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Abstract 

The gut microbiota encompasses the microbial life present in animal digestive 

tracts, collectively termed the microbiome. These microbial communities are highly 

adapted to their environment and host, providing beneficial functions not encoded by the 

host genome. However, there is a lack of gut microbiome studies on wild, non-model 

organisms; because of the importance of microbiomes in host evolution, it is critical to 

understand how environment and host alike shape indigenous microbes in wild animal 

populations. Rattlesnakes (Crotalus and Sistrurus) provide a useful system to study 

microbiota differences due to their unique digestive process and locally adapted venoms, 

which function in prey capture/digestion and predator defense. Here, we use 16S rRNA 

gene sequencing to investigate factors that influence the microbiota of snakes (n=21) over 

time from five species in the genus Crotalus (the Mojave (C. scutulatus), Western-

Diamondback (C. atrox), Prairie (C. viridis), Tiger (C. tigris), and Black-Tailed (C. 

molossus) Rattlesnakes). We compared the gut microbiota between species that possess 

different venom types to investigate whether venom type is playing a role in microbial 

selection. We also tracked changes in the gut microbiota over time from the wild to 

captivity and in response to digestion. Across species, the most abundant phyla were 

Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Fusobacteria, similar to 

previous reptile gut microbiome studies. Using beta diversity metrics, we observed that 

snakes harbored a gut microbiota that was more similar to themselves and their species 

than to geographic location. However, we observed 62 differentially abundant 

Operational Taxonomic Units (OTUs) between snakes with different venom types. 
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Snakes also displayed higher levels of variation in the wild compared to during captivity, 

losing a substantial portion of OTUs (43%) post-captivity. This loss was sustained in 

captivity, where snakes gained new OTUs (42%). Post-feeding, we also observed a peak 

in species diversity. In conclusion, we found that the gut microbiome of southwestern 

rattlesnakes is distinguishable by different venom types, is more diverse in the wild than 

in captivity, and is influenced by digestion. 
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Chapter 1 

The Gut Microbiome in Non-model Systems 

Bacterial life is the oldest on earth, with some geochemical estimates placing the 

first traces of bacteria at three and a half billion years ago (Schopf and Packer 1987). 

Often able to take advantage of limited resources, bacteria can multiply to pass on and 

exchange genetic information at a rapid rate. This swift exchange of genetic information 

means bacteria evolve quickly and are able to interact with their respective environments 

in various ways. Bacteria can inhabit almost any environment on earth, from deep sea 

thermal vents (Russell 1984) to earth’s upper atmosphere (Griffin 2004). Due to the 

ubiquity and diversity of bacterial species, it is unsurprising that microbial life has 

inhabited not only human skin, but the digestive, respiratory, and excretory systems 

(Costello et al. 2009).  

Bacteria have been studied in the human gut for over 100 years, but because many 

of the organisms inhabiting the human digestive tract are anaerobic, the limitations of 

culture-based bacterial identification have hindered our understanding of bacterial 

community structure. The advent of high throughput sequencing has allowed for the 

description of all organisms inhabiting and interacting with the human body, known as 

the human microbiota (Gill et al. 2006). Together, these organisms and the environment 

they inhabit are collectively referred to as the microbiome, and can be thought of as  

organs themselves (Baquero and Nombela 2012). The microbes that compose an 

individual’s microbiome are symbionts that affect a range of processes from digestion to 

regulation of the immune system (Carballa, Regueiro, and Lema 2015; Kau et al. 2011). 
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In humans, the study of gut microbiome differences across individuals has led to the 

discovery of its influence on diseases including irritable bowel syndrome and autism 

(Belzer and Vos 2012; Cryan and O’Mahony 2011).  

Sequencing the microbiome can be used to study a range of questions related to 

host-microbe evolution. The microbiome is species and individual specific, as every 

organism cultivates a microbiome that is uniquely suited to handle the environment and 

digestive needs specific to their habitat, diet, and physiology (Contijoch et al. 2019; 

Garud et al. 2019; Muegge et al. 2011). Bik et al., (2016) showed that marine mammals, 

dolphins and sea lions, not only had a microbiome that was unique to each other, but they 

were both uniquely distinct from terrestrial mammal microbiomes and the water 

microbial samples in which they were swimming. Ley et al. (2008) looked across the 

mammalian phylogeny and found that animals adapted for a specific diet had 

microbiomes that were more closely related to one another, despite differences in host 

taxonomy. These studies indicate that host phylogeny, environment, and diet all play a 

role in shaping the microbiome of diverse animal life.  

The study of microbiomes in animals are specifically helpful when asking 

questions about digestion within a system. Human microbiome research has 

demonstrated that upwards of 95% of bacterial diversity occurs within the gastrointestinal 

tract, or the gut (Lozupone et al. 2012; Thursby and Juge 2017). The gut microbiome is 

primarily composed of commensal and mutualistic bacteria that influence the host in a 

variety of functions, including nutrient acquisition, immune regulation,  proper digestive 

processing, and resistance against external pathogens (Buffie et al. 2015; Fujimura et al. 
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2014; Lawrence and Hyde 2017). Microbes in the gut are beneficial and act as a barrier 

between food toxicants and digestive lining, so the microbiome subsequently plays an 

important role in protecting host cells from the external environment (Ashida et al., 2012; 

Söderholm & Perdue, 2001). Maintenance of proper gut functioning is largely influenced 

by which microbes colonize the gut of a host, as these microbes are crucial to feeding the 

protective mucosal barrier (Merga, Campbell, and Rhodes 2014; Schroeder 2019) and are 

key to breaking down substrates that are indigestible by the digestive lining alone 

(Karasov, Martínez del Rio, and Caviedes-Vidal 2011). The substrates that need to be 

broken down by the gut are largely dependent on the dietary items a host is consuming, 

and microbiome variation between hosts with different diet patterns has been 

demonstrated across different animal populations (Contijoch et al. 2019; Ley et al. 2008). 

For example, in freshwater fish living in the same habitat, the microbiome was distinct 

between herbivorous, omnivorous, and carnivorous fish (Liu et al. 2016); cellulose-

degrading bacteria were dominant in the guts of herbivorous fish and protease-producing 

bacteria were dominant in carnivorous fish.  

Compositional microbiome data can be informative as to the host-microbiome 

interactions that influence trait adaptation (Brucker and Bordenstein 2012; Shapira 2016). 

The evolutionary potential of adaptive traits is a function of many ecological and 

evolutionary pressures, including strength and direction of selection, genetic variation, 

and physiological constraints. The microbiome is at the intersection of these pressures. 

Due to the swiftly evolving nature of microbes, the microbiome can respond rapidly to 

changes in environmental conditions where genetic variability of the host genome is 
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limited (Shapira 2016). Thus, compositional and functional changes to the microbiome 

often precede, and may even mediate, adaptive evolution and speciation (Garud et al. 

2019). A dramatic example of the gut microbiomes role in adaptive evolution is in high 

altitude mammals where convergent evolution of the gut microbiome has led to similar 

functions of the gut rumen in both high altitude yaks and Tibetan sheep, that is distinct 

from the gut microbiome of their low-altitude counterparts (Zhigang Zhang et al. 2016).  

When characterizing host-specific microbiome profiles in systems with highly 

divergent adaptive traits, especially those related to food acquisition, microbiome 

sequencing can lend insight into the ecological and evolutionary pressures of the host. 

Gut microbiomes have been shown to influence digestion and adaptation but have rarely 

been studied in wild, non-model vertebrates (Behar, Yuval, and Jurkevitch 2008; Colston 

and Jackson 2016; Shapira 2016; Vatanen et al. 2019). More research needs to be done to 

characterize the microbiome in non-model systems to achieve a better understanding of 

the composition and function of the gut microbiome across the tree of life. 

 

 

 

 

 

 

 



5 
 

Chapter 2 

 

The Gut Microbiome of Southwestern Rattlesnakes as 

Revealed by 16S rRNA Sequencing 

 

 

2.1 Introduction 

Snakes, which are understudied in the field of microbiomes, fit well within the 

frontiers of microbiome discovery because of the unique physiology of snake digestion 

(Pough and Groves 1983). Snakes undergo more pronounced physiological shifts during 

digestion than most vertebrates (Castoe et al. 2013), marked by consumption of sizeable 

prey and extended periods of digestive torpor. To conserve energy during the weeks and 

months of starvation or brumation, the digestive system becomes inactive and physically 

atrophied (Castoe et al. 2013). After long periods of digestive inactivity, snakes consume 

prey of considerable size by swallowing their prey whole (Cundall and Greene, 2000; 

Lee, Bell, & Caldwell, 1999). Without the aid of physical mastication available to most 

vertebrates, snakes rely entirely on chemical and bacterial breakdown of their meal 

(Cundall & Greene, 2000). Snakes that consume large, bony vertebrates not only 

experience organ size shifting during digestion, but their guts must be able to breakdown 

fully intact collagenous matrices (Rodríguez-Robles, Bell, and Greene 1999). The 

microbiome across most snake species, therefore, has to be adapted to dramatic shifts in 
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organ conformation and secretion, periods of limited nutrient acquisition, and the 

presence of dietary toxicants.  

In addition to typical snake physiological changes during digestion, some snakes 

use venom for prey capture. Snake venoms are potent cocktails of digestive enzymes and 

polypeptides which aid in digestion and potentially defense plus have high variability 

both inter- and intra-specifically (Casewell, Huttley, and Wüster 2012; Margres et al. 

2017). Some of these venoms, which can vary considerably by diet and location (Barlow 

et al. 2009), are thought to aid in digestion by means of tissue-degrading venom peptides 

(Mackessy 2010; Thomas and Pough 1979). While venom evolution in snakes is often 

used as a model for testing adaptive trait processes in vertebrates, it remains largely 

unexplored in the context of host-microbiome interactions (Ul-Hasan et al. 2019). Recent 

research has shown that the gut microbiome in vertebrates can influence traits that drive 

adaptation (Brucker and Bordenstein 2012; Zhigang Zhang et al. 2016). One example is 

in Siu-Ting et al. (2019) that compared the role of gut microbiota in modulating toxin 

sequestration in poison frogs as compared to the microbiota in non-poison frogs. 

Researchers, however, have yet to explore the influence of the gut microbiome in a 

species undergoing rapid selection on a phenotype relating to toxin production. 

Rattlesnakes (Crotalus spp. and Sistrurus spp.), are an example of venomous 

snakes that exhibit inter- and intraspecific venom variation across expansive geographic 

distributions (Glenn et al. 1983), undergo digestive torpor consistent with most large-

bodied snakes, (Tattersall et at., 2004), and possess a well-studied venom phenotype 

(Bjarnason and Tu 1978; Gibbs and Mackessy 2009; Mackessy 2010; Massey et al. 2012; 
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Strickland et al. 2018). There are approximately fifty species of rattlesnake in the world 

and twenty of these species are distributed throughout the United States, many of them 

living sympatrically (Uetz, Freed, & Hošek 2020). Rattlesnake venoms within the 

American Southwest generally fall into one of two categories based on the constituent 

venom peptides and their phenotypic expression (Mackessy, 2010). The first category, 

called hemorrhagic Type B venoms, are largely composed of snake venom 

metalloproteinases (SVMPs) that thin blood and cause tissue necrosis (Gutiérrez et al. 

2016). Species such as the Western Diamondback (C. atrox), Black-Tailed (C. molossus), 

and Prairie (C. viridis) rattlesnakes all have hemorrhagic venom profiles which are 

hypothesized to aid in digestion by means of the SVMPs which act as tissue-degrading 

venom peptides (Mackessy 2010; Thomas and Pough 1979). Missing the additional 

digestive function of SVMPs, Type A venoms such as those possessed by Tiger 

Rattlesnakes (C. tigris), result in a neurological shutdown of their prey due to neurotoxic 

PLA2s in their venom. The Mojave Rattlesnake (C. scutulatus) is a species where local 

adaptation has led to individuals with a hemorrhagic, neurotoxic, or a mix of both venom 

phenotypes (Glenn et al. 1983; Strickland et al. 2018; Wilkinson et al. 1991; Zancolli et 

al. 2019). Inter-individual variation in C. scutulatus venoms, presents an interesting case 

for differentiating venom and species effects on the gut microbiome.  

The unique digestive physiology of rattlesnakes provides an opportunity to 

understand the variation that can occur in host microbiomes that undergo significant 

changes through time. To understand these changes, we first characterized the wild gut 

microbiome of twenty-one rattlesnakes from the southwestern U.S. with 16S rRNA gene 
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sequencing. The gut microbiome of the same individuals was also sequenced post-

captivity and during feeding in captivity. We used the wild microbiome samples as the 

baseline to determine the differences in the gut microbiome caused by 1) species 2) 

location 3) venom type 4) captivity and 5) digestion. Between individuals, we predicted 

that species, location, and venom type would all play a role in affecting the composition 

of the gut microbiome. We predicted that captivity would decrease the diversity and 

abundance of bacteria in all rattlesnakes and that an increase in compositional changes 

would occur during digestion. 
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2.2 Methods 

Specimen Collection 

Adult rattlesnakes were collected in southeastern Arizona, southwestern New 

Mexico, and western Texas in July 2018. Upon capture all animals were immediately 

palpated along the length of their body to control for active digestion. Only those with no 

discernable prey masses were kept. Final collection included twelve Mojave Rattlesnakes 

(C. scutulatus), four Western Diamondback Rattlesnakes (C. atrox), three Tiger 

Rattlesnakes (C. tigris), one Black-Tailed Rattlesnake (C. molossus), and one Prairie 

Rattlesnake (C. viridis); Table 2.1, Fig. 2.1. Five animals in total dropped out of the study 

at various times due to poor body condition, inability to feed, and two were released post-

capture. 

Figure 2.1: Sampling scheme. The number to the top left of each snake represents the 
number of individuals collected for each species. The green dots on the timeline indicate 
microbiome sample collection. Snakes were fed after 8 weeks in captivity, as indicated 
by the mouse, and were sampled right before feeding and 24 hours post feeding. Two C. 
atrox were released post capture, one C. molossus dropped out due to poor body 
condition, and two C. tigris did not feed on the correct date; no samples were taken from 
these individuals after the point of dropout.   

 

Week 1 2 3 4 5 6 7 8 9 10

C. viridis

1

C. scutulatus

12

C. atrox

4

C. tigris

3

C. molossus

1

All animals 
sampled

2 C. atrox 
dropout

1 C. molossus
dropout

2 C. tigris
dropout



10 
 

Microbiome Sample Collection 

Swabs were taken from the cloaca of each individual to serve as the representative 

microbiome for that individual (Colston, Noonan, and Jackson 2015). Initial samples 

were taken within 12 hours of capture to represent the “wild” microbiome.  Additional 

samples were taken at distinct time points, post-capture, to assess captive and digestive 

effects (Fig. 2.1). To sample the microbiome, all investigators wore gloves to avoid 

inadvertent contamination and snakes were restrained in plastic tubing leaving the cloaca 

Sample ID Species 
Venom 

Type  Age County State GPS 

CLP2727 C. scutulatus A Adult Brewster TX 30.313070, -103.116630 

CLP2728 C. scutulatus A Adult Brewster TX 30.275310, -103.174450 

CLP2729 C. scutulatus A Subadult Brewster TX 30.281840, -103.162420 

CLP2730 C. scutulatus A Adult Pecos TX 30.138115, -102.583988 

CLP2746 C. scutulatus A Adult Hidalgo NM 32.040450, -109.023220 

CLP2747 C. scutulatus A Adult Hidalgo NM 32.044080, -109.019880 

CLP2748 C. scutulatus A Adult Hidalgo NM 31.932800, -109.035860 

CLP2764 C. scutulatus A Adult Graham AZ 32.589777, -109.908096 

CLP2741 C. tigris A Adult Santa Cruz AZ 31.389800, -111.092250 

CLP2742 C. tigris A Adult Santa Cruz AZ 31.389250, -111.093550 

CLP2752 C. tigris A Adult Santa Cruz AZ 31.394744, -111.090466 

CLP2734 C. scutulatus B Adult Pinal AZ 32.763280 -111.498330 

CLP2736 C. scutulatus B Subadult Pinal AZ 32.772760, -111.316950 

CLP2737 C. scutulatus B Subadult Pinal AZ 32.764530, -111.326400 

CLP2738 C. scutulatus B Adult Pinal AZ 32.764530, -111.326400 

CLP2735 C. atrox B Adult Pinal AZ 32.824850, -111.256000 

CLP2739 C. atrox B Adult Pinal AZ 32.816710, -111.264570 

CLP2740 C. atrox B Adult Pinal AZ 32.763280, -111.498330 

CLP2765 C. atrox B Adult Hidalgo NM 31.983180, -109.035880 

CLP2750 C. molossus B Juvenile Cochise NM 31.883267, -109.206087 

CLP2751 C. viridis B Adult Hidalgo AZ 31.974547, -108.822581 

Table 2.1 Sample table of all individuals used in this work.  
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exposed. Before swabbing, an alcohol pad was used to wipe the external cloaca to 

remove foreign or transient microbes. A sterile polyester-tipped applicator was inserted 

approximately 3-5 mm into the cloacal vent and the applicator was rotated for 2-5 s. The 

applicator was cut at the tip with sterile scissors and placed into a sterile 1.5ml micro-

centrifuge tube before being flash frozen and stored at -80 C. Initial samples were taken 

in the field, and captive experiments were performed at Clemson University using the 

same methodology. Table 2.1 shows all animals from which microbiome samples were 

collected. An overview of the sampling numbers per species and timeline of gut 

microbiome sample collection can be seen in Figure 2.1. Each animal was sampled every 

week post captivity for 6 weeks and was not fed during this time, although water was 

available. After eight weeks of captivity the snakes were sampled once more and then 

were fed either one or two specific-pathogen-free (SPF) mice each, depending on body 

size of the snake, to determine how the microbiome changes in response to digestion. 

Snakes that consumed the mice were then sampled every day for two weeks.  

Venom microbiome samples were taken via manual extraction from five 

individuals; two C. scutulatus with venom Type A, and two C. scutulatus and one C. 

atrox with venom Type B. From one of the C. scutulatus, three samples were collected at 

twelve, fourteen, and sixteen weeks post capture. Again, snakes were restrained in plastic 

tubing but were allowed to move through the tube until their heads were exposed. Their 

heads were placed at the edge of the sterile cup and their fangs manually exposed, 

preventing them from contacting the side of the cup. The venom glands were manually 

expressed causing venom to drip out. To employ a clean catch system, the first drop of 
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venom from each fang was allowed to fall to the bottom of the cup and the second drop 

was collected from the side of the cup using a 200-microliter pipette and sterile tips. The 

venom was expelled into an empty sterile 1.5ml microcentrifuge tube and placed directly 

into liquid nitrogen. 

 
DNA Extraction and 16S rRNA gene Sequencing 

DNA was extracted from all samples using the MagAttract PowerMicrobiome 

DNA/RNA Kit (Qiagen, 27500-4-EP) adapted to manual extraction in a 96-well plate 

using manufacturer’s protocol with the following modifications. Briefly, the frozen swabs 

were added directly to the PowerBead DNA Plates containing MBL solution, b-

mercaptoethanol, and phenol:chloroform:isoamyl alcohol (25:21:1; pH 6.5-8). Sample 

preparation, cell lysis by bead beating with a TissueLyser II (Qiagen), and inhibitor 

removal with Solution IRS (Qiagen) were performed following manufacturer 

instructions. After inhibitor removal, each Collection Plate contained 850 µl of 

supernatant. Further explanation of the DNA extraction protocol used in this study can be 

found in Appendix A.  

The isolated DNA was quantified using the Qubit dsDNA BR Assay Kit 

(ThermoFisher Scientific, Q32850) on the Qubit 3.0 Flurometer (ThermoFisher 

Scientific) following the manufacturer’s protocol. Samples were normalized to 

concentrations between 1-5 ng/µl. Each plate included a positive control (mouse feces), 

negative controls of both water and sterile swabs, and Zymo mock community samples. 
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The mouse feces used as the positive control was collected from the same colony as the 

mice fed to all of the snakes in this study.   

The isolated DNA was sent to the University of Michigan Microbial Systems 

Molecular Biology Laboratory for PCR amplification, library preparation, and 16S rRNA 

gene-based sequencing using previously described methods (Kozich et al. 2013). Briefly, 

the V4 region of the 16S rRNA gene was amplified using dual-index primers following 

the procedures described in Kozich et al. 2013. 309 samples amplified with standard PCR 

(Seekatz et al. 2015), whereas 40 of the remaining samples were amplified using 

touchdown PCR. The touchdown PCR cycle consisted of 2 min at 95°C, followed by 20 

cycles (with a temperature decrease of 0.3) of 95°C for 20 s, 60°C for 15 s, and 72°C for 

5 min, followed in turn by 20 cycles of 95°C for 20 s, 55°C for 15 s, and 72°C for 5 min 

and a final 72°C for 10 min. Final PCR products were normalized using the SequelPrep 

Normalization Plate kit (Life Technologies, Cat# A10510-01) following manufacturer’s 

protocol, and pooled per 96-well plate. The Kapa Biosystems Library Quantification kit 

for Illumina Platforms (KapaBiosystems, Cat# KK4824). The Agilent Bioanalyzer High 

Sensitivity DNA Analysis kit (Cat# 5067-4626) was used to determine the concentration 

of the pooled library and amplicon size in preparation for MiSeq Illumina sequencing 

with the MiSeq Reagent Kit V2 (500 cycles, Cat# MS-102-2003) as specified in the 

Kozich et al protocol to generate paired-end sequences of the PCR products (Kozich et al. 

2013). A 4% PhiX spike was added to generate diversity in the loaded library. The library 

was sequenced on the Illumina MiSeq using a paired end 500-cycle V2 flow cell.  
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Venom Typing by Reverse-phased High-Performance Liquid Chromatography 

(RP-HPLC) 

 Given the known dichotomy of venom phenotypes in C. scutulatus, venom 

samples were collected in order to determine venom type (A or B) of each individual. 

Venom samples were placed in 1.5ml microcentrifuge tubes and vacuum dried. To 

remove debris, the dried venom was resuspended in water and centrifuged. Next, the 

Qubit Protein Assay Kit (ThermoFisher Scientific, Q33212) was used to measure protein 

content in venom samples and reverse-phased High-Performance Liquid Chromatography 

(RP-HPLC) was performed following Margres et al. (2014) with 100 μg of venom at the 

Florida State University Department of Biological Science Analytical Lab using a 

Beckman System Gold HPLC (Beckman Coulter). The assayed venoms were evaluated 

for the presence of metalloproteinases and phospholipases to designate the venoms as 

Type B and Type A venoms, respectively (Strickland et al. 2018).  

Data Processing 

Raw 250bp sequence reads were directly uploaded to the BaseSpace Sequence 

Hub (Illumina) from the Illumina Miseq after being run at the Michigan Host 

Microbiome Initiative. BCL to FASTQ conversion and demultiplexing were performed 

automatically in BaseSpace to generate a forward and reverse FASTQ file for each 

sample. The FASTQ files were downloaded and stored on the Clemson University 

Palmetto Computing Cluster. Sequences were processed in mothur (v 1.43.1) according 

to the MiSeq SOP (Kozich, Westcott, Baxter, Highlander, & Schloss, 2013). Briefly, 

high-quality sequences were trimmed and filtered in mothur, then aligned to the SILVA 
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ribosomal RNA gene database (v.132) (Quast et al. 2013) followed by chimera removal 

using UCHIME (Edgar et al. 2011) in mothur.  Sequences were clustered into operational 

taxonomic units (OTUs) at 97% identity using the mothur opticlust algorithm (Westcott 

and Schloss 2017). The RDP (Ribosomal Database Project) reference taxonomy classifier 

was used to classify representative OTUs and sequences directly for genus-level analyses 

(Wang et al. 2007). Samples with less than 2000 sequences were removed (n=4) 

manually. 

Microbiome Analysis 

Summary statistics including Yue and Clayton dissimilarity (ΘYC), Shannon’s 

index, shared OTUs (sharedsobs), and shared sequences were calculated in mothur. To 

assess community structure of all samples, beta diversity indices were calculated using 

Bray Curtis dissimilarity and ΘYC, and alpha diversity indices using Shannon’s index. 

Bray-Curtis dissimilarity was calculated in the R package phyloseq (McMurdie and 

Holmes 2013) and was used to create nonmetric dimensional scaling (NMDS) 

ordinations. NMDS ordinations were plotted in R using ggplot2 (Ginestet 2011) and plyr 

(Wickham 2011) to compare samples based on venom type, species, and location. For all 

microbiome analyses, snakes collected in Arizona and New Mexico were treated as one 

location and were compared to the Texas samples. The Bray-Curtis dissimilarity metric 

was used to account for both OTU presence/absence and abundance. Dissimilarity in 

community structure was calculated with the ΘYC dissimilarity metric and was used to 

visualize beta diversity over time as well as box plots. Boxplots were created in R using 

both ΘYC distances and shared OTUs for both gut and venom comparisons. The four 



16 
 

venom comparisons were 1) all venom samples to each other, and each venom sample to 

its 2) wild, 3) captive, and 4) diet samples. The three gut comparisons were intra-

individual comparisons between 1) pre- and post-capture and inter-individual 

comparisons of individuals 2) pre-captive and of individuals 3) post-capture. Beta 

diversity over time was plotted twice in R; once comparing pre-digestion samples of a 

snake to its respective wild sample, and again comparing all samples of a snake to its 

subsequent sample. To identify changes in alpha diversity, Shannon’s index for each 

sample was calculated over time and plotted with ggplot2 (Ginestet 2011). To visualize 

variation of shared taxonomic features, streamplots of the 60 most abundant OTUs (by 

relative abundance) were created in R using the package plyr (Wickham 2011).  

 For statistical testing of the dissimilarity of microbial communities, Permutational 

multivariate analysis of variance (PERMANOVA), analysis of variance (ANOVA), 

Kruskal-Wallis, and Wilcoxon were performed in R. To determine whether or not the 

center of the NMDS ordinations were statistically different with venom type, location, 

and species, PERMANOVA was performed using the adonis function in the vegan 

package in R (Oksanen et al. 2013), and to assess dispersion of the NMDS ordinations 

Levene’s test was performed using the the betadisper function in vegan. ANOVA was 

performed to determine the difference in alpha diversity when comparing all days. For 

beta diversity measures, the Kruskal-Wallis rank sum test was used to compare all 

groupings. Pairwise Wilcoxon rank sum tests were used for pairwise comparisons 

between all beta and alpha diversity metrics.   
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To compare the composition of samples using OTU presence/absence, OTUs 

were filtered in mothur, using a 0.0001 abundance cutoff of OTUs; these cutoffs 

excluded low abundant OTUs and samples with low read counts, respectively. OTU data 

was converted to presence/absence and the data frame was filtered to calculate the total 

number of OTUs for wild samples only. An OTU was considered “shared” if it was found 

in at least 70% of samples and “unique” if it was only ever found in a single individual 

snake. In addition, OTUs were considered specific to each “species”, “venom” type, and 

“location” if they were seen in at least 50% of the individuals in each category and never 

seen in another group; with the exception of the Texas location which required a 75% 

cutoff because there were only 4 individuals from this location. Using these cutoffs, no 

duplicate counts were possible. OTUs were considered “other” if they were not shared 

between >=70% of all samples nor >=50% in one species, venom type, or location but 

were also not unique to an individual. To determine the proportion of OTUs lost in each 

snake from the wild sample and the proportion gained in captivity, the total number of 

OTUs observed across all time points was calculated in R for each individual. Those 

OTUs that were in the first wild sample but never again seen in a captive sample for that 

individual were considered unique to the wild. OTUs that were seen in captivity and not 

in the wild for a single individual were considered unique to captivity. The OTUs that 

were in both the wild and the captive samples for a single individual were considered 

shared OTUs. The mean for each category across the samples was calculated in R.  To 

show the percentage of OTUs explained by each category, the relative abundance 
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obtained before converting to presence/absence was calculated for OTUs unique to the 

wild, captivity, and shared at both time points. 

Linear Discriminant Analysis Effect Size (LEfSe) (Segata et al. 2011) was used to 

determine differential abundance of OTUs between samples from different venom types. 

An alpha value of 0.05 was used for the Kruskal-Wallis test among venom types as well 

as for the pairwise Wilcoxon test between species. Pairwise comparison among species 

were performed among species with the same name and the stricter all-against-all 

strategy for multi-class analysis was used. LEfSe was run twice; once with the complete 

gut microbiome data and once with only C. scutulatus samples from Arizona/New 

Mexico. The differentially abundant OTUs were plotted for both of these runs using the 

Galaxy server. A heatmap was generated using heatmap.2 in the package gplots (Warnes 

2012) in R to plot differentially abundant OTUs. The function heatmap.2 was also used to 

plot the OTUS in the venom microbiome samples that were present at ≥1% abundance. 

Animal Use and Care 

Handling and collection of animals was permitted by Arizona Game and Fish 

Department (#SP622613), New Mexico Department of Game and Fish (SCP# 3697), and 

Texas Parks and Wildlife Department (#SPR-0713-098). Sampling methodologies and 

captive housing at Clemson University were approved by Clemson IACUC (AUP #2017-

067). All procedures and housing follow standard protocols for non-traditional species 

care (O’Rourke DP, Cox JD 2018) 
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2.3 Results 

Sequence Generation of Gut Microbiota Samples 

 To investigate whether location, venom type, and species affect the gut 

microbiota of rattlesnakes, we collected cloacal swabs from twenty-one rattlesnakes 

belonging to five species in different geographical areas, detailed in Table 2.1. Upon 

capture, snakes were immediately swabbed to sample a pre-capture (‘wild’) timepoint, 

sampled weekly in captivity for 6 weeks without feeding (‘pre-feeding’), and daily 

following feeding (‘post-feeding’) (Figure 2.1). Sequences were successfully generated 

from 353 samples collected throughout this study for microbiome analysis. 

 
The Gut Microbiome of Southwestern Rattlesnakes is Influenced by Individuality 

and Host Species 
 
To investigate the factors influencing community structure on all gut samples, we 

employed Non-metric Multi-Dimensional Scaling (NMDS) on the Bray-Curtis 

dissimilarity index (Fig. 2.2). Although clear patterns of clustering are not evident in 

Figure 2.2, PERMANOVA tests for differing centroids between groups were significant 

for species, venom type, location (Supp. Fig A5), and between individual (Supp. Fig. A6) 

snakes; all P < 0.001. The function betadisper was used determine the homogeneity of 

dispersion for group clusters and was only significant for species (P<0.01) and between 

individual snakes (P <0.01). Thus, variation in the overall composition of the microbiome 

was most strongly correlated with differences at the species and individual levels.  

To determine the taxonomy that was likely to be driving the differences observed 

between species, genus-level stream plots were made (Fig. 2.2). At the genus level, the 
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microbiota of all five rattlesnake species appeared to remain relatively stable over time 

(Fig. 2.2). The most abundant bacterial genera observed across all samples included 

Gammaproteobacteria, Bacteroides, unclassified Bacteroidetes, Achromobacter, and 

Salmonella, belonging to the phyla Proteobacteria, Bacteroidetes, Actinobacteria, 

Firmicutes, and Fusobacteria (Fig. 2.3). An OTU in the genus Salmonella which is a 

known cause of zoonotic infections, was found at an average relative abundance of 7.5% 

in all samples. Interestingly, several taxa at lower abundances were observed in the initial 

wild samples collected prior to captivity. Alpha diversity of the microbiota samples, as 

determined by Shannon diversity, also appeared to be increased in the ‘wild’ timepoint 

compared to most captive timepoints (Fig. 2.4).  

 

Venom Type

Species
C. atrox
C. molossus
C. scutulatus
C. tigris
C. viridis

A
B

Figure 2.2: The snake microbiota is individualized and driven by host species. 
Non-metric Multi-dimensional Scaling of the Bray-Curtis dissimilarity metric. Each 
point represents a single sample, colored by species and venom type (legend). 
PERMANOVA tests indicate significantly different centroids for venom type and 
species (P < 0.001); dispersion was only significant for species (P< 0.01, Levene’s 
test) and not for venom type. 
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Figure 2.3: The snake gut microbiota is stable over time. Genus-level stream plots of 
the top 50 most abundant bacterial genera as seen in three species over the course of ten 
weeks of sampling, measured by relative abundance. C. viridis and C. molossus were not 
included because of low sample size both pre- and post-digestion. Colors schemes 
correspond to phylum; pinks are Bacteroidetes, blues are Firmicutes, greens are 
Actinobacteria, yellows are Proteobacteria, and red is Fusobacteria. The gap in the 
timeline represents when feeding took place, followed by daily sampling after pre-
feeding weekly sampling. 
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Figure 2.4 The snake gut microbiota decreases in diversity post-captivity. Alpha 
diversity over time for all individuals as measured by Shannon’s diversity (weekly 
sampling pre-feeding; daily sampling post-feeding). An ANOVA test indicated 
significant differences between all days (p < 0.01). No pairwise tests were significant 
(Wilcoxon). 

 

Venom Type Influences Differentiation in the Gut Microbiota at the OTU level  

Representative RP-HPLC profiles were created to highlight the presence of 

hemorrhagic metalloproteases in Type B venoms that are thought to aid in digestion (Fig. 

2.5). To investigate whether or not these venom type differences distinguish the gut 

microbiota, LEfSe was used to identify whether specific OTUs were significantly 

divergent in snakes classified as venom type A or B. We observed 62 differentially 

abundant OTUs, with 42 OTUs found to be more abundant in Type B venom animals 

than in Type A venom animals (Fig. 2.6). Of the OTUs more differentially abundant in 
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each venom type, most of the differentially abundant OTUs were classified as 

Proteobacteria (37%) and Firmicutes (24%) but Firmicutes and unclassified bacteria 

(11%) were more abundant in snakes with type B venom. In type A venomous snakes, 

gut microbiota that was differentially abundant was most notable in the genera Nocardia, 

Sphinogbacterium, Ochrobacterium, and Paracoccus (Supp. Fig. A9). More genera (42) 

were differentially abundant in Type B venoms, including Corynebacterium, 

Clostridium_XI, Clostridium_sensu_stricto, Vagococcus, Anaerovorax, and 

Sandarakinorhabdus, Bilophila, Lawsonia, Edwardsiella, Proteus, Providencia. We also 

used LEfSe to identify differential OTUs in the venom types in only C. scutulatus from 

Arizona/New Mexico; twenty-five of the OTUs found with the whole dataset were also 

found to be differentially overrepresented by venom type (Fig. 2.6). Thus, venom type 

was responsible for microbiota differences regardless of species and location effects. 
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Figure 2.5: Components of Type A and B venoms. RP-HPLC showing 
venom protein content in Type B (top) and Type A (bottom) venom of C. 
scutulatus. One representative was chosen from each venom class as an 
example. The left gray marker denotes the presence of Mojave Toxin in Type 
A venom and absence in Type B venom while the second marker shows the 
presence of metalloproteinases in Type B venom and their absence in Type A 
venom. 
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Figure 2.6: Venom type distinguishes the snake microbiota. Heatmap showing the 
relative abundance of discriminative OTUs with Linear Discriminative Analysis (LDA) 
scores >2.0 when comparing the gut microbiomes of venom Type A and B individuals 
(individual samples on x-axis). LDA Effect scores were calculated in LEfSe. 42 OTUs 
(top OTU panel, y-axis) were identified as OTUs over-represented in Type B individuals 
and 20 OTUs (bottom OTU panel, y-axis) were identified as being over-represented in 
Type A venom individuals. The phylum designation for each OTU is shown as 
represented by the color legend. OTUs with an asterisk were found to be differentially 
over-abundant in the same venom type when LEfSe was run on C. scutulatus found in the 
same location as when LEfSe was run on the full data set.   
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Captivity Narrows the Diversity of the Rattlesnake Gut  

 Temporal alpha diversity measures (Fig. 2.4) and genus level stream plots (Fig. 

2.3) suggested that a change occurred from the ‘wild’ samples to the samples in captivity. 

To determine the extent to which change was occurring, we calculated Bray-Curtis 

dissimilarity, and visualized by NMDS, between the ‘wild’ samples and the last pre-

feeding, ‘captive’ samples. Interestingly, we found that captive samples were 

significantly different than wild samples (P<0.001, PERMANOVA; P<0.01, Levene), 

and appeared to converge on similar scaling space (Fig. 2.7B), indicating community 

structure may be more similar between captive individuals than it is between wild 

individuals.  

 To determine whether or not captive samples had a similar community structure, 

shared OTUs and ΘYC distances were calculated between samples from snakes post-

captivity (inter-post) and pre-captivity (inter-pre), and within each snake pre- and post-

captivity (intra-pre-post). Shared OTUs appeared greatest between the pre-captive, ‘wild’ 

samples (inter-pre), likely due to an overall increased OTU diversity in wild populations.  

(Fig. 2.7A; top). ΘYC distances showed a significant difference (P < 0.01, Wilcoxon rank-

sum test) between the dissimilarity of ‘captive’ samples compared to one another (inter-

post) and the dissimilarity of ‘wild’ samples compared to one another (inter-pre) (Fig. 

2.7A; bottom). ‘Inter-post’ samples were more similar to one another than ‘inter-pre’ 

samples (Fig. 2.7A; bottom), confirming the convergence of microbiota composition 

from the wild to the last captive time point (Fig. 2.7B). Additionally, Wilcoxon 
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significance was demonstrated between ΘYC distances of ‘intra-pre-post’ and ‘inter-pre’ 

comparisons (P < 0.01), but not between ‘inter-pre-post’ and ‘inter-post’ (Fig. 2.7A; 

bottom). Thus, dissimilarity in community structure of ‘captive’ snakes compared to one 

another is similar to the dissimilarity in community structure of each snake compared to 

themselves. 

 

 

Figure 2.7 The snake gut microbiota is shaped by captivity. A) Box plots showing one 
individual compared to themselves pre- and post-captivity (intra-pre-post), all 
combinations of post-captivity samples compared to each other (inter-post), and all 
combinations of pre-captivity samples compared to each other (inter-pre). The top plot 
shows number of shared OTUs between the samples tested. The ‘wild’ samples compared 
to each other have the greatest number OTUs that are shared (inter-pre). The bottom plot 
shows ΘYC dissimilarity between the samples (**P < 0.01, Wilcoxon rank-sum test). B) 
NMDS showing only the wild sample and the last sample in captivity before feeding for 

Gut Microbiome Composition from the Wild to Captivity 
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each individual (P<0.001, PERMANOVA; P<0.01, Levene’s test). The colors represent 
each individual snake.  

 
 To determine when the community structure was changing in captivity, beta-

diversity was calculated over time using ΘYC distances. Samples from each snake for all 

weeks post-captivity were compared to their respective ‘wild’ sample. All captive weeks 

were significantly different from the wild samples (P < 0.001, Wilcoxon test; Fig. 2.8). 

The mean ΘYC distances for C. scutulatus, C. tigris, and C. atrox, the species for which 

there was more than one sample, were the least similar to their wild sample at four weeks 

into captivity (ΘYC = 0.55, 0.57, and 0.71). At six weeks post captivity, C. scutulatus, C. 

tigris, C. atrox, and C. viridis on average, were all more dissimilar (ΘYC = 0.54, 0.28, 

0.51, and 0.86) to their wild sample than they were at one-week post captivity (ΘYC 

= 0.41, 0.16, 0.51, and 0.86) (P < 0.1, Wilcoxon rank-sum test; Fig. 2.8). These data 

suggest a significant difference in microbiota community structure of snakes in captivity 

to their respective wild microbiota community, regardless of the time in captivity.  
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To identify specific OTUs that could be attributed to the observed changes in 

similarity, we compared the number of OTUs in the ‘wild’ and ‘captive’ samples for each 

snake using presence/absence measures. A mean of 43.0% of all observed OTUs 

appeared in wild samples but were never observed in subsequent captivity; however, 

these OTUs only explained a mean of 4.5% of the observed relative abundance of the 

microbiota, suggesting that a bulk of the lost OTUs represent potentially rare and/or 

lower abundant OTUs (Fig. 2.9). In contrast, a mean of 42.1% of the OTUs observed in a 

snake were observed only during captivity, and never in their wild timepoint; on average, 
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Figure 2.8 Beta diversity over time plotted for each individual post captivity with a 
colored line for species mean. ΘYC dissimilarity was calculated for each sample compared 
to their respective wild sample. All weeks were significantly different from the wild 
samples (P < 0.001, Wilcoxon test). 
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these OTUs accounted for 16.7% of the relative abundance in the snakes. The shared 

OTUs account for only a small proportion (only 15.2%) of the OTUs when looking at 

number of OTUs present; however, these few OTUs make up about 78.7% of each snake 

when looking at the relative abundance (Fig 2.9). To identify the taxonomy of the OTUs 

being lost and gained, OTUs belonging to the ‘wild’ and ‘captive’ samples were 

classified taxonomically. The OTUs lost from the wild to captivity represent sixteen 

different phyla, whereas the OTUs that are gained in captivity represent eight phyla (Fig. 

2.9) 

 

Figure 2.9 Captivity shapes the ‘wild’ snake microbiota. A) Total number of OTUs 
(left) and relative abundance represented by the OTUs (right) observed in wild, captive, 
or in both sample types. OTUs were classified as wild and lost after captivity (wild), 
gained in captivity and never in the wild (captivity), and those that are shared in both the 
wild and captive samples of an individual (both). B) Phylum-level classification of the 
relative abundance of OTUs that are lost in captivity (top, n=468 OTUs total) and gained 
in captivity (bottom, n=290 OTUs total).  
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Microbiota Changes are Greatest Five Days Post-Feeding  
 
 Once fed, snakes were sampled daily for 14 days to assess potential rapid changes 

in microbiota due to digestion. Temporal beta diversity, comparing each sample to the 

previous sample was calculated using ΘYC distances. Additionally, we compared ΘYC 

distances from post-feeding comparisons to those observed before feeding. The alpha 

diversity observed in days 4, 5, and 6 in Figure 2.4 was observed as shifts in dissimilarity 

in days 4:5 and 5:6 in Figure 2.10.  We observed an overall increase in microbiota 

dissimilarity for days 4 and 5 and days 5 and 6 as compared to the pre-feeding sample 

(P<0.05, Wilcoxon rank-sum test) for C. viridis, C. scutulatus, C. atrox, and C. tigris 

(ΘYC=0.74, 0.59, 0.58, and 0.40), suggesting changes to the microbiota due to feeding on 

these days. For all species (C. viridis, C. scutulatus, C. atrox, and C. tigris) dissimilarity 

was significantly smaller between days 11 and 12 (ΘYC=0.2, 0.16, 0.02, and 0.01, P<0.05, 

Wilcoxon rank-sum test) than dissimilarity seen before feeding (ΘYC=0.9, 0.10, 0.25, and 

0.32). Comparisons approximately two weeks after feeding, seen in Figure 2.10 as 12:13, 

13:14 and 14:15 are not significantly different from the ΘYC dissimilarity seen before 

feeding. Thus, changes in microbiota composition during digestion appear to be greatest 

approximately five days after feeding and return back to the levels seen pre-feeding after 

approximately two weeks in post-feeding. 
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Figure 2.10 Feeding influences the snake gut microbiota. Beta diversity (ΘYC 
dissimilarity) comparing each sample to that of its subsequent sample (x-axis indicates 
decreasing dissimilarity).  The mouse indicates when feeding took place and marks the 
change from weekly to daily sampling. Colors are representative of the mean for each 
species. All ΘYC distances were compared to the 6:7 (pre-feeding) ΘYC  distance and those 
that were significantly different were labeled at the top of the plot ( ‘*’ P < 0.05). 
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The Venom Microbiome is Similar but Distinct from the Gut Microbiome 

We also investigated whether venom itself harbored a microbiota, and how this 

related to the gut microbiota. We sequenced the venom of five individuals, CLP2730, 

CLP2734 (we sampled this individual 3 times), CLP2735, CLP2738, and CLP2764 with 

an average number of sequences being 22,716.14. To identify the OTUs within the  

venom samples, OTUs with a relative abundance of at least 1% in any venom sample 

were chosen. The 36 OTUs abundant in the venom samples are similar to the most 

abundant phyla seen in all the gut microbiome samples, with Proteobacteria, 

Bacteroidetes, Firmicutes, and Actinobacteria dominating the most abundant bacteria 

(Fig 2.11). Three of the OTUs in these phyla belong to the same genera and include 

Bacteroides, Staphylococcus, Streptococcus. Repeat OTUs that remain unclassified 

within their family are those within Porphyromonadaceae and Chitinophagaceae.  

Presence/absence OTU filtering of the venom microbiome samples revealed that of the 

78 total OTUs present in more than one venom sample, 18 of those OTUs were rarely 

seen in gut microbiome samples. Five of the OTUs from the 18 venom-specific OTUs 

were present in venom samples at >1% abundance and was denoted with an asterisk on 

the heatmap (Fig 2.11). The venom microbiome specific OTUs consisted of the genus 

Porphyromonas belonging to the phylum Bacteroidetes, two from the genera 

Streptococcus belonging to the phylum Firmicutes, and Tepidimonas and Acidovorax 

belonging to the phylum Proteobacteria. There are two OTUs (0167 & 0433) from the 

genus Tepidomonas in our microbiome dataset, although one is of low abundance (not 

shown in Fig. 2.11). OTU0167 was present in five venom samples and only two gut 
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samples, whereas OTU0433 was present in two venom samples and only one gut sample. 

OTU 0197 is the only OTU from Acidovorax present in our microbiome data set and is 

only present in a single gut sample. 

 

 
 
 

Bacteroidetes Proteobacteria 
Firmicutes Chloroflexi

Actinobacteria Unclassified

* * 
* 

* * 

* * 

* *

CLP2730 CLP2764 CLP2734 CLP2734 CLP2734 CLP2735 CLP2738

Figure 2.11 Heatmap of the most abundant OTUs in the venom samples. The asterisk 
marks OTUs that are in at least two of the venom samples and are in less than 20 of the 
349 total gut samples. Three samples are from the snake CLP2734. 
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To determine how venom microbiota 

differed from the gut microbiota, we compared 

the two types of samples using ΘYC 

dissimilarity. The comparison among venom 

samples (V:V Inter) did not include the 

comparisons between the three samples from 

the same individual (Fig. 2.12). The number of 

shared OTUs between samples appears to be 

highest when comparing the venom samples to 

their respective wild gut sample (V:G Wild), 

though this is likely influenced by there being 

a greater number of OTUs in most wild 

samples than in the captive ones (Fig. 2.12). 

The venom microbiomes appear to be most 

dissimilar to their captive sample than to their 

wild and digestion samples, although 

Wilcoxon rank sum tests were not significant 

between any of the pair. Thus, although there 

appears to be some variation in dissimilarity, 

we cannot say whether or not the venom 

samples are significantly similar to the wild, 

captive, or digestion samples. 

Figure 2.12 The venom microbiome is 
compositionally similar to the gut 
microbiome. Box plots showing 
comparisons between venom samples 
(V:V Inter) and between each venom 
sample and two of its respective wild  
gut sample (V:G Wild), two of its 
captive gut samples (V:G Captive), and 
two of its digestion gut samples (V:G 
Diet). The shared OTU number is on the 
top and the bottom plot is ΘYC 
dissimilarity. Groups were not 
significantly different.     
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2.4 Discussion 

 This is the first study of snake microbiota that characterizes different species, 

locations and compares intraspecifically, a dynamic phenotypic trait (venom type) across 

individuals. The results of this study suggest that the gut microbiome of rattlesnakes is 

highly individualized but is influenced by host phylogeny (species) and venom type. We 

observed a strong correlation between microbiota composition and species, as well as 

differential abundance of OTUs based on the venom type of the snake, regardless of 

species.  

One of the goals of this study was to determine what bacterial taxa were present 

in the gut microbiome of five species of rattlesnakes (Crotalus) and whether or not this 

finding was consistent with that of other snake species previously studied in the wild. The 

major phyla, by relative abundance in all samples, were Proteobacteria, Bacteroidetes, 

Firmicutes, and Actinobacteria respectively. This finding is consistent with that reported 

in a metagenomic study of the timber rattlesnake (McLaughlin, Cochran, and Dowd 

2015), a 16S rRNA gene sequencing study of the cottonmouth (Colston, Noonan, and 

Jackson 2015) and from four species of snake in China (B. Zhang et al. 2019). Colston, 

Noonan, and Jackson (2015) also compared different regions in the digestive tract and 

our results appear to be more closely related, in composition, to the cloaca samples in 

their study where Proteobacteria was the dominant phylum, as opposed to the intestinal 

samples that were dominated by Bacteroidetes (~45%). The metagenomic study of the 

timber rattlesnake showed similar composition results to Colston, Noonan, and Jackson 

(2015) and this study, but interestingly found the pathogen Salmonella enterica, a human 
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pathogen that can also lead to infections in reptile hosts. In this study, we found an OTU 

in the genus Salmonella that had an average relative abundance of 7.5% in all samples, 

which could be the species S. enterica. If this is indeed S. enterica, such a high 

percentage could mean that the snakes are possibly susceptible to infection and is 

important to note for the purpose of containing zoonotic disease.  

Studies evaluating the microbiome of other reptiles in the wild show similar, but 

distinct profiles from the snake microbiomes. The wild avian microbiome reported in 

Grond et al. (2018) is also dominated by Firmicutes (~45%), Bacteroidetes (~12%), 

Actinobacteria (~8%), and Proteobacteria (~25%); however, wild birds reported a much 

higher average relative abundance of Firmicutes and a lower level of Bacteroidetes than 

seen here (8% and 26%, respectively). Crocodile lizards have demonstrated a similar 

profile to the avian and snake microbiome, although lower levels of Firmicutes and 

Actinobacteria were reported compared to our study (Jiang et al. 2017). Our data, in 

combination with these previous studies, indicate that snakes have a similar but distinct 

gut microbiome from other reptiles and adds additional evidence suggesting 

Proteobacteria play a much bigger role in reptiles than in other vertebrates (Grond et al. 

2018).  

 To the authors knowledge, this is the first study to compare differences in the gut 

microbiome between two species with the same venom type or the same species with 

different venom types, although some studies have looked at differences between the 

microbiomes of venomous and non-venomous animals (Krishnankutty et al. 2018; Qin et 

al. 2019). Qin et al. (2019) found that venom-secretion snakes had shared gut microbiota 
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features as compared to non-venom-secretion snakes, implication venom as playing a role 

in selection and/or maintenance of specific microbes in the snake gut. Although venom 

variation within a population of Mojave rattlesnakes is driven by local selection, the 

microbes present within these snakes and their potential for mediating interaction 

between the phenotypic variation of venom and digestive performance have been largely 

unexplored until now. Significant microbiota composition differences exist between 

venom types in the species of Crotalus we examined. An OTU from the genus 

Sphingobacterium, phylum Bacteroidetes, was differentially abundant in venom Type A 

snakes and was never seen in a venom Type B snakes in the wild, regardless of 

geographical location of the host. This OTU had a relative abundance of 0.13% relative 

abundance, the 39th most abundant OTU in this data set. Notably, species in the genus 

Sphingobacterium are known for having a high concentration of sphingolipids which are 

known to play a significant role in providing bioactive metabolites to hosts (Gault, Obeid, 

and Hannun 2010). Another notable OTU in the phylum Bacteroidetes that was 

differentially abundant in Type A venom animals was from the genus Chryseobacterium, 

with an average relative abundance of 0.053% in all samples. Some species of 

Chryseobacterium have been found to have the ability to degrade collagenous matrices 

such as feathers because of their production of metalloproteinase enzymes (Pandey et al. 

2019; Venter, Osthoff, and Litthauer 1999); metalloproteinases are the major component 

missing in Type A venoms that are thought to aid in digestion for Type B venom 

individuals. The differential abundance of the OTU from the genus Fusobacteria in Type 

B animals is notable as Fusobacteria is treated as a pathogen when found in humans 
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(Aliyu et al. 2004). More information is needed to determine whether or not these 

differentially expressed bacteria are functionally replacing an aspect of digestion that is 

missing in animals that have either metalloproteinase (Type B) or phospholipase (Type 

A) venom activity. However, the evidence does suggest that there is a difference in the 

microbiomes of snakes with these venom types, further suggesting a possible link 

between venom type and dietary specialization (Barlow et al. 2009; Daltry, Wüster, and 

Thorpe 2003; Holding et al. 2018) 

Captivity and Digestion as Modulators of Microbiome Diversity  

Here we found a decrease in diversity of the gut microbiome after captivity. We 

tracked the same individual snakes from the wild into captivity. Beta-diversity 

calculations show that the rate of microbiome change from the initial wild sample is 

highest in the first 4 weeks post captivity, after which point it stabilizes. Previous studies, 

most of them focusing on mammals, have looked at the effects of captivity on the gut 

microbiome (Clayton et al. 2016; Gibson et al. 2019; McKenzie et al. 2017; Tong et al. 

2019). However, most of these studies have compared captive and wild animals of the 

same species. Unlike in Kohl & Dearing (2014) which noted only a small change in 

diversity as the desert woodrat entered captivity, we found that microbiome composition 

and to some extent microbiota diversity was affected when entering captivity. Our 

findings were consistent with the findings in a paper by Kohl, Skopec, & Dearing (2014) 

that suggested a greater loss in diversity upon captivity among species that are dietary 

specialists than among species that are generalists. The OTUs lost and gained by the 

snakes in captivity show losses that appeared to be from a diverse range of phyla, 
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whereas the OTUs gained in captivity were limited to only a few phyla. This indicates a 

narrowing of bacterial diversity in the gut microbiome once snakes enter captivity. The 

potentially rare OTUs lost in captivity may represent passing environmental microbes but 

could also play a role in community diversity that affects overall snake health. The lack 

of beneficial microbes can be an indicator of the overall health of an individual, and the 

loss of microbial communities in captivity often leads to malnutrition and disease 

(McKenzie et al. 2017; Tong et al. 2019).  

 Many of the most abundant OTUs are shared between the gut and venom 

microbiome samples and the venom microbiome at the phylum level looks similar to that 

of the gut microbiome. However, some of the highly abundant venom microbiota OTUs 

were rarely seen in gut microbiome samples. Porphyromonas is commonly seen in the 

salivary microbiome of humans, dogs, and other animals hosts (Fournier et al. 2001; 

Summanen, Lawson, and Finegold 2009). Acidovorax is a genus marked by acid 

degradation properties that has species commonly found to be present in the microbiome 

of tumor growth and cancer in humans, especially oral and lung cancers (Dulal and Keku 

2014; Sanapareddy et al. 2012; Zhen Zhang et al. 2019) and many species are plant 

pathogens (Adhikari et al. 2017), but are not often recovered in healthy animal 

microbiomes. Similarly, Tepidimonas is not a common microbiome isolate outside of the 

context of disease states such as lung cancers (Greathouse et al. 2018). These results 

indicate a venom-specific microbiota in rattlesnakes that is distinct not only from their 

gut microbiota but are distinct from normal, healthy animal microbiota. 
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 We found that the microbiota changed significantly from four to six days post-

feeding and that there was less change in the microbiota after twelve days post-feeding. 

Tattersall et al. (2004) looked at the thermogenesis of rattlesnakes during digestion and 

found that after 168 hours (seven days), snake body temperature returned to the same as 

that of the pre-feeding time, indicating the conclusion of digestion. Significant changes in 

microbiota community structure likely occurred during the final passage of digestive 

material through the cloaca so it is notable that Tattersall et al. (2004) saw the conclusion 

of the thermogenesis associated with digestion just after we saw a spike in the differences 

of microbiota community structure. These results indicate that rattlesnakes finish with the 

major energy expenditure of digestion at approximately one-week post-feeding, and the 

changes occurring in the microbiota that are responsible for aiding in digestion are back 

to pre-feeding levels at approximately two-week’s time.  

Concluding Remarks  

The gut microbiome in rattlesnakes is marked by high inter-individuality in the 

wild followed by a decrease in bacterial diversity and inter-individuality once in 

captivity. Across all treatments, i.e. wild, captivity, and digestion, the gut microbiome 

was different between animals with both hemorrhagic Type B venoms and neurotoxic 

Type A venom types. One explanation for a difference in the microbiomes between 

animals with different venoms is that the tissue-degrading venom peptides called snake 

venom metalloproteinases, which constitute a large portion of Type B venoms and are 

lacking in Type A venoms, are thought to aid in digestion by means of tissue-degrading 

venom peptides (Mackessy 2010; Thomas and Pough 1979). A functional replacement of 
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bacteria for the tissue-degrading properties may be occurring in Type A venoms that lack 

metalloproteinases. More research needs to be done to determine whether or not a 

functional replacement is driving the difference in the gut microbiomes of these venom 

phenotypes.  
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Chapter 3 

 

Concluding Remarks 

3.1 Implications 

The work presented here demonstrates a significant advance in knowledge of an 

understudied group in the field of microbiome research. No species in this study has a 

published sequenced microbiota, and there are only two published microbiotas from the 

genus Crotalus (McLaughlin, Cochran, and Dowd 2015; Allender et al. 2018). 

Importantly, this study provides a foundational basis for investigating a functional 

replacement of lost venom components with microbiota. This study also adds to the work 

of other research that has looked at the effects of captivity on the gut microbiome 

(Clayton et al. 2016; Gibson et al. 2019; Kohl, Skopec, and Dearing 2014; McKenzie et 

al. 2017; Tong et al. 2019) but is the first to look at the microbiome of a non-mammalian 

organism entering into captivity.  

3.2 Shortcomings  

 Most of the shortcomings of this study are due to sampling numbers and the 

methodology of sampling. A larger sample size would always be beneficial statistically; 

specifically, more samples from Type B C. scutulatus individuals would have 

strengthened interpretation of the observed differences. Additionally, sampling more type 

B animals from a different geographical location than Arizona, the only currently 

represented location for type B animals, would have removed potential species-level 
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effects in differentiating the microbiota by venom expression. A major shortcoming of 

this study was in not having longitudinal replicates for wild sampling. It would have been 

especially helpful to have an equal number of snakes from each location, regardless of 

venom type, for better testing of environmental differences in the gut microbiota.  More 

than one wild sample for each individual would have allowed us to investigate the 

stability of the wild microbiota itself and confirm whether lost OTUs represented 

spurious species from the environment or the presence of rare taxa that are part of the 

snake microbiota naturally. Finally, more representation from some of the host species, 

such as the individual C. tigris sampled in this study, would have allowed more 

investigation into species-level differences in the microbiota.  

 Our results demonstrate preliminary data for the presence of a snake venom 

microbiota. Nevertheless, more research is needed to establish whether or not these 

microbiota observed were from the venom gland. Sampling more than five individuals 

would have strengthened these data, as well as sampling a more even number of Type A 

and Type B individuals to investigate differences between these two types. All of the 

venom samples were sampled in captivity; because of the change in diversity observed in 

the wild to compare to captivity in the gut microbiota, a venom sampling in the wild 

could be different. Additionally, a swab from the oral cavity of each snake could have 

aided differentiation of oral versus venom microbiota. Nevertheless, given the repeat 

patterns observed in the venom samples, I am confident that the samples are distinct from 

the gut microbiota itself. Further comparison of oral, gut, and venom would aid 

differentiation and identification of a venom microbiota. 
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 Lastly, although 16S rRNA gene sequencing was appropriate in this study to 

assess the microbiome community structure of a large number of individuals, this type of 

analysis is limited to microbiota community analysis. Without species-level 

identification, gene, and transcriptomic expression data, functional predictions as to what 

is driving community structure remain unknown.  

3.3 Future Directions 

An interesting direction to take would be to focus on the functional characteristics 

of the microbes which are differentially expressed in the gut of snakes with differing 

venom type. Metagenomic sequencing of the gut microbiota of multiple individuals from 

each venom type in both the wild and in captivity would allow for strain-level 

differentiation, as well as provide a list of potential functions from the genomes of these 

microbes that are related to venom. Sequencing the metagenomes of venom in the venom 

gland of the same individuals to determine whether or not the same bacterial species were 

colonizing the gut and the venom gland would also allow for identification of species that 

are present in both environments. Furthermore, meta-transcriptomics testing during 

digestion could reveal which bacterial functions are expressed during digestion. These 

could be compared to the lists of differentially expressed species identified in the 

metagenomic study.  Species that are both found to be expressed in the transcriptome 

during digestion and were differentially abundant in the metagenome are likely 

functionally replacing an aspect of the venom that is missing in the venom type that 

animal possesses.  
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Another potential area of research in which this study could expand is in venom 

gland microbiome research. There is a dearth of information on venom gland 

microbiomes (Ul-Hasan et al. 2019), even though there are many examples of microbes 

with similar characteristics to venom toxins (Marino-Puertas, Goulas, and Gomis-Rüth 

2017; Sitkiewicz, Stockbauer, and Musser 2007). For example, many microbes can 

secrete toxins that lead to tissue necrosis similar to that seen by hemorrhagic venom 

toxins (Ovington 2003). Additionally, there is a possibility that some bacteria may benefit 

from the effect different venom types have on a wound (Saravia‐Otten et al. 2007), such 

as activation of the kinin system by bradykinin potentiating peptides (BPPs), which some 

bacteria can exploit to support their proliferation (Loof, Deicke, and Medina 2014). 

Understanding what microbes are in venom glands could uncover commensalism 

between bacteria and venom, and a possible functional replacement of lost venom 

components with bacteria. 

 There are many of future areas of research in which to study in regard to 

microbiota interactions with venom components, as little research is being done in this 

field. Investigation of the similarity of the virulence pathways (specifically immune and 

nociceptor regulation) of venom peptides and bacterial toxins would lead to a better 

understanding of how commensalism may play a role in venom-microbe interactions, 

whether the microbes are in the gut or in the venom itself.  
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Appendix A   

Supporting Information for Chapter 2: The Gut 

Microbiome   of Southwestern Rattlesnakes as Revealed by 

16S rRNA Sequencing 

 

A.1 Supplementary DNA Extraction Methods 

After inhibitor removal, each Collection Plate contained 850 µl of supernatant.   

For each 96-well plate, a solution of 2 ml ClearMag Beads was added to 85 ml of 

ClearMag Binding solution and vortexed. From this bead/binding solution, 875 µl was 

added to each well of the 2 ml collection plate containing the supernatant collected after 

inhibitor removal. The collection plate was then shaken at 500 rpm at room temperature 

for 10 min followed by incubation on a magnet for 10 min. Liquid was then discarded, 

leaving the beads. The plate was then removed from the magnet and 500 µl of ClearMag 

Wash solution was added to each well before being placed back on the magnet for a 10 

min incubation. With the plate still on the magnet, liquid was again discarded leaving the 

beads. The wash and removal steps were repeated twice more. Once completed, the plate 

was removed from the magnet and 100 µl of Elution Buffer was added to each well. The 

plate was shaken for 25 min at 500 rpm and placed on the magnet for another 10 min 

incubation. While on the magnet, 100 µl was pipetted from each collection plate to a 

storage plate. The isolated DNA was quantified using the Qubit dsDNA BR Assay Kit 
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(ThermoFisher Scientific, Q32850) on the Qubit 3.0 Flurometer (ThermoFisher 

Scientific) following the manufacturer’s protocol.  

 

A.2 Additional description of OTUs seen in wild samples 

To more specifically investigate the microbiota of snakes in their natural habitat, 

we focused on the initial ‘wild’ timepoint collected from each snake. In comparing the 

total number of OTUS observed in all of the snakes, we observed that 28.2% of all the 

observed OTUs were unique to single individual snakes (Fig. A1). OTUs that were 

shared between individual snakes only accounted for 3.7% of all these OTUs (Fig. A1).  

Approximately 3% of total OTUs in the microbiome of snakes in the wild were unique to 

geographical location, whereas 1% of OTUs where specific to either species or venom 

type. The majority of OTUs in the wild samples (63%) did not meet the strict cutoff for 

group-level designation; however, they represent OTUs that are shared between some 

snakes regardless of location, species, or venom type.  
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Figure A1: The pie chart represents the total number of OTUs across all wild samples (789 in 
total). Presence/absence was calculated for each OTU in all wild samples. Unique (223 OTUs) 
indicates an OTU that was found in one individual snake and not found in any other. Shared (29 
OTUs) indicates OTUs that were in >70% of all individual. Location (23 OTUs), Species (9 
OTUs), and Venom (7 OTUs) are OTUs that met a strict cutoff of >= 50% in one group and are 
never seen in another group. e.g. For venom type, an OTU would have to be in at least half of 
venom Type A individuals and never seen in a venom type B individual to be able to be 
considered a venom type OTU, etc. Unspecified OTUs (498) are those that did not fall into a 
specific category. Any OTU that was only in two individuals was automatically placed in this 
category because it was not unique to an individual nor would it meet the 50% cutoff for any of 
the group categories.   
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A.3 Supplemental Figures 

 

Figure A2. Genus-level stream plot of top 50 genera across all samples, comparing only 
the venom Type A and venom Type B C. scutulatus samples. 
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Figure A3. Genus-level stream plot of top 50 genera across all samples, comparing all 
samples with both venom Types.  
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Figure A4. OTU presence/absence comparison of the average number of OTUs seen 
within an individual, and how many of the OTUs are exclusive to ‘wild’, ‘captivity’, 
‘diet’ and how many are shared between these categories.  
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Figure A5. All statistics performed on box plots showing one individual compared to 
themselves pre- and post-captivity (intra-pre-post), all combinations of post-captivity 
samples compared to each other (inter-post), and all combinations of pre-captivity 
samples compared to each other (inter-pre). 
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Figure A6. NMDS plots comparing location and venom type.   PERMANOVA tests 
indicated significantly different centroids for venom type and location (P < 0.001), 
however dispersion was no significant for either (Levene’s test). 
 

 
Figure A7. NMDS plots comparing all individuals. Both PERMANOVA and Levene’s 
tests indicated significantly different centroids (P < 0.001) and dispersion (P < 0.001) 
between groups 
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Figure A8. NMDS plots comparing the wild sample to the last captive samples for each 
snake. Triangles represent the first time point and circles represent that final time point. 

Figure A9. LEfSe generated plots showing notable differences in OTU relative 
abundance in samples with Type A venoms; OTU0041 Nocardia (top left), OTU0039 
Sphingobacterium (top right), OTU0020 Paracoccus (bottom left), and OTU0029 
Ochrobactrum (bottom left).  
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