
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

August 2020

Inferring Networks with Gene Knockouts and Computational Inferring Networks with Gene Knockouts and Computational

Algebra Algebra

Tilly Grace Erwin
Clemson University, terwin@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Erwin, Tilly Grace, "Inferring Networks with Gene Knockouts and Computational Algebra" (2020). All
Theses. 3414.
https://tigerprints.clemson.edu/all_theses/3414

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/354492812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3414?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3414&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Inferring networks with gene knockouts and
computational algebra

A Masters Project

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mathematics

by

Tilly Erwin

August 2020

Accepted by:

Dr. Matthew Macauley, Committee Chair

Dr. Michael Burr

Dr. Svetlana Poznanovikj

Abstract

The network inference problem is a significant problem in systems biology. In this paper,

we will describe an approach to this problem involving computational algebra. Specifically, given an

unknown Boolean function, we can create a square-free monomial or pseudomonomial ideal whose

primary decomposition encodes the possible sets of variables that the function can depend on, and

whether those interactions are activations or inhibitions. We apply this problem to time series

data generated from a non-linear ODE, built over unknown feed-forward loops, and subject to gene

knockouts.

ii

Dedication

I dedicate this project to my Milligan College advisors: Dr. Aaron Allen, Dr. Teresa Carter,

and Dr. Nate Wentzel. Thank you for believing in me and pushing me to pursue this degree. I will

be forever grateful for your support and encouragement.

iii

Acknowledgments

A special thanks to Marc Birtwistle and his lab for their willingness to share his data, as

well as to the Systems Biology Journal Club for providing the forum from which this project was

born.

In addition I would like to thank my Husband and my family. I could never have gotten

here without their support.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vi

List of Figures . vii

1 Introduction . 1

2 Mathematical Background . 3
2.1 Some basic algebraic geometry . 3
2.2 Stanley-Reisner theory and Alexander duality . 4
2.3 Pseudomonomials . 6

3 Min-sets of algebraic models . 7
3.1 Algebraic models . 7
3.2 Reverse engineering from data . 10
3.3 Signed min-sets . 17

4 Applications to biological networks . 20
4.1 Existing network reconstruction methods with perturbations 20
4.2 Processing of time series data . 22
4.3 Min-sets from time series data . 23
4.4 Inferring a feed-forward loop . 25
4.5 Final thoughts . 29

5 Appendix . 31

Bibliography . 46

v

List of Tables

3.1 An unknown 4-variable Boolean function with the above partial truth table. 11
3.2 An unknown 4-variable function with the above truth table. 14
3.3 The function f(x1, x2) = x1 ∧ x2 fits the data from Table 3.2. 16
3.4 The function f(x2, x3, x4) = x2 ∧ x3 ∧ x4 fits the data from Table 3.2. 16

4.1 A summary of all 16 data sets. 29

vi

List of Figures

2.1 A visual representation of a simplicial complex ∆. The ideal can be generated from
the non-faces. In this case the ideal would be I∆c = 〈x1x4, x1x5, x2x5, x3x5, x2x3x4〉 6

3.1 The phase space of the algebraic model from Example 7. 8
3.2 Wiring diagram examples. 9
3.3 The red nodes are the non-disposable sets. The darker one are the minimal non-

disposable sets, which represent the generators of the ideal I∆c
D

. The yellow nodes
are the disposable sets, and the maximal ones are darker. 15

3.4 The complement of the previous diagram. The complement of the disposable sets are
the feasible sets, which are in yellow. The minimal feasible sets are darker, and these
are the min-sets. 15

4.1 Each of these four graphs were made in Matlab using synthetic time series data from
[7]. 22

4.2 The arrows show the general trends in the time series data from Figure 4.1 23
4.3 Discretized time series of the synthetic data from in Figures 4.1 and 4.2. 23
4.4 We can see how to break down the data by labeling the input and output vectors. . 24
4.5 The wiring diagram for the [7] data is one of 16 different feed-forward loops. Each

edge can be either positive or negative, and the function f3 can either be AND or OR. 26
4.6 These eight graphs were generated in Matlab from data set 1111 (left) and data set

2112 (right) from [7]. 26
4.7 The arrows show the general trends in the time series data from Figure 4.6. The red

arrows correspond to x1, the blue arrows to x2, and the yellow arrows to x3. 27
4.8 Time series data for data sets 1111 and 2112. 27
4.9 Wiring diagrams for data sets 1111 (left) and 2112 (right 28

5.1 Data set 1112 . 32
5.2 Data set 1121 . 33
5.3 Data set 1122 . 34
5.4 Data set 1211 . 35
5.5 Data set 1212 . 36
5.6 Data set 1221 . 37
5.7 Data set 1222 . 38
5.8 Data set 2111 . 39
5.9 Data set 2121 . 40
5.10 Data set 2122 . 41
5.11 Data set 2211 . 42
5.12 Data set 2212 . 43
5.13 Data set 2221 . 44
5.14 Data set 2222 . 45

vii

Chapter 1

Introduction

A gene regulatory network is a collection of genes, gene products, and other biomolecules

that self-regulate to carry out a common purpose. Scientists have used various methods to infer

or reconstruct such gene systems, as this is a central biological problem. Several years ago in the

Clemson University Systems Biology Club, one faculty member in Bioengineering was working on

a project to reconstruct signaling networks using a new algorithm his group had developed. His

group had collected time series of gene expression levels, and also collected data under targeted gene

knockouts. Their algorithm involved systems of differential equations, but it had the drawback that

there were sometimes false positives due to the difficulty of separating correlation versus causation.

It was sometimes unclear whether a strong correlation actually meant that one variable affected

the other. After seeing an algebraic biology talk, they asked whether existing theoretical reverse

engineering methods based on algebraic geometry could do better? While there is a nice theoretical

framework for this, it is hard to successfully implement in practice, and it is not clear how robust it

is to noise. In addition, the current framework has never been used in conjunction with data from

gene knockouts. In this paper, we will give an overview of the algebraic background, methods, and

talk about how they can be adopted for such a project, and specifically for the data provided by

this bioengineering group.

This paper is organized as follows. In Section 2 we will present an overview of the math-

ematics necessary to understand the reverse engineering framework. This includes ideals, primary

decomposition, Stanley-Reisner theory, and pseudomonomials. In Section 3, we will introduce the

concept of an algebraic model, which includes Boolean networks as a special case. Then we will ap-

1

ply Stanley-Reisner theory to the problem of reverse-engineering a network from data. Finally, we

will generalize this from square-free monomial ideals to pseudomonomial ideals, in order to capture

the difference between activiation and inhibition. Finally, in Section 4, we will explore how well

these methods apply to synthetic and biological data and how they compare to existing biological

methods.

2

Chapter 2

Mathematical Background

2.1 Some basic algebraic geometry

A ring is a set R = F[x1, . . . , xn] that is closed under addition, subtraction, and multiplica-

tion. All of the rings we will see are commutative, which means that xy = yx for all x and y. Also,

we will primarily be dealing with polynomial rings, where the coefficients are from a field, such as

the real numbers R, the complex numbers C, or a finite field Fp = {0, 1, . . . , p−1}, where arithmetic

is done modulo a prime p.

An ideal is a subset of a ring that that is invariant under multiplication. In other words, for

any x ∈ I and r ∈ R the product rx is in I. Every ideal I in a polynomial ring has a corresponding

algebraic variety.

Definition 1. If I is an ideal in R = F[x1, . . . , xn], then its variety is

V (I) = {v ∈ Fn : f(v) = 0, for all f ∈ I}.

In words, the variety of an ideal is the set of solutions to a system of polynomial equations,

i.e., given an ideal of polynomials, the variety specifies the points that vanish on them.

Given a variety, or any subset of Fn, we have the concept of a function vanishing, or in other

words being 0, on all of its elements. Mathematically the vanishing ideal of V ⊆ Fn is

I(V) = {f ∈ F{x1, ..., xn} : f(x) = 0 for all v ∈ V }.

3

There are many different types of ideals and rings, one of which are the primary ideals.

Definition 2. Let R be a commutative ring. An ideal P is

• prime if xy ∈ P implies x ∈ P or y ∈ P ,

• primary if xy ∈ P implies x ∈ P or yk ∈ P for some k ∈ N.

As their names suggest, prime ideals of Z are of the form pZ for some prime number p, and

primary ideals are of the form pkZ. In many rings, ideals can always be written as an intersection

of primary ideals. This is called a primary decomposition.

Without going into details, this construction is analogous to the factorization of integers by

prime powers. For example, the “ideal” version of 360 = 23 · 32 · 5 is

360Z = 8Z ∩ 9Z ∩ 5Z.

Though primary decompositions are not unique and can often be difficult to construct, they are

quite simple for the class of square-free monomial ideals, which we will define in the next section.

Theorem 3 (Lasker–Noether). Every Noetherian ring has a primary decomposition.

We do not need to define Noetherian rings here, all that is important to know is that it is

a large class that contains all polynomial rings over a field.

2.2 Stanley-Reisner theory and Alexander duality

A monomial ideal is simply an ideal generated by monomials. Every monomial can be

defined by an exponent vector α = (α1, . . . , αn) ∈ Nn0 , where

xα := xα1
1 xα2

2 · · ·xαn
n .

A monomial is square-free if each αi ∈ {0, 1}. Ideals generated by square-free monomials are called

sqaure-free monomial ideals, or Stanley-Reisner ideals. If xα is square-free, then α canonically

describes a subset of [n] = 1, . . . , n. We will slightly abuse notation here to refer to α as both a

vector and subset, but it should always be clear from the context. If an ideal contains xα and xβ ,

4

then it also contains xα∪β . Conversely, if an ideal does not contain xα and xβ , then it also does not

contain xα∩β . Finally if σ ⊇ α and xα ∈ I, then xσ ∈ I.

An (abstract) simplicial complex is a collection ∆ of subsets 2X of a set X, which is addi-

tionally closed under the operation of taking subsets, and therefore also under intersections as well.

Visually, a simplicial complex can be thought of as collection of vertices, edges, triangles, and higher

dimensional simplices. A face with k + 1 vertices is k-dimensional.

Definition 4. Let X be a finite set. A simplicial complex is a collection ∆ ⊆ 2X satisfying

α ∈ ∆ and β ⊆ α =⇒ β ∈ ∆.

Elements of ∆ are called faces, and subsets not in ∆ are called non-faces.

Usually we will take X = [n] = {1, . . . , n}, and write subsets as strings. For example,

α = 1346 represents α = {1, 3, 4, 6}. Every simplicial complex ∆ canonically defines a square-free

monomial ideal, generated by the non-faces, or equivalently, just the minimal non-faces. We write

this as

I∆c =
〈
xα | α 6∈ ∆

〉
.

Conversely, every square-free ideal I defines a simplicial complex where the faces correspond to the

ideal not in I. We write this as

∆Ic = {σ | xσ 6∈ I}

Stanley-Reisner theory guarantees a bijection between square-free ideals and simplicial complexes,

given by

I 7−→ ∆Ic , ∆ 7−→ I∆c .

This correspondence is known as Alexander duality.

For example, consider the simplicial complex ∆ on X = {1, 2, 3, 4, 5} shown in Figure 2.1.

The ideal would be:

I∆c = 〈x1x4, x1x5, x2x5, x3x5, x2x3x4〉.

Primary decompositions of square-free monomial ideals are simple and combinatorial in

nature. The primary components of I∆c correspond to the complements of the maximal faces of ∆.

5

1

2

3

4

5

Figure 2.1: A visual representation of a simplicial complex ∆. The ideal can be generated from the
non-faces. In this case the ideal would be I∆c = 〈x1x4, x1x5, x2x5, x3x5, x2x3x4〉

Specifically,

I∆c =
〈
xα | α 6∈ ∆

〉
=

⋂
σ∈∆
σ max’l

〈
xi | i 6∈ σ

〉
.

2.3 Pseudomonomials

Now that we have grasped the concept of a square-free monomial, we can begin to examine

the concept of pseudomonomials.

Definition 5. A pseudomonomial in F[x1, . . . , xn] is a product of terms of the form xi − ai, where

all xi are distinct, and ai ∈ F.

If we change variables to represent xi−ai as yi, then we have the appearance of a monomial.

What we call pseudomonomials really should be “square-free pseudomonomials”, as they always fit

the definition of being square-free, however, other than [9], there has been very little work done

with pseudomonomials that were not square-free and as such,we will be following the convention of

dropping the square-free.

Examples of pseudomonomials include x1 − 1 and (x1 − 1)x2(x3 − 5). In this project, all

pseudomonomials are over F3 and moreover, our ai = ±1.

6

Chapter 3

Min-sets of algebraic models

3.1 Algebraic models

3.1.1 Basic definitions

A number of phenomena from the life and physical sciences have been represented by agent or

graph-based models, such as Boolean networks, cellular automata, and neural networks. Applications

include everything from gene networks, disease models, blood flow, to chemical reaction networks.

Many of these models involve simple functions that can be expressed algebraically as polynomials.

Loosely speaking, an algebraic model is a collection of functions on a finite set F = {0, 1, . . . , n− 1}

representing some real life phenomena. Each individual function fi can be thought of as updating

the state xi of a particular node or entity. As such, each function is a mapping fi : Fn → F. We lose

no generality in assuming that F = Fp, a finite field, because if not, we can simply expand it. An

advantage of this assumption is that each function can be written as a polynomial, which opens the

door to using tools from computational algebra for the analysis.

Definition 6. An algebraic model is a collection of functions f1, . . . , fn, where fi : Fn → F.

Time is usually discretized, such as t = 0, 1, 2, At time t, we will denote a global

system state in Fn as a vector x(t) = (x1(t), . . . , xn(t)). If we ignore time, then we can write it as

x = (x1, . . . , xn).

The local functions in an algebraic model can be updated in several different ways, the most

common being synchronously or asynchronously. A synchronous update defines a finite dynamical

7

system (FDS) map

f : Fn −→ Fn, f : x 7−→ (f1(x), . . . , fn(x)),

and iterating this map generates the dynamics. There are multiple ways of updating the functions

asynchronously, or sequentially, and this leads to a multigraph called the asynchronous automaton.

We will not define that here because it will not be used.

Any function from a finite set to itself, such as an FDS map, can be visualized with a

directed graph, where the edges are of the form (x, f(x)). For an FDS, this is called the phase space

or state space. The vertex set is Fn and every x ∈ Fn has exactly one directed edge (x, f(x)) from

it.

When F = F2 = {0, 1}, it is common to use Boolean logic to represent functions. These can

also be written as polynomials, via the following equivalences:

f(x, y) = x ∧ y = xy, g(x, y) = x ∨ y = x+ y + xy, h(x) = x = x+ 1.

This can be used to convert other Boolean operations, such as “exclusive OR” (XOR), into polyno-

mials as well.

Example 7. Consider an algebraic model with four variables, namely {x1, x2, x3, x4}, and functions

f1 = 1 + x2, f2 = x1(x2 + 1), f3 = x1x2x3, f4 = x3 + x4. The phase space is the directed graph

shown in Figure 3.1.

Figure 3.1: The phase space of the algebraic model from Example 7.

8

3.1.2 Wiring diagrams

Given an algebraic model f1, . . . , fn, we can ask what functions depend on which variables,

and we can encode this information with a wiring diagram. The vertex set consists of the variables

x1, . . . , xn or just 1, . . . , n, and there is a directed edge from xi to xj if the function fj depends on xi.

At node j, the set of incoming edges represents all variables that have an effect on the function fj ,

and we call this set the support of the function. If our variables are indexed as, e.g., x1, . . . , xn, then

it can be convenient to speak of the support as a subset of [n] = {1, . . . , n}. Sometimes we want to

include more information such as the sign of the interaction. For example, in the Boolean case, if xi

(but not xi) appears in fj then xi affects fj positively, and if xi (but not xi) appears, then it affects

fj negatively. Biologically, these represent activation and inhibition, respectively. Visually, we can

adjust the head of the arrow to reflect this. For example, a positive edge is i −→ j and a negative

edge is i j . For example, the wiring diagram motif on the left in Figure 3.2 shows a system

of 3 variables, A, B, and C. It could arise from the function fC = A ∧B, or from fC = A ∨B.

A B

C

x1 x2

Figure 3.2: Wiring diagram examples.

Now consider an example of a system with two variables. If f2 is constant, and f1 = x1 +x2,

which is simply the “exclusive OR” (XOR) of x1 and x2, then the wiring diagram is shown on the

right in Figure 3.2.

Positive and negative interactions can be defined more generally, in any ordered or prime

field F. If F = Fp then order the elements canonically as 0 < 1 < · · · < p− 1. We say that that xi

affects fj positively if

fj(c1, . . . , ci−1, ci, ci+1, . . . , cn) < fj(c1, . . . , ci−1, c
′
i, ci+1, . . . , cn)

holds for some ci < c′i. Likewise, xi affects fj negatively if

fj(c1, . . . , ci−1, ci, ci+1, . . . , cn) > fj(c1, . . . , ci−1, c
′
i, ci+1, . . . , cn)

9

holds for some ci < c′i. Notice that there are four possibilities: xi could affect fj not at all, positively

but not negatively, negatively but not positively, or both positively and negatively. In terms of the

wiring diagram, these correspond to no edge from xi to xj , a positive edge only, a negative edge

only, or both a positive and negative edge, as in the XOR function.

As an example, consider the following Boolean function written two ways, both with Boolean

logic and as a polynomial in F2[x1, . . . , x5]:

f(x1, x2, x3, x4, x5) = x2 ∧ x3 ∧ (x4 XORx5) = x2(1 + x3)(x4 + x5).

In this example, we see both a positive interaction of x2, demonstrated by the variables and lack of

the +1 in the algebra for x2, as well as a negative interaction for x3 seen by the complement of x3

and the x3 + 1 in the algebra. We also see that x1 does not affect f at all. Finally, we see that x3

and x4 can affect f positively and negatively with the XOR gate. A function fk is unate if there

are no variables that affect f positively and negatively. Equivalently, no node has both positive and

negative edges directed into xk.

Wiring diagrams capture a key feature about algebraic models in a way that is simple to

understand. Signed wiring diagrams and unate functions are well-suited to describe many biological

interactions, as most individual interactions in a molecular network are either simple activations or

inhibitions. Often these are apparent from their names, such as transcription factors or repressor

proteins.

3.2 Reverse engineering from data

3.2.1 Model spaces of data

Sometimes we want to infer an algebraic model from partial information about the phase

space, which might have been experimentally determined. There are methods to find the specific

functions, but in this paper we are looking to infer just the network, as this is more biologically

realistic. Here, inferring the network means determining which functions affect which variables.

This in essence boils down to simply reconstructing the wiring diagram. Biologically, one example

of this might be inferring a molecular network from observed data. Gene regulatory networks and

protein-protein interaction networks are prime candidates because their systems are self-contained.

10

When finding the wiring diagram from partial data, instead of finding the “most likely” or

getting one “best fit” answer, we actually will find all possible answers. One advantage of this is we

know our solution is there among this collection. Of course, a drawback of this is that there might

be hundreds or even thousands of solutions to sort through. While finding many answers reduces

the likelihood of human or model error, it does make finding the true answer more of a challenge.

Let’s first just focus on a single node j, and its unknown function fj . What variable(s) does

fj depend on? Or equivalently, what are the incoming edges to node j in the wiring diagram? This

is the question we seek to answer with computational algebraic tools. The goal is to figure out the

network dependencies rather than the specific function.

A function fj can be fully described by its truth table, i.e., an exhaustive table of all input-

output pairs. Suppose we only have some, but not all, of the truth table entries. Specifically, such

“partial data” will consist of pairs (si, fj(si)) of some input vectors and their corresponding output

values. Formally, we will define this to be a set of data, i.e.,

D =
{

(s1, t1), . . . , (sm, tm)
}
.

A function fj : Fn → F is said to fit the data if fj(si) = ti for all i = 1, . . . ,m. The set of all functions

that fit the data D is called the model space, and denoted

Mod(D) =
{
f : Fn → F | f(si) = ti, ∀i = 1, . . . ,m

}
.

Example 8. Consider the partial data set in Table 3.1. The model space for this example would

be

Mod(D) =
{
f : F4

2 → F2 | f(0, 0, 1, 0) = f(1, 1, 0, 0) = f(1, 1, 1, 1) = 0, f(0, 1, 1, 0) = 1
}
.

x 0010 1100 1111 0110
f(x) 0 0 0 1

Table 3.1: An unknown 4-variable Boolean function with the above partial truth table.

11

3.2.2 Feasible and disposable sets of variables

Informally, given a data set D, a subset α ⊆ [n] is feasible if there is some function that fits

the data that depends only on variables with indices in α. The formal definition follows.

Definition 9. Let D be a data set. The set α ⊆ [n] is feasible if there is some f in Mod(D) for

which supp(f) ⊆ α.

A set α ⊆ [n] is disposable if there is some function that fits the data that depends on no

variables with indices in α. In other words, if we can discard all of these variables and still find a

function that fits the data.

Definition 10. Let D be a data set. Then α ⊆ [n] is disposable if there is some f in Mod(D) for

which supp(f) ∩ α = ∅.

If α is not feasible with respect to D, then we say that it is infeasible. If it is not disposable,

then we say it is non-disposable. Note that feasible and disposable are not opposite concepts, but

they are related. A set can be both feasible and disposable, or neither. Disposable sets are clearly

closed under intersection and subsets, and so they form a simplicial complex, that we will denote by

∆D. Non-disposable sets are closed under unions and supersets. Therefore, they define a square-free

monomial ideal in F[x1, . . . , xn], where the generators xα are indexed by the non-disposable sets α.

This holds because of the simple observation that if xα and xβ are in an ideal I, then xα∪β is also

in I. In other words, the supports of the set of square-free monomials in I are closed under unions.

To define our ideal of non-disposable sets, we will construct a convenient generating set. If

two output values from a data set D differ, say t 6= t′, any function f that fits the data must depend

on at least one coordinate where the input vectors s and s′ differ. As such, if we take the product

of the corresponding variables, to get a polynomial defined as

m(s, s′) =
∏
si 6=s′i

xi,

then supp(m(s, s′)) is non-disposable by construction. All of these polynomials generate a square-

free monomial ideal that we will call the ideal of non-disposable sets. This follows directly from

Stanley-Resiner theory [5].

12

Definition 11. Given a set D of data, its ideal of non-disposable sets is

I4c
D

=
〈
m(s, s′)) | t < t′

〉
.

3.2.3 Min-sets and primary decompositions

Sometimes when we have large quantities of data or variables, we seek to cut out the data

that is not actually helpful to our cause. Just as a computer scientist might prune branches from a

tree to save time, we cut out the excess data by forming what is called a min-set for short. Loosely

speaking, a min-set of D is a minimal set of variables on which a function that fits that data can

depend.

Definition 12. A subset α ⊆ [n] is a min-set of D if it is a minimal feasible set, or equivalently, if

its complement α is a maximal disposable set.

Recall that feasible sets correspond to the complements of the faces of the simplicial complex

∆D of disposable sets. Therefore, we can interpret a min-set of data D in terms of its simplicial

complex ∆D.

Theorem 13. A subset α ⊆ [n] is a min-set of D if its complement α is a maximal face of ∆D.

Finally, we can express min-sets algebraically by the primary components of the ideal I∆c
D

of non-disposable sets. Recall that the primary components are indexed by the complements of

maximal faces. The complement of a maximal face will be denoted α.

Theorem 14. A subset α = {α1, . . . , αk} ⊆ [n] is a min-set of D if and only if 〈α1 . . . , αk〉 is a

primary component of the ideal I∆c
D

of non-disposable sets.

In summary, the relationship between the min-sets of D, the faces of the simplicial complex

∆D, and the primary components of the ideal I∆c
D

of non-disposable sets, is illustrated by the

following string of equalities:

I∆c
D

=
⋂

σ∈∆D
σ max’l

〈
xi | i 6∈ σ

〉
=

⋂
σ max’l

disposable

〈
xi | i 6∈ σ

〉
=

⋂
α min’l
feasible

〈
xi | i ∈ α

〉
=

⋂
α min-set

〈
xi | i ∈ α

〉
.

Example 15. For an example, let’s consider again the data from Example 8, which consisted of an

unknown Boolean function on four variables, where exactly 4 of the 16 entries in the truth table are

13

known, and are given again in Table 3.2.

x 0010 1100 1111 0110
f(x) 0 0 0 1

Table 3.2: An unknown 4-variable function with the above truth table.

This defines the following set of data

D =
{

(0010, 0), (1100, 0), (1111, 0), (0110, 1)
}
. (3.1)

Let s1 = 0010, s2 = 1100, s3 = 1111, and s4 = 0110 which means that 0 = t1 = t2 = t3 < t4 = 1.

There are 212 = 4096 functions that fit the data, as there are 16−4 = 12 missing entries in the truth

table. Next, we need to compute the monomials m(si, sj), for each pair such that ti < tj . Each of

these is the product of the variables in the coordinates in which si and sj differ, so

m(s1, s4) = x2, m(s2, s4) = x1x3, m(s3, s4) = x1x4.

The ideal of non-disposable sets is thus

I∆c
D

=
〈
m(s1, s4), m(s2, s4), m(s3, s4)

〉
=
〈
x2, x1x3, x1x4

〉
.

From this information, we can determine both the feasible and non-disposable sets. First,

we can visualize the non-disposable sets in a Boolean lattice, as shown in Figure 3.3. The feasible

sets are highlighted in yellow, and the non-disposable sets are highlighted in red. The minimal

non-disposable sets are highlighted in darker red, and the maximal disposable sets are highlighted

in darker yellow.

Taking the complement of each node results in the upside-down Boolean lattice in Figure

3.4. The complement of the non-disposable (red) nodes are the infeasible sets, and the complement

of the disposable (yellow) nodes are the feasible sets. The complements of the maximal disposable

sets (the dark yellow nodes) are thus the minimal feasible sets, which are the min-sets by definition.

We can then see that the min-sets are {x1, x2} and {x2, x3, x4}. By Stanley-Reisner theory,

these are the generators of the primary components of the ideal of non-disposable sets. In other

14

∅

x4x3x2x1

x3x4x2x4x2x3x1x4x1x3x1x2

x2x3x4x1x3x4x1x2x4x1x2x3

x1x2x3x4

Figure 3.3: The red nodes are the non-disposable sets. The darker one are the minimal non-
disposable sets, which represent the generators of the ideal I∆c

D
. The yellow nodes are the disposable

sets, and the maximal ones are darker.

∅

x4 x3 x2 x1

x3x4 x2x4 x2x3 x1x4 x1x3 x1x2

x2x3x4 x1x3x4 x1x2x4 x1x2x3

x1x2x3x4

Figure 3.4: The complement of the previous diagram. The complement of the disposable sets are the
feasible sets, which are in yellow. The minimal feasible sets are darker, and these are the min-sets.

words,

I∆c
D

=
〈
m(s1, s4), m(s2, s4), m(s3, s4)

〉
=
〈
x2, x1x3, x1x4

〉
= 〈x1, x2〉 ∩ 〈x2, x3, x4〉.

This means that any 4-variable Boolean function with partial truth table given in Table 3.2 must

depend minimally on either {x1, x2} or {x2, x3, x4}.

15

Instead of constructing the Boolean lattices to find the min-sets like we did in Figures 3.3 and

3.4, we could have alternatively used a computational algebra software package such as “Macaulay2”[3]

or “Sage”[4] to compute the primary decomposition of the ideal of non-disposable sets. For example,

using Macaulay2, the input of

R = ZZ/2[x1,x2,x3,x4]

I_nonDisp = ideal(x2,x1*x3,x1*x4)

primaryDecomposition I_nonDisp

gives an output of

R

PolynomialRing

Ideal of R

{ideal (x1,x2), ideal (x2, x3, x4) }

List

Now that we have the min-sets, we can examine functions that fit the data and determine

which one is the best fit. Consider the case of the min-set {x1, x2}. This tells us that there exists

a function fitting the data that only depends on x1 and x2. There are 222

= 16 possible Boolean

functions on two variables. Of these, two are constant, two depend only on x1, and two depend only

on x2. This leaves ten functions that depend on both x1 and x2. From the data, we can clearly see

that f(x) = 1 when x1 = 0 and x2 = 1. This restriction gives us that the function must be x1 ∧ x2,

as shown in Table 3.3.

x = x1x2 00 11 11 01
f(x) 0 0 0 1

Table 3.3: The function f(x1, x2) = x1 ∧ x2 fits the data from Table 3.2.

Next consider the three variable min-set {x2, x3, x4}. If we restrict the the truth table to

these values, we get Table 3.4. A truth table on three variables has 23 = 8 entries, and so there are

x = x2x3x4 001 100 111 110
f(x) 0 0 0 1

Table 3.4: The function f(x2, x3, x4) = x2 ∧ x3 ∧ x4 fits the data from Table 3.2.

223

= 256 possible Boolean functions. However, of these, two are constant and six depend on only

one variable; such as f(xi) = xi, and f(xi) = xi + 1. There are ten Boolean functions that depend

16

on exactly two variables, and there are
(

3
2

)
= 3 possible pairs of variables to choose. Overall, this

means that there are 30 functions that depend on exactly two variables, leaving us 218 functions to

consider. Once again, since the only specified time that f(x) = 1 is if x2x3x4 = 110, we can narrow

this down to a single function, x2 ∧ x3 ∧ x4. This is not always the case however, as we will often

have partial data where more than one function is possible. When this occurs, finding the signed

min-set is the most helpful course of action.

3.3 Signed min-sets

The framework in the previous section does not take into account the sign of the interactions.

If we restrict our view to unate functions, it should be clear how to define signed min-sets. Each

variable xi either does not appear, appears as a positive interaction, or as a negative interaction.

Motivated by the Boolean setting, we will denote these last two cases by xi and xi, respectively. For

example, a min-set {x1, x2} means that the function depends on at least x1 and x2, whereas a signed

min-set {x1, x2} means that the function depends on at least x1 in a positive manner (x1 activates

the node) and x2 in a negative or inhibitory manner. The next natural question is how to find the

signed min-sets. In the ordinary or “non-signed” case, we would find the primary decomposition

and use it to find the ideal of non-disposable sets. Monomials would be used to describe subsets

of variables, without any regard to which interactions are positive or negative. One way we can

encode this into signed min-sets is to actually use pseudomonomials instead of monomials. While a

monomial is a product of xi’s, a pseudomonomial is a product of (xi − ai)’s. We will use (xi − 1)

to represent a positive change (activation) and (xi + 1) to represent a negative change (inhibition).

To put it in the notation above, xi − 1 would correspond to xi and xi + 1 would correspond to xi.

By considering signs, we can understand biological systems in more detail, such as whether a gene

product is acting as an activator or as a repressor. In addition, when working backwards from data,

by including the signs, we can infer not only which variables a function is dependent on, but whether

it is an activation or inhibition.

We can define a discrete analogue of the partial derivative. Assume si, s
′
i ∈ Fp = {0, 1, . . . , p−

17

1}, which is ordered canonically. Then define

∂i(s, s
′) =

1 s′i > si

−1 s′i < si

0 s′i = si.

When we were finding min-sets, we defined monomials m(si, sj) whose supports were non-

disposable by construction. Similarly, we can define a “signed version” of this using pseudomono-

mials. Specifically, define

p(s, s′) =
∏
si 6=s′i

(
xi − ∂(s, s′)

)
.

While the support of p(s, s′) is non-disposable just like m(s, s′), this product encodes more, because it

tells us the signs of the individual interactions. In the unsigned case, these polynomials generate the

ideal I4c
D

of non-disposable sets, and by Stanley-Reisner theory, the primary components correspond

to the min-sets. It turns out that an analogous result holds for the signed case, but it does not follow

from Stanley-Reisner theory, but rather had to be derived from scratch [10].

Definition 16. Let D be a data set. Define the ideal of signed non-disposable sets as

J4c
D

=
〈
p(s, s′) | t < t′

〉
.

In the unsigned min-set case, if a primary component is 〈xi1 , . . . , xik〉, then the corresponding

min-set is {xi1 , . . . , xik}. Similarly, for a signed primary component

〈
xi1 ± 1, . . . , xik ± 1

〉
, (3.2)

the corresponding unsigned min-set is still {xi1 , . . . , xik}, and the signed min-set is formed by re-

placing xij with xij if xij + 1 appears in Eq. (3.2).

Let’s return to the data set D =
{

(0010, 0), (1100, 0), (1111, 0), (0110, 1)
}

from Example 15,

which had two unsigned min-sets, {x1, x2} and {x2, x3, x4}, and compute the signed min-sets. From

above, we can see that ∂2(s1, s4) = 1, thus x2 becomes x2 − 1 in the signed case. Similarly,

∂1(s2, s4) = −1 and ∂3(s2, s4) = 1, thus x1x3 becomes (x1 +1)(x3−1). Finally, ∂1(s3, s4) = −1, and

∂4(s3, s4) = −1, and as such x1x4 becomes (x1 + 1)(x4 + 1). Thus, our pseudomonomials p(si, sj)

18

are

p(s1, s4) = x2 − 1, p(s2, s4) = (x1 + 1)(x3 − 1), p(s3, s4) = (x1 + 1)(x4 + 1).

Putting this into “Macaulay2” to compute the primary decomposition yields

J4c
D

=
〈
p(s1, s4), p(s2, s4), p(s3, s4)

〉
=
〈
(x2 − 1), (x1 + 1)(x3 − 1), (x1 + 1)(x4 + 1)

〉
=
〈
x1 + 1, x2 − 1

〉
∩
〈
x2 − 1, x3 − 1, x4 + 1

〉
.

Thus, the signed min-sets are {x1, x2} and {x2, x3, x4}. This concurs with the results we found

earlier of the functions f = x1 ∧ x2 and {x2, x3, x4}, f = x2 ∧ x3 ∧ x4 that fit the data from

Table 3.2.

While the signed min-sets give us the same variable dependencies, they actually show sig-

nificantly more information about what is going on in the system, as we can see exactly which

variables are positive and which are negative. If this were a biological system then we would then

know which variables were activators and which were inhibitors, and that could be very helpful in

inferring unknown gene networks.

19

Chapter 4

Applications to biological networks

4.1 Existing network reconstruction methods with perturba-

tions

One challenging problem that has become a widely researched area in systems biology is

how to infer gene network systems from experimental data. One broad approach is to analyze data

resulting from perturbations of the system.

In a paper published in 2002 [6], the authors developed an approach called Modular Response

Analysis (MRA), which analyzed experimental data collected from systematic perturbations at fixed

snapshots in time. Two years later, a variant of this, called Dynamic Modular Response Analysis

(DMRA) [8], analyzed systematic perturbation data but over a time series. Though DMRA is an

improvement over MRA, one significant drawback, which has prevented it from going mainstream,

is that it does not handle noise in the data well.

In a recent 2018 preprint [7], a new time series perturbation method was proposed, and

shown to be more robust to noise. In this paper, the network dynamics were modeled by a system

of differential equations. The strength of the interaction of the edges in the network are determined

20

by the Jacobian matrix. Recall that if we have a 2× 2 system

dx1

dt
= f1(x1, x2)

dx2

dt
= f2(x1, x2)

then its Jacobian is

J =

 ∂f1∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 =

F11 F12

F21 F22

 .
The coefficient Fij determines strength of the interaction and is used to draw conclusions about

dependencies between variables. For example, the sign distinguishes activation vs. inhibition, and

interactions are ignored if they are below a certain threshold.

Determining the edges in the network was done by solving the system – i.e., the predictor

was determined by a system of linear equations and then they solved for the edge weights directly.

However, when noise that is common in these biological settings was introduced, solving directly

had to be replaced with a least squares estimation. The authors of [7] test and validate their

method using synthetic two and three node networks constructed in Matlab, and then knocking

out individual nodes, both with and without noise. This method turns out to be quite accurate,

especially with noise. They then apply their methods to reconstruct the ERK and AKT pathways,

which are important in the study of mammalian signaling.

One disadvantage of this technique is that there can sometimes be a causation vs. correlation

error, meaning that a strong correlation between two variables might be coincidental, or the result

of a third variable, and not because they depend on each other functionally. This can cause false

positives in the network, and is where algebraic techniques can potentially be useful. Algebraic

models are tailor made for determining precisely which functions depend on which variables, thus

eliminating the false positives. It also seems like they might be able to differentiate between AND

and OR gates in the individual functions. Of course, a downside is that they theory is difficult

to apply to real data, and it is not clear how robust to noise it will be. One of the goals of this

section is to try to apply the previously developed algebraic methods and see how they compare with

the published methods in [7].

21

4.2 Processing of time series data

All time series data in our setting, whether experimentally determined or synthetically

generated, consists of a finite number of tuples of floating point values, corresponding to, e.g., gene

expression levels, or protein and enzyme concentrations. Such data can be easily graphed in software

such as Matlab, Mathematica, or R, all of which have the capability of quickly finding the best fitting

polynomial or piecewise linear function. From this, one can also infer the general trend of said data,

such as whether it is increasing, decreasing, or roughly constant. For example, consider the time

series data graphs shown in Figure 4.1, which were rendered by Matlab from synthetic data generated

in [7].

Figure 4.1: Each of these four graphs were made in Matlab using synthetic time series data from
[7].

There are many ways to discretize data, for example, into Boolean, ternary, or some other

finite set Zk = {0, 1, . . . , k − 1}. One example of how to do this, in the setting of algebraic models,

was published in [2]. Another way to approximate, or discretize that data is to just look at general

trends: up, down, or flat. Figure 4.2 illustrates this for the example from Figure 4.1.

The trend data in Figure 4.1 can be encoded over F3 = {0, 1, 2} by sectioning the output into

3 parts, namely high, medium, and low, corresponding to 2, 1 and 0, respectively. Clearly, F2 will

22

All genes
y

x

z

Knockout x
y

z

Knockout y

x

z

Knockout z
x

y

Figure 4.2: The arrows show the general trends in the time series data from Figure 4.1

not suffice for this, but also, we only need F3, because we are examining the general trends. Small

variances in the data are often caused by noise, so discretizing the data into more than three levels

may actually lead to false positives. For example, it seems reasonable that the red line (Node 1) in

the two left-most graphs in Figure 4.1 should be considered constant. Discretizing into more levels

might pick up small deviations that we do not want to consider. Figure 4.3 shows the dizcretization

of the trend data in 4.2. An arrow pointing downward will be labeled as (2, 1, 0), whereas an arrow

pointing upward will be labeled as (0, 1, 2). Any constant arrows will be labeled based on what level

they remain constant on, as such the choices are (0, 0, 0), (1, 1, 1), or (2, 2, 2).

t

0

1

2

x y z

1 2 0

1 1 1

1 0 2

t

0

1

2

y z

2 0

1 1

0 2

t

0

1

2

x z

1 0

1 1

1 2

t

0

1

2

x y

2 0

1 1

0 2

Figure 4.3: Discretized time series of the synthetic data from in Figures 4.1 and 4.2.

4.3 Min-sets from time series data

Once we have constructed and discretized the general trend data, our next goal is to represent

it by pseudomonomial ideals, and then find the (signed) min-sets. In an algebraic model we use

F = {0, . . . , p− 1} but here we want to emphasis the positive and negative signs, and as such, as in

Section 3, we will work over F3 = {0, 1,−1}.

Recall that we encode a change in the ith coordinate by ∂i(s, s
′) ∈ F3, with a value of

1 meaning increase, −1 meaning decrease, and 0 meaning constant. For example, a time series

data with a positive trend at node i is represented by xi − 1, just as we represented an activation

earlier, whereas a negative trend is represented by xi + 1, an inhibition. Recall that our individual

23

pseudomonomials are defined as

pj(x) =
∏
ai 6=0

(xi − ai).

t

0

1

2

x y z

1 2 0

1 1 1

1 0 2

~s1

~t1 = ~s2

~t2

Figure 4.4: We can see how to break down the data by labeling the input and output vectors.

We start with the trend data and write it in terms of input-output vectors. Then we can

break it into n individual data sets of input vectors and output values. For example, the discretized

data from Figure 4.4 is

D = {(s1, t1), (s2, t2)}

Dx =
{

(s1, t11), (s2, t21)
}

=
{

((1, 2, 0), 1), ((1, 1, 1), 1)
}

Dy =
{

(s2, t12), (s2, t22)
}

=
{

((1, 2, 0), 1), ((1, 1, 1), 0)
}

Dz =
{

(s2, t13), (s2, t23)
}

=
{

((1, 2, 0), 1), ((1, 1, 1), 2)
}
.

However, looking at just the time series data when all nodes are online is only part of the

picture. We must also consider the gene knockout data. If we have a system with three nodes,

then we will have four time series to examine: One with all three nodes, and the ones with each of

the individual genes knocked out. Once we analyze the trends for each node in each graph, we can

encode each with a pseudomonomial, and construct the ideal of signed non-disposable sets. Finally,

we use a software package to compute the primary decomposition and get the min-sets.

Example 17. Consider again the system of three nodes x, y, z from Figure 4.3, and graphed in

Figure 4.1 with the trends in Figure 4.2. Note that we have four graphs here, meaning that we have

the complete knockout data.

24

Adding gene knockouts to the data above yields:

Dx =
{

((1, 2, 0), 1), ((1, 1, 1), 1), ((1, 0, 0), 1), ((1, 0, 1), 1), ((2, 0, 0), 1), ((1, 1, 0), 0)
}

Dy =
{

((1, 2, 0), 1), ((1, 1, 1), 0), ((2, 0), 1), ((0, 2, 0), 1), ((0, 1, 1), 0), ((2, 0, 0), 1), ((1, 1, 0), 2)
}

Dz =
{

((1, 2, 0), 1), ((1, 1, 1), 2), ((0, 2, 0), 1), ((0, 1, 1), 2), ((1, 0, 0), 1), ((1, 0, 1), 2)
}
.

From these trends we can assign a pseudomonomial xi ± 1 to each node, resulting in the

following 3 ideals:

Jx =
〈
(x+ 1)(y − 1)

〉
, Jy =

〈
(y + 1)(z − 1), (x+ 1)(y − 1)

〉
, Jz =

〈
(y + 1)(z − 1), (z − 1)

〉
.

Which, when plugged into Macaulay2, yields that the min-sets are:

• Gene x: {x+ 1}, {y + 1}

• Gene y: {x+ 1, z + 1}, {y − 1}

• Gene z: {z − 1}.

We should note here that if the data is generated by non-unate functions, then the supports of the

function may not be reflected by the signed min-sets.

4.4 Inferring a feed-forward loop

One of the synthetic networks that the authors of [7] tested their algorithm on is a feed-

forward loop where the types of interactions – activation vs. inhibition, and AND vs. OR gate, are

unknown. There are 8 such feed-forward loops, and 16 cases in total because each one can be an

AND or an OR. We will describe these below.

We contacted the authors and received the full time series data for all 16 different networks.

These were generated from non-linear differential equations, and each node additionally had a decay

term. Our goal was to determine which network was which purely algebraically. Each network con-

sists of 3 nodes and can be described with 2 functions, f2 and f3, because f1 is a source not regulated

by the other nodes, other than an artificial external force that remained constant throughout. The

25

function f2 is dependent on node 1 and as such, has 2 options, excluding the decay term: f2 = x1,

and f2 = x1. Function f3 depends on both x1 and x2 and as such, has 8 different choices:

f3 = ±x1♦± x2,

where ±xi is a placeholder for either xi or xi, and ♦ is a placeholder for either ∧ or ∨, The 8 choices

for possible wiring diagram, which describe these 16 different feed-forward loops, are depicted in

Figure 4.5. Each data set, and wiring diagram, was labeled by the authors of [7] with a string of the

form t1t2t2t4, where ti ∈ {1, 2}.

f1 f2

f3

♦

Figure 4.5: The wiring diagram for the [7] data is one of 16 different feed-forward loops. Each edge
can be either positive or negative, and the function f3 can either be AND or OR.

Our first task was to graph this data in Matlab. Figure 4.6 shows these graphs for two of

the 16 data sets, data set 1111 and data set 2112. The other 14 graph sets can be found in the

Appendix.

Figure 4.6: These eight graphs were generated in Matlab from data set 1111 (left) and data set 2112
(right) from [7].

From there, we were able to find the trends and generate the min-sets for each data set. In

26

this section, we will carry out the details for data sets 1111 and 2112.

All genes Knockout x1 Knockout x2 Knockout x3

All genes Knockout x1 Knockout x2 Knockout x3

Figure 4.7: The arrows show the general trends in the time series data from Figure 4.6. The red
arrows correspond to x1, the blue arrows to x2, and the yellow arrows to x3.

Next, we discretize the trend data from Figure 4.7 over F3, which is shown in Figure 4.8.

The other 14 cases can be found in the Appendix.

t

0

1

2

x1 x2 x3

0 0 0

1 1 1

2 2 2

t

0

1

2

x2 x3

2 0

2 0

2 0

t

0

1

2

x1 x3

0 0

1 0

2 0

t

0

1

2

x1 x2

0 0

1 1

2 2

t

0

1

2

x1 x2 x3

0 2 0

1 1 1

2 0 2

t

0

1

2

x2 x3

2 0

2 0

2 0

t

0

1

2

x1 x3

0 0

1 1

2 2

t

0

1

2

x1 x2

0 2

1 1

2 0

Figure 4.8: Time series data for data sets 1111 and 2112.

Using the discretized data from Figure 4.8, the signed ideals of non-disposable sets, for data

set 1111, are

Jx1
=
〈
(x1 − 1)(x2 − 1)(x3 − 1), (x1 − 1), (x1 − 1)(x2 − 1)

〉
Jx2 =

〈
(x1 − 1)(x2 − 1)(x3 − 1), (x1 − 1)(x2 − 1)

〉
,

Jx3
=
〈
(x1 − 1)(x2 − 1)(x3 − 1)

〉
.

27

f1 f2

f3

∧

f1 f2

f3

∨

Figure 4.9: Wiring diagrams for data sets 1111 (left) and 2112 (right

For data set 2112, the signed ideals of non-disposable sets are

Jx1
=
〈
(x1 − 1)(x2 + 1)(x3 − 1), (x1 − 1)(x3 − 1), (x1 − 1)(x2 − 1)

〉
,

Jx2
=
〈
(x1 − 1)(x2 + 1)(x3 − 1), (x1 − 1)(x2 + 1)

〉
,

Jx3
=
〈
(x1 − 1)(x2 + 1)(x3 − 1), (x1 − 1)(x3 − 1)

〉
.

We used computational algebra software, in this case [3], to compute the primary decompo-

sitions of these ideas, and the primary components give us the signed min-sets. For data set 1111,

these are

• Gene x1: {x1 − 1}

• Gene x2: {x1 − 1}, {x2 − 1}

• Gene x3: {x1 − 1},{x2 − 1},{x3 − 1},

and for data set 2112, they are

• Gene x1: {x1 − 1},{x2 − 1, x3 − 1}

• Gene x2: {x1 − 1}, {x2 + 1}

• Gene x3: {x1 − 1},{x3 − 1}.

The other 14 cases can be found in the Appendix.

In this case the functions (f2, f3) are (x1, x1 ∧ x2) and (x1, x1 ∨ x2) respectively. These

functions have wiring diagrams shown in Figure 4.9.

Table 4.1 shows the summarized results of all 16 data sets. The graphs, discretized data,

and ideals for the other 14 are in the Appendix. Also given are the corresponding wiring diagrams.

28

Equation data set Min-Set for x2 Min-Set for x3

(f2, f3)
(x1, x1 ∧ x2) 1111 {x1}, {x2} {x1}, {x2}, {x3}
(x1, x1 ∧ x2) 1121 {x1} {x1}, {x2}, {x3}
(x1, x1 ∨ x2) 1211 {x1}, {x2} {x1}, {x3}
(x1, x1 ∨ x2) 1112 {x1}, {x2} {x1}, {x3}
(x1, x1 ∨ x2) 1212 {x1}, {x2} {x1}, {x2}, {x3}
(x1, x1 ∧ x2) 1222 {x1}, {x2} {x1}, {x3}
(x1, x1 ∧ x2) 1122 {x1}, {x2} {x1}, {x3}
(x1, x1 ∨ x2) 1221 {x1}, {x2} {x1}, {x3}
(x1, x1 ∨ x2) 2211 {x1}, {x2} {x1}, {x3}
(x1, x1 ∧ x2) 2111 {x1}, {x2} {x1}, {x2}, {x3}
(x1, x1 ∨ x2) 2112 {x1}, {x2} {x1}, {x3}
(x1, x1 ∧ x2) 2122 {x1}, {x2} {x1}, {x3}
(x1, x1 ∨ x2) 2121 {x1}, {x2} {x1}, {x2}, {x3}
(x1, x1 ∧ x2) 2212 {x1}, {x2} {x1}, {x2}, {x3}
(x1, x1 ∧ x2) 2221 {x1}, {x2} {x1}, {x3}
(x1, x1 ∨ x2) 2222 {x1}, {x2} {x1}, {x3}

Table 4.1: A summary of all 16 data sets.

4.5 Final thoughts

The best case scenario of this experiment would have been that the min-sets defined one

unambiguous function for each network. While this was, not surprisingly, not the case, there can

still be insight gleaned from these min-sets, as well as some considerations to make future attempts

more accurate.

The first item to consider is how to capture the behavior of a gene that is “On” but constant.

Our current method, based on the published min-set algorithms in [5] and [10], does not capture a

variable xi if it does not change as the output changes. However, this can be misleading because

a gene remaining “On” can influence the system even if it remains constant. Figuring out how to

incorporate this into a reverse-engineering algorithm is an interesting open-ended question.

The second item to consider is how the data is generated. It is important to note that in

the above data, gene x1 was artificially stimulated during the start of the experiment, and therefore

the min-sets for gene x1 might not be reliable indicators. For this reason they have been excluded

from Table 4.1 and the other 14 data sets in the Appendix. They are included for the examples

in the previous two sections for completeness. Artificial starting values and simulations can be a

source of false positives in our current method. For example, an introduction of a gene product at

concentration levels above its steady state could cause the false appearance of an inhibition as it

29

drops to its steady state and then remains constant. In other words, the natural decay term could

have a false-positive effect.

Finally, in a very different direction, while a number of results have been proven for pseu-

domonomials, since their appearance in the mathematical biology literature around 2012 [1, 10] a

“signed version” of Stanley-Reisner theory has yet to be fully developed, and is quite fertile ground

for future exploration. In other words, it seems clear that there are strong combinatorial reasons

why pseudomonomial ideals, and primary decompositions, behave analogously to regular monomial

ideals, but this is still largely unknown.

Algebraic methods in mathematical biology are still in their infancy. It is major challenge

to connect the beautiful theoretic results to actual messy biological data. In this paper, we explored

this and saw first-hand some of the challenges. Further research into the three aforementioned items

is crucial to developing more robust and useful algebraic methods for analyzing biological data.

30

Chapter 5

Appendix

31

f1 f2

f3

∨

t

0

1

2

x1x2x3

0 0 0

1 1 1

2 2 2

t

0

1

2

x2x3

0 0

0 0

0 0

t

0

1

2

x1x3

0 0

1 1

2 2

t

0

1

2

x1x2

0 0

1 1

2 2

Jx2 =
〈
(x1−1)(x2−1)(x3−1), (x1−1)(x2−1)

〉
, Jx3 =

〈
(x1−1)(x2−1)(x3−1), (x1−1)(x3−1)

〉
.

• Gene x2: {x1 − 1}, {x2 − 1}

• Gene x3: {x1 − 1}, {x2 − 1}

Figure 5.1: Data set 1112

32

f1 f2

f3

∧

t

0

1

2

x1x2x3

0 0 0

1 1 1

2 2 2

t

0

1

2

x2x3

0 0

0 0

0 0

t

0

1

2

x1x3

0 0

1 0

2 0

t

0

1

2

x1x2

0 0

1 1

2 2

Jx2 =
〈
(x1 − 1)(x2 − 1)(x3 − 1), (x1 − 1), (x1 − 1)(x2 − 1)

〉
, Jx3 =

〈
(x1 − 1)(x2 − 1)(x3 − 1)

〉
.

• Gene x2: {x1 − 1}

• Gene x3: {x1 − 1}, {x2 − 1},{x3 − 1}

Figure 5.2: Data set 1121

33

f1 f2

f3

∧

t

0

1

2

x1x2x3

0 0 2

1 1 1

2 2 0

t

0

1

2

x2x3

0 2

0 2

0 2

t

0

1

2

x1x3

0 2

1 1

2 0

t

0

1

2

x1x2

0 0

1 1

2 2

Jx2 =
〈
(x1−1)(x2−1)(x3 +1), (x1−1)(x2−1)

〉
, Jx3 =

〈
(x1−1)(x2−1)(x3 +1), (x1−1)(x3 +1)

〉
.

• Gene x2: {x1 − 1},{x2 − 1}

• Gene x3: {x1 − 1}, {x3 + 1}

Figure 5.3: Data set 1122

34

f1 f2

f3

∨

t

0

1

2

x1x2x3

0 0 0

1 1 1

2 2 2

t

0

1

2

x2x3

0 0

0 0

0 0

t

0

1

2

x1x3

0 0

1 1

2 2

t

0

1

2

x1x2

0 0

1 1

2 2

Jx2 =
〈
(x1−1)(x2−1)(x3−1), (x1−1)(x2−1)

〉
, Jx3 =

〈
(x1−1)(x2−1)(x3−1), (x1−1)(x3−1)

〉
.

• Gene x2: {x1 − 1},{x2 − 1}

• Gene x3: {x1 − 1}, {x3 − 1}

Figure 5.4: Data set 1211

35

f1 f2

f3

∨

t

0

1

2

x1x2x3

0 0 2

1 1 1

2 2 0

t

0

1

2

x2x3

0 2

0 2

0 2

t

0

1

2

x1x3

0 2

1 2

2 2

t

0

1

2

x1x2

0 0

1 1

2 2

Jx2 =
〈
(x1 − 1)(x2 − 1)(x3 + 1), (x1 − 1)(x2 − 1)

〉
, Jx3 =

〈
(x1 − 1)(x2 − 1)(x3 + 1)

〉
.

• Gene x2: {x1 − 1},{x2 − 1}

• Gene x3: {x1 − 1},{x2 − 1}, {x3 − 1}

Figure 5.5: Data set 1212

36

f1 f2

f3

∨

t

0

1

2

x1x2x3

0 0 2

1 1 1

2 2 0

t

0

1

2

x2x3

0 2

0 2

0 2

t

0

1

2

x1x3

0 2

1 1

2 0

t

0

1

2

x1x2

0 0

1 1

2 2

Jx2 =
〈
(x1−1)(x2−1)(x3 +1), (x1−1)(x2−1)

〉
, Jx3 =

〈
(x1−1)(x2−1)(x3 +1), (x1−1)(x3 +1)

〉
.

• Gene x2: {x1 − 1},{x2 − 1}

• Gene x3: {x1 − 1},{x3 + 1}

Figure 5.6: Data set 1221

37

f1 f2

f3

∧

t

0

1

2

x1x2x3

0 0 2

1 1 1

2 2 0

t

0

1

2

x2x3

0 2

0 2

0 2

t

0

1

2

x1x3

0 2

1 1

2 0

t

0

1

2

x1x2

0 0

1 1

2 2

Jx2 =
〈
(x1−1)(x2−1)(x3 +1), (x1−1)(x2−1)

〉
, Jx3 =

〈
(x1−1)(x2−1)(x3 +1), (x1−1)(x3 +1)

〉
.

• Gene x2: {x1 − 1},{x2 − 1}

• Gene x3: {x1 − 1},{x3 + 1}

Figure 5.7: Data set 1222

38

f1 f2

f3

∧

t

0

1

2

x1x2x3

0 2 0

1 1 1

2 0 2

t

0

1

2

x2x3

2 0

2 0

2 0

t

0

1

2

x1x3

0 0

1 0

2 0

t

0

1

2

x1x2

0 2

1 1

2 0

Jx2 =
〈
(x1 − 1)(x2 + 1)(x3 − 1), (x1 − 1)(x2 + 1)

〉
, Jx3 =

〈
(x1 − 1)(x2 + 1)(x3 − 1)

〉
.

• Gene x2: {x1 − 1},{x2 + 1}

• Gene x3: {x1 − 1},{x2 + 1},{x3 − 1}

Figure 5.8: Data set 2111

39

f1 f2

f3

∨

t

0

1

2

x1x2x3

0 2 2

1 1 1

2 0 0

t

0

1

2

x2x3

2 1

2 1

2 1

t

0

1

2

x1x3

0 0

1 0

2 0

t

0

1

2

x1x2

0 2

1 1

2 0

Jx2 =
〈
(x1 − 1)(x2 + 1)(x3 + 1), (x1 − 1)(x2 + 1)

〉
, Jx3 =

〈
(x1 − 1)(x2 + 1)(x3 + 1)

〉
.

• Gene x2: {x1 − 1},{x2 + 1}

• Gene x3: {x1 − 1},{x2 + 1},{x3 + 1}

Figure 5.9: Data set 2121

40

f1 f2

f3

∧

t

0

1

2

x1x2x3

0 2 2

1 1 1

2 0 0

t

0

1

2

x2x3

2 1

2 1

2 1

t

0

1

2

x1x3

0 2

1 1

2 0

t

0

1

2

x1x2

0 2

1 1

2 0

Jx2 =
〈
(x1−1)(x2 +1)(x3 +1), (x1−1)(x2 +1)

〉
, Jx3 =

〈
(x1−1)(x2 +1)(x3 +1), (x1−1)(x3 +1)

〉
.

• Gene x2: {x1 − 1},{x2 + 1}

• Gene x3: {x1 − 1},{x3 + 1}

Figure 5.10: Data set 2122

41

f1 f2

f3

∨

t

0

1

2

x1x2x3

0 2 0

1 1 1

2 0 2

t

0

1

2

x2x3

2 1

2 1

2 1

t

0

1

2

x1x3

0 0

1 1

2 2

t

0

1

2

x1x2

0 2

1 1

2 0

Jx2 =
〈
(x1−1)(x2 +1)(x3−1), (x1−1)(x2 +1)

〉
, Jx3 =

〈
(x1−1)(x2 +1)(x3−1), (x1−1)(x3−1)

〉
.

• Gene x2: {x1 − 1},{x2 + 1}

• Gene x3: {x1 − 1},{x3 − 1}

Figure 5.11: Data set 2211

42

f1 f2

f3

∧

t

0

1

2

x1x2x3

0 2 2

1 1 1

2 0 0

t

0

1

2

x2x3

2 0

2 0

2 0

t

0

1

2

x1x3

0 2

1 2

2 2

t

0

1

2

x1x2

0 2

1 1

2 0

Jx2 =
〈
(x1 − 1)(x2 + 1)(x3 + 1), (x1 − 1)(x2 + 1)

〉
, Jx3 =

〈
(x1 − 1)(x2 + 1)(x3 + 1)

〉
.

• Gene x2: {x1 − 1},{x2 + 1}

• Gene x3: {x1 − 1},{x2 + 1},{x3 + 1}

Figure 5.12: Data set 2212

43

f1 f2

f3

∧

t

0

1

2

x1x2x3

0 2 2

1 1 1

2 0 0

t

0

1

2

x2x3

2 0

2 0

2 0

t

0

1

2

x1x3

0 2

1 1

2 0

t

0

1

2

x1x2

0 2

1 1

2 0

Jx2 =
〈
(x1−1)(x2 +1)(x3 +1), (x1−1)(x2 +1)

〉
, Jx3 =

〈
(x1−1)(x2 +1)(x3 +1), (x1−1)(x3 +1)

〉
.

• Gene x2: {x1 − 1},{x2 + 1}

• Gene x3: {x1 − 1},{x3 + 1}

Figure 5.13: Data set 2221

44

f1 f2

f3

∨

t

0

1

2

x1x2x3

0 2 2

1 1 1

2 0 0

t

0

1

2

x2x3

2 2

2 2

2 2

t

0

1

2

x1x3

0 2

1 1

2 0

t

0

1

2

x1x2

0 2

1 1

2 0

Jx2 =
〈
(x1−1)(x2 +1)(x3 +1), (x1−1)(x2 +1)

〉
, Jx3 =

〈
(x1−1)(x2 +1)(x3 +1), (x1−1)(x3 +1)

〉
.

• Gene x2: {x1 − 1},{x2 + 1}

• Gene x3: {x1 − 1},{x3 + 1}

Figure 5.14: Data set 2222

45

Bibliography

[1] Carina Curto, Vladimir Itskov, Alan Veliz-Cuba, and Nora Youngs. The neural ring: an alge-
braic tool for analyzing the intrinsic structure of neural codes. Bulletin of Mathematical biology,
75(9):1571–1611, 2013.

[2] Elena S Dimitrova, M Paola Vera Licona, John McGee, and Reinhard Laubenbacher. Dis-
cretization of time series data. J. Comput. Biol, 17(6):853–868, 2010.

[3] D.R. Grayson and M.E. Stillman. Macaulay2, a software system for research in algebraic
geometry. Available at http://www2.macaulay2.com/Macaulay2/, 2020.

[4] SageMath Inc. CoCalc Collaborative Computation Online, 2020. https://cocalc.com/.

[5] Abdul Salam Jarrah, Reinhard Laubenbacher, Brandilyn Stigler, and Michael Stillman.
Reverse-engineering of polynomial dynamical systems. Advances in Applied Mathematics,
39(4):477–489, 2007.

[6] Boris N Kholodenko, Anatoly Kiyatkin, Frank J Bruggeman, Eduardo Sontag, Hans V West-
erhoff, and Jan B Hoek. Untangling the wires: a strategy to trace functional interactions in
signaling and gene networks. Proc. Natl. Acad. Sci., 99(20):12841–12846, 2002.

[7] Gregory R Smith, Mehdi Bouhaddou, Alan D Stern, Caitlin M Anglin, Orrod M Zadeh, Jake
Erskin, and Marc Birtwistle. Network reconstruction from perturbation time course data.
BioRxiv, page 341008, 2018.

[8] Eduardo Sontag, Anatoly Kiyatkin, and Boris N Kholodenko. Inferring dynamic architecture
of cellular networks using time series of gene expression, protein and metabolite data. Bioin-
formatics, 20(12):1877–1886, 2004.

[9] Sandra Annie Tsiorintsoa. Pseudo-monomials in algebraic biology. Master’s thesis, African
Institute for Mathematical Sciences, South Africa, 2018.

[10] Alan Veliz-Cuba. An algebraic approach to reverse engineering finite dynamical systems arising
from biology. SIAM Journal on Applied Dynamical Systems, 11(1):31–48, 2012.

46

http://www2.macaulay2.com/Macaulay2/

	Inferring Networks with Gene Knockouts and Computational Algebra
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Mathematical Background
	Some basic algebraic geometry
	Stanley-Reisner theory and Alexander duality
	Pseudomonomials

	Min-sets of algebraic models
	Algebraic models
	Reverse engineering from data
	Signed min-sets

	Applications to biological networks
	Existing network reconstruction methods with perturbations
	Processing of time series data
	Min-sets from time series data
	Inferring a feed-forward loop
	Final thoughts

	Appendix
	Bibliography

