the other hand, capture a narrower 

window of color bands, making them preferred for identification and extraction of spatial 

features. Most crop consulting firms factor map and recommendation development into 

their end-user cost, but all major providers of mapping applications including Pix4D, Map 

Pilot, Agisoft Metashape (Agisoft LLC. St. Petersburg, Russia), DroneMapper 

(DroneMapper, Cedaredge, Colo.), and DroneDeploy (DroneDeploy, Inc., San Francisco, 

Cal.)  also offer services for stitching and recommendations from user-collected images, 

either on a credits-based system, or through “software as a service” based subscriptions. 

OpenDroneMap (OpenDroneMap.org) serves as a free, open source alternative that can be 

installed on any machine with ample computing resources. OpenDroneMap is constantly 

being improved and supported by its user base and is beginning support some of these 

features and analysis tools within its platform. 

Point Sampling 

Orthophoto imagery is extremely useful for capturing large areas when that a lower 

resolution image is acceptable. An alternative method for collecting imagery, introduced 
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here and referred to as the point sampling method, uses an aerial grid sampling technique, 

capturing single frame images at known points throughout an imaging site as illustrated in 

Figure 4.2, and creating contoured “heatmap” data using those images. The “FlyLitchi” 

app while not developed solely for agricultural uses, is available on both Apple and 

Android platforms, and allows for application of this method when using its “Waypoint” 

function. The app, similar to orthophoto mapping apps, allows for flight plans to be 

programmed before arriving at the sampling site. It features integration with comma 

separated values (CSV) files, allowing for fast importation of sampling points. Point 

coordinates can be exported from GIS software in CSV format (Figure 4.2 (a)), and then 

imported into Litchi’s interface (Figure 4.2 (b)). This interface includes options for altitude 

and flight speed, as well as other commands and settings for image and video capture which 

can be adjusted according to the desired result. 
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(a) (b) (c) 

Figure 4.2: Illustration of workflow of point data collection using Litchi app. Image locations 
exported from GIS software (a), and are loaded into Litchi app(b).  UAV collects image at each 

sampling site (c). 
 

The UAV will then fly to each predetermined point and capture a single image 

(Figure 4.2 (c)). By creating a sampling grid throughout an entire sample area, a 

representative sample of the sample area can be represented using these aerial images. This 

method results in a much lower number of images captured and requires no additional 

stitching steps. Because images are captured only at desired points, the UAV can cover a 

larger area during the flight time allowed by battery capacity. Using the point data 

collection method, a DJI Phantom 3 Advanced UAV can traverse a 40ha (100ac) field, 

collecting low altitude [30ft above ground level], high resolution images at 50 datapoints 

in 0.5 ac intervals in approximately 15 minutes under normal flight conditions. Sample 

images as collected with this process are illustrated in Figure 4.3 (a) and Figure 4.3 (b). To 

achieve the same image resolution over that same area in orthophoto format could easily 

extend the flight time into hours. 
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(a) (b) 

Figure 4.3: Comparison of two UAV images in same field collected on the same date using point data 
method. Point data method allows for quick "spot checking" across large areas. 

 

This is an ideal method for farmers who are considering entering the UAV market 

on a low budget, or perhaps have already purchased a UAV and have been utilizing it for 

visual field inspection. Because each of these images is saved as a single file, they take up 

no more storage space than images captured with a cell phone or digital camera. Images 

captured using this method can be analyzed using standalone applications such as Batch 

Load Image Processor (Clemson University Precision Agriculture, Blackville S.C.) and 

can provide near real time results, instead of waiting days, or even weeks, for orthophoto 

processing and results. Using this method, each image sample location will represent a 

single datapoint, and embedded in each image are the GPS coordinates at which it was 

taken, making display and analysis of data simple. These points can be loaded into GIS 

software to be viewed in point form or contoured to create “heatmaps” which can be used 

to spot relative differences throughout a field. As an example, images from the dataset 

shown previously in Figure 4.3 were process to extract NDVI from the RGB imagery, and 
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these results are shown in point data form (Figure 4.4a) and in contoured data form (Figure 

4.4b).  

  

(a) (b) 

Figure 4.4: NDVI extracted (a) and contoured (b) from RGB UAV using Point Sampling data 
collection method. 

Numerous image and crop features can be extracted using this method, and its uses 

can be expanded easily. Color features, such as pixel brightness and NDVI can be easily 

derived, but machine learning and neural networks can also be applied to this data, as seen 

in the next section, in which data collected using this method was used to develop a cotton 

boll counting network. 

The point sampling method for UAV aerial image data collection provides users 

the benefits of whole field sampling without the cost, time, and computing power 

requirements of whole field mapping. By increasing the number of sampling points, more 

data can be obtained for a negligible increase in flight time. Point sampling is also easily 

repeatable, making it an ideal method for tracking changes throughout the growing season. 

It is also extremely adaptable; if a farmer notices a problem with one area of a field, that 
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area can be designated its own flight plan and can be monitored independently, without 

consuming time and resources mapping an entire field. This method provides an accurate, 

“do-it yourself” method for those looking to enter the era of UAV crop scouting without 

the expense of an external service. 

Machine Learning Technologies 

The field of artificial intelligence (AI), machine learning, and computer vision are 

experiencing a period of exponential growth. The job title “Machine Learning Engineer” 

topped the list of the Indeed.com “Best Jobs in the U.S.:2019” with an average base salary 

of $146,085, and an impressive 344% growth in job postings from 2015-2018 (Indeed, 

2019). Results from studies in these fields are being implemented in numerous aspects of 

our daily lives, sometimes without our knowing. AI has been implemented at social media 

giant Facebook in order to rank posts, translate posts between languages, and interpret what 

is captured in a photograph posted to its website, according to a 2019 paper published by 

authors working at the company (Wu et al., 2019), and the topic of self-driving cars, which 

are controlled by AI and machine learning technologies, is of constant importance. The 

field of agriculture is no exception, and researchers are working globally to solve the 

world’s food concerns using modern methods, many of which include aspects of machine 

learning, AI, and computer vision. 

Defined by the SAS Institute (2019), machine learning is “a method of data analysis 

that automates analytical modeling. It is a branch of artificial intelligence based on the idea 

that systems can learn from data, identify patterns, and make decisions with minimal 

human intervention”. Despite its recent explosion in use, machine learning has existed, in 
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some form, since the dawn of the computer age. Samuel (1959) worked to train a computer 

to play checkers, and found that within 10 hours of training time, the computer was able to 

play a better game than the programmer who coded it. Machine learning is commonly 

broken into two categories of learning; supervised and unsupervised.  

Supervised learning, as defined by Sathya and Abraham (2013) is “based on 

training a data sample from a data source with correct classifications already defined.” This 

process is perhaps best illustrated by the process of regression, defined by Weisberg (2005) 

as the study of dependence. In regression and other supervised learning models, a model is 

developed attempting to match input characteristics that are known to output characteristics 

that are also known, in attempts to show a relationship. This relationship can then be used 

to make predictions to new data. A simple practical example tying together the concepts of 

regression and supervised learning with image analysis can be found in Teddy et al., 

(2020), in which imagery data collected using a UAV equipped with an RGB camera was 

used to predict cotton losses caused during the picking process. In this study, all cotton 

remaining in test plots was collected and weighed, representing the known variable. Images 

of each test plot were then captured by the UAV, and each image was analyzed to extract, 

among other characteristics, the red, green, and, blue component values for each image 

within each plot. These component values were then analyzed statistically to determine 

what, if any, relationship existed between the weight of cotton collected in a plot, and the 

color component values of the image of that same plot. In simple terms, was the image 

color dependent upon the amount of cotton visible in the image? This relationship, in the 
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form of a model, can be applied to other images of other plots and can issue a prediction 

using data gained from known points.  

In contrast to supervised learning is the method known as unsupervised learning. 

Using this technique, input data is processed with the goal of discovering hidden patterns, 

as defined by Liakos et al., (2018). Another way of looking at this method is that, where a 

supervised learning model will have a list of variables being used to predict an output, an 

unsupervised learning model will not have this given list of variables but will instead be 

looking to develop its own patterns and relationships. This method of learning is relied 

upon by technologies such as neural networks, a technology rapidly being deployed across 

many industries. In practice, this technology is “trained” using many images which exhibit 

the trait, pattern, or object that is of interest. After being exposed to many images of the 

object, the network is then able to identify it when exposed to an image not in the training 

dataset. 

 To provide an example of machine learning and neural networks in agriculture, a 

sample model was developed to identify white cotton blooms from low altitude aerial 

imagery collected via a DJI Phantom 3 UAV. This model was not created to report optimal 

model-specific settings, but rather to illustrate an example of machine learning, neural 

networks, and UAV imagery. 

MaskRCNN Neural Network Sample Model 

 The UAV was programmed with the waypoint feature of the Litchi app, using the 

point data collection method previously described, and was programmed to capture images 

at an altitude of approximately 11m (35ft) above ground level (AGL). The resulting images 
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were captured using the UAV’s integrated RGB camera, model DJI FC300s. Images 

captured were of resolution 4,000 x 3000 pixels and were stored in .JPEG format. This 

altitude and camera sensor combination resulted in images with a ground sample distance 

of 0.46 cm px-1 (0.18 in. px-1). A total of 10 images were captured on 10 August 2018 over 

sample sites of blooming cotton in Barnwell County, S.C. To aid in training speed, each 

image was tiled into a grid of four rows and eight columns using the latest version of 

IrfanView (Irfan Škiljan, Austria, Europe). Each of the resulting images was of size 500 

pixels x 750 pixels. 80% of the resulting tiled images were randomly assigned to a training 

dataset, while the remaining 20% were assigned to the validation dataset. Each image 

within the training dataset was then annotated using the VGG Image Annotator (Dutta and 

Zisserman 2019). The annotation process involves loading each image, then manually 

selecting features to be identified, and sorting them into a category. In this experiment, the 

only category was “white cotton bloom”; each image was loaded, and a polygon was drawn 

around each bloom visible in the image as illustrated in Figure 4.5. Annotating images 

serves to create a “dictionary” of known images within each category, that will be used to 

train the model and eventually identify the same category in validation images. This 

process was repeated for all images within the training dataset, and the output was saved 

as a .JSON file. 

https://www.google.com/search?client=firefox-b-1-d&q=Irfan+%C5%A0kiljan&stick=H4sIAAAAAAAAAONgVuLUz9U3sMgyyMhaxMrnWZSWmKdwdEF2Zk5WYh4Ang6srh4AAAA&sa=X&ved=2ahUKEwjGtZzmntPpAhVcmHIEHS61AfsQmxMoATAfegQICxAD
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Figure 4.5: Image illustrating manual image annotation using VGG Image Annotator. Polygon 
drawn around each cotton bloom to build "dictionary" of training images. Each bloom given a 

unique number. 
 

  The neural network was then developed using MaskRCNN, an instance 

segmentation framework developed by Facebook AI Research and published by He et al., 

(2017). Instance segmentation, as defined by Parades and Torr (2016) is the problem of 

detecting and delineating each distinct object of interest appearing in an image. Whereas 

object detection works to simply identify if a particular object exists in an image, image 

segmentation aims to identify all instances of that object within the image. MaskRCNN is 

able to analyze each pixel in an image and assign it to one of the classification categories. 

It then “masks” each instance of the object being classified. MaskRCNN has been 

implemented to extract and count buildings (Zhao et al., 2018), identify cell nuclei 

(Johnson 2018), and detect individual strawberries in development of an automated 

harvester (Yu et al., 2019). The MaskRCNN framework provides results which can be 
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implemented with pixel and object counts, as well as color value categorization. These 

results can then be implemented into end-user applications. 

 The demonstration model was heavily based upon the MaskRCNN “balloon” 

example (Matterport 2018), and was trained using mostly default settings using the latest 

versions of Python 3, Keras, and Tensorflow. Model training was accomplished by use of 

the Clemson University Palmetto Cluster, and by utilizing available nVidia CUDA- 

capable graphics processing units (GPUs). Upon conclusion of model training, some 

example images from the “validation” dataset were processed, with the results illustrated 

in Figure 4.6 (a) and (b). MaskRCNN applied a grayscale filter to the entire image, except 

for the segmented objects, white blooms in this case. 

  
(a) (b) 
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Figure 4.6. MaskRCNN cotton bloom identification model example images. MaskRCNN applied 
grayscale filter to entire image, and applied yellow mask to white cotton blooms. 

 
Model Implementation 

Although model evaluation is beyond the scope of this discussion, it is visibly 

apparent that the majority of blooms were identified and masked. Model robustness would 

be improved with a wider training dataset, as well as more training epochs. Additionally, 

the final model would likely provide a benefit to the end user, such as a single number 

representing the number of blooms identified. This could then be parsed with yield data, 

irrigation data, or soil data to aid in zone management decisions. Because model training 

requires the brunt of computing power, execution and application of the model on non-

training imagery can be performed on nearly all consumer computers and smartphones. 

Models such as the above can be implemented using platforms such as Django (Django 

Software Foundation, Lawrence, Kans.) or Flask (Armin Ronacher, Austria).  

Conclusion 

 The objective of this document has been to provide, with specific examples, links 

between agriculture, UAV / remote sensing, and machine learning technologies, and to 

introduce a point sampling method for aerial data collection. All three are vast and rapidly 

expanding areas of interest for researchers, professionals such as crop consultants, and 

growers. 

The point sampling method discussed here allows images to be used as 

representative samples of a field or other area of interest, reducing flight time, processing 

time, and data storage required for aerial image collection. Data extracted from images 
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collected using this point sampling method can be subsequently processed using 

traditional, regression models, or machine learning algorithms. These data outputs can then 

be mapped to show a heatmap or contour map of the resulting data. 

 While currently it would be an overestimation to expect to replace physical data 

collection with remotely sensed data, new technologies are being developed constantly that 

are working to narrow the divide, and remote sensing and artificial intelligence have 

cemented their place in the future of agriculture. 
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CHAPTER FIVE 
 

CONCLUSIONS 
 

The objectives of these studies were to develop linear regression models to predict 

sand, clay, and organic matter content using RGB images collected from two types of 

remotely sensed aerial imagery; (1) images collected from a consumer-level UAV and (2) 

images collected using, Internet- available satellite imagery, and (3) to introduce the point 

sampling method of aerial data collection and provide an outline of current methods in 

which machine learning and artificial intelligence can be implemented in precision 

agriculture using UAV imagery. 

As their initial cost decreases, adaptation rates of UAV are rising, as are their uses. 

Using imagery data collected from a consumer level UAV equipped with an RGB camera, 

regression models were consistently able to predict within 5.84% sand content, 5.07% clay 

content, and 0.93% OM content, all at 90% confidence; i.e. 90% of the prediction errors 

were less than the values listed here. When tested at two flight altitudes (21m and 30m), 

there were no significant differences in prediction ability of sand, clay, or OM content, 

however flying at the lower altitude provides a greater ground sample distance and may be 

preferred if other data is to be extracted from the image especially because the flight time 

does not change between altitudes. 

Similarly, Internet- available satellite imagery allow for rapid data collection 

without having to enter a field. In this study, satellite imagery data from Planet Labs and 

Google Earth was used to predict sand, clay, and OM content over unplanted, bare soil 

fields. Due to imagery availability, the two imagery sources utilized different fields. With 
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that in mind, models created using Google Earth images had significantly lower error when 

predicting sand, clay, and OM content when compared to Planet Labs imagery. This is 

likely due to the lower spatial resolution (3m/pix) of Planet Labs data, but also potentially 

due to analysis methods. The best performing Google Earth regression models were 

consistently able to predict within 6.37% sand content, 3.34% clay content, and 0.59% OM 

content, all at 90% confidence; i.e. 90% of the prediction errors were less than the values 

listed here. Of the two methods utilized, models developed from UAV captured imagery, 

generally result in lower error than those developed utilizing satellite captured imagery, at 

the added cost of the initial investment of software and hardware purchases. 

Although these results are promising, they do not suggest that these methods are 

replacements for traditional soil sampling procedures, as they are unable to provide added 

benefits such as nutrient analysis. Additionally, these models are affected by physical soil 

properties, such as soil moisture, which can lead to increased error. These methods do have 

benefit in management zone development, as they allow for mapping of relative textural 

differences throughout an area. 

The point sampling method for aerial data collection provides a faster, less resource 

intensive method for those looking to collect data over fields when compared to whole field 

sampling and orthophoto generation. This method can be performed without extra fees or 

services once the initial application and hardware or purchased. As future prediction 

models for soil and crop qualities are developed, this method can provide a framework for 

them to be utilized on, and provide near real time field data collection. 
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Appendix A 

 Examples of Regression Model Bounding Coefficients 

UAV Sand Content Prediction model bounding using “Combined” altitude model (Table 
2.7). Model terms and bounding results continue in second image. 
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UAV Clay Content Prediction model bounding using “Combined” altitude model (Table 
2.11). Model terms and bounds continue in second image. 
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UAV OM Content Prediction model bounding using “Combined” altitude model (Table 
2.11). Model terms and bounds continue on second line. 
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Appendix B 

Dates of Satellite Image Capture 

Planet Labs Data 

 
Big Pivot West Field 

     

5-15-2016 5-6-2017 5-7-2017 5-11-2017 5-17-2017 

     

5-27-2017 4-29-2018 5-1-2018 5-4-2018 5-13-2018 
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Don Still Field 

     

3-22-2018 3-31-2018 4-5-2018 4-17-2018 4-19-2018 

     

4-20-2018 4-29-2018 5-1-2018 5-20-2018 5-10-2018 

 

Market Front Field 

     

3-27-2017 4-23-2017 5-7-2017 5-11-2017 5-14-2017 

     

6-4-2017 4-18-2018 4-21-2018 5-4-2018 5-7-2018 

 

  



115 
 

Watermelon Road Field 

     

4-28-2017 5-7-2017 5-17-2017 5-27-2017 4-11-2018 

     

4-28-2018 4-29-2018 5-4-2018 5-9-2018 5-13-2018 

 

E-7 Field 

     

6-17-2016 5-19-2017 6-8-2017 3-31-2018 4-2-2018 

     

5-4-2018 5-12-2018 6-3-2018 6-7-2018 6-19-2018 
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Google Earth Data 

Rusty Pivot Field

 
Rusty Pivot Field Image Dated: 3-11-2004 

 

CP4 & 13 Field 

 
CP4 & 13 Field Image Dated: 6-11-2015 
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Chickenhouse Field 

 
Chickenhouse Field Image Dated 6-9-2011 

B6B Field 

 
B6B Field Image Dated 6-9-2011 
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C12 Field 

 
C12 Field Image Dated 6-9-2011 

 

E7 Field 

 
E7 Field Image Dated 6-11-2011. Only upper third of right field and field left of pivot used for model 

development. 
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Appendix C 

Regression Models and Coefficients for Satellite Imagery Models 

Sand Content Prediction 

Planet Labs sand content prediction model using 25-foot sample circles. 
Term Estimate Std Error 

Intercept -21.34 15.66 

(R-G)/R2 -517.3 54.56 

Log(R) 27.77 2.82 

(G-B)/(R-G)3 -25.52 2.12 

 
Planet Labs sand content prediction model using 50-foot sample circles 

Term Estimate Std 
Error 

Intercept -5989 654.22 

((R+B)/(G-B))3 0.0024 0.0009 

∛[(R+G+B)/(R+B)] 5346 574.3 

Log(SatHSL) 8.822 1.076 

(G-B)/(R-G)3 -38.11 3.198 

 
Planet Labs Sand content prediction model using all sample circles 

Term Estimate Std Error 

Intercept 100.0 1.832 

R+G3 3.543e-7 2.563e-8 

(G-B)/(R-G)3 -23.33 1.197 

SatHSL3 -35.65 5.131 

(R-B)/(G+B)3 -540.9 46.986 

 
Google Earth sand content prediction model using 25-foot sample circles. 

Term Estimate Std Error 

Intercept -53.45 12.49 

(R-G)/(R-B) 5.856 1.345 

Log(R+B) 24.16 2.101 

(G+B)/(R-B)3 3.196e-6 1.236e-6 
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Google Earth sand content prediction model using 50-foot sample circles. 

Term Estimate Std Error 

Intercept 92.04 0.59 

G-B3 -9.611e-5 4.643e-5 

(R-G)/B3 -370.6 33.36 

(R-G)/(G-B3 -0.1047 0.0415 

 
Google Earth sand content prediction model using all sample circles. 

Term Estimate Std Error 

Intercept 89.55 0.6319 

B3 2.289e-7 9.769e-7 

(R-G)/B3 -332.9 29.51 

 
Both sources Sand content prediction model using 25ft sample circles. 

Term Estimate Std Error 

Intercept 52.17 20.02 

SatHSL2 -11.51 3.502 

(R+G+B)/(R+B)2 -64.61 11.57 

Log(BRT)+1 32.11 2.465 

 
Both sources sand content prediction model using 50ft sample circles. 

Term Estimate Std Error 

Intercept 71.23 1.901 

R2 0.000369 3.488e-5 

(R+B)/(G-B)2 0.00277 0.000862 

∛(R-G) 0.7598 0.3285 

(R-G)/B3 -62.18 19.04 

 
Both sources sand content prediction model using all sample circles. 

Term Estimate Std Error 

Intercept 23.14 6.539 

R3 2.2712e-6 1.464e-7 

(R+B)/G3 5.122 0.5782 

∛SatHSI 22.18 5.731 
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R-B3 -3.244e-5 3.696e-6 

 
 

Clay Content Prediction 

Planet Labs clay content prediction model using 25-foot sample circles 
Term Estimate Std Error 

Intercept 46.73 18.36 

∛((G-B)/(R-G)) 80.78 14.28 

Log(R+B) -21.58 1.981 

(G+B)/(R-G)3 0.0019 .0007 

(R-G)/B3 176.1 19.47 
 

Planet Labs clay content prediction model using 50-foot sample circles 
Term Estimate Std Error 

Intercept 15.88 15.88 

(G+B)/(R-G)3 0.0076 .0005 

Log(R) 3.276 3.275 

G-B3 0.0006 4.234e-5 

 
Planet Labs Clay content prediction model using all sample circles 

Term Estimate Std Error 

Intercept -19.37 1.307 

(G+B)/(R-G)3 0.0035 0.0005 

SatHSL -7.425 0.5216 

SatHSI3 1118 67.76 

(G-B)/(R-G)3 7.296 1.087 

 
Google Earth clay content prediction model using 25-foot sample circles. 

Term Estimate Std Error 

Intercept 127.1 22.95 

√[(R-G)/(R-B)] -7.730 2.198 

(G-B)/R2 -270.3 78.65 

Log[R+1] -22.45 4.159 

G-B3 0.0003 7.513e-5 

 
Google Earth clay content prediction model using 50-foot sample circles. 
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Term Estimate Std Error 

Intercept 79.62 10.81 

R-B -0.2592 0.0384 

Log[R+1] -13.29 1.967 

G-B3 0.0003 4.45e-5 

R-G3 0.0001 4.755e-5 

 
Google Earth clay content prediction model using all sample circles. 

Term Estimate Std Error 

Intercept 5.519 0.7757 

SatHSL -15.58 3.707 

√[(R+G)/(R-B)] 0.3710 0.0962 

(G-B)/(R+B)2 392.1 57.33 

 
Both sources Clay content prediction model using 25ft sample circles. 

Term Estimate Std Error 

Intercept 75.56 7.669 

(G-B)/(R-B) 4.100 0.9218 

Log[(BRT_HSP)+1] -14.15 1.582 

G-B3 7.634e-5 1.839e-5 

 
Both sources clay content prediction model using 50ft sample circles. 

Term Estimate Std Error 

Intercept 14.96 1.629 

(G-B)/R^3 1193 154.4 

∛SatHSL -17.35 2.704 

 
Both sources clay content prediction model using all sample circles. 

Term Estimate Std Error 

Intercept 17.41 1.313 

∛SatHSL -15.54 2.275 

G3 -3.078e-7 6.17e-8 

R-G3 5.7259e-5 8.58e-6 
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OM Content Prediction 

Planet Labs OM content prediction model using 25-foot sample circles 
Term Estimate Std Error 

Intercept 0.7803 0.2483 

(RedGreen Taylor Series M)3 0.0178 0.0016 

Log(SatHSL) -0.6583 0.2036 

(R-G)3 5.341e-6 2.262e-6 

 
Planet Labs OM content prediction model using 50-foot sample circles 

Term Estimate Std Error 

Intercept 2.571 0.3625 

SatHSL -0.9773 0.3393 

RedBlue Taylor 
Series P2 0.1557 0.0072 

Log(SatHSV) 0.8431 0.2729 

 
Planet Labs OM content prediction model using all sample circles 

Term Estimate Std Error 

Intercept 9.236 1.435 

SatHSL -1.192 0.2771 

RedGreen Taylor Series M3 0.0139 0.0016 

Log[(G+B)/G] -12.11 2.377 

GreenBlue Taylor Series N3 0.0135 0.0021 

 
Google Earth OM content prediction model using 25-foot sample circles. 

Term Estimate Std Error 

Intercept 0.5663 .0.265 

∛(R-G) -0.1356 0.0116 

(G+B)/(R-B)3 -1.091e-7 5.727e-7 

 
Google Earth OM content prediction model using 50-foot sample circles. 

Term Estimate Std Error 

Intercept 0.9883 0.0951 

R-G3 6.122 9.305e-6 
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Google Earth OM content prediction model using all sample circles. 
Term Estimate Std Error 

Intercept -0.1498 0.0917 

RedGreen 
Taylor Series P -0.0111 0.0029 

∛GreenBlue 
Taylor Series P 0.2072 0.0151 

R-G3 1.102e-5 5.059e-6 

 
Both sources OM content prediction model using 25ft sample circles. 

Term Estimate Std Error 

Intercept -6.614 0.7843 

∛[(G-B)/(R-G)] -0.180 0.0757 

∛[(G-B)/R] 11.63 1.253 

∛RedBlue Taylor Series M 1.854 0.2285 

RedBlue Taylor Series P 3 -0.0006 0.0002 

 
Both sources OM content prediction model using 50ft sample circles. 

Term Estimate Std Error 

Intercept -0.2370 0.3727 

∛RedGreen Taylor Series O 2.415 0.2565 

RedBlue Taylor Series M 2 -0.000101 1.081e-5 

G3 -1.674e-7 1.925e-8 

(R-G)/(G-B)3 -0.1025 0.01136 

 
Both sources OM content prediction model using all sample circles. 

Term Estimate Std Error 

Intercept -0.2602 0.141 

√RedGreen Taylor 
Series M 1.585 0.101 

(R+B)/(G-B)2 -0.0012 8.578e-5 

RedGreen Taylor 
Series P 3 -0.0006 8.67e-5 
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