
Clemson University Clemson University 

TigerPrints TigerPrints 

All Theses Theses 

August 2020 

A Multistate Survival Analysis for Sequential Follicular Lymphoma A Multistate Survival Analysis for Sequential Follicular Lymphoma 

Treatment Leveraging National Lymphocare Study Treatment Leveraging National Lymphocare Study 

Aashay Mahesh Mahesh Mehta 
Clemson University, aashaymehta246@gmail.com 

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses 

Recommended Citation Recommended Citation 
Mehta, Aashay Mahesh Mahesh, "A Multistate Survival Analysis for Sequential Follicular Lymphoma 
Treatment Leveraging National Lymphocare Study" (2020). All Theses. 3395. 
https://tigerprints.clemson.edu/all_theses/3395 

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for 
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact 
kokeefe@clemson.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/354492793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3395?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


A MULTISTATE SURVIVAL ANALYSIS FOR
SEQUENTIAL FOLLICULAR LYMPHOMA
TREATMENT LEVERAGING NATIONAL

LYMPHOCARE STUDY

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Industrial Engineering

by
Aashay Mahesh Mehta

August 2020

Accepted by:
Dr. Çağlar Çağlayan, Committee Chair

Dr. Scott Mason
Dr. William Ferell



Abstract

Follicular lymphoma (FL), caused due to the abnormal growth of B-cells, is

the most common form of indolent Non-Hodgkin’s Lymphoma (NHL) in the United

States. Majority of the patients diagnosed with FL are subjected to a series of

treatment during their clinical course, thereby providing researchers an opportunity

to evaluate sequential effect of different treatment regimens and identify significant

risk factors affecting the survival of patients.

National Lymphocare Study (NLCS) is the largest (n = 2,740) prospective

study conducted in the United States that collected information about different prog-

nostic factors and outcomes required to conduct a comprehensive multi-state survival

analysis. Using the data set, we analyzed the effect of 11 stationary and 5 dynamic

variables on the death-specific transition and compared the results obtained from two

multi-state models. We identified significant clinical factors impacting all-cause and

FL-specific death using Cox proportional hazard model and predicted the course of

disease using Aalen-Johansen estimator.

The risk of all-cause death was 16.37% following 5-years from diagnosis. At

the same time point, patients initially kept under watchful waiting (WW) were at a

lower risk of FL-specific death, 4.52%, compared to death due to other-causes, 8.25%.

Similarly, patients receiving an induction treatment without WW had an reduced risk

of FL-specific death compared to death due to other cause at the 5-years time point.
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We further identified that the risk of FL-specific death increase after first-, second-

, and third-line treatment with an increase in age of diagnosed patients. Dynamic

variables, such as low albumin and elevated lactate dehydrogenase, were associated

with poor outcomes after first-, second-, and third-line treatment. The presence of

B-symptoms at diagnosis was not associated with an increased risk of FL death. On

the other hand, being female reduced the risk (hazard ratio: 0.46 [0.3 - 0.8]) of FL

death following treatment 2.

Using a multi-state survival analysis framework allowed to quantify the effect

of prognostic factors on cause-specific death. We identified that the risk of death due

to other-cause is higher compared to the risk of death due to FL.
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Chapter 1

Introduction

Follicular Lymphoma (FL) is a type of cancer that is caused by the abnormal

growth of B-Lymphocytes, a type of white blood cells, found in the lymph nodes and

other parts of the body (Figure 1.1). The family of lymphomas is divided into two

categories: Hodgkin’s lymphoma and Non-Hodgkin’s lymphoma (NHL), where FL

belongs to the class of the NHLs. In general, FL has a slow-growing (i.e., indolent)

prognosis after diagnosis rather than aggressive, and is the most prevalent form of

the slow-growing NHLs in the United States (U.S.), accounting for nearly 75% of

slow-growing NHL cases [1].

Figure 1.1: Human Anatomy with Lymph Nodes [2]
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In 2019, approximately 15,000 - 20,000 new patients are projected to be diag-

nosed with FL, accounting for 20% to 25% of NHL patients [3–5]. FL is not known to

be an inherited disease and is more common in people aged 50 years and above, where

the mean age at diagnosis is 65 years [6]. A considerable proportion of FLs relapse

(i.e., grows again) after the initial treatment [7, 8] and patients diagnosed with FL

are usually subjected to a series of therapies during the course of their treatment [9].

Currently, there is no standard care available for the initial and sequential

treatments of FL in the U.S. [10–13]. A variety of disease management options are

available and implemented in the clinical practice, including watchful waiting, single-

agent therapy, chemotherapy with immunotherapy, radiotherapy and bone marrow

transplant [14–16]. At present, there is no treatment strategy that has been shown

to yield superior FL outcomes compared to all other alternative strategies [10, 12, 17,

18]. The selection of the corresponding therapy is often guided by the personal and

local expertise of the clinicians and depends on patient characteristics and various

clinical factors such as age and stage of the disease at diagnosis.

Limited data are available regarding the outcomes associated with the se-

quential FL treatments. Some of the main challenges preventing new comprehensive

randomized controlled trials (RCTs) from being performed are high financial costs,

the lengthy follow-up durations, and the requirement for relatively large number of

patients to show a statistically significant difference between treatment groups [19].

Still, there are several existing randomized clinical trials and observational studies,

conducted to assess the performance of FL treatments over time. In particular, Na-

tional LymphoCare Study (NLCS) is the largest prospective cohort study conducted

in the U.S. for FL [8]. Recruiting more than 2,700 FL patients between 2004 and

2007, NLCS was conducted to collect information about clinical outcomes of newly

diagnosed FL patients over a period of 10 years. Further, majority of the NLCS
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participants received multiple lines of treatments after diagnosis. Accordingly, NLCS

provides researchers a unique opportunity to conduct a comprehensive analysis to

examine the effectiveness of sequential FL treatments over time.

Prior analytical approaches predominantly focused on the effects of a single

line of therapy on a single outcome of interest such as progression free survival (PFS)

or overall survival (OS). Yet, given a fair portion of the FL cases relapse and most pa-

tients require more than a single therapy, analyzing sequential FL treatments remains

critical. In addition, while analyzing multiple lines of FL treatments, it is important

to study both FL-associated deaths and deaths associated with other causes, rather

than solely focusing on a single outcome such as OS, in order to accurately iden-

tify risk factors affecting cause-specific mortality. Such an analysis would require an

analytical model that accounts for competing risks and separately captures multiple

treatment stages with cause-specific deaths within a single framework.

Attempting to make an initial step in closing this gap, we develop a com-

prehensive continuous-time multi-state model that thoroughly captures the clinical

course of FL and conduct a multi-state survival analysis study by utilizing the largest

prospective cohort study dataset that is currently available for FL. Our main objec-

tives are to (i) investigate the clinical outcomes associated with the multiple lines of

FL treatment, (ii) identify the significant socio-demographic and clinical risk factors

affecting FL treatment and cause-specific mortality, and (iii) quantify their impact

on FL outcomes at each line of therapy by leveraging the NLCS dataset.

The main findings of this study are as follows: First, we identified that the

risk of death due to FL is relatively less compared to risk of death due to other-

cause at the 5- and 8-year time point for all the patients in the data set. In fact, for

WW patients the risk of other-cause death is 1.5 times the risk of FL related death.

Second, we identified that old age, elevated lactate dehydrogenase, and low albumin
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level were associated with poor outcomes, i.e. increased the risk of FL-specific death,

after first-, second-, and third-line treatment. Third, being female reduced the risk of

FL-specific death following treatment 2. On the other end, cancer stage of patient,

the presence of B-symptoms, number of nodal and extra nodal sites involved, and

low hemoglobin level did not have statistical significant effect on FL-specific death

following each treatment stage.

The rest of this thesis is organized as follows. In Chapter 2, we provide a

detailed descriptive statistic of various treatment regimens, and clinical and socio-

demographic factors in the NLCS data set. In Chapter 3, we review the literature

about different methodologies used to analyze time-to-event data sets and shed light

on important findings from previous FL studies. In Chapter 4, we give a detailed

illustration of the methods and models utilized in the identification of key prognostic.

In Chapter 5, we present the results obtained from our analysis. In Chapter 6, we

discuss the strengths and limitation of our analysis and provide scope for future

research.
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Chapter 2

Patients and Data Input

We identified a total number of 2,740 patients from the NLCS dataset for

our multistate survival analysis study. The NLCS is the largest observational study

and database in FL in the U.S., conducted to examine FL treatments and clinical

outcomes for newly diagnosed patients [16]. All the eligible patients in the NLCS

were diagnosed with FL within six months of their enrollment and none of them

had a prior history of lymphoma. The study was multicentered and was conducted

by biotechnological companies Genentech, located in San Francisco, CA, and Biogen

Idec, located in Cambridge, MA. The study collected information about treatment

regimens, patient outcomes such as response to treatment and cause of death, patient

demographics, and clinical features. We briefly discuss the parameters and variables

in the data set and report the proportion of each category for each factor in the

following subsection. Conceptual and operational details about NLCS have been

published elsewhere [16].
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2.1 Data Input

Out of a total of 2,740 patients in the dataset, two were excluded from our

analysis due to missing information about treatment strategies. In addition, we ex-

cluded thirty patients due to conflicting information about the cause of death. The

remaining 2,708 patients were included in the current analysis.

The median age of the 2,708 adult patients included in our study were 61.5

years. We categorized patients into six age groups as follows: age < 50 (22.5%),

age between 50-60 (24.8%), 60-70 (25.3%), 70-80 (19.7%), 80-90 (7.2%), and age >

90 (0.7%). This categorization is in line with the published medical literature [20].

Other patient characteristics that were available at diagnosis were sex, Ann Arbor

stage, blood hemoglobin level, the presence of B-symptoms, the number of nodal and

extra nodal site involvements, histologic FL grade, and the presence of bone marrow

(BM) involvement. The Ann Arbor stage of FL at diagnosis was classified into two

categories: stage I & II (early), and stage III & IV (advanced). Hemoglobin levels

less than and above 12 g/dL were respectively classified as low and normal. Providing

critical information about the area and the growth of FL, the number of nodal sites

involved were divided into two categories, < 5, and ≥ 5, and the number of extra

nodal sites were divided into three categories, 0, 1, and ≥ 2 sites involved. Histological

FL grade were classified as grade I (low) and grade II or III (high). Some of these

variables were not available for several patients.

Two other constant variables that were measured at the time of diagnosis and

included in the NLCS dataset were Eastern Cooperative Oncology Group (ECOG)

performance scale [21] and Follicular Lymphoma International Prognostic Index

(FLIPI) score [22]. ECOG is utilized to assess and quantify the impact of the dis-

ease on a patient’s functional status and daily abilities. Based on their performance
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status, patients were categorized into 3 classes in our dataset: normal (0), restricted

but capable (1), requires assistance or disabled (2).1 FLIPI is a risk assessment and

classification tool, developed by Solal-Céligny et al. [22] in 2004. It uses five adverse

prognostic factors (namely, age, FL stage, number of nodal areas, hemoglobin level,

and lactic acid dehydrogenase (LDH) level) to classify patients into three risk groups:

low/good risk, intermediate risk, and high/poor risk.

There were several dynamic variables that were collected at the time of diag-

nosis and prior to the initialization of each treatment regimen. These variables were

serum LDH level, platelet level, white blood cell (WBC) level, and albumin level.

These dynamic variables are categorized into three categories; low/high, normal and

not available. Albumin level < 3 g/dL, WBC level < 3,000/mm3, and platelet level

< 100,000 /mm3 are labelled as low or high-risk factor as they are associated with

adverse outcomes. Whereas, Elevated LDH level associated with adverse outcome is

labelled as high. On the other hand, low-risk factors for each of these four dynamic

variable are labelled as normal and are considered as the baseline or reference category

for future analysis.

Time and presence of cause-specific death were the primary prediction out-

comes of our study. Cause-specific deaths were classified into two categories: death

due to FL, and death from other causes. For the patients who died during the clinical

trial (i.e., NLCS) or before the last follow-up, the time of deaths were documented

in the dataset. Yet, since the NLCS data is right-censored, it is not known whether

any patient experienced death after the time of the last follow-up (i.e. 03/2014). We

report the proportions of patient characteristics and clinical factors together with the

percentages of cause-specific deaths in Table 2.1.

1ECOG classes 0, 1 and 2 respectively correspond to 90-100, 70-80, and ≤60 in Karnofsky per-
formance status (KPS) [21].
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Table 2.1: Patient Characteristics and Clinical Factors

Percentage of Death

Patient Characteristics
and Clinical Features

Categories for
Prognostic Factors

Proportion
of Patients
(n = 2,708)

Death FL
(n = 261)

Death Other
(n = 360)

Age

≤ 50 22.5% 10.0% 6.1%

51-60 24.8% 15.7% 11.7%

61-70 25.3% 24.5% 23.3%

71-80 19.7% 32.6% 36.9%

81-89 7.2% 15.3% 19.7%

≥ 90 0.7% 1.9% 2.2%

Sex
Male 48.4% 47.1% 51.7%

Female 51.6% 52.9% 48.3%

Follicular
Lymphoma
International
Prognostic

Index (FLIPI)

Good 28.2% 7.3% 11.1%

Intermediate 24.2% 21.5% 20.3%

Poor 27.3% 52.5% 43.1%

Not Available 20.3% 18.8% 23.1%

Stage of Disease

I & II 32.5% 17.6% 27.2%

III & IV 66.5% 81.2% 71.1%

Not Available 1.0% 1.1% 1.7%

Hemoglobin Level

≥ 12 g/dL 73.8% 57.5% 60.8%

< 12 g/dL 19.5% 36.0% 30.6%

NA 6.6% 6.5% 8.6%

Histology
(Cancer Type)

Grade I 42.1% 37.5% 39.2%

Grade II & III 46.3% 47.9% 47.2%

Not Available 11.6% 14.6% 13.6%

B-Symptoms
No 74.7% 64.0% 69.4%

Yes 25.3% 36.0% 30.6%
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Table 2.1: Patient Characteristics and Clinical Factors (continued)

Percentage of Death

Patient Characteristics
and Clinical Features

Categories for
Prognostic Factors

Proportion
of Patients
(n = 2,708)

Death FL
(n = 261)

Death Other
(n = 360)

Extra Nodal
Site Involved

None 45.2% 36.0% 38.6%

1 32.8% 33.3% 40.8%

≥ 2 18.4% 27.2% 16.4%

Not Available 3.5% 3.4% 4.2%

Nodal Site
Involved

< 5 63.4% 57.9% 60.3%

≥ 5 32.4% 38.7% 34.4%

Not Available 4.2% 3.4% 5.3%

Bone Marrow
Involvement

No 46.6% 34.9% 36.9%

Yes 28.5% 34.1% 29.2%

Not Available 24.8% 31.0% 33.9%

Eastern
Cooperative
Oncology
Group
(ECOG)

0 46.8% 32.6% 30.0%

1 18.9% 23.0% 26.1%

2 3.3% 6.5% 6.9%

Not Available 31.0% 37.9% 36.9%

Albumin Level
at Diagnosis

≥ 3.0 g/dL 83.5% 74.3% 82.5%

< 3.0 g/dL 4.5% 10.3% 6.1%

Not Available 12.1% 15.3% 11.4%

Lectate
Dehydrogenase

(LDH)

Normal 59.9% 45.2% 53.3%

Elevated 16.2% 29.5% 18.1%

Not Available 24.0% 25.3% 28.6%

White Blood
Cell (WBC)

Count

≥ 3,000/mm3 94.1% 95.0% 93.3%

< 3,000/mm3 3.4% 3.1% 3.9%

Not Available 2.6% 1.9% 2.8%
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Table 2.1: Patient Characteristics and Clinical Factors (continued)

Percentage of Death

Patient Characteristics
and Clinical Features

Categories for
Prognostic Factors

Proportion
of Patients
(n = 2,708)

Death FL
(n = 261)

Death Other
(n = 360)

Platelet Level
at Diagnosis

≥ 100,000/mm3 93.8% 93.5% 90.8%

< 100,000/mm3 3.5% 3.8% 6.1%

Not Available 2.8% 2.7% 3.1%

Therapies received by the patients over the course of their treatment pro-

cess were categorized into 7 classes in the dataset: chemotherapy, rituximab (R)-

chemotherapy, R-monotherapy, investigational therapy, non-investigational therapy,

radioimmunotherapy, radiotherapy, and bone marrow transplant (Table 2.2).

Table 2.2: The Distribution of Therapies Received at Each Treatment Stage

Treatment (TX) TX 1
(n = 2475)

TX 2
(n = 1026)

TX 3
(n = 472)

TX 4
(n = 248)

TX 5
(n = 144)

TX 6
(n = 77)

Chemotherapy 4.2% 9.5% 15.5% 15.7% 23.6% 18.2%

Rituximab (R)
Chemotherapy

61.5% 40.3% 38.6% 35.5% 31.3% 37.7%

R-Monotherapy 18.7% 25.7% 17.4% 14.9% 10.4% 9.1%

Investigational
Therapy 7.5% 4.5% 7.0% 7.7% 7.6% 5.2%

Non-Investigati-
onal Therapy 0.7% 1.6% 3.0% 3.2% 6.9% 5.2%

Radioimmuno-
therapy 0.1% 4.3% 6.1% 4.8% 3.5% 16.9%

Radiotherapy 7.2% 13.4% 8.7% 9.7% 8.3% 7.8%

Bone Marrow
Transplant 0.0% 0.9% 3.8% 8.5% 8.3% 0.0%
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Chapter 3

Literature Review and The Key

Differences of Our Study

In this section we provide an overview on two streams of research regarding

lymphoma treatment literature. First, we discuss different analytical or computa-

tional methods used in the previously published literature for the management of

lymphoma, such as survival analysis, statistics, and machine learning. Second, we

discuss the medical literature relevant to FL treatment. Finally, we confer about how

our current study contributes to the existing literature.

3.1 Theoretical Background and Methodology Re-

view

The occurrence and time of disease progression, death, and other clinical events

and outcomes are among the key measures in most medical and epidemiological stud-

ies. Yet, most clinical data used in these studies are censored, where information

on time-to-event is usually not completely available for all patients participating in
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the study. As a result, the direct use of standard statistical methods such as logis-

tic regression and analysis of variance has a limited application for clinical datasets.

Instead, survival analysis, a branch of statistics that can cope with censored data, is

commonly utilized to analyze time-to-event type data in clinical research.

Especially within the last three decades, survival analysis methods have been

increasingly utilized to study different chronic and infectious diseases such as breast

cancer, lung cancer, HIV/AIDS, and tuberculosis [23–26]. As a result, survival

analysis-based approaches have led the identification of numerous factors affecting

the time and rate of the events of interest, such as death or disease progression,

for various diseases and different patient cohorts [23, 24, 27]. In addition, the use

of survival analysis techniques have also gained popularity in other areas including

non-medical real-life problems such as time until stock market crash, time until next

earthquake, time until divorce, and time until equipment failure. [28].

In general, the survival analysis techniques used for analyzing censored data

can be broadly classified into non-parametric (e.g., Kaplan-Meier product limit), para-

metric (e.g., Weibull distribution) and semi-parametric (Cox proportional hazards

regression) methods. The most common uses of these techniques are (i) to identify

significant factors affecting the time of the event of interest and (ii) to estimate of sur-

vival probability as a function of a risk factor over time. In particular, Kaplan-Meier

estimator is used to project the survival probability at each point in time, Cox pro-

portional hazards models are used to quantify the impact of risk factors on survival,

and parametric models are used for both.

The most common and simplest framework for survival analysis methods is

two-state models such as alive-and-death, treatment-and-death, and diagnosis-and-

progression. As the name implies, a two-state model consists of two model states and

a single transition between these states. Commonly, one of the states is transient

12



(e.g., alive) and the other one is absorbing (e.g., death), where the rate and time of

the transition to the absorbing state and the factors affecting this transition are of

the main interests.

Despite its popularity in clinical literature, two-state models have a couple of

pitfalls. First, previous studies have utilized survival curves, calculated by Kaplan-

Meier (KM) estimator [29] over two-state models, to make comparison between sub-

group of patients using log-rank test [30]. However, application of simple log-rank test

might lead to misleading results because of the presence of heterogeneous samples in

cancer studies [31] and instead, more robust regression methods, such as Cox regres-

sion [32], should be applied to evaluate the effect of multiple explanatory variables

on the outcome variable [31]. Second, two-state models lead to biased estimates and

potentially misleading conclusions in the presence of multiple interdependent clinical

events, such as progression of disease and death, and competing risk for multiple tran-

sitions such as cause-specific mortality [33, 34]. In such cases, these clinical events and

the transitions between them should be studied with a more comprehensive multi-

state model rather than each transition being studied separately by a two-state model

in isolation [35].

Following the availability of multi-event datasets and increased awareness

about the pitfalls of two-state models, multi-state models, an extension of compet-

ing risk models with multiple transient and absorbing states, have found increased

application in medical research. One of the earliest use of multi-state model was

proposed by Fix et al. in the year 1951 while studying relapse and recovery of can-

cer patients [36]. More recently, Çağlayan et al. developed a multi-state model to

study the combined effect of sequential therapies and other explanatory factors on

the treatment-specific survival of older cohort of FL patients using Cox PH regres-

sion and Aalen-Johansen estimator [9, 37]. Another study conducted by Çağlayan
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et al. evaluated competing risk of death amongst patients diagnosed with Diffuse

Large B-Cell Lymphoma (DLBCL), an advanced form of follicular lymphoma, within

a multi-state modelling framework [38]. The study identified significant factors by fit-

ting Cox PH model between all the model states in the multi-state model. Similarly,

studies involving the understanding of complex biological process such as, cancer,

diabetics, leukemia, etc., have seen widespread application of multi-state models in

recent history [39–41].

Aalen-Johansen (AJ) estimator, a generalization of Kaplan-Meier estimator, is

the canonical non-parametric estimator for multi-state survival analysis models [37].

It is used to calculate the empirical transition matrices and to project the course

of the underlying stochastic process over time. The AJ estimator can cope with

censored observations in the clinical datasets, makes no assumption on the probability

distribution generating the stochastic process of interest, and is shown to produce

reliable estimates both for Markov and non-Markov models [38]. There are also

recent variations of the AJ estimator attempting to generate more consistent estimates

particularly for non-Markov multi-state models [42, 43].

To quantify the effect of the covariates on the transitions between model states,

parametric or semi-parametric regression models are utilized in the literature. The

difference between these two modeling approaches lies in the way in which researchers

make assumption about the underlying probability distribution for the hazard func-

tion corresponding to the transition of interest. For parametric models, it is assumed

that the baseline hazard function follows a known distribution such as Exponential or

Weibull distribution. This allows researchers to make prediction about the survival of

patients beyond the nth observed survival time. On the other hand, semi-parametric

models, such as Cox PH, makes no assumption about the underlying distribution

for the baseline hazard function. It allows to quantify the increased risk/hazard of
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a factor compared to the reference group/level of that factor but does not specify

the baseline function of the underlying probability distribution. Cox PH is the most

widely used semi-parametric regression model in the clinical literate and the studies

analyzing FL patients have made extensive use of Cox PH model [9, 38, 44–47]. In

particular, Provencio et al. utilized univariate and multivariate Cox PH model to

identify significant risk factors associated with long-term survival of FL patients in

Spain [44] whereas Swenson et al. compared the survival of FL patients in three differ-

ent decades and showed significant improvement in overall survival using multivariate

Cox PH regression model that is adjusted for the effect of confounding variables [45].

In addition to aforementioned statistical methods, the use of machine learning

(ML) techniques for survival analysis was proposed by researchers as early as mid

1990s [48, 49]. Yet, the results from these initial ML implementations were not

revolutionary as they failed to outperform the standard Cox PH regression method on

a breast cancer dataset [50]. Later, more advanced and capable ML algorithms have

been proposed for survival analysis such as deep learning [51, 52], random survival

forest [53], and support vector regressor for censored data [54]. Though proven to be

efficient for the simple two-state survival analysis models, these ML-based approaches

still fail to incorporate the effect of competing risk into the modeling framework

and hence, is not currently applicable to the multi-state models yet. Three distinct

method, Siamese survival analysis [55], Tree-Based Bayesian mixture model [56], and

DeepHit [57], incorporates the effect of competing risks into the model. However, the

application of these models in the real-world have been limited so far. Accordingly,

their performance is needed to better investigated particularly before being applied

to clinical datasets.
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3.2 Clinical Review

Over the past two decades, there have been significant improvements in the

overall survival (OS) and progression free survival of patients diagnosed with FL [45,

58, 59]. These improvements were associated with various factors including improve-

ment in supportive care of patients, sequential application of treatment regimens,

and introduction of more effective therapies such as Rituximab, Tositumomab, and

Bendamustine [60–62]. Following the increase in survival rates and the availability of

the sequential treatments, recent research in the last decade focused on studying the

clinical course of FL under various treatments, analyzing short- and long-term disease

patterns, and identifying risk factors associated with worse prognosis and survival.

In this subsection, we provide an overview of some of the recent medical studies that

are relevant to our research.

Earlier investigators studied the effect of different front-line strategies on the

OS of FL patients [11, 12]. Comparing aggressive modality treatments (n = 60) with

watchful-waiting approach (n = 44) for indolent lymphomas such as FL, Young et

al. (1988) found no significant difference in overall survival amongst the two groups

[12]. Neri et al. (2001), studied the impact of interferon-alpha2b by comparing

chemotherapy treatment with and without interferon-alpha2b and found no difference

in the OS of patients in the two treatment arms [11]. Later, there have been several

studies indicating improvement in event-, relapse- and progression-free survival of FL

patients, no therapy has found to be statistically superior to another [11, 17, 18, 63].

More recently, Friedberg et al. (2012) studied the impact of various therapies

on FL outcomes with a subset of stage I FL patients (n=471) in the NLCS dataset, and

found no statistical difference in the OS amongst patients receiving different treatment

regimens after adjusting for significant risk factors such as histology, LDH, and B-
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symptoms [46]. On the other hand, studying 6,568 adult stage I-II FL patients from

the Surveillance, Epidemiology, and End Results (SEER) database, Pugh et al. (2010)

identified an improvement in the OS and lymphoma-specific survival amongst patients

receiving radiation therapy (compared with patients receiving other treatments) [64].

Their multivariate analysis accounted for age, sex, race, stage, FL grade, and extra

nodality.

Casulo et al. (2015a) investigated 588 patients with advanced FL stage,

who were treated with first-line rituximab plus cyclophosphamide, doxorubicin, vin-

cristine, and prednisone (R-CHOP) therapy. In this cohort, the authors showed that

progression of disease (PoD) < 2 years was associated with poor five year OS [8].

Examining 2,652 FL patients in the NLCS dataset, Casulo et al. (2015b) observed

similar disease characteristics and outcomes for the young (i.e., age < 40) and middle-

aged (i.e., age 40-60) patients and concluded that young adults might not necessarily

benefit from more aggressive FL therapies [20]. Finally, leveraging a large SEER

dataset (n = 5234), Çağlayan et al. (2019) studied the sequential first-, second- and

third-line FL treatments for an older cohort (i.e., > age 65) of high-risk FL patients

[9]. The study identified that the use of R-CHOP at any line of treatment improved

the OS after each treatment stage when compared with other treatment alternatives

such as, rituximab, R-CVP (rituximab, cyclophosphamide, vincristine) and R-other

(rituximab with other chemotherapy combinations).

3.3 Our Main Contributions and Key Differences

Currently, there is no comprehensive analysis of various sequential FL treat-

ments over the general population with a large dataset. Existing studies are limited

due to the use of simple survival analysis models, small sample size, restricted number
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of treatment options, or the concentration on a specific sub-population (e.g., over age

65). In our study, we take the next step to assess the effectiveness of sequential FL

therapies by leveraging NLCS dataset with a multi-state survival analysis framework.

Our analysis covers the age range that corresponds to the whole adult population

and up to six sequential therapies over the clinical course of FL while comparing the

outcomes of eight different treatment regimens for each line of therapy.

In this study, we developed comprehensive continuous-time multi-state models

to capture the clinical course of FL. We utilized Cox PH regression model to identify

the significant risk factors affecting each clinical event, such as cause-specific death

and the initiation of the next line of therapy, and Aalen-Johansen estimator to project

the prognosis of FL over time as a function of critical factors. In particular, we

developed two different multi state models, one with a single absorbing state named

"all-cause death" and the other with two absorbing states corresponding to cause-

specific deaths and compared the results from these two models. Further, utilizing a

multivariable Cox regression model over our multi-state framework, we successfully

quantified the impact of prognostic factors on FL-specific death after each line of

therapy in the presence of other confounding variables while accounting for the risk

of death due to non-lymphoma related causes. By utilizing the entire cohort of NLCS

patients, we showed that none of existing treatment regimens have shown superior FL

outcomes compared to one another. Based on our findings, we suggest that clinical

research work should particularly focus on developing more advanced FL treatment

regimens to further reduce the risk of FL-specific death.
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Chapter 4

Method

Clinical “time-to-event” datasets are often censored, where the time of certain

events are not recorded. For instance, a patient might be alive during the clinical

trial and at the last follow-up, but the exact time of death for this patient might not

be available in the dataset. The phenomena of censoring is categorized into three

types; right-censored data, as explained in the above example, left-censored data, in

which the event occurs before the participant enters the study period, and interval-

censored data, in which an events occurs between two successive clinical visit, example

recurrence of cancer. Fig 4.1 depicts the three types of censoring observed in a dataset

in graphical form. In the NLCS dataset we only observe the most common type of

censoring, i.e. right-censored data. This type of censoring mostly corresponds to the

patients who were lost to follow-up or were alive at the last follow-up. We assume

that the censoring of patients is independent and non-informative as there are no

information indicating the otherwise.
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Figure 4.1: Types of Censoring [65]

4.1 Kaplan-Meier & Aalen Johansen

For survival analysis of two-state models, the underlying survival function S(t),

measuring the probability of being alive (i.e., not making a transition to the death

state) beyond time t, is given by the following equation,

S(t) = P (T > t) (4.1.1)

where T is a non-negative random variable representing the time until the occurrence

of an event (e.g., death). We can also write the survival function in terms of the
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cumulative density function (CDF) of survival time as follows:

S(t) = P (T > t)

= 1− P (T ≤ t)

= 1− F (t) (4.1.2)

In this equation, F (t), the CDF of survival time, defines the risk of experiencing the

event of interest at time point t.

Survival function of a two-state model is frequently estimated with Kaplan-

Meier (KM) estimator. KM estimator, also known as the product limit estimator,

is the maximizer of the nonparametric maximum likelihood of the survival function

S(t) [66], and hence, considered as the standard nonparametric estimator for two-

state models [29]. We can formally formulate the KM estimator as follows: Let t1 <

t2 < t3...< tj represent the time t at which d1 < d2 < d3...< dj number of people in the

study experience the event of interest. Further, let n1 < n2 < n3...< nj represent the

number of people at the risk of experiencing an event at these specified time points.

Then, the KM estimator of the survival function can be represented by Ŝ(t):

Ŝ(t) =
∏
j:tj<t

(1− dj
nj

) (4.1.3)

Yet, for multi-state model having multiple possible transitions from a model

state, the use of KM estimator in isolation for each transition was shown to yield

biased estimates [34, 67, 68]. Instead, Aalen and Johansen proposed a generalized

matrix version of KM estimator for multi-state models [37]. In our analysis, we use

the Aalen-Johansen (AJ) estimator over the multi-state model we develop to project
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the course of FL over time. AJ estimator is represented as follows:

P̂ (s, t) =
∏

j:s<tj≤t

(I + âj) (4.1.4)

In this formulation, the transition probability matrix P̂gh(s, t) denotes the

probability that an individual in the model state g at time s will be in the model

state h at a future time t. “I”, and âj are the identity, and transition intensity matrices,

respectively, of order k × k, where k represents the total number of model states.

For transitions from a transient state g into an other transient or an absorbing

state h, where g 6= h, the element (g, h) of the âj matrix is calculated as follows:

âghj =
dghj
ngj

(4.1.5)

Here, dghj represents the number of people transitioned form a transient state

g to another transient/absorbing state h, at time tj, and ngj represents the total

number of people in the state g just prior to time tj. On the other hand, the intensity

values on the diagonal of the matrix âj, i.e when g = h, are calculated as follows:

âggj = −dgj
ngj

(4.1.6)

Here, dgj represents the total number of people transition out of the state g, helping

us to formulate the transition intensity matrix âj.

4.2 Cox- Proportional Hazard Regression

To identify significant risk factors and quantify their effect on the time and

rate of transitions between model states corresponding clinical events„ we fit Cox PH
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regression models [32, 69] to each transition in the multi-state model. This enables

us to (i) express the rate of a clinical event (e.g., death or initiation of the next

treatment) as a function of covariates at any given time and (ii) quantify the impact

of each covariate (e.g., sex=female) on the corresponding transition compared to the

baseline/reference value of that covariate (e.g., male). The Cox PH regression model

is given by the following equation:

λ(t|z) = λ0(t)eβz (4.2.1)

In this formulation, λ(t|z) is the rate of transition at time t as a function of the

vector of variables z. The rate λ(t|z) is a function of covariate vector z, regression

coefficient vector β and a non-parametric component λ0(t), known as the baseline

hazard function. In this equation, λ0(t) depends on the value of time but not on

the covariate vector z, whereas, the exponential function, eβz, depends on the value

of covariates z and is independent of time. Accordingly, the Cox regression model

is known as a semi-parametric model due to the presence of non-parametric hazard

function and the parametric covariate function.

In the given regression model, the hazard function λ(t) can be mathematically

expressed as follows:

λ(t) = lim
∆t→0

P (t < T ≤ t+ ∆t | T > t)

∆t
(4.2.2)

The numerator in the equation is a conditional probability of experiencing the event

of interest in a small time interval [t, t + ∆t], given that the subject was event free

until time t, and the denominator is the width of the time interval. On further

simplification of equation 4.2.2, we can derive the relation between the hazard and
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survival function as follows:

λ(t) = lim
∆t→0

1

∆t
× P (t < T ≤ t+ ∆t ∩ T > t)

P (T > t)
(4.2.3)

λ(t) = lim
∆t→0

1

∆t
× P (t < T ≤ t+ ∆t)

P (T > t)
(4.2.4)

Since, the numerator in the equation 4.2.4 is the difference between two CDFs at

times (t+∆t) and t, and the denominator is the survival function defined in equation

4.1.1, we can rewrite this equation as follows:

λ(t) = lim
∆t→0

1

∆t
× F (t+ ∆t)− F (t)

S(t)
(4.2.5)

where,

lim
∆t→0

F (t+ ∆t)− F (t)

∆t
=

d

dx
F (t) (4.2.6)

By substituting the value of F (t) from equation 4.1.2 in equation 4.2.6, we get,

lim
∆t→0

F (t+ ∆t)− F (t)

∆t
=

d

dx
[1− S(t)]

= −S ′(t) (4.2.7)

Further, by substituting equation 4.2.7 in equation 4.2.5, we get,

λ(t) =
−S ′(t)
S(t)

(4.2.8)
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On integrating both sides from time 0 to t, the equation 4.2.8 can be expressed as

lnS(t) = −
∫ t

0

λ(u)du

S(t) = exp{−H(t)} (4.2.9)

Here, H(t) is cumulative hazard rate defined as H(t) =
∫ t

0
λ(u)du. Hence, the equa-

tion 4.2.9 shows the relation between the survival function and the hazard function,

which allows us to capture the effect of covariates using the hazard function.

The interpretation of Cox PH model is made using hazard ratio (HR), defined

as the ratios of predicted hazard function for two individuals with different set of

covariates. For example, the HR for a patient with a vector of covariates z1, compared

to another patient with a vector of covariates z2 is given by

HR(z1, z2) =
λ(t|z1)

λ(t|z2)

=
λ0(t)eβz1

λ0(t)eβz2

= eβ
T (z1−z2) (4.2.10)

Now, instead of comparing two patients with many different covariate values,

let us consider two individuals with the same covariate vector, except for a single

variable. For instance, let us consider two independent individuals, one male (z11

= 1) and other female (z21 = 0), with similar set of covariate vector, except for the

variable “sex”. Substituting the values of covariate vector in equation 4.2.10, we obtain

HR(z1, z2) = eβ1 (4.2.11)

This term provides the relative effect of one-unit increase of the covariate “sex” (i.e.,
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switching to being male=1 from the reference value female=0) on the risk of the event

of interest. As demonstrated by this example, HR quantifies the relative increase or

decrease in the risk of the event of interest due to the level of a risk factor compared

to the reference value/level of that factor. Similarly, if we have multiple different

covariates that affect a particular transition, then hazard ratio for two patients with

different set of covariates is represented as

HR(z1, z2) = e(β1(z11−z12)+β2(z21−z22)+...+βn(zn1−zn2)) (4.2.12)

The values of the regression coefficients (i.e., the components of the vector β)

are estimated using Cox’s partial likelihood estimate [32]. We considered the effect

of a covariate as significant when the 95% confidence interval (CI) of the regression

coefficient for a given covariate does not include the value zero (i.e., when p < 0.05).

Note that the existence of a variable increases the relative risk when the associated

coefficient of the β is positive. From the equation 4.2.10, it can be seen that HR is

independent of the time function, as the the baseline hazard function cancels out.

This implies that the proportional hazard (i.e., the relative risk due to a certain value

of a factor compared to its reference value) is kept constant over time. In our study,

we verified this assumption of the Cox PH models, known as proportional hazard

assumption, for our final multivariable Cox models using Schoenfeld residuals [70].

4.3 Two-Step Analysis for Cox PH Regression

One is of the main objectives of our study is to identify which levels of each

categorical variable, if any, are statistically significant predictors for the clinical events

captured by our multi-state model. To do so, we utilized Cox PH regression models
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and employed a two-step approach as described below.

In the first step, we separately conducted a univariate Cox PH regression

analysis for each prognostic factor in the Tables 2.1 and 2.2. That is, we assumed

that only a single prognostic factor played a role on each transition between the model

states and attempted to identify the levels of the prognostic factor that are statically

significant (compared to the reference level). This analysis, corresponding to the first

step of our approach, provided us with the candidate variables (and their levels) that

we later further used when we started building our multivariable models. An example

of a univariate Cox PH model fitted for a dichotomous variable B-symptoms (present

or absent) is provided in the Figure 4.2.

Figure 4.2: Univariate Cox PH Model

The output obtained form conducting a univariate analysis for the prognostic

factor B-symptoms for each one of the 15 transitions between the model states, labeled

as .1, .2, ..., and .15, is as shown in Figure 4.3 below.
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Figure 4.3: Output Obtained from Univariate Cox PH Model

These results suggest that the presence of B-symptoms among diagnosed FL

patients might have a statistically significant impact on the 1st, 2nd, 3rd, 4th, 7th, 8th,

9th, and 10th transitions of the model presented in Figure 4.4. Accordingly, when

we build our multivariable Cox PH models, corresponding to the second step of our

approach, we include the presence of B-symptoms as a candidate predictor for these

transitions.

In the second step, we build our multivariable Cox PH models and derive the

final multivariable model for each transition by eliminating the insignificant variables.

To do so, we begin with all the covariates identified by our univariate Cox models and

develop an initial multivariable model for each transition. Later, by eliminating the

insignificant variables over a stepwise approach, we derive the final models where all of

the variables remained (i.e., not excluded) are statistically significant predictors of the

corresponding transition. By using this two step analysis, we systematically construct
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our multivariable Cox models for each transition while targeting to minimize the bias

introduced in our model due to the presence of confounding variables.

4.4 Multi-State Model

We developed two separate multistate models to capture the clinical course

of FL over time. The first model, as demonstrated in Figure 4.4, has nine model

states, consisting of diagnosis, watchful waiting (WW), six treatment stages, and an

absorbing health state “death”. The total number of transition (n = 15) in the model

is also listed in Figure 4.4. We refer this model as "all-cause death model". Model

states are indicated by circles, and transitions from one model state to another is

indicated by arrows.

Figure 4.4: All-Cause Death Model

In the second model, we split the “death” state into two cause-specific mortality

states (namely, death due to FL and death due to other causes) to better analyze

the impact of patient characteristics and clinical factors on cause-related deaths. We

refer this model as cause-specific death model and present its representation in Figure

4.5. In both models, a patient enters a treatment state with the initiation of the

corresponding line of treatment and departs either when she dies, by transitioning to
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(one) the “death” state(s) or when her next treatment is initiated, by transitioning to

the next treatment state.

Figure 4.5: Cause-Specific Death Model

The observational period for a patient begins once he/she is diagnosed with

FL and ends with a transition into the absorbing state. During this time period,

patients make at least one transition into the subsequent transient state, Watchful

Waiting (WW) or First-Line Treatment (TX 1), before being censored or entering the

absorbing state. Patients transitioned into “WW” are kept under observation until

symptoms develop that require medical intervention or therapy. But, for patients

transitioning into “TX 1”, therapies are initiated immediately by doctors/physicians.

After this initial transition, a patient either enters the next transient state to receive

a therapy or enters the absorbing state “death”, where death is recorded, or the

information is otherwise censored. Our model allows us to capture the effect of

different covariates and therapies on each transition and quantify its effect. In the

following section we present statistically significant risk factors that influence the

transition to death, obtained by applying CPH regression model to each transition.
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Chapter 5

Results

Our multi-state analysis is based on a cohort of 2,708 patients diagnosed with

FL. These FL patients were enrolled in National LymphoCare Study (NLCS), a com-

prehensive clinical study with a 10-year follow-up period. A total of 2,475 patients

received first line treatment after diagnosis. Amongst the remaining two hundred and

thirty-three patients, death of forty-four patient’s was recorded and one hundred and

eighty-nine patients were censored following a period of “Watchful Waiting”. Patient

characteristics such as age, cancer type, B-symptoms, etc., were recorded at the time

of diagnosis and are listed in Table 2.1

The number of patients receiving second-line, third-line, fourth-line, fifth line

and sixth-line therapies were 1026, 472, 248, 144 and 77, respectively. The median

duration was 0.92 months from diagnosis to first-line, 0.72 months from diagnosis to

watchful waiting, and 5.85 months from watchful waiting to first-line. The median

duration from first-line to second-line, second-line to third-line, third-line to fourth-

line, fourth-line to fifth line, and fifth-line to sixth-line therapy was 6.64, 7.23, 6.21,

6.24, and 5.16 months, respectively. During the follow-up period of the NLCS, 621

total and 261 (42%) FL-related deaths were registered.
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Utilizing multivariable Cox regression models, we identified the key risk factors

for FL outcomes and quantified their impact on all-cause and FL-related deaths.

Table 5.1 and Table 5.2 lists the significant risk factors identified from both the

models. For patients undergoing “watchful waiting”, the statistically significant factors

associated with worse survival outcome, compared with the patients in the reference

category (shown in Table 5.1), were the following [hazard ratio (HR) (95% confidence

interval (CI)]: older age (age 71-80: 3.84 (1.7-8.9), age 81-89: 7.29 (3.0-17.5), age ≥

90: 28.33 (3.4-237.1)), poor-risk FLIPI Score [2.63 (1.2-6.0)], presence of B-symptoms

[2.26 (0.9-5.7)], low albumin level (< 3.0 g/dL) [12.80 (3.2-50.5)], low platelet level (<

100,000/mm3) [3.14 (1.0-10.1)] and performance status score (PSS) < 60 [12.65 (3.3-

47.8)]. Poor-risk FLIPI score [10.61 (1.7-65.7)] low platelet level (< 100,000/mm3)

[11.37 (1.1-115.18)] were significant predictors for death due to FL, the remaining

factors, that is, age > 70 [9.73 (2.1-45.8)], presence of B-symptoms [2.81 (1.0-7.6)],

low albumin level 16.46 (3.8-70.9), and PSS < 60 [13.81 (3.40-56.1)] were predictors

for death due to other causes.

Following the first-line treatment, the risk factors associated with increased

all-cause mortality risk were age (age 61-70: 4.33 (2.2-8.7), age 71-80: 10.03 (5.0-

19.9), age 81-89: 18.79 (9.1-38.8), age ≥ 90: 20.97 (6.6-66.4)), Poor-risk FLIPI score

(1.93 [1.0-3.9]), low albumin level (< 3.0 g/dL) (1.79 [1.1-3.0]), elevated LDH level

(1.50 [1.0-2.2]), PSS between 70-80 (1.66 [1.2-2.4]), and PSS less than 60 (2.22 [1.2-

4.0]). In particular, age between 61-70 (2.45 [1.0-6.1]), age 71-80 (6.02 [2.5-14.2]),

age 81-89 (11.72 [4.6-29.7]), poor-risk FLIPI score (6.0 [1.0-34.5]), low albumin level

(< 3.0 g/dL) (2.98 [1.4-6.4]), and elevated LDH level (1.80 [1.0-3.4]) were predictors

for death due to FL, and age ≥ 90 (13.76 [4.2-44.7]), PSS between 70-80 (1.84 [1.2-

2.8]), PSS less than 60 (2.27 [1.1-4.6]), and were predictor of death due to other

causes. Bone marrow involvement (1.48 [1.0-2.2]) was also found to be a predictor for
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other cause mortality. Additionally, investigational therapy (n=3) and radiotherapy

(n=1) received during treatment 1 were significant predictors for death due to other

causes, but this significance might be influenced by relatively low number of patients

experiencing this transition after treatment 1.

Following the second-line treatment, the risk factors associated with increased

all-cause mortality risk were age (age 51-60: 2.50 (1.1-5.6), age 61-70: 4.00 (1.8-

8.9), age 71-80: 7.81 (3.6-17.1), age 81-89: 12.55 (5.3-29.5), age ≥ 90: 31.12 (8.8-

109.8)), low albumin level (< 3.0 g/dL) (3.82 [2.0-7.4]), presence of B-symptoms

(1.52 [1.0-2.2]), elevated LDH (2.47 [1.5-4.1]) and PSS less than 60(2.42 [1.2-4.7]).

In particular, age between 50-60 (4.78 [1.0-22.0]), age 61-70 (8.76 [1.9-40.3]), age 71-

80 (15.81 [3.5-71.1]), age 81-89 (20.44 [3.9-106.1]), age greater than 90 (51.4 [6.6 -

401.7]), low albumin level (< 3.0 g/dL) (4.51 [1.9-10.9]), elevated LDH level (7.61

[3.3-17.3]), and PSS less than 60 (4.16 [1.5-11.2]), were significant predictors of death

due to FL. Additionally, two significant predictors, being female (0.46 [0.3-0.8]) and

investigational therapy received during treatment 1 (4.66 [1.7-12.4]), were also found

to be significant predictors of death due to FL.

Following the third-line of treatment, the risk factors associated with increased

all-cause mortality risk were age (age 71-80: 2.58 (1.4-4.9), age 81-89: 6.27 (2.9-13.3),

intermediate FLIPI score (2.53 [1.0-6.7]), Poor-risk FLIPI score (3.14 [1.2-8.2]), low

platelet level (< 100,000/mm3) (2.51 [1.4-4.5]), presence of B-symptoms (2.02 [1.2-

3.3]), LDH level (>ULN) (3.62 [2.0-6.5]), PSS between 70-80 (1.82 [1.0-3.3]), and

rituximab-monotherapy received during treatment 3 (0,44 [0.2-0.9]). In particular,

age (age 71-80: 2.59 (1.3-5.3) , age 81-89: 2.83 (1.0-7.9)), Poor-risk FLIPI score (2.40

[1.0-5.9]), low platelet level (< 100,000/mm3) (2.70 [1.2-5.8]), and elevated LDH level

(3.47 [1.6-7.3]) are significant predictors of death due to FL. Further, patients receiving

rituximab-monotherapy during treatment 1 are at a reduced risk (0.28 [0.1-0.7]) of
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death due to other causes compared with patients receiving chemotherapy.

Following the forth-line of treatment, the risk factors associated with increased

all-cause mortality risk were age (age 71-80: 2.92 (1.2-7.3), age 81-89: 8.71 (2.4-31.5)),

and low platelet level (< 100,000/mm3) (4.85 [1.8-12.9]). Further, factors associated

with reduced risk of all-cause mortality after treatment 4 were rituximab-monotherapy

(n = 4) received during treatment 4 (0.20 [0.0-0.8]), radiotherapy (n=3) received

during treatment 4 (0.13 [0.0-0.6]), BMT (n=1) received during treatment 4 (0.1

[0.0-0.8]), and rituximab-monotherapy (n=1) received during treatment 3 (0.10 [0.0-

0.9]). In particular, low platelet level (< 100,000/mm3) (5.58 [1.8-17.6]), rituximab-

monotherapy (n=2) received during treatment 4 (0.18 [0.0-0.9]), radiotherapy (n=1)

received during treatment 4 (0.1 [0.0-0.7]), and bone marrow transplant (n=1) re-

ceived during treatment 4 (0.1 [0.0-0.7]) were significant predictor of death due to FL.

Age (age 71-80: 20.08 (3.8-106.5)) was found to be associated with increased risk of

other-cause mortality.

Following the fifth line of treatment, the risk factors associated with increased

all-cause mortality risk were age (age 71-80: 3.11 (1.1-8.9)), and radioimmunotherapy

(n=4) received during treatment 2 (6.70 [1.8-24.9]). In particular, radioimmunother-

apy (n=2) received during treatment 2 (5.51 [1.1-26.8]) was found to be a significant

predictor of death due to other causes, whereas, low albumin level (< 3.0 g/dL) (3.63

[1.0-13.6]) was found to be the only significant predictor associated with increased

risk of death due to FL.

Following the sixth line of treatment, the risk factors associated with increased

all-cause mortality risk were radioimmunotherapy (n=5) during treatment 2 (6.70

[1.8-24.9]). Bone marrow involvement (2.82 [1.0 – 8.0]) is a significant predictor of

death due to FL. Age was not found to be a significant predictor of cause-specific

death after treatment 5. Hence, creating a cause-specific model enabled us to identify
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and measure the factors affecting death due to FL more accurately.
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In a multi-state framework, transition probabilities estimated using A-J es-

timator are also known as cumulative incidence function (CIF). It is defined as the

probability or the risk of moving from one model state to another during a specified

time interval. In Fig 5.1 and Fig 5.2, we plot the CIF for all the transient and absorb-

ing states in the two models, all-cause death and cause-specific death, respectively.

Figure 5.1: Likelihood of occupying a model state following diagnosis for the All-cause
death model
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Figure 5.2: Likelihood of occupying a model state following diagnosis for the Cause-
specific death model

Transient states in both our multi-state models are similar, therefore, the only

difference observed in Fig 5.1 and Fig 5.2 is between the CIF curve for the absorbing

death state. Wherein, the value of the CIF for all-cause death, at each time point, is

the addition of CIF for FL-specific death and other-cause specific death. We isolate

these three CIF curves in Fig 5.3 for better visualization.
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Figure 5.3: CIF for Cause-Specific death following diagnosis

The 2-, 5-, and 8-years probability of death due to all cause, and cause-specific

death is presented in Table 5.3.

Table 5.3: Transition Probabilities for All-cause death following Diagnosis

Cumulative Incidences, %

Years FL-Death Other Cause Death All-Cause Death

2 3.7 3.6 7.3

5 7.4 9.0 16.4

8 10.1 14.4 24.5

Abbreviation: FL, Follicular Lymphoma

Utilizing graphical and tabular result, we can make a generic statement that

the risk of death due to FL is approximately equal to the risk of death due to other-

causes up to the 3-year time point. After which, we observe that the risk of death

due to other-causes exceeds the risk of death due to FL. On further investigation of
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CIF for all-cause death, we found that the risk of all-cause death for patients with

or without watchful waiting were almost identical (Fig 5.4 A). With WW patients

being at reduced risk of all-cause death. Among WW patients experiencing death,

it is observed that the risk of death due to FL is lower than the risk of death due to

other-causes (Fig 5.4 B). On the other hand, the risk of death due to FL and death

due to other-causes is identical up to the 5-years time point for patients receiving an

induction treatment therapy (i.e without watchful waiting) (Fig 5.4 C). Later on, i.e.

after the 5-year time point, the risk of death due to other-causes exceeds the risk of

death due to FL for this group of patients.

Figure 5.4: (A) All-Cause death CIF for Watchful Waiting and Other Induction
treatment, (B) Death-specific CIF for Watchful Waiting patients and (C) Death-
specific CIF for Other Patients

Table 5.4 provides death-specific transition probabilities for watchful waiting

and other patients at 2-, 5-, and 8-year time points.
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Table 5.4: Death-Specific Transition Probabilities following Initial Therapy

Cumulative Incidences, %

WW Patients Other Patients

Years FL-Death Other-Cause Death FL-Death Other-Cause Death

2 1.6 3.6 4.3 3.7

5 4.5 8.3 8.1 9.2

8 8.9 14.4 10.6 14.3

Abbreviation: FL, Follicular Lymphoma; WW, Watchful Waiting

The risk of death due to FL associated with WW patients was 1.6%, 4.5% and

8.9% at 2-, 5-, and 8-years time point, respectively. Likewise, the risk of death due to

FL among other patients, i.e. without watchful waiting, was 4.3%, 8.1% and 10.6% at

the 2-, 5-, and 8-year time point. Results indicate that the risk of death due to FL is

relatively less amongst WW patients compared to other patients. Whereas, the risk of

death due to other-cause remains almost identical among the two subgroup of patients

throughout the study time period. This further indicates that WW patients are at

a higher risk of developing other chronic disease than dying due to FL, compared

to patients without watchful waiting. Therefore, a different treatment strategy is

required to control the growth of such disease amongst WW patients.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

Survival of patients with FL has been improving in the United States [45, 58–

60] as more effective treatment regimens and strategies become available. However,

currently, there is still no standard care for the first line and subsequent therapies

of FL in the United States. Various management strategies, adopted by physicians

to treat patients diagnosed with FL at different lines of treatment, including watch-

ful waiting, rituximab(R)-chemotherapy, R-monotherapy, bone marrow transplant,

investigational therapy, non-investigational therapy, and radiotherapy [16, 46]. The

heterogeneity in FL prognosis and outcomes, and significant differences in OS among

FL patients further complicate therapeutic decision-making [16, 71]. Accordingly,

studying the efficacy of various sequential treatment strategies, identifying key fac-

tors contributing to worse FL outcomes, and projecting the prognosis of FL as a

function of treatment and clinical factors remain important.

Including relatively large number of patients and various treatment regimens,

the NLCS dataset provides a unique opportunity to formally assess the effect of
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different treatment options and strategies over the clinical course of FL and identify

the predictors for poor FL outcomes. Using National Lymphocare Study (NLCS)

dataset, several studies have been conducted in recent years to evaluate the factors

associated with high risk of death among patients diagnosed with FL [46, 72, 73].

The primary focus of these studies have been to evaluate the effect of single line

treatment on clinical outcomes such as progression free survival (PFS) or OS [8, 9,

20]. In particular, Martin et al. identified age greater than 60 years, LDH level

greater than upper limit of normal, hemoglobin level less than 12 g/dL, and ECOG

performance status (PS) greater than or equal to 2 to be significant predictors of

OS amongst patients receiving front-line combination therapies, i.e. rituximab plus

cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), rituximab

plus cyclophosphamide, vincristine, and prednisone (R-CVP), and rituximab plus a

fludarabine-containing regimen (R-Flu) [27]. Similarly, Casulo et al. in his study

of high-risk NLCS patients, i.e. patients experiencing early progression of disease

(POD), identified POD, age, and ECOG PS to be significant predictors of OS after

front-line treatment with R-CHOP [8]. Another study by Casulo et al. utilizing

NLCS dataset demonstrated that age greater than 60 is a significant predictor of

OS for FL patients [20]. Yet, no study has analyzed the effect of sequential therapy

among FL patients in NLCS dataset. Also, the focus of prior studies has been to

identify the effect of prognostic factors on the OS of patients, i.e. death due to any

cause, whereas, in our study we successfully evaluate the effect of prognostic factors

on the cause-specific deaths, i.e. death due to FL and death due to other causes.

In our present study, we evaluate the effect of treatment regimens across the

clinical course of FL with the NLCS data. We found that, amongst the significant

factors affecting the survival of patients receiving watchful waiting and no further

treatment, poor FLIPI score and low platelet level were the only two significant pre-
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dictors of death due to FL. For the first-, third-, fifth- and sixth-line treatment, none of

the treatment received during that treatment stage or prior treatments showed signifi-

cant advantage over the baseline treatment group, i.e. chemotherapy, when evaluating

death due to FL patients. On the other end, investigational therapy received during

treatment stage 1 increased the risk of FL related mortality after treatment stage

2. In addition, R-monotherapy received during treatment 3 and 4, and radiotherapy

therapy and BMT received at treatment stage 4, reduced the risk of death due to FL

after treatment stage 4 among the NLCS patients. Another important finding from

our analysis suggest that elevated LDH level is a significant predictor of FL mortality

after first-, second-, third-, and fourth-line treatment. Likewise, low albumin and

low platelet level have shown to increase the relative risk of death due to FL after

treatment 1, 2 and 5, and treatment 3 and 4, respectively. These dynamic variables

collected at the initiation of each treatment have not been studied in detailed before

and therefore should be included in future studies for accurate analysis. A unique

finding from our analysis suggests that females are at reduced risk of death due to

FL after treatment stage 2 [HR: 0.46; 95% CI: 0.3-0.8] when compared with males.

On the contrary, nodal and extra nodal sites, previously proven to be significant,

are not identified as significant predictors of both, FL and all-cause mortality, after

each of the treatment stage [22]. Also, the presence of B-symptoms at treatment

stage 2 and 3 increases the risk of all-cause mortality but fails to show significant

effect when analyzing FL mortality. Similarly, ECOG PS that shows significant effect

on all-cause mortality after watchful waiting, treatment stage 1, 2 and 3, but does

not increase/decrease the relative risk of FL mortality, except for treatment stage 2.

Hence, we can say, that analyzing cause-specific model helps us better understand

the effect of prognostic factors on the FL mortality and that, future studies should

analyze FL patients using competing risk models, like the one studied in the present
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thesis.

Previously, using another large dataset (N = 5234) obtained the Surveillance,

Epidemiology, and End Results (SEER) registry, Çağlayan et al. demonstrated that

the use of R-CHOP in first-, second- and third-line treatment increases the OS for

high-risk older patients (i.e. age > 65) [9]. In contrast to the results from that study,

treatment specific improvements, that reduces the risk of FL mortality, is not observed

in the NLCS data set until treatment stage four. Even with specific treatments

showing improved outcomes after treatment 4, the finding might be limited since

very few (less than 10) patients experience FL death after treatment 4 in each of the

treatment arm. Hence, more data would be required to confirm these findings. One

explanation for this discrepancy in the results from two studies can the classification

of rituximab-chemotherapy into treatment regimens, such as, R-CHOP, R-CVP, R-

Other and Rituximab, along with the absence of patients aged less than 65 in the

study published by Çağlayan et al.. Whereas, in our dataset of FL patients, where

patient characteristics are similar to that observed in the SEER8 dataset, is a better

generalization of the population in the United States. Patients in the current study are

observed to receive various treatments including rituximab-chemotherapy. Another

possible explanation could be the presence of high-risk patients, i.e. early progression

of disease (POD), versus inclusion of patients with or without POD in our study.

6.2 Limitation

As any study, ours is not free of limitations. One of the study-related limitation

is the ten-year time period, over which the data was collected on FL patients. To

better investigate long-term prognosis of FL in the rituximab era it is necessary

to increase the horizon of data collection process beyond 10-year period for future
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studies. Another limitation in the NLCS dataset is the absence of information about

unknown confounding variables, such as β2-microglobulin, which have proven to be

significant prognostic factor in FL studies [74]. Further, the presence of the other

chronic disease or conditions (e.g., breast cancer, lung cancer, secondary leukemia)

might have influenced the selection of succeeding treatment or outcome following the

current treatment. This information was not reported in the NLCS dataset.

In our study, we evaluated the effect of eight treatment regimes on the event

of interest after each treatment stage. The NLCS data set also contains informa-

tion about an additional maintenance therapy known as Rituximab(R)-Maintenance

received in between two successive treatments. It is not an independent treatment

by itself but an extension of the preceding treatment to control disease progression

and extend the duration of disease remission. It has been utilized widely by doctors

and physicians for the treatment of NHL patients. Although, studies have shown

significant improvement in PFS of patients treated with rituximab-maintenance after

induction therapy when compared with observation, no significant improvement is

observed in the OS of patients [75, 76]. Since, the aim of our study was to evaluate

the effect of prognostic factors on cause-specific death survival after each treatment

line and not PFS, we adjusted the sequence of treatment by eliminating the interme-

diate R-maintenance therapy from the analysis data set. This limits our ability to

quantify the effect of R-maintenance on the cause-specific deaths.

6.3 Summary and Conclusion

In this study, we conducted a multi-state survival analysis by developing a

multi-state modeling framework and utilizing a large dataset. Our objectives were to

(i) examine the performance of sequential FL treatment strategies over the adult U.S.
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population and (ii) investigate the impact of sociodemographic and clinical factors

recorded in the NCLS dataset on the clinical course of FL. The use of a comprehensive

multi-state model allowed us to identify statistically significant prognostic factors

affecting the mortality risk at each treatment stage. Further, using a cause-specific

death model enabled us to accurately calculate the risk of FL-specific death over time

together with the factors increasing this risk. Ours is the first study examining the

outcomes related to FL-specific death involving a diverse group of patients from all

age groups.

The main findings of our studies are as follows: We showed that (1) none of

the treatment regimens yield superior FL outcomes in terms of FL-specific survival,

(2) after 3 year time-point following the FL diagnosis, the risk of other-cause death

surpassed the risk of FL-specific death, indicating that other mortality risk should be

monitored as seriously as lymphoma for FL patients, (3) watchful waiting patients

are a higher risk of other-cause specific death, and (4) dynamic variables such as

low albumin level, low platelet and elevated LDH levels have significant impact on

FL-specific death after certain treatment stage. In addition, we further verified that

old age, poor FLIPI score, male sex, and poor ECOG have significant impact on

lymphoma related mortality risk, as previously shown by other studies.

In the past few years, there have been significant improvements in the devel-

opment of survival analysis specific machine learning algorithms that can cope with

censored data and can capture the presence of competing events. Incorporating these

methods with more traditional survival analysis methods or comparison of these two

approaches appear to be a promising research area. In our future work, we plan to

work on integrating machine learning algorithms with multi-state survival analysis

models and apply this approach to lymphoma and other chronic diseases.
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