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Abstract

In robust multiobjective optimization, a new robustness gap is defined in [4].

This gap measures the minimal distance between the robust Pareto set and the Pareto

sets of all scenarios. Upper and lower bounds of this gap are derived for the convex

case. In this thesis, a deeper examination into the definition and application of this

gap for uncertain multiobjective linear programs is presented. Numerical examples

are developed and results are reported for the first time.
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Chapter 1

Introduction

In the business environment of companies, processes are often described as

multiobjective programs with uncertainties. For example, managers have to make

decisions about which products are ordered in which quantities and through which

supply chains. These decisions are complicated by uncertainties such as future changes

in demand and supply and the associated price fluctuations. When deciding which

strategy to choose, it is often important for managers to weigh the right trade-off be-

tween security and the additional costs involved. The new robustness gap introduced

in [4] can be a great help in this regard.

The goal of this thesis is to learn about uncertainty in multiobjective linear program-

ming and the existence and properties of a robustness gap.

In Chapter 1, multiobjective linear programs are formulated and the concepts of

robustness and uncertainty are introduced. The definition of a robustness gap is pre-

sented, and the gap is illustrated on a real life biobjective decision making situation

under uncertainty.

In Chapter 2 and 3 two types of multiobjective linear programs are introduced. For

each case, the gap is difficult to compute, so upper and lower bounds on this gap are
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developed. For the special case of biobjective linear programs with decision uncer-

tainty we conduct numerical examples to further investigate the gap in Chapter 4.

The thesis is concluded in Chapter 5 while the developed algorithms coded in MAT-

LAB are contained in the Appendix.

1.1 Background

This thesis is based on [4], in which a general concept of robustness gap for mul-

tiobjective programs is introduced. Throughout this work, let Rl be the l-dimensional

real vector space. Let ‖ · ‖p : Rl → R denote a p-norm on Rl and ‖ · ‖q denote the dual

(or polar) norm to ‖ · ‖p with the property that 1
p

+ 1
q

= 1. Given these norms, we de-

fine the primal space (Rl, ‖ · ‖p) and its dual space (Rl, ‖ · ‖q). To keep notation short,

we also refer to the primal space (Rl, ‖ · ‖p) simply as Rl. The cone defined by the

nonnegative orthant of Rl is Rl
= := {y ∈ Rl | yi ≥ 0 ∀i = 1, . . . , l} and we also refer

to Rl
≥ := Rl

=\{0} and Rp
> := {y ∈ Rl | yi > 0 ∀i = 1, . . . , l}. For all y, z ∈ Rl, where

l ≥ 2, the order relations induced by Rl
= are given by y < z ⇔ yi < zi ∀1 ≤ i ≤ l;

y ≤ z ⇔ y 6= z and yi ≤ zi ∀1 ≤ i ≤ l; and y 5 z ⇔ yi ≤ zi ∀1 ≤ i ≤ l.

1.1.1 Multiobjective Linear Programs

Multiobjective linear programs occur in a lot of real-world applications where

the conditions can be modeled with linear constraints, while different objectives can

also be formulated as linear functions.

2



Definition 1. We consider the multiobjective linear program MOLP


(MOLP) min Cx

s. t. Ax = b

x ∈ Rn

 , (1.1)

where C ∈ Rl×n, A ∈ Rm×n and b ∈ Rm.

In the following, Ai describes the i-th row of A and respectively Ci the i-th

row of C.

In contrast to linear programs (LPs), optimization in (1.1) is not performed accord-

ing to a single scalar-valued function, but several objective functions simultaneously,

which do not have to assume their minima at the same feasible point. Thus, there is

not one optimal solution, but a set of Pareto optimal solutions.

Definition 2. A vector y∗ ∈ Y = C(X) := {Cx|x ∈ X} is called a Pareto objective

vector of MOLP if there is no y ∈ Y with the property y ≤ y∗. A feasible solution

x∗ ∈ X is called an efficient solution for MOLP if the image Cx∗ is a Pareto objective

vector of Y . The efficient set of MOLP is denoted as XE and it is also referred to as

the solution set or the set of efficient decisions. The Pareto set of MOLP is denoted as

YP and it is also referred to as the set of Pareto criterion vectors or Pareto outcomes

that represent the performance of the efficient decisions with respect to the objective

functions.

Another possibility to look at MOLPs is to apply the weighted-sum scalariza-

tion. This means that every objective target gets a specific weight λi for i = 1, . . . , l

where λ sums up to 1 in the dual norm. Applying this concept, we receive an LP

which can be solved with well-known algorithms.
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Definition 3. The weighted-sum scalarization of MOLPs is defined as


(LP (λ)) min λTCx

s. t. Ax = b

x ∈ Rn

 (1.2)

In fact, all optimal solutions of the weighted-sum scalarization (1.2) where

λ ∈ Rl
≥ are efficient solutions for (1.1), see [2].

Theorem 1. Let x̄ be an optimal solution of LP (λ) of the form (1.2) where λ ∈ Rl
≥,

then x̄ is efficient for MOLP of the form (1.1).

1.1.2 Uncertainty and Robustness

In real-life, uncertainty occurs all the time when information is unknown.

Decisions today require us to think about the future, which can be modeled as a

collection of scenarios. However, only one scenario in this collection will actually

happen. Nevertheless, we consider all possible scenarios when making a decision

today and therefore we include uncertainty in the optimization problem.

Definition 4. We consider the uncertain multiobjective linear optimization program

{MOLP(ξ)}ξ∈U


(MOLP(ξ)) min

x
Cx

s. t. A(x+ η) = b

x ∈ Rn


ξ=(η,C,A,b)∈U

, (1.3)

where U ⊂ Rn × Rl×n × Rm×n × Rm is the uncertainty set. The elements ξ ∈ U are
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called scenarios of U . In the case of MOLPs, decision uncertainty can be contained

in the vector of decision variables x ∈ Rn, described via η, and parameter uncertainty

can be contained in the problem data (C,A, b) ∈ Rl×n × Rm×n × Rm.

For a fixed scenario ξ ∈ U , it is assumed that no uncertainty is present in MOLP(ξ),

i.e., all data of MOLP(ξ) is known. Therefore, for each ξ ∈ U , MOLP(ξ) is considered

a deterministic MOLP.

For this thesis, we assume that U is a compact and convex set.

Definition 5. For every scenario ξ = (η, C,A, b) ∈ U , the feasible set of MOLP(ξ) is

denoted as

X(ξ) := {x ∈ Rn | A(x+ η) = b}. (1.4)

For every ξ ∈ U , the outcome set of MOLP(ξ), which is the image set of the feasible

set X(ξ), is given as

Y(ξ) := {y ∈ Rl | ∃x ∈ X(ξ) : y = Cx} = C(X(ξ)). (1.5)

The set Y(ξ) is compact and convex since X(ξ) is assumed to be compact and

convex and C is a linear operator and therefore the function C(·) is continuous.

For defining the feasibility of the uncertain multiobjective linear problem {MOLP(ξ)}ξ∈U ,

we define a concept of robustness.

Definition 6. A point x∗ ∈ Rn is called a robust feasible solution to {MOLP(ξ)}ξ∈U

if x∗ is feasible for all possible realizations of uncertainty, i.e., if

x∗ ∈ XRC := {x ∈ Rn | A(x+ η) = b ∀ξ = (η, C,A, b) ∈ U}. (1.6)

The set XRC is called the robust feasible set. The robust outcome set, which is the
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image of the robust feasible set XRC, is denoted as

YRC := {CRC(x) | x ∈ XRC} = CRC(XRC), (1.7)

where CRC : Rn → Rl is given as

CRC
i (x) = sup

ξ∈U
Cix

for all 1 ≤ i ≤ l and for any x ∈ Rn.

As a consequence of (1.6) and (1.7), we obtain

XRC =
⋂
ξ∈U

X(ξ), YRC ⊆
⋂
ξ∈U

Y(ξ) + Rp
=.

Hence, the robust feasible set XRC is compact and convex as an intersection of com-

pact and convex sets. Because C is a linear operator and therefore the function C(·)

is continuous, the robust outcome set YRC is also compact and convex. The robust

Pareto set, Y RC
P , can be interpreted as the set of conservative decisions but making

the user act safely in every scenario ξ ∈ U .

1.2 Robustness Gap

In the literature, the robustness gap is initially defined for uncertain single-

objective optimization problems as a measure of the distance between the robust

optimal objective value and the optimal objective values of the scenarios [1].

Definition 7. We consider the uncertain single-objective linear optimization program

6



formulated as 
(LP s-o(ξ)) min

x
cx

s. t. A(x+ η) = b

x ∈ Rn


ξ=(η,c,A,b)∈U

, (1.8)

where U ⊂ Rn × Rn × Rm×n × Rm.

The single-objective robustness gap is defined as

ϑs-o := min
x∈XRC

cRC(x)− sup
ξ∈U

min
x∈X(ξ)

cx. (1.9)

In [4], the authors intend to formulate a similar concept for uncertain multi-

objective problems and therefore define a multiobjective robustness gap. This gap

represents the smallest distance between the sets YRC
P and

⋃
ξ∈U YP (ξ) that is mea-

sured with a chosen norm.

Definition 8. For each ξ ∈ U let

ϑ(ξ) := dist
(
YRC
P ,YP (ξ)

)
= inf

z∈YRC
P

inf
y∈YP (ξ)

‖z − y‖

and define the multiobjective robustness gap as

ϑ := inf
ξ∈U

ϑ(ξ) = inf
ξ∈U

dist
(
YRC
P ,YP (ξ)

)
.

Because this thesis only deals with p-norms and convex and compact uncer-

tainty sets U , this definition can be reformulated as

ϑ = min
ξ∈U

inf
z∈YRC

P

inf
y∈YP (ξ)

‖z − y‖p. (1.10)

7



It is also possible to define the gap using the weighted-sum scalarization 1.2 rather

than the explicit definition of the Pareto sets:

ϑ = min
ξ∈U

inf
λ1,λ2=0:

‖λ1‖q=‖λ2‖q=1

inf
z∈arg min

z̄∈YRC
λT1 z̄

inf
y∈arg min

ȳ∈Y(ξ)
λT2 ȳ
‖z − y‖p.

Note, that for the single-objective case the definition of ϑ leads to the same

result as ϑs-o. For the single-objective case, YRCP ,YP (ξ) ⊂ R are singletons. So we

can rewrite them as YRCP = {z̄} and YP (ξ) = {ȳ} with the relation that z̄ ≥ ȳ for all

scenarios ξ. Because of this relation, the gap can be rewritten as

ϑ = inf
z∈YRC

P

z −max
ξ∈U

sup
y∈YP (ξ)

y

= min
z∈YRC

P

z −max
ξ∈U

min
y∈YP (ξ)

y

= min
x∈XRC

cRC(x)−max
ξ∈U

min
x∈X(ξ)

cx.

It turns out, that even for the linear case, finding the robustness gap is a difficult

task, because YRC
P and YP (ξ) are not convex in general. Because of this, upper and

lower bounds for the robustness gap are proposed.

1.2.1 Bounds on the Robustness Gap

We define the bounds as follows:

Definition 9. For each ξ ∈ U and for each λ ∈ Rp
=, we define

∆(ξ, λ) := min
z∈YRC

λT z − min
y∈Y(ξ)

λTy. (1.11)

8



We can reformulate this as

∆(ξ, λ) = min
z∈YRC

P

max
y∈YP (ξ)

λT (z − y).

Furthermore, we define the lower robustness bound and upper robustness bound as

∆L := inf
ξ∈U

min
λ∈Rp≥,
‖λ‖q=1

∆(ξ, λ) and ∆U := inf
ξ∈U

max
λ∈Rp≥,
‖λ‖q=1

∆(ξ, λ). (1.12)

The bounds on the robustness gap are given as the value of the weighted sums

of the smallest distance between the Pareto set of the robust counterpart YRCP and the

union of all Pareto sets of the scenarios
⋃
ξ∈U YP (ξ) measured with weight λ ∈ Rn

≥. For

the lower bound the weight λ is chosen such that this value becomes minimal, while

for the upper bound the weight λ is chosen such that this value becomes maximal.

While the robustness gap is difficult to compute, because we look at the non-convex

Pareto sets, these bounds use the weighted-sum minimum of YRC and Y(ξ), which

are compact and convex sets in the case of MOLPs.

In [4] it is shown that for all MOLPs with the distance measured with a p-norm, these

bounds exists and fulfill

0 ≤ ∆L ≤ ϑ ≤ ∆U .

For the single-objective case, upper and lower bounds are tight, so 0 ≤ ∆L = ϑs-o =

∆U .

1.3 Application

In this section, we illustrate the concept of the robustness gap on a real-life

example and develop a numerical example. Assume a company produces two types

9



of face masks during COVID-19. Every evening the manager has to decide how much

material to order for the next day production. He has the option to order two types of

material from two different suppliers which are in a competition with each other. His

goals are to minimize the cost of the ordered material from both suppliers respectively

subject to production requirements and workers availability. Because the suppliers

are in competition with each other and the manager must maintain good relations

with each of them, we consider the costs of the two different materials separately.

At the same time, he intends to satisfy the demand for face masks from different

hospitals and companies for next day. He also has to consider that his company can

only process a certain amount of material every day.

Another important thing is that while he has to order a certain amount of the different

materials for next day, he does not know how expensive this material might be, how

many masks will be ordered next morning or how many people will be allowed to

work in the company next morning, because all these factors depend on the number

of new COVID-19 cases on the actual day, which will only be announced late at night.

He only knows that there are two possible scenarios depending on whether the actual

number of COVID-19 cases in his area is below or above a certain number.

This problem can be modeled as an MOLP with uncertainty in C and b. By plugging

in certain numbers for the needed material per mask, the number of masks for the

scenarios and the price of new material for the scenarios, we get a system where x1 is

the number of rolls of material from the first supplier ordered for the unknown price

ξ1. Similar, x2 is the number of rolls of material from the second supplier ordered for

the unknown price ξ2. The also unknown numbers of orders of masks in hundreds of

the first and second type are described as ξ3 and respectively ξ4. We know that we

can produce 300 masks of type one and 100 mask of type two with one roll of material

from the first supplier. Similar, we can produce 100 mask of type one and 400 masks

10



of type two from one roll of material from the second supplier. So the total number

of produced masks in hundreds of type one is equal to three times the number of rolls

from the first supplier (3x1) plus the number of rolls from the second supplier (x2),

while the number of produced masks in hundreds of type two is equal to the number

of rolls from the first supplier (x1) plus four times the number of rolls from the second

supplier (4x2).

Based on the unknown number of workers for next day, the number of masks in

hundreds we are able to produce is ξ5, while the total number of produced masks

is four hundred masks out of every roll of material from the first supplier plus five

hundred masks out of every roll of material from the second supplier. We have to find

the number of rolls we should order from every supplier which minimize the price we

have to pay to every supplier respectively.

The manager has to consider two scenarios depending on the number of COVID-19

cases. If the number of cases is above a certain number, scenario ξ1 with ξ1
1 , . . . , ξ

1
5

will happen, else scenario ξ2 with ξ2
1 , . . . , ξ

2
5 will happen.

Written as an uncertain MOLP we get



(MOLP (ξ)) min
x

ξ1 0

0 ξ2


x1

x2


s. t. 3x1 + x2 ≥ ξ3

x1 + 4x2 ≥ ξ4

4x1 + 5x2 ≤ ξ5

x1, x2 ≥ 0


ξ∈U

,

where U =
{
ξ1 := (2, 3, 14, 12, 48)T , ξ2 := (4, 1, 11, 22, 55)T

}
⊆ R5.
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This uncertain MOLP can be graphically represented in the following figure.

x1

x2

0 5 10
0

5

10

X(ξ1)

X(ξ2)

XRC

C1x

C2x

0 10 20 30 40 50
0

10

20

30

Y(ξ1)

Y(ξ2)

YRC

ϑ

Figure 1.1: Left: the feasible sets. Right: the outcome sets; the thick solid lines

depict the Pareto sets YP (ξ1), YP (ξ2), and YRC
P and ϑ illustrates the robustness gap.

Now the manager has to decide how much material to order. He has to decide

if he wants to choose a solution which works well for both possible scenarios, a robust

efficient solution x ∈ XRC
E , or based on his knowledge of the case numbers of the

previous days, of he wants to take risk and assume that one scenario is more likely

and choose to order an amount which works well for this special scenario x ∈ XE(ξi)

i ∈ {1, 2}. He also has to decide which specific amount to order, because all these

efficient sets include infinitely many points.

The robustness gap ϑ with the Euclidean norm can support manager’s decision mak-

ing. Based on this gap, he can see his minimum loss when he decides to choose a

robust efficient solution instead of a solution which is in the efficient set of the actual

scenario. He would also see which point of the robust Pareto set and which scenario

with which Pareto point in this scenario lead to the gap and use this information to

decide how much material to order.

In the case of the MOLP above, there is no easy way to compute the gap. So we find
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the gap by inspection:

In Figure 1.1 we can see that the shortest distance between the Pareto set YRCP and

the Pareto sets YP (ξ1) and YP (ξ2) is between the point z̄ = (12, 14.25)T ∈ YRC
P and

the line segment from (4,15) to (20,9) in YP (ξ2). By a simple computation, we get

ϑ = min
ξ∈U

min
z∈YRC

P

min
y∈YP (ξ)

‖z − y‖2 = ‖z̄ − ȳ‖2 =
18√
73
≈ 2.11,

where ȳ = (822
73
, 3585

292
)T ∈ YP (ξ2). These vectors z̄ and ȳ are the images of the efficient

vectors xRC = (3, 19/4)T ∈ XRC
E and x(ξ) = (411

146
, 3585

292
)T ∈ XE(ξ2). But this gap is

only one specific number resulting from the distance measured in the Euclidean norm.

Maybe the manager wants to get more information, especially because he does not

think that that the objective functions have the same importance or if he wants to

consider more suppliers, so he gets more objective functions.

Mathematically it is already difficult to solve for the gap when considering two ob-

jective functions. Considering even more could be impossible to solve, so we have to

use the concepts of the upper and lower bound which provide more information with

selected weights for the weighted-sum scalarization and give an interval where the

true robustness gap is in between.

In order to calculate ∆L, we consider z̃ := (8, 24)T ∈ YRC, ỹ := (8, 8)T ∈ Y(ξ1)

and λ̃ := (1, 0)T ∈ R2
≥, and since in this example the primal and the dual space are

both (R2, ‖ · ‖2), we note ‖λ‖2 = 1. Then applying (1.11) and (1.12) we obtain

0 ≤ ∆L = inf
ξ∈U

min
λ∈R2

≥,

‖λ‖2=1

(
min
z∈YRC

λT z − min
y∈Y(ξ)

λTy

)
≤ ∆(ξ1, λ̃) ≤ λ̃T z̃ − λ̃T ỹ = 8− 8 = 0,

where the first inequality results from the fact that the minimal weigthed-sum value of

the robust counterpart is always at least as big as the minimal weighted-sum value of

13



a scenario. Consequently, we obtain ∆L = 0 as displayed in Figure 1.2 below, in which

the longer vertical dotted line represents the two level curves of value λ̃T z̃ = λ̃T ỹ = 8.

In order to determine ∆U , we first calculate max λ∈R2
≥,

‖λ‖2=1

∆(ξ2, λ). For any λ ∈

R2
≥, both sets arg minz∈YRC λT z and arg miny∈Y(ξ2) λ

Ty contain at least one extreme

point (EP) in YRC
P and YP (ξ2), respectively. Given the coordinates of the EPs of the

latter two sets, for each of these sets we find the intervals for λ1 ≥ 0 such that for

all λ1 in each interval the same EP is an optimal solution to the associated weighted-

sum problem. We then merge the intervals and establish new intervals of λ1 such

that for every λ1 in each new interval the same points z̄ ∈ YRC
P and ȳ ∈ YP (ξ2)

are optimal solutions to the associated weighted-sum problems. Hence, we partition

Λ := {λ ∈ R2
≥ | ‖λ‖2 = 1} into five subsets Λi such that Λ =

⋃5
i=1 Λi, where

Λ1 := {λ ∈ Λ | λ1 ∈ [0, 0.185]}, Λ2 := {λ ∈ Λ | λ1 ∈ [0.185, 0.351]},

Λ3 := {λ ∈ Λ | λ1 ∈ [0.351, 0.925]}, Λ4 := {λ ∈ Λ | λ1 ∈ [0.925, 0.976]} and

Λ5 := {λ ∈ Λ | λ1 ∈ [0.976, 1.0]}.

We then solve maxλ∈Λi ∆(ξ2, λ) for each i = 1, . . . , 5 and obtain

max
λ∈Λ

∆(ξ2, λ) = max
i=1,...,5

max
λ∈Λi

∆(ξ2, λ) = max{3.681, 3.681, 7.115, 7.120, 8} = 8

for λ̄ = (1, 0)T , z̄ = (8, 24)T , ȳ = (0, 33)T . Next, we show

max
λ∈R2

≥,

‖λ‖2=1

∆(ξ2, λ) < max
λ∈R2

≥,

‖λ‖2=1

∆(ξ1, λ).

For λ′ := (0, 1)T we obtain

max
λ∈R2

≥,

‖λ‖2=1

∆(ξ1, λ) ≥ ∆(ξ1, λ′) = 12− 0 = 12 > 8 = max
λ∈R2

≥,

‖λ‖2=1

∆(ξ2, λ).
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Therefore,

∆U = inf
ξ∈U

max
λ∈R2

≥,

‖λ‖2=1

∆(ξ, λ) = max
λ∈R2

≥,

‖λ‖2=1

∆(ξ2, λ) = 8.

The upper robustness bound ∆U is also displayed in Figure 1.2 below.

C1x

C2x

0 10 20 30 40 50
0

10

20

30

Y(ξ1)

Y(ξ2)

YRC

ϑ

∆L = 0

∆U

Figure 1.2: The lower bound ∆L, the upper bound ∆U , and the robustness gap ϑ.

The upper and lower bounds do not only give an interval within which the real

robustness gap is located, but also include more information. While solving for the

bounds, we also compute optimal vectors ξ̄, λ̄, ȳ and z̄ which lead to these bounds.

The bounds are computed using scalarized weighted-sums based on λ̄. If the manager

thinks that the different goals have different priorities, he could use those values as a

reference, especially if one of the obtained λ̄ of the scalarized weighted-sum problem

reflects his preferences. He could also compute the bounds for a special scenario ξ

which would give him ∆L(ξ) and ∆U(ξ), for the multiobjective scenario robustness

gap ϑ(ξ) with the properties: ∆L ≤ ∆L(ξ) ≤ ϑ(ξ) ≤ ∆U(ξ) and ∆U ≤ ∆U(ξ).

All in all, the gap and the bounds can support the manager making a decision but

do not provide sufficient information to replace him.
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Chapter 2

Decision Uncertainty

In this section, we focus on the MOLPs with an uncertainty in the decision

variable x. So the general uncertainty vector ξ = (η, C,A, b) ∈ U is reduced to

ξ = η ∈ U , because C,A and b are fixed. In applications this type of uncertainty

occurs when it cannot be guaranteed that theoretical results can be implemented one-

to-one based on implementation errors. We assume that we can model the decision

uncertainty as we can add an uncertainty ξ ∈ U to the decision vector x. As stated

in Chapter 1, we assume that U is compact and convex, and in some parts of this

chapter we discuss the cases where U is a polytope.

Decision uncertainty leads to the following uncertain MOLP:


(MOLP(ξ)) min Cx

s. t. A(x+ ξ) = b

x ∈ Rn


ξ∈U

, (2.1)

where U ⊂ Rn.
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For this class of MOLPs

X(ξ) = {x ∈ Rn|A(x+ ξ) = b} (2.2)

and we can define X(0) as

X(0) := {x ∈ Rn|Ax = b}.

Note, that X(0) does not have to be a subset of the union of all X(ξ).

It turns out that for MOLPs with decision uncertainty, the union of the feasible

sets have a special form.

Proposition 1. The union of all feasible sets in (2.2) can be represented as a

Minkowski difference

⋃
ξ∈U

X(ξ) = X(0) � U := {x− ξ|x ∈ X(0), ξ ∈ U}.

Proof. ”⊆” Assume x ∈ ∪ξ∈UX(ξ), then there exists ξx ∈ U so that x ∈ X(ξx).

Define x̄ := x + ξx, then x = x̄ − ξx with ξx ∈ U and Ax̄ = A(x + ξx) = b, because

x ∈ X(ξx). So x̄ ∈ X(0) and therefore x ∈ X(0) � U .

”⊇” Assume x̄ = x−ξ̄ ∈ X(0)�U . Then ξ̄ ∈ U and A(x̄+ξ̄) = A(x−ξ̄+ξ̄) = Ax = b,

because x ∈ X(0). So x̄ ∈ X(ξ̄) and therefore x̄ ∈ ∪ξ∈UX(ξ).

Corollary 1. The union of all feasible sets
⋃
ξ∈U

X(ξ) is a convex set.

Proof. BecauseX(0) as a polyhedron and U by definition are convex and the Minkowski

difference of two convex sets is convex, the union of all feasible sets is also convex.

To understand (2.1) better, we analyze the associated robust counterpart and

present formulations of the optimization problems whose optimal solutions determine
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the upper and lower bound of the robustness gap.

In this chapter, we illustrate the general concepts of Chapter 1 in the special case of

decision uncertainty on a simple example. In Chapter 4 we present more biobjective

examples with decision uncertainty and compute the robustness gaps and lower and

upper bounds.

Example 2.0.1. We consider the 2-dimensional decision uncertainty MOLP with

C =

1 0

0 1

 , A =


−1

6
1

7 −1

1 1

 , b =


−1

6

3

1

 , U =
{
ξ ∈ R2 | ξ1, ξ2 = 0, ξ1 + ξ2 = 1

}
.

C1x

C2x

0 1 2 3 4 5 6
0

1

2

3

4

Y(ξ1 = 0)

Y(ξ1 = 1)

Y(ξ1 = 0.5)

Figure 2.1: Outcome sets of Example 2.0.1 for specific values of the uncertainty

parameter ξ.
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Because C = I, we know that C1x = x1 and C2x = x2, so X(ξ) = Y(ξ). Based on C,

we want to minimize either x1 or x2, so the union of all Pareto sets YP (ξ) for of all

uncertainties in U build the line segment between (1,−1) and (−0.5, 0.5).

2.1 Robust Counterpart

To find the robust counterpart to the family of MOLPs of form (2.1), we

identify the robust feasible set defined as the set of decision vectors which are feasible

for all possible uncertainty vectors in U . Given

XRC := {x ∈ Rn | A(x+ ξ) = b, ∀ξ ∈ U} ,

we can rewrite this as

XRC = {x ∈ Rn | Ax = b− Aξ, ∀ξ ∈ U} .

Because U is a compact set, every component in the right hand side of the in-

equality constraint above takes its minimum for a ξ ∈ U . Defining b̃ := b −

(minξ∈U A1ξ . . . ,minξ∈U Amξ)
T , it is easy to see that

XRC =
{
x ∈ Rn | Ax = b̃

}
, (2.3)

and we can compute the robust counterpart of the decision uncertainty problem after

finding b̃. The difficulty to find b̃ depends on the structure of U . If U is a polytope

given as U = {ξ ∈ Rn | Eξ = e}, we can find b̃ by solving the linear programs of the
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form  (LP (ξ)) b̃i = bi − min Aiξ

s. t. Eξ = e


for i = 1, . . . ,m. With this finite definition (2.3), we can formulate the robust coun-

terpart as a deterministic MOLP with finite constraints:


(
RCMOLPDecision

)
min Cx

s. t. Ax = b̃

x ∈ Rn

 .

Example 2.1.1. Rewriting Example 2.0.1, we get the collection of MOLPs



(MOLP (ξ)) min
x

(x1 + ξ1, x2 + ξ2)T

s. t. −1
6
x1 + x2 ≥ −1

6
+−1

6
ξ1 − ξ2

7x1 − x2 ≥ 3− 7ξ1 + ξ2

x1 + x2 ≥ 1− ξ1 − ξ2


ξ∈U

,

where U = {ξ ∈ R2 | ξ1, ξ2 = 0, ξ1 + ξ2 = 1} .

We can find b̃1 by solving the linear program
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

(LP (ξ)) b̃1 = −1
6
− min −1

6
ξ1 + ξ2

s. t. ξ1 = 0

ξ2 = 0

ξ1 + ξ2 = 1

−ξ1 − ξ2 = −1


.

This linear program takes its minimum for ξ1 = 1 and ξ2 = 0, so b̃1 = −1
6
−−1

6
= 0.

Similar, we get b̃2 = 4 and b̃3 = 0 and rewrite the robust feasible set as

XRC =


x ∈ R3 |


−1

6
1

7 −1

1 1

x =


0

4

0




.
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Figure 2.2: The outcome sets for ξ1 = 1 and ξ1 = 0, and for the robust feasible set.

Because C = I, we know that C1x = x1 and C2x = x2, so XRC = YRC and the robust

Pareto set is only a single point, i.e., YRCP = {(0.5854, 0.0976)T}.

2.2 Robustness Gap

For the family of uncertain MOLPs of form (2.1), infz∈YRC
P

= minz∈YRC
P

and

infy∈YP (ξ) = miny∈YP (ξ), so we can formulate the robustness gap as

ϑ = min
ξ∈U

min
z∈YRC

P

min
y∈YP (ξ)

‖z − y‖p.

For this kind of MOLPs, it is also possible to give a condition under which the

robustness gap is 0. It turns out, that the robustness gap is zero whenever the Pareto

set of the robust counterpart has full dimension.
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Proposition 2. Let XRC of (2.1) be given as (2.3). If there exists an (n − 1)-

dimensional face F of the polyhedral set XRC such that F ⊆ XRC
E , then

ϑ = 0,

and there exists a scenario ξ̄ ∈ U and an (n−1)-dimensional face F̄ of the polyhedral

set X(ξ̄) such that F̄ ⊆ XE(ξ̄).

Proof. By [3, Cor. 5.7], F ⊆ XRC
E if and only if there exist 1 ≤ j ≤ m such that

F = {x ∈ Rn | Ajx = b̃j, Aix ≥ b̃i ∀1 ≤ i ≤ m},

and µ ∈ Rl
> such that

Aj =
l∑

i=1

µiCi. (2.4)

Because U is compact, it holds that infξ∈U ξ = minξ∈U ξ and there exists ξ̄ ∈ U

such that b̃j = bj −minξ∈U Ajξ = bj −Aj ξ̄. For every x ∈ F and every 1 ≤ i ≤ m we

have Aix ≥ b̃i ≥ bi − Aiξ̄ and hence

F ⊆ F̄ := {x ∈ Rn | Ajx = b̃j, Aix ≥ bi − Aiξ̄ ∀1 ≤ i ≤ m} ⊆ X(ξ̄).

Applying the reverse direction of [3, Cor. 5.7] to both F̄ and (2.4), we obtain F̄ ⊆

XE(ξ̄) and hence, F ⊆ F̄ ⊆ XE(ξ̄). Therefore, F ⊆ XRC
E ∩ XE(ξ̄) and, because

CRC(x) = Cx for all x ∈ Rn in this chapter, applying (1.10), we obtain ϑ = 0.

Example 2.2.1. Continuing Example 2.1.1 to find the robustness gap, we want to

find the minimal distance between YRCP = {(0.5854, 0.0976)T} and all Pareto points

in all scenarios which in our case is the line segment between (−0.5, 0.5) and (1,−1).
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In this special case, we can reformulate the problem of finding the gap as



(P (ξ)) ϑ = min
√

(x1 − 0.5854)2 + (x2 − 0.0976)2

s. t. x1 + x2 = 0

x1 = −1
2

x1 5 1


.

This problem can be solved via MATLAB with the function fmincon and leads to a

robustness gap of 0.4829 which is illustrated in the following figure.

C1x

C2x

0 1 2 3 4 5 6
0

1

2

3

4

Y(ξ1 = 0)

Y(ξ1 = 1)

YRC

ϑ

Figure 2.3: Illustration of the robustness gap (which occurs, e.g., together with Y(ξ1 =

0.5)).
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2.3 Bounds

Because computing the gap is very difficult even for the case of MOLPs, we

instead compute the upper and lower bounds on the gap.

2.3.1 Lower Bound

To construct a lower bound of the robustness gap for the family of uncertain

MOLPs (2.1), we start with the definition for the lower bound of the gap (1.11)

and (1.12), use the formulation of the robust counterpart (2.4) and reformulate the

problem until it becomes solvable. Recall

∆L := inf
ξ∈U

min
λ∈Rp≥,
‖λ‖q=1

( min
z∈YRC

λT z − min
y∈Y(ξ)

λTy).

Based on Chapter 2.1, we rewrite the two minimizations in the parentheses as

min
z∈YRC

λT z = min
x∈XRC

λTCx = min
{
λTCx | x ∈ Rn, Ax = b̃

}

and

min
y∈Y(ξ)

λTy = min
x∈X(ξ)

λTCx = min
{
λTCx | x ∈ Rn, Ax = b− Aξ

}
.

This leads to a a new formulation of ∆L:

∆L = inf
ξ∈U

min
λ∈Rp≥,
‖λ‖q=1

 min
x

λTCx − min
x

λTCx

s. t. Ax = b̃ s. t. Ax = b− Aξ

 .

Defining ξ′ := b − Aξ and using linear programming duality to the right hand side

minimization problem, we get
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∆L = inf
ξ∈U

min
λ∈Rp≥,
‖λ‖q=1



min
x

λTCx − max
v

vT ξ′

s. t. Ax = b̃ s. t. vTA = λTC

v = 0

ξ′ = b− Aξ


,

where v are the dual variables associated with the constraint Ax = ξ′. In the paren-

theses, the minimum depends only on x, while the maximum depends on v, so we

can reformulate min
x
λTCx−max

v
vT ξ′ into min

x,v
λTCx− vT ξ′.

Because U is a compact set, we can replace the infimum by a minimum and get a

final problem formulation

∆L =



min
x,v,λ,ξ

λTCx− vT ξ′

s. t. Ax = b̃

vTA = λTC

‖λ‖q = 1

λ, v = 0

ξ′ = b− Aξ

ξ ∈ U



. (2.5)

This formulation turns out to become a DC optimization problem if C can, by adding

0-rows, be extended to a quadratic matrix which is positive semidefinite.

Example 2.3.1. Continuing Example 2.2.1 to find the lower bound, we look for a

scenario over all possible scenarios for which over all possible nonnegative vectors
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λ ∈ R2
≥ the distance between the Pareto set of this scenario YP (ξ) and the the robust

Pareto set YRCP is minimal. In this example, these are scenario ξ such that ξ1 = 0

and vector λ = (1, 0)T , which lead to a lower gap of 0.0854.

C1x

C2x

0 1 2

-1

0

1

2

Y(ξ1 = 0)

Y(ξ1 = 1)
YRC

∆L

Figure 2.4: Illustration of the lower bound for the robustness gap.

2.3.2 Upper bound

To construct an upper bound on the robustness gap for the family of uncertain

MOLPs (2.1), we start with the definition for the upper bound of the gap (1.11)

and (1.12), use the formulation of the robust counterpart (2.4) and reformulate the
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problem until it becomes solvable. Recall

∆U := inf
ξ∈U

max
λ∈Rp≥,
‖λ‖q=1

( min
z∈YRC

λT z − min
y∈Y(ξ)

λTy).

Based on Chapter 2.1, we rewrite the two minimizations in the parentheses as

min
z∈YRC

λT z = min
x∈XRC

λTCx = min
{
λTCx | x ∈ Rn, Ax = b̃

}
,

and

min
y∈Y(ξ)

λTy = min
x∈X(ξ)

λTCx = min
{
λTCx | x ∈ Rn, Ax = b− Aξ

}
.

This leads to a new formulation of ∆U :

∆U = inf
ξ∈U

max
λ∈Rp≥,
‖λ‖q=1

 min
x

λTCx − min
x

λTCx

s. t. Ax = b̃ s. t. Ax = b− Aξ

 .

Defining ξ′ := b − Aξ and using linear programming duality to the left hand side

minimization problem, we get

∆U = inf
ξ∈U

max
λ∈Rp≥,
‖λ‖q=1


max
u

uT b̃ − min
x

λTCx

s. t. uTA = λTC s. t. Ax = ξ′

u = 0 ξ′ = b− Aξ

 ,

where u are the dual variables associated with the constraint Ax = b̃. In the paren-

theses, the maximum depends only on u, while the minimum depends only on x, so

we can reformulate max
u

uT b̃−min
x
λTCx into max

x,u
uT b̃− λTCx.
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Because U is a compact set, we can replace the infimum by a minimum and get a

final problem formulation

∆U = min
ξ∈U



max
x,u,λ

uT b̃− λTCx

s. t. Ax = ξ′

uTA = λTC

‖λ‖q = 1

λ, u = 0

ξ′ = b− Aξ



. (2.6)

It turns out that even this minimization problem looks similar to the formulation of

∆L, it can not be easily solved. This is the case because it is a two-stage problem

which can not be rewritten in a nicer way.

Example 2.3.2. Continuing Example 2.3.1 to find the upper bound, we look for a

scenario where the biggest distance measured as a weighted-sum to our robust Pareto

point YRCP is minimal. This is the case for the scenario for which the line segment

from YRCP to the midpoint of the Pareto set of this scenario is diagonal to this Pareto

set. This is the case for ξ1 = 0.5061 and leads to an upper bound of 0.5915 for either

λ = (1, 0)T or λ = (0, 1)T .
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Figure 2.5: Illustration of the upper bound for the robustness gap.
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Chapter 3

Parameter Uncertainty

In this chapter, we focus on MOLPs with uncertainty in the data A, b and C.

So our uncertainty ξ = (η, C,A, b) ∈ U can be rewritten as ξ = (C,A, b) ∈ U , because

we do not have decision uncertainty, i.e. η = 0. This kind of uncertainty occurs when

we can not trust the given data because of measurement errors or because the data

is influenced by the future, like in Chapter 1.3.

In this thesis, we only consider uncertainty in A and b, because all MOLPs with

uncertainty in C can be reformulated to MOLPs with uncertainty only in A and b,

see for example [5]. Parameter uncertainty in A and b leads to the following uncertain

MOLP:


(MOLP(ξ)) min Cx

s. t. Ax = b

x ∈ Rn


ξ=(A,b)∈U

, (3.1)

where U ⊂ Rm×n × Rm.
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For this class of MOLPs,

X(ξ) = {x ∈ Rn|Ax = b}.

Note also, that MOLPs with decision uncertainty can be reformulated into MOLPs

with parameter uncertainty, so Chapter 2 is just a special case of this chapter. As

stated in Chapter 1, we assume that U is compact and convex.

To understand (3.1) better, we analyze the associated robust counterpart and present

formulations of the optimization problems whose optimal solutions determine the

upper and lower bounds on the robustness gap.

3.1 Robust Counterpart

To find the robust counterpart to the family of MOLPs of form (3.1), we

identify the robust feasible set defined as the set of decision vectors which are feasible

for all possible uncertainty vectors in U , namely

XRC := {x ∈ Rn | Ax = b, ∀ξ = (A, b) ∈ U} .

Because U is a compact and convex set, there exists a finite representation of the con-

straints, which we denote as (Ã, b̃) ∈ Rr×n ×Rr where (Ãi, b̃i) = ξ̃i is one component

of a scenario in U . This leads to a new formula for XRC :

XRC =
{
x ∈ Rn | Ãx = b̃

}
(3.2)

and we can compute the robust counterpart of the parameter uncertainty problem

after finding (Ã, b̃). The difficulty to find (Ã, b̃) depends on the structure of U .
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Unfortunately, it is not as easy as in Chapter 2 to compute (Ã, b̃), because Ã and

b̃ have to be computed simultaneous and depend on each other. With this finite

formulation (3.2), we can formulate the robust counterpart as a deterministic MOLP

with finite constraints:
(
RCMOLPParameter

)
min Cx

s. t. Ãx = b̃

x ∈ Rn

 .

3.2 Robustness Gap and Bounds

For the family of uncertain MOLPs of form (2.1), infz∈YRC
P

= minz∈YRC
P

and

infy∈YP (ξ) = miny∈YP (ξ), so we can formulate the robustness gap as

ϑ = min
ξ∈U

min
z∈YRC

P

min
y∈YP (ξ)

‖z − y‖p.

3.2.1 Bounds

Because computing the gap is very difficult even for the case of MOLPs, we

instead compute upper and lower bounds on the gap.

3.2.1.1 Lower Bound

To construct a lower bound of the robustness gap for MOLPs of the form

(3.1), we start with the definition for the lower bound of the gap (1.11) and (1.12),

use the formulation of the robust counterpart (3.2) and reformulate the system until

33



it becomes solvable. Recall

∆L := inf
ξ∈U

min
λ∈Rp≥,
‖λ‖q=1

( min
z∈YRC

λT z − min
y∈Y(ξ)

λTy).

Based on Chapter 3.1, we rewrite the two minimizations in the parentheses as

min
z∈YRC

λT z = min
x∈XRC

λTCx = min
{
λTCx | x ∈ Rn, Ãx = b̃

}

and

min
y∈Y(ξ)

λTy = min
x∈X(ξ)

λTCx = min
{
λTCx | x ∈ Rn, Ax = b

}
.

This leads to a a new formulation of ∆L:

∆L = inf
ξ=(A,b)∈U

min
λ∈Rp≥,
‖λ‖q=1

 min
x

λTCx − min
x

λTCx

s. t. Ãx = b̃ s. t. Ax = b

 .

Applying linear programming duality to the right hand side minimization problem,

we get

∆L = inf
ξ=(A,b)∈U

min
λ∈Rp≥,
‖λ‖q=1


min
x

λTCx − max
v

vT b̃

s. t. Ãx = b̃ s. t. vT Ã = λTC

v = 0

 ,

where v are the dual variables associated with the constraint Ax = b. In the paren-

theses, the minimum depends only on x, while the maximum depends on v, so we

can reformulate our min
x
λTCx−max

v
vT b̃ into min

x,v
λTCx− vT b̃.
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Because U is a compact set, we can replace the infimum by a minimum and get a

final problem formulation

∆L =



min
x,v,λ,ξ=(A,b)

λTCx− vT b̃

s. t. Ãx = b̃

vT Ã = λTC

‖λ‖q = 1

λ, v = 0

ξ = (A, b) ∈ U



. (3.3)

This formulation turns out to become a DC optimization problem if C can, by adding

0-rows, be extended to a quadratic matrix which is positive semidefinite.

3.2.1.2 Upper Bound

To construct an upper bound on the robustness gap for the family of uncertain

MOLPs (3.1), we start with the definition for the upper bound of the gap (1.11)

and (1.12), use the formulation of the robust counterpart (3.2) and reformulate the

problem until it becomes solvable. Recall

∆U := inf
ξ∈U

max
λ∈Rp≥,
‖λ‖q=1

( min
z∈YRC

λT z − min
y∈Y(ξ)

λTy).

Based on Chapter 3.1, we rewrite the two minimizations in parentheses as

min
z∈YRC

λT z = min
x∈XRC

λTCx = min
{
λTCx | x ∈ Rn, Ãx = b̃

}
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and

min
y∈Y(ξ)

λTy = min
x∈X(ξ)

λTCx = min
{
λTCx | x ∈ Rn, Ax = b

}
.

This leads to a a new formulation of ∆U :

∆U = inf
ξ=(A,b)∈U

max
λ∈Rp≥,
‖λ‖q=1

 min
x

λTCx − min
x

λTCx

s. t. Ãx = b̃ s. t. Ax = b

 .

Applying linear programming duality to the left hand side minimization problem, we

get

∆U = inf
ξ=(A,b)∈U

max
λ∈Rp≥,
‖λ‖q=1


max
u

uT b̃ − min
x

λTCx

s. t. uT Ã = λTC s. t. Ãx = b̃

u = 0

 ,

where u are the dual variables associated with the constraint Ãx = b̃. In parentheses,

the maximum depends only on u, while the minimum depends only on x, so we can

reformulate our max
u

uT b̃−min
x
λTCx into max

x,u
uT b̃− λTCx.

Because U is a compact set, we can replace the infimum by a minimum and get a
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final problem formulation

∆U = min
ξ=(A,b)∈U



max
x,u,λ

uT b̃− λTCx

s. t. Ãx = b̃

uT Ã = λTC

‖λ‖q = 1

λ, u = 0


. (3.4)

Similar to Chapter 2, this problem cannot be solved as easily as the lower bound ∆L.
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Chapter 4

Numerical Experiments

In this section we examine three different classes of examples with different

uncertainty sets U and analyze numerical issues that accompany the computations.

All examples use the same C, A and b, namely

C =

1 0

0 1

 , A =


−1

6
1

7 −1

1 1

 , b =


−1

6

3

1

 .

In order to compute the upper and lower bounds for the robustness gap, it is

required that optimization problems (2.4) and (2.5) be solved. Problem (2.4) for the

lower bound ∆L can be solved with the following methods:

• one-stage problem in the form of (2.4).

• two-stage problem

Discretize U and minimize with respect to x, v and λ for a fixed ξ ∈ U .

Choose the smallest value ∆L(ξ) over all ξ ∈ Udiscrete.
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• three-stage problem

Discretize U and Λ = {λ ∈ Rn
≥| ||λ||q = 1} and minimize with respect to x

and v for fixed ξ ∈ U and λ ∈ Λ. Choose the smallest value ∆L(ξ, λ) over

all ξ ∈ Udiscrete and λ ∈ Λdiscrete.

In the examples we solve, YRCP is a singleton we can calculate if the gap is unequal to

zero. Based on Theorem 1, the point x̄ for the optimal solution of the weighted-sum

scalarization is in the Pareto set, so we can reformulate (2.4) in this special case as

∆L =



min
v,λ,ξ

λTCz̄ − vT ξ′

s. t. vTA = λTC

‖λ‖q = 1

λ, v = 0

ξ′ = b− Aξ

ξ ∈ U



, (4.1)

where z̄ is the Pareto point of the robust counterpart. In effect, we get three more

methods for computing the lower bound. They work similarly to the three methods

above, except that they use the new formulation (4.1) of ∆L instead of (2.4):

• one-stage problem with a fixed Pareto point z̄

• two-stage problem with a fixed Pareto point z̄

• three-stage problem with a fixed Pareto point z̄

Wile the lower bound is a minimization problem, the upper bound (2.5) is a

min-max problem depending on different variables. This can not be solved easily as
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a one-stage problem. So instead of solving it directly, we have to dicretize U and

perform different iterations of the inner part of the problem for fixed ξ ∈ Udiscrete to

get a bound. Because we are looking for the minimum of all the solutions of the inner

part, this is also giving us an upper bound for the robustness gap which is greater or

equal to the real ∆U . The quality of this bound can depend on the discretization of

U . Based on the special form of the union of XE(ξ) as a Minkowski difference and

the chosen C = I, we only have to discretize the extreme values of U .

In a similar way as for the lower bound, we get four possible methods with discretizing

U and possibly Λ with the difference of taking the maximum with respect to all λ ∈ Λ.

The methods are:

• two-stage problem

• three-stage problem

• two-stage problem with a fixed Pareto point z̄

• three-stage problem with a fixed Pareto point z̄

A big concern about solving multi-stage problems is that the computation

takes a lot of time. Depending on the number of discretization points, the time can

increase significantly.

A pseudo-code for the two-stage problem to compute the lower bound is given

in Algorithm 1. The algorithm for the upper bound is similar, except we use ∆U

instead of ∆L and change the 6th row of the pseudo-code into

max
x,u,λ

uT b̃− λTCx, s.t. ξ′ = b− Aξ; Ax = ξ′; uTA = λTC; ||λ||∗ = 1; λ, u = 0.

In Algorithm 2, a pseudo-code for the three-stage problem to compute the upper
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Algorithm 1 computing ∆L

1: procedure two-stage ∆L(matrices C,A, b and Udiscrete)
2: set ∆L =∞
3: for i = 1, . . .m do
4: compute b̃i = maxξ bi − Aiξ, s.t. ξ ∈ U
5: for ∀ξ ∈ Udiscrete do
6: compute ∆L(ξ) = minx,v,λ λ

TCx− vT ξ′, s.t. ξ′ = b− Aξ; Ax = b̃; vTA =
λTC; ||λ||∗ = 1; λ, v = 0

7: if ∆L(ξ) < ∆L then
8: ∆L = ∆L(ξ)
9: save computed λ as λ̄
10: save used ξ as ξ̄

11: return ∆L, λ̄, ξ̄

bound is presented.

It turns out that for the class of problems we consider in this chapter, Algo-

rithm 1 correctly solves the two-stage problem for the lower bound without stopping

at local minima, while for the upper bound we receive the correct results when we

either use the three-stage problem or the two-stage problem with well fitting starting

points. Because the three-stage problem can be solved without having further knowl-

edge about good starting points, we decide to choose this method. In the subsequent

sections we present the numerical experiments we conducted. All algorithms are im-

plemented in MATLAB using the fmincon function and part of this code is given in

the Appendix.
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Algorithm 2 computing ∆U

procedure three-stage ∆U(matrices C,A, b, Udiscrete and Λdiscrete)
2: set ∆U =∞

for i = 1, . . .m do
4: compute b̃i = maxξ bi − Aiξ, s.t. ξ ∈ U

for ∀ξ ∈ Udiscrete do
6: set ∆U(ξ)=0

for ∀λ ∈ Λdiscrete do
8: compute ∆U(ξ, λ) = maxx,u u

T b̃ − λTCx, s.t. ξ′ = b − Aξ; Ax =
ξ′; uTA = λTC; ||λ||∗ = 1; λ, u = 0

if ∆U(ξ, λ) ≥ ∆U(ξ) then
10: ∆U(ξ) = ∆U(ξ, λ)

save used λ
12: if ∆U(ξ) < ∆U then

∆U = ∆U(ξ)
14: save used λ as λ̄

save used ξ as ξ̄

16: return ∆U , λ̄, ξ̄

4.1 Sensitivity of the Gap with respect to Trans-

lation

Let the uncertainty set be defined as U := {ξ ∈ R2 | ξ1 + ξ2 = c, |ξ1 − ξ2| ≤ 1}

where −50 ≤ c ≤ 50, which makes U be a line segment of the same length for every

c, where c models the translation of the segments. From this definition we obtain

c−1
2
≤ ξ1 ≤ c+1

2
. For c = 1, this is equivalent to the example in Chapter 2. Figure 4.1

depicts the outcome sets Y (ξ) for the two extreme values of ξ1 that result from the

definition of U . The outcome sets Y (ξ) for all other values of ξ1 are located in R2 in

such a way that the union of their Pareto sets is contained in the line segment from

the point (− c
2
,− c

2
+ 1) to the point (− c

2
+ 1.5,− c

2
− 0.5). The robustness gap ϑ does

not change as c changes and it can be calculated as the minimal distance between
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YRC
P being a singleton and this line segment. We obtain

ϑ = 0.4829.

C1x

C2x
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− c

2
+1− c

2
+2− c

2
+3− c

2
+4− c

2
+5− c

2
+6

− c
2
-1

− c
2

− c
2
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2
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Y(ξ1 = c−1
2

)

Y(ξ1 = c+1
2

)

YRC

Figure 4.1: The outcome sets Y (ξ) for ξ1 = c−1
2

and ξ1 = c+1
2

, and the robust outcome

set Y RC for a fixed c.

Below we compare the outcomes of the different methods for computing the

bounds as described before.

Computing the lower bound via the one-stage problem and the upper bound

via the two-stage problem leads to the bounds in Figure 4.2. We see that the computed

lower bound is not correct for negative c-values, because we can evaluate a smaller

bound by choosing scenario ξ where ξ1 = c−1
2

with λ = (1, 0)T . This can happen

because the used MATLAB-function can only find local minima of the problem (2.4)

and therefore compute the lower bound with ξ1 = c+1
2

and λ = (0, 1). Also, some of

the values for the upper bound are wrong, because they are below the values of the

gap. This also happens because fmincon stops at local maxima of (2.5) instead of
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finding a global maximum.

Figure 4.2: Robustness gap and incorrect upper and lower bounds for different c-

values.

To fix these problems, we recompute the bound and use the two-stage problem

via Algorithm 1 for the lower bound and the three-stage problem vial Algorithm 2

for the upper bound. These computations are reflected in Figure 4.3. This time

the lower and upper bound are correct (except for some small computational errors

based on the discretization). However, the running time of the used algorithms now

is more than 40 times the running time of the algorithms used before. This means,

for example, that the computations now take more than 3 hours while they took less

than 5 minutes before.
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Figure 4.3: Robustness gap and upper and lower bounds for different c-values.

Figure 4.3 depicts the optimal objective values, ∆L and ∆U , of problems (2.4)

and (2.5), respectively, obtained for c = −50,−49, . . . , 49, 50. For each c we have

∆L = 0.0854, ∆U = 0.591.

The optimal solution ξ̄ = ( c−1
2
, c+1

2
)T and λ̄ = (1, 0)T yields ∆L, while ∆U comes from

the optimal solution ξ̄ = ( c−0.0122
2

, c+0.0122
2

)T and either λ̄ = (1, 0)T or λ̄ = (0, 1)T .

These results confirm that the gap and bounds stay constant under the translation.

This easy example shows, that computing the bound for large problems with

many variables in a short time may not be an easy task. To ensure that the computed

bounds are correct, it is better to use small discretization steps and allow a long

computing time, or use special algorithms for DC-optimization.
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4.2 Sensitivity of the Gap with respect to Expan-

sion

Let U := {ξ ∈ R2 | ξ1 + ξ2 = 1, |ξ1 − ξ2| ≤ c} where 1 ≤ c ≤ 10. In this case,

U is a collection of line segments of different length located on the same line in R2,

while c controls the length of the line segments or their expansion. From this definition

we obtain −c+1
2
≤ ξ1 ≤ c+1

2
.

Figure 4.4: The outcome sets Y (ξ) for ξ1 = −c+1
2

and ξ1 = c+1
2

, and the robust

outcome set Y RC (dotted lines) for different c-values.

Figure 4.4 depicts the outcome sets Y (ξ) for the two extreme values of ξ1 that

result from the definition of U and for four different values of c. For each c, the
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outcome sets Y (ξ) for all other values of ξ1 are located in R2 in a similar fashion as

the outcome sets in Section 4.1.

The robustness gap ϑ can be calculated as the minimal distance between YRC
P

being a singleton and the line segment from the point (−c+1
2
− 0.5, c+1

2
− 0.5) to the

point ( c+1
2
, −c+1

2
− 1). As c increases, the gap increases linearly,

ϑ = 0.9658c− 0.4829,

which is depicted with the dotted line in Figure 4.5. Problems (2.4) and (2.5) are

solved for c = 1, 1.5, . . . , 9.5, 10 and produce the bounds

∆L = 0.1707c− 0.0854, ∆U =

√
ϑ2 +

1

16
,

which are also depicted in Figure 4.5. The optimal solution ξ̄ = ( c+1
2
, −c+1

2
)T and

λ̄ = (1, 0)T yields ∆L and the optimal solution ξ̄ = (0.5061, 0.4939)T and either

λ̄ = (1, 0)T or λ̄ = (0, 1)T yields ∆U .
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Figure 4.5: The robustness gap and upper and lower bounds for different c-values.

Based on these results we conclude that the robustness gap ϑ and the lower

bound ∆L increase linearly, but the upper bound does not. As c increases, ∆U

approaches the robustness gap ϑ, while the distance between ∆L and ϑ becomes

bigger. This shows that the ratio of each bound and the gap is not constant under

the expansion.

4.3 Sensitivity of the Gap with respect to the Norm

In this example, U := {ξ ∈ R2 | ‖ξ1 + ξ2‖p ≤ 1} where 1 ≤ p ≤ 6. Figure

4.6 depicts the unit balls of some norms, the outcome sets Y (ξ) for selected extreme

vectors ξ ∈ U , and the robust outcome sets Y RC . The boundaries of the unit balls

and the Pareto sets intersect at the midpoints of the Pareto sets.
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Figure 4.6: The outcome sets Y (ξ) for selected extreme ξ ∈ U and the robust outcome

set Y RC (dotted lines) for different p-norms.

For every p-norm, the robustness gap ϑ can be calculated as the minimal

distance between YRC
P being a singleton and the Pareto set YP (ξ̄) (plotted in pur-

ple), where ξ̄ = p

√
1
2
(−1,−1)T , and these values are plotted in Figure 4.7 (dotted

curve). Problems (2.4) and (2.5) are solved for p = 1, 1.25, . . . , 5.75, 6 and the result-

ing bounds, ∆L and ∆U , are plotted in the same figure.
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Figure 4.7: The robustness gap and upper and lower bounds for different p-norms.

It is interesting to see a bump in the lower bound for p ∈ (2.5; 3.5), which

can also be examined in Figure 4.8 reporting more numerical results. In this fig-

ure, the values of both bounds for different p-norms are accompanied by the asso-

ciated optimal solutions (ξ̄1, ξ̄2) and optimal λ̄1. We observe that for some p∗ ∈

(3, 3.25), the optimal solution λ̄ = (1, 0)T changes to λ̄ = 1√
2
(1, 1)T and the op-

timal solution (ξ̄1, ξ̄2) also significantly changes, which is likely to cause the jump.

At the same time, the lower bound becomes and remains tight. This is due to

the fact, that while min λ∈R2
≥,

‖λ‖2=1

∆
(
ξ = (−1, 0)T , λ

)
is increasing when p is increas-

ing, min λ∈R2
≥,

‖λ‖2=1

∆
(
ξ = p

√
1
2
(−1,−1)T , λ

)
= ϑ is decreasing if p is increasing. So

the lower bound is computed as min λ∈R2
≥,

‖λ‖2=1

∆
(
ξ = (−1, 0)T , λ

)
for all p < p∗ and

as min λ∈R2
≥,

‖λ‖2=1

∆
(
ξ = p

√
1
2
(−1,−1)T , λ

)
= ϑ for all p > p∗.
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Figure 4.8: Upper and lower bounds, optimal λ̄1, and optimal (ξ̄1, ξ̄2) for different

p-norms.
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Chapter 5

Conclusion

5.1 Summary

The robustness gap for uncertain multiobjective linear optimization and the

upper and lower bounds for this gap are investigated in detail. A real-life uncertain

biobjective LP is developed to illustrate the application of the gap in decision making.

Biobjective examples for different sets of decision uncertainty give insight into

how the gap and the bounds react to different mathematical transformations.

Even for this biobjective linear case, where the optimization problems for

computing the upper and lower bound are formulated, it is difficult to compute these

bounds in practice, because these optimization problems have non-convex objective

functions assuming local minima or maxima. This kind of problems is not solvable

with commonly used minimization functions like fmincon in MATLAB, because those

functions often find local extrema rather than global. Therefore, the optimization

problems have to be reformulated into multi-stage problems using discretization.

The computed results also show a big range of the ratio between the bounds

and the actual robustness gap. There are cases where these bounds are tight, but
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also cases where the ratio between gap and a bound goes to infinity.

In the real-life application, the bounds on the robustness gap are interesting

not only because they give an interval in which the gap is contained, but also because

they give more insight into the uncertain multiobjective linear program. The bounds

are computed using weighted-sum scalarization problems where the used λ-vectors

can serve as a reference for a decision.

5.2 Further work

In the near future, it could be interesting to compute the bounds for MOLPs

with decision uncertainty in higher dimensions. It might be possible to fix the issue

of the local extrema or shorten the long computational times by using a special algo-

rithm for DC optimization.

The next step task could be to construct examples for MOLPs with Parameter Un-

certainty which do not have trivial gaps. There could also exist a proposition giving

conditions under which the gap is zero.

It would also be helpful to develop conditions under which the bounds are tight or

to find out how far each bound is away from the gap based on the optimal solutions

{ξ̄, λ̄, x̄, (v̄ or ū)} of the optimization problems yielding these bounds.

In the further future, it would be interesting to look at convex quadratic

problems and find formulations of the bounds in these cases. It might be possible to

define new bounds which could either give smaller intervals for the gap, lead to new

information for a decision, or which would be easier to compute.

One last idea is to define the robustness gap also for other kinds of optimization such

as network optimization.
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Appendix
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Code

The MATLAB code for solving the uncertain BOLP in Section 4.3 is given.

We follow the pseudo-code of Algorithm 1 and 2. We first create arrays to save final

results to be able to use them later. We then compute b̃.

With this information, we are able to compute the single Pareto point {z̄} = YRCP

and the robustness gap ϑ.
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We now compute the upper bound ∆U as described in Algorithm 2 and save the

results.

The fmincon function uses the nonlinear constraints saved in constraintsUp as showed
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below.

We now compute the lower bound ∆L as described in Algorithm 1 and save the

results.

The fmincon function uses the nonlinear constraints saved in constraintsLow as showed

below.
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At the end we save all computed values to analyze and plot them later.
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