
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

August 2020

Data-Driven Control with Learned Dynamics Data-Driven Control with Learned Dynamics

Wenjian Hao
Clemson University, haowjz@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Hao, Wenjian, "Data-Driven Control with Learned Dynamics" (2020). All Theses. 3398.
https://tigerprints.clemson.edu/all_theses/3398

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3398&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3398?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3398&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Data Driven Control with Learned Dynamics

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Mechanical Engineering

by
Wenjian Hao
August 2020

Accepted by:
Dr. Yue Wang, Committee Chair
Dr. Yiqiang Han, Research Chair

Dr. Mohammad Naghnaeian

Acknowledgments

The past two years at Clemson University have been a great journey in my life.

During this period, I obtained not only lots of technical knowledge but also a massive

help and happy memories from the university community, here I would like to express

my sincere gratitude to those who helped me.

First of all, I would like to thank my advisor, Dr. Yiqiang Han, for introducing

me to the fields of deep reinforcement learning, dynamical systems, and control. I am

very grateful for the opportunity to get involved with many incredible CI projects

like autonomous drones and autonomous race cars. I learned a lot of cutting edge

knowledge and got much successful experience while doing these great projects. I also

appreciate my committee members, Dr. Yue Wang and Dr. Mohammad Naghnaeian,

for their guidance and support. Likewise, I would like to thank Professor Umesh

Vaidya for his critical input and advice when we worked together to develop a novel

algorithm that combines deep neural network and Koopman operator.

My gratitude also goes to my colleagues and friends who offered me help and

cooperated for class team projects. It is you who makes my experience unforgettable

and precious.

Finally, I would like to express my gratitude to the people dearest to me. I

want to thank my parents and family for their love, support, and wisdom throughout

my life. Thank you for being part of this journey, even when being at a distance.

ii

Abstract

This research focuses on studying data-driven control with dynamics that are

actively learned from machine learning algorithms. With system dynamics being

identified using neural networks either explicitly or implicitly, we can apply control

following either a model-based approach or a model-free approach. In this thesis, the

two different methods are explained in detail and finally compared to shed light on

the emerging data-driven control research field.

In the first part of the thesis, we first introduce state-of-art Reinforcement

Learning (RL) algorithm representing data-driven control using a model-free learning

approach. We discuss the advantages and shortcomings of the current RL algorithms

and motivate our study to search for a model-based control which is physics-based

and also provides better model interpretability. We then propose a novel data-driven,

model-based approach for the optimal control of the dynamical system. The proposed

approach relies on the Deep Neural Network (DNN) based learning of Koopman

operator and therefore is named as Deep Learning of Koopman Representation for

Control (DKRC). In particular, DNN is employed for the data-driven identification of

basis function used in the linear lifting of nonlinear control system dynamics. One a

linear representation of system dynamics is learned, we can implement classic control

algorithms such as iterative Linear Quadratic Regulator (iLQR) and Model Predictive

Control (MPC) for optimal control design. The controller synthesis is purely data-

iii

driven and does not rely on prior domain knowledge. The OpenAI Gym environment

is used for simulations of various control problems. The method is applied to three

classic dynamical systems on OpenAI Gym environment to demonstrate the capability.

In the second part, we compare the proposed method with a state-of-art

model-free control method based on an actor-critic architecture – Deep Deterministic

Policy Gradient (DDPG), which has been proved to be effective in various dynamical

systems. Two examples are provided for comparison, i.e., classic Inverted Pendulum

and Lunar Lander Continuous Control. We compare these two methods in terms of

control strategies and the effectiveness under various initialization conditions from

the results of the experiments. We also examine the learned dynamic model from

DKRC with the analytical model derived from the Euler-Lagrange Linearization

method, demonstrating the accuracy in the learned model for unknown dynamics from

a data-driven sample-efficient approach.

Key Words: Dynamical System and Control, Koopman Operator, Rein-

forcement Learning, Deep Deterministic Policy Gradient (DDPG), Model Predictive

Control (MPC), Deep Neural Network (DNN)

iv

Table of Contents

Title Page . i

Acknowledgments . ii

Abstract . iii

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Koopman Operator . 4
1.2 Model Predictive Control . 5
1.3 Reinforcement Learning . 6
1.4 Thesis Organization . 12

2 Research Problem Setup . 13
2.1 Problem Set-up . 13
2.2 Proposed Solutions . 15
2.3 Lessons Learned . 18

3 Algorithm Proposed . 19
3.1 Deep Learning of Koopman Representation for Control 19
3.2 Koopman-based Control . 23
3.3 Algorithm Summary . 26

4 DKRC Implementation Results . 29
4.1 Inverted Pendulum . 30
4.2 Acrobot . 34
4.3 Double Pendulum on a Cart . 37
4.4 Lunar Lander . 40
4.5 Experiment Conclusion . 44

5 Data Driven Control: Model-based vs. Model-free Approach . . . 45

v

5.1 Experiment Setup . 45
5.2 Control Strategies of DDPG and DKRC 49
5.3 Control Visualization using Decoder Neural Network 55
5.4 Robustness Comparison . 58
5.5 Learned dynamics of DKRC compared to Euler-Lagrange analytical

solution . 60
5.6 Experiment Conclusion . 62

6 Conclusions . 64

Appendices . 66
A Neural network structures of DKRC solutions for different dynamic

systems . 67
B Technical Parameters of Controllers 70

Bibliography . 72

vi

List of Tables

5.1 Parameters of different methods . 49

vii

List of Figures

1.1 Simple neural network structure example. n: The dimension of the
input observations N: The dimension of lifted observations 3

1.2 Deep Koopman Representation for Control (DKRC) framework with
comparison to Reinforcement Learning 3

1.3 Koopman Operator Scheme . 5
1.4 Schematics of DDPG framework . 8

2.1 The first failure solution flow chart 16
2.2 The Second failure solution flow chart 17

3.1 Koopman Operator Learning using Neural Network Scheme 21
3.2 Eigenfunctions learned from uncontrolled case, Left: real part of eigen-

functions, Right: imaginary part of the eigenfunctions. The dominant
eigenfunction has zero value imaginary part. 25

3.3 Eigenfunctions learned from controlled case, Left: real part of eigen-
functions, Right: imaginary part of the eigenfunctions. The dominant
eigenfunction has zero value imaginary part. 25

3.4 Schematics of DKRC framework . 27

4.1 Inverted Pendulum . 30
4.2 Trajectories of Swinging Pendulum under Control using trained DDPG

reinforcement learning model. The figure exhibits the trajectories of
the tip of the pendulum breaking through Hamiltonian energy level
lines to arrive at the goal position (θ = 0, θ̇ = 0) 31

4.3 Trajectories of Swinging Pendulum under control using DKRC model
(left) vs. DDPG RL model (right) initialized at the same state 32

4.4 Example 3D deployment trajectory from DKRC (left) and Reinforce-
ment Learning (right), colormapped by the magnitude of energy . . . 33

4.5 100 games recorded reward using DKRC 34
4.6 Acrobot . 35
4.7 DKRC deployment trajectories of Acrobot under Control. As shown in

the picture, the green line is goal line for second link.The goal of this
game is to touch the green line with the second link 37

4.8 100 games recorded reward using DKRC 38
4.9 Cartpole with double pendulum . 38

viii

4.10 Balance keeping process for one game using DKRC 39
4.11 100 games recorded reward using DKRC 40
4.12 Lunar Lander . 41
4.13 DKRC deployment for ten games, Red point: starting point, Blue point:

goal position . 42
4.14 Data visualization of the training sample for Lunar Lander environment.

The 1876 data pairs are obtained from playing five games. The different
color gradient represents different state observations and control inputs
collected. Each row on Left figure denotes one of six states; right figure
shows the control input from main and side engine thrusts 43

5.1 Environment visualization . 46
5.2 Trajectories of Swinging Pendulum implementing DDPG model (left)

vs. DKRC model (right) initialized at the lowest position 50
5.3 Trajectories of Swinging Pendulum implementing DDPG model (left)

vs. DKRC model (right) initialized at the left horizontal position . . . 51
5.4 Trajectories of Swinging Pendulum implementing DDPG model (left)

vs. DKRC model (right) initialized at the right horizontal position . . . 51
5.5 Trajectories of Swinging Pendulum implementing DDPG model (left)

vs. DKRC model (right) initialized at the close left upright position . 52
5.6 Trajectories of Swinging Pendulum implementing DDPG model (left)

vs. DKRC model (right) initialized at the close right upright position 52
5.7 50 pendulum games data recorded using DDPG model (left) vs. DKRC

model (right), color mapped by energy 53
5.8 DDPG(left) vs. DKRC(right): Recorded Observations & Energy . . . 54
5.9 Schematics of autoencoder neural network sturcture of DKRC 56
5.10 DKRC’s planned trajectory and actually executed trajectory in Inverted

pendulum . 57
5.11 Lunar Lander Environment . 58
5.12 DKRC’s planned trajectory and actual executed trajectory in Lunar

Lander, color mapped by the distance between the planned point and
the executed point . 59

5.13 Five pendulum games with input states noise using DDPG (left) vs.
DKRC (right) solutions . 60

5.14 One pendulum game using DKRC model (left) vs. Euler-Lagrange
method (right); Both tests initialized at θ0 = π

18
, θ̇0 = 0.5 62

1 Neural Network Structure For Inverted Pendulum 67
2 Neural Network Structure For Double Pendulum Balancing on a Cart 68
3 Neural Network Structure For Lunar Lander Control 68
4 Neural Network Structure For Acrobot Swing Up 69

ix

Chapter 1

Introduction

The data-driven control of dynamical systems has been an emerging research

area with various applications in robotics, manufacturing systems, autonomous vehi-

cles, and transportation networks. There is a rising interest in shifting from completely

model-based to data-driven control paradigm with the increasing complexity of en-

gineered systems and easy access to a large amount of sensor data. One successful

example is the Deep Reinforcement Learning (DRL), which consists of deploying Deep

Neural Networks (DNN) to learn optimal control policy. It is arising as one of the

powerful tools for data-driven control of dynamic systems [37]. However, the downside

of only relying on a neural network approach is also obvious. The use of DNN is often

being called a "black-box" approach. The problem of control design for a system

with nonlinear dynamics is recognized to be a particularly challenging problem. More

recently, the use of linear operators from the ergodic theory of dynamical systems

has offered some promises towards providing a systematic approach for nonlinear

control [4, 16, 20,24,26,28,30,33,34,39,40].

The controller synthesis for dynamic systems in the model-based and model-free

setting has a long history in control theory literature. However, some challenges need

1

to be overcome for the successful extension of linear operator-based analysis methods

to address the synthesis problem. The basic idea behind the linear operator framework

involving Koopman and Perron-Frobenius operator is to lift the finite-dimensional

nonlinear dynamics to infinite-dimensional linear dynamics. The finite-dimensional

approximation of the linear operator is obtained using the time series data of the

dynamic system.

One of the main challenges is the selection of appropriate choice of finite basis

functions used in the finite but high dimensional linear lifting of nonlinear dynamics.

The standard procedure is to make a prior choice of basis function such as radial basis

function or polynomial function for the finite approximation of the Koopman operator.

However, such an approach often does not take advantage of the known physics or the

data in choosing the basis function.

An alternate approach based on the power of Deep Neural Network (DNN)

could be used for the data-driven identification of the appropriate basis function in

the autonomous (uncontrolled) setting [21, 47]. A dummy representation of the Deep

Neural Network (DNN) structure is shown in Figure 1.1.

The conjecture is that physics is reflected in the data, and DNNs are efficient

in exploiting the power of the data. In this work, we extend the application of DNN

for the selection of basis functions in a controlled dynamical system setting.

The main contributions of our method are as follows. We extend the use of

DNN for the finite-dimensional representation of the Koopman operator in a controlled

dynamical system setting. Our data-driven learning algorithm can automatically

search for a rich set of suitable basis functions to construct the approximated linear

model in the lifted space. The OpenAI Gym environment is employed for data

generation and training of DNN to learn the basis functions [3]. Example systems

from OpenAI Gym environment employed for the design of reinforcement learning

2

nObs

nObs

nObs

N Lifted obs

N Lifted obs

N Lifted obs

N Lifted obs

Hidden
layer

Input
layer

Output
layer

Figure 1.1: Simple neural network structure example. n: The dimension of the input
observations N: The dimension of lifted observations

control is used to demonstrate the capability of the developed framework. This work

is on the frontier to bridge the understanding of model-based control and model-free

control (e.g. Reinforcement Learning) from other domains. The proposed comparison

framework between the two approaches is depicted in Figure 1.2.

Nonlinear System w/ Continuous Control

Linear Predictor from DNN Model Predictive Control

This Study
ℝ𝑛 ⇒ ℝ𝑁

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐵𝑢𝑡

𝑧0 = 𝜓 𝑥0

ℒ ≔

𝑡=1

𝑇
𝒀𝒍𝒊𝒇𝒕 − 𝐴𝑿𝒍𝒊𝒇𝒕 − 𝐵𝑼

𝐹
+

𝜆1 𝑨 1 + 𝜆2 𝑩 1

PAST
Future

Actor-Critic Framework

Reinforcement
Learning ℝ𝑛 max

𝜃
𝔼𝜏~𝑝𝜃 𝜏

𝑡

𝑟 𝑠𝑡 , 𝑎𝑡

Model-Free Control

Design Action for

Max. Cumulative

Rewards

Figure 1.2: Deep Koopman Representation for Control (DKRC) framework with
comparison to Reinforcement Learning

3

1.1 Koopman Operator

The following sections introduce several key concepts of algorithms and the

state-of-art research progress in those areas.

Koopman operator theory is an alternative formalism for dynamical systems

theory, which offers excellent utility in the analysis and control of nonlinear and high-

dimensional systems using data [25]. Koopman operator is an infinite-dimensional

linear operator that can transfer a nonlinear system to a high-dimensional linear

system. It fully captures all properties of the underlying dynamical system provided

that the space of observables f(xt) contains the components of the states xt [20].

Considering an uncontrolled dynamic system in Equation 1.1.

xt = f(xt) (1.1)

The Koopman operator K would be used to transform the representation of the

system in the following format as shown in Equation 1.2. The detailed use of this

linear representation will be introduced in later sections together with the proposed

model-based control design.

(Kψ) = ψ(F (x)) (1.2)

A simple explanation diagram of Koopman Operator is exhibited in Figure 1.3.

As shown in the figure, the K is the koopman operator, ψ represents an infinite

dimensional basis function, F (xt) is the state evolution operator, ψ(F (xt)) is the linear

lifted observation space, n is the dimension of the observation, m is the dimension of

the lifted observation, Therefore, Koopman operator is defined as the composition of

ψ with F . Common choices for the basis function include Hermite polynomials and

radial basis functions [44].

4

Figure 1.3: Koopman Operator Scheme

1.2 Model Predictive Control

Model predictive control (MPC) is an advanced method of process control that

is used to control a process while satisfying a set of constraints. Model predictive

controllers rely on dynamic models of the process, most often linear empirical models

obtained by system identification. The main advantage of MPC is the fact that it

allows the current timeslot to be optimized, while keeping future timeslots in account.

This is achieved by optimizing a finite time-horizon, but only implementing the current

timeslot and then optimizing again, repeatedly, thus differing from Linear-Quadratic

Regulator (LQR). Also MPC has the ability to anticipate future events and can take

control actions accordingly. PID controllers do not have this predictive ability. MPC

is nearly universally implemented as a digital control, although there is research into

achieving faster response times with specially designed analog circuitry [42].

In this study, we implement the Model Predictive Control (MPC) after learning

the dynamics of the lifted high-dimensional linear system with DKRC. Other methods,

such as regression or DAGGER (i-LQR or MCTS for planning) techniques have been

introduced after the learned model is available. However, those methods suffer from

5

distribution mismatch problems or issues with the performance of open-loop control in

stochastic domains. We propose using MPC iteratively, which can provide robustness

to small model errors that benefit from the close loop control. As mentioned by

authors in Ref [6], if the system dynamics were to be linear and the cost function

convex, the global optimization problem solved by MPC methods would be convex (To

solve the convex problem, we used CVXPY [8] in this study.). Under this assumption,

the convex programming optimization techniques could be promising to achieve some

theoretical guarantees of convergence to an optimal solution. Therefore MPC would

undoubtedly perform better in a linear setting. MPC is an online optimization

solver method that seeks optimal state solutions at each time step under certain

defined constraints. Therefore it features closed-loop planning, which exhibits higher

robustness than other simpler models. It has been proven to be tolerant of the

modeling errors within Adaptive Cruise Control(ACC) simulation [10] [49]. MPC

represents the state-of-the-art for the practice of real-time optimal control [22].

1.3 Reinforcement Learning

To compare the advantages and disadvantages of the proposed model-based

method, we examine the proposed method with another model-free control method

(Deep Deterministic Policy Gradient) in the second part of this study. Deep Deter-

ministic Policy Gradient (DDPG) is a reinforcement learning algorithm based on an

actor-critic framework. The DDPG and its variants have been demonstrated to be

very successful in designing optimal continuous control for many dynamical systems.

However, compared to the above model-based optimal control, DDPG employs a more

black-box style neural network structure that outputs control directly based on learned

DNN parameters. The DDPG and its variants typically require a significant amount

6

of training data and a good design of the reward function to achieve good performance

without learning an explicit model of the system dynamics. We use this section

to introduce several of the key concepts to better understand this state-of-the-art

reinforcement learning algorithm.

1.3.1 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is a model-free, off-policy algo-

rithm, which uses DNN function approximators to learn policies in high-dimensional,

continuous action spaces [38]. DDPG is a combination of the deterministic policy

gradient approach and insights from the success of Deep Q Network (DQN) [27].

DQN is a policy optimization method that achieves optimal policy by inputting

observation and updates policy by back-propagate policy gradients. However, DQN

can only handle discrete and low-dimensional action spaces, limiting its application

considering many control problems have high-dimensional observation space and

continuous control requirements. The innovation of DDPG is that it extends the

DQN to continuous control domain and higher dimensional system and has been

claimed that it robustly solves more than 20 simulated physics tasks, including classic

problems such as cart-pole swing-up, dexterous manipulation, legged locomotion and

car driving [38]. In addition, DDPG has been demonstrated to be sample-efficient

compared to the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which

is also a black-box optimization method widely used for robot learning [1].

A schematic diagram of the DDPG framework is shown in Figure 1.4.

The control goal of the DDPG algorithm is to find control action u to maximize

the rewards (Q-values) evaluated at the current time step. The training goal of the

algorithm is to learn neural network parameters for the above networks so that rewards

7

System
𝑢 𝑡 = 𝜇 𝑥𝑡|𝜃

μ 𝑥 𝑡Policy
Network 𝜃μ

State Observation

Value Function
Network 𝜃𝑄

𝑄 𝑥, 𝑢

Target Network
(time-delayed copy of

𝜃𝑄 & 𝜃𝜇)
𝑄′ 𝑥, 𝜇′ 𝑥|𝜃𝜇′

𝑢 𝑡 = 𝜇 𝑥𝑡|𝜃
μ +𝒩𝑡

During Training

Actor

Critic

Update by

TD Error

(MSE Loss)

Gradient

Ascend

Update

Control Goal:

Actor: max
𝑢𝑡

𝐽 𝑥, 𝑢 = max
𝑢𝑡

𝔼 𝑄 𝑥𝑡, 𝑢𝑡

Training Goal:

Critic: 𝑚𝑖𝑛
𝜃

𝑀𝑆𝐸 𝑄′𝑡+1, 𝑄𝑡

= m𝑖𝑛
𝜃𝑄′,𝜃𝜇,𝜃𝑄′,𝜃𝜇′

𝑀𝑆𝐸 𝑟𝑡 + 𝛾𝑄′ 𝑥𝑡+1, 𝜇′ 𝑥𝑡+1 − 𝑄 𝑥𝑡, 𝜇 𝑥𝑡

Implicit Modeling of System Dynamics

Replay
Buffer, R

Figure 1.4: Schematics of DDPG framework

can be maximized at each sampled batch, while still being deterministic. The training

of the DDPG network will then follow a gradient ascend update from each iteration,

as defined in Equation 1.3

∇θµJ ≈ E[∇θµQ(x, u|θQ)|x = xt, u = µ(xt|θµ)] (1.3)

In Equation 1.3, we have two separate networks involved: Value function

network θQ and policy network θµ. To approximate the gradient from those two

networks, we design the training process relying on one replay buffer and four neural

8

networks: Actor, Critic, Target Actor, Target Critic.

At the gathering training samples stage, we use a replay buffer to store samples.

A replay buffer of DDPG essentially is a buffered list storing a stack of training

samples (xt, ut, rt, xt+1). During training, samples can be drawn from the replay buffer

in batches, which enables training using a batch normalization method [5]. For each

stored sample vector, t is current time step, x is the collection of state observations at

current time step t, r is numerical value of reward at current state, u is the action of

time step t, and finally, the xt+1 is the state in the next time step t+ 1 as a result of

taking action ut at state xt. Replay buffer makes sure an independent and efficient

sampling [7].

As discussed above, the DDPG framework is a model-free reinforcement learning

architecture, which means it does not seek an explicit model for the dynamical system.

Instead, we use a value function network, also called Critic network Q(s, a|θQ), to

approximate the result from a state-action pair. The result of a trained Critic network

estimates the expected future reward by taking action ut at state xt. If we take the

gradient of the change in the updated reward, we will be able to use that gradient to

update our Policy network, also called Actor network. At the end of the training, we

obtain an Actor network capable of designing optimal control based on past experience.

Since there are two components in the formulation of the gradient of reward in Equation

1.3, we can apply the chain rule to break the process into evaluating gradients from

Actor and Critic networks separately. The total gradient is then defined as the mean

of the gradient over the sampled mini-batch, where N is the size of the training

mini-batch taken from replay buffer R, as shown in Equation 1.4. Silver et al. showed

proof in Ref. [31] that Equation 1.4 is the policy gradient that can guide the DDPG

9

model to search a policy network to yield the maximum expected reward.

∇θµJ ≈
1

N

∑
t

[∇uQ(x, u|θQ)|x=xt,u=µ(xt)∇θµµ(x|θµ)|xt] (1.4)

In this case, dynamical responses from the system are built into the modeling of

the Critic network, thus indirectly modeled. The accuracy in predicted reward values

is used as the only training criterion in this process, signifying the major difference

between the model-free reinforcement learning and the model-based optimal control

method such as DKRC. Some of the later observations in different behaviors from

model-based vs. model-free comparison have roots stemming from this fundamental

difference.

We separate the training of the DDPG into the training of the Actor and Critic

networks.

Actor, or policy network (θµ), is a simple neural network with weights θµ, which

takes states as input and outputs control based on a trained policy µ(x, u|θµ). The

Actor is updated using the sampled policy gradient generated from the Critic network,

as proposed in Ref. [32].

Critic, or value function network, is a neural network with weights θQ, which

takes a state-action pair (xt, ut) as input. We define a temporal difference error term,

et (TD error), to track the error between the current output compared to a target

Critic network with future reward value using future state-action pair as input in

the next time step. The total loss from the Critic network during a mini-batch is

defined as L in Equation 1.5, which is based on Q-learning, a widely used off-policy

10

algorithm [41].

et = (rt + γQ
′
(xt+1, µ

′
(xt+1|θµ

′

)|θQ
′

))−Q(xt, ut|θQ)

L =
1

N

∑
t

et
2

(1.5)

In this Critic loss function in Equation 1.5, the terms with prime symbol (′) is the

Actor/Critic model from the target networks. Target Actor µ′ and target Critic Q′ of

DDPG are used to sustain a stable computation during the training process. These

two target networks are time-delayed copies of the actual Actor/Critic networks in

training, which only take a small portion of the new information from the current

iteration to update target networks. The update scheme of these two target networks

are defined in Equation 1.6, where τ is Target Network Hyper Parameters Update

rate super parameter with a small value (τ � 1) to improve the stability of learning.

θQ
′

← τθQ + (1− τ)θQ
′

θµ
′

← τθµ + (1− τ)θµ
′

(1.6)

To train DDPG, we initialize four networks (Q(s, a|θQ), µ(s|θµ), Q
′
(s, a|θQ

′
), µ

′
(s|θµ

′
))

and a list buffer (R) first, then select an initial action from actor, executing action

at and observe reward rt and new state st+1, store (st, at, rt, st+1) in the buffer R,

sampling mini training batch input randomly from R, updating critic by Equation

1.5, updating actor by Equation 1.4, updating target actor and critic by Equation 1.6

until loss value converges.

11

1.4 Thesis Organization

The work will be presented in the following order: Ch 2 introduces the proposed

problem setup; Ch 3 formulates the proposed algorithm; Ch 4 details the results

and discussions from the deployment of proposed algorithm; In Ch 5, since DKRC

and DDPG are both capable of solving dynamic systems control problems with

high-dimensional and continuous control space, direct comparison is desirable by

constructing the two algorithms from the ground up and applying them to solve the

same tasks. In this chapter, we also compare the DKRC to the analytical model

obtained by the classic Euler-Lagrange Linearization method. The comparison are

examined in the Inverted pendulum environment and Lunar Lander Continuous

Control environment in OpenAI Gym [3]. Ch 6 concludes the thesis.

12

Chapter 2

Research Problem Setup

This chapter consists of the processes we have taken to develop the algorithm.

We generally attempt three different ways to solve the proposed research problem, two

of them failed, and only one succeeded in the end.

2.1 Problem Set-up

Consider a discrete-time, nonlinear dynamical system along with a set of

observation data of length T :

xt+1 = F (xt, ut)

X = [x1, x2, . . . , xT], Y = [y1, y2, ..., yT], U = [u1, u2, . . . , uT]

(2.1)

where, xt ∈ Rn, ut ∈ Rm is the state and control input respectively, and yt = xt+1 for

t = 1, . . . , K. The objective is to provide a linear lifting of the nonlinear dynamical

system for the purpose of control. The Koopman operator theory can be used to lift

the nonlinear control dynamics to linear control dynamics. The Koopman operator

(K) is an infinite-dimensional linear operator defined on the space of functions as

13

follows:

[Kg](x) = g ◦ F (x, u) (2.2)

For more details on the theory of Koopman operator in a dynamical system and

control setting, refer to Ref. [19, 43, 45, 46]. Related work on extending Koopman

operator methods to controlled dynamical systems can be found in References [2, 16,

17, 20, 23, 29, 48]. While the Koopman based lifting for the autonomous system is

well understood and unique, the dynamical system can be lifted in different ways. In

particular, for the control of affine system, the lifting in the functional space will be

bi-linear [15, 23]. Given the computational focus of this paper, we resort to the linear

lifting of the control system. The linear lifting also has the advantage of using state of

the art control methodologies such as linear quadratic regulator (LQR) and Model

Predictive Control (MPC) from linear system theory. The linear lifting of nonlinear

control system is given by

Ψ(xt+1) = AΨ(xt) +But (2.3)

where Ψ(x) = [ψ1(x), . . . , ψN(x)]> ∈ RN>>n is the state or the basis in the

lifted space. The matrix A ∈ RN×N and B ∈ RN×m are the finite dimensional

approximation of the Koopman operator for control system in the lifted space. One of

the main challenges in the linear lifting of the nonlinear dynamics is the proper choice

of basis functions used for lifting. While the use of radial basis function, polynomials,

and kernel functions is most common, the choice of appropriate basis function is still

open. Lack of systematic approach for the selection of appropriate basis has motivated

14

the use of Deep Neural Network (DNN) for data-driven learning of basis function.

The use of DNN has been explored for the learning of basis functions in uncontrolled

settings.

The planned control inputs considered in this study are in continuous space and

later will be compared to state-of-art model-free learning methods such as Reinforce-

ment Learning. An overview of the scope of this work is shown in Figure 1.2. Both

the two methods (our Deep Koopman Representation for Control (DKRC) approach

and Reinforcement Learning) apply a data-driven model-free learning approach to

learn the dynamical system. However, our approach seeks a linear representation of

nonlinear dynamics and then design the control using a model-based approach, which

will be discussed in later sections.

2.2 Proposed Solutions

In this section, we demonstrate how we develop the algorithm, and the processes

are divided into three attempts.

2.2.1 The First Solution

In order to solve the problem defined in Equation 2.3. Firstly, We attempt to

use three neural networks (ψ(xt+1|θ), A(ψ(xt|θ)|θA), B(ut|θB)) to get a solution for

Equation 2.3, which transfers the loss function of the training process to Equation 2.4.

lossattempt1 = ||ψ(xt+1|θ)− A(ψ(xt|θ)|θA)−B(ut|θB)||2 (2.4)

15

Where, A(ψ(xt|θ)|θA) takes the output of ψ(xt+1|θ) as input state and outputs the

same dimensional lifted state as ψ(xt+1|θ). A scheme of the attempt is shown in Figure

2.1.

Figure 2.1: The first failure solution flow chart

The problem of this attempt is that: (1) To get A,B matrices, we can not add

any layer and bias in neural networks A(ψ(xt|θ)|θA) and B(ut|θB), which leads to an

imprecise result. (2) Besides, we find that when the neural networks are trained to

minimize the loss function using gradients back-propagation, it tends to simply push

all three neural networks’ outputs close to zero, which is one of the reasons why the

solution only takes trivial control no matter what states it accepted during result test.

2.2.2 The Second Solution

In this solution, we only use one neural network ψ(xt+1|θ) to solve Equation

2.3. At training epoch n, loss function is defined in Equation 2.5.

lossattempt2 = ||ψ(xt+1|θ)− An × ψ(xt|θ)−Bn × ut||2 (2.5)

16

Where, An, Bn is defined in Equation 2.6 and A1, B1 is randomly generated at the

first training epoch.

[An, Bn] =
1

L

L∑
t=1

ψt+1

ψt
ut

[ψt ut]

ψt
ut

†

(2.6)

where, L is the number of training samples, † denotes psedoinverse.

When n > 1, A,B is updated as following:

An = εAn + (1− ε)An−1, Bn = εBn + (1− ε)Bn−1, ε� 1

ε is selected to get a smooth parameter update. A general solution flow chart is

exhibited in Figure 2.2.

Figure 2.2: The Second failure solution flow chart

The problem of this solution is that: (1) The loss function will converge after

the first epoch as a result of that the A,B matrices are obtained mathematically; (2)

Besides, the tiny loss value is also a challenging work for neural networks to update

its parameters, which means it is hard to converge after the first training epoch. The

result of this solution is that it cannot take reasonable control and fails at each game.

17

2.3 Lessons Learned

After the above two failed attempts, we decided to use only one neural network

to represent all the training terms and only update the A,B matrices after the entire

training process converges. We also integrate another loss function to ensure the lifted

high-dimensional linear system controllable, which is concluded in the next chapter -

Algorithm Proposed.

18

Chapter 3

Algorithm Proposed

This chapter exhibits details of the data-driven control algorithm we develop

and also shows the eigenfunctions gotten by the algorithm in the swing-up pendulum

system with/without control.

3.1 Deep Learning of Koopman Representation for

Control

To enable deep Koopman representation for control, the first step is to use

the DNN approach to approximate Koopman operator for control purposes. Our

method seeks a multi-layer deep neural network to automate the process of finding

the basis function for the linear lifting of nonlinear control dynamics via Koopman

operator theory. Each feed-forward path within this neural network can be regarded

as a nonlinear basis function (ψi : Rn → R), whereas the DNN as a collection of basis

functions can be written as Ψ : Rn → RN . Each output neuron is considered as a

compounded result from all input neurons. Therefore, the mapping ensures that our

Koopman operator maps functions of state space to functions of state space, not states

19

to states.

Unlike existing methods used for the approximation of the Koopman operator,

where the basis functions are assumed to be known apriori, the optimization problem

used in the approximation of Koopman operator using DNN is non-convex. The

non-convexity arises due to simultaneous identification of the basis functions and the

linear system matrices. The setup of our DNN training process is listed below to

address this concern.

During the training of DNN, the observables in state-space (x) are segmented

into data pairs to guide the automated training process, whereas the output from

the DNN is the representation of the lifting basis function for all data pairs (ψ(x)).

This method is completely data-driven, and basis functions are learned directly from

training datasets.

The input dataset is split into three sets, whereas 70% of the data are used as

training samples, 15% as validation, and another 15% as testing cases. At each layer

in between the input and output layers, we apply hyperbolic-tangent (tanh) non-linear

activation functions with biases at each neuron. Other activation functions choices,

e.g., ELU, RELU, Leaky RELU, have also been widely used in other deep learning

application for fast convergence. We picked hyperbolic-tangent function to preserve

non-linear behavior in the network. Additional machine learning techniques, such as

dropout and layer normalization are also applied to prevent overfitting. Dropout is an

extra layer in the neural network to randomly select a portion of the neuron to skip

updating in this iteration. A typical range of dropout value is between 0.5 and 0.8.

Layer Normalization technique is employed to ensure that the training process not

be dominated by a specific field in the input data. ADAM [18] and ADAGRAD [9]

algorithms are used as DNN training optimizers. These optimizers are used at the

backend to handle the adaptive learning rate, how to take gradients and update

20

network weights, etc. All training processes are done using Pytorch 1.4 platform

with NVIDIA V100 GPUs on an NVIDIA DGX-2 GPU supercomputer cluster. The

deployment of the code has been tested on personal computers with NVIDIA GTX 10-

series GPU cards. During training, the DNN will iterate through epochs to minimize a

loss term, where differences between two elements in lifted data pairs will be recorded

and minimized in batch. At the convergence, we obtain a DNN, which automatically

finds optimal lifting functions to ensure both the Koopman transformation (Equation

2.1) and linearity (Equation 2.3) by tuning the DNN’s loss function to a minimum. A

schematic illustration of the Deep Koopman Representation learning can be found in

Figure 3.1.

Time Series Data

Training Data Pairs

DNN to Identify Koopman
Operator 𝐾, with Basis
Functions 𝜓

𝑦𝑖 = 𝑓 𝑥𝑖 , 𝑢𝑖

𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛−1
𝑌 = 𝑥2, 𝑥3, … , 𝑥𝑛
U = 𝑢1, 𝑢2, … , 𝑢𝑛−1

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐵(𝑢 − 𝑢0)

𝑧 = 𝜓 𝑥 − 𝜓 0

Linearity

𝒦𝑔 = 𝑔 ∘ 𝑭

𝒦 𝜓 𝑋𝑡 = 𝜓 𝑋𝑡+1

Koopman
Transformation

…

…
…

…

…

…

… …

𝜓1

𝜓2

𝜓3

𝜓𝑁−1

𝜓𝑁

…ℝ𝑛

ℝ𝑁

Figure 3.1: Koopman Operator Learning using Neural Network Scheme

21

Once a linear system approximation is obtained though the Deep Koopman

Neural Network, we have several state-of-the-art tools to design optimal control.

However, the vanilla-flavored optimization processes will attempt to regulate the loss

function to a minimum value in lifted space, which may not correspond to the goal

position in the non-lifted space. Therefore, it is necessary to account for the effect of

constant shift while using the lifting method.

The mapping from state-space to higher-dimensional space requires a modifica-

tion to the existing control design governing equation, which is equivalent to regulation

around a non-zero fixed point for non-linear systems. The affine transformation can

be introduced without changing A and B matrices, as shown in Equation 3.1 below:

z := Ψ(x)−Ψ0

v := u− u0
(3.1)

whereas, Ψ0 is defined as: Ψ0 = Ψ(x = 0). To approximate u0, it requires one

additional auxiliary network for this constant. The network hyperparameters will then

be trained together with the bigger DNN.

After applying these changes, the Equation 2.3 becomes the final expression of

the high-dimensional linear model of the system in lifted space:

zt+1 = Azt +Bvt (3.2)

Correspondingly, the problem we are solving becomes:

min
A,B,u0

∑
k

‖ zt+1 − Azt −B(u)− u0 ‖F (3.3)

In particular, the following loss function, L in Equation 3.4, is used in the

22

training of DNN.

L :=
T∑
t=1

‖ zt+1 − Azt −B(u− u0) ‖F (3.4)

The problem we are dealing with is non-convex. There is no one-shot solution

to solve for multiple unknowns in the problem. We propose the following way to solve

for the lifting function, with assumed A and B values at the beginning. We start

the training with randomly initialized A ∈ RN×N and B ∈ RN×m. The ψ functions

are learned within the DNN training, whereas the matrices A and B are kept frozen

during each training epoch.

At the end of each epoch, the A and B can be updated analytically by adding

new information (with a learning rate of 0.5) based on the Equation 3.5 as follows:

[A,B] = zt+1

zt
U

[zt U]

zt
U

†

(3.5)

where † denotes psedoinverse. In addition to finding system A and B matrix, following

optimization problem is solved to compute the C matrix mapping states from lifted

space back to state space.

min
C

∑
t

‖ xt − CΨ(xt) ‖F

s.t. CΨ0 = 0 (3.6)

3.2 Koopman-based Control

Having identified the linear control system in the lifted space along with

the basis function using DNN, we proceed with the spectral analysis of the finite

23

dimensional approximation. In particular, the eigenfunctions of the Koopman operator

are approximated using the identified A matrix. The eigenfunctions learned from

the neural network can be viewed as intrinsic coordinates for the lifted space and

provide insights into the transformed dynamics in the higher dimensional space. An

example to illustrate this can be seen in Figure 3.2 and Figure 3.3. These two figures

are both 3d plots for eigenfunctions obtained from DNN. The difference is that Figure

3.2 represents a single unforced frictionless pendulum, whereas Figure 3.3 denotes the

eigenfunctions obtained for single pendulum under control. As can be seen, the first

dominant eigenfunctions from both the two figures exhibit a very similar double-pole

structure. The uncovered intrinsic coordinates exhibit a trend that is related to the

energy levels within the system as base physical coordinates change, i.e., θ̇ is positively

related to the kinetic energy, whereas the θ is proportional to the potential energy.

Towards the center of the 3d plot, both kinetic energy and potential energy exhibit

declined absolute magnitudes. In the controlled case, torque at the joint is being

added into the system’s total energy count, which seeks a path to bring the energy of

the system to the maximum in potential energy and lowest absolute value in kinetic

energy. Due to the kinetic energy part (1
2
θ̇2) is dominating the numerical value of the

energy, this effect has been reflected in the eigenfunction plot corresponding to the

7th and 8th eigenvalue. The two figures show the feasibility of using eigenfunctions

from learned Koopman operator to gain insight of the dynamical system, especially

for the control purpose.

Then we can proceed to solve discrete LQR problem for the linear system with

a quadratic cost:

J(V) =
∑
t

z>t C
>QCzt + v>t Rvt (3.7)

24

Figure 3.2: Eigenfunctions learned from uncontrolled case, Left: real part of eigen-
functions, Right: imaginary part of the eigenfunctions. The dominant eigenfunction
has zero value imaginary part.

Figure 3.3: Eigenfunctions learned from controlled case, Left: real part of eigenfunc-
tions, Right: imaginary part of the eigenfunctions. The dominant eigenfunction has
zero value imaginary part.

In case the LQR solution is not sufficient, the method can be easily converted

into Model Predictive Control (MPC). For the examples in the Simulation Results

section, we used MPC for optimal control due to its flexibility to adjust to problem

25

constrains. Given a time horizon of L, we can solve for V ∈ Rm×L by minimizing the

following cost function, as illustrated in Equation 3.8.

J(V) =
L−1∑
t=0

(z>t C
>QCzt + v>t Rvt) + z>LC

>QCzL

subject to

vt ≤ umax − u0

vt ≥ umin− u0

(3.8)

3.3 Algorithm Summary

To summarize, a schematic diagram of the DKRC framework is shown in Figure

3.4:

The algorithm of Deep Koopman Representation for Control (DKRC) is listed

below, where L1(θ) ensures a high dimension linear system, L2(θ) handles the con-

trollability of the system:

26

System
𝑢 𝑡 𝑥 𝑡Controller

(iLQG or MPC)

Deep Koopman
Representation for
Control (DKRC) 𝜃𝜓

Learned Dynamics:

Linearized Representation

in Lifted Space

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐵 𝑢𝑡 − 𝑢0
𝑠. 𝑡. 𝑧 = 𝜓 𝑥 − 𝜓 0

State Observation

U network, 𝜃𝑈

𝑋 = 𝜓 𝑥 𝑥 = 𝜓−1 𝑋

Autoencoder , 𝜃𝜓:
𝜓−1 𝜓 𝑥𝑡 = 𝑥𝑡

Training Goal: min
𝜃

ℒ 𝜃

= min
𝜃𝜓,𝜃𝑈

𝑡=1

𝑇

𝑧𝑡+1 − 𝐴𝑧𝑡 − 𝐵 𝑢 − 𝑢0 𝐹

𝑠. 𝑡. 𝐴, 𝐵 = 𝑧𝑡+1
𝑧𝑡
𝑈

𝑧𝑡 𝑈
𝑧𝑡
𝑈

𝑝𝑖𝑛𝑣

Control Goal: m𝑖𝑛
𝑢𝑡

𝐽 𝑥, 𝑣

= m𝑖𝑛
𝑢𝑡

𝑡=0

𝐿−1

𝑧𝑡
𝑇𝐶𝑇𝑄𝐶𝑧𝑡 + 𝑣𝑡

𝑇𝑅𝑣𝑡 + 𝑧𝐿
𝑇𝐶𝑇𝑄𝐶𝑧𝐿

𝑠. 𝑡. ቊ
𝑣𝑡 ≤ 𝑢𝑚𝑎𝑥 − 𝑢0
𝑣𝑡 ≥ 𝑢𝑚𝑖𝑛 − 𝑢0

Figure 3.4: Schematics of DKRC framework

27

Algorithm 1 Deep Koopman Representation for Control (DKRC)
Input: observations: x, control: u
Output: Planned trajectory and optimal control inputs: (zplan, vplan)

• Initialization

1. Set goal position x∗

2. Build Neural Network: ψN(xt; θ)

3. Set z(xt; θ) = ψN(xt; θ)− ψN(x∗; θ)

• Steps

1. Set K = z(xt+1; θ) ∗ z(xt; θ)
†

2. Set the first loss function L1
L1(θ) = 1

L−1
∑L−1

t=0 ‖ z(xt+1; θ)−K ∗ z(xt; θ) ‖
3. Set the second loss function L2

[A,B] = zt+1

[
zt
U

]([
zt U

] [zt
U

])†
L2(θ) = (N − rank(controllability(A,B))) + ||A||1 + ||B||1

4. Train the neural network, updating the complete loss function
L(θ) = L1(θ) + L2(θ)

5. After converging, We can get system identity matrices A, B, C
C = X t ∗ ψN(X t)

†

6. Apply LQR or MPC control with constraints

28

Chapter 4

DKRC Implementation Results

In this chapter, we demonstrate the proposed continuous control method based

on deep learning and Koopman operator (DKRC) on several example systems offered in

OpenAI Gym [3]. The environments considered here are Inverted Pendulum, Cartpole

with Double Pendulum, and Lunar Lander (Continuous Control). In this work, we

deploy Model Predictive Control (MPC) on Inverted Pendulum, Cartpole with double

pendulum, and adopt LQR for Lunar Lander.

The OpenAI Gym utilizes a Box2D physics engine, which provides a dynamic

system for the testing. Gravity, object interaction, and physical contact behavior

can be specified in the world configuration file. The dynamics of the simulation

environment are unknown to the model. The model needs to learn the dynamics

through data collected during training. Each simulation game is randomly initialized

to generate initial disturbance.

29

4.1 Inverted Pendulum

The inverted pendulum environment is a classic 2-dimensional state space

environment with one control input, as shown in Equation 4.1.

4.1.1 DKRC solution

A visualization of the simulated environment is also shown in Figure 4.1. The

game starts with the pendulum pointing down with a randomized initial disturbance.

The goal is to invert the pendulum to its upright position. In order to finish the game,

the model need to apply control input to drive the pendulum from start position

(θ ∈ (−π, 0) ∪ (0, π), θ̇ = 0) to goal position (θ = 0, θ̇ = 0).

Figure 4.1: Inverted Pendulum

χ = [cos θ, sin θ, θ̇] where θ ∈ [−π, π], θ̇ ∈ [−8, 8]

U = [u], where u ∈ [−2, 2]

(4.1)

In this case, the recorded θ orientation angle is in the form of a pair of cosine

30

and sine values to ensure a smooth transition at −π and π. The dynamic governing

equation is easy to derive as follows:

ml2θ̈ = −γθ̇ +mglsin(θ) + u (4.2)

This governing equation is unknown to our model, and the model needs to recover the

physics-based on limited time-series data only. Moreover, the angular velocity (θ̇) and

the torque input (u) at the shaft are also limited to a small range to add difficulties

to finish the game. In most of the testing cases, we found that the pendulum needs to

learn a swing back-and-forth motion before being able to collect enough momentum

from swinging up to the final vertical upright position. Although optimal control is

possible, the trained model needs to adapt to the limitation imposed by the testing

environment and make decisions solely based on state observations.

Figure 4.2: Trajectories of Swinging Pendulum under Control using trained DDPG
reinforcement learning model. The figure exhibits the trajectories of the tip of the
pendulum breaking through Hamiltonian energy level lines to arrive at the goal position
(θ = 0, θ̇ = 0)

We train the DDPG reinforcement learning model first for benchmark purposes.

31

Figure 4.2 shows the trajectory of the pendulum in 2D (θ, θ̇) space based on trained

DDPG algorithm. The red circle in the center of Figure 4.2 is the goal position, and

the concentric lines on both sides correspond to Hamiltonian total energy levels. It is

clear that due to the implicit model learned during the reinforcement learning process,

the RL method cannot finish the game within a short time and therefore left many

failed trails.

Figure 4.3: Trajectories of Swinging Pendulum under control using DKRC model (left)
vs. DDPG RL model (right) initialized at the same state

For comparison between the Reinforcement Learning (DDPG) and DKRC

models, we show a single example game in Figure 4.3. The two games were initialized

in the same way, and the DKRC model on the left of the figure was able to finish the

32

game much cleaner and faster.

Corresponding to the game shown in Figure 4.3, We are also presenting the

state vs. time plot for the game played by DKRC model, as shown in Figure 4.4.

Figure 4.4: Example 3D deployment trajectory from DKRC (left) and Reinforcement
Learning (right), colormapped by the magnitude of energy

4.1.2 Stability Test

To measure the stability and the performance of the DKRC solution, we run

the Swing-up pendulum game for 100 times and record the reward of each game. As

defined in the official OpenAi package, the reward for each step is

Reward = −(θ2 + 0.1 ∗ θ̇2 + 0.001 ∗ u2t)

where reward ∈ [−16.2736044, 0], and each game has 200 time steps which means

reward each game ∈ [−3224, 0].The result is shown in Figure 4.5. It can be inferred

from the figure that the total reward of each game is different due to different initial

positions as expected. Besides, the DKRC has a 98% successful percentage for 100

games.

33

Figure 4.5: 100 games recorded reward using DKRC

4.2 Acrobot

Acrobot is another classic control scenario. We swing a double pendulum with

only one actuation at the joint between the two links, which simulates the swing up

motion of a human acrobat. Initially, both links point downwards (initial sweeping

angles are zero to the world coordinate system). The two links are allowed to swing in

any direction at the two joints, without any collision if they are with the same sweep

angle. The goal is to swing the end-effector at a height at least the length of one link

above the base. The same simulation has been performed mainly for reinforcement

learning algorithm developments [36]. A schematic of the environment setup is shown

in Figure 4.6

The state consists of the two rotational joint angles and their velocities: [θ1,

θ2, θ̇1, θ̇2]. For the same consideration in the inverted pendulum case, to ensure

numerical smoothness during transition from −π and π, we use the following state-

space observations for training.

34

Figure 4.6: Acrobot

θ̈1 = −d−11 (d2θ̈2 + φ1)

θ̈2 = (m2l
2
c2

+ I2 −
d22
d1

)−1(τ +
d2
d1
φ1 −m2l1lc2 θ̇

2
1 sin θ2 − φ2)

d1 = m1l
2
c1

+m2(l
2
1 + l2c2 + 2l1lc2 θ̇

2
1 sin θ2 − φ2) + I1 + I2

d2 = m2(l
2
1 + l2c2 + 2l1lc2 θ̇

2
1 sin θ2 − φ2) + I2

φ1 = −m2l1lc2θ̇2
2

sin θ2 − 2m2l1lc2θ̇2θ̇1 sin θ2

+(m1lc1 +m2l1)g cos
(
θ1 −

π

2

)
+ φ2

φ2 = m2lc2g cos
(
θ1 + θ2 −

π

2

)

35

If we want to make θ1 = π/2, θ2 = −π/2, θ̇1 = θ̇2 = 0 as equilibrium point, this

will require making θ̈1 = θ̈2 = 0 and hence we have

φ?2 = 0

φ?1 = (m1lc1 +m2l1)g

4.2.1 DKRC solution

Here, to take advantage of our MPC controller optimized for continuous control,

we customized the environment to use continuous torque at the joint, instead of the

OpenAI default discrete input [-1, 0, 1] for the torque. The trajectory of the two links

are shown in Figure 4.7. We can finish the game every time according to the criteria

listed on the OpenAI leaderboard, as shown in Figure 4.7.

4.2.2 Stability Test

Again, to measure the stability and the performance of the DKRC solution,

we run the Acrobot game for 100 times and record the total reward of each game. As

defined in the official OpenAi package, the reward for each step is

reward = −1, if not terminal else 0

which means rewardeachgame ∈ [−400, 0].The result is shown in Figure 4.8. It can be

inferred from the figure that the total reward of each game is different due to different

initial positions as expected. Besides, the DKRC has a 97% successful percentage for

100 games in this scenario.

36

Figure 4.7: DKRC deployment trajectories of Acrobot under Control. As shown in
the picture, the green line is goal line for second link.The goal of this game is to touch
the green line with the second link

4.3 Double Pendulum on a Cart

A schematic of the double pendulum on a cart environment is shown in Figure

4.9. This testing case is carried out in a customized OpenAI environment that combines

two existing OpenAI Gym environments "cartpole" and "acrobot" in one simulation.

In this case, a double pendulum is attached to a cart by an un-actuated joint. The cart

moves along a frictionless track and can be driven by force in the horizontal direction.

The two links of the double pendulum can swing independently without any friction

or collision. The pendulum starts upright with a randomized initial disturbance. The

37

Figure 4.8: 100 games recorded reward using DKRC

Figure 4.9: Cartpole with double pendulum

goal is to prevent it from falling over by applying force to the cart in the horizontal

direction. We use the following state-space observations for training.

χ = [x, θ1, θ2, ẋ, θ̇1, θ̇2]

U = [left or right force], where, u ∈ [−2, 2]

(4.3)

38

4.3.1 DKRC solution

Figure 4.10: Balance keeping process for one game using DKRC

The control input is being applied to the cart and then translated to the motion

of the two links. The state measurements of two links are depicted in Figure 4.10. As

can be seen in the figure, both the two swing angles (θ1, θ2) and corresponding angular

velocities (θ̇1, θ̇2) are kept within a tight range (axis zoomed-in to show the trend).

The state observables oscillate around a value close to 0 throughout the testing period

(end of steps), which means that the learned model can maintain a dynamic balance

between a cart and an inverted double pendulum.

39

4.3.2 Stability Test

To measure the stability and performance of the DKRC solution, we run the

Swing-up pendulum game for 100 times and record each game’s reward. As defined in

the official OpenAi package, the reward for each step is

Reward = −(θ21 + θ22)

The result is shown in Figure 4.11. It can be inferred from the figure that the maximum

Figure 4.11: 100 games recorded reward using DKRC

reward of this game is 0, and the DKRC has a 97% successful percentage for 100

games.

4.4 Lunar Lander

As depicted in Figure 4.12, the lunar lander environment is a 6-dimensional

state space with 2 control inputs. The state observables involve more terms and

more closely related to a real-world game environment than previous classic dynamics

40

examples.

χ = [x, y, θ, ẋ, ẏ, θ̇]

U = [u1, u2], where, u1 ∈ [0, 1], u2 ∈ [−1, 1]

(4.4)

where x, y are the Cartesian coordinates of the lunar lander, and θ is the orientation

angle measured clockwise from the upright position. u1 represents the main engine on

the lunar lander, which only takes positive input. In contrast, the u2 is the side engine

that can take both negative (left engine firing) and positive (right engine firing) values.

The goal of this game is to move lunar lander from initial position (x = 10, y = 13) to

the landing zone (x = 10, y = 4), subject to randomized initial gust disturbance and

dynamics specified in the Box2D environment.

Figure 4.12: Lunar Lander

The exact model for this system cannot be extracted directly from the OpenAI

Gym environment but has to be identified either through a data-driven model-based

approach (this paper) or model-free approach (e.g., reinforcement learning). A game

score is calculated by OpenAI Gym where the system will reward smooth landing

within the landing zone (area in between double flags) while penalizing the fuel

consumption by engines (U). The proposed method is then to generate the model of

41

system identification. Assuming after the Koopman operator transform, the dynamical

system can be considered to be linear. Therefore, model predictive control can be

applied. The trajectories of the lunar lander successfully finishing the game are shown

in Figure 4.13. Note that the trajectories for the ten games are spread out in the

simulation environment and returning back to the same goal position. The reason for

the spread-out behavior is that the initialization of each game will randommly assign

an initial velocity and the control algorithm need to apply control to offset the drift

while keeping balance in the air. In this simulation environment, the DKRC model

was demonstrated to be able to learn the dynamics and cope with the unforeseen

situation using Model Predictive Control.

Figure 4.13: DKRC deployment for ten games, Red point: starting point, Blue point:
goal position

42

Figure 4.14: Data visualization of the training sample for Lunar Lander environment.
The 1876 data pairs are obtained from playing five games. The different color gradient
represents different state observations and control inputs collected. Each row on Left
figure denotes one of six states; right figure shows the control input from main and
side engine thrusts

4.4.1 DKRC solution

The data collection can be obtained by running a reinforcement learning

algorithm with random policy together with a random noise generated by the Orn-

stein–Uhlenbeck process during the data collection procedure. These randomization

treatments are implemented to ensure enough exploration vs. exploitation ratio from

the Reinforcement Learning model. A sample visualization of the collected data is

shown in Figure 4.14 to demonstrate how few amounts of data are needed to train

the proposed learning algorithm, which poses a significant advantage compared to

state-of-art reinforcement learning methods.

43

4.5 Experiment Conclusion

In this first part of the thesis, we propose MPC controller designed by Deep

Koopman Representation for Control (DKRC) has the benefit of being completely

data-driven in learning, whereas it remains to be model-based in control design. The

DKRC model is efficient in training and sufficient in the deployment in four OpenAI

Gym environments compared to a state-of-the-art Reinforcement Learning algorithm

(DDPG).

44

Chapter 5

Data Driven Control: Model-based vs.

Model-free Approach

In this chapter, we compare the proposed DKRC algorithm with another classic

model-free control method – Deep Deterministic Policy Gradient (DDPG), in terms of

the algorithm control strategies, robustness, and the learned dynamics of DKRC with

the classic Euler-Lagrange Linearization method to validate the learning efficiency of

DKRC.

5.1 Experiment Setup

To obtain benchmark comparison results, we use the classic ’Pendulum-v0’

OpenAI Gym environment [3] to examine the behaviors of controllers built based on

DDPG and DKRC for this inverted pendulum problem. The OpenAI Gym is a toolkit

designed for developing and comparing reinforcement learning [35]. The inverted

pendulum swing-up problem is a classic problem in the control literature, and the

goal of the system is to swing the pendulum up and make it stay upright, as depicted

45

in Figure 5.1. Although both the two approaches are data-driven in nature, thus

versatile in deployment, We would like to still stick with the classic control problem,

which has rich documentation of analytical solution for later comparisons. As shown

in the next section, the DKRC approach successfully finishes the control task using a

learned dynamics that directly resembles the analytical solution and can also explain

the system in lifted dimensions using Hamiltonian Energy Level theorem.

Figure 5.1: Environment visualization

5.1.1 Problem set-up

A visualization of the simulation environment is shown in Figure 4.9. As shown

in the picture, the simple system has two states x = [θ, θ̇] and one continuous control

moment at the joint, which numerically must satisfy −2 ≤ u ≤ 2. This limit in control

magnitude is applied with the intention to add difficulty in designing the control

strategy. For the default physical parameter setup, the maximum moment that is

allowed for the environment will not be sufficient to raise the inverted pendulum to

46

the upright position in one single move. The control strategy needs to learn how to

build momentum by switching moment direction at the right time. The OpenAI Gym

defines the observations and control in Equation 5.1.

χ = [cos θ, sin θ, θ̇], where θ ∈ [−π, π], θ̇ ∈ [−8, 8]

U = [u], where u ∈ [−2, 2]

(5.1)

The cost function is designed in Equation 5.2. The cost function tracks the current

states (θ) and control input (u). The environment also limits the rotational speed of

the up-swing motion, by including a θ̇2 term in the cost function. By minimizing this

cost function, we ask for the minimum control input to ensure the pendulum ends at

the upright position with minimum kinetic energy levels. During the comparison, we

are using the Equation 5.2 directly in the controller design for the DKRC, whereas we

negate cost function and transforms it into a negative reward function, where 0 is the

highest reward for the DDPG training. By using this simple simulation environment,

we ensure the two approaches are being compared on the same basis with the same

reward/cost function definition.

reward = θ2 + 0.1θ̇2 + 0.001u2 (5.2)

The dynamical system of the swing-up pendulum can be analytically solved by

Euler–Lagrange method [14], with its governing equation shown in Equation 5.3,

where θ = 0 is the upright position, g is the gravitational acceleration, m is the mass

of the pendulum, l is the length of the pendulum.

θ̈ = −3g

2l
sin(θ + π) +

3

ml2
u (5.3)

47

By converting the second order ordinary differential equation(ODE) in Equation 5.3

to the first order ODE, we can get Equation 5.4.

d

dt

cos θ

sin θ

θ̇

 =

0 −1 0

1 0 0

0 3g
2l

0

cos θ

sin θ

θ̇

+

0

0

3
ml2

u (5.4)

We use the default physical parameters defined in the OpenAI Gym, i.e., m = 1, l = 1,

g = 10.0, dt = 0.05. We discretize the model using zero order hold (ZOH) method [12]

with a sampling period dt. As a result, we can achieve the linearized governing Equation

5.5 with observed states yt. The numerical values for the hyperparameters used in the

default problem setting are also listed in Equation 5.6. Also one predictive result is

that Euler-Lagrange method only works between a small initial angle assumption as a

result of sin θ = θ, cos θ = 1 is validate under small angle assumption.

xt+1 = Adxt +Bdut

yt = Cxt

(5.5)

with

Ad =

0.9988 −0.04998 0

0.04998 0.9988 0.05

0.01875 0.7497 1

 Bd =

0

0

0.15

C =

1 0 0

0 1 0

0 0 1

(5.6)

48

We use Ad and Bd as the benchmark of learned dynamic models comparison between

DKRC and Euler-Lagrange Linearization in later sections.

5.1.2 Parameters of DDPG and DKRC

The following Table (5.1) is the parameters we use to obtain DDPG and

DKRC solutions. Both two methods are trained on NVIDIA Tesla V-100 GPUs on an

NVIDIA-DGX2 supercomputer cluster.

Table 5.1: Parameters of different methods
Method Parameter Value

Buffer size 1e6
Batch size 64

γ (Discount factor) 0.9
DDPG τ (Target Network Update rate) 0.001

Target & Actor learning rate 1e-3
Target & Critic learning rate 1e-2

Training epochs 5e4
DKRC Lift dimension 8

Training epochs 70

The result of the DDPG solution is an Actor neural network with optimal

parameters for the nonlinear pendulum system - µ(x; θ∗).

The result of the DKRC solution is identity matrices Alift, Blift, C of the lifted

space, and a lift neural network ψN(x; θ) for observations of the unknown dynamical

system.

5.2 Control Strategies of DDPG and DKRC

We present results from the DKRC vs DDPG by specifying five initialization

configuration for the problem. We have choices of defining the starting position and

49

also the initial disturbance in the form of starting angular velocity of the pendulum.

In this study, we initialize the pendulum at five different positions: θ0 = π (lowest

position), θ0 = π
2
(left horizontal position), θ0 = −π

2
(right horizontal position),

θ0 = ± π
18

(close to upright position). The initial angular velocity of pendulum at

different initial positions is θ̇0 = 1rad/s (clockwise). For better visualization, we map

the angle from [−π, π] to [0, 2π], where the upright position (goal position) is always

achieved at θ = 0 and θ̇ = 0. The result is shown in Figure 5.2− 5.5.

Figure 5.2: Trajectories of Swinging Pendulum implementing DDPG model (left) vs.
DKRC model (right) initialized at the lowest position

Figure 5.2− 5.6 show that DDPG and DKRC have similar control strategies

in most initial positions. DDPG needs less time to arrive at the goal position than

DKRC when the pendulum is initialized on the right side. It tends to use smaller

control torque as a result of that DDPG has constraints term for control torque. Still,

DDPG never succeeds in getting an absolute upright position, i.e., at the final position,

a non-zero control input is always required to sustain a small displacement away from

the goal position. On the contrary, DKRC can achieve a precise goal position with

50

Figure 5.3: Trajectories of Swinging Pendulum implementing DDPG model (left) vs.
DKRC model (right) initialized at the left horizontal position

Figure 5.4: Trajectories of Swinging Pendulum implementing DDPG model (left) vs.
DKRC model (right) initialized at the right horizontal position

51

Figure 5.5: Trajectories of Swinging Pendulum implementing DDPG model (left) vs.
DKRC model (right) initialized at the close left upright position

Figure 5.6: Trajectories of Swinging Pendulum implementing DDPG model (left) vs.
DKRC model (right) initialized at the close right upright position

52

much less training time than DDPG. Once a proper dynamical system model can be

learned directly from data, it makes more sense to execute control using model-based

controller design such as MPC.

Another way to show the differences in control strategies is by plotting the

measured trajectories during repeated tests. In Figure 5.7, we test the pendulum

game for 50 games with a total of 10000 time-steps utilizing both methods (DDPG &

DKRC) solutions. In this comparison, we plot the measurements of θ̇ vs. θ on a 2D

Figure 5.7: 50 pendulum games data recorded using DDPG model (left) vs. DKRC
model (right), color mapped by energy

basis, colored by the magnitude of the cost function defined in Equation 5.2. The goal

is to arrive at the goal position (θ̇ = 0 and θ = 0, the center of each plot) as quickly

as possible. Figure 5.7 shows that DDPG tends to drive the states into "pre-designed"

patterns, and execute similar control strategies for the 50 games. Therefore the data

points on the left subplot appear to be less than the one on the right. DKRC, on the

other hand, tends to exhibit different control behavior due to the local replanning

using MPC. The result of the local replanning is that it generates multiple trajectories

53

solving the 50 games with different random initializations. During this comparison, we

illustrate that DDPG is indeed deterministic, which is a good indicator of the system’s

reliability. However, we want to point out that the robustness of the system will also

benefit from a local replanner available under different initializations or disturbances

since the "pre-designed" patterns are learned from past experience, therefore, cannot

guarantee a viable solution for unforeseeable situations when we move onto more

complex systems.

By transforming the observed states, we can also show the relationship between

the designed control and the energy levels in the system. Consequently, our control

goal is to achieve the lowest energy level of the system in terms of lowest magnitudes

in both kinetic energy and potential energy. In Figure 5.8, we present the Hamiltonian

energy level plots with respect to the measured states (θ, cos(θ), sin(θ), and θ̇) for the

forced frictionless pendulum system, each colored by the same energy level scale. The

energy term used in forced pendulum is defined as 1
2
θ̇2 + cos(θ) + u. Figure 5.8 shows

Figure 5.8: DDPG(left) vs. DKRC(right): Recorded Observations & Energy

that DKRC’s trajectories are concentrated in lower energy areas compared to DDPG,

54

which means it intends to minimize the energy directly. This behavior also resembles

many design strategies used in classic energy-based controller design approaches.

5.3 Control Visualization using Decoder Neural Net-

work

Another benefit of having a model-based controller design is the interpretability

of the system. We can preview the design trajectory since our MPC controller

implements the receding horizon control. By deploying one pendulum game, we obtain

one planned trajectory for the linear system in the lifted dimension space. To get the

comparison between the planned trajectory and the measured trajectory in the state

space, we utilize the decoder neural network obtained during the training to map

the trajectory in higher-dimensional space (8-dimension for inverted pendulum) to

the lower-dimensional space (2-dimension). The comparison between such recovered

trajectory planning and the actual trajectory is presented in Figure 5.10. In this figure,

we again mapped the θ in the range of 0 to 2π for visualization purposes, whereas the

goal position is still at the θ̇ = 0 and θ = 0 position.

In this work we build an auto-decoder neural network to map the planned

high-dimensional trajectory back to the non-lifted states space. The auto-decoder is

trained after we get a DKRC solution, and the relationship between the auto-decoder

and DKRC is shown in Figure 5.9.

In this example case, we initialize the pendulum close to the goal position

but give it a moderate initial angular velocity pointing in the opposite direction to

the goal position. The DKRC can plan a simple trajectory with continuous control.

During the process, we executed MPC multiple times and used feedback measurements

55

Figure 5.9: Schematics of autoencoder neural network sturcture of DKRC

to improve the design trajectory. The planned trajectory is being closely followed

except certain locations close to 0 and π position. The outlier behavior comes from

the neural network treatment for the discontinuity and does not pollute the efficient

control for the entire problem. It is worth noticing that, to arrive at this result, we

learn the unknown nonlinear dynamics using a purely data-driven approach, and we

have to go through an encoding-decoding process to recover the planned trajectory. It

is promising to state that the use of Koopman representation for nonlinear control

can help with system interpretability, which is currently an active research area.

To verify whether DKRC is valid in a more complex environment than Inverted

pendulum, we also deploy it in the Lunar Lander - continuous control environment of

OpenAI Gym. A simple explanation of ’Lunar Lander’ is exhibited in Figure 5.11.

The control goal is to guide the lunar lander to arrive at the landing zone as smoothly

56

Figure 5.10: DKRC’s planned trajectory and actually executed trajectory in Inverted
pendulum

as possible [13]. The system is also unknown and must be learned from data. We

implement the DKRC framework and use MPC for trajectory planning, and the result

is shown in Figure 5.12.

The actual trajectory measured in state-space is shown in hollow red circles.

The planned trajectory is colored by the distance away from the originally planned

location. It is evident that in the region where the originally planned location is in

the immediate vicinity (dark blue color), the actual trajectory is following the plan

very precisely. We implement a finite-horizon control during each MPC planning

phase. We plan and execute control with several steps beyond the current state as

57

Figure 5.11: Lunar Lander Environment

displayed in lighter green color. The actual trajectory slowly deviates from the planned

trajectory when it starts to drift away from the originally planned location. This

behavior is expected since we are relying on open-loop control during those finite

horizon plannings. The actual trajectory and the projected trajectory merge again

once the next round of the MPC control is executed.

In this figure, we demonstrate that the deviation from the planned trajectory

and the measured trajectory is from the open-loop planning, rather than from the

error introduced while passing the state inputs through the encoder-decoding neural

network. The proposed structure is capable of recovering the designed strategy in

higher-dimensional space and improving the system’s interpretability.

5.4 Robustness Comparison

To compare the robustness of these two methods, we introduce noises to the

state measurements and observe the control outcome from DDPG and DKRC. The

noise is designed as multiplying the states with a noise ratio, which is randomly selected

from range [0.6, 1] during deployment. In this test, we assume the learned dynamics

58

Figure 5.12: DKRC’s planned trajectory and actual executed trajectory in Lunar
Lander, color mapped by the distance between the planned point and the executed
point

from DDPG and DKRC are not affected by the noise; only the observations during

deployment are affected, representing a cyber-security attack during the operation

phase. The new state inputs would be x = x ∗ noise in this scenario. The result

for five repeat games is shown in Figure 5.13. Each line with the same color in the

subplot represents measurements from a single game. Even with a high noise ratio,

DKRC can succeed in the control task for three out of five games, whereas DDPG fails

every game in Figure 5.13. In this test, we demonstrate that the DKRC is capable of

designing a control strategy based on noisy data and continuously adjust the control

based on the feedback control loop so that it is still robust in a noisy environment.

The robustness of DKRC is another advantage compared to a neural-network-based

control system, which relies heavily on state measurement accuracy.

59

Figure 5.13: Five pendulum games with input states noise using DDPG (left) vs.
DKRC (right) solutions

5.5 Learned dynamics of DKRC compared to Euler-

Lagrange analytical solution

To illustrate the validity of the learned dynamics using DKRC, we present

benchmark comparisons between the proposed DKRC framework and the Euler-

Lagrange method’s analytical solutions. As previously shown in Equation 5.5 and 5.6,

we have obtained the identity matrices for the linearized system using ZOH method.

We are making the same assumption for the linearized system in the lifted-dimensional

space by the DKRC method. For comparison with different dimension embeddings, we

pick the matrices corresponding to the top n eigenvalues from the A and B obtained

through DKRC. For the inverted pendulum problem, we collect K time-step data

(only need K = 2000 data points) to obtain Koopman representation of the system.

The resultant dimension is N = 8 (K � N). The learned dynamics A,B of the lifted

linear system ψN(x|θ) are shown in the following matrices

60

ADRKC =

1.01 −0.06 −0.01 −0.08 −0.08 0.06 −0.01 −0.01

0.00 0.98 −0.04 0.02 0.06 −0.07 0.01 0.02

0.06 0.05 0.93 0.06 0.00 0.00 −0.03 0.02

0.03 −0.00 −0.01 0.97 −0.04 0.05 −0.01 −0.01

0.11 0.02 −0.03 0.01 0.98 0.05 −0.07 0.01

0.04 0.05 0.01 0.02 0.01 1.01 −0.05 0.04

0.01 0.014 0.02 0.01 0.08 −0.04 0.96 0.04

−0.00 −0.01 −0.02 −0.00 0.08 −0.08 −0.00 1.00

BDRKC =

0.00014

0.00018

−0.00024

0.00017

0.00021

0.00038

0.00008

−0.0001

To measure the similarity of Ad (in Equation 5.6), ADDPG, ADKRC we achieved,

we adopt the Pearson correlation coefficient(PCC) method [11] in Equation 5.7, where

matrices with bar operator, e.g. Ā, is the sample mean of that matrix. The result

r(A,B) ∈ [0, 1] represents the correlation between the two matrices. Two matrices (A

and B) are more similar when r is closer to 1.

r(A,B) =

∑
m

∑
n(Amn − Ā)(Bmn − B̄)√

(
∑

m

∑
n(Amn − Ā)2)(

∑
m

∑
n(Bmn − B̄)2)

(5.7)

To compare the similarity of these two matrices with different dimensions, we extract

the left top 3×3 part of the ADKRC . We achieve a correlation score of r(Ad, ADKRC) =

0.8926, which means the lifted linear system of DKRC is very similar to the analytical

system model solved by Euler-Lagrange method. This high correlation score indicates

that the data-driven Koopman representation of the system can reveal the intrinsic

dynamics purely based on data samples.

On a separate note, we do not expect the two results are exactly the same

since by lifting the system to a higher-dimensional space, we have more neurons in

DKRC neural networks to store the system information that was not included in the

previous comparison. In addition, we also deploy the linearization model obtained

by the Euler-Lagrange method with MPC to the same OpenAI Gym environment

61

to examine the effectiveness by direct linearization without lifting. Unlike DKRC or

DDPG, which can work for any arbitrary initial configuration, control designed by the

Euler-Lagrange method only works when the pendulum’s initial position is between

[−23.4◦, 23.4◦] with small initial angular velocity disturbance. A sample comparison

between Euler-Lagrange MPC and DKRC is exhibited in Figure 5.14.

As shown in Figure 5.14, DKRC only spends around 20% time of Euler-Lagrange

linearization method to make pendulum converge to the upright position.

Figure 5.14: One pendulum game using DKRC model (left) vs. Euler-Lagrange
method (right); Both tests initialized at θ0 = π

18
, θ̇0 = 0.5

5.6 Experiment Conclusion

This second part of the thesis provides a systematic discussion of two different

data-driven control frameworks: Deep Deterministic Policy Gradient (DDPG) and

Deep Learning of Koopman Representation for Control (DKRC). Both the two methods

are data-driven and adopt neural networks as central architecture, but the controller

62

design is model-free for DDPG, whereas DKRC utilizes a model-based approach. Our

experiments in a simple swing-up pendulum environment demonstrate the different

solutions achieved by DKRC and DDPG. The DKRC method can achieve the same

control goal as effective as the DDPG method but requires much less training epochs

and training samples (70 epochs vs. 5× 104 epochs). Due to the physics model-based

nature, DKRC provides better model interpretability and robustness, which are both

critical for real-world engineering applications.

63

Chapter 6

Conclusions

• This study proposes a data-driven control method with actively learned dynamics

from neural networks. With a lifting approach adopted from Koopman Operator

theory, we can achieve a linearized system representation in high-dimensional

space without known mathematical governing equations. The proposed algorithm

is suitable to design optimal control for complex dynamical systems in real-world

engineering problems.

• When compared to the model-free method like the Reinforcement Learning (RL)

method, the proposed method exhibits many advantages in training efficiency

(only takes 70 training epochs compared to typically dozens of thousands of

epochs for RL algorithms. In real-world time, it typically takes days to train a

good RL algorithm for a relatively complicated problem). Compared to RL, it

is more robust under disturbances generated by noise injection, benefiting from

a model-free online control method with more control strategies.

• During the training of the Koopman representation of the system, an educated

guess is needed to determine the lifting dimension. To choose a proper lifting

64

dimension, we add an additional loss function in the cost function definition to

capture the size of lifting dimensions that can make the second loss function

keep full rank in the controllability test.

65

Appendices

66

Appendix A Neural network structures of DKRC so-

lutions for different dynamic systems

A.1 Neural Network Structure for Inverted Pendulum

Figure 1 shows the ψN(x; θ) structure used to solve single swing-up pendulum

problem, where x ∈ R3, N = 8.

Figure 1: Neural Network Structure For Inverted Pendulum

A.2 Neural Network Structure for Balancing Double Pendu-

lum on a Cart

Figure 2 shows the ψN (x; θ) structure used to balance a double pendulum on a

cart, where x ∈ R6, N = 8.

67

Figure 2: Neural Network Structure For Double Pendulum Balancing on a Cart

A.3 Neural Network Structure for Lunar Lander

Figure 3 shows the ψN (x; θ) structure used to control the lunar lander to reach

the goal position, where x ∈ R6, N = 16.

Figure 3: Neural Network Structure For Lunar Lander Control

A.4 Neural Network Structure for Acrobot

Figure 4 shows the ψN(x; θ) structure used to swing up the acrobot to the

defined position, where x ∈ R6, N = 12.

68

Figure 4: Neural Network Structure For Acrobot Swing Up

69

Appendix B Technical Parameters of Controllers

B.1 Swing-up Pendulum

Pendulum controller

Controller: Model predictive control (MPC)

Time horizon: 6

Time execution: 1

Goal position: Upright (θ = 0, θ̇ = 0)

B.2 Acrobot

Acrobot controller

Controller: Model predictive control (MPC)

Time horizon: 8

Time execution: 1

Goal position: touching the defined line (height = length of pendulum)

B.3 Double Pendulum on a Cart

Double Pendulum on a Cart Controller

Controller: Model predictive control (MPC)

Time horizon: 24

Time execution: 1

Goal position: Upright position (θ1 = 0, θ2 = 0, θ̇1 = 0, θ̇2 = 0)

70

B.4 Lunar Lander

Lunar Lander Controller

Controller: Finite Linear–quadratic regulator (LQR)

LQR planning horizon: 138

Goal position: Middle point between two flags (x = 10, y = 4, θ = 0, θ̇ = 0)

71

Bibliography

[1] Olivier Sigaud Arnaud de Froissard de Broissia. Actor-critic versus direct policy
search: a comparison based on sample complexity. arXiv:1606.09152, 2016.

[2] Alexander Broad, Todd Murphey, and Brenna Argall. Learning models for shared
control of human-machine systems with unknown dynamics. arXiv preprint
arXiv:1808.08268, 2018.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[4] Marko Budisic, Ryan Mohr, and Igor Mezic. Applied koopmanism. Chaos,
22:047510–32, 2012.

[5] IOFFE S. & SZEGEDY C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv:1502.03167, 2015.

[6] F. Capitanescu D. Ernst, M. Glavic and L. Wehenkel. Reinforcement learning
versus model predictive control: A comparison on a power system problem.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
39(2):517–529, 2012.

[7] TUYLS K. & BABUŠKA R DE BRUIN T., KOBER J. The importance of
experience replay database composition in deep reinforcement learning. Deep RL
workshop at NIPS, 2015.

[8] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling
language for convex optimization. Journal of Machine Learning Research, 2016.
To appear.

[9] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research,
12(Jul):2121–2159, 2011.

[10] A. Eskandarian. Handbook of intelligent vehicles. Springer London, 2012.

72

[11] David Freedman, Robert Pisani, and Roger Purves. Statistics. Pisani, R. Purves,
4th edn. WW Norton & Company, New York, 2007.

[12] Phil Goddard. Zero order hold with variable time step. MATLAB Central File
Exchange, 2020.

[13] Yiqiang Han, Wenjian Hao, and Umesh Vaidya. Deep learning of koopman
representation for control. submitted to IEEE CDC2020, forthcoming, 2020.

[14] Michiel Hazewinkel. Lagrange equations (in mechanics)", encyclopedia of mathe-
matics. Springer Science+Business Media B.V. / Kluwer Academic, 1994.

[15] Bowen Huang, Xu Ma, and Umesh Vaidya. Feedback stabilization using koopman
operator. In 2018 IEEE Conference on Decision and Control (CDC), pages
6434–6439. IEEE, 2018.

[16] Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of
koopman eigenfunctions for control. arXiv preprint arXiv:1707.01146, 2017.

[17] Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Data-driven approximations
of dynamical systems operators for control. In The Koopman Operator in Systems
and Control, pages 197–234. Springer, 2020.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[19] Bernard O Koopman. Hamiltonian systems and transformation in hilbert space.
Proceedings of the national academy of sciences of the united states of america,
17(5):315, 1931.

[20] Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica, 93:149–160, 2018.

[21] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal
linear embeddings of nonlinear dynamics. Nature communications, 9(1):1–10,
2018.

[22] H.J. Ferreau M. Diehl and N. Haverbeke. Efficient numerical methods for nonlinear
mpc and moving horizon estimation. Nonlinear model predictive control, pages
391–417, 2009.

[23] Xu Ma, Bowen Huang, and Umesh Vaidya. Optimal quadratic regulation of
nonlinear system using koopman operator. In 2019 American Control Conference
(ACC), pages 4911–4916. IEEE, 2019.

73

[24] Alexandre Mauroy and Igor Mezić. Global stability analysis using the eigen-
functions of the koopman operator. IEEE Transactions on Automatic Control,
61(11):3356–3369, 2016.

[25] Alexandre Mauroy, Yoshihiko Susuki, and Igor Mezić. Introduction to the Koop-
man Operator in Dynamical Systems and Control Theory, pages 3–33. Springer
International Publishing, Cham, 2020.

[26] I. Mezić. Spectral properties of dynamical systems, model reductions and decom-
positions. Nonlinear Dynamics, 2005.

[27] Kavukcuoglu Koray Silver David Graves Alex Antonoglou Ioannis Wierstra Daan
Mnih, Volodymyr and Martin Riedmiller. Playing atari with deep reinforcement
learning. arXiv:1312.5602, 2013.

[28] Sebastian Peitz and Stefan Klus. Koopman operator-based model reduction for
switched-system control of pdes. arXiv preprint arXiv:1710.06759, 2017.

[29] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode
decomposition with control. SIAM Journal on Applied Dynamical Systems,
15(1):142–161, 2016.

[30] Arvind Raghunathan and Umesh Vaidya. Optimal stabilization using lyapunov
measures. IEEE Transactions on Automatic Control, 59(5):1316–1321, 2014.

[31] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. 31st International
Conference on Machine Learning, ICML 2014, 1, 06 2014.

[32] HEESS N. DEGRIS T. WIERSTRA D. & RIEDMILLER M. SILVER D.,
LEVER G. Deterministic policy gradient algorithms. Proceedings of the 30th
International Conference in Machine Learning, 2014.

[33] Amit Surana and Andrzej Banaszuk. Linear observer synthesis for nonlinear
systems using koopman operator framework. In Proceedings of IFAC Symposium
on Nonlinear Control Systems, Monterey, California, 2016.

[34] Yoshihiko Susuki and Igor Mezic. Nonlinear koopman modes and coherency
identification of coupled swing dynamics. IEEE Transactions on Power Systems,
26(4):1894–1904, 2011.

[35] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[36] Richard S Sutton. Generalization in reinforcement learning: Successful examples
using sparse coarse coding. In Advances in neural information processing systems,
pages 1038–1044, 1996.

74

[37] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[38] Alexander Pritzel Nicolas Heess Tom Erez Yuval Tassa David Silver Daan Wier-
stra Timothy P. Lillicrap, Jonathan J. Hunt. Continuous control with deep
reinforcement learning. arXiv:1509.02971, 2015.

[39] U. Vaidya and P. G. Mehta. Lyapunov measure for almost everywhere stability.
IEEE Transactions on Automatic Control, 53:307–323, 2008.

[40] U. Vaidya, P.G. Mehta, and U. Shanbhag. Nonlinear stabilization via control
Lyapunov measure. IEEE Transactions on Automatic Control, 55:1314–1328,
2010.

[41] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, page
279–292, 1992.

[42] Wikipedia contributors. Model predictive control — Wikipedia, the free encyclo-
pedia, 2020. [Online; accessed 1-July-2020].

[43] Matthew O Williams, Maziar S Hemati, Scott TM Dawson, Ioannis G Kevrekidis,
and Clarence W Rowley. Extending data-driven koopman analysis to actuated
systems. IFAC-PapersOnLine, 49(18):704–709, 2016.

[44] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–
driven approximation of the koopman operator: Extending dynamic mode de-
composition. Journal of Nonlinear Science, 25(6):1307–1346, 2015.

[45] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–
driven approximation of the koopman operator: Extending dynamic mode de-
composition. Journal of Nonlinear Science, 25(6):1307–1346, 2015.

[46] Matthew O Williams, Clarence W Rowley, and Ioannis G Kevrekidis. A
kernel-based approach to data-driven koopman spectral analysis. arXiv preprint
arXiv:1411.2260, 2014.

[47] Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network
representations for koopman operators of nonlinear dynamical systems. In 2019
American Control Conference (ACC), pages 4832–4839. IEEE, 2019.

[48] Pengcheng You, John Pang, and Enoch Yeung. Deep koopman controller synthe-
sis for cyber-resilient market-based frequency regulation. IFAC-PapersOnLine,
51(28):720–725, 2018.

[49] Nasser L. Azad Yuan Lin, John McPhee. Comparison of deep reinforcement learn-
ing and model predictive control for adaptive cruise control. arXiv:1910.12047,
2019.

75

	Data-Driven Control with Learned Dynamics
	Recommended Citation

	Title Page
	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Koopman Operator
	Model Predictive Control
	Reinforcement Learning
	Thesis Organization

	Research Problem Setup
	Problem Set-up
	Proposed Solutions
	Lessons Learned

	Algorithm Proposed
	Deep Learning of Koopman Representation for Control
	Koopman-based Control
	Algorithm Summary

	DKRC Implementation Results
	Inverted Pendulum
	Acrobot
	Double Pendulum on a Cart
	Lunar Lander
	Experiment Conclusion

	Data Driven Control: Model-based vs. Model-free Approach
	Experiment Setup
	Control Strategies of DDPG and DKRC
	Control Visualization using Decoder Neural Network
	Robustness Comparison
	Learned dynamics of DKRC compared to Euler-Lagrange analytical solution
	Experiment Conclusion

	Conclusions
	Appendices
	Neural network structures of DKRC solutions for different dynamic systems
	Technical Parameters of Controllers

	Bibliography

