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Abstract

Recently, multi-stable origami have drawn many attentions for their potential

applications in multi-functional structures and material systems. Especially, origami

folding is essentially a three-dimensional mechanism, which induces unorthodox prop-

erties that distinguish this mechanism from its traditional counterparts. This study

proposes a multi-stable origami cellular structure that can exhibit mechanical diode

behavior in compression. Furthermore, with a small variation in the unit cell of the

proposed structure, a extension diode can be achieved. Such structures consist of

many stacked Miura-ori sheets, and can be divided into unit cells that pose two dif-

ferent stable configurations. To understand and elucidate the underlying mechanisms,

two adjacent unit cells were considered as the most fundamental constituents of the

cellular structures that display the desired diode behavior. This study examines how

folding can impose a kinematic constraint onto the deformation of these two dual cell

chains via estimating the elastic potential energy landscapes of two dual assemblies.

For the compression diode, this folding-induced constraint increase the energy barrier

for compressing from a certain stable state to another, however, the same constraint

does not increase the energy barrier of the opposite extension. Thus, one should

apply a large force to compress the chain, but a small force to extend it. As a result,

a compression mechanical diode is achieved. This constraint acts the opposite way

in extension diode. Then, four prototypes were fabricated to experimentally vali-

date the analytical results. The results of this study can open new avenues towards

multi-functional structure and materials systems capable of motion rectifying, wave

propagation control, and even mechanical computation.

Keywords: Origami, Multi-stability, Mechanical Diode
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

A structure or material system is considered multi-stable if they exhibit more than

one stable equilibrium (or stable state) within the deformation range so that each

stable sate corresponds to a potential energy minimum [28]. Multi-stability can be

used as an alternative mechanism in enabling a wide variety of functionalities such as

stiffness adaptation [33], energy harvesting [32] [7]. Origami the ancient art of folding

paper into aesthetic shapes has drawn the attention of the researches from various

fields like aerospace [45] [27], architecture [43], robotics [29], and biomedical [18] [17]

industries.

Recently, origami capability to create programmable and re-programmable systems
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that can change shape, function and, mechanical properties has opened up innovation

doors [10] from macro scale to nanoscale. For example, a sheet, with pre-defined fold

lines, capable of reshaping autonomously into different 3D structures was created by

Hawkes etal. [14], or Marras etal. [25] showed that with folding DNA nano-scale

mechanisms with programmable mechanical functions can be built.

These structures exhibit unique mechanical properties such as negative Poisson’s ra-

tio [22] [39], discrete stiffness jumps [20] [3], elastic multistability [44] [16]. Recent

studies have shown that origami-based cellular structures and materials are promising

platforms to achieve bi-stability [24]. If the crease bending stiffness between two adja-

cent sheets in the cellular structure differ notably [27] [43], or its facets are deformed

between different configurations [31] [21], the origami structure exhibit multiutility.

Moreover, utilizing origami, a three-dimensional shape transformation mechanism,

leads to obtaining multi-stability in higher dimensions [41]. This privilege of origami

over currently employed bi-stable mechanisms such as the curved beams or their

close relatives, prestressed bilayer shells and, axially constrained springs [28] [12],

open avenues to create adaptive materials and functional materials [41]. The infinite

possibilities of folding combinations [8] [15], and robust manufacturability [35] [30] of

folded sheets make them a high potential candidate to construct multi-functional ma-

terials. One of the most used multi-stable origami structures is the stacked Miura-ori

which is constructed by assembling geometrically compatible Miura-ori sheets along

their creases [38]. In stacked Miura-ori, the multi-stability is induced by the Miura-ori

sheets considerable stiffness difference [23].

Through the transition to obtaining multi-stability in higher dimensions with origami’s

3D nature, the stacked Miura-ori has been shown to exhibit rapid deformation via

pressure-induced snapping [43] and elastic modulus programming [26]. In one study,
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it is observed that the multi-stable stacked Miura-ori exhibits unique asymmetric

energy barriers and mechanical diode behavior [41]. Folding induces a kinematic

constraint that causes a significant increase in the energy barrier when the structure

is being stretched while the required energy for compression does not experience a

notable change. Thus, a large amount of force must be applied to extend the stacked

Miura-ori, but only a small force to compress it.

In this design, static diode behavior is observable only in the extension direction. This

finding has brought up this question that how we can come up with a design to see

the diode behavior in compression, and if it is possible to transform it into extension

diode with a small change in the designed structure with the existing constituents.

The goal of this research to propose a cellular origami structure capable of exhibiting

static diode behavior in compression. The proposed origami unit cell can be counted

as a variation of the traditional stacked Miura-ori (Figure 1.1).This dual cell assembly

is compared to an electronic diode or a mechanical ratchet. The three structures are

designed to rectify the operating direction; The electricity current flow is one-way in

the electronic diode, or the rotational movement of the ratchet is unidirectional, and

finally the compression diode dual assembly facilitates the deformation in extension

direction only.
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Figure 1.1: The mechanical compression diode design.The dual cell chain is easy to
extend but hard to compress. There can be an analogy between this structure and,
electronic diode and, mechanical ratchet.

By using the rigid facet and spring hinge assumption the energy landscape of a newly

designed origami cellular structure is calculated and it has shown the desired energy

asymmetric barrier and static diode behavior. The calculated energy landscape shows

that the kinematic constraint induced by folding causes a significant increase in the

energy barrier in shifting between two consecutive stable configurations in compres-

sion direction, but no notable change in the energy barrier in the opposite switch was

noticed. An experimental examination has been conducted to validate the theoretical

results.

Followingly, the theoretical model of the extension diode was developed based on

4



the compression diode model (Figure 1.2). The energy landscape of the derivative

stacked origami was calculated based on the same assumption of rigid foldability.

The energy landscape of the extension diode showed the expected asymmetric energy

barrier in the extension direction. Meaning that one should apply a large amount

of force to stretch the cellular structure, but a small amount of force to compress it.

The attained theoretical results were accompanied by experimental examination, and

the extension diode behavior was observed.

Figure 1.2: The mechanical extension diode design. The dual cell chain is easy to
compress but hard to extend. There can be an analogy between this structure and
electronic diode and, mechanical ratchet.

One of the potential applications of this static diode is to be deployed in mechanical

programming. The current transistor-based computing circuits use multiple inter-

5



connected transistors to create a single Boolean logic gate. These electronic com-

putational components cannot function properly in harsh environments and because

of excessive heat dissipation, they demand involved thermal management. Besides,

transistor circuits are not capable of dynamically reconfigure their functionality in

real-time [5].

The mechanical computing is being investigated by many research groups due to

its advantages over its electronic counterparts. For example, in comparison with

electronic parts, mechanical parts can resist much higher temperature and radiation

exposure [4] [6]. Another advantage of mechanical logic devices they don’t need power

source because they use energy in mechanical form [36] [40]. Moreover, studies on

reversible-computing have suggested that designing a mechanical logic system with

small energy dissipation is theoretically possible [19] [11]. Currently, several mechan-

ical computations systems have been introduced. For example, Yuanping Song etal.

performed Boolean computations based on the mechanical forces and displacements

of multi-stable micro-flexures [40]. Raney etal. and the coworkers have architected a

medium composed of elastomeric bistable beams elements connected by elastomeric

linear springs that propagate mechanical signals. This architected structure can be

used to design mechanical diode and logic gates [34]. Origami structures have shown

a rich potential to be adopted to soft actuation materials and mechanisms [13].

Another potential application of origami mechanical diode is to be integrated into soft

robots and materials to serve different tasks. For example, The central unit processing

units in soft robots that manage the decision step in the interaction process of the

robot with the environment are composed of rigid electronics. Integrating these stiff

parts in soft robots is not thoroughly compatible with the compliant body of soft

robots. Treml etal. and his coworkers have developed a mechanical computation unit

6



with an origami waterbomb as the experimental platform to be Incorporated in soft

robots as an solution to the mentioned problem [42]. In what follows, Chapter 2

discusses the mechanics modeling and the theoretical analysis of the compression and

tension diodes; Chapter three presents the experimental validation of the theoretical

results proposed cellular designs. Chapter four investigates and optimization study

on the compression diode unit cell, and eventually in Chapter five concludes this

study with summary and future work.
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Chapter 2

Mechanics Modeling and

Theoretical Analysis of the

Mechanical Diode

2.1 Design of The New Cellular Origami Structure

In this study, a new multistable cellular origami structure is introduced. This unit

cell is fabricated by stacking geometrically compatible Miura-ori sheets and zigzag

shaped “connect sheets” in an alternating arrangement (Figure 2.1.a). By connecting

two unit cells via a connecting sheet, the most fundamental multi-stable structure

that can exhibit diode behavior is obtained (Figure 2.1.b). The designed unit cell is

essentially a variation of a classical stacked Miura-ori [38].

In the unit cell discussed here, the orientation of the Miura-ori with respect to each

8



Figure 2.1: Design of the new multistable stacked origami cellular structure. (a) An
overview showing the alternating sequence of different Miura-ori sheets and zig-zag
“connect sheets”.

other is flipped. More clearly stated, the Miura-ori sheet with the bigger dimension

in one edge, also referring to as sheet II, is reversed in the new design (Figure 2.2).

The new unit cell still follows the rigid-folding kinematics of traditional Miura-ori

[38]. The crease design of a unit cell is determined by crease lengths (aI ,bI , aII , bII ,

lc ) and the sector angles (γI , γII) (Figure 2.3.a). Here, subscript I and II denote

the two different Miura-ori sheets in a unit cell and lc is the length of the connecting

sheet. To satisfy the geometric compatibility the following restraints [38] should be

imposed on these parameters values :

bII = bI, (2.1)

cos γII
cos γI

=
aI
aII
. (2.2)

9



Figure 2.2: (a) Miura-ori sheet II is flipped in the new compression diode unit cell.
(b) The arrangement of sheet I and II with respect to each other in traditional stacked
Miuor-ori

To describe the external geometry of a unit cell during rigid-folding, one can use

dihedral folding angles θI and θII defined between the facets of the two Miura-ori

sheets and the x-y reference plane, respectively (Figure 2.3.b).

In the geometric design, it assumed that the unit cell ideally satisfies the rigid-folding

condition, which is essentially a one-degree-of-freedom motion [9]. This condition is

stated by the following relationship between the two sector angles and the folding

dihedral angles [38]:

cos θI tan γI = cos θII tan γII. (2.3)

The summation of the different components of the unit cell gives the total length of

the unit cell.
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Figure 2.3: Detailed design of a unit cell in this study. (a) Φi (I = 1. . . 6) are
unique dihedral angles between two adjacent facets along the difference creases. ψi

is the spine angle, which is also the dihedral angle of in the connect sheet. The two
drawings on the right show the design of Miura-ori sheets

L = lI + lII + lc, (2.4)

Where lI and lII are the length of the two constituent Miura-ori sheets respectively.

To describe dihedral folding angles between the facets in the connect sheet, a spine

angle can be defined [9]:

11



ψ = 2tan−1(cos θI tan γI), (2.5)

At it was mentioned, it is assumed that the unit cell facets are ideal rigid the crease

lines act as perfect hinges with prescribed torsional stiffness. This assumption satisfies

the rigid-folding condition kinematics. Thus, the total elastic potential energy of the

structure can be calculated using the following equation [1]:

Π =
1

2
ki(ϕi − ϕo

i )
2 +

1

2
kc(ψ − ψo)2, (2.6)

Where i is the dihedral crease opening angle denoted in Figure 2.3.a; These angles

measure the angles between intersecting planes forming the compression diode unit

cell’s geometry, and ϕo
i is the initial value of the corresponding dihedral angle (it is

worth to remind that all the angles defining the unit cell’s geometry are functons of

the folding angle θi.). ki is the corresponding torsional spring stiffness in the connect

sheets. The initial stress-free configuration angles are denoted by subscripts o. The

crease opening angles are the function of independent variable θI and can be described

using the following equations: (equations 2.8, 2.9 and 2.10 are adapted from previous

publications [23]):

ϕ1 = π − 2θI, (2.7)

ϕ2 = 2sin−1

(
cos θI√

1− sin2θIsin
2γI

)
, (2.8)

ϕ3 = π − 2cos−1
(
tan γIItan−1γI cos θI

)
, (2.9)

ϕ4 = 2sin−1

(
sin γI
sin γII

sin
ϕ2

2

)
, (2.10)
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ϕ5 =
π

2
+ θI. (2.11)

ϕ6 =
π

2
− θII. (2.12)

Although the torsional springs added to the creases are linearly elastic as can be

seen in equation 2.6, the correlations between folding and external deformation are

geometric and strongly nonlinear. The desired diode behavior originates from this

nonlinearity. ki and kI are the crease torsional stiffness per unit length of the Miura-

ori sheet I and II, respectively, and kc is the crease torsional spring stiffness per

unit length of the connecting sheet. The stiffness coefficients in equation 2.6 are

k1 = 2kIbI, k2 = 2kIaI, k3 = 2kIIbI, k4 = 2kIIaII, k5 = 4kcbI, k6 = 4kcbI, and kc = 2kclc,

where the numerical coefficients in these equations show determines the similar creases

in one unit cell.

In order to achieve bi-stability in a stacked Miura-ori unit cell , the stiffness of the

larger sheet II should be much higher than the crease stiffness of the sheet I and the

connecting sheet (also known as kII > kI and kc ) . Moreover, the initial stress-

free folding configuration should drift from 0 [23]. As it is shown in Figure 2.3-b

different values of θI can be chosen as the initial value of this angles to enable bi-

stability except for θI = 0. Figure 2.4 illustrates the energy landscape of two unit

cells ( referred to as cell A and B hereafter ) of the geometric parameters value of

aI = bI = 2cm,aII = 1.25aI, γI = 45◦, lc = 2.5aI, kI = kc, and kII = 20kI (equation 2.6).

The initial dihedral angle of cell A is chosen to be 60 and cell B to be -60 degrees.

The two potential energy wells of each cell (Figure 2.4) exhibit the bi-stability of this

group of geometric design parameters. In purpose of more clarity, the positive folding

angle of sheet I is denoted as state (1) and the negative stable configuration as (0)

so that the unit cell has the shortest length L at state (0). Throughout the entire
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Figure 2.4: The energy landscape of the two unit cells used in this study.

thesis, these design values are kept the same consistently, unless noted otherwise.

The initial dihedral angle of cell A is chosen to be 60 and cell B to be -60 degrees.

These stress-free configurations dictate the force relation between the individual cells

as follows: FA
c < FB

c , and FB
e < FA

e .

After formulating the unit cell external geometry and potential energy, the overall

energy and dimension of the dual cell assembly can be calculated as:

Πt = ΠA + ΠB + Π0, (2.13)

Lt = LA + LB + L0. (2.14)

ΠA, and ΠB are the strain energy of the unit cell A and B with the definition stated

in equation 2.6. Π0 is the strain energy of the connecting sheet between the two unit

cells and defined as:

Π0 =
1

2
k∗
(
ψA − ψB

)2
, (2.15)

Where k∗ is the constraint stiffness of the “connecting sheet”. This parameter is the
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key element of this study since it quantifies the strength of kinematical constraint

induced by folding. Ideally, if the rigid-folding assumption is observed (aka. all facets

in the dual cell chain are fully rigid and all creases act perfectly as hinges), the spine

angles of the two unit cells should be equal. (ψA = ψB). In this way, the admissible

deformations of the dual-cell chain are restricted to the “kinematic paths” shown in

Figure 2.5.a.

Figure 2.5: Kinematic properties of the compression diode structure due to the folding
induced constraint (or the lack of). (a) Admissible deformation of the dual cell
assembly. The two kinematic paths based on ideal rigid-folding condition are shown
by the solid and dashed curves. The gray area represents deformations that are not
kinematically admissible. (b) The geometry of the dual cell assembly at different
locations along these to kinematic paths.

In ideally rigid-folding condition, one possible path would be θAI = θBI , and the other

path be θAI = −θBI . However, the facets are not ideally rigid, and the creases do

not behave like perfect hinges. More specifically, the facets have small bending and
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creasing wrapping will take place. Thus, there would be some mismatch between the

two spine angles of the two unit cells. In conclusion, the configuration of the dual-cell

assembly can occur at any point within the parallelogram shown in Figure 2.5.a. This

deviation from ideal rigidity can apply additional elastic potential energy that can be

characterized by the constraint stiffness k∗.

In the next sections, first, the nonlinear elastic behavior of dual-cell assembly in the

absence of the kinematic constraint stiffness (k∗ = 0) is examined, and then the

situation at which the kinematic strain energy is added to the system is studied.

2.2 Diode effect in compression

Figure 2.6.a illustrates the total energy landscape of the dual cell chain according

to equation 2.13 with k∗ = 0. This scenario represents a hypothetical case in which

the sheet that connects the two cells are soft so that it does not provide any resis-

tance to the mismatch between the spine angles of the two cells (ψA and ψB) . The

“equilibrium paths” corresponding to the potential energy minima at a given total

length can be determined, and the dotted line shows the potential energy maxima at

that length. During deformation (changing from the minimum length to maximum

length) the dual cell assembly would pave these minima paths. Here, the continuous

equilibrium path that connects the three stable states of “0-0”, “0-1”, and “1-1” is of

interest. The energy landscape of the dual-cell assembly along this path is plotted in

Figure2.6.b.

The extension energy barrier (∆E) for shifting from “0-0” stable state to “0-1” stable

state and the compression energy barrier for the opposite switch ∆C can be seen in
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Figure2.6. The corresponding reaction force can be calculated as the variation of

total potential energy with respect to the change in total length:

F =
∂Πt

∂Lt
. (2.16)

The reaction force corresponding to the continuous equilibrium path is shown in

Figure 2.6.c. Based on this plot, two important forces can be calculated. One is the

critical reaction force (Fe) during switching from “0-0” stable configuration to “0-1”

stable configuration. The other important force (Fc) is the critical reaction force to

make the opposite switch (from “0-1” to “0-0”) happen. Essentially, (Fe) is the force

required to stretch the dual-cell chain from “0-0” to “0-1”, and (Fc) is the needed

amount of force to compress the structure back to “0-0” state.

The discussed scenario above showed a hypothetical case in which the connecting

sheet between the two cells are soft enough that it does not impose any kinematical

resistance. However, to exhibit the realistic structural behavior of the assembly under

imposed kinematic constraint, it should be assumed that the connecting sheet in be-

tween is not soft (stiffer connection results in more resistance against the mismatch),

and displays resistance to the mismatch between the spine angles during deforma-

tion (ψA, and ψB). In terms of theoretically modeling this case, the magnitude of

parameter k∗ is crucial here. Figure 2.7 illustrates the potential energy landscape

and reaction force of the dual-cell assembly along the continuous equilibrium path

when the constraint stiffness k∗ increases (the dotted lines in the first row of Figure

2.7 correspond to the potential energy maxima at a given length). As the constraint

increases, the potential energy barrier for compression switch from “0-1” stable state

to “0-0” increases significantly, but the energy barrier for the extension switch does
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not increase by the same degree. Moreover, when the kinematical stiffness reaches

a threshold value (k
∗

kI
= 140 in this case study), the initially continuous equilibrium

path that connects three stable states splits into two separate ones (see the first two

rows of Figure 2.7.b and .c). As a result, when the dual structure is extended from

the “0-0” stable state, it will deform to point P at the end of one equilibrium path

and then “leap” to the other path. In the compressing direction from “0-1” to “0-

0”, the dual structure deforms to Q first before leaping (see the insert figure in the

first row in Figure2.7.c). The asymmetry in the energy barrier caused by kinematic

constraint resulted from folding makes the required energy to reach mentioned leaps

significantly different between the extension and compression direction.

By examining the changes in critical forces as the kinematical constraint k∗ increases,

the presence of the asymmetric energy barrier can be further emphasized (the third

row of Figure 2.7). From Figure 2.7, one can see that with the increase of k∗, the

required force to compress the dual structure from “0-1” stable state to “0-0” stable

state is notably increasing while the required force to extend it back to “0-1” does

not change much (Table 2.1).(Section 2.2 and Section 2.3 are published [1].)

Table 2.1: The normalized critical forces in the extension and compression switches
between the (00) and (01) stable states based on the reaction force plots in Figure 6
and 7.

k∗

kI

Fe

kI

Fc

kI

0 26.5 -91.7
50 32.5 -467.3
140 36.3 -1261.7
600 39.9 -2079.7
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2.3 Diode effect in extension direction

In the unit cell of the extension diode, the orientation of sheet II is flipped. In other

words, the orientation of sheet I and sheet II with respect to each other is the same

as the traditional stacked Miura-ori. The dual cell chain of extension diode can be

seen in Figure 2.8. The same as the compression diode unit cell, this unit cell also is

consisted of geometrically compatible Miura-ori sheets and satisfies the rigid folding

condition (equations 2.1 and 2.2). This change did not change the relations between

the individual cells reactions forces (FA
c < FB

c , and FA
e > FB

e ). Moreover, the

three achievable stable states by global extension or compression are the same as the

compression diode.

In ideal rigid condition, where k∗ is infinitely high, there is no mismatch between the

spine angles. In this way, the admissible deformations of the extension dual cell chain

are bounded to the “kinematic paths” shown in Figure 2.8.a . The total length of the

dual stricture can be defined as follows (Figure 2.8.b):

Lt = LA + LB + L0. (2.17)

One should note that the unit cell total length (cell A or B ) is the summation of the

sheet I and sheet II and the connecting sheet length while the unit cell length in the

compression diode is calculated using equation 2.18:

LA = LB = LI + LII + Lc. (2.18)
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The total potential energy of the dual cell assembly is calculated with the same

approach used for the compression diode. The changes in the energy landscape of

this structure with the increase in k∗ can be seen in the first row of Figure 2.10. The

energy of the equilibrium path and the corresponding reaction force are shown in the

second row and third row of Figure 2.10 respectively.

As k∗ increases, the required force to switch from “0-1” to “1-1” stable configuration

is increasing while, the reaction force for shifting from “1-1” back to “0-1” is not

changed as much. Moreover the extension reaction force of changing from “0-0” to

“1-1” does not experience a large change. Similarly with extension compression diode,

when the reaches k∗ the threshold ( k∗

kI
= 220), the continuous equilibrium path splits

into two separate path (Figure 2.10.b). When the dual structure is extended from

the “0-1” stable state to “1-1, it will deform to point Q at the end of one equilibrium

path and then “leap” to the other path. In the compressing direction from “1-1” to

“0-1”, the dual structure deforms to P first before leaping (see the insert figure in the

first row in Figure 2.10.c). With a closer look at the second row of Figure 2.10, it

is evident that the extension energy barrier between state ’0-1’ and ’1-1’ is growing

as k∗ increases.However, this growing rate is not observed in the compression energy

barrier between ’1-1’ and ’0-1’ stable configurations. Thus, to switch from ’0-1’ to

’1-1’ stable state, a larger force is required with the increase of k∗. The second row of

Figure 2.10 also shows that the required force for compressing the structure from ’1-1’

to ’0-1’ is not increased much. In conclusion, this dual cell structure exhibits diode

behavior in extension direction, a structure hard to extend but, easy to compress.
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Figure 2.6: Mechanics of the dual-cell assembly assuming zero constraint stiffness
k*: (a) the total potential energy landscape, (b) the equilibrium path, and (c) the
reaction force along the equilibrium path. The colormap in (a) represents the total
potential energy, darker color means lower energy. It is worth nothing that in this
figure and the following Figure 6, only the equilibrium path containing the (00), (01),
and (11) stable states are shown in the energy landscape and reaction force plots.
This is because the (10) state is not achievable by global extension or compression.

21



Figure 2.7: The energy contours (first row), energy landscapes (second row), and the
reaction force (third row) corresponding to an increasingly stronger folding induced
kinematic constraint: (a) k∗

kI
= 50, (b) k∗

kI
= 140, and (c) k∗

kI
= 600. The “leap”

between the equilibrium paths are illustrated as dashed arrows in the insert figure in
the first row of (c).
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Figure 2.8: The dual cell chain of the extension mechanical diode. Miura-ori sheet II
is flipped back to the configuration it poses in traditional stacked Miura-ori.
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Figure 2.9: Kinematic properties of the extension diode structure due to the folding
induced constraint (or the lack of). (a) Admissible deformation of the dual cell
assembly. The two kinematic paths based on ideal rigid-folding condition are shown
by the solid and dashed curves. The gray area represents deformations that are not
kinematically admissible. (b) The geometry of the dual cell assembly at different
locations along these to kinematic paths.
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Figure 2.10: The energy contours (first row), energy landscapes (second row), and the
reaction force (third row) corresponding to an increasingly stronger folding induced
kinematic constraint: (a) k∗

kI
= 50, (b) k∗

kI
= 220, and (c) k∗

kI
= 600. The “leap”

between the equilibrium paths are illustrated as dashed arrows in the insert figure in
the first row of (c).
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Chapter 3

Experimental Investigation of the

Compression and Extension diode

3.1 Experimental observation of the diode behav-

ior in compression

After numerous modifications, a carefully designed prototype was fabricated to ex-

perimentally validate the analytical results. The patterns of the smallest components

of the geometry including the parallelograms of sheet I and II, and the connecting

sheets were designed in SolidWorksTM. (The drawings can be found in the appendix)

In the rigid folding condition, the planes are ideal rigid. In order to make the exper-

imental setup as close to the rigid folding assumption as possible, fatigue-resistant

301 stainless steel spring temper sheet of 0.01” thickness was used to cut the parts

from. This steel provided enough rigidity to the experimental setup to satisfy the
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rigid folding condition up to a reasonable extent. The parts were water-jet cut, and

two similar unit cells were fabricated using adhesive UHMW Polyethylene film of

.005” thick. One of the main issues in developing the experimental setup was to find

the proper method of fabricating the dual assembly to achieve an ideal multi-stable

force-displacement curve. For example, initially the UHMW film was attached on

both sides of the cut parts to assemble the dual chain setup. In order to archive

a multi-stable measured F-D curve, one should minimize the amount usage of the

UHMW adhesive film, specially on the crease regions. In another unsuccessful at-

tempt, the dual assembly parts were broken down to smaller subsets to be fabricated

separately and attached together to build the final structure. This method required

using extra adhesive film resulting in failure in obtaining proper curves. Eventually,

a fabrication process was designed that gave better multi-stable force-displacement

curves (Appendix A). The weakness of this process shows itself in experimental inves-

tigation of the diode behavior (k∗ > 0). This method can not deliver strong enough

connection between the two unit cells when they are connected to each other along

their zig-zag creases to represent the added kinematical stiffness k∗.

For mounting the unit cells to the Universal Tensile Tester, an additional part was

designed, and water-jet cut on the from the same materials and was attached to the

assembly on carefully determined places on the unit cells. Beside this steel part, a

customized connector was 3D printed. After many modifications, the best design for

the 3D printed connectors was used to enable the structure to be mounted on the

machine.

As it was mentioned above, for a stacked Miura-ori unit cell to be bi-stable, the tor-

sional stiffness of certain creases of the unit cell should be notably higher than the

other creases. The two adjacent creases on one side of the connecting sheets were
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chosen to add the stiffness. Many different metals with different thicknesses were

used to choose the one that delivers the best experimental results. For example, the

thickness of 0.007 18-8 stainless steel was not strong enough and deformed instantly

after one loading cycle, and could not maintain the elastic behavior; Or the thickness

of 0.009 of the same steel was too strong for the force scale of the designated exper-

iment and the delicacy of the fabricated setup. Finally, the 18-8 stainless steel shim

Stock (0.008” thickness) was employed to add the torsional stiffness on the creases

of connecting sheets. This thickness provided enough strength, and at the same time

maintains its elastic spring behavior during deformation. The rectangle parts from

shim stock in 2.5cm×3cm, were bent into equal angles to be attached on the creases.

to avoid any loss of accuracy in the experiment, the angles of all the springs must be

as equal as possible. In order to obtain the best consistency, a pair of fixtures with

the mating surfaces angle of 65◦ was cut.

Two sets of experiments were conducted. In the first experimental setup, the two

unit cells were simply connected to each other in series using M6 rigid rod with a

balanced internal force (Figure 3.1.a). For the second test set, the two cells were

connected to each other along their zig-zag crease lines by adhesive films. This setup

is consistent with the stacked origami construction shown in Figure 3.1.b. In both

sets, the arrangement of the cell is in a way that cell B is always on top.

Several single tension and compression load cycles, using the displacement control

method, were conducted with the two setups. The increase in the compression force

in crease connection in comparison with rod connection was noticed in all of them

consistently. In what follows, a pair of numbers (i-j) is used to represent the stable

configuration of Cell A and B respectively. All the tests were done in a way that the

dual-cell chain is first compressed from the “convex- convex” (i.e. 1-1) stable config-
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Figure 3.1: The photos of the rod-connected test (a) and crease-connected test of
compression diode dual cell-chain (b) show the three stable states (‘1-1’,’1-0’, and
‘0-0’)

uration to the “concave-concave” (i.e. 0-0) state and extended back to 1-1 state. The

force-displacement graph of one test is shown in Figure 3.2. The noticeable hystere-

sis in the experimental graphs is due to using adhesive films. After the completion

of half of the loading cycle (compression direction), this film goes through plastic

deformation and does not provide the desired elastic behavior.

The crosshead speed of this test was 0.08 mm/s. Four different stable configuration

combinations are possible for the dual-cell chain: ‘0-0’, ‘0-1’, ‘1-1’, and ‘1-0’. These

switches are evidenced by the negative slopes in both theoretical and experimental

force-displacement curves (i.e. negative stiffness). The theoretical model depicts

that the relation between the individual cells critical forces is as follows: FA
e > FB

e

and FA
c < FB

c . This relation needed to beheld in the experimental setup as well.

Experimentally, this relation could be applied by attaching proper numbers of steel

stripe on both cells with a certain proportion. It was chosen to attach 4 stripes on
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Figure 3.2: Compression and tension tests on compression diode dual-cell chain pro-
totypes with rod connection (red curve) and crease connection (blue curve).

Cell B and 2 stripes on Cell A to achieve the desired force relationships.

The snapping sequence of the dual-cell chain is dictated by this relation both in

compression and tension. Thus, only the first three of the possible combinations are

achievable via displacement control. In other words, since the critical compression

force of Cell B is higher than that of Cell A. ‘1-0’ combination is not attainable. In

conclusion, during compression, always Cell A nests in first because of its critical force

for snap-through (FA
c ) is lower than that of the top Cell B (FB

c ), and during tension,

Cell A bulges out first and then Cell B. Regardless of the inter-cellular connection,
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the switching sequence in both compression and tension is dictated by the individual

cells force relation. In compression, the switching sequence is ‘1-1’,’0-1’,’0-0’, and in

the tension is ‘0-0’, ‘0-1’, ‘1-1’. The experimental force-displacement curves of Cell A

and B are shown in Figure 3.3.

Figure 3.3: Measured force-displacement curves of the two unit cell prototype of the
compression diode.

With a comparison of the measured force-displacement curves of the two sets in

Figure 3.2, it can be seen that the compression force from switching (01) to (00) is

increased in the second setup (crease connection) while no notable increase was seen

in extending from ‘0-0’ to ‘0-1’. This experimentally validates the diode behavior
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that was noticed in analytical results. However, not much increase was noticed from

switching from ‘1-1’ to ‘0-1’. (The critical forces of the dual chain are denoted with ‘F’

and ‘R’ superscript that are referring to crease (film) connection and rod connection,

respectively). More specifically, in film connection, the required force to switch from

“0-1” to “0-0” was 1.9 N and in rod connection was 1 N.

3.2 Experimental observation of the diode behav-

ior in extension

In the previous sections, the extension diode behavior obtained from the analytical

model. It was necessary to experimentally observe diode behavior in extension. The

same assembly was used for this experiment with a slight variation in the Sheet II

configuration. To obtain the proper setup, the Sheet II of each cell was flipped. That

is the only change applied to the compression diode assembly (Figure 3.4).

According to the theoretical model, the same relation between the individual cells

critical forces is held and that is,FA
e > FB

e and FA
c < FB

c . The Force-Displacement

curve of the individual cells is shown in Figure 3.5. It is evident from the graph that

the experimental setup is properly set to satisfy the desired force relation.

Similarly, with compression dual structure, the extension dual-chain poses four pos-

sible stable states regardless of the inter-cellular connection: ‘0-0’, ‘0-1’, ‘1-1’, and

‘1-0’. Again, due to the assigned force relation, only the three stable arrangements

are achievable via the displacement-control method (Figure 3.6).

The extension loading starts with the assembly at the ‘convex-convex’ configuration.
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Figure 3.4: The extension diode individual cell prototype

That relation incurs a switching sequence of ‘0-0’ to ‘0-1’ to ‘1-1’ during extension,

and by the end of compression loading, the structure goes back to ‘convex-convex’

configuration. More specifically, Cell B bulges out first and then Cell A during ex-

tension, and Cell A nests in first and Cell B followingly (Figure 3.7).

Figure 3.6 shows that in crease-connected setup (blue curve), the required force to

extend the dual cell assembly from ’0-1’ to ’1-1’ is higher than the needed force to

apply this switch in the rod-connected . More specifically, in film connection, the

required force of going from ‘0-1’ to ‘0-0’ is 2.1 N, and in the rod connection 1.5 N

However, not much difference in magnitude of tension critical force of switch between

‘0-0’ and ‘0-1’ is seen (Figure 3.6).
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Figure 3.5: Measured force-displacement curves of the two unit cells prototype of the
extension diode.

3.3 Conclusion

The only difference between the two sets (whether in ”compression diode” or ”exten-

sion diode”) is the inter-cellular connection, one connected with the rod, and the other

with the adhesive film along the zig-zag creases. This illustrates that the connection

between two bi-stable cells can impose a kinematic constraint on the static behavior

of the structure. In other words, the increase of critical force for shifting from one

stable state to the next in the crease connection reveals the significant increase in

the energy barrier in extending from ‘0-1’ to ‘1-1’ in extension diode setup and in

compressing from ‘0-1’ to ‘0-0’ in compression diode.
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Figure 3.6: Tension and compression tests on extension diode dual-cell chain proto-
types with rod connection (red curve) and crease connection (blue curve).

Observing the diode effect in these two dual cell chains (extension diode and com-

pression diode) elucidates that this unique asymmetric energy barrier is the result of

the coupling between unit cell length change in the z-axis and the connecting creases

displacement along x and y axes at the boundary between two cells. This accentu-

ates the importance of the three-dimensional nature of origami folding in obtaining

mechanical diode behavior and multi-stability.
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Figure 3.7: The photos of the rod-connected test (a) and crease-connected test of
compression diode dual cell-chain (b) show the three stable states (‘1-1’,’1-0’, and
‘0-0’)
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Chapter 4

Optimization

4.1 Introduction

The primary objective of this study was to introduce a mechanical diode effect ob-

tained by connecting two origami unit cells along their zigzag crease using adhesive

film. Therefore, strengthening the diode effect is the prior concern in the design. On

the other hand, minimizing the required material to fabricate a cellular structure is

crucial to minimize the production cost. These two criteria were considered to find

an optimum feasible solution region. The independent geometrical parameters were

aI ,bI ,lc, and γI). As it was mentioned in previous sections, the ideal diode behav-

ior is originated from the nonlinearity in the describing correlations of the geometry.

From the four involved parameters, γI is responsible for the biggest portion of the

nonlinearity in the correlations describing the unit cell geometry (equations 2-7,....,

2-12).
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The strength of the diode behavior can be measured by the ratio of the critical

compression force to the extension force of the dual cell chain. The first objective is

to maximize this ratio. The higher this ratio is, the stronger the mechanical diode

can be achieved. In practice, the importance of this matter is revealed in the design

of a mechanical logic gate to bear a high loading threshold.

Referring to previous sections, the derivative of the total stored elastic energy with

respect to total length change gives the reaction force of the dual origami structure.

Therefore, the design variables in the optimization process are the geometrical pa-

rameters used in potential energy evaluation including γI , a, b, and lc.

To decrease the fabrication cost, the surface area of the unit cell should be minimized

(note that the two cells are identical). The main constituents of the unit cell are:

sheet I, sheet II and the connecting sheet.

Here, the inter-cellular connecting sheets are and the connectors that attach the

two cells are assumed to have equal dimensions. The total surface area of the unit

cell can be calculated as the summation of the areas of 4 parallelograms with sheet

I dimensions and 4 parallelograms with sheet II dimensions and 2 rectangles with

dimensions of the connecting sheet.

The total surface area is evaluated by the summation of the three following equations:

A1 = 2aIbI sin γI . (4.1)

A2 = 2aIIbII sin γII . (4.2)
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A3 = 2bI lc. (4.3)

4.2 Design problem

4.2.1 Design objective

The goal of this bi-objective optimization problem is to strengthen the diode behavior

and at the same time to minimize the used material required for fabrication. In

other words, the first objective is to maximize the defined force ratio and the second

objective is minimizing the unit cell surface area. The next important step is to define

all the geometrical constraints.

4.2.2 Design constraints

As it can be seen in figure 2-52.5, the unit cell poses the smallest length at θI = −90.

Therefore, it is important to take into consideration that the length of the inter-

cellular connecting sheet is long enough to prevent any contact between sheet I and

sheet II at this stable configuration. This geometrical constraint can be stated by the

following inequality:

lc > |lmax
I |+ |lmax

II | . (4.4)

Where lI is the height of sheet one at θI = −90 and lII is the height of sheet II at
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the θII (2.3). LI and LII are calculated using following equations:

LI = aI sin θI sin γI . (4.5)

LII = aII sin θII sin γII .. (4.6)

4.2.3 Optimization problem setup

modeFrontier R© 2017 R1 was used as the optimizer platform and MATLAB R© 2017b

was linked to the optimizer as the solver. DOE properties were adjusted at Basic mode

with ”Uniform Latin Hypercube” as the space filler. For this bi-criteria optimization

problem ”MOGA-II” method was used to carry out the optimization. ”MOGA-II”

which stands for ”Multi-Objective Genetic Algorithm II” is an efficient evolutionary

optimization algorithm for a constrained problem. Solving a multi-objective problem

with the traditional form of the ”Genetic Algorithm” can face deficiency in converging

to the true ”Pareto Front”, and misidentify the true optima. ”MOGA-II” algorithm

tackles this issue with smart multi-search elitism. This new elitism operator has

the advantage to preserve some desirable solutions without bringing the premature

convergence into the local optimal fronts. In this method, the constraints are tackled

by applying ”Penalty Method”, and it can handle both continuous and discrete design

space ( In the process of the optimization using this algorithm, the continuous design

space is discretized internally) [37] . In modeFrotier R©, the optimization algorithm

configuration is set to the ”automatic mode”. In this configuration, The ”Number

of Generations” is 100, the ”Probability of the Directional Cross-Over” is 0.5, the
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”Probability of Mutation” is 0.1, the ”DNA String Mutation Ratio” is 0.05, and the

”Number of Evaluations” is chosen to be 2000 . The high values of the ”Probability of

Directional Cross-Over” decreases the robustness of the algorithm and this may cause

the optimization process to get trapped at a local optima without touring the whole

design space. This consideration matters in highly nonlinear problems, such as the

”compression diode unit cell’s geometry”. Another important point is to enable the

”Elitism” operator to enhance the convergence of the algorithm [37]. The workflow

diagram can be seen in Figure 4.1.

Figure 4.1: The developed workflow in modFrontier R©to obtain optimized designs
admissible region.

For aI and bI the lower bound of 0.5 cm and upper bound of 5 cm was chosen. γI

varies between 45◦ and 75◦, and lc is changing from 0.8 cm to 5 cm. One should note

that the different combinations of these design parameters can lead to mono-stability.

Thus, it is crucial to allow only eligible designs into the optimization process. This

constraint is defined in the MATLAB script linked to the optimizer.
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4.3 Optimization results

Among the four design variables, γI l has a nonlinear relationship with angles defining

the unit cell geometry; Therefore, the strength of the diode effect is highly sensitive to

the variation of γI . More specifically, the spine angles, which quantify the kinematic

constraint, are function of γI . This further demonstrates the impact of γI on the

strength of the diode behavior of the structure. Sheet I and sheet II crease stiffnesses

are function of a and b and the connecting sheet crease stiffness is a function of lc.

These stiffnesses have a linear relationship with the unit cell potential energy. These

three design variables play a very important role in the surface area of the unit cell.

The obtained Pareto front from the optimizer is shown in Figure 4.2.

In the front, the force ratio varies from 18.5 to 36.9 and the surface area changes

from 5.5 cm2 to 17.3 cm2. The design variables at the beginning of this range are

aI = 0.5cm, bI = 0.5cm, lc = 1.1cm, and γI = 1.3rad, and the at the end of the range

are aI = 0.5cm, bI = 1.8cm, lc = 1.2cm, and γI = 1.3rad (Figure 4.3) . It is worth to

note that γI value on the ”Pareto Front” is consistently 1.3rad. This shows that the

optimum diode effect strength is achieved at this γI value and further illustrates the

importance of this design parameter. However, parameter aI value varies within the

optimized designs range. Based on what type of application this structure is deployed

in, and factors such as size and cost one objective can be the priority to the other

one.
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Figure 4.2: The”Pareto Front” for compression diode dual-cell chain.
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Figure 4.3: a) Miura-ori sheet I’s geometry at the beginning of the optimum range.
b) Miura-ori sheet I’s geometry at the end of the optimum range.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion and Summary

This study proposes and examines a mechanics model to theoretically examine the

static behavior of a multi-stable cellular origami structure that exhibits diode behav-

ior in compression, presents experimental results to validate the theoretical results

and, investigates, theoretically and experimentally, a transformed version of the com-

pression diode unit cell that results in mechanical extension diode. Each unit cell in

this cellular structure is essentially a bistable unit that consists of two geometrically

consistent Miura-ori sheets and zig-zag shaped connecting sheet. The bi-stability in

each cell originates from the nonlinear correlations between folding and crease de-

formation. It was shown that with a small change in the designed unit cell of the

compression cellular structure, a new unit cell is obtained that shows diode behavior

in extension. Each unit cell in this cellular structure is also a bi-stable unit that

follows the same nonlinear correlation between the crease rotation and the overall
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folding.

The fundamental construction of this study was a dual-cell chain to investigate the

static behavior of that. Using this dual-cell structure, the desired diode behavior was

achieved in both compression and extension.

These origami unit cells (compression and extension diode designs) are essentially a

three-dimensional transformation mechanism. This 3D nature of origami imposes a

unique kinematic constraint onto the deformations of the two connected unit cells.

More specifically, the magnitude mismatch between the spine angles of the two cells

during deformation can determine the strength of the imposed kinematical constraint.

This constraint can be quantified with an equivalent stiffness, k∗. The higher k∗ results

in a higher energy barrier either in compression direction or extension. In compression

diode structure, due to this constraint, a higher force is required to deform the dual

cell chain in compression direction while the required force to extend the structure is

significantly smaller. In extension diode, the structure is easy to compress but hard

to extend due to this added stiffness.

Then, two experimental setups were developed for both extension diode and compres-

sion diode to experimentally support the theoretical results. In the first set, the two

unit cells are connected via a rigid rod with a balanced internal force. In the second

setup, the two cells are connected via a zig-zag shaped connecting sheets along their

zig-zag creases using adhesive film. The experimental observations revealed that the

crease connection increases the energy barrier for switching between certain stable

states. This increase for compression diode is in compressing the dual structure from

one stable state to the next one and in the extension, it happens when the chain is

being stretched from one stable state to the next.
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Obtaining diode-like behavior by employing nonlinear elastic properties to achieve

diode-like mechanical behavior is a progressively important subject of research [9]. In

recent studies, it has been shown that multi-stable structures and materials with care-

fully designed microstructures are capable of attaining unidirectional acoustic [2] and

elastic wave propagation [34]. The diode effect reported in this study can open new

avenues toward multifunctional structures and material systems that can be deployed

in motion rectifying, wave propagation control, and mechanical computation.

5.2 Future Work

In chapter 3, a notable hysteresis was observed in the experimental force-displacement

curves. This hysteresis was due the plastic deformation of “Adhesive UHMW Polyethy-

lene Film” during the full loading cycle. If one runs the experiment for more than

one cycle, the second or third cycle does not result in desirable FD curves and the

multi-stability behavior can not be concluded from the second or third loading cycles

graphs. Thus, it is important to find an alternative to assemble the structure that can

address the hysteresis issue and enhance the experiment repeatability. Moreover, the

magnitude of increased forced between rod connection and crease connection (the in-

crease in the tension reaction force in extension diode and increase in the compression

reaction force in compression diode ) was expected to be higher. One improvement

in the experimental setup should be strengthening the crease connection between two

unit cells.

Developing a finite element model of the unit cell, and the stacked cellular structure is

a very efficient tool to further investigate the mechanics of the developed theoretical
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model. This FEA model can be used to do a stress analysis on the static diodes

and study the kinematics of the structure. Moreover, based on the results of these

studies one can apply required modifications to further enhance the unit cells design

and performance according to the anticipsted application. Additionally, developing a

logic gate based on these two unit cells is the next phase of this project to demonstrate

the capabilities of these designs in practice.
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Appendix A

Prototype Fabrication Process
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Figure A.1: SolidWork drawings of the fabricated prototype
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Figure A.2: The used outlines of the subsets that are connected to each to assemble
the dual structure using the method introduced in Appendix A
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Figure A.3: Step 1. The cut parts should be fixed on the proper place on the outline
as shown in Figure A.3
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Figure A.4: Step 2.
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Figure A.5: Step 3.
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Figure A.6: Step 4: Fixing a piece of adhesive film with the sticky side facing upward.
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Figure A.7: Step 5: The ”slippery sheet” should be kept to be used in next step.

56



Figure A.8: Step 6: Attache the ”slippery sheet” as it shown in the figure form the
slippery side to the adhesive film.
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Figure A.9: Step 7. Drawing the flaps of the connecting sheets using the sheet I and
sheet II parallelograms.
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Figure A.10: Step 8
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Figure A.11: Step 9
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Figure A.12: Step 10. Drawing the flaps of the sheet I using the side connecting sheet
part.
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Figure A.13: Step 11
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Figure A.14: Step 12
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Figure A.15: Step 13. Attaching the subsets to eaxh other along their flaps.
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Figure A.16: Step 14.

65



Appendix B

MATLAB R©Codes

B.1 Theoretical Analysis Main MATLAB Script

for k∗ = 50 Compression Diode

1 c l e a r

2 c l c

3 c l f

4 c l o s e a l l

5 %%CELL A parameters

6 aIa=2;

7 % bIa=aIa ;

8 bIa=4;

9 a I I a =1.25∗ aIa ;

10 l andaIa=pi /4 ;

11 l anda I Ia=acos ( ( aIa ∗ cos ( landaIa ) ) / a I I a ) ; % r i g i d−f o l d i n g cond i t i on

12 KIa=1;

13 K A=ze ro s (1 , 5 ) ;
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14 K A(1 ,1 )=KIa ;

15 L c=5;

16 L o=5;

17 the ta0 a=−pi /3 ;

18 t h e t a a1 2 0=acos ( ( cos ( the ta0 a ) .∗ tan ( landaIa ) ) . / ( tan ( l anda I Ia ) ) ) ;

19

20 K A(1 ,2 )=20∗KIa ;

21 K A(1 ,3 )=KIa ;

22 K A(1 ,4 )=KIa ;

23 K A(1 ,5 ) =0;

24 the ta a1=l i n s p a c e (−pi /2 , p i /2 ,1555) ;

25 the ta a1 2=acos ( ( cos ( the ta a1 ) .∗ tan ( landaIa ) ) . / ( tan ( l anda I Ia ) ) ) ;

26 t h e t a a1 2 0=acos ( ( cos ( the ta0 a ) .∗ tan ( landaIa ) ) . / ( tan ( l anda I Ia ) ) ) ;

27 s1a=s i n ( landaIa ) ;

28 t2a=tan ( l anda I Ia ) ;

29 t1a=tan ( landaIa ) ;

30 L1 a=aIa .∗ s i n ( the ta a1 ) .∗ s i n ( landaIa ) ;

31 L2 a=aI Ia .∗ s i n ( the ta a1 2 ) .∗ s i n ( l anda I Ia ) ;

32 n=length ( L1 a ) ;

33 L2 a max=max( L2 a ) ;

34 L1 a max=max( L1 a ) ;

35 L2 a min=min ( L2 a ) ;

36 L1 a min=min ( L1 a ) ;

37 LA min=L2 a min+L1 a min+L c ;

38 LA max=L2 a max+L1 a max+L c ;

39 % LA=l i n s p a c e (LA min , LA max , n) ;

40 LA I=l i n s p a c e ( L1 a min , L1 a max , l ength ( L1 a ) ) ; %length o f shee t I in new

des ign

41

42 %%

43 %%CELL B parameters

67



44 aIb=2;

45 bIb=aIb ;

46 aI Ib =1.25∗ aIb ;

47 landaIb=pi /4 ;

48 l andaI Ib=acos ( ( aIb∗ cos ( landaIb ) ) / aI Ib ) ; % r i g i d−f o l d i n g cond i t i on

49 KIb=1;

50 K B=zero s (1 , 5 ) ;

51 K B(1 ,1 )=KIb ;

52

53 theta0 b=pi /3 ;

54 the ta b2 0=acos ( ( cos ( theta0 b ) .∗ tan ( landaIb ) ) . / ( tan ( landaI Ib ) ) ) ;

55

56 K B(1 ,2 )=20∗KIb ;

57 K B(1 ,3 )=KIb ;

58 K B(1 ,4 )=KIb ;

59 K B(1 ,5 ) =0;

60 theta b1=l i n s p a c e (−pi /2 , p i /2 ,n) ;

61 theta b2=acos ( ( cos ( theta b1 ) .∗ tan ( landaIb ) ) . / ( tan ( landaI Ib ) ) ) ;

62 s1b=s i n ( landaIb ) ;

63 t2b=tan ( landaI Ib ) ;

64 t1b=tan ( landaIb ) ;

65 L1 b=aIb .∗ s i n ( theta b1 ) .∗ s i n ( landaIb ) ;

66 L2 b=aIIb .∗ s i n ( theta b2 ) .∗ s i n ( landaI Ib ) ;

67 L b=L c+L1 b−L2 b ;

68 L2 b max=max( L2 b ) ;

69 L1 b max=max( L1 b ) ;

70 L2 b min=min ( L2 b ) ;

71 L1 b min=min ( L1 b ) ;

72 %%

73 %Total l ength CEll A I I I in o r i g i n a l des ign

74 A=aIa ∗ s i n ( landaIa ) ;
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75 B=(( tan ( l anda I Ia ) ) ˆ2) / ( ( tan ( landaIa ) ) ˆ2) ;

76

77

78 L a=aIa ∗ s1a ∗ ( ( s q r t ( ( ( t2a ˆ2) /( t1a ˆ2) )−(( cos ( the ta a1 ) . ˆ 2 ) ) ) )−s i n ( the ta a1

) ) ;

79 L A max=max( L a )

80 L A min=min( L a )

81 %%

82 %Mismatch parameters

83 K star=50;

84

85 say A0=2∗atan ( cos ( the ta0 a ) ∗ tan ( landaIa ) ) ;

86 say B0=2∗atan ( cos ( theta0 b ) ∗ tan ( landaIb ) ) ;

87

88 n=length ( L1 a )

89 %%

90

91

92 %%

93 %Calcu l a t ing maximum and minium

94 i 5 =0;

95 f o r i 3=l i n s p a c e (−pi /2 , p i /2 ,n)

96

97 i 5=i 5 +1;

98 i 6 =0;

99 f o r i 4=l i n s p a c e (−pi /2 , p i /2 ,n)

100 i 6=i 6 +1;

101 the ta a1 2 ( i 5 )=acos ( ( cos ( i 3 ) .∗ tan ( landaIa ) ) . / ( tan ( l anda I Ia ) ) ) ;

102 the ta b 2 ( i 6 )=acos ( ( cos ( i 4 ) .∗ tan ( landaIb ) ) . / ( tan ( landaI Ib ) ) ) ;

103 t o t a l l e n g t h ( i5 , i 6 )=(L c+(aIa .∗ s i n ( i 3 ) .∗ s i n ( landaIa ) )−abs ( ( a I I a

.∗ s i n ( the ta a1 2 ( i 5 ) ) .∗ s i n ( l anda I Ia ) ) ) )+(L c+(aIb .∗ s i n ( i 4 ) .∗
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s i n ( landaIb ) )−abs ( ( a I Ib .∗ s i n ( the ta b 2 ( i 6 ) ) .∗ s i n ( landaI Ib ) ) )

)+L o ;

104 end

105

106 end

107 L tota l min=min (min ( t o t a l l e n g t h ) ) ;

108 L total max=max(max( t o t a l l e n g t h ) ) ;

109 L T=l i n s p a c e ( L tota l min , L total max , n) ; %New des ign t o t a l l ength

110 %%

111

112 i 1 =0;

113 f o r LT=l i n s p a c e ( L tota l min , L total max , n)

114 i 1=i 1 +1;

115 f o r i 2 =1: l ength ( L1 a )

116 [ theta A1 ( i1 , i 2 ) , theta A2 ( i1 , i 2 ) ,E A( i1 , i 2 ) , LA II ( i1 , i 2 ) ,

L A I I I ( i1 , i 2 ) ]=CellA ( LA I ( i 2 ) , landaIa , aIa , bIa ,K A, theta0 a

, n , L o , L c ) ;

117 [ E B( i1 , i 2 ) , LB I I I ( i1 , i 2 ) , theta B ( i1 , i 2 ) , E1 b2 ( i1 , i 2 ) , E2 b2 ( i1 ,

i 2 ) , E3 b2 ( i1 , i 2 ) , E4 b2 ( i1 , i 2 ) , E7 b2 ( i1 , i 2 ) ]= CellB ( aIb , aIIb ,

landaIb , LA I ( i 2 ) , LA II ( i1 , i 2 ) ,K B , theta0 b , L2 a min , L2 a max

, L A I I I ( i1 , i 2 ) ,n ,LT, L o , L c ) ;

118 i f E B( i1 , i 2 )˜=0

119 say A ( i1 , i 2 )=2∗atan ( ( cos ( theta A1 ( i1 , i 2 ) ) ) ∗ tan ( landaIa ) ) ;

120 say B ( i1 , i 2 )=2∗atan ( ( cos ( theta B ( i1 , i 2 ) ) ) ∗ tan ( landaIb ) ) ;

121 E say ( i1 , i 2 )=K star ∗bIa ∗ ( ( ( say A ( i1 , i 2 )−say B ( i1 , i 2 ) ) . ˆ 2 ) . / 2 )

;

122 E6 a2 ( i1 , i 2 )=(K A(3) . ∗ ( say A ( i1 , i 2 )−say A0 ) . ˆ 2 ) . / 2 ;

123 E6 b2 ( i1 , i 2 )=(K B(3) . ∗ ( say B ( i1 , i 2 )−say B0 ) . ˆ 2 ) . / 2 ;

124 E8 A B( i1 , i 2 )=(K A(5) . ∗ ( say B ( i1 , i 2 )−say A ( i1 , i 2 ) ) . ˆ 2 ) . / 2 ;

125

126 Et A B( i1 , i 2 )=E A( i1 , i 2 )+E B( i1 , i 2 ) ;
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127 Et say ( i1 , i 2 )=Et A B( i1 , i 2 )+E say ( i1 , i 2 )+E8 A B( i1 , i 2 )+E6 a2 (

i1 , i 2 )+E6 b2 ( i1 , i 2 ) ;

128 e l s e

129 say A ( i1 , i 2 )=0;

130 say B ( i1 , i 2 )=0;

131 E say ( i1 , i 2 )=0;

132 E6 a2 ( i1 , i 2 )=0;

133 E6 b2 ( i1 , i 2 )=0;

134 E8 A B( i1 , i 2 )=0;

135 Et A B( i1 , i 2 )=0;

136 Et say ( i1 , i 2 )=0;

137

138 end

139 end

140 end

141

142 %%

143 %

144 % %Plo t t i ng r e s u l t s

145 f o r i =1:n

146 L1 a 2 ( i )=aIa .∗ s i n ( theta A1 (1 , i ) ) .∗ s i n ( landaIa ) ;

147 L2 a 2 ( i )=a I I a .∗ s i n ( theta A2 (1 , i ) ) .∗ s i n ( l anda I Ia ) ;

148 LA( i )=L1 a 2 ( i )−L2 a 2 ( i )+L c ;

149 end

150

151 [X1 ,Y1]=meshgrid (L T ,LA) ;

152 XX1=X1 . ’ ;

153 YY1=Y1 . ’ ;

154 % %%

155 % %Total energy

156 % f i g u r e (1 )

71



157 % V1=l i n s p a c e (0 ,1000 ,100) ; %energy l e v e l

158 %

159 % contour f (XX1,YY1, Et say )

160 % x labe l ( ’ Total Length ’ )

161 % y labe l ( ’ Ce l l A Sheet I length ’ )

162 % t i t l e ( ’ Total Energy Contour ’ )

163 %

164 % %%

165 % %Thet A1

166 % f i g u r e (2 )

167 % plot3 (XX1,YY1, theta A1 )

168 % t i t l e ( ’ Theta A I ’ )

169 % %%

170 % %Theta A2

171 % f i g u r e (3 )

172 % plot3 (XX1,YY1, theta A2 )

173 % t i t l e ( ’ Theta A II ’ )

174 % %%

175 % %Theta B

176 % f i g u r e (4 )

177 % plot3 (XX1,YY1, theta B )

178 % t i t l e ( ’ Theta B ’ )

179 % %%

180 %

181 % %p l o t t i n g energy landscape o f c e l l A

182 % theta A1 2=l i n s p a c e (−pi /2 , p i /2 ,n) ;

183 % % L A I I I 2=abs ( aIa ∗ s1a ∗ ( ( s q r t ( ( ( t2a ˆ2) /( t1a ˆ2) )−(( cos ( theta A1 2 )

. ˆ 2 ) ) ) )−s i n ( theta A1 2 ) ) ) ;

184 % L1 A I 2=aIa .∗ s i n ( theta A1 2 ) .∗ s i n ( landaIa ) ;

185 % phi10 a=pi −2.∗ the ta0 a ;

186 % phi20 a=2.∗ as in ( cos ( the ta0 a ) . / sq r t (1−(( s i n ( the ta0 a ) ) . ˆ 2 ) . ∗ ( s i n (
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l andaIa ) ) . ˆ 2 ) ) ; %i t should not be more than 1 or −1

187 % phi30 a=pi −(2.∗ acos ( tan ( landaIa ) .∗ ( 1 / ( tan ( l anda I Ia ) ) ) .∗ cos ( the ta0 a ) ) )

;

188 % phi40 a=2.∗ as in ( ( ( s i n ( landaIa ) ) . / ( s i n ( l anda I Ia ) ) ) .∗ s i n ( phi20 a . / 2 ) ) ;

189 % phi50 a=(p i /2)+theta0 a ; %i t should not be more than 1 or −1

190 % s1a=s in ( landaIa ) ;

191 % t2a=tan ( l anda I Ia ) ;

192 % t1a=tan ( landaIa ) ;

193 % phi1 a1=pi −2.∗ theta A1 2 ;

194 % phi2 a1=2.∗ as in ( cos ( theta A1 2 ) . / sq r t (1−(( s i n ( theta A1 2 ) ) . ˆ 2 ) . ∗ ( s i n (

landaIa ) ) . ˆ 2 ) ) ;

195 % phi3 a1=pi −(2.∗ acos ( tan ( landaIa ) .∗ ( 1 / ( tan ( l anda I Ia ) ) ) .∗ cos ( theta A1 2 )

) ) ;

196 % phi4 a1=2.∗ as in ( ( ( s i n ( landaIa ) ) . / ( s i n ( l anda I Ia ) ) ) .∗ s i n ( phi2 a1 . / 2 ) ) ;

197 % phi5 a1=(p i /2)+theta A1 2 ;

198 % say A1 2=2∗atan ( cos ( theta A1 2 ) ∗ tan ( landaIa ) ) ;

199 % say A1 2 0=2∗atan ( cos ( the ta0 a ) ∗ tan ( landaIa ) ) ;

200 % K1 a=2∗K A(1) ∗bIa ; %KIa

201 % K2 a=2∗K A(1) ∗ aIa ; %KIa

202 % K3 a=2∗K A(2) ∗bIa ; %KIIa

203 % K4 a=2∗K A(2) ∗ a I I a ; %KIIa

204 % K6 a=2∗L c∗K A(3) ; %i n t e r c e l l l a r c r e a s e s t i f f n e s s . the re are tow

c r e a s e s with t h e i r e a s s o c i a t ed s t i f f n e s s in each un i t c e l l

205 % %Kc3 a

206 % K7 a=8.∗K A(4) .∗ bIa ; %Kc2 a

207 % K8 a=K A(5) .∗ bIa ; %K externa l

208 % E1 a1=K1 a . ∗ ( phi1 a1−phi10 a ) . ˆ 2 ;

209 % E2 a1=K2 a . ∗ ( phi2 a1−phi20 a ) . ˆ 2 ;

210 % E3 a1=K3 a . ∗ ( phi3 a1−phi30 a ) . ˆ 2 ;

211 % E4 a1=K4 a . ∗ ( phi4 a1−phi40 a ) . ˆ 2 ;

212 % E6 a1=K6 a . ∗ ( say A1 2−say A1 2 0 ) . ˆ 2 ;
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213 % E7 a1=K7 a . ∗ ( phi5 a1−phi50 a ) . ˆ 2 ;

214 % Et a=(E1 a1+E2 a1+E3 a1+E4 a1+E7 a1+E6 a1+E7 a1 ) . / 2 ;

215 % f i g u r e (5 )

216 % plo t ( L1 A I 2 , Et a )

217 % %%

218 % %Eenrgy lanscape

219 % f i g u r e (6 )

220 % plot3 (XX1,YY1, Et say )

221 % t i t l e ( ’ Total energy Landscape ’ )

222 % %%

223 % %Plo t t i ng CELL B energy landscape

224 % f i g u r e (7 )

225 % plot3 (XX1,YY1, E B)

226 % t i t l e ( ’ C l l B energy Landscape ’ )

227 % %%

228 % %Plo t t i ng CELL B energy landscape

229 % f i g u r e (8 )

230 % plot3 (XX1,YY1,E A)

231 % t i t l e ( ’ C l l A energy Landscape ’ )

232 % %%

233 % % Kinematic Constra int Energy Contour

234 % V2=l i n s p a c e (0 ,100 ,100) ; %energy l e v e l

235 % f i g u r e (9 )

236 % contour (XX1,YY1, r e a l ( E say ) ,V2)

237 % x labe l ( ’ Total Length ’ )

238 % y labe l ( ’ Ce l l A Sheet I length ’ )

239 % t i t l e ( ’ Kinematic Constra int Energy Contour ’ )

240 % %%

241 % %Plo t t i ng t o t a l energy contour with t o t a l l ength o f c e l l A on y ax i s

242 %

243 % LA1 min=L2 a min+L1 a min+L c ;
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244 % LA1 max=L2 a max+L1 a max+L c ;

245 % LA1 range=l i n s p a c e (LA1 min , LA1 max , n) ;

246 % [X2 ,Y2]=meshgrid (L T , LA1 range ) ;

247 % XX2=X2 . ’ ;

248 % YY2=Y2 . ’ ;

249 % f i g u r e (10)

250 % contour (XX2,YY2, r e a l ( E say ) ,V2)

251 % x labe l ( ’ Total Length ’ )

252 % y labe l ( ’ Ce l l A length ’ )

253 % t i t l e ( ’ Total Energy Contour ’ )

254 %

255 % %%

256 % %Plo t t i ng say

257 % f i g u r e (18)

258 % plot3 (XX1,YY1, say A )

259 % t i t l e ( ’ Say A ’ )

260 % %%

261 % f i g u r e (19)

262 % plot3 (XX1,YY1, say B )

263 % t i t l e ( ’ Say B ’ )

264 %

265 % %%

266 % %Plo t t i ng E say

267 % f i g u r e (20)

268 % plot3 (XX1,YY1, E say )

269 % t i t l e ( ’ ESay ’ )

270 % %%

271 % %Plo t t i ng E8 A B

272 % f i g u r e (21)

273 % plot3 (XX1,YY1, E8 A B)

274 % t i t l e ( ’ E8 A B ’ )
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275 % %%

276 % %Plo t t i ng E6 a2

277 % f i g u r e (22)

278 % plot3 (XX1,YY1, E6 a2 )

279 % t i t l e ( ’ E6 a2 ’ )

280 %

281 % %%

282 % %Plo t t i ng E6 b2

283 % f i g u r e (23)

284 % plot3 (XX1,YY1, E6 b2 )

285 % t i t l e ( ’ E6 b2 ’ )

286

287

288 f i g u r e (24)

289

290

291 Maxima= [ ] ;

292 Index = [ ] ;

293 Index2 = [ ] ;

294 Index3 = [ ] ;

295 Index4 = [ ] ;

296 Minima1 = [ ] ;

297 Minima2 = [ ] ;

298 Minima3 = [ ] ;

299 Minima4 = [ ] ;

300 Index4 = [ ] ;

301 Index5 = [ ] ;

302 satreMinima1 = [ ] ;

303 satreMinima2 = [ ] ;

304 satreMinima3 = [ ] ;

305 satreMinima4 = [ ] ;
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306 sotooneMinima1 = [ ] ;

307 sotooneMinima2 = [ ] ;

308 sotooneMinima3 = [ ] ;

309 sotooneMinima4 = [ ] ;

310 satreMaxima = [ ] ;

311 Maxima8= [ ] ;

312 satreMaxima8 = [ ] ;

313 Index8 = [ ] ;

314 f i r s t f a l s e max ima = [ ] ;

315

316 Minima11 = [ ] ;

317 Minima22 = [ ] ;

318

319 Index22 = [ ] ;

320 satreMaxima2 = [ ] ;

321 Maxima2= [ ] ;

322 f o r z1=1:n

323

324 i f z1<=40

325 [ maxima , index1 ]=max( Et say ( z1 , : ) ) ;

326 Maxima=[Maxima maxima ] ;

327 satreMaxima=[satreMaxima z1 ] ;

328 Index=[ Index index1 ] ;

329 e l s e i f z1<=1400

330 aaaaa=sum( Et say ( z1 , : ) >0) ;

331 i f Et say ( z1 , n)==0

332 [ maxima , index1 ]=max( Et say ( z1 , f l o o r ( aaaaa ∗0 . 2 ) : aaaaa−f l o o r (

aaaaa ∗0 . 4 ) ) ) ;

333 index1=index1+f l o o r ( aaaaa ∗0 . 2 ) −1;

334 Maxima=[Maxima maxima ] ;

335 satreMaxima=[satreMaxima z1 ] ;
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336 Index=[ Index index1 ] ;

337 e l s e i f Et say ( z1 , 1 )==0

338 [ maxima index1 ]=max( Et say ( z1 , n−aaaaa+f l o o r ( aaaaa ∗0 . 2 ) : n−

f l o o r ( aaaaa ∗0 . 2 ) ) ) ;

339 index1=index1+n−aaaaa+f l o o r ( aaaaa ∗0 . 2 ) −1;

340 Maxima=[Maxima maxima ] ;

341 satreMaxima=[satreMaxima z1 ] ;

342 Index=[ Index index1 ] ;

343 e l s e

344 [ maxima index1 ]=max( Et say ( z1 , 3 0 : 9 9 5 ) ) ;

345 index1=index1+29

346 Maxima=[Maxima maxima ] ;

347 satreMaxima=[satreMaxima z1 ] ;

348 Index=[ Index index1 ] ;

349

350 end

351 e l s e

352 [ maxima index1 ]=max( Et say ( z1 , : ) ) ;

353 Maxima=[Maxima maxima ] ;

354 satreMaxima=[satreMaxima z1 ] ;

355 Index=[ Index index1 ] ;

356 end

357

358

359 minima1=maxima ;

360 minima2=maxima ;

361 index2 = [ ] ;

362 index3 = [ ] ;

363 f o r i i =1: index1−1

364 i f Et say ( z1 , i i )>0

365 i f minima1>Et say ( z1 , i i )
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366 minima1=Et say ( z1 , i i ) ;

367 index2=i i ;

368 end

369 end

370 end

371 index4=i i ;

372

373 f o r i i=index1+1:n

374 i f Et say ( z1 , i i )>0

375 i f minima2>Et say ( z1 , i i )

376 minima2=Et say ( z1 , i i ) ;

377 index3=i i ;

378 end

379 end

380 end

381

382 i f abs (minima1−maxima)>1e−6

383 Minima1=[Minima1 minima1 ] ;

384 Minima11=[Minima11 minima1 ] ;

385 satreMinima1=[ satreMinima1 z1 ] ;

386 sotooneMinima1=[ sotooneMinima1 index2 ] ;

387 e l s e

388

389 minima1=0;

390 Minima11=[Minima11 minima1 ] ;

391 end

392

393 i f abs (minima2−maxima)>1e−6

394 Minima2=[Minima2 minima2 ] ;

395 Minima22=[Minima22 minima2 ] ;

396 satreMinima2=[ satreMinima2 z1 ] ;
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397 sotooneMinima2=[ sotooneMinima2 index3 ] ;

398 e l s e

399

400 minima2=0;

401 Minima22=[Minima22 minima2 ] ;

402 end

403 end

404 %%

405 %a f t e r f i nd i n g the minuimums and maximums , i need to p l o t the va luse vs

406 %t i t a l l ength and length o f A

407 L1X= [ ] ;

408 L1Y= [ ] ;

409 z8=0;

410 f o r z7=1: l ength ( sotooneMinima1 )

411 z8=z8+1;

412 l 1x=XX1( satreMinima1 ( z8 ) , sotooneMinima1 ( z7 ) ) ;

413 L1X=[L1X l1x ] ;

414 l 1y=YY1( satreMinima1 ( z8 ) , sotooneMinima1 ( z7 ) ) ;

415 L1Y=[L1Y l1y ] ;

416

417 end

418

419 L2X= [ ] ;

420 L2Y= [ ] ;

421 z10=0;

422 f o r z9=1: l ength ( sotooneMinima2 )

423 z10=z10+1;

424 l 2x=XX1( satreMinima2 ( z10 ) , sotooneMinima2 ( z9 ) ) ;

425 L2X=[L2X l2x ] ;

426 l 2y=YY1( satreMinima2 ( z10 ) , sotooneMinima2 ( z9 ) ) ;

427 L2Y=[L2Y l2y ] ;
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428

429 end

430

431

432 L4X= [ ] ;

433 L4Y= [ ] ;

434 z13=0;

435

436 f o r z14=1: l ength (Maxima)

437 z13=z13+1;

438 l 4x=XX1( satreMaxima ( z13 ) , Index ( z14 ) ) ;

439 L4X=[L4X l4x ] ;

440 l 4y=YY1( satreMaxima ( z13 ) , Index ( z14 ) ) ;

441 L4Y=[L4Y l4y ] ;

442

443 end

444

445 L4X2= [ ] ;

446 L4Y2= [ ] ;

447 z132=0;

448

449 f o r z14=1: l ength (Maxima2)

450 l 4x=XX1( satreMaxima2 ( z14 ) , Index22 ( z14 ) ) ;

451 L4X2=[L4X2 l4x ] ;

452 l 4y=YY1( satreMaxima2 ( z14 ) , Index22 ( z14 ) ) ;

453 L4Y2=[L4Y2 l4y ] ;

454 end

455

456

457

458
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459

460 hold on

461

462 f o r i =1:30

463 hold on

464 LT=XX1(780+ i , : ) ;

465 LA=YY1(780+ i , : ) ;

466 ZZZ3=Et say (780+ i , : ) ;

467 p lo t3 (LT,LA, ZZZ3)

468 end

469

470 % plot3 (XX1,YY1, Et say )

471 % colormap ( ’ pink ’ )

472 p lo t3 (L1X,L1Y,Minima1 , ’ or ’ )

473 p lo t3 (L2X,L2Y,Minima2 , ’ og ’ )

474 p lo t3 (L4X,L4Y,Maxima , ’ oc ’ )

475

476 bbbb=length (L4X)−sum( (L4X>10.5) )

477 dddd=sum( (L4X<12.8) )

478

479 p lo t3 (L4X(bbbb : dddd ) ,L4Y(bbbb : dddd ) ,Maxima(bbbb : dddd ) , ’ oc ’ )

480

481 ax i s ( [ L T (1) L T(n) LA(1) LA(n) ] )

482 s e t ( gca , ’XTick ’ , [ ] , ’YTick ’ , [ ] )

483 % plot3 (L4X,L4Y,Maxima , ’ oc ’ )

484

485 % plot3 (L4X2 , L4Y2 ,Maxima2 , ’ oy ’ )

486

487

488 %%

489
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490 %Computing enregy d e r i v a t i v e

491

492 Maxima= [ ] ;

493 Index = [ ] ;

494 Index2 = [ ] ;

495 Index3 = [ ] ;

496 Index4 = [ ] ;

497 Minima1 = [ ] ;

498 Minima2 = [ ] ;

499 Minima3 = [ ] ;

500 Minima4 = [ ] ;

501 Index4 = [ ] ;

502 Index5 = [ ] ;

503 satreMinima1 = [ ] ;

504 satreMinima2 = [ ] ;

505 satreMinima3 = [ ] ;

506 satreMinima4 = [ ] ;

507 sotooneMinima1 = [ ] ;

508 sotooneMinima2 = [ ] ;

509 sotooneMinima3 = [ ] ;

510 sotooneMinima4 = [ ] ;

511 satreMaxima = [ ] ;

512 Maxima8= [ ] ;

513 satreMaxima8 = [ ] ;

514 Index8 = [ ] ;

515 f i r s t f a l s e max ima = [ ] ;

516

517 Minima11 = [ ] ;

518 Minima22 = [ ] ;

519

520
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521 Index22 = [ ] ;

522 satreMaxima2 = [ ] ;

523 Maxima2= [ ] ;

524

525 f o r z1=1:n

526

527

528 i f z1<=4000000000

529 [ maxima , index1 ]=max( Et say ( z1 , : ) ) ;

530 Maxima=[Maxima maxima ] ;

531 satreMaxima=[satreMaxima z1 ] ;

532 Index=[ Index index1 ] ;

533 e l s e i f z1<=1545

534 aaaaa=sum( Et say ( z1 , : ) >0) ;

535 i f Et say ( z1 , 999 )==0

536 [ maxima , index1 ]=max( Et say ( z1 , f l o o r ( aaaaa ∗0 . 2 ) : aaaaa−f l o o r (

aaaaa ∗0 . 4 ) ) ) ;

537 index1=index1+f l o o r ( aaaaa ∗0 . 2 ) −1;

538 Maxima=[Maxima maxima ] ;

539 satreMaxima=[satreMaxima z1 ] ;

540 Index=[ Index index1 ] ;

541 e l s e i f Et say ( z1 , 1 )==0

542 [ maxima index1 ]=max( Et say ( z1 , n−aaaaa+f l o o r ( aaaaa ∗0 . 2 ) : n−

f l o o r ( aaaaa ∗0 . 2 ) ) ) ;

543 index1=index1+n−aaaaa+f l o o r ( aaaaa ∗0 . 2 ) −1;

544 Maxima=[Maxima maxima ] ;

545 satreMaxima=[satreMaxima z1 ] ;

546 Index=[ Index index1 ] ;

547 e l s e

548 [ maxima index1 ]=max( Et say ( z1 , 3 0 : 9 9 5 ) ) ;

549 index1=index1+29
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550 Maxima=[Maxima maxima ] ;

551 satreMaxima=[satreMaxima z1 ] ;

552 Index=[ Index index1 ] ;

553

554 end

555 e l s e

556 [ maxima index1 ]=max( Et say ( z1 , : ) ) ;

557 Maxima=[Maxima maxima ] ;

558 satreMaxima=[satreMaxima z1 ] ;

559 Index=[ Index index1 ] ;

560 end

561

562

563 minima1=maxima ;

564 minima2=maxima ;

565 index2 = [ ] ;

566 index3 = [ ] ;

567 f o r i i =1: index1−1

568 i f Et say ( z1 , i i )>0

569 i f minima1>Et say ( z1 , i i )

570 minima1=Et say ( z1 , i i ) ;

571 index2=i i ;

572 end

573 end

574 end

575 index4=i i ;

576

577 f o r i i=index1+1:n

578 i f Et say ( z1 , i i )>0

579 i f minima2>Et say ( z1 , i i )

580 minima2=Et say ( z1 , i i ) ;
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581 index3=i i ;

582 end

583 end

584 end

585

586 i f abs (minima1−maxima)>1e−6

587 Minima1=[Minima1 minima1 ] ;

588 Minima11=[Minima11 minima1 ] ;

589 satreMinima1=[ satreMinima1 z1 ] ;

590 sotooneMinima1=[ sotooneMinima1 index2 ] ;

591 e l s e

592 minima1=0;

593 Minima11=[Minima11 minima1 ] ;

594 end

595

596 i f abs (minima2−maxima)>1e−6

597 Minima2=[Minima2 minima2 ] ;

598 Minima22=[Minima22 minima2 ] ;

599 satreMinima2=[ satreMinima2 z1 ] ;

600 sotooneMinima2=[ sotooneMinima2 index3 ] ;

601 e l s e

602

603 minima2=0;

604 Minima22=[Minima22 minima2 ] ;

605 end

606

607 end

608

609 L1X= [ ] ;

610 L1Y= [ ] ;

611 z8=0;
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612 f o r z7=1: l ength ( sotooneMinima1 )

613 z8=z8+1;

614 l 1x=XX1( satreMinima1 ( z8 ) , sotooneMinima1 ( z7 ) ) ;

615 L1X=[L1X l1x ] ;

616 l 1y=YY1( satreMinima1 ( z8 ) , sotooneMinima1 ( z7 ) ) ;

617 L1Y=[L1Y l1y ] ;

618

619 end

620

621 L2X= [ ] ;

622 L2Y= [ ] ;

623 z10=0;

624 f o r z9=1: l ength ( sotooneMinima2 )

625 z10=z10+1;

626 l 2x=XX1( satreMinima2 ( z10 ) , sotooneMinima2 ( z9 ) ) ;

627 L2X=[L2X l2x ] ;

628 l 2y=YY1( satreMinima2 ( z10 ) , sotooneMinima2 ( z9 ) ) ;

629 L2Y=[L2Y l2y ] ;

630

631 end

632

633

634

635 L4X= [ ] ;

636 L4Y= [ ] ;

637 z13=0;

638

639 f o r z14=1: l ength (Maxima)

640 z13=z13+1;

641 l 4x=XX1( satreMaxima ( z13 ) , Index ( z14 ) ) ;

642 L4X=[L4X l4x ] ;
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643 l 4y=YY1( satreMaxima ( z13 ) , Index ( z14 ) ) ;

644 L4Y=[L4Y l4y ] ;

645

646 end

647

648 L4X2= [ ] ;

649 L4Y2= [ ] ;

650 z132=0;

651

652 f o r z14=1: l ength (Maxima2)

653 l 4x=XX1( satreMaxima2 ( z14 ) , Index22 ( z14 ) ) ;

654 L4X2=[L4X2 l4x ] ;

655 l 4y=YY1( satreMaxima2 ( z14 ) , Index22 ( z14 ) ) ;

656 L4Y2=[L4Y2 l4y ] ;

657 end

658

659 minima1 length=length (Minima11 ) ;

660 minima2 length=length (Minima22 ) ;

661 tota l minima=Minima11+Minima22 ;

662

663 f i g u r e (25)

664 p lo t (L T , tota l minima )

665

666 % f i g u r e (26)

667 % plo t (L T (2 : 5 00 ) , df )

668 % dx=L T(2)−L T(1) ;

669 % dE= [ ] ;

670 % fo r i11 =2:n−1

671 % dU( i11 )=(tota l minima ( i11+1)−tota l minima ( i11 −1) ) /(2∗dx ) ;

672 % dE=[dE dU ] ;

673 % end
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674 dx=L T(2)−L T(1) ;

675 dE= [ ] ;

676 f o r i 11 =2:n−1

677 dU( i11 )=(tota l minima ( i11+1)−tota l minima ( i11 −1) ) /(2∗dx ) ;

678 dE=[dE dU ] ;

679 end

680 p lo t (L T ( 4 : end−1) ,dU( 3 : end−1) )

681 f i g u r e (26)

682 mesh (XX1,YY1, Et say )

683 % MyPink=pink ;

684 % id= f i nd (MyPink ( : , 1 ) <0.2 & MyPink ( : , 2 ) <0.2 & MyPink ( : , 3 ) <0.2) ;

685 % fo r i =1: s i z e ( id , 1 )

686 % MyPink( id ( i ) , : ) =[1 1 1 ] ;

687 % end

688

689 % colormap (MyPink)

690 colormap ( ’ pink ’ )

691 ax i s ( [ L T (1) L T(n) LA(1) LA(n) ] )

692 s e t ( gca , ’XTick ’ , [ ] , ’YTick ’ , [ ] )

693

694

695

696 % f i g u r e (27)

697 % plot3 (L1X,L1Y,Minima1 , ’ ok ’ )

698 % ax i s ( [ L T (1) L T(n) LA(1) LA(n) ] )

699 % f i g u r e (28)

700 % plot3 (L2X,L2Y,Minima2 , ’ ok ’ )

701 % ax i s ( [ L T (1) L T(n) LA(1) LA(n) ] )

702 % f i g u r e (29)

703 % plot3 (L4X(bbbb : dddd ) ,L4Y(bbbb : dddd ) ,Maxima(bbbb : dddd ) , ’ r ’ )

704 % ax i s ( [ L T (1) L T(n) LA(1) LA(n) ] )
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705 f i g u r e (30)

706 % plo t (L T (2 : 5 00 ) , df )

707 dx=L T(2)−L T(1) ;

708 dE= [ ] ;

709 f o r i 11 =2:n−1

710 dU( i11 )=(tota l minima ( i11+1)−tota l minima ( i11 −1) ) /(2∗dx ) ;

711 % dE=[dE dU ] ;

712 end

713 hold on

714

715 p lo t (L T , total minima , ’ k ’ )

716

717 l egend ( ’ energy ’ )

718 xlim ( [ L T (1) L T(n) ] )

719 ylim ( [ 0 350 ] )

720 f i g u r e (31)

721 p lo t (L T ( 4 : end−1) ,dU( 3 : end−1) , ’ k ’ )

722

723 l egend ( ’ f o r c e ’ )

724 ax i s ( [ L T (1) L T(n) −2500 500 ] )

725

726

727

728 f i g u r e (100)

729

730

731 hold on

732 p lo t3 (XX1,YY1, Et say )

733 p lo t3 (L1X,L1Y,Minima1 , ’ or ’ )

734 p lo t3 (L2X,L2Y,Minima2 , ’ og ’ )

735 %
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736 bbbb=length (L4X)−sum( (L4X>10.5) ) ;

737 dddd=sum( (L4X<13) ) ;

738 % %

739 % plot3 (L4X(bbbb : dddd ) ,L4Y(bbbb : dddd ) ,Maxima(bbbb : dddd ) , ’ oc ’ )

740 p lo t3 (L4X,L4Y,Maxima , ’ oc ’ )

741 ax i s ( [ L T (1) L T(n) LA(1) LA(n) ] )

742 s e t ( gca , ’XTick ’ , [ ] , ’YTick ’ , [ ] )

B.2 Theoretical Analysis MATLAB Function for

Cell A Compression Diode

1

2 f unc t i on [ theta A1 , theta A2 ,E A , LA II , L A I I I ]=CellA (LA I , landaIa , aIa ,

bIa ,K A, theta0 a , n , L o , L c )

3 %

4 %%Designe Parameters

5 %Lengths

6 a I I a =1.25∗ aIa ;

7 l anda I Ia=acos ( ( aIa ∗ cos ( landaIa ) ) / a I I a ) ; % r i g i d−f o l d i n g cond i t i on

8

9 %S t i f f n e s s

10 K1 a=2∗K A(1) ∗bIa ; %KIa

11 K2 a=2∗K A(1) ∗ aIa ; %KIa

12 K3 a=2∗K A(2) ∗bIa ; %KIIa

13 K4 a=2∗K A(2) ∗ a I I a ; %KIIa

14 K6 a=2∗L c∗K A(3) ; %i n t e r c e l l l a r c r e a s e s t i f f n e s s . the re are tow

c r e a s e s with t h e i r e a s s o c i a t ed s t i f f n e s s in each un i t c e l l

15 %Kc3 a

16 K7 a=8.∗K A(4) .∗ bIa ; %Kc2 a
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17 K8 a=K A(5) .∗ bIa ; %K externa l

18 %Angles

19 phi10 a=pi −2.∗ the ta0 a ;

20 phi20 a=2.∗ as in ( cos ( the ta0 a ) . / sq r t (1−(( s i n ( the ta0 a ) ) . ˆ 2 ) . ∗ ( s i n ( landaIa

) ) . ˆ 2 ) ) ; %i t should not be more than 1 or −1

21 phi30 a=pi −(2.∗ acos ( tan ( landaIa ) .∗ ( 1 / ( tan ( l anda I Ia ) ) ) .∗ cos ( the ta0 a ) ) ) ;

22 phi40 a=2.∗ as in ( ( ( s i n ( landaIa ) ) . / ( s i n ( l anda I Ia ) ) ) .∗ s i n ( phi20 a . / 2 ) ) ;

23 phi50 a=(p i /2)+theta0 a ; %i t should not be more than 1 or −1

24 s1a=s i n ( landaIa ) ;

25 t2a=tan ( l anda I Ia ) ;

26 t1a=tan ( landaIa ) ;

27

28

29 %%Calcu la t i on o f the ta a

30 theta A1=as in ( LA I . / ( aIa .∗ s i n ( landaIa ) ) ) ; %theta ang le o f shee t I in new

des ign

31 theta A2=acos ( ( cos ( theta A1 ) .∗ tan ( landaIa ) ) . / ( tan ( l anda I Ia ) ) ) ; %theta

ang le o f shee t I I in new des ign

32 LA II=aI Ia .∗ s i n ( theta A2 ) .∗ s i n ( l anda I Ia ) ; %length o f shee t I I o f c e l l A

in new des ign

33 L A I I I=abs ( aIa ∗ s1a ∗ ( ( s q r t ( ( ( t2a ˆ2) /( t1a ˆ2) )−(( cos ( theta A1 ) . ˆ 2 ) ) ) )−s i n

( theta A1 ) ) ) ; %t o t a l l ength o f Ce l l A in new des ign base o f o r i g i n a l

de s i gne equat ion

34 i f ( theta A1˜=0)

35

36 phi1 a2=pi −2.∗ theta A1 ;

37 phi2 a2=2.∗ as in ( cos ( theta A1 ) . / sq r t (1−(( s i n ( theta A1 ) ) . ˆ 2 ) . ∗ (

s i n ( landaIa ) ) . ˆ 2 ) ) ;

38 phi3 a2=pi −(2.∗ acos ( tan ( landaIa ) .∗ ( 1 / ( tan ( l anda I Ia ) ) ) .∗ cos (

theta A1 ) ) ) ;

39 phi4 a2=2.∗ as in ( ( ( s i n ( landaIa ) ) . / ( s i n ( l anda I Ia ) ) ) .∗ s i n ( phi2 a2
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. / 2 ) ) ;

40 phi5 a2=(p i /2)+theta A1 ;

41

42 E1 a2=K1 a . ∗ ( phi1 a2−phi10 a ) . ˆ 2 ;

43 E2 a2=K2 a . ∗ ( phi2 a2−phi20 a ) . ˆ 2 ;

44 E3 a2=K3 a . ∗ ( phi3 a2−phi30 a ) . ˆ 2 ;

45 E4 a2=K4 a . ∗ ( phi4 a2−phi40 a ) . ˆ 2 ;

46 E7 a2=K7 a . ∗ ( phi5 a2−phi50 a ) . ˆ 2 ;

47

48

49 E A=((E1 a2+E2 a2+E3 a2+E4 a2+E7 a2 ) /2) ;

50 e l s e

51 phi1 a2=0;

52 phi2 a2=0;

53 phi3 a2=0;

54 phi4 a2=0;

55 phi5 a2=0;

56

57 E1 a2=0;

58 E2 a2=0;

59 E3 a2=0;

60 E4 a2=0;

61 E7 a2=0;

62 E A=0;

63

64 end

B.3 Theoretical Analysis MATLAB Function for

Cell B Compression Diode
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1 f unc t i on [ E B , LB I II , theta B , E1 b2 , E2 b2 , E3 b2 , E4 b2 , E7 b2]=CellB ( aIb ,

bIb , landaIb , LA I , LA II ,K B , theta0 b , L2 a min , L2 a max , L A I I I , n ,LT,

L o , L c )

2 % [E B , LB I II , theta B ]=CellB ( aIb , bIb , landaIb , LA I , LA II ,K B , theta0 b ,

L2 a min , L2 a max , L A I I I , n ,LT, L o , L c )

3

4 %%Design Parameters

5 %Lengths

6 aI Ib =1.25∗ aIb ;

7 l andaI Ib=acos ( ( aIb∗ cos ( landaIb ) ) / aI Ib ) ; % r i g i d−f o l d i n g cond i t i on

8

9 %S t i f f n e s s

10 K1 b=2∗K B(1) ∗bIb ; %KIa

11 K2 b=2∗K B(1) ∗aIb ; %KIa

12 K3 b=2∗K B(2) ∗bIb ; %KIIa

13 K4 b=2∗K B(2) ∗ aI Ib ; %KIIa

14 K6 b=2∗L c∗K B(3) ; %i n t e r c e l l l a r c r e a s e s t i f f n e s s . the re are tow

c r e a s e s with t h e i r e a s s o c i a t ed s t i f f n e s s in each un i t c e l l

15 %Kc3 a

16 K7 b=8.∗K B(4) .∗ bIb ; %Kc2 a

17 K8 b=K B(1 ,5 ) .∗ bIb ; %K externa l

18 %Angles

19 s1b=s i n ( landaIb ) ;

20 t2b=tan ( landaI Ib ) ;

21 t1b=tan ( landaIb ) ;

22 A=aIb∗ s i n ( landaIb ) ;

23 B=(( tan ( landaI Ib ) ) ˆ2) / ( ( tan ( landaIb ) ) ˆ2) ;

24 theta b=l i n s p a c e (−pi /2 , p i /2 ,n) ;

25 LB I I I r ange=aIb∗ s1b ∗ ( ( s q r t ( ( ( t2b ˆ2) /( t1b ˆ2) )−(( cos ( theta b ) . ˆ 2 ) ) ) )−s i n

( theta b ) ) ;

26 L B I II max=max( LB I I I r ange ) ;

94



27 L B I I I min=min ( LB I I I r ange ) ;

28 phi10 b=pi −2.∗ theta0 b ;

29 phi20 b=2.∗ as in ( cos ( theta0 b ) . / sq r t (1−(( s i n ( theta0 b ) ) . ˆ 2 ) . ∗ ( s i n ( landaIb

) ) . ˆ 2 ) ) ; %i t should not be more than 1 or −1

30 phi30 b=pi −(2.∗ acos ( tan ( landaIb ) .∗ ( 1 / ( tan ( landaI Ib ) ) ) .∗ cos ( theta0 b ) ) ) ;

31 phi40 b=2.∗ as in ( ( ( s i n ( landaIb ) ) . / ( s i n ( landaI Ib ) ) ) .∗ s i n ( phi20 b . / 2 ) ) ;

32 phi50 b=(p i /2)+theta0 b ; %i t should not be more than 1 or −1

33

34

35 %

36 % i f ( L A I I I<=L B I II max )&&(L A I I I>=L B I I I min )

37 % % i f ( L2 a min<=LA II )&&(LA II<=L2 a max )

38 % LB I I I=−(LT−L c−LA I−L o−L c+LA II ) ;

39 % % i f ( L B I II max>=LB I I I )&&(LB I II>=L B I I I min )

40 % theta B=r e a l ( a s in ( (A. / ( 2 . ∗ LB I I I ) ) . ∗ (B−(( LB I I I . ˆ 2 )

. /Aˆ2)−1) ) ) ;

41 % e l s e

42 % theta B=0;

43 % % end

44 % L B2=aIIb .∗ s i n ( theta B ) .∗ s i n ( landaI Ib ) ;

45 % % end

46

47

48 i f ( L2 a min<=LA II )&&(LA II<=L2 a max )

49 i f ( L A I I I<=L B I II max )&&(L A I I I>=L B I I I min )

50

51 LB I I I=−(LT−L c−LA I−L o−L c+LA II ) ;

52 i f ( L B I II max>=LB I I I )&&(LB I II>=L B I I I min )

53 theta B=r e a l ( a s in ( (A. / ( 2 . ∗ LB I I I ) ) . ∗ (B−(( LB I I I . ˆ 2 ) . /

Aˆ2)−1) ) ) ;

54 e l s e
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55 theta B=0;

56 end

57 L B2=aIIb .∗ s i n ( theta B ) .∗ s i n ( landaI Ib ) ;

58 end

59

60 end

61 i f ( theta B˜=0)

62

63 phi1 b2=pi −2.∗ theta B ;

64 phi2 b2=2.∗ as in ( cos ( theta B ) . / sq r t (1−(( s i n ( theta B ) ) . ˆ 2 ) . ∗ ( s i n

( landaIb ) ) . ˆ 2 ) ) ;

65 phi3 b2=pi −(2.∗ acos ( tan ( landaIb ) .∗ ( 1/ tan ( landaI Ib ) ) .∗ cos (

theta B ) ) ) ;

66 phi4 b2=2.∗ as in ( ( ( s i n ( landaIb ) ) . / ( s i n ( landaI Ib ) ) ) .∗ s i n ( phi2 b2

. / 2 ) ) ;

67 phi5 b2=(p i /2)+theta B ;

68

69

70

71 E1 b2=K1 b . ∗ ( phi1 b2−phi10 b ) . ˆ 2 ;

72 E2 b2=K2 b . ∗ ( phi2 b2−phi20 b ) . ˆ 2 ;

73 E3 b2=K3 b . ∗ ( phi3 b2−phi30 b ) . ˆ 2 ;

74 E4 b2=K4 b . ∗ ( phi4 b2−phi40 b ) . ˆ 2 ;

75 E7 b2=K7 b . ∗ ( phi5 b2−phi50 b ) . ˆ 2 ;

76 E B=((E1 b2+E2 b2+E3 b2+E4 b2+E7 b2 ) /2) ;

77 e l s e

78 phi1 b2=0;

79 phi2 b2=0;

80 phi3 b2=0;

81 phi4 b2=0;

82 phi5 b2=0;
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83

84

85

86 E1 b2=0;

87 E2 b2=0;

88 E3 b2=0;

89 E4 b2=0;

90 E7 b2=0;

91

92 E B=0;

93

94 end

B.4 Optimization analysis MATLAB Script

1

2 %%CELL A parameters

3 % a=2;

4 %

5 % b=2.8;

6 a I I a =1.25∗a ;

7 % landa =1.33;

8 l anda I Ia=acos ( ( a∗ cos ( landa ) ) / a I I a ) ; % r i g i d−f o l d i n g cond i t i on

9 KIa=1;

10 K A=ze ro s (1 , 5 ) ;

11 K A(1 ,1 )=KIa ;

12 % Lc=

n=5;

13 L o=Lc ;
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14 the ta0 a=−pi /3 ;

15

16

17 K A(1 ,2 )=20∗KIa ;

18 K A(1 ,3 )=KIa ;

19 K A(1 ,4 )=KIa ;

20 K A(1 ,5 ) =0;

21 the ta a1=l i n s p a c e (−pi /2 , p i /2 ,777) ;

22 the ta a1 2=acos ( ( cos ( the ta a1 ) .∗ tan ( landa ) ) . / ( tan ( l anda I Ia ) ) ) ;

23 t h e t a a1 2 0=acos ( ( cos ( the ta0 a ) .∗ tan ( landa ) ) . / ( tan ( l anda I Ia ) ) ) ;

24 s1a=s i n ( landa ) ;

25 t2a=tan ( l anda I Ia ) ;

26 t1a=tan ( landa ) ;

27 L1 a=a .∗ s i n ( the ta a1 ) .∗ s i n ( landa ) ;

28 L2 a=aI Ia .∗ s i n ( the ta a1 2 ) .∗ s i n ( l anda I Ia ) ;

29 n=length ( L1 a ) ;

30 L2 a max=max( L2 a ) ;

31 L1 a max=max( L1 a ) ;

32 L2 a min=min ( L2 a ) ;

33 L1 a min=min ( L1 a ) ;

34 LA min=L2 a min+L1 a min+Lc ;

35 LA max=L2 a max+L1 a max+Lc ;

36 % LA=l i n s p a c e (LA min , LA max , n) ;

37 LA I=l i n s p a c e ( L1 a min , L1 a max , l ength ( L1 a ) ) ; %length o f shee t I in new

des ign

38

39 %%

40 %%CELL B parameters

41 aIb=a ;

42 bIb=aIb ;

43 aI Ib =1.25∗ aIb ;
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44 landaIb=landa ;

45 l andaI Ib=acos ( ( aIb∗ cos ( landaIb ) ) / aI Ib ) ; % r i g i d−f o l d i n g cond i t i on

46 KIb=1;

47 K B=zero s (1 , 5 ) ;

48 K B(1 ,1 )=KIb ;

49

50 theta0 b=pi /3 ;

51 the ta b2 0=acos ( ( cos ( theta0 b ) .∗ tan ( landaIb ) ) . / ( tan ( landaI Ib ) ) ) ;

52

53 K B(1 ,2 )=20∗KIb ;

54 K B(1 ,3 )=KIb ;

55 K B(1 ,4 )=KIb ;

56 K B(1 ,5 ) =0;

57 theta b1=l i n s p a c e (−pi /2 , p i /2 ,n) ;

58 theta b2=acos ( ( cos ( theta b1 ) .∗ tan ( landaIb ) ) . / ( tan ( landaI Ib ) ) ) ;

59 s1b=s i n ( landaIb ) ;

60 t2b=tan ( landaI Ib ) ;

61 t1b=tan ( landaIb ) ;

62 L1 b=aIb .∗ s i n ( theta b1 ) .∗ s i n ( landaIb ) ;

63 L2 b=aIIb .∗ s i n ( theta b2 ) .∗ s i n ( landaI Ib ) ;

64 L b=Lc+L1 b−L2 b ;

65 L2 b max=max( L2 b ) ;

66 L1 b max=max( L1 b ) ;

67 L2 b min=min ( L2 b ) ;

68 L1 b min=min ( L1 b ) ;

69 %%

70 %Total l ength CEll A I I I in o r i g i n a l des ign

71 A=a∗ s i n ( landa ) ;

72 B=(( tan ( l anda I Ia ) ) ˆ2) / ( ( tan ( landa ) ) ˆ2) ;

73

74
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75 L a=a∗ s1a ∗ ( ( s q r t ( ( ( t2a ˆ2) /( t1a ˆ2) )−(( cos ( the ta a1 ) . ˆ 2 ) ) ) )−s i n ( the ta a1 ) )

;

76 L A max=max( L a ) ;

77 L A min=min( L a ) ;

78 %%

79 %Mismatch parameters

80 K star=50;

81

82 say A0=2∗atan ( cos ( the ta0 a ) ∗ tan ( landa ) ) ;

83 say B0=2∗atan ( cos ( theta0 b ) ∗ tan ( landaIb ) ) ;

84

85 n=length ( L1 a ) ;

86 %%

87

88

89 %%

90 %Calcu l a t ing maximum and minium

91 i 5 =0;

92 f o r i 3=l i n s p a c e (−pi /2 , p i /2 ,n)

93

94 i 5=i 5 +1;

95 i 6 =0;

96 f o r i 4=l i n s p a c e (−pi /2 , p i /2 ,n)

97 i 6=i 6 +1;

98 the ta a1 2 ( i 5 )=acos ( ( cos ( i 3 ) .∗ tan ( landa ) ) . / ( tan ( l anda I Ia ) ) ) ;

99 the ta b 2 ( i 6 )=acos ( ( cos ( i 4 ) .∗ tan ( landaIb ) ) . / ( tan ( landaI Ib ) ) ) ;

100 t o t a l l e n g t h ( i5 , i 6 )=(Lc+(a .∗ s i n ( i 3 ) .∗ s i n ( landa ) )−abs ( ( a I I a .∗ s i n (

the ta a1 2 ( i 5 ) ) .∗ s i n ( l anda I Ia ) ) ) )+(Lc+(aIb .∗ s i n ( i 4 ) .∗ s i n (

landaIb ) )−abs ( ( a I Ib .∗ s i n ( the ta b 2 ( i 6 ) ) .∗ s i n ( landaI Ib ) ) ) )+

L o ;

101 end
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102

103 end

104 L tota l min=min (min ( t o t a l l e n g t h ) ) ;

105 L total max=max(max( t o t a l l e n g t h ) ) ;

106 L T=l i n s p a c e ( L tota l min , L total max , n) ; %New des ign t o t a l l ength

107 %%

108

109 i 1 =0;

110 f o r LT=l i n s p a c e ( L tota l min , L total max , n)

111 i 1=i 1 +1;

112 f o r i 2 =1: l ength ( L1 a )

113 [ theta A1 ( i1 , i 2 ) , theta A2 ( i1 , i 2 ) ,E A( i1 , i 2 ) , LA II ( i1 , i 2 ) ,

L A I I I ( i1 , i 2 ) ]=Cel lA opt ( LA I ( i 2 ) , landa , a , b ,K A, theta0 a , n

, L o , Lc ) ;

114 [ E B( i1 , i 2 ) , LB I I I ( i1 , i 2 ) , theta B ( i1 , i 2 ) , E1 b2 ( i1 , i 2 ) , E2 b2 ( i1 ,

i 2 ) , E3 b2 ( i1 , i 2 ) , E4 b2 ( i1 , i 2 ) , E7 b2 ( i1 , i 2 ) ]= Cel lB opt ( aIb ,

aIIb , landaIb , LA I ( i 2 ) , LA II ( i1 , i 2 ) ,K B , theta0 b , L2 a min ,

L2 a max , L A I I I ( i1 , i 2 ) ,n ,LT, L o , Lc ) ;

115 i f E B( i1 , i 2 )˜=0

116 say A ( i1 , i 2 )=2∗atan ( ( cos ( theta A1 ( i1 , i 2 ) ) ) ∗ tan ( landa ) ) ;

117 say B ( i1 , i 2 )=2∗atan ( ( cos ( theta B ( i1 , i 2 ) ) ) ∗ tan ( landaIb ) ) ;

118 E say ( i1 , i 2 )=K star ∗b ∗ ( ( ( say A ( i1 , i 2 )−say B ( i1 , i 2 ) ) . ˆ 2 ) . / 2 ) ;

119 E6 a2 ( i1 , i 2 )=(K A(3) . ∗ ( say A ( i1 , i 2 )−say A0 ) . ˆ 2 ) . / 2 ;

120 E6 b2 ( i1 , i 2 )=(K B(3) . ∗ ( say B ( i1 , i 2 )−say B0 ) . ˆ 2 ) . / 2 ;

121 E8 A B( i1 , i 2 )=(K A(5) . ∗ ( say B ( i1 , i 2 )−say A ( i1 , i 2 ) ) . ˆ 2 ) . / 2 ;

122

123 Et A B( i1 , i 2 )=E A( i1 , i 2 )+E B( i1 , i 2 ) ;

124 Et say ( i1 , i 2 )=Et A B( i1 , i 2 )+E say ( i1 , i 2 )+E8 A B( i1 , i 2 )+E6 a2 (

i1 , i 2 )+E6 b2 ( i1 , i 2 ) ;

125 e l s e

126 say A ( i1 , i 2 )=0;
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127 say B ( i1 , i 2 )=0;

128 E say ( i1 , i 2 )=0;

129 E6 a2 ( i1 , i 2 )=0;

130 E6 b2 ( i1 , i 2 )=0;

131 E8 A B( i1 , i 2 )=0;

132 Et A B( i1 , i 2 )=0;

133 Et say ( i1 , i 2 )=0;

134

135 end

136 end

137 end

138 %%

139 %zero column o f CEll A

140 kh=pi /4 ;

141

142

143 i f abs ( landa−kh )>0

144 zero column n=(n+1) /2 ;

145

146 l t 0co lumn=( l i n s p a c e ( L tota l min , L total max , n) ) ’ ;

147

148

149

150

151

152

153

154 LA1 0column=0;

155 la 0column=LA1 0column ;

156 theta A1 0column=ze ro s (n , 1 ) ;

157 theta A1 0column ( : , : )=as in ( LA1 0column . / ( a .∗ s i n ( landa ) ) ) ;
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158 theta A2 0column=ze ro s (n , 1 ) ;

159 theta A2 0column ( : , : )=acos ( ( cos ( theta A1 0column ) .∗ tan ( landa ) ) . / ( tan (

l anda I Ia ) ) ) ;

160 LA2 0column=aI Ia .∗ s i n ( theta A2 0column ) .∗ s i n ( l anda I Ia ) ;

161

162

163

164

165 %

166 %%Designe Parameters

167 %Lengths

168 a I I a =1.25∗a ;

169 l anda I Ia=acos ( ( a∗ cos ( landa ) ) / a I I a ) ; % r i g i d−f o l d i n g cond i t i on

170

171 %S t i f f n e s s

172 K1 a=2∗K A(1) ∗b ; %KIa

173 K2 a=2∗K A(1) ∗a ; %KIa

174 K3 a=2∗K A(2) ∗b ; %KIIa

175 K4 a=2∗K A(2) ∗ a I I a ; %KIIa

176 K6 a=2∗Lc∗K A(3) ; %i n t e r c e l l l a r c r e a s e s t i f f n e s s . the re are tow

c r e a s e s with t h e i r e a s s o c i a t ed s t i f f n e s s in each un i t c e l l

177 %Kc3 a

178 K7 a=8.∗K A(4) .∗b ; %Kc2 a

179 K8 a=K A(5) .∗b ; %K externa l

180 %Angles

181 phi10 a=pi −2.∗ the ta0 a ;

182 phi20 a=2.∗ as in ( cos ( the ta0 a ) . / sq r t (1−(( s i n ( the ta0 a ) ) . ˆ 2 ) . ∗ ( s i n ( landa ) )

. ˆ 2 ) ) ; %i t should not be more than 1 or −1

183 phi30 a=pi −(2.∗ acos ( tan ( landa ) .∗ ( 1 / ( tan ( l anda I Ia ) ) ) .∗ cos ( the ta0 a ) ) ) ;

184 phi40 a=2.∗ as in ( ( ( s i n ( landa ) ) . / ( s i n ( l anda I Ia ) ) ) .∗ s i n ( phi20 a . / 2 ) ) ;

185 phi50 a=(p i /2)+theta0 a ; %i t should not be more than 1 or −1
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186

187

188 phi1 a2 0column=pi −2.∗ theta A1 0column ;

189 phi2 a2 0column=2.∗ as in ( cos ( theta A1 0column ) . / sq r t (1−(( s i n (

theta A1 0column ) ) . ˆ 2 ) . ∗ ( s i n ( landa ) ) . ˆ 2 ) ) ;

190 phi3 a2 0column=pi −(2.∗ acos ( tan ( landa ) .∗ ( 1 / ( tan ( l anda I Ia ) ) ) .∗ cos (

theta A1 0column ) ) ) ;

191 phi4 a2 0column=2.∗ as in ( ( ( s i n ( landa ) ) . / ( s i n ( l anda I Ia ) ) ) .∗ s i n (

phi2 a2 0column . / 2 ) ) ;

192 phi5 a2 0column=(pi /2)+theta A1 0column ;

193

194 E1 a2 0column=K1 a . ∗ ( phi1 a2 0column−phi10 a ) . ˆ 2 ;

195 E2 a2 0column=K2 a . ∗ ( phi2 a2 0column−phi20 a ) . ˆ 2 ;

196 E3 a2 0column=K3 a . ∗ ( phi3 a2 0column−phi30 a ) . ˆ 2 ;

197 E4 a2 0column=K4 a . ∗ ( phi4 a2 0column−phi40 a ) . ˆ 2 ;

198 E7 a2 0column=K7 a . ∗ ( phi5 a2 0column−phi50 a ) . ˆ 2 ;

199

200

201 E A 0column=((E1 a2 0column+E2 a2 0column+E3 a2 0column+E4 a2 0column+

E7 a2 0column ) /2) ;

202 E A constant column=ze ro s (n , 1 ) ;

203 E A constant column ( : , : )=E A 0column ;

204

205 Et say 0column = [ ] ;

206 f o r i 10 =1:n

207 i f Et say ( i10 , zero column n )˜=0

208 Edummy=Et say ( i10 , zero column n )+E A 0column ( i10 ) ;

209 Et say 0column=[Et say 0column ;Edummy ] ;

210 e l s e

211 Edummy=0;

212 Et say 0column=[Et say 0column ;Edummy ] ;
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213 end

214 end

215 Et say ( : , zero column n )=Et say 0column ;

216 end

217

218 %%

219 %

220 % %Plo t t i ng r e s u l t s

221 f o r i =1:n

222 L1 a 2 ( i )=a .∗ s i n ( theta A1 (1 , i ) ) .∗ s i n ( landa ) ;

223 L2 a 2 ( i )=a I I a .∗ s i n ( theta A2 (1 , i ) ) .∗ s i n ( l anda I Ia ) ;

224 LA( i )=L1 a 2 ( i )+L2 a 2 ( i )+Lc ;

225 end

226

227 [X1 ,Y1]=meshgrid (L T ,LA) ;

228 XX1=X1 . ’ ;

229 YY1=Y1 . ’ ;

230

231

232

233

234

235 %%

236

237 %Computing enregy d e r i v a t i v e

238

239 Maxima= [ ] ;

240 Index = [ ] ;

241 Index2 = [ ] ;

242 Index3 = [ ] ;

243 Index4 = [ ] ;
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244 Minima1 = [ ] ;

245 Minima2 = [ ] ;

246 Minima3 = [ ] ;

247 Minima4 = [ ] ;

248 Index4 = [ ] ;

249 Index5 = [ ] ;

250 satreMinima1 = [ ] ;

251 satreMinima2 = [ ] ;

252 satreMinima3 = [ ] ;

253 satreMinima4 = [ ] ;

254 sotooneMinima1 = [ ] ;

255 sotooneMinima2 = [ ] ;

256 sotooneMinima3 = [ ] ;

257 sotooneMinima4 = [ ] ;

258 satreMaxima = [ ] ;

259 Maxima8= [ ] ;

260 satreMaxima8 = [ ] ;

261 Index8 = [ ] ;

262 f i r s t f a l s e max ima = [ ] ;

263

264 Minima11 = [ ] ;

265 Minima22 = [ ] ;

266

267

268 Index22 = [ ] ;

269 satreMaxima2 = [ ] ;

270 Maxima2= [ ] ;

271

272 n1=c e i l (n∗1545/1555) ;

273 n2=c e i l (n∗30/1555) ;

274 n3=c e i l (n∗995/1555) ;
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275

276 f o r z1=1:n

277

278

279 i f z1<=4000000000

280 [ maxima , index1 ]=max( Et say ( z1 , : ) ) ;

281 Maxima=[Maxima maxima ] ;

282 satreMaxima=[satreMaxima z1 ] ;

283 Index=[ Index index1 ] ;

284 e l s e i f z1<=n1

285 aaaaa=sum( Et say ( z1 , : ) >0) ;

286 i f Et say ( z1 , n)==0

287 [ maxima , index1 ]=max( Et say ( z1 , f l o o r ( aaaaa ∗0 . 2 ) : aaaaa−f l o o r (

aaaaa ∗0 . 4 ) ) ) ;

288 index1=index1+f l o o r ( aaaaa ∗0 . 2 ) −1;

289 Maxima=[Maxima maxima ] ;

290 satreMaxima=[satreMaxima z1 ] ;

291 Index=[ Index index1 ] ;

292 e l s e i f Et say ( z1 , 1 )==0

293 [ maxima index1 ]=max( Et say ( z1 , n−aaaaa+f l o o r ( aaaaa ∗0 . 2 ) : n−

f l o o r ( aaaaa ∗0 . 2 ) ) ) ;

294 index1=index1+n−aaaaa+f l o o r ( aaaaa ∗0 . 2 ) −1;

295 Maxima=[Maxima maxima ] ;

296 satreMaxima=[satreMaxima z1 ] ;

297 Index=[ Index index1 ] ;

298 e l s e

299 [ maxima index1 ]=max( Et say ( z1 , n2 : n3 ) ) ;

300 index1=index1+n2−1

301 Maxima=[Maxima maxima ] ;

302 satreMaxima=[satreMaxima z1 ] ;

303 Index=[ Index index1 ] ;
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304

305 end

306 e l s e

307 [ maxima index1 ]=max( Et say ( z1 , : ) ) ;

308 Maxima=[Maxima maxima ] ;

309 satreMaxima=[satreMaxima z1 ] ;

310 Index=[ Index index1 ] ;

311 end

312

313

314 minima1=maxima ;

315 minima2=maxima ;

316 index2 = [ ] ;

317 index3 = [ ] ;

318 f o r i i =1: index1−1

319 i f Et say ( z1 , i i )>0

320 i f minima1>Et say ( z1 , i i )

321 minima1=Et say ( z1 , i i ) ;

322 index2=i i ;

323 end

324 end

325 end

326 index4=i i ;

327

328 f o r i i=index1+1:n

329 i f Et say ( z1 , i i )>0

330 i f minima2>Et say ( z1 , i i )

331 minima2=Et say ( z1 , i i ) ;

332 index3=i i ;

333 end

334 end
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335 end

336

337 i f abs (minima1−maxima)>1e−6

338 Minima1=[Minima1 minima1 ] ;

339 Minima11=[Minima11 minima1 ] ;

340 satreMinima1=[ satreMinima1 z1 ] ;

341 sotooneMinima1=[ sotooneMinima1 index2 ] ;

342 e l s e

343

344 minima1=0;

345 Minima11=[Minima11 minima1 ] ;

346 end

347

348 i f abs (minima2−maxima)>1e−6

349 Minima2=[Minima2 minima2 ] ;

350 Minima22=[Minima22 minima2 ] ;

351 satreMinima2=[ satreMinima2 z1 ] ;

352 sotooneMinima2=[ sotooneMinima2 index3 ] ;

353 e l s e

354

355 minima2=0;

356 Minima22=[Minima22 minima2 ] ;

357 end

358

359

360 end

361

362

363

364 minima1 length=length (Minima11 ) ;

365 minima2 length=length (Minima22 ) ;
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366 tota l minima=Minima11+Minima22 ;

367

368

369

370

371

372 dx=L T(2)−L T(1) ;

373 dE= [ ] ;

374 f o r i 11 =2:n−1

375 dU( i11 )=(tota l minima ( i11+1)−tota l minima ( i11 −1) ) /(2∗dx ) ;

376 % dE=[dE dU ] ;

377 end

378

379 % f i g u r e (31)

380 % plo t (L T ( 4 : end−1) ,dU( 3 : end−1) , ’ k ’ )

381 %

382 % legend ( ’ f o r c e ’ )

383 % ax i s ( [ L T (1) L T(n) −2500 500 ] )

384

385

386 %%sur f a c e area

387 %c e l l a

388 A1 A=4∗a∗b∗ s i n ( landa ) /2 ;

389 A2 A=4∗a I I a ∗b∗ s i n ( l anda I Ia ) /2 ;

390 A3 A=2∗b∗Lc ;

391

392

393 %c e l l b

394

395 A1 B=4∗aIb∗bIb∗ s i n ( landaIb ) /2 ;

396 A2 B=4∗aI Ib ∗bIb∗ s i n ( landaI Ib ) /2 ;
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397 A3 B=2∗b∗Lc ;

398

399 %connect ing she e t s

400

401 A4 C=2∗b∗Lc ;

402

403 %to t a l s u r f a c e area

404

405 A tota l=A1 A+A2 A+A3 A+A1 B+A2 B+A3 B+A4 C ;

406

407

408 %%Finding Fe and Fc

409 nn=numel (dU) ;

410

411 %to t a l s u r f a c e area

412

413 A tota l=A1 A+A2 A+A3 A+A1 B+A2 B+A3 B+A4 C ;

414

415

416 %%Finding Fe and Fc

417 myArray=dU(100 : nn−20) ;

418 % dU(1 : 1 5 ) = [ ] ;

419 % dU( end :−1:nn−15) = [ ] ;

420 % n reduced=numel (dU)

421 [ Fc max , Fc max index ]=min (myArray ) ;

422 f e r nag e=myArray ( 1 : Fc max index−20) ;

423 Fe max=max( f e rnag e ) ;

424 % leng th po r t i on=L T( end )−L T(1) ;

425 %

426 % port i on=L T(1) +0.4∗ l e n g th po r t i on ;

427 % idx=length (L T)−sum(L T>por t i on ) ;
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428

429

430

431 % index f e=idx+1;

432 % index f c=idx+2;

433 % fe rnag e=dU( 3 : i nd ex f e ) ;

434 % fc r ang e=dU( i nd ex f e +1:end−1) ;

435 % Fe max=max( f e rnag e ) ;

436 % Fc max=min ( f c r ang e ) ;

437 f o r c e r a t i o=abs (Fc max ) /Fe max ;
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[2] Osama R. Bilal, André Foehr, and Chiara Daraio. “Bistable metamaterial for
switching and cascading elastic vibrations”. In: Proceedings of the National
Academy of Sciences 114.18 (2017), pp. 4603–4606. issn: 0027-8424. doi: 10.
1073/pnas.1618314114. url: http://www.pnas.org/lookup/doi/10.1073/
pnas.1618314114.

[3] Landen Bowen et al. “DYNAMIC MODELING AND ANALYSIS OF AN ORIGAMI-
INSPIRED OPTICAL”. In: Proceedings of the ASME 2016 Conference on Smart
Materials, Adaptive Structures and Intelligent Systems (2016), pp. 1–11.

[4] Kenneth C Bradley. “Mechanical Computing in Microelectromechanical Sys-
tems (MEMS), Thesis ”. In: (2003).

[5] K N Chappanda et al. “A single nano cantilever as a reprogrammable univer-
sal logic gate”. In: Journal of Micromechanics and Microengineering (2017),
aa5dfa. issn: 0960-1317. doi: 10 . 1088 / 1361 - 6439 / aa5dfa. url: https :

//doi.org/10.1088/1361-6439/aa5dfa.

[6] F. K. Chowdhury. “Micro-electro-mechanical-systems-based single- device dig-
ital logic gates for harsh environment applications”. PhD thesis. 2013. url:
http://ir.obihiro.ac.jp/dspace/handle/10322/3933.

[7] Mohammed F. Daqaq et al. “On the Role of Nonlinearities in Vibratory Energy
Harvesting: A Critical Review and Discussion”. In: Applied Mechanics Reviews
66.4 (2014), p. 040801. issn: 0003-6900. doi: 10.1115/1.4026278. url: http:
//appliedmechanicsreviews.asmedigitalcollection.asme.org/article.

aspx?doi=10.1115/1.4026278.

[8] Levi H Dudte et al. “Programming curvature using tessellations”. In: nature
materials January (2016). doi: 10.1038/NMAT4540.

113



[9] Hongbin Fang, K. W. Wang, and Suyi Li. “Asymmetric energy barrier and
mechanical diode effect from folding multi-stable stacked-origami”. In: Extreme
Mechanics Letters 17 (2017), pp. 7–15. issn: 23524316. doi: 10.1016/j.eml.
2017.09.008. url: https://doi.org/10.1016/j.eml.2017.09.008.

[10] E T Filipov, G H Paulino, and T Tachi. “Origami tubes with reconfigurable
polygonal Subject Areas :” in: Proc Math Phys Eng Sci. (2016).

[11] Michael P Frank, Thomas F Knight Jr, and Programable Multistable Mecha-
nisms. “Two types of mechanical reversible logic”. In: Nanotechnology (1993).

[12] Tobias Frenzel et al. “Tailored Buckling Microlattices as Reusable Light-Weight
Shock Absorbers”. In: Advanced Materials (2016), pp. 5865–5870. issn: 15214095.
doi: 10.1002/adma.201600610. arXiv: 1207.1956.

[13] Andrew Gillman et al. “Design of Soft Origami Mechanisms with Targeted
Symmetries”. In: Actuators (2018), pp. 1–16. doi: 10.3390/act8010003.

[14] E Hawkes et al. “Programmable matter by folding”. In: PNAS 107.28 (2010).
doi: 10.1073/pnas.0914069107.

[15] Sachiko Ishida, Taketoshi Nojima, and Ichiro Hagiwara. “Regular Folding Pat-
tern Generation for Deployable Non-Axisymmetric Tubes”. In: Proceedings of
the ASME 2014 International Design Engineering Technical Conferences Com-
puters and Information in Engineering Conference (2014), pp. 1–7.

[16] Cai Jianguo et al. “Bistable Behavior of the Cylindrical Origami Structure With
Kresling Pattern”. In: Journal of Mechanical Design 137.June (2015), pp. 1–8.
doi: 10.1115/1.4030158.

[17] Meredith Johnson et al. “Fabricating biomedical origami : a state-of-the-art
review”. In: International Journal of Computer Assisted Radiology and Surgery
(2017), pp. 2023–2032. doi: 10.1007/s11548-017-1545-1.

[18] Kaori Kuribayashi et al. “Self-deployable origami stent grafts as a biomedical
application of Ni-rich TiNi shape memory alloy foil”. In: Materials Science
Engineering 419 (2006), pp. 131–137. doi: 10.1016/j.msea.2005.12.016.

[19] Rolf Landauer. “Dissipation ans noise immunity in computation and communi-
cation”. In: nature i (1988), pp. 3–8.

[20] Robert J Lang, Spencer Magleby, and Larry Howell. “Single Degree-of-Freedom
Rigidly Foldable Cut Origami Flashers”. In: Journal of Mechanisms and Robotics
8.June (2016), pp. 1–15. doi: 10.1115/1.4032102.

[21] Robert J Lang et al. “Thick Rigidly Foldable Origami Mechanisms Based on
Synchronized Offset Rolling Contact Elements”. In: Journal of Mechanisms and
Robotics 9.April (2017). doi: 10.1115/1.4035686.

[22] Arthur Lebée. “From Folds to Structures , a Review”. In: International Journal
of Space Structure 30.June 2015 (2015). doi: 10.1260/0266-3511.30.2.55.

114



[23] Suyi Li and K. W. Wang. “Fluidic origami with embedded pressure dependent
multi-stability: A plant inspired innovation”. In: Journal of the Royal Society
Interface 12.111 (2015). issn: 17425662. doi: 10.1098/rsif.2015.0639.

[24] Suyi Li et al. “Architected Origami Materials : How Folding Creates Sophisti-
cated Mechanical Properties”. In: Advanced Materials 1805282 (2019), pp. 1–
18. doi: 10.1002/adma.201805282.

[25] Alexander E Marras et al. “Programmable motion of DNA origami mecha-
nisms”. In: PNAS 112.3 (2015), pp. 713–718. doi: 10.1073/pnas.1408869112.

[26] Pierre-olivier Mouthuy et al. “of rings from curved origami to foldable tents”.
In: Nature Communications (2012). doi: 10.1038/ncomms2311.

[27] Yutaka Nishiyama. “Miura folding: Applying origami to space exploration”. In:
April (2012).

[28] Young Seok Oh. “Synthesis of Multistable Equilibrium Compliant Mechanisms
Using Combinations of Bistable Mechanisms”. In: Journal of Mechanical Design
131.February (2009), pp. 1–11. doi: 10.1115/1.3013316.

[29] Jamie Paik. “Robogami : A Fully Integrated Low-Profile Robotic Origami”. In:
Journal of Mechanisms and Robotics 7.May (2015), pp. 1–8. doi: 10.1115/1.
4029491.

[30] Sergio Pellegrino. “Manufacture of Arbitrary Cross-Section Composite Honey-
comb Cores Based on Origami Techniques”. In: Journal of Mechanical Design
(2014). doi: 10.1115/1.4026824.

[31] Rui Peng. “Origami of thick panels”. In: SCIENCE July (2015). doi: 10.1126/
science.aab2870.

[32] K. W. Wang R. L. Harne. “A review of the recent research on vibration energy
harvesting via bistable systems”. In: Smart Materials and Structures (2013).
doi: 10.1088/0964-1726/22/2/023001.

[33] K. W. Wang R. L. Harne Z. Wu. “Designing and Harnessing the Metastable
States of a Modular Metastructure for Programmable Mechanical Properties
Adaptation”. In: Journal of Mechanical Design 138.February (2016), pp. 1–9.
doi: 10.1115/1.4032093.

[34] Jordan R Raney et al. “Stable propagation of mechanical signals in soft media
using stored elastic energy”. In: PNAS 113.35 (2016). doi: 10.1073/pnas.
1604838113.

[35] John Rogers et al. “Origami MEMS and NEMS”. In: MRSBulletin May (2016),
pp. 123–129. doi: 10.1557/mrs.2016.2.

[36] M. L. Roukes. “Mechanical compution, redux?” In: Technical Digest - Interna-
tional Electron Devices Meeting, IEDM (2004), pp. 539–542. issn: 01631918.
doi: 10.1109/iedm.2004.1419213.

115



[37] Pole S. “MOGA-II - An improved Multi-Objective Genetic Algorithm.” In:
Technical Report (2003-006).

[38] Mark Schenk and Simon D. Guest. “Geometry of Miura-folded metamaterials”.
In: Proceedings of the National Academy of Sciences 110.9 (2013), pp. 3276–
3281. issn: 0027-8424. doi: 10.1073/pnas.1217998110. url: http://www.
pnas.org/lookup/doi/10.1073/pnas.1217998110.

[39] Mark Schenk et al. “Review of Inflatable Booms for Deployable Space Structures
: Packing and Rigidization”. In: Journal of Spacecraft and Rockets 51.3 (2014),
pp. 762–778. doi: 10.2514/1.A32598.

[40] Yuanping Song et al. “Additively manufacturable micro-mechanical logic gates”.
In: Nature Communications 2019 (), pp. 1–6. issn: 2041-1723. doi: 10.1038/
s41467-019-08678-0. url: http://dx.doi.org/10.1038/s41467-019-
08678-0.

[41] Tomohiro Tachi. “Composite Rigid-Foldable Curved Origami Structure”. In:
Proceedings of the First Conference Transformables 1 (2013), pp. 1–6.

[42] Benjamin Treml et al. “Origami mechanologic”. In: PNAS 0 (2018). doi: 10.
1073/pnas.1805122115.

[43] Patsy Wang-iverson and Robert J Lang. Fifth International Meeting of Origami
Science, Mathematics, and Education. isbn: 9781439873502.

[44] H Yasuda et al. “Reentrant Origami-Based Metamaterials with Negative Pois-
son ’ s Ratio and Bistability”. In: Physical Review Letters May (2015). doi:
10.1103/PhysRevLett.114.185502.

[45] Shannon A Zirbel et al. “Accommodating Thickness in Origami-Based Deploy-
able”. In: Journal of Mechanical Design 135.November (2013), pp. 1–11. doi:
10.1115/1.4025372.

116


	Exploiting the Asymmetric Energy Barrier in Multi-Stable Origami to Enable Mechanical Diode Behavior
	Recommended Citation

	tmp.1598621405.pdf.HaRR6

