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ORGANIZATION OF THESIS 

This thesis is organized in manuscript style as two papers to be submitted for 

publication. Chapter one provides a general overview of the thesis. Chapter two is 

comparing the accuracy of agricultural building measurements using satellite and 

Unmanned Aerial Vehicles (UAV) images. Chapter three is about the potential of broiler 

rooftop photovoltaics as distributed peak-shaving plants for supply side load 

management. Chapter four contains the overall conclusions. 
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ABSTRACT I 

 

Little literature exists on measuring agricultural buildings with data collected 

from an Unmanned Aerial Vehicle (UAV) mounted aerial cameras. Survey grade tools 

produce highly accurate results, but with high financial and temporal costs. Satellite 

imagery is readily available and relatively low-cost but has low spatial and temporal 

resolution. Unmanned Aerial Vehicles are emerging as a balance between these 

traditional methods for measuring and monitoring natural and constructed environments. 

The objective of this study was to compare the accuracy of building measurements in the 

orthophotos generated from satellite and UAV imagery based on control measurements 

without Ground Control Points (GCP’s) or on-board survey-grade georeferencing. The 

rooftops of 31 broiler houses located in Oconee and Anderson Counties (South Carolina, 

USA) were evaluated for solar energy applications. Building plan dimensions were 

acquired and building heights were independently hand-measured. A DJI Mavic Pro 

UAV flew following a traditional double grid flight path at 69-meter altitude with a 4K-

resolution camera angle of -80° from the horizon with a 70% to 80% overlap. The 

captured images were processed using Agisoft Photoscan Professional digital 

photogrammetry software. Orthophotos of the study areas were generated from the 

acquired 3D image sequences using Structure from Motion (SfM) techniques. Building 

rooftop overhang obscured building footprint in aerial imagery. To accurately measure 

building dimensions, 0.91 m was subtracted from building roof width and 0.61 m was 

subtracted from roof length based on observations of roof overhangs from poultry 

buildings.  
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 The actual building widths and lengths ranged from 10.8 to 184.0 m and the 

mean measurement error using the UAV-derived orthophotos was 0.69% for all planar 

dimensions. The average error for building length was 1.66 ± 0.48 m and the average 

error for widths was 0.047 ± 0.13 m. Building sidewall, side entrance and peak heights 

ranged from 1.9 to 5.6 m and the mean error was 0.06 ± 0.04 m, or 1.2% mean error. The 

results proved that using consumer-grade UAV’s and photogrammetric SfM could create 

accurate DSM and orthomosaics of a study area at efficient use of economic and temporal 

resources without the use of survey grade equipment or GCPs. 

When compared to the horizontal accuracy of the same building measurements 

taken from readily available satellite imagery, the results were mixed. The mean error in 

satellite images was -0.36%. The average length error was -0.46 ± 0.49 m and -0.44 ± 

0.14 m for building widths. It was not possible to measure building heights using satellite 

image analysis. The satellite orthomosaics were more accurate for length predictions and 

the UAV orthomosaics were more accurate for width predictions. This disparity was 

likely due to flight altitude, camera field of view, and building shape. The satellite 

imagery had low cost and ease of access that allowed a convenient determination of 

structural orientation and planimetric dimensions. However, the UAV provided 

dependably current data, vertical dimensions, and had higher absolute accuracy useful for 

combining with GIS data layers from other sources. With an average flight time of 5.4 

min/ha and an average GSD of 4.84 cm/pi, the results obtained from a relatively 

inexpensive UAV mounted camera and image analysis demonstrated sufficient accuracy 

for planning and monitoring purposes in agricultural applications.  
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ABSTRACT II 

The primary challenge faced by energy suppliers is forecasting and supplying 

hourly peak demand. Generating supply at peak demand and efficiently distributing to 

remote customers are vital supply-side load management practices for controlling 

supplier cost. This research sought to determine if poultry farms could function as rurally 

distributed, peak-demand photovoltaic (PV) power plants to sparsely populated areas. 

Unmanned Aerial Vehicles (UAV) and satellite imagery were used to examine 88 poultry 

farms. The typical farm consisted of four poultry houses, each 15.2 meters by 152.4 

meters, oriented East/West, with a rooftop slope of 22.6º and a suitable rooftop area of 

1,254 m2.  The average rooftop supply of all farms was calculated and grouped into key 

supply categories of seasonal peak, shoulder, base, and energy. The average supply from 

a farm of typical size was 496 kW/hr during peak periods, 279 kW/hr during summer 

shoulder periods, and a contribution to base load of 425 kW/hr during summer months. 

The average rooftop supply estimated for all 88 farms was 59.2 MW/h during summer 

peak, a contribution to summer base load of 47.0  mW/hr, and total annual energy supply 

of 127.3 GWh/yr. Calculations of facility demand and energy use were in the range of 

10-20% of  gross hourly rooftop supply across time categories. This resulted in a net peak 

demand reduction potential of 51.6 MW/h (83%), and an annual net supply of 109.4 

GWh (86%) to the grid. In light of distribution costs, the twenty-seven farms located 

further than 3.28 km from existing transmission lines proved the most valuable in peak 

demand reduction and distributing energy to rural areas. Results suggest a promising 

potential for distributed PV adoption for peak-shaving.  



 vi 

 

ACKNOWLEDGMENTS  

 

 

This document was not the result of individual effort, but derived from a 

multitude of researchers and resources. Primarily, I would like to thank my research 

committee for their oversight, tireless patience, and commitment to the quality of my 

education. A special thanks is extended to Dr. Chastain for the initial project proposal, as 

well as generously funding the project. I would like to thank Dr. Post for assistance in 

acquiring the FAA sUAS remote pilot license and operational instruction. I also wish to 

acknowledge the valuable expertise of Dr. Brian Ritter, who was instrumental in 

establishing the photogrammetric and geospatial workflows used for data processing. 

Lastly, I would like to thank the Clemson Center for Geospatial Technology for 

providing the software licenses for Agisoft Photoscan Professional and ArcGIS Pro.  



vii 

TABLE OF CONTENTS 

Page 

TITLE PAGE  ..................................................................................................................   i 

ORGANIZATION OF THESIS ......................................................................................ii 

ABSTRACT I ................................................................................................................ iii 

ABSTRACT II ................................................................................................................ v 

ACKNOWLEDGMENTS ............................................................................................. vi

LIST OF TABLES .......................................................................................................viii 

LIST OF FIGURES ...................................................................................................... .xi 

CHAPTER 

I.        INTRODUCTION ....................................................................................... 1 

II. COMPARING THE ACCURACY OF

AGRICULTURAL BUILDING 

MEASUREMENTS USING SATELLITE AND 

UAV IMAGES........................................................................................ 4 

Abstract ........................................................................................... 4 

Introduction ..................................................................................... 6 

Methods ........................................................................................... 8 

Results ........................................................................................... 20 

Discussion ..................................................................................... 39 

Conclusions ................................................................................... 41 



 viii 

Table of Contents (Continued) 

 

Page 

 

III.       POTENTIAL OF BROILER ROOFTOP 

PHOTOVOLTAICS AS DISTRIBUTED PEAK-

SHAVING PLANTS FOR SUPPLY SIDE LOAD 

MANAGEMENT .................................................................................. 43 

Abstract ......................................................................................... 43 

Introduction ................................................................................... 44 

Methods ......................................................................................... 55 

Analysis and Results ..................................................................... 76 

Discussion ................................................................................... 136 

Conclusions ................................................................................. 139 

 

 

 IV.       CONCLUSIONS .................................................................................... 140 

APPENDICES ............................................................................................................. 143 

 

 A: Building Measurement Data ...................................................................... 144 

 B: Hillshade Analysis for Building Shading .................................................. 152 

 C: Geospatial Data Preprocessing Workflow ................................................. 158 

 D: Poultry Facility Energy Consumption Data ............................................... 161 

 

REFERENCES ............................................................................................................ 165 

 

 



 ix 

LIST OF TABLES 

 

 

Table Page 

 

2.1      Sample UAV image general information. ...................................................... 22 

2.2      Sample UAV image EXIF information. ......................................................... 23 

2.3      Summary table of the data collection and processing 

results. ....................................................................................................... 24 

2.4      Comparison of UAV landing pad diameter 

measurements. ........................................................................................... 29 

2.5      Measured error of building length and width between 

UAV and plan dimensions ........................................................................ 31 

2.6      Measured error of building heights between UAV and 

hand measurements ................................................................................... 34 

2.7      Building length and width measured error between 

satellite and blueprints .............................................................................. 37 

2.8      Building length and width measured error between 

satellite and blueprints .............................................................................. 38 

3.1      Average levelized cost of electricity (LCOE) in the 

USA by generation resource. .................................................................... 49 

3.2      Range of electricity rates for investor owned utility 

companies in South Carolina. ................................................................... 51 

3.3      Range of electricity rates for rural electric cooperatives 

in South Carolina. ..................................................................................... 52 

3.4      Building rooftop azimuth and orientation classes. ......................................... 59 

3.5      Average annual solar irradiance ( kWh/1000m2/day) by 

tilt for each azimuth class. ........................................................................ 61 

3.6      Estimation of the ratio of solar cell area to available 

roof area (fC) for a broiler building excluding roof 

overhangs. ................................................................................................. 66 



 x 

List of Tables (Continued) 

 

Table     Page 

 

3.7      Area solar radiation (ESRI, 2019) inputs. ...................................................... 68 

3.8      Estimation of the performance ratio (PR) for a rooftop 

PV array (adapted from Dobos, 2014). ..................................................... 73 

3.9      Variation in poultry house length (L) as a function of 

house width (W). ....................................................................................... 77 

3.10    Variation in poultry house orientation by house width 

(W)............................................................................................................. 78 

3.11    (a) Global solar irradiance data (W/m2) on summer and 

winter solstice by rooftop azimuth (ESRI, 2019)1. ................................... 83 

3.12    (a) Electric power output (kW/building) on summer 

and winter solstice by building orientation for a 

15.2 m x 152.4 m broiler house. ............................................................... 86 

3.13    Average global solar irradiance by month on buildings 

with East/West orientation. ....................................................................... 98 

3.14    Average global solar irradiance by month on buildings 

with Northwest/ Southeast orientation. ..................................................... 99 

3.15    Average global solar irradiance by month on building 

with Northeast/Southwest orientation. .................................................... 100 

3.16     (a) Average global solar irradiance by month on East 

azimuth of buildings with North/South orientation. ............................... 101 

3.17     Hourly PV panel power output for an average day by 

month on buildings with East/West orientation 

(ESRI, 2019)1. ......................................................................................... 104 

3.18    Hourly electric power output for an average day by 

month on buildings with Northwest/Southeast 

orientation (ESRI, 2019)1........................................................................ 105 

3.19    Hourly electric power output for an average day by 

month on buildings with Northeast/Southwest 

orientation (ESRI, 2019)1........................................................................ 106 



 xi 

List of Tables (Continued) 

 

Table        Page 

 

3.20    Hourly electric power output for an average day by 

month on buildings with North/South orientation 

(ESRI, 2019)1. ......................................................................................... 107 

3.21    Calculations for determining key summary power 

output metrics by season1........................................................................ 108 

3.22     Average hourly electric supply for each building 

orientation by seasonal time of use category. ......................................... 113 

3.23      Hourly electric power output for an average day by 

month for an average farm1 with East/West 

orientation (ESRI, 2019)2........................................................................ 116 

3.24      Summary output metrics for all farms by seasonal 

time-of-use and by quadrant. .................................................................. 125 

3.25    Average broiler farm electricity consumption 

(kWh/100m2)........................................................................................... 128 

3.26     Average broiler breeder farm electricity consumption 

(kWh/100m2)........................................................................................... 129 

3.27     Average pullet farm electricity consumption 

(kWh/100m2)........................................................................................... 130 

3.28     Average hourly poultry farm connected load 

(kW/100m2)............................................................................................. 131 

3.29    Estimated average summer peak demand for poultry 

houses in SC based on installed equipment and 

energy consumption records. .................................................................. 132 

3.30    Net contribution to utility transmission grid for a 

typical farm1. ........................................................................................... 134 

3.31    Net contribution to utility grid for entire study area. ................................... 135 

 

 

 



 xii 

List of Tables (Continued) 

 

Table        Page 

 

A.1     Landing pad diameter measurement data (non-paired).. .............................. 144 

A.2     Building width measurement data from blueprints and 

UAV-derived orthomosaic. ..................................................................... 145 

A.3    Building length measurement data from blueprint and 

UAV-derived orthomoasic. ..................................................................... 146 

A.4    Building height measurement data. ............................................................... 147 

A.5    Building width measurements from blueprint and 

Satellite-derived orthomosaic. ................................................................ 148 

A.6     Building length measurements from blueprint and 

Satellite-derived orthomosaic. ................................................................ 150 

B.1    Solar altitude and azimuth for Westminster, SC on 

3/21/19 (US NO, 2019).. ......................................................................... 152 

B.2    Reclassified hillshade values with seasonal solar 

illumination threshold (Melius et al, 2013)............................................. 154 

D.1    Average pullet farm electricity consumption 

(kWh/100m2). ......................................................................................... 161 

D.2     Average broiler farm electricity consumption 

(kWh/100m2)........................................................................................... 161 

D.3   Average broiler farm electricity consumption 

(kWh/100m2)........................................................................................... 162 

D.4   Average broiler farm electricity consumption 

(kWh/100m2)........................................................................................... 162 

D.5    Average broiler farm electricity consumption 

(kWh/100m2)........................................................................................... 163 

D.6    Average broiler breeder farm electricity consumption 

(kWh/100m2)........................................................................................... 163 

 



 xiii 

LIST OF FIGURES 

 

 

Figure Page 

 

2.1     Study area in Upstate SC, georeferenced 31 poultry 

farms in red. ..............................................................................................9 

2.2     Poultry house viewed from above, illustrating length 

and width measurements.. .......................................................................10 

2.3    Poultry house viewed from behind, illustrating height 

dimension measurements and horizontal overhang.. ..............................12 

2.4    Sample image of the UAV flight path in Pix4D Capture. ..............................15 

2.5    Sample photo of poultry house rooftop captured with the 

UAV at 69m altitude. ..............................................................................21 

2.6     Farm buildings reconstructed in Photoscan Pro as (a) 

Sparse 3D Point Cloud  of 650,956 points, and (b) 

Dense 3D Point Cloud of 46,764,137 points; with 

camera locations and thumbnails above .................................................. 25 

2.7     (a) Orthomosaic image (14,335x11,647, 1.93 cm/px) 

and (b) DSM (9,548 x 7,884, 3.86 cm/px) built from 

Dense Point Cloud (DPC). ....................................................................... 27 

2.8     Regression of building length and width measurements 

between building plan dimensions and UAV 

software measurements ............................................................................ 30 

2.9     Regression analysis results between hand and software 

measurements of poultry house building side wall, 

peak, and side entrance heights ................................................................ 33 

2.10   Regression analysis results between blueprint and 

software poultry house building length 

measurements from satellite imagery ...................................................... 36 

 

 

 



 xiv 

List of Figures (Continued) 

 

Figure Page 

 

3.1     (a) Winter solstice and (b) summer solstice demand 

curves (US EIA, 2019) and time-of-use categories 

(DEP, 2019). ............................................................................................ 46 

3.2     Three poultry farms in study area, one with a partial PV 

installation. ............................................................................................... 53 

3.3     (a) The geographical location of South Carolina in the 

southeastern United States. (b) The georeferenced 

88 poultry farms within Anderson and Oconee 

Counties (ESRI, 2019). ............................................................................ 56 

3.4     Spatial distribution of 88 poultry farms and 

transmission grid. ..................................................................................... 80 

3.5     Frequency distribution of Euclidian distance between 

farm and nearest transmission line. .......................................................... 81 

3.6     Spatial distribution of 88 aggregated PV plants. .......................................... 120 

3.7     Plot of farm distance and average peak power produced 

on summer days between 13:00 and 17:00. ........................................... 122 

3.8     Plot of farm distance and average shoulder power 

produced in summer between 11:00 and 13:00, and 

18:00; and in winter from 9:00 to 11:00, then 17:00 

through 19:00. ........................................................................................ 123 

3.9     Plot of farm distance and average baseload power 

produced per hour each day between 9:00 and 

17:00. ..................................................................................................... 124 

3.10    Correlation between Farm PV peaking plant nominal 

capacity and average farm power supply during 

summer peak and winter shoulder periods............................................. 137 

 

 

 



 xv 

List of Figures (Continued) 

 

Figure Page 

 

B.1     Spatial distribution of 88 aggregated PV plants. ......................................... 153 

B.2     Plot of farm distance and average peak power produced 

on summer days between 13:00 and 17:00. ........................................... 156 

B.3     Plot of farm distance and average shoulder power 

produced in summer between 11:00 and 13:00, and 

18:00; and in winter from 9:00 to 11:00, then 17:00 

through 19:00. ........................................................................................ 157 

C.1     Plot of farm distance and average baseload power 

produced per hour each day between 9:00 and 

17:00. ..................................................................................................... 158 

C.2     Correlation between Farm PV peaking plant nominal 

capacity and average farm power supply during 

summer peak and winter shoulder periods............................................. 164 

  



1 

CHAPTER ONE 

 

INTRODUCTION 

 

The primary challenge faced by energy suppliers is forecasting and supplying 

hourly peak demand (DEC, 2017). This challenge has even greater significance in rural 

communities, where population densities are lower and the total distance electricity must 

travel between generation and consumption is greater. Effort to supply electrical power 

during times of peak demand is referred to as peak-shaving. This additional peaking 

infrastructure creates additional cost for suppliers. Generating supply at peak demand and 

efficiently distributing to remote customers are vital supply-side load management 

practices for controlling supplier cost.   

Renewable energy has been viewed as an attractive alternative to fossil fuels due 

to significantly lower fuel costs (Klaić et al, 2015). However, levelized cost of energy 

calculations demonstrated that inclusion of capital cost required to harvest renewable 

resources outweighed operating savings. This generally rendered renewable energy more 

expensive than fossil fuels per kWh produced (Warwick et al, 2016).  

The primary commodity of South Carolina’s economy according to the 

Department of Agriculture is its poultry industry (SC DA, 2020). Rooftops of poultry 

houses are potentially highly suitable for photovoltaic (PV) panel installations. Typical 

fixed costs in PV installations such as land, distribution infrastructure, permitting, and 

electricians could be reduced through a mutually beneficial partnership between the 

utility and their agricultural customers. Solar’s low fuel costs and coincidental timing 

with peak demand support its use as peak-shaving, as well as function as automated fuel 
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management for a PV peaking-plant. Furthermore, This highly flexible proposal could 

decrease stress on the utility network and even assist in accelerating economic 

development for the surrounding territory. An energy supplier using rural poultry house 

PV could change the tipping point of solar energy as fuel for micro, distributed peak 

shaving plants to rural communities.   

This study explores the utilization of the poultry industry as distributed solar 

electric energy plants to reduce peak and shoulder demand to the surrounding rural 

community. This central question was approached from the perspective of the burgeoning 

Geographic Information Systems (GIS) data analysis. These data, such as orthophotos 

and Digital Surface Models (DSM’s), are essential to the design, execution, and 

monitoring of projects across disciplines. There are multiple techniques currently 

employed to obtain GIS data. High-resolution photogrammetric point clouds obtained 

from UAVs represent an appealing technique currently employed to obtain GIS data 

(Sammartano et al, 2016; Ajayi et al, 2017; Cook, 2017). The combination of efficient 

Structure from Motion (SfM) photogrammetry and flexible UAV photogrammetry has 

the potential to produce a unique surface reconstruction tool, delivering orthophotos and 

DSMs with exceptional resolution (Colomina et al, 2014). Data collection with UAVs are 

increasingly adopted directly by researchers of many disciplines (Le Mauff et al, 2018).  

This research was conducted as two consecutive studies (papers). The goal of the 

preliminary study was to explore the limits of UAV adoption for 3D mapping 

applications in the context of large-scale rural environments (2.5 ha), using a consumer 

grade UAV with onboard GPS without expensive onboard GNSS or RTK hardware or 
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Ground Control Points (GCPs) in the field. This was done by a statistical analysis of 

digital orthophotos produced from UAV-based photogrammetric point clouds. 

Specifically, the objectives of the first study were to (1) utilize a consumer grade UAV 

with Inertial Measurement Unit (IMU) to capture aerial images, (2) employ traditional 

photogrammetry SfM to convert the 2D images into 3D GIS data, (3) determine 

horizontal and vertical accuracy of UAV imagery, and (4) compare to horizontal 

accuracy of satellite imagery.  

The goal of the second study was to examine the potential of broiler rooftop 

photovoltaics as distributed peak-shaving plants for supply side load management. The 

specific objectives were to (1) determine the electrical energy use for individual poultry 

houses in a broiler producing area in South Carolina, and (2) examine the potential of 

using buildings on groups of poultry farms as peak shaving power plants in a rural area. 

This was done through an analysis of solar irradiance and PV technology, farm location, 

and net supply to grid in light of farm demand and energy use.  
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CHAPTER TWO 

 

COMPARING THE ACCURACY OF AGRICULTURAL BUILDING 

MEASUREMENTS USING SATELLITE AND UAV IMAGES 

 

 

ABSTRACT 

 

Little literature exists on measuring agricultural buildings with data collected 

from an Unmanned Aerial Vehicle (UAV) mounted aerial cameras. Survey grade tools 

produce highly accurate results, but with high financial and temporal costs. Satellite 

imagery is readily available and relatively low-cost but has low spatial and temporal 

resolution. Unmanned Aerial Vehicles are emerging as a balance between these 

traditional methods for measuring and monitoring natural and constructed environments. 

The objective of this study was to compare the accuracy of building measurements in the 

orthophotos generated from satellite and UAV imagery based on control measurements 

without Ground Control Points (GCP’s) or on-board survey-grade georeferencing. The 

rooftops of 31 broiler houses located in Oconee and Anderson Counties (South Carolina, 

USA) were evaluated for solar energy applications. Building plan dimensions were 

acquired and building heights were independently hand-measured. A DJI Mavic Pro 

UAV flew following a traditional double grid flight path at 69-meter altitude with a 4K-

resolution camera angle of -80° from the horizon with a 70% to 80% overlap. The 

captured images were processed using Agisoft Photoscan Professional digital 

photogrammetry software. Orthophotos of the study areas were generated from the 

acquired 3D image sequences using Structure from Motion (SfM) techniques. Building 

rooftop overhang obscured building footprint in aerial imagery. To accurately measure 
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building dimensions, 0.91 m was subtracted from building roof width and 0.61 m was 

subtracted from roof length based on observations from poultry buildings.  

 The actual building widths and lengths ranged from 10.8 to 184.0 m and the 

mean measurement error using the UAV-derived orthophotos was 0.69% for all planar 

dimensions. The average error for building length was 1.66 ± 0.48 m and the average 

error for widths was 0.047 ± 0.13 m. Building sidewall, side entrance and peak heights 

ranged from 1.9 to 5.6 m and the mean error was 0.06 ± 0.04 m, or 1.2% mean error. The 

results proved that using consumer-grade UAV’s and photogrammetric SfM could create 

accurate DSM and orthomosaics of a study area at efficient use of economic and temporal 

resources without the use of survey grade equipment or GCPs. 

When compared to the horizontal accuracy of the same building measurements 

taken from readily available satellite imagery, the results were mixed. The mean error in 

satellite images was -0.36%. The average length error was -0.46 ± 0.49 m and -0.44 ± 

0.14 m for building widths. It was not possible to measure building heights using satellite 

image analysis. The satellite orthomosaics were more accurate for length predictions and 

the UAV orthomosaics were more accurate for width predictions. This disparity was 

likely due to flight altitude, camera field of view, and building shape. The satellite 

imagery had low cost and ease of access that allowed a convenient determination of 

structural orientation and planimetric dimensions. However, the UAV provided 

dependably current data, vertical dimensions, and had higher absolute accuracy useful for 

combining with GIS data layers from other sources. With an average flight time of 5.4 

min/ha and an average GSD of 4.84 cm/pi, the results obtained from a relatively 
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inexpensive UAV mounted camera and image analysis demonstrated sufficient accuracy 

for planning and monitoring purposes in agricultural applications.  

 

INTRODUCTION 

 

Geographic Information Systems (GIS) data such as orthophotos and Digital 

Surface Models (DSM) are essential to the design, execution, and monitoring of projects 

across disciplines such as agriculture, architecture, engineering, energy, mapping, 

transportation, and surveillance. There are multiple techniques currently employed to 

obtain GIS data. Traditional methods include manned airborne sensors such as Light 

Detection and Ranging (LiDAR) or photogrammetric cameras, manned ground methods 

such as terrestrial laser scanning, or autonomous satellite imagery using Global 

Navigation Satellite Systems (GNSS). With each technique for data collection, it is 

important to know the cost, accuracy, and its conformance to applicable standards. 

Satellite and manned airborne platforms offer spatial coverage at a landscape scale. 

However, manned aerial vehicles are quite expensive (Remondino et al., 2011) and 

satellites often provide poor spatial resolution at large cartographic scales, both of which 

may limit their usefulness. Terrestrial survey equipment is expensive and time-

consuming (Hugenholtz, 2016). High-resolution photogrammetric point clouds obtained 

from small UAVs represent an appealing alternative (Sammartano, 2016; Ajayi, 2017; 

Cook, 2017).  

An alternative approach to survey-grade methods gives georeferencing at levels of 

spatial precision that are consistent in results without the cost or time necessitated by 
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surveying equipment. This can be done with the onboard inertial measurement unit 

(IMU) and GPS used without Ground Control Points (GCPs) to locate and orient the data 

(Uysal et al., 2015). Currently, the combination of efficient Structure from Motion (SfM) 

photogrammetry and flexible UAV photogrammetry have the potential to produce a 

unique surface reconstruction tool, delivering orthophotos and DSMs with exceptional 

resolution (1.5 cm GSD) and unbeatable price (Colomina and Molina, 2014).  

A study conducted in 2012 compared a UAV’s consumer-grade digital camera 

with survey-grade terrestrial laser scanner to demonstrate the 0.10 m vertical accuracy 

achieved using SfM with complex topography and complex land covers for geoscience 

applications (Westoby, et al, 2012). Another recent study done in highly variable and 

vegetated terrain with low-cost UAV’s demonstrated that the standard deviation of DEM 

data with and without GCP’s only differed by 0.06 meters (Akturk and Altunel, 2018). 

Data collection with UAVs are now increasingly adopted directly by researchers of many 

disciplines (Le Mauff et al., 2018). 

This study aimed to explore the limits of UAV adoption for 3D mapping 

applications in the context of large-scale rural environments (2.5 ha), consumer grade 

UAV with onboard GPS for precision photo geotagging applications to produce accurate 

spatial data without expensive onboard GNSS or RTK hardware, terrestrial survey 

equipment, and without the use of GCP’s in the field. This was done by a statistical error 

analysis of digital orthophotos produced from UAV-based photogrammetric point clouds. 

Specifically, the objectives of this study were to (1) utilize a consumer grade UAV with 

IMU to capture aerial images, (2) employ traditional photogrammetry SfM to convert the 
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2D images into 3D GIS data, (3) determine horizontal and vertical accuracy of UAV 

imagery, and (4) compare to horizontal accuracy of satellite imagery.  

 

METHODS  

 

The project methodology included identifying the study area and variables of 

interest, data collection, photogrammetric data processing, and statistical analysis. Each 

step is explained in further detail. 

Study Area 

All research methods were tested on poultry farms in Anderson and Oconee 

Counties in upstate South Carolina. A total of 31 farms (139 poultry houses) were visited 

within the study area and their locations are provided in Figure 2.1.   
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Figure 0.1 Location of the thirty-one poultry farms in Oconne and Anderson 

Counties (SC) in the study area. 

 

Dimensional accuracy of specific building characteristics was compared in the 

orthophotos generated from satellite and UAV imagery. Data collection for these 

variables entailed a combination of remote sensing techniques validated by physical 

measurements as benchmarks. A description of each variable as well as measurement 

methodology was described in the subsequent sections for each of these variables.  
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Poultry Building Characteristics of Interest  

Dimensional accuracy was compared for horizontal measurements of the UAV 

landing pad and poultry house building length (L), width (W) dimensions, and then 

vertical measurements of building sidewall height (Hs), peak height (Hp), and side 

entrance ridge height (Hr). The horizontal building measurements were compared to 

measurements from satellite image. The height measurements were used to calculate roof 

slope (S) for the solar analysis in the subsequent study.  

Physical Measurements  

Building Length and Width Dimensions 

The grower provided building length and width measurements for the farms 

visited from building blueprints. Building width and length measurements were taken on 

a single building at each of the 31 visited farms. These dimensions are illustrated in 

Figure 2.2.  

 

Figure 2.2 Poultry house viewed from above, illustrating length and width 

measurements observed from UAV images. 
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Building blueprint dimensions were provided in imperial units (ft) and converted 

to metric (m) with a conversion factor of 0.3048 meters per foot. These converted units 

were used as the measured building dimension for comparison to UAV and satellite 

predictions.  

The building footprint cannot be seen from above in UAV generated images due 

to roof overhang (see Figure 2.2). To account for overhang, an estimated value based on 

observations made on a large number of poultry barns was subtracted from the overall 

building roof lengths and widths that were seen in the images. Based on observations 

from many poultry barns it was determined that the typical overhang added 0.9144 m to 

the width of the building floorplan and 0.6096 m to the plan length. The building width 

and lengths observed in the overhead images were adjusted to the floor plan width and 

length as follows: 

 

Where, 

Wi= building roof width from aerial imagery, overhang included, and 

Li = building roof length from aerial imagery, overhang included. 

Building Heights  

Poultry building height measurements were taken to compare vertical dimensions 

using a simple UAV flight path, and to ensure precise and accurate model reconstruction 

in the vertical plane. These also were used determine building roof slope.  A range of 

sidewall height (Hs), peak height (Hp), side entrance ridge height (Hr) heights were 

measured to provide a greater range of vertical heights to compare with measurements 

from UAV images. The building side entrance can be seen in the center of of the 

W = Wi – 0.9144 m, and                                                                                                  (2.1) 

L = Li - 0.6096 m.                                                                                                           (2.2) 
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buildings shown in Figure 2.2. All building heights were measured with a measuring tape 

(± 0.16 cm) from the concrete base to under the building eave. The location of the 

sidewall and peak heght measurments, along with the location of building overhangs are 

illustrated in Figure 2.3. 

 

 

Figure 2.3 Poultry endwall illustrating location of sidewall and peak height 

measurements and building overhangs.  

 

Building Rooftop Slope 

The amount of solar radiation that falls on roof-mounted solar voltaic panels 

depends on the rooftop azimuth and the slope of the southward facing roof. 

Consequently, rooftop slope was needed for the current application of UAV and Satellite 

remote sensing to evaluate poultry buildings for suitability of solar electric production. 
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Slope was calculated using hand measurements or UAV image derived measurements 

using the definition of roof slope (S) as: 

S = (Hp - Hs) / (W ÷ 2).         (2.3) 

UAV Remote Sensing  

A UAV was used to collect aerial images of the farm buildings at each site. The 

building footprint cannot be seen from above due to roof overhang (see Figure 2.2). The 

building rooftop lengths (Li) and widths (Wi) were measured from the aerial images using 

the Ruler tool (Agisoft, 2019) on each farm’s orthomosaic image and they were adjusted 

to blueprint dimensions by correcting for roof overhangs as shown previously in  

Equations 2.1 and 2.2 . Poultry building vertical measurements consisted of sidewall 

heights, peak heights, and side entrance ridge heights. These measurements were 

obtained using the Ruler tool (Agisoft, 2019) on each farm’s DSM.  

UAV Licensing and Operation Procedures  

Clemson University policy required that all individuals in operation of a UAV for 

research purposes have a small Unmanned Aerial Systems (sUAS) remote pilot license in 

compliance with Federal Aviation Administration (FAA, 2016) protocol and carry 

appropriate insurance. Only a licensed and insured pilot flew UAV missions for this 

project in compliance with all FAA requirements (Summary of Small Unmanned Aircraft 

Rule, Part 107, FAA, 2016).  
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UAV Flights for Data Collection 

The remote data collecting equipment was a DJI Mavic Pro UAV with an onboard 

digital camera. This camera collected aerial images at each site. A flight planner 

application, Pix4D Capture, was utilized for each flight (Pix4D, 2017). This mobile 

application automated each flight to improve the results, safety, and efficiency of the data 

collection process. A double grid flight pattern at an altitude of 69m was used for the 

aerial surveys. The angle of the UAV camera during flight was set to capture images at 

an angle of -80 degrees from the horizon. The camera was programmed to capture 80% 

frontal overlap of image content between consecutive pictures along the flight path and 

70% side overlap between images from adjacent flight paths at ground level (Barry and 

Coakley, 2013). Overlap ensured sufficient subject redundancy captured between photos 

which improved the quality of 3D digital surface model reconstruction using 

photogrammetry. An illustration of the flight path is given in Figure 2.4.  
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Figure 0.4 Sample image of the UAV flight path in Pix4D Capture (Pix4D, 2017). 

 

  
All equipment, calibrations, and parameters were held constant throughout the 

data collection process to minimize inflation in the variance of the response and bias in 

the estimation of the treatment mean. 

UAV Image Data Processing 

The computing equipment used for data processing was an iMac Desktop with 

custom configured technical specifications for improved processing performance:  4.2 

gigahertz quad core i7 processor (turbo charged to 4.5), 32 GB 2400 megahertz DDR 

RAM (four 8GB cards), storage capacity of 2 TB fusion drive with 128 GB of flash 

storage, and an AMD Radeon Pro 580 graphics card with 8GB VRAM. 
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The aerial photos were processed using Agisoft Photoscan Professional software 

(Agisoft, 2017) version 1.4.1 to construct 3D models. This processing involved 

examining relative, absolute, internal, and external orientation and the construction of 3D 

models from the 2D captured images using SfM photogrammetric range imaging 

technique (Ulman, 1979; Westoby et al., 2012). The workflow consisted of 6 steps: (1) 

import and (2) align photos, (3) optimize alignment, (4) build dense point cloud, (5) build 

digital surface model (6) build orthomosaic image. The general process was to align 

images by matching common points, which resulted in a sparse point cloud and 

established camera positions. Then a dense point cloud of improved accuracy was 

constructed based on the estimated camera positions and pictures. A maximum allowable 

number of points on every image available for consideration was 40,000 points, and an 

upper limit of points allowed to match between any two images was set to 10,000,000 

points. These constraints allowed for optimization of the alignment process without 

allowing features to be overlooked. Adaptive camera model fitting was enabled, which 

automated the selection of camera parameters to be adjusted based on their reliability 

estimates. The dense point cloud was constructed using 4x downscaled images, which 

maintained a relatively high accuracy (compared to 16x or 64x downscaling). A mild 

depth filter was also applied during this step to remove outliers and noise.  

Satellite Remote Sensing 

The poultry building lengths and widths on 31 farms were also measured using 

readily available satellite imagery provided by Google, Maxar Technologies, and US 

Geological Survey (Google, 2019). The collective 139 building rooftop lengths (Li) and 
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widths (Wi) were measured using the Measure Distance tool (Google, 2019) on satellite 

imagery of the 31 farms. Adjusted building width (W) and length (L) measurements from 

satellite imagery were obtained in the same way as for UAV generated images (Equations 

2.2 and 2.3). It was impossible to measure building heights with satellite imagery. 

Comparison of Actual Dimensions to Measurements Using UAV and Satellite 

Remote Sensing Techniques 

The predictive accuracy of building measurements within the satellite and UAV 

derived orthoimages were determined using equation 2.4:  

Δd = A – M.        (2.4) 

Where,  

Δd = Difference between the actual dimension and the measured dimension (m), 

A = Actual dimension (m), and 

M = Measured dimension (m).  

 

Accuracy was measured by quantifying error as the difference between actual 

building dimensions observed and the dimensions measured from remote sensing derived 

digital Orthomosaic images. This was done for building length (L), width (W), building 

sidewall height (Hs), peak height (Hp), and side entrance height (Hr). The actual 

dimensions were the blueprint dimensions for building length and width, and hand 

measurements of building heights. The measured dimensions were the predicted building 

measurements in the UAV and satellite derived orthomosaic images.  

The smallest horizontal dimension that was measured for the poultry buildings 

was the building width and was on the order of 10 m. The diameter of the plastic UAV 

landing pad was under 1 meter and was used to provide a smaller horizontal dimension to 
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test the accuracy of using UAV generated images for making horizontal landscape 

measurements. The UAV landing pad was visible in each flight and was used as a 

reference point to ensure precise and accurate large-scale horizontal model 

reconstruction. The pad consisted of a waterproof, high quality nylon stretched between a 

circular steel ring frame. The ring was manufactured to be flexible for contorted 

compaction to facilitate storage and transportation. This lack of rigidity also allowed for 

potential variation in pad diameter measurements. The manufacturer’s quoted product 

size was 75 cm in diameter. The round pad was hand-measured 9 times to the nearest 

0.16 cm with a tape measure. The average of these measurements was the actual landing 

pad diameter. The landing pad diameter was also measured using the computer 

software’s orthomosaic images once per flight to provide 31 obervations. The mean 

landing pad diameter obtained by hand measurements was compared to the mean pad 

diameter measured using UAV images by calculating the 95% confidence interval (C.I.) 

about each mean as (Steel and Torrie, 1991): 

C.I. = 𝑡α , (n-1) × (s/n0.5).         (2.5) 

 

Where,  

C.I. = 95% confidence interval about the mean (m), 

t = t-value 0.025, (n-1), 

s = Standard deviation (m), and 

n = Number of replications.  

 

The mean differences (Δd) was calculated for the building lengths (L), and widths 

(W) measured using both the UAV and satellite images as well as the sidewall (Hs), peak 

(Hp), and side entrance heights (Hr) measured using only the UAV images. The mean 
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differences were compared using the 95% confidence interval about the means as shown 

previously in Equation 2.5. 

Relative error was also calculated for differences for all building length, width, 

and height dimensions obtained using both UAV and satellite images. This was done to 

place the error in perspective of the size of the measurements and was calculated as: 

μE (%) = [ μΔd (m) / μA (m)] x 100.      (2.6) 

Where,  

μ E= Mean error (%), 

μ Δd = Mean difference (m), and 

μ A = Mean actual dimension (m). 

 

The percent error was calculated as the mean of all calculated differences for a 

specific building dimension divided by the grand mean of all actual measurements of a 

specific dimension. This metric established measured error relative to the size of the 

measurement, which was useful due to the variation in measurements ranging from a 

UAV landing pad with a diameter less than one meter to a building with a length greater 

than 150 meters.  

It was hypothesized that the variances of ΔW and ΔL obtained based on UAV and 

satellite remote sensing would not be the same. To test this hypothesis an F-test for 

common variance was used to determined if results could be pooled. The calculated F 

determined by dividing the largest variance of one horizontal dimension (ΔW or ΔL) by 

the smaller variance of the other horizontal dimension (ΔW or ΔL), each from the same 

remote sensing tool (Steel and Torrie, 1997). The calculated F was compared with the 

tabulated F using the degrees of freedom for the numerator and denomenator at the 95% 
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level of probalility. If the F-test indicated that the variances were not significantly 

different, then the variances would be pooled to provide a better estimate of the variance 

used for calculation of the 95% C.I. 

Finally, the raw data for all heights, widths, and lengths for the UAV image 

derived measurements were correlated with the actual measurements using a simple line 

that passed through the origin (A = b M). This was done to allow visualization of the raw 

data, a check of correlation of the data, and to provide an overall estimate of the average 

difference between the actual dimensions and the UAV derived measurements.  A similar 

correlation was done for the widths and lengths obtained from the satellite image 

measurements. 

 

RESULTS 

 

The products of all methods described for remotely sensed data collection, 

photogrammetric data processing, and statistical analysis are given below. Dimensional 

accuracy was compared for horizontal measurements of the UAV landing pad and poultry 

house building dimensions, and then vertical measurements of the building sidewall and 

peak heights. These numbers were compared to the accuracy of horizontal measurements 

from satellite image.  

The image quality of the digital sensor used in remote sensing was critical to 

successful adaptation of that tool. Furthermore, the sensor’s ability to capture detail of 

environemnts that contained complex topography and complex land cover would improve 

its usefulness. The UAV used for this study was the DJI Mavic Pro, mounted with an on-
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board 4K digital camera. A sample result of the camera’s image quality captuing built 

and natural environments of highly variable terrain and vegetation can all be seen in 

Figure 2.5.  

 
Figure 2.5 Sample photo of poultry house rooftop captured with the UAV at 69 m 

altitude.  

 

This image depicted a portion of a poultry barn and surrounding rural landscape. 

Technical specifications associated with the onboard UAV camera described in the 

general image information associated with this image was also noted. The general 

information recorded with this specific UAV image sample validates the specific 

equipment and flight parameters utilized. Information including the altitude, GPS 

coordinates and version, UAV make and model, image size and type, as well as digital 

sensor type are all given in Table 2.1 
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 Exchangeable Image File Format (EXIF) is a standard that defines specific 

information related to an image or other media captured by a digital camera (Monsurav, 

2020). It was capable of storing such important data as camera exposure, date/time the 

image was captured, and even GPS location. This information was critical to 

understanding the operational parameters (such as aperture, shutter speed, exposure) and 

equipment limitations (image size or focal length) of the tools utilized during data 

collection. Sample image EXIF data associated with Figure 2.5 is given in Table 2.2. 

 

 

 

 

 

 

 

Table 0.1. Sample UAV image general information. 

Document Type: JPEG image 

File Size: 4,798,896 Bytes 

Color Mode: RGB 

Profile Name: sRGB IEC61966-2.1 

DPI Width: 72 

DPI Height:  72 

Depth:  8 

GPS Version:  3.2.0.0 

Make:  DJI 

Model:  FC220 

Latitude: 34° 18’ 32.01” N 

Longitude: 82° 45’ 28.88” W 

Altitude:  161.75 m  

 Alt. Reference:  above sea level 
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Table 0.2 Sample UAV image EXIF information.  

Aperture Value: 2.27 

Color Space: sRGB 

Components Configuration: 0,3,2,1 

Compressed Bits per Pixel: 2.897 

Contrast: Normal 

Custom Rendered: Normal Process 

Digital Zoom Ratio: 0 

EXIF Version: 2.3 

Exposure Bias Value: 0 

Exposure Index: 0 

Exposure Mode: Auto Exposure 

Exposure Program: Normal Program 

Exposure Time: 1/60 

File Source: DSC 

Flash: No Flash Function 

FlashPix Version: 0.1 

FNumber: 2.2 

Focal Length: 4.7 

Focal Length in 35mm Film: 26 

Gain Control: None 

Photographic Sensitivity (ISA): 147 

Light Source: Unknown 

Max Aperture Value: 2.27 

Metering Mode: Center Weighted Average 

Pixel X Dimension: 4,000 

Pixel Y Dimension: 3,000 

Saturation: Normal 

Scene Capture Type: Standard 

Sharpness: Normal 

Shutter Speed: 1/60 

White Balance: Auto white balance 

 

The focal length was 4.7 mm. Digital zoom was 0. The image size was four 

thousand pixels in length by three thousand pixels in height. These details, amongst 

others in cluded in the table such as exposure and zoom, are useful for validating remote 

sensing equipment. This information is also vital to calculating Ground Sampling 

Distance (GSD, cm/pixel) for relative accuracy of images. 
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UAV Remote Sensing and Photogrammetry 

The results for UAV flight logistics included flight time at each farm and the total 

number of images captured by the UAV. The software processing of these images 

resulted in filtering images, identifying tie points between images, and construction of a 

dense point cloud. A summary of these results for the entire project as well as an 

estimated average per farm are given in Table 2.3.  

 

Table 0.3 Summary table of the data collection and processing results.  

 Average/farm Project Total 

Flight Time (minutes): 13.5 320 

Images Captured: 268 8,043 

Images Used: 224 6,836 

Tie Points Identified:  666,691 20,000,715 

Dense Cloud Points:  54,209,477 1,626,284,298 

 

 

The average UAV flight time per farm was 13 minutes and 26 seconds, and a total 

flight time of approximately 320 minutes to successfully collect data at all 31 farms. The 

average flight path aerial grid size was 175 m by 163 m, or 28,523 m2. The average 

number of images captured at each farm was 268. Eighty-five percent of the images were 

utilized by the software. This means that 15% of captured images were deemed of 

unsuitable quality to benefit the analysis, and automatically excluded by the software in 

step 1 of the photogrammetry workflow. The project totaled 6,836 images used, from 

which a collective 20 million tie points were identified with the aforementioned 

reconstruction parameters. The project study area had a total of 1.63 billion 3D dense 

cloud points. The results for a reconstructed key point cloud can be seen in Figure 2.6(a) 

and and dense point cloud the output in Figure 2.6(b).   



 25 

 

 
Figure 2.6 Farm buildings reconstructed in Photoscan Pro as (a) Sparse 3D Point 

Cloud of 650,956 points, and (b) Dense 3D Point Cloud of 46,764,137 points with 

camera locations and thumbnails above.  

 

 

The general process was to align images by matching common points, which 

resulted in a sparse point cloud and established camera positions. Then a dense point 

cloud of improved accuracy was constructed based on the estimated camera positions and 

pictures.  

A 

B 
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The goal of the data collection and analysis was the creation of a digital 

orthomosaic image as well as a DSM for future solar analysis. The orthomosaic (similar 

to the digital product provided in satellite imagery) was used to predict building 

dimensions. The image clarity and resolution of each image, as well as maximizing the 

tie points between images, were critical to accurate renderings of the subject area. For 

this study, this affected the confidence of agricultural building dimension measurements. 

The digital orthomosaic provided aerial perspective, while the DSM provided surface 

texture and depth for the subject area. An example digital orthoimage is shown in Figure 

2.7(a) and DSM of a surveyed farm are shown in Figure 2.7(b).  
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Figure 2.7 (a) Orthomosaic image (14,335x11,647, 1.93 cm/px) and (b) DSM (9,548 x 

7,884, 3.86 cm/px) built from Dense Point Cloud (DPC).  

 

 

 

A 

B 
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Statistical Analysis and Comparison of Actual and Measured Dimesions Obtained 

from Remotely Sensed Imagery  

Measured Error from UAV 

The following section contains the results of the analysis of measurement error 

from the UAV in the horizontal and vertical planes. The horizontal difference analysis 

was broken into two relative groups: cartographic small scale and large scale. The UAV 

landing pad functioned as the large-scale horizontal difference analysis, and the poultry 

house building length and width dimensions functioned as the small-scale horizontal 

difference analysis. The poultry house building side wall, side entrance, and peak height 

measurements were used as the vertical difference analysis.  

Landing Pad Diameter Measurements  

The round pad was hand-measured 9 times in the field. The relatively small 

number of control trials was due to a low uncertainty associated with the simple hand 

measurements. The landing pad diameter was measured within the computer software 

orthomosaic image 31 times. These data are given in Appendix A, Table A1.  

The results of the calculated differences between actual (hand) and predicted 

(UAV) measurements of the landing pad diameter are summarized in Table 2.4. This 

included the mean error (Equation 2.4), standard deviation, 95% CI (Equation 2.5), and 

percent error (Equation 2.6). 
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Table 0.4 Comparison of UAV landing pad diameter measurements.  

  Hand  Software 

n =  9 31 

Mean Pad Diameter (cm) 74.5 74.6 

Standard Deviation, s (cm) 0.111 1.120 
t 0.025, (n-1) 2.306 2.042 

Standard error (cm) 0.037 0.201 

95% Confidence Interval (cm)  ± 0.085 ± 0.412 

  

The round pad was hand-measured 9 times in the field. The relatively small 

number of control trials was due to a low uncertainty associated with the simple hand 

measurements. The average hand measurement in the field was 74.5 cm with a standard 

deviation of 0.111 cm. The field measurements had a 95% confidence interval of ± 0.085 

cm (74.42 cm, 74.59 cm). The landing pad diameter was measured within the computer 

software orthomosaic image 31 times, which was reflective of the number of flight trials. 

The average software pad diameter measurement was 74.62 cm with a standard deviation 

of 1.120 cm. The software model had a 95% confidence interval of ± 0.412 cm (74.21 

cm, 75.03 cm). The computed difference between the means was 0.16 cm, or 0.15%. The 

results show that there was no significant difference between mean pad diameter of 

physical pad and software pad at the 95% level (Steele and Torrie, 1997).   

Poultry House Building Length and Width Measurements  

Poultry house building length (L) and width (W) were each measured with plan 

dimensions obtained from the grower for 31 buildings, once at each farm.  This was 

reflective of the number of flight trials. length (Li) and width (Wi) were also measured 

within the UAV-derived orthomosaic image 31 times, and adjusted to account for rooftop 

overhand. These data are recorded in Appendix A. The building width measurements are 
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recorded in Table A2, and the length measurements are given in Table A3. A regression 

analysis of the horizontal building dimensions between blueprint dimensions and adjusted 

software measurements was done. The results of these measurement data plotted relative 

to each other are given in Figure 2.8.  

 

Figure 2.8 Regression of building length and width measurements between building 

plan dimensions and UAV software measurements (n=62).  
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The relationship between the 62 UAV measurements and blueprint dimensions 

had a linear trend line with a slope of 1.0069. This meant the UAV imagery overpredicts 

the building dimensions by 0.69%, on average.  

The results of the calculated differences between the actual measurements 

(blueprint) and predicted measurements (UAV) for building length and width dimensions 

were summarized in Table 2.5. This included the mean error (Equation 2.4), standard 

deviation, 95% CI (Equation 2.5) , and percent error (Equation 2.6). Additionally, an F-

test was performed on the length and width error variances, and it was determined that 

they were significantly different at the 95% level (the F statistic was 1.61, and the 

calculated F value was 12.523). Thus, the error measurements were kept separate and not 

pooled in the summary table. The deviation in poultry house building length was denoted 

as L and deviation in poultry house building width was denoted as W. 

 

Table 0.5 Measured error of building length and width between UAV and plan 

dimensions. 

  𝚫𝐖 𝚫𝐋 

n=  31 31 

mean error (m) 0.0468 1.6621 

standard deviation (m) 0.3679 1.3021 

variance (m) 0.1354 1.6954 

std error of the mean (m) 0.0661 0.2339 

t, .025, 30 2.042 2.042 

95% CI (m) ± 0.135 ± 0.478 

Blueprint grand mean (m) 14.7681 151.5643 

UAV grand mean (m) 14.7213 149.9022 

mean percent error (%) 0.32 1.09 

 

The mean error for building width measurements was 0.0468 ± 0.135 m. Building 

widths could accurately be measured in the digital orthomosaic to within 0.32%. The 
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mean error for building length measurements was 1.6621 ± 0.478 m. Building lengths 

could accurately be measured in the digital orthomosaic to within 1.09%. Both of the 

measurement error’s confidence intervals encompassed zero, meaning UAV 

measurement error was not significantly different from zero at the 95% level.  

Poultry House Building Height Measurements  

Poultry house building height measurements were taken in the field at 38 

instances. These same building dimensions were taken in the UAV derived DSM at 38 

instances for paired comparisons. Poultry building sidewall, side entrance, and peak 

height measurements ranged from 1.86 meters to 5.61 meters. These data were recorded 

in Appendix A, Table A4. The results of a regression analysis of the building height hand 

and software measurements are given in Figure 2.9. 
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Figure 2.9 Regression analysis results between hand and software measurements of 

poultry house building side wall, peak, and side entrance heights (R2 = 0.99; n=38).  
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Table 0.6 Measured error of building heights between UAV and hand 

measurements.  

  𝚫𝐇 

n  38 

mean error (m) 0.0617 

standard deviation (m) 0.1338 

variance (m) 0.0179 

Standard error of the mean (m) 0.0217 

t, .025, 37 2.026 

95% CI (m): 0.0440 

Hand measured grand mean (m) 3.395 

UAV grand mean (m) 3.334 

mean percent error: 1.82 

 

The mean error between the hand and software measured values was 0.062 

meters. The standard deviation of the software building height measurements was 0.1338 

meters. The software model measurements had a 95% confidence interval of ± 0.0440 

meters. A sensitivity analysis was done on the number of trials. A higher number of trials 

did not return a significantly lower t value.  

Poultry House Rooftop Slope 

Rooftop slope was examined for visited farms using the measured building width 

and height information as a ratio of height to width using equation 2.3. Of the 139 poultry 

houses visited in the study area only three houses had a 4:12 slope or 18.4⁰. All other 

houses had a 5:12 slope or 22.6⁰. In light of this 98% majority, it was determined that the 

assumed slope for all houses in the study area would be 5:12.  

Measured Error from Satellite Imagery 

The analysis of measurement differences from satellite imagery and blueprint 

dimensions in the horizontal plane are given in the following section. The difference 
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analysis was done on the discrepancy between actual building blue print dimensions and 

software measurement predictions of poultry house building length and width 

dimensions.  

 

Building Length and Width Measurements 

The 31 farms visited had a total 139 buildings. Building length and width 

measurements were each taken for each in Google Maps (Google, 2019). Width 

measurements ranged from approximately 12 m to 20 m, and length measurements 

ranged from approximately 115 meters to 188 m. These same measurements were 

compared with building blueprint dimensions provided by the grower for paired 

comparisons. These data were recorded in Appendix A. The building width 

measurements were recorded in Table A5, and the length measurements were given in 

Table A6. The results of a regression analysis of the building lengths and widths between 

satellite imagery and blueprints are given in Figure 2.10.  
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Figure 2.10 Regression analysis results between blueprint and software poultry 

house building length measurements from satellite imagery (n=278).  

 

The relationship between the 278 satellite measurements and blueprint 

measurements had a linear trend line with a slope of 0.9964. This meant that the satellite 

imagery underpredicted the building footprints by -0.36%, on average.  

The results of the differences between the actual (blueprint) and measured 

(satellite) measurements for building length and width dimensions were summarized in 

Table 2.7. This included the mean error (Equation 2.4), standard deviation, 95% CI 

(Equation 2.5), and percent error (Equation 2.6). An F test was performed on the length 

and width error variances, and it was determined that they were significantly different at 

the 95% level (the F statistic was 1.35, and the calculated F value was 12.0434). Thus, 
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error measurements were kept separate and not pooled in the summary table. The 

deviation in poultry house building length was denoted as L. The deviation in poultry 

house building width was denoted as W. 

Table 0.7 Building length and width measured error between satellite and 

blueprints. 

  ΔW ΔL 

n=  139 139 

mean error (m) -0.44 -0.46 

standard deviation (m) 0.8151 2.8286 

variance (m) 0.6643 8.2114 

std error (m) 0.0691 0.2399 

t, .025, 120 1.984 2.042 

95% CI (m) ± 0.1372 ± 0.4899 

Blueprint grand mean (m) 15.62 150.18 

Satellite grand mean (m) 16.06 150.63 

average percent error (%) -2.83 -0.30 

 

The mean error between the blueprint width measurements and the satellite width 

measurements was -0.44 ± 0.1372 m. The satellite imagery could accurately predict 

building blueprint widths to within 2.83%. The mean error between the blueprint length 

measurements and the satellite length measurements was -0.46 ± 0.4899 m. The satellite 

imagery could accurately predict building blueprint lengths to within 0.30%. 

Summary of Measured Error Results  

The results of the statistical analysis of measured error, given in methods, are 

provided in Table 2.8. The deviation in poultry house width, length, and wall height were 

denoted with symbols L, W, and H respectively.  

 

 



 38 

Table 2.8 Summary of Method Results. 

 UAV  Satellite 

 ΔW ΔL ΔH ΔW ΔL 

n =  31 31 38 139 139 

Mean error (m) 0.047 1.662 0.062 -0.443 -0.457 

95% CI (m) ± 0.135 ± 0.478 ± 0.044 ± 0.1372 ± 0.4899 

  

 

The mean error in building width measurements between the blueprint 

measurements and UAV measurements was 0.0468 ± 0.135 m (-0.09, 0.18). The mean 

error between the blueprint width measurements and the satellite width measurements 

was -0.443 ± 0.137 m (-0.58, -0.31). The UAV was more accurate on average for width 

predictions with a smaller average error. Additionally, the average satellite measurement 

error is below the confidence interval of the UAV measurements. The confidence 

intervals for the estimation of the mean do not overlap, meaning the measurement 

predictions were not in agreement. Lastly, the UAV confidence interval encompassed 

zero, meaning that there was no significant difference at the 95% level.   

The mean error between the blueprint length measurements and the satellite 

length measurements was -0.457 ± 0.4899 m (-0.95, 0.03). The mean error for building 

length measurements between the building blueprints and UAV measurements was 

1.6621 ± 0.478 m (1.18, 2.14). The satellite was more accurate on average for length 

predictions with a smaller average error. Additionally, the average satellite measurement 

error is below the confidence interval of the UAV measurements. The confidence 

intervals for the estimation of the mean do not overlap, meaning the measurement 
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predictions were not in agreement. Additionally, the satellite imagery confidence interval 

encompassed zero, meaning that there was no significant difference at the 95% level.   

The rectangular dimensions of the buildings had an average length 10x larger than 

building width. The UAV operated at a significantly lower altitude than the satellite. This 

resulted in reduced field of view for the digital camera, and therefore an increased picture 

frequency. While building widths were typically captured in 1 to 3 photos by the UAV, 

building lengths required 10 to 15 pictures. If this were expressed as a ratio of image 

count required to capture building length-to-width, the UAV altitude would dictate a 

result of 10:1. In contrast, the satellite likely captured an entire building, if not an entire 

farm, in a single image frame. This would be a length-to-width ratio of 1:1. The increased 

quantity of photos needed by the UAV remote sensing would explain its larger average 

error in building length predictions. This lower ratio of images per building dimension 

may also explain the higher uniformity of error between building length and width 

measurements from satellite images.  

 

DISCUSSION 

 

This research sought to determine if using consumer-grade UAV’s and 

photogrammetric SfM could create accurate DSM and orthomosaics of a study area, at 

efficient use of economic and temporal resources and without the use of survey grade 

equipment or GCPs. The software outputs were exceptionally high quality and can be 

used for further mapping and analysis. The results proved that consumer grade UAV 

technology can be used for the accurate collection of current geospatial data with typical 
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flight path parameters. This methodology established a balance between more 

economically expensive LiDAR collection methods, lower resolution satellite imagery, as 

well more time extensive field measurements by hand. Data could be collected and 

prepared quickly by a single individual. Most data collection, photogrammetric and 

geospatial processes also had the potential to be automated to increase efficacy and 

resource allocation further. Even the use of a flight path employing vertical image capture 

(verse oblique) did not compromise the quality of the model’s vertical accuracy. These 

results could further be used for spatial mapping and analysis. 

Two limitations within the experiment were found while remotely collecting data. 

The weather conditions were not always optimal for UAV operation. Occasionally winds 

in excess of 9 m/s made data collection impossible. Additionally, the Pix4D flight 

mapper application required mobile cell service to load background maps, or that the 

operator prepare digitally cached maps of the flight area over a WiFi network in advance. 

In several instances, maps could not successfully be loaded in the field due to poor 

cellular reception in the rural areas.  

The accuracy of the GIS data results were highly sensitive to specific parameters 

employed during both the remote sensing data collection and the photogrammetry 

processes. Variation in UAV flight path or photogrammetric tie point limit could 

significantly impact the final reconstructed output.  
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CONCLUSIONS 

 

(1) A UAV captured 8,043 images at 139 poultry houses in Anderson and Oconee 

Counties to produce GIS data for solar energy applications, and (2) photogrammetric 

processing produced dense point clouds of each flight location for a total of 

1,626,284,298 points. Orthophotos of the study areas were generated from the acquired 

3D image sequences using Structure from Motion (SfM) techniques. (3) The actual 

building widths and lengths ranged from 10.8 to 184.0 m and the measurement error 

within the UAV-derived orthophotos was 0.69% on average. Building width measured 

error was 0.047 ± 0.13 m, or 0.32% mean error. Building lengths had a mean error of 

1.66 ± 0.48 m and 1.1% mean error. The actual building sidewall, side entrance, and peak 

heights ranged from 1.9 to 5.6 m and the measured error within the orthophotos was 

1.69% on average. Building heights had a mean error of 0.06 ±.04 m or 1.2% mean error. 

The higher vertical error was expected with the given flight parameters (non-oblique 

imagery), which was more suited for horizontal accuracy. (4) In contrast, satellite-derived 

orthomosaic images of the same building widths and lengths had a measurement error of 

-0.36%. Building lengths had a mean error of -0.46 ± 0.49 m or -0.30% mean error. 

Building widths had a mean error of -0.44 ± 0.14 m and -2.83% mean error. 

The results proved that using consumer-grade UAV’s and photogrammetric SfM 

could create accurate DSM and orthomosaics of a study area at efficient use of economic 

and temporal resources without the use of survey grade equipment or GCPs. When 

compared to the horizontal accuracy of readily available satellite imagery, the results 

were mixed. The satellite-derived orthomosaic was more accurate on average for length 



 42 

predictions with a smaller average error. However, the UAV-derived orthomosaic images 

were more accurate for average width predictions. 

The the disparity in horizontal measurement accuracy between the compared 

remote sensing techniques was likely due to flight altitude and building shape. The 

rectangular building dimensions had an average length-to-width ratio of 10:1. The lower 

flight altitude of the UAV required 10 to 15 pictures to capture building lengths, and only 

1 to 3 photos for building widths. In contrast, the satellite field of view likely captured an 

entire building, if not an entire farm, in a single image frame. This would result in less 

stitching error in remodeling building length and may also explain the higher uniformity 

of error between building length and width measurements from satellite images.  

The satellite imagery had low cost and ease of access that allowed a convenient 

determination of structural orientation and planimetric dimensions. However, the UAV 

provided dependably current data, whereas the temporal accuracy of satellite imagery 

data was highly variable (sometimes ±12 months). The UAV-derived data was also 

useful for determining vertical dimensions, and therefore variables such as surface slope 

and aspect. Lastly, the UAV-derived data was more useful for absolute accuracy to 

establish true object positions in a geodetic coordinate system. This would be critical for 

analysis of spatial distribution or combining data with GIS data layers from other sources. 

With an average flight time of 13.5 minutes per farm area (2.5 ha), and an average GSD 

of 4.84 cm/pi, the results obtained from a relatively inexpensive UAV mounted camera 

and image analysis demonstrated sufficient accuracy for planning and monitoring 

purposes in agricultural applications.  
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CHAPTER THREE 

 

POTENTIAL OF BROILER ROOFTOP PHOTOVOLTAICS AS DISTRIBUTED 

PEAK-SHAVING PLANTS FOR SUPPLY SIDE LOAD MANAGEMENT 

 

 

Abstract 

 

The primary challenge faced by energy suppliers is forecasting and supplying 

hourly peak demand. Generating supply at peak demand and efficiently distributing to 

remote customers are vital supply-side load management practices for controlling 

supplier cost. This research sought to determine if poultry farms could function as rurally 

distributed, peak-demand photovoltaic (PV) power plants to sparsely populated areas. 

Unmanned Aerial Vehicles (UAV) and satellite imagery were used to examine 88 poultry 

farms. The typical farm consisted of four poultry houses, each 15.2 meters by 152.4 

meters, oriented East/West, with a rooftop slope of 22.6º and a suitable rooftop area of 

1,254 m2.  The average rooftop supply of all farms was calculated and grouped into key 

supply categories of seasonal peak, shoulder, base, and energy. The average supply from 

a farm of typical size was 496 kW/hr during peak periods, 279 kW/hr during summer 

shoulder periods, and a contribution to base load of 425 kW/hr during summer months. 

The average rooftop supply estimated for all 88 farms was 59.2 MW/h during summer 

peak, a contribution to summer base load of 47.0  mW/hr, and total annual energy supply 

of 127.3 GWh/yr. Calculations of facility demand and energy use were in the range of 

10-20% of  gross hourly rooftop supply across time categories. This resulted in a net peak 

demand reduction potential of 51.6 MW/h (83%), and an annual net supply of 109.4 

GWh (86%) to the grid. In light of distribution costs, the twenty-seven farms located 
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further than 3.28 km from existing transmission lines proved the most valuable in peak 

demand reduction and distributing energy to rural areas. Results suggest a promising 

potential for distributed PV adoption for peak-shaving.  

 

INTRODUCTION 

 

Energy suppliers face many challenges in current energy markets. A primary 

challenge for energy suppliers is the uneven demand for electricity throughout the day. 

This variation is categorized into a higher ‘peak load’, transitional ‘shoulder’ period, and 

lower ‘base load’ for a given region of customers (Kostková et al, 2012).  Base load is the 

average expected demand, while shoulder and peak load generally refers to the daily 

fluctuation between baseload and peak electric demand. Weather heavily influences 

consumer demand depending on cooling loads in summer and heating needs of a region 

in winter. Summer peak loads are predominantly controlled by cooling provided by air 

conditioning in residential and commercial buildings and ventilation of agricultural 

production facilities. Winter peak loads are predominantly heating equipment such as 

heat pumps, furnace fans, strip heat in commercial and residential buildings whereas 

furnace fans, minimum ventilation fans, lighting and heat lamps in swine nurseries are 

used in agricultural buildings. Peak demands are higher in summer than winter for all 

utilities in the Southeastern US. The variation in electrical demand (MW) data when 

graphed over time is known as a demand curve. Electrical demand curves for the longest 

and shortest day of the year in 2018 and 2019 for a major investor owned utility, SC 

Duke Energy Progress (DEP), were selected to illustrate common variation between 
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summer and winter. This data was obtained from the Energy Information Administration 

(EIA). The system demand curves for these two days, along with the hours of the day that 

are defined as base, shoulder, and peak are provided in Figure 3.1.  
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 (a) Winter Demand Curve (December 21st 2018) 

 
 (b) Summer Demand Curve (June 21st 2019) 

 

 

Figure 0.1 (a) Winter solstice and (b) summer solstice demand curves (US EIA, 

2019) and time-of-use categories (DEP, 2019). 
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 Electric utilities must meet fluctuating customer demand each day. Most utilities 

divide the year into winter and summer demand seasons to match the seasonal shifts in 

demand periods. The six-month winter season for DEP began in October and lasted until 

the end of March. The summer demand season began April 1st and continued until 

September 30th. Figure 3.1 (a) illustrates the recorded hourly demand for DEP on 

December 21st, 2018. Base time of use category was between the hours of 0:00 and 5:00, 

12:00 to 17:00, and 20:00 through 0:00. The average hourly base load for those hours 

was 9,656 MW with a minimum of 9,287 MW at 3:00 and a maximum of 12,698 MW at 

hour 20:00. Peak load times occurred between 6:00 and 9:00. The average hourly 

maximum load was 10,802 MW with a minimum of 10,000 at 6:00 and a maximum of 

11,481 at 8:00. Shoulder period was between 9:00 and 12:00, and 17:00 through 18:00. 

The average hourly shoulder load was 12,072 MW with a minimum of 11,615 MW at 

hour 9:00 and 12,755 MW at hour 19:00. The data reflected a discrepancy between when 

demand was expected to peak (6:00 to 9:00) and when demand actually peaked (18:00 to 

20:00). This discrepancy was likely due to atypical lower temperatures and demonstrates 

the challenge suppliers face in accurately forecasting hourly demand.  

Figure 3.1 (b) shows the recorded hourly demand on June 21st, 2019 for the same 

utility (DEP). The time of use categories for each hour varied between the summer and 

winter seasons. The summer base category was between 0:00 and 11:00, and 20:00 

through 23:00. The average hourly base load was 11,015 MW ranging from 9,736 at 5:00 

to 14,438 MW at 20:00.  The average base load for the summer data was 1,359 MW 

higher than the average recorded base load for the winter data. The summer shoulder 
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period was from 11:00 to 13:00, and 18:00 to 20:00. The average hourly shoulder load 

was 15,497 MW. Peak hours were between 13:00 and 18:00. The average hourly peak 

load was 16,097 MW ranging from 15,008 MW at 13:00 to 17,043 MW at 17:00. The 

average peak load for the summer data was 5,295 MW higher than the average recorded 

peak load for the winter data.  

Accurately forecasting hourly peak demand has critical economic impact for an 

electric supplier (DEC, 2017). Small capacity power plants known as peaking plants are 

typically used to meet variable demand during peak and shoulder periods. Effort to 

supply electrical power during times of peak demand is referred to as peak-shaving. This 

additional peaking infrastructure creates additional cost for suppliers.  

Various fuel sources have been used for electric power generation depending on 

economic and temporal characteristics (Raymond, 2009). The levelized cost of energy 

(LCOE) has been used to compare electric generation technologies. The levelized costs 

include the cost to build, finance, operate, and maintain the infrastructure. A summary of 

levelized costs by fuel type for the US in 2018 are given in Table 3.1.  
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Table 0.1 Average levelized cost of electricity (LCOE) in the USA by generation 

resource.  

Plant Type 

Average for 

existing electric 

plants ($/kWh)1 

Average projected 

for plants not built 

($/kWh) 

Average levelized 

transmission cost 

($/kWh)2 

Range of 

distribution cost 

($/kWh)3 

Coal4 0.040 0.0701 0.0011 0.0026 - 0.0043 

Gas, combined cycle 0.035 0.040 - 0.0452 0.0011 0.0026 - 0.0043 

Gas, combustion turbine  0.087 0.075 - 0.0862 0.0032 0.0026 - 0.0043 

Nuclear 0.032 0.0772 0.0010 0.0026 - 0.0043 

Geothermal - 0.0402 0.0014 0.0026 - 0.0043 

Biomass - 0.0912 0.0012 0.0026 - 0.0043 

Hydroelectric 0.037 0.0382 0.0016 0.0026 - 0.0043 

Wind, onshore - 0.0532 0.0025 0.0026 - 0.0043 

Solar Photovoltaic - 0.062 - 0.091 0.0034 0.0026 - 0.0043 

Wind, offshore - 0.091 - 0.132 0.0023 0.0026 - 0.0043 

1Derived from the Institute of Energy Research (Stacy et al, 2018).  

2Derived from Annual Energy Outlook, 2019 by U.S. Energy Information Administration (US EIA, 2019).   

3Derived from Electricity Distribution System baseline Report for US Department of Energy (Warwick, et 

al, 2016).  

4Assumes plant technologies that satisfy current CO2 emission standards under NSPS, Section 111(b) of 

Clean Air Act (EPA, 2015). 

 

Resources used for generating electricity were ranked by traditional use and 

expressed in USD/kWh. The most common resources were coal, natural gas, and nuclear 

due to lower generation costs. Renewable energy has been viewed as an attractive 

alternative to fossil fuels due to significantly lower fuel costs (Klaić et al, 2015). 

However, LCOE calculations demonstrate that inclusion of capital cost required to 

harvest renewable resources outweighed operating savings, thus rendering renewable 

energy generally more expensive per kWh (Warwick et al, 2016). Existing LCOE values 

for geothermal, biomass, wind, and solar fuels were not available from DOE, EIA, 

FERC, or IER databases. The generation costs distinguished existing and unbuilt plants to 

account for the additional expense to permit, build and operate new plants.  
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Another challenge for energy suppliers was transporting the energy between 

power plants and consumers.  

Distribution infrastructure had investment and maintenance expenses, and 

reportedly increased from thirty-two billion dollars in 1997 to fifty billion dollars in 2017 

(US EIA, 2018). Despite this significant expenditure, the American Society of Civil 

Engineers stated in a 2017 infrastructure report card that the existing U.S. infrastructure 

consisted of complex, inflexible networks that are overdue for maintenance and upgrades 

(ASCE, 2019). Electricity was also lost over distance traveled via resistance voltage 

losses and amperage conversions with transformers. The U.S. EIA estimated that average 

annual line losses nationwide due to transmission and distribution (T&D) between 2013 

and 2017 were 5% of total generation in urban areas and 6% in rural areas (US EIA, 

2019). Rural environments had lower population density and were farther removed from 

centralized electric generation plants, resulting in greater line losses than urban suppliers.  

Generating supply at peak demand and efficiently distributing to customers that are far 

from main transmission lines are vital supply-side load management practices for 

controlling supplier cost.   

Each energy customer had a unique cost to supply as a function of their location, 

time of use, rate of use (demand, kW), and total amount used (energy, kWh). Ranges of 

typical energy rates from three investor owned utilities and three rural electric 

cooperatives within SC were obtained. The energy rates for the investor owned utilities 

are compared in Table 3.2. 
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Major customer categories included residential, agricultural, and industrial. 

Energy price was a combination of supply infrastructure, peak demand, and energy 

charges. Meeting peak demand was often the majority component of determining electric 

prices. For example, peak energy prices were three times higher than base energy prices 

for residential and agriculture customers. Industrial customers had a high facility charge 

due to T&D infrastructure needed to supply high demand and high energy use, and in 

three-phase. Energy rates from rural cooperatives within SC are given in Table 3.3.  

 

 

Table 0.2 Range of electricity rates for investor owned utility companies in South 

Carolina.  

 Residential and  

small agricultural1,2 

 
Irrigation2 

 Industrial and  

large agricultural2,3 

I. Service Charge ($/month)     

Non-seasonal:  9 – 13  9 – 23  25 - 1875 

II. Energy Charge ($/kWh) 

Non-seasonal: 0.09  N/A  0.04 

Time of Day Use      

Summer peak: 0.08 - 0.27  0.22  0.08 

Summer off peak: 0.07 - 0.09  0.07  0.04 

Winter peak: 0.08 - 0.25  0.13  0.05 

Winter off peak: 0.07 - 0.09  0.07  0.04 

Quantity of Use     

0 to 1,000 (kWh): 0.11  0.12  0.12 

 1,000 to 3,000 (kWh): 0.12  0.13  0.12 

> 3,000 (kWh): 0.12  0.13  0.05 

III. Demand Charge ($/kW)     

Non-seasonal: N/A  N/A  4.74 - 14.6 

Summer: 10.5  N/A  17.7 - 21.2 

Winter: 7.5  N/A  4.68 - 5.28 
1 Duke Energy (DEP, 2019) 

2 South Carolina Electric and Gas (SCEG, 2019) 

3 Lockehearte Power (Lockeheart Power, 2019) 
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Table 0.3 Range of electricity rates for rural electric cooperatives in South 

Carolina.  

 Residential and  

small agricultural1,2 

 
Irrigation2 

 Industrial and  

large agricultural2,3 

I. Facility Charge ($/mo)  18 - 30  9 - 13  45 - 13,900 

II. Energy Charge ($/kWh)  

Non-seasonal: N/A  N/A   0.06 

Time of Day Use        

Summer peak: 0.14 - 0.24  0.20  0.27 

Summer off peak: 0.06  0.07  0.06 

Winter peak: 0.12 - 0.20  N/A   0.27 

Winter off peak: 0.06  N/A   0.06 

Quantity of Use  

0 to 500 (kWh): 0.14  0.14  0.05 - 0.07 

 500 to 1,000 (kWh): 0.13  0.13  0.06 

> 1,000 (kWh): 0.12  N/A  0.04 – 0.05 

III. Demand Charge ($/kW)     

Non-seasonal: N/A  N/A  N/A 

Summer: 10.5  N/A  6.5 

Winter: 7.5  N/A  N/A 

1 Lynches River Electric Cooperative (US EIA, 2019) 

2 Berkeley Electric Cooperative (BEC, 2019) 

3 Aiken Electric Cooperative (AEC, 2019) 

 

These electric rates were selected from cooperatives that represented the range of 

rate schedules across the state. Rural cooperatives charged residential customers a facility 

charge that was twice as large as investor owned. Industrial customers had a peak 

demand charge three times larger than industrial customers in a municipal setting. High 

use rural industrial customers had an exceptional monthly facility charge of $13,900, 

which was over 1000 times greater than other customer categories. This was due to the 

infrastructure needed to supply high use customers. Rural customer classes all have more 

specific quantity categories for energy price compared to investor owned.  

As of 2019, the largest agricultural commodity in South Carolina was the poultry 

industry (USDA, 2019). Poultry production is dependent on climate-controlled buildings 

that required large ventilation loads. Energy use data taken from seven SC broiler farms 
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between 2003 and 2007 demonstrated an average annual electrical use of 2,504 kWh per 

100m2/yr, with a range of 1,714 to 3,598 kWh per 100m2/yr (Chastain, 2016). The typical 

broiler house with a floor area of 2,322 m2 required approximately 45,072 kWh/yr 

(Chastain, 2016). Furthermore, electricity, on average, was over 50% of the annual 

energy cost (Chastain, 2016) which included the use of LPG or natural gas in the winter 

season.  

The goal of this project was to examine the potential for using roof-mounted 

photovoltaic (PV) panels on poultry farms to serve as distributed peak-shaving  power 

plants in a costly to serve rural area. The typical broiler house roof tilt, size, orientation, 

quantity and available sun all support the harvest of solar insolation. An aerial image of 

three farms in the study area is given in Figure 3.2. 

 

Figure 0.2 Three poultry farms in study area, one with a partial PV installation.  
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Poultry farms are usually located in rural areas with a low population density far 

from centralized electric power production, and in some cases are remote from main 

transmission lines. Poultry farms are also typically spatially confined to approximately an 

80 km radius from their contracted integrator company. As can be plainly seen in Figure 

3.2, broiler farms are cleared of vegetation, making them ideal for PV relative to most 

residential and urban buildings. Additionally, the National Poultry Technology Center 

concluded that the size and weight of rooftop PV posed no threat to the structural 

integrity of a poultry house (Dennis et al, 2016). 

For energy suppliers the challenge of peak demand was caused by solar energy. 

As solar energy increased for a given region, so did ambient temperature, and so did air 

conditioning demands in response. Solar irradiance was also the fuel for electricity 

generation by a PV installation. The additional solar gain produced additional PV electric 

output almost directly coincided with increased electric loads for climate control. With 

PV technology the potential exists for solar irradiance may contribute to the problem and 

solution. Furthermore, an important facet of power supply was managing fuel input to the 

generating equipment. In the case of PV plants, the increase of solar energy throughout a 

given day is independent of human oversight. This would function as automated fuel 

management for a PV peaking-plant.  Other potential benefits of an energy supplier using 

rural poultry house PV include utilization of pre-existing land and distribution costs, as 

well as in house resources for electricians and permitting. A mutually beneficial 

partnership between the utility and their agricultural customers would even allow greater 
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flexibility in initial project scope and assist in accelerating economic development for the 

surrounding territory.  

The objectives of this study were to (1) determine the electrical energy use for 

individual poultry houses in a broiler producing area in South Carolina, and (2) examine 

the potential of using buildings on groups of poultry farms as peak shaving power plants 

in a rural area. 

 

METHODS 

 

The study area was Oconee and Anderson counties in the northwestern 

Appalachian region of South Carolina. There were 88 poultry farms. An address list of 

permitted poultry growers in the study area was obtained from the South Carolina’s 

Confined Animal Manure Managers program (Smith, 2017). This address list was 

validated by satellite imagery using Google Earth. A map of the study area and locations 

of these poultry farms are provided in Figure 3.3.   
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   (a)        (b)   

 

Figure 0.1 (a) The geographical location of South Carolina in the southeastern 

United States. (b) The georeferenced 88 poultry farms within Anderson and Oconee 

Counties (ESRI, 2019). 

 

 

 

  The building characteristics of interest were building length (L), width (W), 

sidewall height (Hs), peak height (Hp), roof slope, and roof azimuth. Data collection for 

these variables entailed a combination of remote sensing techniques validated by physical 

measurements as benchmarks. Measurement methodology is described in the subsequent 

sections for each of these variables.  
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Poultry Building Data Collection from Farm Visits 

Information used from the methods and results section in Chapter II was used for 

this study. Thirty-one farms were visited in the study area, which constituted 139 houses 

and 35% of the population.  

Building Length and Width Dimensions 

The grower provided building length and width measurements for the 31 farms 

visited from building blueprints, accurate to 0.312 cm. A UAV was also used to collect 

aerial images of the farm buildings at each site. A DJI Mavic Pro UAV with an onboard 

4K digital camera flew a double-grid flight pattern at 69 m altitude using 80% and 70% 

image overlap. The UAV landing pad was used in each flight to ensure horizontal 

accuracy and precision of the digital data. Structure-from-motion (SfM) processing was 

done on aerial images to reconstruct orthomosaic images of the farms.  

Building width and length measurements were done on a single building at each 

of the 31 visited farms. The building footprint cannot be seen from above due to roof 

overhang. The building rooftop lengths (Li) and widths (Wi) were measured using the 

Ruler tool (Agisoft, 2019) on each farm’s orthomosaic image. To account for overhang, 

an estimated known value was subtracted from the overall building roof lengths (Li) and 

widths (Wi). This method was done using Equations 2.1 and 2.2 from Chapter II. The 

extent of sidewall overhang was 0.4572 m on each side of the building. The extend of end 

wall overhang was 0.3048 m on each end. A total of 0.9144 m was subtracted from the 

overall building roof width (Wi) and a total of 0.6096 m was subtracted from the overall 
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building roof length (Li) dimensions. This allowed the measurement of building footprint 

dimensions in satellite imagery despite visual interference from rooftops.  

The UAV imagery overpredicted the building dimensions by 0.69%, on average. 

The coefficient of determination was 0.9998, meaning that 99.98% of the sample 

variation in blueprint measurements was explained by the UAV measurements using the 

given least squares line.  

The mean error for building width measurements was 0.0840 m with a standard 

deviation of 0.3035 and a 95% confidence interval of 0.111 m. The mean error for 

building length measurements was 1.6621 m with a standard deviation of 1.3021 and a 

95% confidence interval of 0.478 m. The UAV measurement error for horizontal building 

dimensions was not significantly different from zero at the 95% level.  

The poultry building lengths and widths were also measured using readily 

available satellite imagery provided by Google, Maxar Technologies, and US Geological 

Survey (Google, 2019). The building rooftop lengths (Li) and widths (Wi) were measured 

using the Measure Distance tool (Google, 2019) on satellite imagery. The satellite 

imagery underpredicted building footprints by -0.36% on average, with an R2 of 0.9991.  

Adjusted building width (W) and length (L) measurements from satellite imagery 

were compared to building blueprints. The mean error between the blueprint width 

measurements and the adjusted satellite width measurements was -0.44 m with a standard 

deviation of 0.8151 m and a 95% confidence interval of 0.1372 m. The mean error 

between blueprint length measurements and the satellite length measurements was -0.46 

m with a standard deviation of 2.8286 m and a 95% confidence interval of 0.4899 m.  
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Building Orientation and Rooftop Azimuth  

Azimuth (aspect) is defined as a slope’s downward facing direction. It is 

measured clockwise in degrees from 0 (due north) to 360 (also due north) in a complete 

circle. The azimuth class for each visited poultry building rooftop was determined for 

solar energy calculations. Every poultry building had an identical roof structure of open 

gable. This means the roof area of each building consisted of two planes of equal area 

that sloped symmetrically away from a central ridge. The rooftop ridgeline was oriented 

parallel to the length of the building. The roof azimuth of each plane was oriented 

perpendicular to the length of the building orientation. The relationship between rooftop 

azimuth direction and building orientation can be seen in Table 3.4.  

 

Every cardinal direction class constitutes 45 degrees e.g. a rooftop plane with an 

azimuth between 157.5 and 227.5 was classified as “South”. Azimuth was determined 

for farms visited using the GIS data produced from UAV images. This was done with the 

Aspect surface tool on each farm’s DSM in ArcGIS Pro (ESRI, 2019). Each individual 

surface unit (0.15 meters) of the DSM was assigned an aspect class. Some roof area was 

excluded based on orientation. All roof planes with an aspect class of NW, N, or NE 

(292.5˚- 67.5˚) were considered unsuitable for PV and excluded (Margolis et al, 2016).  

Table 0.1. Building rooftop azimuth and orientation classes.  

Range of Roof Azimuth (º) Rooftop Azimuth Class Building Orientation class 

157.5 to 202.5 South East-West (E/W) 

112.5 to 157.5 Southeast Northeast-Southwest (NE/SW) 

202.5 to 247.5 Southwest Northwest-Southeast (NW/SE) 

247.5 to 292.5 West North-South (N/S) 

67.5 to 112.5 East North-South (N/S) 
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Building Rooftop Slope 

Rooftop slope was calculated for visited farms using recorded building width and 

height information. Building peak heights and sidewall heights were recorded at farm 

visits. These building heights were measured with a tape measurer (accurate to 0.16 cm) 

from the concrete base to just under the building eave. It was determined that only three 

houses out of the 139 houses visited in the study area had a 4:12 slope, or 18.4⁰. All other 

houses had a 5:12 slope, or 22.6⁰. In light of this 98% majority, it was determined that the 

assumed slope for all houses in the study area would be 5:12.  

The known roof slope was then used with the known building footprints to 

determine building rooftop area. This was done using the geometry equation for the 

hypotenuse of a triangle. Given a slope of 22.6⁰ the amount of existing rooftop area (m2) 

was determined to be 1.083 times that of building footprint area (m2).  

Global Solar Irradiance Availability by Slope 

To determine the optimal slope for a PV rooftop array, a preliminary sensitivity 

analysis was done to compare irradiance in the study area on surfaces of different slopes. 

This would decide if brackets should be used to mount the PV panels at a specified slope 

other than the existing slope of the building rooftop. The existing rooftop slopes was 

22.6. In the literature review, some researchers made the case that the strongest 

relationship existed specifically between optimal PV panel slope and the latitude of the 

study area. A slope equal to site latitude was 34.5. These two values were used to 

explore how slope affected irradiance. Measured global solar irradiance values were 
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taken from the National Solar Radiation Database (NSRDB) provided by the National 

Oceanic and Atmospheric Association (NOAA). Data consisted of recorded direct, 

indirect, and global irradiance throughout a year over eight decades. Irradiance for the 

study on slopes of both angles were compared at each azimuth class. The results are 

given in Table 3.5.  

 

 Table 0.2 Average annual solar irradiance ( kWh/1000m2/day) by tilt for each 

azimuth class.  

Azimuth class and orientation 34.5o Slope 22.6o Slope 

East (90º) 4,370 4,580 

Southeast (135º) 5,130 5,140 

South (180º) 5,470 5,380 

Southwest (225º) 5,170 5,170 

West (270º) 4,410 4,610 

 

The measured solar irradiance on slopes of 22.6 degrees were higher than 

irradiance values on slopes of 34.5 degrees for every azimuth class except south. The 

total annual average irradiance of all classes for existing building rooftop slopes received 

1% more annual solar radiation than solar panels arrayed at a slope of 34.5. In light of 

this, the PV panel slope for the peak reduction analysis was maintained at the existing 

building rooftop slope for the study.  

Buildings oriented North and South (azimuth classes E/W) provided a unique 

opportunity compared to other building orientation classes. Although the annual average 

solar irradiance on slopes with azimuth classes East and West was less than slopes 

oriented south, these buildings had two planes sufficient for PV use. All other building 
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orientations only had one suitable rooftop plane per building, effectively half of its 

rooftop area. Therefore, these buildings could have PV installed on twice the available 

area relative to all other orientation classes in the study population.   

Poultry Building Data Collection from Satellite Imagery 

For the 55 poultry farms (267 houses, or 65% of population) in the study area that 

were not visited, satellite imagery was used to measure building length, width, number of 

houses per farm, and rooftop azimuth/building orientation. This imagery data was 

provided Google, Maxar Technologies, and US Geological Survey (Google, 2019).  

 

Building Length and Width Dimensions 

Building lengths and widths of farms not visited were examined similarly to the 

methods discussed previously and in Chapter II. The building rooftop lengths (Li) and 

widths (Wi) were measured using the Measure Distance tool (Google, 2019). Equations 

3.1 and 3.2 were used to adjust building width (W) and length (L) measurements for 

overhang.   

 

Determining Building Rooftop Area Available for PV 

Poultry building rooftops are exceptional relative to other facilities for PV 

installation. Therefore available roof area calculations were not limited by HVAC or 

other preexisting rooftop installations. The adjusted rooftop dimensions were used to 

estimate the available rooftop area, calculated as: 
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A = (S × W ÷ 2) x L.        (0.1) 

Where,  

A = available rooftop area for PV panel installation (m2), and 

S = Rooftop slope conversion factor (1.083). 

 

 The rooftop area was determined as a function of building footprint and roof 

slope. The area of available rooftop for PV installation was 1.083 multiplied by house 

width, then divided by two. This represents the width of a single rooftop plane, which is 

then multiplied by the length of the house. This method was applied to all houses in the 

study area. Buildings that were oriented North/South were not divided by 2, since they 

uniquely had two roof planes suitable for PV installation.  

 

 

Spatial Distribution of Houses 

The spatial distribution of the poultry houses was also analyzed. Farm centroid 

coordinates were compiled into ArcGIS Pro (ESRI, 2019) software for geospatial 

analysis. To consider distribution costs and line losses associated with energy generation, 

a proximity study consisted of a measure of distance between each poultry farm and the 

nearest transmission line. GIS data for the transmission lines was provided in the US 

Homeland Infrastructure Foundation Level Data library by the Department of Homeland 

Security (DoHS, 2019). The proximity study consisted of a measure of Euclidean 

distance between each poultry farm and the nearest transmission line using the Near tool 

in ArcGIS Pro (ESRI, 2019). 
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Building Orientation and Rooftop Azimuth  

The building orientation for farms not visited were examined in the satellite 

imagery. The rooftop ridgeline orientation was determined in the images. The roof 

azimuth of each plane was calculated as a perpendicular orientation from the building 

ridgeline. Every rooftop was assigned a rooftop azimuth and orientation using Table 3.4  

 

Shading  

As demonstrated in Figure 3.2, the lack of existing neighboring structures vastly  

decreased the potential for impeded solar energy. Solar illumination issues were dealt 

with on basis of exception. For the instances where solar energy obstruction was in 

question a study of seasonal illumination duration on building rooftops was done using a 

hillshade analysis (ESRI, 2019) expounded on in Appendix A. A total of three houses 

were deemed to be significantly shaded as to justify their exclusion from the analysis.  

Calculation of Electric Power Produced by Rooftop PV Arrays 

 

Suitable roof area measurements were converted to PV capacity and electrical 

generation for all 398 houses (the 139 houses visited as well as the 267 houses not 

visited) to produce sum PV production estimates for the study area.  

The amount of electricity an energy plant is capable of generating is referred to as 

its technical potential (Lopez et al, 2012). This common benchmark quantifies generation 

in light of fuel availability and quality, the performance of the technology harvesting the 

fuel, and the physical area suitable for installation. However, these methods operate 
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under a standardized operating assumption of solar energy measuring 1,000 W/m2 for 

solar energy installations. This can be helpful for performance comparisons yet also 

highly misleading. Technical potential for a generation facility’s technical potential 

essentially functions as a ceiling limit of a technology’s present potential generation, not 

a realistic prediction of expected development. The main objective for this study was to 

calculate actual electrical production based on real irradiance for the study area. 

Therefore the formula used to calculate the hourly electric power produced by a PV array 

installed on one slope of a poultry house roof was (PVSoftware, 2009): 

 

   E = (fC x A) x I x r x PR.                            (0.2) 

 
Where, 

E = Hourly electric power produced by a rooftop PV array (W/hrAC),   

fC = Ratio of solar cell area to available roof area,  

A = Available roof top area (m2), 

I = Hourly solar irradiance falling on PV array (W/m2/hr, global),  

r = panel efficiency, electrical power output (WDC/m2/hr) ÷ solar irradiance input (W/m2/hr), and 

PR = Performance ratio, coefficient that accounts for losses due to conversion from DC to AC 

power and other array performance losses. 

 

 Estimation of the Ratio of Solar Cell Area to Available Roof Area (fC)   

 

The dimensions of productive solar cell collector area were a fraction of the total 

PV installation footprint. An estimated ratio was calculated to accurately determine the 

total amount of SOLAR cell area per building and per farm, given in Table 3.6. 

 

 



 66 

Table 0.3 Estimation of the ratio of solar cell area to available roof area (fC) for a 

broiler building excluding roof overhangs. 

Building Characteristics  

Floor plan length (L, m) = 152.4 

Floor plan width (W, m) = 15.2 

Rooftop slope =  5/12 

Rooftop area (A) to mount PV panels (equation 3.3, m2) = 1254 

  

PV Panel Characteristics  

Panel length (m) =  1.0 

Panel length (m) =  1.65 

Area of a PV panel (m2) = 1.65 

Width of PV panel frame =  0.0254 

Solar cell area per panel (m2) = 1.599 x 0.949 = 1.52 

Total area allowed to mount a PV panel (1.70 m x 1.051 m) =  1.787 

Number of PV panels mounted on roof = (1254 m2 / 1.787 m2) = 702 

Total PV panel area = 702 x 1.65 m2 =  1158 

Total solar cell area = 702 x 1.52 m2 =  1067 

  

Ratio of solar cell area to roof area = fC = 1067 / 1254 =  0.85 

 

Typical PV panel dimensions readily available at the time of the study for the 

chosen efficiency were 1 m x 1.65 m (Brightstar, 2019). These panels had a 2.54 cm 

aluminum frame border and a 2.54 cm gap allotted for airflow between panels to manage 

equipment temperature. The collector area for a single panel was equal to 1.52 m2. The 

footprint for a single panel including gap space was 1.787 m2. Thus, a ratio of 0.85 was 

calculated to accurately reflect the productive solar cell collector area relative to available 

rooftop area for PV installation. This value of 0.85 was used for fC in equation 3.4 for all 

calculations. For a typical building size of 152.4 m (L) by 15.2 m (W) this equated to an 

area available for PV installation (A) of 1254 m2 and 702 panels. The typical roof was 

determined to have 1,067 square meters of productive solar cell area. For a farm of four 

houses, this equated to 4,268 square meters of cell area.  
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Solar Irradiance Data (I) 

The incoming solar energy was calculated using the Physical Solar Model 

(NOAA, 2017) which was the most recent version of the National Solar Radiation 

Database (NSRDB) at the time of the study. The United States National Centers for 

Environmental Information (NCEI) in collaboration with the Department of Energy’s 

National Renewable Energy Lab (NREL), the National Aeronautics and Space 

Administration (NASA), the Northeast Regional Climate Center, and several universities 

and companies collaborated to create the NSRDB. This specific database used a physics-

based modeling approach on historical solar and meteorological measurements taken 

from over 1,500 sites across North America at 0.5-hour intervals over 80 years to provide 

solar radiation data for the US at a 4 km2 grid. The total amount of irradiance data for a 

particular location or area was expressed as global irradiance (W/m2), which is the sum of 

direct and diffuse irradiance.  

The incoming solar energy from NOAA databases was spatially modeled on the 

UAV-derived digital data for farms visited using the solar radiation analysis tools within 

ArcGIS Pro (ESRI, 2019). This software calculated insolation across a landscape based 

on methods from the hemispherical viewshed algorithm (Rich et al, 1994) and (Fu and 

Rich, 2002). These methods accounted for atmospheric effects, site latitude and 

elevation, slope and aspect, daily and seasonal shifts of the sun geometry, and effects of 

shadows cast by surrounding topography. Solar analysis software parameters included 

slope and azimuth, latitude, solar path vectors, time configuration, and atmospheric 

assumptions. These inputs are given in Table 3.7.  
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Table 0.4 Area solar radiation (ESRI, 2019) inputs. 

Parameter USED 

General 

Input:  DSM raster 

Lat:  Auto calculate 

Sky size/resolution: 200 default 

Time configuration: Whole Year 

Year:  2019 

Hour interval:  1 

Topographic 

Z:  1 

Slope/aspect input:  input surface raster 

Calculation directions: 32 

Radiation (for entire year) 

Zenith divisions: 8 8 

Azimuth divisions:8  8 

Diffuse Model type:  uniform overcast sky 

Diffuse proportion:  0.3 

Transitivity:  0.5 

 

GIS data of poultry houses in the study area (see Chapter II) were used as input 

for the analysis. For exact software data preprocessing used to convert aerial photo point 

cloud data into a digital surface model, see Appendix B. The existing building roof was 

used for surface aspect and slope in each analysis. The average study area latitude of 

34.5 North was used for solar path calculations. The time period input was 2019 at 

hourly intervals, which was used to calculate the total number of days in the given year.  

Solar radiation calculations were extremely sensitive to atmospheric model 

assumptions. The amount of solar radiation received by the surface of the earth was only 

a portion of what would be received outside the atmosphere. Transmittivity and diffuse 

proportions were two inversely related atmospheric parameters used as input values for 

this model. A diffuse proportion was used to represent the fraction of global normal 

radiation flux that is diffused. Transmittivity was the ratio of averaged overall irradiance 
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wavelengths reaching the earth's surface to that which was received at the upper limit of 

Earth’s atmosphere.  

These atmospheric conditions for the test area were independently determined 

with two other data sets. MODIS satellite imagery at 1-km resolution measured average 

cloud observations at the sample coordinates twice per day over the most recent 15-year 

period and totaling an excess of 10,950 observations. The mean climatological cloud 

frequency was 51% with an interannual variability expressed as a standard deviation of 

5% (Wilson, Jetz, 2016). Furthermore, this was validated with average monthly rainfall 

data by zip code between 1952 and 1990 provided by South Carolina Department of 

Natural Resources (SC DNR, 2019). The data and observations were used to determine 

localized atmospheric conditions at the study area. In light of these findings, the diffuse 

proportion parameter was set to 0.3 and the transmittivity proportion used was 0.5, 

modeling generally clear conditions. 

This resulted in a total 8,760 irradiance measurements (W/m2/hr, I in Equation 

3.4) for each 0.15m2 of the poultry farm DSM. I values were averaged across a roof plane 

using the Zonal Statistics tool (ESRI, 2019). This process was repeated on the UAV-

derived GIS data for all farms visited and used to compare I across the rooftop azimuth 

classes.  

Solar irradiance during the longest and shortest day of a year was contrasted. The 

longest day of the year was June 21st, and had 13 hours of sunlight. The shortest day of 

the year was December 21st and had 8 hours of sunlight. The I (W/m2/hr) output for each 

of the 13 hours in June were compared to the 8 hours of I values in December. This 



 70 

analysis of interannual variation was completed to determine the range of possible solar 

radiation within the study area.  

Next, an analysis of greater temporal resolution was completed. The hourly I 

output was averaged for each month i.e. the irradiance I during 9:00 was averaged for all 

31 days in January, representative of the ‘typical’ irradiance at 9:00 in January. This was 

done for all months within a year for daily irradiance for a month by hour. These 

calculations throughout a year demonstrated the effect of earth tilt and rotation on 

available solar irradiance at substantially finer detail. This method was also repeated for 

each suitable azimuth class.  

The I (W/m2/hr) on both solstice days was scaled to an entire building rooftop of 

typical size (1,067 m2 of solar panel cell area) and converted to E electric power (kWac) 

supply using equation 3.4. This effectively demonstrated the range of hourly power 

output (kW/hr) for a building of typical size, the range in daily electric energy production 

(kWh/day) and the range of power produced. This analysis was performed in the context 

of time-of-use categories used by energy suppliers (Figure 3.1). These hourly categories 

included peak, shoulder, and base periods for summer and winter seasons.  

Similarly, the monthly average I values by hour were scaled to a building and 

converted to power (E, expressed as kW/1000 m2). These normalized solutions for each 

of the four orientation classes were used to calculate the hourly electric power 

contribution (kW/farm) of each of the 88 farms in the study area during baseload, 

shoulder, and peak periods. Lastly, these results were also summed to determine energy 

production over time (kWh) by month and year for a farm.  
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Panel Efficiency  

Solar panel efficiency is determined by the electrical power (WDC) output of one 

solar panel divided by the solar irradiance (W) input. Module performance is a function 

of the aggregate interconnected solar cells and measured under standardized testing 

conditions (STC) for comparison. The average panel cell material was silicon and 

performance values ranging from 0.16 – 0.19 (Svarc, 2019). According to the Institute of 

Electrical and Electronics Engineers (IEEE), the cell material with the maximum 

performance as research prototypes were those made of gallium phosphide, and 

performed at 45% efficiency (Gallucci, 2020).  For this study the maximum performing 

panel was not chosen due to high cost and low availability. The panel efficiency of 0.19 

was chosen as a conservative estimate of technology considered efficient and readily 

available at the time of the study.  

 

Performance Ratio (PR)   

Performance Ratio accounted for performance losses expected in real systems that 

are not explicitly calculated by other variables including inverters, temperature, wiring, 

age, nameplate rating, panel soiling, grid availability and other sources. The PR was 

critical to accurately evaluate the quality of a photovoltaic installation because it provided 

the performance of the installation independently of the orientation or inclination of the 

panel. These losses that defined performance were cumulative in nature. The inverter's 

nominal rated DC-to-AC conversion efficiency was defined as a ratio of the rated 
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nameplate DC power output capacity of the PV modules to the AC-rated power output 

capacity of the inverters. Operating solar cell temperature reflected variation in panel 

efficiency as a function of panel temperature, global solar irradiance, wind speed, and dry 

bulb temperature. Roof mounted arrays also had reduced airflow compared to ground-

mounted arrays, resulting in a higher installed operating temperature and a lower voltage. 

Electrical resistive losses in the DC and AC wires connecting modules, inverters, and 

other parts of the system were due to slight differences caused by manufacturing 

imperfections between modules in the array that caused the modules to have slightly 

different current-voltage characteristics. Age losses reflected the effect of weathering and 

light-induced degradation of the photovoltaic modules on the array's performance over 

time. Soiling was the reduction in array power output caused by dirt and other foreign 

matter that prevented solar radiation harvest. The nameplate rating loss accounted for the 

accuracy of the manufacturer's nameplate rating. Availability referred to reduction of a 

system's output cause by scheduled and unscheduled system shutdown for maintenance, 

grid outages, and other operational factors.  

The values used to estimate PR for the calculations in this study was based on 

information provided by Dobos (2014) and are shown in Table 3.8.  
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Table 0.5 Estimation of the performance ratio (PR) for a rooftop PV array 

(adapted from Dobos, 2014). 

Loss Range Used in this Study 

Inverter  0.02 to 0.10  0.05 

Temperature  0.02 to 0.15 0.02 

Wiring, mismatch, connection 0.01 to 0.03 0.01 

Age, degradation 0.01 to 0.03 0.02 

Nameplate rating 0.0 to 0.05 0.00 

Availability 0.01 to 0.07 0.01 

Soiling 0.01 to 0.05 0.01 

 Sum losses =  0.12 

PR = (1 – sum losses) =  0.88 

 

 The total cumulative electric losses resulted in a 12% decrease. This meant that 

each unit of electrical system power output (WAC) to the grid was only 88% of the panel 

array power input (WDC). The value used with equation 3.4 was 0.88 and was believed to 

provide a conservative estimate of panel electric power production. 

Collection of Data on Broiler Farm Electrical Energy Use and Connected Loads 

 

The calculated results for E, rooftop PV supply, did not take into account the 

energy use and demand during critical broiler house loads. These were primarily a 

function of facility ventilation and lighting systems. If the process of net metering were to 

apply to facility electricity loads, then only electricity generated in excess of farm 

demand would be useful for peak-shaving contributions to the grid.  

 

Farm Visits  

An analysis of installed equipment at poultry farms was conducted as part of the 

Regional Conservation Partnership Program (RCPP) in SC. This project was carried out 

by Clemson University Extension with funding by the National Resource Conservation 
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Services (NRCS). Between 2015 and 2019 a team of 6 individuals visited 58 poultry 

farms (239 buildings) in SC including broiler farms, layer farms and pullet farms.  

 

Data Collection 

All installed electrical equipment data was recorded by quantity (count), demand 

(W or hp), and operational schedule (hr/day) for each building. Worksheets were created 

in advance for use in the data collection process by all individuals to ensure uniformity of 

records. Facility electric consumption data was also accumulated. Monthly energy bills 

(kWh/month) spanning a time period of two years were also collected for 52 farms (122 

houses) in SC between 2015 and 2019. This data was acquired from growers in 

collaboration with their respective energy service providers.  

 

Calculations for determining Farm Electrical Energy Use 

The energy use data was used to calculate farm consumption over time 

(kWh/farm/month). The calculations included the average, range, standard deviation, and 

coefficient of variance for monthly energy use. These results were normalized by 

building footprint (kWh/100m2/month) to determine average building energy 

consumption. The results were also categorized by bird type. The farm energy use data 

consisted of records from 41 broiler farms, 2 broiler breeder farms, and 8 pullet farms.  

The monthly data was also used to determine the rate of electrical consumption 

for a farm as approximate average hourly connected load (kW/100m2). This was done by 

dividing the actual monthly energy use by the number of hours in each month. Due to the 
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annual variation of days in a month, utility companies commonly define the duration of a 

billing cycle as 730.4 “month-hours” (DEP, 2019). This was the conversion number used 

to determine rate of consumption on farms.  

These energy consumption results were then compared to the calculated results 

for E, rooftop PV supply. This provided an understanding of the unique relationship 

between supply and demand in the context of rural SC poultry facilities. This information 

was also categorized by the seasonal time of use categories that are essential to electricity 

supply management. These metrics included average power (kW/hr) contribution on the 

average day, average shoulder power (kW/hr) contribution, and average peak power 

contribution (kW/hr). These metrics were calculated for both summer and winter seasons. 

The sum annual energy production (MWh/yr) was also calculated. All of these were used 

to determine net-to-grid contributions for both power and energy on the typical farm. 

 

Connected Load to estimate farm hourly peak demand in summer 

The energy bill data was not indicative of accurate hourly farm loads during the 

most critical periods of peak demand for an energy supplier. These instances were also 

believed to be when the agricultural loads were the highest within a given year (Chastain, 

et al, 1990).  The equipment inventory was used to estimate the total connected load of a 

farm, calculated as the total demand of all equipment operating during summer peak 

periods. This was chosen to represent average hourly peak demand (kW/hr) per farm.  

The equipment consisted primarily of ventilation and lighting systems. The 

typical barn ventilation systems consisted of 6 to 10, 48” diameter fans operating during 
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summer peak (and an average total annual runtime of 2,500 hours). The typical lighting 

system consisted of 2 or 3 rows of ceiling lamps, spaced approximately 10 feet apart. 

During the majority of a bird’s lifespan, the lights are dimmed down to 0.5 foot-candles 

to minimize bird activity. 

An exact equipment inventory was not done for motors of feed augers. Instead, an 

approximate E value per feedline of 0.5kW was assumed based on typical installed 

equipment sizes. Building width (W) was used as a predictor of grain loads. It was 

observed that buildings with a width less than 15.2 m typically had two feedlines, while 

houses of 15.2 m or greater had three feedlines in each house. Using this assumption, the 

summation of total operating equipment was calculated for the connected load during 

peak periods in summer. The total connected load of an agricultural facility was a very 

close approximation of daily farm peak demand. Average demand results were 

normalized by building footprint (kW/hr/m2) and projected onto the entire building 

population to estimate average total load during peak demand periods in summer months.   

 

ANALYSIS AND RESULTS 

 

The results of the data collection process for building characteristics and the 

application of equation 3.4 were summarized in this section. Further analysis on 

electricity production by time-of-use was done according to typical utility rate schedules. 

The location of the farms was analyzed, and a net contribution to grid was calculated in 

light of farm supply and demand.   
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Trends in Building Characteristics  

Broiler houses were constructed using a select few standard building dimensions. 

Patterns in the results for the building characteristics of interest in the study area can be 

seen in the following sections.  

 

Building Length (L) and Width (W) 

The analysis of poultry house building dimensions in all farms within the study 

area included house width and length (L, W). These results are given in Table 3.9.  

 

Building widths ranged from 11.0 m to 16.5 m. The most common building width 

was 15.2 m and included 69.3% of the buildings. Building length dimensions ranged 

Table 0.1 Variation in poultry house length (L) as a function of house width (W) 

(n= 398). 

House  

Length (m) 

House Width (m) 

11.0 12.2 12.8 13.7 15.2 15.8 16.5 

106.7 1       

114.3  1      

121.9 7 9  1 1   

128.0  4      

129.2 3 3 1  1   

129.5 33 6      

137.2     2 4  

137.8  1      

143.2  1      

152.4 4 12 2  231  17 

153.6   4     

153.9     14   

154.2     2   

155.4     8   

158.5  2      

160.0  2      

161.5  4      

182.9     17   

Total per W = 48 45 7 1 276 4 17 
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from 106.7 m to 182.9 m. Most of the poultry barns in the study area had building lengths 

in the range of 129.2 m and 152.4 m. By far the most common length (80%) was 152.4 

m.  

There were a total of 398 houses located at 88 farms, with an average 4.52 houses 

per farm. Farm building counts ranged from a minimum of 2 houses up to a maximum of 

22 houses. The most prevalent building characteristics within the 398-house sample were 

15.2 m wide (70%) and 152.4 m long (80%). These dimensions were used with the 

typical roof slope of 5:12 from the results of chapter II. 

Building Orientation  

The buildings were also organized by orientation (based on Table 3.4) to 

determine I, solar irradiance, on the rooftop. The results of the building orientation 

classification for all 398 houses is given in Table 3.10.     

Table 0.2 Variation in poultry house orientation by house width (W).  

House 

Width (m) 

Building Orientation Class  

SE/NW SW/NE E/W N/S  Grand Total 

11.0 4 20 23 1 48 

12.2 12 10 23 0 45 

12.8 0 4 1 2 7 

13.7 0 0 1 0 1 

15.2 75 74 87 40 276 

15.8 0 0 4 0 4 

16.5 6 7 0 4 17 

Total = 97 115 139 47 398 

 

These rooftop azimuth classes were taken from Table 3.4. The most common 

building orientation was East and West, 35% of the total. The next most common (29%) 
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were classified as Southwest and Northeast. The third most common (24%) were 

Southeast and Northwest. The least common orientation was barn oriented North and 

South (12%). Twenty-five percent of the roof planes fell within azimuth orientation 

classes that were unsuitable for PV installation due to northward facing slopes. The 

majority of the building rooftop planes (75%) were classified into classes that were 

suitable for PV installation.   

Spatial Distribution of Farms Relative to Transmission Grid 

 

It may not be practical to assume that a utility company would immediately 

recruit the entire group of farms as distributed PV plants to rural areas. An energy 

supplier would likely initiate this experiment with a subset of the entire population of the 

farms. In consideration of the distribution costs and line losses associated with energy 

supply, the most valuable farms to an energy supplier would be located furthest from the 

existing transmission grid. An analysis of poultry farm spatial distribution was done 

relative to the existing transmission grid within the study area. Measuring the distance 

between each farm and the T&D network was accomplished as a measure of Euclidean 

distance between each poultry farm and the nearest transmission line using the Near tool 

in ArcGIS Pro (ESRI, 2019). A map of the farms and transmission grid are given in 

Figure 3.4.  
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Figure 0.1 Spatial distribution of 88 poultry farms and transmission grid.  
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The map shows the study area of Oconee and Anderson Counties. The 

transmission lines were marked in blue. The 88 poultry farms were marked as red circles. 

A frequency distribution histogram for the results of proximity analysis is given in figure 

3.5.  

 

Figure 0.2 Frequency distribution of Euclidian distance between farm and nearest 

transmission line.  

 

The vast majority of farms were within 5 km of an existing utility transmission 

line (92%). Exactly two-thirds of the farms in the population were within 3 km, and half 
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of the farms were within 2 km. The average distance between a farm and the transmission 

grid was 3.28 km. One-third of farms in the study area were located outside this region. 

The 3.28 km buffer around the transmission lines was chosen as a natural break in the 

population distribution by distance, and a practical division to assist an energy supplier in 

prioritizing feasible plant locations. Depending on existing local utility infrastructure, 

these farms were most likely to prove the most valuable in functioning as micro peak-

shaving plants for an energy supplier due to their location in population scarce areas. 

Calculation of Solar Electric Power Production from Roof Mounted PV Arrays for the 

Winter and Summer Solstice  

 

The I data was used as inputs for determining electrical energy output, using 

Equation 3.4. These values and assumptions were used to determine hourly electrical 

production demonstrated for the typical broiler farm in the study area.  

 

Solstice Solar Irradiance Data for Summer and Winter Solstice  

The solar irradiance potential (I) for the region of interest was demonstrated 

across building characteristics including building size, roof slope, azimuth, time of day 

and seasonality. First, an analysis of interannual variation of solar irradiance within the 

study area was completed to determine the range of solar radiation. The average hourly 

solar irradiance (W/m2/hr) during both the longest and the shortest day of a year was 

calculated and compared. Since irradiance harvest is sensitive to slope aspect, this 

solstice comparison was repeated for each azimuth class as defined in Table 3.4. The 

results are given in Table 3.11(a) and 3.11(b).  
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Table 0.3 (a) Global solar irradiance data (W/m2) on summer and winter 

solstice by rooftop azimuth (ESRI, 2019)1. 

 South  Southwest  Southeast 

Time of Day summer2 winter3  summer winter  summer winter 

8:00 42   27   112  
9:00 195 67  128 38  334 73 

10:00 384 203  293 140  542 192 

11:00 564 318  471 247  692 267 

12:00 703 376  631 319  775 279 

13:00 782 364  746 334  783 234 

14:00 793 286  803 282  726 151 

15:00 734 159  789 169  613 52 

16:00 611 33  705 38  462 11 

17:00 442   555   294  
18:00 252   357   116  
19:00 84   146   41  
20:00 4   11   4  

Energy 

(Wh/m2/day) 
5,590 1,807  5,662 1,567  5,496 1,260 

1Daily solar energy values found with ESRI point solar tool, calibrated with NOAA meteorological and solar 

radiation datasets reflecting 80 years of data 

2The summer solstice is Julien Date 172 (June 21st) 

3The winter solstice is Julien Date 355 (December 21st) 
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Table 3.11 (b) Global solar irradiance data (W/m2) on summer and winter solstice 

by azimuth for buildings oriented North/South (ESRI, 2019)1. 
 summer2  winter3  

Time of Day East West  East West  

8:00 91 25     

9:00 276 99  33 73  

10:00 454 281  98 204  

11:00 595 458  147 299  

12:00 686 617  164 331  

13:00 723 733  145 299  

14:00 706 790  99 214  

15:00 639 778  42 105  

16:00 561 694  10 17  

17:00 391 546     

18:00 236 349     

19:00 92 142     

20:00 6 6     

Energy (Wh/m2/day) 5,457 5,518  738 1,543  

1Daily solar energy values found with ESRI point solar tool, calibrated with NOAA meteorological and solar radiation 

datasets  

2The summer solstice is Julien Date 172 (June 21st) 

3The winter solstice is Julien Date 355 (December 21st) 

 

 

The table shows the I data for the hours beginning at 8:00 through 20:00. This 

excluded hour classes with an output irradiance value less than 1 (W/m2) as below the 

threshold of useful radiation and to represent an effective generation day. For each 

azimuth class solar irradiance was significantly greater at the summer solstice in both 

intensity and duration. The total energy received for the entire day was greatest on the 

South and Southwest classes, while East and Southeast received the least. The azimuth 

classes with the highest irradiance were the most suitable for PV installation. The 

seasonal change in solar noon can also be seen by the maximum average irradiance in 

hour class 12:00 during winter and transitioning to hour class 14:00 in summer. 
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Similarly, the easterly azimuth slopes received higher irradiance values before the solar 

peak, while westerly slopes received higher irradiance after solar peak.  

 

Solstice Photovoltaic Electric Power Production 

The global solar irradiance (W/m2) data on both solstice days was scaled to an 

entire building rooftop of typical size, with a building length (L) of 152.4 m and building 

width (W) of 15.2 m. The roof area of one roof plane available for installation was 1,254 

m2 (A) and had 1,067 m2 of solar cell collector area (A x fC). Using the results from Table 

3.6 this equated to a solar array of 702 panels per building.  

Electric power (kWac) output was calculated for an entire rooftop on the two 

solstice days from the hourly I data using equation 3.4. This involved the variables panel 

efficiency (r) of 0.19 and the electrical performance ratio (PR) of 0.88. These combined 

factors resulted in only 17% of solar irradiance (I) was converted to AC electric power 

(E).   

The comparison of solstice PV supply from average sized buildings was repeated 

for each orientation, since I varied across roof slope azimuth class. The results of these 

calculations are given in Table 3.12 (a) and 3.12 (b).  
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Table 0.4 (a) Electric power output (kW/building) on summer and winter solstice by 

building orientation for a 15.2 m x 152.4 m broiler house. 

 East/West  Northwest/Southeast  Northeast/Southwest 

Time of Day Summer1 Winter2  Summer Winter  summer winter 

8:00 7 0  5 0  20 0 

9:00 35 12  23 7  60 13 

10:00 68 36  52 25  97 34 

11:00 101 57  84 44  123 48 

12:00 125 67  112 57  138 50 

13:00 139 65  133 60  140 42 

14:00 141 51  143 50  129 27 

15:00 131 28  141 30  109 9 

16:00 109 6  126 7  82 2 

17:00 79 0  99 0  52 0 

18:00 45 0  64 0  21 0 

19:00 15 0  26 0  7 0 

20:00 1 0  2 0  1 0 

Total  

(kWh/day) 
996 322  1,009 279  979 225 

1The summer solstice is Julien Date 172 (June 21st) 
2The winter solstice is Julien Date 355 (December 21st 

 

Table 3.12 (b) Electric power output (kW/building) on summer and winter solstice 

by rooftop azimuth for buildings oriented North/South and 15.2 m x 152.4 m.  

 Summer1  Winter2 

Time of Day East West Total   East West Total 

8:00 16 4 21  0 0 0 

9:00 49 18 67  6 13 19 

10:00 81 50 131  17 36 54 

11:00 106 82 188  26 53 79 

12:00 122 110 232  29 59 88 

13:00 129 131 259  26 53 79 

14:00 126 141 267  18 38 56 

15:00 114 139 253  7 19 26 

16:00 100 124 224  2 3 5 

17:00 70 97 167  0 0 0 

18:00 42 62 104  0 0 0 

19:00 16 25 42  0 0 0 

20:00 1 1 2  0 0 0 
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Total (kWh/day)   973  983  1956  132  275  407 
1The summer solstice is Julien Date 172 (June 21st) 

2The winter solstice is Julien Date 355 (December 21st) 

 

Electric power supply (kWAC) was expressed per hour for each building 

orientation class. Since the E output was a function of I input, the same general 

quantitative trends were demonstrated here as with the irradiance tables. E values were 

still significantly greater at the summer solstice in both intensity and duration for each 

azimuth class.  

 

Impact of Building Orientation on Peak Electric Power Production  

During the winter months the peak demand period was defined as the hours from 

6:00 to 8:00 (Figure 3.1a). The solar irradiance data, Tables 3.11a and 3.11b, indicated 

that solar energy was not available until the hour beginning at 9:00 on the winter solstice. 

Therefore, none of the roof mounted PV arrays provided any electric power output during 

the winter peaking period as indicated in Tables 3.12a and 3.12b. The PV arrays only 

provided power during the summer peak period which was defined as from 13:00 to the 

end of the hour beginning at 17:00 (Figure 3.1b). 

The results provided previously (Table 3.10) indicated that 88% of the broiler 

houses in the study area had an East/West, Southwest/Northeast, or Southeast/Northwest 

orientation. In addition, the typical broiler house (15.2 m x 152.4 m) had one array of PV 

panels mounted on the south-facing roof slope with a useable roof area of 1254 m2 and a 

total PV panel area of 1158 m2.  On the summer solstice day between 13:00 and 17:00 a 

building oriented East/West produced an average power output of 120 kW/hr, ranging 
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from 79 to 141 kW/hr over the peak period of the day. However, a building oriented 

Northwest/Southeast provided the highest power output with an average of 128 kW/hr 

during the peak period ranging from 99 to 143 kW/hr. An array mounted on a building 

with a Northwest/Southeast orientation produced 6.7% more power than for a building 

with an East/West orientation. This small increase in average power production during 

the peak period was due to the fact that the PV array was canted towards the Southwest 

allowing it to receive more solar irradiance during the period past solar noon (14:00 

through 17:00, Table 3.11). A building oriented Northeast/Southwest provided the least 

electric power as compared to a building with an East/West orientation using the same 

number of panels. The average power output during the summer peak period was 103 

kW/hr or 14.2% less than the PV array mounted on a building with an East/West 

orientation. In addition, the results in Table 3.12a show that such a PV array canted 

towards the Southeast provided the largest power output during the hours beginning from 

11:00 to 13:00. Additional power production may be helpful on summer days when 

extremely hot temperatures begin in the late morning and cause the electrical system 

demand to be higher than typical due to increased demand for ventilation of farm 

buildings and air-conditioning in commercial and residential structures. The results 

provided in Table 3.12a clearly indicate that all three of these building orientations can 

provide electric power during the summer peak period. However, the least valuable of 

these three building orientations was Northeast/Southwest. 

Only 12% of the broiler houses in the study area were constructed with a 

North/South orientation (Table 3.10). It was assumed that PV panels were mounted on 
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both roof slopes. As a result, one 1158 m2 array of panels faced East and another 1158 m2 

array of panels faced West. The total area of panels mounted on a building with this 

orientation was 2316 m2. The results provided in Table 3.12b show the hourly electric 

power production from both arrays and the total output power from the building. The 

results for the summer solstice (Table 3.12b) indicated that the maximum on-peak power 

production for the array facing East was 129 kW at 13:00 and the maximum on-peak 

power for the West facing array was 141 kW at 14:00. Near the middle and end of the 

peak period, 15:00 to 17:00, when afternoon air temperatures are near the daily 

maximum, the only array of panels that produced more power were those mounted on a 

building with a Northwest/Southeast orientation. During the peak period (13:00 – 17:00) 

the hourly power production ranged from 167 to 267 kW with an average of 234 kW. 

This average supply was 2.29 times greater than the average on-peak power production of 

a building with a Northeast/Southwest orientation, and 1.82 times greater than the 

average on-peak power production of a building with a Northwest/Southeast orientation.  

Since buildings with a North/South orientation had twice as many PV panels 

installed as compared to the other three orientations, the summer-peaking efficacy of the 

four different building orientations was compared by normalizing the average summer 

peak power production per 100 m2 of installed panel area. The most effective use of PV 

panels was for the Northwest/Southeast orientation with a summer peaking efficacy of 

11.0 kW/100 m2 of PV panel. The next most effective installation was for the East/West 

orientation with a summer peaking efficacy of 10.4 kW/100 m2. Surprisingly, the third 

most effective installation was for the North/South orientation providing 10.1 kW/100 m2 
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during the summer peak period. Finally, the least effective installation for summer peak 

electric power production was for the building with the Northeast/Southwest orientation 

at only 8.9 kW/100 m2. 

 

Impact of Building Orientation on Shoulder Electric Power Production  

The next most important demand period after the daily peak period is called the 

shoulder period. During the summer season the shoulder period was defined as the hours 

from 11:00 to 12:00 in the morning and 18:00 to 19:00 in the evening (Figure 3.1b). 

During the winter season the shoulder period occurs from 9:00 to 11:00 in the morning 

and 17:00 to 19:00 in the evening (Figure 3.1a). Based on the solar irradiance data 

(Figures 3.12a and 3.12b) a roof-mounted array of PV panels would only be productive 

during the morning portion of the winter shoulder period. Therefore, only the hours from 

9:00 to 11:00 were used to calculate average power production for the shoulder period for 

the winter solstice.  

Average Electric Power Production During the Shoulder Period for the Winter 

Solstice 

 

The average power production during the morning portion of the shoulder period 

(9:00 to 11:00) for buildings with one PV array of 1158 m2 ranged from 25 kW for a 

building with a Northwest/Southeast orientation to 35 kW for a building with an 

East/West orientation. The average shoulder-period output for the building with a 

Northeast/Southwest orientation was at almost the average of the other two at 32 kW. 

The building with the North/South orientation provided 51 kW on the average during the 

morning portion of the shoulder period. Therefore, the North/South building again 
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provided the most electric power as compared to the other three orientations. However, a 

more precise comparison was made using the efficacy of the PV array calculated during 

the shoulder period. The most effective array was on a building with an East/West 

orientation with a winter shoulder period efficacy of 3.0 kW/100 m2 of panel area.  The 

next most effective was the Northeast/Southwest orientation with an efficacy of 2.8 

kW/100 m2. Both the North/South and Northwest/Southeast orientations had the same 

efficacy at 2.2 kW/100 m2.  

Average Electric Power Production During the Shoulder Period for the Summer 

Solstice 

 

The electric power results in Tables 3.12a and 3.12b clearly show that the PV 

arrays for all four building orientations provided more power during the morning 

shoulder hours (11:00 to 12:00) on the summer solstice than in the evening (18:00 to 

19:00). However, comparisons were made based on the average power production during 

all four hours of the shoulder period. Unexpectedly, the average power production during 

the summer shoulder period was 72 kW for all three orientations with PV panels mounted 

on the roof slopes facing South, Southeast, or Southwest (East/West, 

Northwest/Southeast, Northeast/Southwest). The summer shoulder production for the 

building with the North/South orientations with PV panels on both roof slopes was 142 

kW. Therefore the efficacy for the buildings with 1158 m2 of PV panels was 6.2 kW/100 

m2 and the efficacy for the North/South building was almost the same at 6.1 kW/100 m2. 
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Impact of Building Orientation on Baseload Electric Power Production 

Baseload has been defined as the average electric power required by the 

customers in a day or season. A solar power plant can only produce electricity during the 

day. After considering the variation in available solar irradiance (Tables 3.12a and 3.12b) 

and the day-time portion of the baseload defined by a generating utility (Figures 3.1a and 

3.1b) it was determined that a reasonable estimate of a roof-mounted PV array’s 

contribution to baseload would be the average electric power produced from the hour 

beginning at 9:00 till the end of the hour beginning at 17:00 for the longest and shortest 

day of the year. 

Baseload for Winter Solstice 

The average baseload contribution for the four building orientations on the winter 

solstice ranged from 25 kW for a building with a Northeast/Southwest orientation to 51 

kW for the building with a North/South orientation. Again, the different orientations were 

compared based on the kW produced per 100 m2 of PV area. The highest baseload 

efficacy was for a building with an East/West orientation and was 3.1 kW/100 m2.  The 

second most effective array had an efficacy of 2.7 kW/100 m2 and was on the building 

with a Northwest/Southeast orientation. The arrays mounted on the buildings with a 

North/South and Northeast/Southwest orientation were the same at 2.2 kW/100 m2. 

Baseload for Summer Solstice 

The average baseload contribution on the summer solstice for the three 

orientations with 1158 m2 of PV panels were almost the same. Buildings with East/West 

and Northeast/Southwest orientations provided 103 kW/hr to baseload on the average. 

The efficacy for these two cases was 8.9 kW/100 m2.  The baseload contribution of the 
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building with a Northwest/Southeast orientation was 101 kW/hr with an efficacy of 8.7 

kW/100 m2. The two arrays on the North/South building provided almost twice as much 

baseload power at 199 kW/hr with a slightly lower efficacy of 8.6 kW/ 100 m2.  

 

Impact of Building Orientation on Daily Energy Production  

Energy providers reflect the cost to supply electricity based on both the rate of 

power consumed (demand, kW) and the quantity of energy consumed (energy, kWh). For 

electricity production, energy is the sum quantity of power produced over time. Daily 

energy production was calculated as the total power produced during each hour, for all 

hours of daylight within each day. This was repeated for the longest and shortest day of 

the year.   

 

Total Daily Electric Energy Production on Summer Solstice  

 

 Between the three orientations with 1158 m2 the sum energy production on the 

longest day was greatest on buildings oriented Northwest/Southeast at 1,009 kWh. The 

second highest summer energy output was on buildings oriented East/West at 996 kWh. 

Buildings within the Northeast/Southwest orientation produced the least energy of 979 

kWh. The building oriented North/South had a substantially larger summer daily energy 

production at 1,956 kWh. The energy production efficiency of each building orientation 

was compared as the sum daily energy per 100 m2 of total array area. The total range of 

summer energy efficacy among all building orientations had a tight spread between 77.6 

and 80.5 kWh/100m2. The most efficient performance was by the array on buildings 

oriented Northwest/Southeast with 80.5 kWh/100m2. The second most efficient was 
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buildings oriented East/West with 79.5 kWh/100m2. The third most efficient was the 

West azimuth of the North/South building at 78.4 kWh/100m2. The least two efficient 

orientation classes were the Northeast/Southwest with 78.1 kWh/100m2, followed by the 

East azimuth of the North/South building at 77.6 kWh/100m2.  

 

Total Daily Electric Energy Production on Winter Solstice  

 

The sum energy production on the shortest day of the year was analyzed for all 

orientations. Between those with a single roof plane suitable for PV, both daily energy 

production and efficacy in winter followed the same ranking trends among the three 

orientations. Buildings East/West had a daily energy production of 322 kWh/day and an 

efficacy of 25.68 kWh/100m2. The next orientation was buildings Northwest/Southeast of 

279 kWh/day with efficacy of 22.28 kWh/100m2. Lastly, the Northeast/Southwest 

orientation had a total daily energy production in winter of 225 kWh/day and operated 

with an efficacy of 17.91 kWh/100m2. The two arrays on the North/South building 

produced the most energy at 407 kWh/day. The West facing array operated at an 

efficiency of 21.93 kWh/100m2, while the energy production on the East facing slope of 

the same buildings was only 10.49 kWh/100m2 (averaging 16.2 kWh/100m2 for the 

building).  

These results illuminated a poultry barn’s performance as a PV plant. A building 

of average size and orientation constituted a solar array of 702 solar panels which totaled 

1,067 m2 of productive PV cell area. Despite the 83% energy losses associated with solar 

energy generation, the highly suitable building characteristics and vast extent of roof per 
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building both resulted in substantial power and energy contributions of potential 

electricity generated. The unique North/South buildings they were especially valuable in 

summer periods.   

 

Prioritization of Building Orientation for Peaking Plant Value  

 Overall, the orientation of Northwest/Southeast had the greatest contribution to 

power and energy production metrics, and was therefore the most valuable. This 

orientation was the single most productive array (consisting of 1158m2) for total daily 

energy of any orientation, and the second most productive by building. The 

Northwest/Southeast was also first in efficacy for summer peak periods, summer 

shoulder, and second in both summer base and winter base periods. Buildings oriented 

East/West were the second most productive overall to the electricity generation metrics 

with the highest daily energy output in winter, and the second highest daily energy output 

in summer. These buildings had the highest efficacy for summer and winter base periods, 

as well as summer shoulder and winter shoulder periods. East/West buildings also had the 

second highest efficacy at summer peak.  

North/South orientated buildings were the third most useful overall. While they 

tended to have the lowest single-array production, the cumulative array area per building 

often offset this. These buildings only consisted of 12% of the population but contributed 

40% of the combined total daily energy production by all orientations in summer, and 

33% in winter. The panel efficacy was ranked third for peak summer periods, base 
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summer periods, winter shoulder periods, and last in summer shoulder and winter base 

periods.  

Lastly, the buildings oriented Northeast/Southwest had the least contributions to 

power and energy metrics for a generation plant. They produced the least daily total 

energy in summer and winter days. They also had the lowest panel efficacy for each time-

of-use metric except winter shoulder and base summer periods.  

 If an energy supplier were to pursue this investment, then the obvious 

consideration of cost comes into play. A detailed economic analysis of energy plant 

project cost or payback period was beyond the scope of this project. However, the current 

economics of renewable energy define the tipping point for solar technology adoption as 

a major energy supply contributor. Therefore a practical consideration of cost would be 

critical to decision making. This could further exploit the two performance variables of 

panel efficacy and average hourly building supply at critical demand curve metrics by a 

single building of each orientation on a single day. Since solar panel cost would be 

constant for any orientation, then the greatest electrical output per unit cost was the best 

investment for a supplier. This would support arrays on buildings of Northwest/Southeast 

and East/West orientations.  

However, there was also the key investment of infrastructure needed for phase 

matching and distribution. This total infrastructure cost would be independent of 

individual panel output comparisons. This equipment would not be a function of building 

size or orientation, but rather quantity of buildings per farm. Farms with above average 
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(5+) building density would be the most valuable to an energy supplier, since many costs 

for distribution equipment would be fixed regardless of total plant output.  

Calculation of Solar Electric Power Production for Each Month of the Year 

 

Monthly Solar Irradiance  

An analysis of greater temporal resolution was completed for solar irradiance at 

the region of interest. The method for determining hourly solar irradiance (W/m2) for 

each solstice day was repeated for each day in a year using the area Solar radiation tool 

(ESRI, 2019). The solar irradiance for each hour was then averaged by month for each 

month throughout an entire year. This analysis demonstrated the effect of earth tilt and 

rotation on available solar irradiance at substantially finer detail. This method was 

repeated on each suitable azimuth class. The results are given for buildings orientated 

East and West in Table 3.13.  
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Table 0.5 Average global solar irradiance by month on buildings with East/West 

orientation. 

Time 

of Day 

Average hourly global solar irradiance (W/m2) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

8:00    1 35 42 41 8     

9:00 78 68 87 106 179 195 192 121 92 69 77 67 

10:00 237 210 269 328 372 384 379 339 286 213 235 202 

11:00 371 350 453 552 559 564 556 558 481 359 372 316 

12:00 439 450 593 722 702 703 693 726 630 470 446 374 

13:00 425 495 666 812 783 781 771 815 709 529 441 362 

14:00 334 479 664 809 791 792 782 816 708 528 362 285 

15:00 186 406 587 715 727 734 724 727 627 467 224 158 

16:00 39 291 445 542 596 611 603 561 476 355 81 33 

17:00  167 260 317 418 442 436 343 280 209 28  

18:00  60 80 98 224 252 249 126 88 66 53  

19:00     69 84 83 14     

20:00     4 4 4 4     

Total 

(Wh/m2/ 

day) 

2108 2977 4104 5002 5459 5586 5513 5159 4378 3264 2320 1797 

 

 The table shows modeled I results between 8:00 and 20:00 averaged by hour for 

each month over an entire year. The total energy produced per day was highest on the 

average day during the month of June, and lowest for the average day during December. 

This reinforces the results from the analysis of solar irradiance on solstice day. In 

addition to this, now it can be seen that the most predominant irradiance availability in 

the average year occurred between the months of April and August while the least 

availability was between November and February. Similarly, the trends in daylight 

duration were enhanced. Duration was greatest during the months of May through 

August, and shortest in December and January. The seasonal change in solar noon can 

also be seen as the maximum average irradiance in hour class 12:00 for months 
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November through January and transitioning to hour class 14:00 during May through 

August.  The results for average hourly global solar irradiance for buildings orientated 

Northwest and Southeast are given in Table 3.14. 

Table 0.6 Average global solar irradiance by month on buildings with Northwest/ 

Southeast orientation. 

Time 

of Day 

Average hourly global solar irradiance (W/m2) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

8:00  1 1 1 30 33 35 12 2 1 1  
9:00 54 63 79 104 157 154 164 130 97 63 79 53 

10:00 164 195 243 321 327 305 322 344 296 197 242 162 

11:00 257 325 410 541 490 450 473 556 497 331 386 254 

12:00 304 418 536 708 616 562 590 718 650 433 469 301 

13:00 294 460 603 796 687 625 656 806 731 488 474 293 

14:00 231 445 601 794 694 634 665 808 730 487 403 232 

15:00 129 377 531 701 638 586 616 724 647 431 271 133 

16:00 27 270 402 531 523 486 513 564 492 327 126 33 

17:00  155 235 311 367 350 371 355 292 193 57 4 

18:00  55 73 84 196 197 211 108 77 61 42  

19:00  1 1 1 61 65 70 12 1 1   
20:00     3 3 3 3     
Total 

(Wh/m2/ 

day) 

1461 2766 3714 4894 4789 4449 4690 5141 4511 3012 2550 1464 

 

 

 The basic trends for daylight duration, ranges of irradiance, and solar noon in 

hourly I results per month applied to each rooftop azimuth. The main distinction for this 

orientation was that the total energy supplied on the average day was lower compared to 

that of the East/West orientation. The exception was in the months of September and 

November, where the total energy for the average day was marginally higher. This is 

likely due to the easterly orientation of the given azimuth, which coincides with sunrise.  
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The results for average hourly global solar irradiance for buildings orientated 

Northeast and Southwest are given in Table 3.15. 

Table 0.7 Average global solar irradiance by month on building with 

Northeast/Southwest orientation. 

Time 

of Day 

Average hourly global solar irradiance (W/m2) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

8:00  1 1 1 30 28 35 7 1 1 1  
9:00 54 63 79 94 157 132 164 107 83 63 71 43 

10:00 164 195 243 291 327 260 322 301 257 197 217 132 

11:00 257 325 410 490 490 382 473 495 432 331 343 206 

12:00 304 418 536 641 616 477 590 643 566 433 411 244 

13:00 294 460 603 721 687 530 656 722 637 488 407 236 

14:00 231 445 601 719 694 538 665 723 636 487 334 185 

15:00 129 377 531 635 638 498 616 644 563 431 207 103 

16:00 27 270 402 481 523 414 513 497 428 327 75 21 

17:00  155 235 281 367 300 371 304 252 193 26  

18:00  55 73 87 196 171 211 112 79 61 49  

19:00  1 1 1 61 57 70 13 1 1 1  
20:00     3 3 3 3     
Total 

(Wh/m2/ 

day) 

1461 2766 3714 4442 4789 3789 4690 4569 3936 3012 2143 1171 

 

Buildings in this orientation received lower irradiance totals for the average day 

each month than buildings oriented East/West. These results were nearly identical to 

irradiance values from buildings oriented Northwest/Southeast in January, February, 

March, May, July, and October months; and typically lower on the remaining months of 

the year.  

Lastly, the average hourly global solar irradiance results for buildings orientated 

North and South are given in Table 3.16 (a) and 3.16 (b) by azimuth slope. 
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Table 0.8 (a) Average global solar irradiance by month on East azimuth of buildings with 

North/South orientation. 

Time 

of Day 

Average hourly global solar irradiance (W/m2) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

8:00  1 1 1 33 36 39 13 2 1 1  

9:00 41 50 71 103 171 172 180 136 92 52 59 39 

10:00 124 154 218 318 356 342 355 357 279 160 179 119 

11:00 194 255 367 536 534 504 522 576 468 270 286 187 

12:00 230 329 481 701 671 629 651 744 612 353 348 221 

13:00 223 362 540 788 748 700 724 835 689 398 353 215 

14:00 175 351 539 786 756 710 734 837 688 397 301 171 

15:00 97 298 476 694 694 656 679 751 609 351 205 98 

16:00 20 214 361 526 570 545 566 586 464 267 98 24 

17:00  123 211 308 400 392 409 369 275 157 45 3 

18:00  44 65 85 215 221 233 112 71 49 31  

19:00   1 1 67 73 78 13 1 1   

20:00     4 3 4 3     

Total 

(Wh/m2/ 

day) 

1105 2182 3330 4846 5218 4983 5174 5333 4249 2456 1907 1078 
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Table 0.16 (b) Average global solar irradiance by month on West azimuth of buildings with 

North/South orientation. 

Time 

of Day 

Average hourly global solar irradiance (W/m2) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

8:00 0 1 1 1 34 37 40 14 2 1 1 0 

9:00 44 53 74 107 175 176 185 140 96 55 63 43 

10:00 134 164 229 330 365 349 364 368 291 170 193 129 

11:00 209 273 385 555 547 515 534 594 488 287 308 202 

12:00 247 351 505 727 688 643 666 767 638 376 375 240 

13:00 239 387 567 817 767 716 741 861 718 423 380 233 

14:00 188 375 566 815 775 725 751 863 717 422 324 185 

15:00 105 318 500 720 712 670 695 774 635 374 220 106 

16:00 22 229 379 545 584 557 579 604 484 284 105 26 

17:00 0 131 221 319 410 401 419 380 287 167 48 4 

18:00  47 68 87 220 226 239 115 74 53 34 0 

19:00  0 1 1 68 75 80 14 1 1 0  

20:00     4 3 4 3     

Total 

(Wh/m2/ 

day) 

1189 2329 3496 5024 5349 5093 5296 5497 4432 2611 2051 1168 

 

The West facing slope was higher than that of the east facing slope for every 

month. East and West slopes both had the lowest irradiance values of the group in the 

winter months, but exceptionally productive mid-summer irradiance values.  

This unique building orientation had twice the effective rooftop area available to 

harvest solar energy. The combined monthly total energy was vastly more significant 

than the most productive roof plane. 195% in summer and 146% in winter. Ranging from 

109% in January, to 210% in August.  
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Monthly Photovoltaic Electric Supply  

The hourly I data (Tables 3.13 to 3.16) were converted to E electric power 

(kWAC) supply using equation 3.4. To differentiate between solar energy and electrical 

energy I was expressed as W/m2, while E was expressed in kW/1000 square meters of 

roof area. The comparison of monthly PV supply from average sized buildings was 

repeated for each orientation, since I varied across roof slope azimuth class. The results 

for buildings with an East/West orientation are given in Table 3.17. 
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Table 0.9 Hourly PV panel power output for an average day by month on buildings 

with East/West orientation (ESRI, 2019)1.   

Time of Day 
Hourly AC Output Power (kW/1000m2) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

8:00 0 0 0 0 5 7 6 2 0 0 0 0 

9:00 11 10 12 17 25 31 27 21 15 10 12 11 

10:00 34 30 38 51 53 61 54 55 47 30 37 33 

11:00 53 50 64 86 79 90 79 90 79 51 59 52 

12:00 62 64 84 113 100 113 99 116 103 67 72 61 

13:00 60 70 95 127 111 126 110 130 116 75 73 60 

14:00 47 68 94 127 112 127 111 130 116 75 62 47 

15:00 26 58 83 112 103 118 103 117 103 66 42 27 

16:00 5 41 63 85 85 98 86 91 78 50 19 6 

17:00 0 24 37 50 59 70 62 57 46 30 9 1 

18:00 0 8 11 13 32 40 35 17 12 9 6 0 

19:00 0 0 0 0 10 13 12 2 0 0 0 0 

20:00 0 0 0 0 1 1 1 0 0 0 0 0 

Base2: 33 46 64 85 81 93 81 90 78 50 43 33 

Peak3: 0 0 0 100 94 108 94 105 92 0 0 0 

Shoulder4: 20 24 33 53 55 64 56 56 49 26 25 19 

Energy (kWh/1000m2/day)5: 300 423 584 782 776 895 783 830 715 464 393 298 

1Daily solar energy values found with ArcGIS Pro’s Point Solar tool, calibrated with NOAA meteorological and solar 

radiation datasets  

2 The average hourly electric supply between 9:00 and 17:00 by month.  

3 The average hourly electric supply between April 1st and September 30th each day between 13:00 until 17:00. 

4 The average hourly electric supply between April 1st and September 30th each day between 11:00 through 12:00, and 

18:00.  

 The average hourly electric supply between October 1st through March 30th each day between 9:00 through 11:00, and 

17:00 through 19:00.  

5 The total electrical energy produced each day on average by month.  

 

 The table shows calculated E results between 8:00 and 20:00 averaged by hour for 

each month over an entire year. The seasonal divide between months was distinguished 

by the vertical dashed lines. Since the E output is a function of I input, the same general 

quantitative trends are demonstrated here as with the irradiance tables for the monthly 

analysis. The results of E average hourly supply for buildings with a Northwest/Southeast 

orientation are given in Table 3.18. 
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Table 0.10 Hourly electric power output for an average day by month on 

buildings with Northwest/Southeast orientation (ESRI, 2019)1.   

Time of 

Day 

Hourly AC Output Power (kW/1000m2) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

8:00 0 0 0 0 5 5 5 2 0 0 0 0 

9:00 8 10 12 16 24 23 25 20 15 10 12 8 

10:00 25 30 37 49 50 46 49 52 45 30 37 25 

11:00 39 49 62 82 75 68 72 85 76 50 59 39 

12:00 46 64 81 108 94 85 90 109 99 66 71 46 

13:00 45 70 92 121 104 95 100 123 111 74 72 44 

14:00 35 68 91 121 106 96 101 123 111 74 61 35 

15:00 20 57 81 107 97 89 94 110 98 66 41 20 

16:00 4 41 61 81 79 74 78 86 75 50 19 5 

17:00 0 24 36 47 56 53 56 54 44 29 9 1 

18:00 0 8 11 13 30 30 32 16 12 9 6 0 

19:00 0 0 0 0 9 10 11 2 0 0 0 0 

20:00 0 0 0 0 1 0 1 0 0 0 0 0 

Base2: 25 46 61 81 76 70 74 85 75 50 42 25 

Peak3: 0 0 0 95 88 81 86 99 88 0 0 0 

Shoulder4: 14 24 32 51 52 48 51 53 47 26 24 14 

Energy (kWh/ 

1000m2/day)5: 
222 420 564 744 728 676 713 782 686 458 388 223 

1Daily solar energy values found with ArcGIS Pro’s Point Solar tool, calibrated with NOAA meteorological and solar 

radiation datasets  

2 The average hourly electric supply between 9:00 and 17:00 by month.  

3 The average hourly electric supply between April 1st and September 30th each day between 13:00 until 17:00. 

4 The average hourly electric supply between April 1st and September 30th each day between 11:00 through 12:00, and 

18:00.  

 The average hourly electric supply between October 1st through March 30th each day between 9:00 through 11:00, and 

17:00 through 19:00.  

5 The total electrical energy produced each day on average by month.  

 

 

The results of E average hourly supply for buildings with a Northeast/Southwest 

orientation are given in Table 3.19.  
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Table 0.11 Hourly electric power output for an average day by month on 

buildings with Northeast/Southwest orientation (ESRI, 2019)1.   

Time of Day 

Hourly AC Output Power (kW/1000m2) 

Jan 
Fe

b 

Ma

r 

Ap

r 

Ma

y 
Jun Jul 

Au

g 

Se

p 

Oc

t 

No

v 

De

c 

8:00 0 0 0 0 5 6 6 2 0 0 0 0 

9:00 7 8 11 16 26 26 27 21 14 8 9 6 

10:00 20 24 34 49 54 52 54 55 43 25 29 19 

11:00 31 41 57 83 81 76 79 88 72 43 46 30 

12:00 37 52 75 
10

8 
102 95 99 114 95 56 56 35 

13:00 36 58 84 
12

1 
113 

10

6 

11

0 
128 

10

7 
63 56 34 

14:00 28 56 84 
12

1 
115 

10

7 

11

2 
128 

10

6 
63 48 27 

15:00 16 47 74 
10

7 
105 99 

10

3 
115 94 56 33 16 

16:00 3 34 56 81 86 82 86 90 72 42 16 4 

17:00 0 20 33 47 61 59 62 57 43 25 7 1 

18:00 0 7 10 13 33 33 35 17 11 8 5 0 

19:00 0 0 0 0 10 11 12 2 0 0 0 0 

20:00 0 0 0 0 1 0 1 0 0 0 0 0 

Base2: 20 38 56 82 83 78 81 88 72 42 33 19 

Peak3: 0 0 0 96 96 91 95 104 84 0 0 0 

Shoulder4: 12 20 29 51 56 54 56 55 45 22 19 11 

Energy (kWh/ 

1000m2/day)5: 
17

7 

34

8 
519 

74

7 
792 

75

3 

78

7 
818 

65

8 

38

9 
304 172 

1Daily solar energy values found with ArcGIS Pro’s Point Solar tool, calibrated with NOAA meteorological and solar 

radiation datasets  

2 The average hourly electric supply between 9:00 and 17:00 by month.  

3 The average hourly electric supply between April 1st and September 30th each day between 13:00 until 17:00. 

4 The average hourly electric supply between April 1st and September 30th each day between 11:00 through 12:00, and 

18:00.  

 The average hourly electric supply between October 1st through March 30th each day between 9:00 through 11:00, and 

17:00 through 19:00.  

5 The total electrical energy produced each day on average by month.  

 

 

 The results of E average hourly supply for buildings with a North/South 

orientation are given in Table 3.20.  
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Table 0.12 Hourly electric power output for an average day by month on 

buildings with North/South orientation (ESRI, 2019)1.   

Time of Day 
Hourly AC Output Power (kW/1000m2) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct 
No

v 

De

c 

8:00 0 0 0 0 10 11 12 4 1 0 0 0 

9:00 13 16 22 32 53 53 56 42 28 16 19 12 

10:00 39 48 68 99 110 105 109 110 87 50 57 38 

11:00 61 80 114 166 164 155 161 178 145 85 90 59 

12:00 73 
10

3 
150 217 207 193 200 230 190 

11

1 
110 70 

13:00 70 
11

4 
168 244 230 215 223 258 214 

12

5 
111 68 

14:00 55 
11

0 
168 243 233 218 226 258 214 

12

5 
95 54 

15:00 31 94 148 215 214 202 209 232 189 
11

0 
65 31 

16:00 6 67 112 163 175 167 174 181 144 84 31 8 

17:00 0 39 66 95 123 120 126 114 85 49 14 1 

18:00 0 14 20 26 66 68 72 35 22 16 10 0 

19:00 0 0 0 0 20 22 24 4 0 0 0 0 

20:00 0 0 0 0 1 1 1 1 0 0 0 0 

Base2: 39 75 113 164 168 159 165 178 144 84 66 38 

Peak3: 0 0 0 192 195 185 191 209 169 0 0 0 

Shoulder4: 23 39 58 102 114 110 114 112 89 43 38 22 

Energy (kWh/ 

1000m2/day)5: 
34

9 

68

6 

103

8 

150

0 

160

6 

153

2 

159

1 

164

6 

131

9 

77

0 
602 341 

1Daily solar energy values found with ArcGIS Pro’s Point Solar tool, calibrated with NOAA meteorological and solar 

radiation datasets  

2 The average hourly electric supply between 9:00 and 17:00 by month.  

3 The average hourly electric supply between April 1st and September 30th each day between 13:00 until 17:00. 

4 The average hourly electric supply between April 1st and September 30th each day between 11:00 through 12:00, and 

18:00.  

 The average hourly electric supply between October 1st through March 30th each day between 9:00 through 11:00, and 

17:00 through 19:00.  

5 The total electrical energy produced each day on average by month.  

    

 

The table shows calculated E results between 8:00 and 20:00 averaged by hour for 

each month over an entire year. These hourly power output and summary time-of-use 

metrics are the sum of PV output on both rooftop slopes for this orientation.  
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Estimation of Farm Performance as a Power Plant by Demand Curve Metrics  

The hourly electric power results by hour for each month in Tables 3.17 to 3.20 

were organized according to the utility time-of-day hour classes (Figure 3.1) into the 

rows labeled as base, peak, shoulder, and Energy. These further demonstrate a farm’s 

potential contributions in supply-side energy management. These categories were 

established using the equations given in Table 3.21. 

Table 0.13 Calculations for determining key summary power output metrics by 

season1. 

 Calculations by Hour Class 

 Summer Winter 

Base2: (9:00 + 10:00 + 11:00 + 12:00 + 13:00 + 14:00 + 15:00 + 16:00 + 17:00) ÷ 9 

Peak3: (13:00+14:00+15:00+16:00+17:00)÷5 (6:00 +7:00 +8:00) ÷ 3 

Shoulder4: (11:00 +12:00 +18:00 +19:00) ÷ 4 
(9:00 +10:00 +11:00 +17:00 

+18:00) ÷ 5 

Energy (kWh/ 

1000m2/day)5: 
Σ all hour classes within a day 

1 Summer months are April through September. Winter months are October through March. 

2 The average hourly electric supply between 9:00 and 17:00 by month.  

3 The average hourly electric supply during seasonal peak periods by month. Peak summer hours are 13:00 through 

17:00. Peak winter hours are 6:00 through 8:00.  

4 The average hourly electric supply during seasonal shoulder periods by month. Shoulder summer hours are 11:00 

through 12:00, and 18:00. Shoulder winter hours are 9:00 through 11:00, and 17:00 through 18:00.  

5 The total electrical energy produced each day on average by month.  

 

Time of use classes included base, peak, and shoulder and varied by season. Base 

load was defined by the local utility in the study area as the average expected demand. 

Therefore, the installed PV’s contribution to base load was represented as the average 

hourly output between 9:00 and 18:00 for any given day throughout the entire year. An 

important distinction in defining time periods was between a specific time (such as 18:00 

o’clock, with a 60-second duration) and an hour class (18, with a 60-minute duration). 

For the contribution to base load on the average day, the time period between 9:00 
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o’clock and 18:00 o’clock does not include production during the 60-minute hour period 

between 18:00:00 and 18:00:59. Rather it constitutes production within the 9-hour time 

span between 9:00:00 and 17:59:59. This distinction applies to all temporal references for 

time-of-use analysis.  

Peak load was defined as the periods of maximum load in a given day. The local 

utility in the study area defined peak demand hours as between 13:00 and 17:00 in the 

summer, and 6:00 until 8:00 in the winter. A farm’s contribution to peak load was 

calculated as the average hourly output for all hour classes within those periods. Shoulder 

loads were defined as the transitional demand between average (base) load and maximum 

(peak) loads. The local utility classified shoulder hours as 11:00 through 12:00 and 18:00 

through 19:00 in summer, and 9:00 through 11:00, and 17:00 until 18:00 in winter. (The 

utility DEP included the hour of 19:00 in winter shoulder periods, however these were 

not included in calculations due to a lack of production). A farm’s contribution to 

shoulder load was calculated as the average hourly power output during each hour class 

within those periods. Lastly, a farm’s total PV energy production was considered. This 

was calculated as the sum of all power produced throughout a day.  

 

Estimation of Farm Performance with Peak Electric Power Production 

On a summer day between 13:00 and 17:00 a building oriented East/West 

provided a power output from 92 to 108 kW/hr in the summer season. This orientation, 

nor any other orientation, had a contribution to peak during winter months. A building 

oriented Northeast/Southwest peak load contribution ranged from 84 to 104 kW/hr in 
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summer. A building oriented Northwest/Southeast provided the least electric power as 

compared to a building with an East/West orientation using the same number of panels 

with a peak load contribution between 81 and 99 kW/hr in summer. Lastly, the 12% of 

buildings within the North/South orientation had a peak load contribution ranging from 

185 to 209 kW/hr in the summer season. The total panel area per building was 2316 m2 

instead of 1158 m2, resulting in the highest peak supply per building of any orientation.  

 

Estimation of Farm Performance with Shoulder Electric Power Production 

 

The shoulder period was defined as the hours from 11:00 to 12:00 and 18:00 to 

19:00 in summer, and from 9:00 to 11:00 and 17:00 to 18:00 in winter.  The buildings 

oriented East/West had shoulder contributions ranging from 20 kW/hr for the average day 

in January to 64 kW/hr for the average day in June. Buildings oriented 

Northeast/Southwest had shoulder contributions ranging from 11 kW/hr for the average 

day in December to 56 kW/hr for the average day in July. The buildings oriented 

Northwest/Southeast had shoulder supply that ranged from 14 kW/hr for the average day 

in January to 53 kW/hr for the average day in August. North/South oriented buildings had 

contributions to shoulder periods that ranged from 22 kW/hr for the average day in 

December to 114 kW/hr in May. This supply was 10% larger than the shoulder supply of 

East/West buildings in winter months, and 78% larger in summer months.  
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Estimation of Farm Performance with Baseload Electric Power Production 

Baseload was defined as the average electric power required by the customers in a 

day or season, and a roof-mounted PV array’s contribution to baseload was calculated as 

the average electric power produced from the hour beginning at 9:00 till the end of the 

hour beginning at 17:00. The East/West oriented buildings had an average daily baseload 

contribution ranging from its lowest output of 33 kW/hr in January to its highest output 

of 93 kW/hr in August. In comparison, the average daily baseload contribution for 

buildings that were oriented Northeast/Southwest ranged from 20 kW/hr in January to 88 

kW/hr in August. Buildings that were oriented Northwest/Southeast had an average daily 

baseload contribution ranged from 25 kW/hr in January to 85 kW/hr in August. Lastly, 

the buildings within the North/South orientation had 19-89 per 1000m2, or 39 to 178 for 

both arrays.  

Estimation of Farm Performance with Daily Electric Energy Production 

A building’s total energy supply per day was calculated as the sum of all power 

produced throughout a day. For the building oriented East/West, the total energy 

produced on an average day ranged from the lowest amount of 298 kWh in December to 

the highest amount of 895 kWh in June. This was the highest of any single-array 

building. The second highest daily average energy production was from buildings 

oriented northwest/Southeast. The total energy produced on an average day ranged from 

222 kWh in January to 782 kWh in August. The lowest energy production was on 

buildings oriented Northeast/Southwest, where total energy produced on an average day 

ranged from 172 kWh in December to 818 kWh in August. The buildings oriented 
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North/South had the highest output per building, with total energy produced on an 

average day ranging from 341 kWh in December to 1646 kWh in June. This summer 

energy output was over 80% higher than the next largest summer daily energy output by 

buildings oriented East/West.  

Solar Electric Power Production from Roof Mounted PV Arrays on Poultry Farms in a 

Region 

 

If the fuel source for this energy production were the typical fossil fuel, or even 

hydroelectric, then the facility output would only be a function of installed equipment. 

These calculated E results were based on modeled I data, which was heavily sensitive to 

atmospheric assumptions. In reality, a seasonal rain shower or afternoon thunderstorm 

was common in the Southeastern United States, making the fuel availability in the 

context of solar highly variable. Therefore, the range of estimated hourly supply as farm 

performance were averaged to determine realistic estimates representative of hourly and 

monthly production across a season. The key summary power supply metrics of seasonal 

base, peak, and shoulder contributions were averaged for each orientation. These 

summary values were then normalized by area to accurately scale power supply 

independent of variation in building size or orientation. The seasonal averages are given 

in Table 3.22.  
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Table 0.14 Average hourly electric supply for each building orientation by 

seasonal time of use category.  

  Average Hourly PV Supply (kW/1000m2) 

 E/W NW/SE NE/SW N/S 

Average summer peak power1: 99 90 94 95 

average shoulder summer2: 56 50 53 53 

average shoulder winter3: 24 22 19 19 

average summer power4: 85 77 81 81 

average winter power5:  45 41 35 34 

sum annual energy 

(kWh/1000m2/yr)6: 220,279 200,845 196,576 197,406 
1 The average hourly electric supply between April 1st and September 30th each day between 13:00 until 17:00.  

2 The average hourly electric supply between April 1st and September 30th each day between 11:00 through 12:00, and 

18:00.  

3 The average hourly electric supply between October 1st through March 30th each day between 9:00 through 11:00, and 

17:00 through 19:00.  

4 The average hourly electric supply between April 1st and September 30th each day between 9:00 and 17:00.  

5 The average hourly electric supply between October 1st through March 30th each day between 9:00 and 17:00. 

6 The total electrical energy produced in a year 

 

The key summary power supply metrics are given for each season and orientation,  

expressed as kW/hr/1000m2 and sum annual energy expressed as kWh/1000m2/yr.  

 

Estimation of Farm Performance with Peak Electric Power Production 

On a summer day between 13:00 and 17:00 a building oriented East/West 

provided an average power output of 99 kW/hr in summer. The 12% of buildings that 

were oriented North/South had the second highest power supply per unit area of any array 

at 95 kW/hr. With twice the panel area per building, the average peak load contribution 

for two arrays would be 190 kW/hr in the summer season. A building oriented 

Northeast/Southwest peak load contribution averaging 94 kW/hr in summer. A building 

oriented Northwest/Southeast provided the least electric power as compared to a building 

with an East/West orientation using the same number of panels with an average peak 

contribution of 90 kW/hr in summer.  
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Estimation of Farm Performance with Shoulder Electric Power Production 

The shoulder period was defined as the hours from 11:00 to 12:00 and 18:00 to 

19:00 in summer, and from 9:00 to 11:00 and 17:00 to 18:00 in winter.  The buildings 

oriented East/West had shoulder contributions of 24 kW/hr in winter and 56 kW/hr for in 

summer. Buildings oriented Northeast/Southwest had slightly less shoulder contributions 

of 22 kW/hr in winter and 50 kW/hr in summer. The buildings oriented 

Northwest/Southeast and North/South had a lower winter shoulder average of 19 kW/hr 

but a higher summer average supply of 53 kW/hr.  

 

 

Estimation of Farm Performance with Baseload Electric Power Production 

Baseload was defined as the average electric power required by the customers in a 

day or season, and a roof-mounted PV array’s contribution to baseload was calculated as 

the average electric power produced from 9:00 till 17:00. The East/West oriented 

buildings had an average daily baseload contribution of 45 kW/hr in winter and 93 kW/hr 

in summer. In comparison, the average daily baseload contribution for buildings that 

were oriented Northeast/Southwest were 41 kW/hr in Winter to 77 kW/hr in Summer. 

Buildings that were oriented Northwest/Southeast had an average daily baseload 

contribution ranged from 35 kW/hr in January to 81 kW/hr in August. Lastly, the 

buildings within the North/South orientation had only slightly less production at 34 

kW/hr in Winter and 81 kW/hr in Summer.  
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Estimation of Farm Performance with Daily Electric Energy Production 

A building’s total energy supply per day was calculated as the sum of all power 

produced annually. For the building oriented East/West, the total energy produced per 

year ranged from the lowest amount of 220,279 kWh/1000m2/yr . This was the highest of 

any single-array building. The second highest daily average energy production was from 

buildings oriented northwest/Southeast. The total energy produced on an average year 

was 200,845 kWh/1000m2. The lowest energy production was on buildings oriented 

Northeast/Southwest, where total energy produced on an average year was 196,576 

kWh/1000m2. Buildings in the North/South orientation produced an average 197,406 

kWh/1000m2 of array per year. Combining both productive array areas, the buildings 

oriented North/South had the highest output per building, with total energy produced on 

an average year of 398,811 kWh/1000m2. These averaged seasonal results help to scale 

power supply independent of variation in building size, orientation, or atmospheric 

conditions.  

 

Monthly Photovoltaic Supply for an Entire Farm 

An analysis of E, rooftop supply, was first scaled up onto an entire farm. This was 

done by multiplying E (kW/1000m2) power supply for buildings oriented East/West by 

1254 m2 of roof area for a building (A), and by 4 buildings per farm. Equations from 

Table 3.21 were used to average the hourly time-of-use metrics for the average day of 

each month. Then Equations from  Table 3.23 were used to further summarize the 

average monthly supply for each month in a season. This was done to determine single-
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season metrics of power supply of an entire farm similar to the process done for a single 

building. These results, given in Table 3.23, concisely communicate plant performance 

from hourly PV panel output on an average day of each month to the average hourly 

output per 6 months for a typical farm.  

Table 0.15 Hourly electric power output for an average day by month for an 

average farm1 with East/West orientation (ESRI, 2019)2.   

Time of Day 
Hourly AC Output Power (kW/farm) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

8:00     25 33 30 10     

9:00 56 49 62 83 127 155 137 106 77 49 61 55 

10:00 169 150 192 257 265 308 270 278 235 152 187 166 

11:00 265 249 323 433 398 454 396 450 395 256 298 260 

12:00 313 321 422 567 501 566 494 581 517 335 362 308 

13:00 303 353 475 638 558 630 550 652 581 377 366 300 

14:00 238 342 474 636 564 639 557 654 580 376 311 237 

15:00 132 290 419 562 518 591 516 586 514 333 209 134 

16:00 27 208 317 426 425 491 430 457 392 253 97 32 

17:00  119 185 249 298 353 311 288 232 149 44 3 

18:00  42 57 68 160 200 177 87 61 47 32  

19:00     49 66 59 10     

20:00     3 3 3      

Base3: 188 231 319 428 406 465 407 450 392 253 215 166 

Peak4: 0 0 0 502 473 541 473 527 460 0 0 0 

 Shoulder5: 98 122 164 267 277 322 282 282 243 130 124 97 

Energy (MWh 

/farm/day)6: 
1.50 2.12 2.93 3.92 3.89 4.49 3.93 4.16 3.58 2.33 1.97 1.50 

1 Typical farm is 4 houses oriented East/West with interior area of 2316 m2 and rooftop solar cell area of 1,067 m2. 
2 Daily solar energy values found with ArcGIS Pro’s Point Solar tool, calibrated with NOAA meteorological and solar 

radiation datasets  

3 The average hourly electric supply between 9:00 and 17:00 by month.  

4 The average hourly electric supply between April 1st and September 30th each day between 13:00 until 17:00. 

5 The average hourly electric supply between April 1st and September 30th each day between 11:00 through 12:00, and 

18:00.  

 The average hourly electric supply between October 1st through March 30th each day between 9:00 through 11:00, and 

17:00 through 19:00.  

6 The total electrical energy produced each day on average by month.  
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Using equations (Table 3.21) to average the time-of-use metrics for each season, 

the average baseload contribution ranged from 166 kW/hr in December to 465 kW/hr in 

June. Peak load contribution was 0 during winter seasons, and ranged from 460 to 541 

kW/hr in the summer season. Shoulder contributions ranged from 97 kW/hr in December 

to 322 kW/hr in May. The total energy produced on an average day ranged from 1.50 

MWh in December to 4.49 MWh in June. These ranges of average supply by time-of-use 

summary categories help to demonstrate the potential feasibility of an entire farm of 

poultry buildings functioning as distributed PV plants.  

Further averaging monthly supply from an entire farm (as with Table 3.23 for a 

single building) within a seasonal range was done to determine single-season metrics of 

power supply to concisely communicate plant performance. This equated to an average 

supply from an entire farm of 496 kW per hour during peak periods. This farm supplied 

an average 279 kW per hour during summer shoulder periods and 123 kW in winter 

shoulder periods. A typical farm also had a seasonal contribution to base load of 229 kW 

per hour each day in winter months and 425 kW per hour during summer months. Lastly, 

the average energy output on the typical farm was calculated to be 1,104 MWh over an 

entire year.     

The industry standard description of energy system size is known as nameplate 

capacity, which is representative of its maximum sustainable output performance. This 

standard measurement has the potential to be grossly misleading for renewable energy 

plants due to the significant disparity between the energy output potential of the 

equipment installed and the availability of fuel. A plant’s Capacity Factor (CF) is the 
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ratio of actual energy generated compared to the installed nameplate capacity. This takes 

into account resource availability factors such as cloudiness and sunlight duration. 

Average CF for solar plants range from 10-20% depending on region. In contrast, nuclear 

energy has an average CF of 90% (US EIA, 2019).  

Instead of determining a farm’s nameplate capacity and then a CF for the region 

of interest, a single descriptor was chosen based on the study’s intended purpose. Since 

the most critical need in this scenario of energy supply was SSM peak shaving, farms 

were categorized according to their corresponding peak supply. For the above example of 

an average farm, the single quantitative descriptor of size and performance was therefore 

a 496 kW/hr peaking plant.  

To further put this performance into perspective: a 4-house farm supplies 496 kW 

for each of the five hours within a day’s peak periods, for each 30.4 days of every month, 

for the 6 months in the summer season. That would result in an annual cumulative 

452,501 kWh of peak-shaving electricity from a single, typical farm in the study area. 

These results are indicative of the value a typical farm in the study area had when 

functioning as a PV plant. 
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Solar Electric Power Production from Roof Mounted PV Arrays on Poultry Farms in a 

Region 

The normalized power and energy metrics (Table 3.22) were scaled to each 

building on each farm. The study population totaled 499,486 m2 of productive solar cell 

area (A x fC). One hundred and thirty-nine buildings were oriented East/West and had a 

total collector area of 149,026 m2 (30% of total). Ninety-seven buildings were 

categorized as Northwest/Southeast, and had a total collector area of 111,518 m2 (22%). 

One hundred and fifteen buildings were categorized as Northeast/Southwest and had a 

total collector area of 124,850 m2 (25%). Forty-seven buildings oriented North/South had 

a total collector area of 114,092 m2 (23% of total).  

The farms in the study area were all described according to hourly average 

summer peak power supply. A map of all farms by peak performance is given in Figure 

3.6.  
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Figure 0.3 Spatial distribution of 88 aggregated PV plants.  
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 The study area as delineated with opaque shading. The location of each farm was 

marked in red. The graduated size was representative of average total PV rooftop power 

supply during summer peak hours.  

 The proximity study results (Figure 3.5) were reintroduced to combine farm 

location with the established summary power output during the annual average summary 

time-of-use categories. The distance of a farm from the transmission grid (km) was 

plotted relative to each power output metric (summer peak, winter and summer shoulder, 

and winter and summer base) separately. This covariate analysis of space and 

performance further organized the population of farms for better comparisons and 

prioritization of value to an energy supplier.  

 First, farm distance (km) was plotted relative to its average hourly summer peak 

power output. The results are given in Figure 3.7.  
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Figure 0.4 Plot of farm distance and average peak power produced on summer days 

between 13:00 and 17:00.  

  

Each farm is plotted according to its average peak power in summer. For reference, the 

qualities of the average farm were included in each graph. The spatial boundary of 3.28 

km that represents the average farm distance is on the plot as a vertical black line. The 

average summer peak power for the typical farm was 496 kW/hr/farm, denoted by a 

horizontal blue line. This illustrated how each farm performed relative to average farm 

individually, and organized the entire group into four groups, or quadrants. The Quadrant 

I had 32 farms and represented the farms that had less than average output and less than 

average distance. Quadrant II had 25 farms and represented farms that had above average 
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output, and below average distance. Quadrant III had 21 farms and represented farms that 

had above average distance and below average output.  Quadrant IV had 6 farms and 

represented farms that had above average distance and above average output.  The farms 

in Quadrand IV are likely the most valuable to an energy supplier.  

The results of the spatial distribution of each farm plotted relative to the average 

shoulder power output in summer and winter are given in Figure 3.8. 

 

Figure 0.5. Plot of farm distance and average shoulder power produced in summer 

between 11:00 and 13:00, and 18:00; and in winter from 9:00 to 11:00, then 17:00 

through 19:00.  
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This graph illustrated the average hourly contribution to shoulder load by farm 

(kW/farm) for the average day in each season. Each farm was plotted twice on the y-axis. 

Once by the calculated average shoulder summer production and again by average winter 

shoulder production. The typical farm average shoulder power supply was also given for 

reference. The typical farm was located 3.28 km from a transmission line, supplied an 

average 123 kW/hr/farm during winter shoulder periods (red), and 279 kW/hr/farm in 

summer shoulder periods (blue). As was to be expected, the shoulder contributions were 

less than what each farm could supply to peak loads. The axis scale in each graph were 

held constant for comparison between each key summary metric. The spatial distribution 

of farms plotted relative to average power output in summer and winter are given in 

Figure 3.9.  

 

Figure 0.6 Plot of farm distance and average baseload power produced per hour 

each day between 9:00 and 17:00.  
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This graph illustrated the average hourly contribution to base load for the average 

day (kW/farm) by season. Each farm was plotted twice, once by calculated average 

summer production and again by average winter production. The typical farm average 

power supply was also given for reference. The typical farm was located 3.28 km from a 

transmission line, supplied an average 229 kW/hr/farm in winter (red), and 425 

kW/hr/farm in summer (blue).  

The population of farms within in the study area were organized by performance 

and location relative to the average farm (Figure 3.7). The four quadrants represent the 

four combinations of relationship to the typical farm. The contributions of each farm in a 

quadrant category were totaled according to each of the key summary time-of-use metrics 

that were used to estimate a farm’s performance as a PV plant. The total contribution for 

each collective quadrant category to the five time-of-use summary farm output values are 

summarized in Table 3.24.  

Table 0.16 Summary output metrics for all farms by seasonal time-of-use and by 

quadrant.   
 QI QII QIII QIV 

Number of farms: 32 25 21 6 

Available roof area (m2): 115,399 217,262 80,310 68,382 

average summer peak power (kW/hr)1: 11,445 29,463 7,735 8,275 

average shoulder summer (kW/hr)2: 8,347 21,514 5,628 6,019 

average shoulder winter (kW/hr)3: 2,654 6,216 1,809 1,827 

average summer power (kW/hr)4: 9,105 23,414 6,141 6,558 

average winter power (kW/hr)5: 4,589 10,658 3,123 3,140 

sum annual energy (MWh/yr)6: 25.03 62.64 16.98 17.85 

Nominal capacity (kW/hr): 22,229 40,371 15,259 12,993 

Total distance (km): 42.3 36.2 97.1 25.0 

1 The average hourly electric supply between April 1st and September 30th each day between 13:00 until 17:00.  

2 The average hourly electric supply between April 1st and September 30th each day between 11:00 through 12:00, and 

18:00.  
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3 The average hourly electric supply between October 1st through March 30th each day between 9:00 through 11:00, and 

17:00 through 19:00.  

4 The average hourly electric supply between April 1st and September 30th each day between 9:00 and 17:00.  

5 The average hourly electric supply between October 1st through March 30th each day between 9:00 and 17:00. 

6 The total electrical energy produced in a year.  

 

Each quadrant group of farms had a total count, total available roof area (m2), 

average peak power (kW/hr), average shoulder summer (kW/hr), average shoulder 

contribution in winter (kW/hr), average contribution to base in summer (kW/hr), average 

contribution to base in winter (kW/hr), total annual energy produced (MWh/yr), the 

nominal capacity according to industry standards (kW/hr) and total distance (km) 

between all farms and the transmission grid. 

Quadrant I had the highest number of farms. However, Quadrant II had the 

greatest total solar cell area, and therefore the highest contribution to any single supply 

metric by over 50%. The 27 houses located furthest from the transmission grid (QIII and 

QIV) had a sum rooftop collector area of 142,383 square meters and 37.1 GWh of annual 

generation. The total amount of energy generated during summer and winter peak hours 

for these houses was 15.3 GWh.  The on-peak demand during summer for houses outside 

the 3.28 km boundary was 1.4 MW, while the potential on-peak supply to grid (on-peak 

reduction) was 27.1 MW.  

Another insightful variable was the analysis of total distance (km) between all 

farms and the transmission grid. As previously mentioned, the distance analysis was 

limited in its usefulness because it was not representative of the existing distribution 

network in place between the transmission grid and each farm. However, the 

measurement was still indicative of the spatial relationship between the two subjects 
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which provided an approximation of potential savings from line losses and infrastructure 

costs needed to supply energy over that distance. The 32 farms in Quadrant I had a total 

42.3 km of distance between farm and grid. The 25 farms in Quadrant II had a total 

distance of 36.2 km. The 21 farms in Quadrant III had a total distance of 97.1 km. The 6 

farms in Quadrant IV had a total distance of 25.0 km. Normalizing these two variables of 

distance (km) by farm (count) for each group, Quadrant I had a ratio of 1.3 km/farm, 

Quadrant II had a ratio of 1.4 km/farm, Quadrant III had a ratio of 4.6 km/farm, and 

Quadrant IV had a ratio of 4.2 km/farm. This demonstrated further value to all farms in 

Quadrant III, in which there are over three times the number of farms as Quadrant IV.  

Additionally, the category of nominal capacity (kW/hr) was calculated for each 

farm and totaled by quadrant. This industry standard measurement was included for 

comparison to the chosen metrics of plant performance by time-of-use categories. These 

impractical results reinforced the lack of clarity provided when defining a photovoltaic 

energy generation facility by the potential production output of the equipment installed.  

 

Estimation of Electrical Energy Use and Demand on Broiler Farms   

The calculated rooftop supply for the study area did not include energy use and 

demand during critical broiler house loads. These were primarily a function of facility 

ventilation and lighting systems. If the process of net metering were to apply to facility 

electricity loads, then only electricity generated in excess of farm demand would be 

useful for peak-shaving contributions to the grid.  
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Facility Energy Consumption 

The energy bills for 51 farms (122 houses) in SC were analyzed. These results 

were also normalized by respective building footprint and categorized by bird type 

(provided in Appendix C). The results of the broiler facility electricity consumption are 

summarized in Table 3.25. 

 

Table 0.17 Average broiler farm electricity consumption (kWh/100m2) (n = 41). 

Month Mean Max. Min. St.dev. C.V. (%) 

January 119 238 22 56 47 

February 107 265 21 46 43 

March 129 259 30 52 40 

April 135 367 18 75 56 

May 160 269 26 55 35 

June 218 582 5 135 62 

July 211 657 35 123 58 

August 244 475 58 111 46 

September 220 620 28 126 57 

October 165 353 26 85 52 

November 140 462 23 83 59 

December 110 276 33 53 48 

kWh/100m2/year  1946 3409 395 693 36 

 

 

Energy consumption increased on average during the first seven months to peak 

in August, and then decreased during the remaining 5 months. The average monthly 

consumption ranged from 107 kWh/100m2 in February to 244 kWh/100m2 in August. The 

range of average annual energy use was from 395 to 3,409 kWh per 100 square meters. 

The annual grand mean consumption for broiler facilities was 1,946 kWh per 100 square 

meters. The results of the broiler breeder facility electricity consumption are summarized 

in Table 3.26. 
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Table 0.18 Average broiler breeder farm electricity consumption (kWh/100m2) 

(n = 2). 

Month Mean Max Min St. Dev. C.V. (%) 

January 187 324 50 194 104 

February 181 320 43 196 108 

March 123 194 53 99 81 

April 194 209 180 21 11 

May 364 435 293 101 28 

June 456 512 400 79 17 

July 556 635 478 111 20 

August 583 669 497 122 21 

September 543 625 461 116 21 

October 395 446 345 71 18 

November 316 377 255 86 27 

December 220 292 149 101 46 

Annual 4120 4867 3372 1057 26 

  

Energy consumption increased on average during the first seven months to peak 

in August, and then decreased during the remaining 5 months. The range of average 

annual energy use was from 3,372 to 4,876 kWh per 100 square meters. The annual mean 

consumption was 4,120 kWh per 100 square meters. The average broiler breeder house 

consumed over twice as much electricity as the average broiler house. This is because 

breeder houses contain adult chickens which require more energy to climate control, as 

well as refrigerated storage for eggs. The results of the pullet facility electricity 

consumption are summarized in Table 3.27. 
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Table 0.19 Average pullet farm electricity consumption (kWh/100m2) (n =8). 

Month Mean Max Min std C.V. (%) 

January 86 169 20 45 52 

February 100 251 28 70 70 

March 111 285 38 75 68 

April 77 143 24 43 56 

May 101 181 58 41 40 

June 119 212 20 65 54 

July 197 354 40 106 54 

August 217 333 87 97 45 

September 199 385 76 103 52 

October 142 328 68 82 58 

November 105 173 35 44 42 

December 83 131 49 32 38 

Total 1535 2015 867 409 27 

 

 

 Energy consumption increased on average during the first seven months to peak 

in August, and then decreased during the remaining 5 months. The range of average 

annual energy use was from 867 to 2015 kWh per 100 square meters. The annual mean 

consumption was 1,535 kWh per 100 square meters. The average pullet house consumed 

less electricity than the average broiler house because pullet barns are stocked at a lower 

bird density and use a lower flock exchange rate.  

Facility Connected Load 

The energy consumption (kWh/mo) was used to determine the average collected 

load (kW/hr) for each farm. This was done by dividing the monthly consumption data by 

730.4 month-hours, which is the typical conversion number used by utility to define a 

monthly billing cycle. The results are given in Table 3.28.  
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Table 0.20 Average hourly poultry farm connected load (kW/100m2).  

Month Broiler (n = 41) Pullet (n=8) Broiler Breeder  (n=2) 

January 0.163 0.093 0.256 

February 0.149 0.100 0.248 

March 0.171 0.110 0.169 

April 0.186 0.089 0.266 

May 0.219 0.141 0.499 

June 0.306 0.171 0.624 

July 0.292 0.263 0.762 

August 0.344 0.307 0.799 

September 0.308 0.282 0.744 

October 0.224 0.209 0.541 

November 0.195 0.154 0.433 

December 0.148 0.115 0.302 

Total 2.704 2.031 5.643 

 

 The average hourly connected load for the 41 broiler facilities ranged from 0.149 

kW/100m2 in February to 0.308 kW/100m2 in August. The average hourly connected load 

for the 8 pullet facilities ranged from 0.089 kW/100m2 in April to 0.307 kW/100m2 in 

August. The average hourly connected load for the 2 broiler breeder farms ranged from 

0.169 kW/100m2 in March to 0.799 kW/100m2 in August. The annual total of the monthly 

average connected load was 2.7 kW/100m2for the broiler farms, 3.0 for pullet farms, and 

5.6 kW/100m2 for the broiler breeder facilities. These numbers were limited in their 

accuracy but were still useful in providing an approximate scope of average connected 

load for comparison to rooftop hourly supply.  

 

 

Connected Load to Estimate Farm Hourly Peak Demand in Summer 

The on-farm equipment inventory analysis was used to compare the rooftop 

power supply during peak periods more accurately to farm demand during peak periods. 
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Hourly farm loads during the most critical periods of peak demand were likely estimated 

to be the highest agricultural loads throughout a year. This was accomplished by 

collecting technical specifications for ventilation, lighting, and feeding systems at fifty-

eight poultry farms (239 houses) in SC. Building dimensions were also recorded. 

Average demand results were then normalized by building footprint (kW/hr/m2) and 

projected onto the entire building population to estimate average total load during peak 

demand periods in summer months.  The results are expressed in Table 3.29 as average 

demand for each electrical system and normalized by area.  

Table 0.21 Estimated average summer peak demand for poultry houses in SC based on 

installed equipment and energy consumption records.  

  demand (kW/1000m2)  

 average max min std n 

Electrical System:       

Tunnel Ventilation: 6.3 12.2 1.2 2.4 46 

Lighting: 1.2 3.5 0.1 0.9 33 

Feed/other: 0.6 1.4 0.2 0.2 58 

estimated summer peak demand 

for typical house1 (kW): 
19.0 39.7 3.4   

estimated summer peak demand 

for typical farm (kW): 
75.9 159.0 13.6   

1Typical farm is 4 houses with interior footprint of 2316 m2  

Out of 58 farms visited, 46 growers provided information on existing ventilation 

equipment installed (192 houses). The average estimated tunnel ventilation demand 

during summer peak was 6.3 kW/1000m2, ranging from 1.2 to 12.2 kW/1000m2. Thirty-

three growers provided information on existing lighting equipment installed (130 

houses). The average estimated lighting demand during summer peak was 1.2 

kW/1000m2, ranging from 0.1 to 3.5 kW/1000m2. All farms visited had feeding 
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equipment installed. The average estimated feeding load during summer peak was 0.6 

kW/1000m2, ranging from 0.2 to 1.4 kW/1000m2.  

Based on these results, the estimated average hourly demand during summer peak 

was calculated for a house of typical size. The average estimated total hourly connected 

load during summer peak was 19.0 kW per building, ranging from 3.4 to 39.7 kW. This 

was scaled up and repeated for an entire farm. The average estimated total hourly 

connected load during summer peak was 75.9 kW for an entire farm, ranging from 13.6 

to 159 kW. These solutions were used across the entire study area to estimate the average 

total load during peak demand periods in summer months for all farms as a function of 

square footage.  

 

Net Supply to Grid 

The calculated results for E, rooftop supply, were compared to the results of both facility 

connected load (kW) and energy consumption (kWh) within the context of the seasonal 

time-of-use categories. This provided a net-to-grid contributions for both power and 

energy on the typical farm. The summary output metrics and net to grid can be seen in 

Table 3.30.  
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Table 0.22 Net contribution to utility transmission grid for a typical farm1.   

 PV Supply Farm Demand2 Net to Grid  

average peak power (kW/hr)3:  496 82 414 84% 

average summer power (kW/hr)5: 425 21 404 95% 

average winter power (kW/hr)6: 229 21 208 91% 

sum annual energy (MWh/yr)7: 1,104 193 911 83% 
1 Typical farm is 4 houses oriented East/West with interior area of 2316 m2 and rooftop solar cell area of 1,067 m2. 
2 Demand takes into account T&D losses as 7%  

3 The average hourly electric supply for the average day between 13 and 18, averaged for each day April through 

September.  

4 The average hourly electric supply for the average day between 9 and 12, and 17 through 18; averaged for each day 

October through March.  

5 The average hourly electric supply for the average day between 9 and 18, averaged for each day April through 

September. 

6 The average hourly electric supply for the average day between 9 and 18, averaged for each day October through 

March. 

7 Total energy produced for an average year.  

  

  

The average power generated on the typical farm at peak hours was 496 kW/hr. 

The on-peak demand was estimated to be 82 kW/hr. This value was inflated by 7% to 

include the typical T&D losses and represent realistic facility demand. The potential 

contribution to peak demand reduction for a typical farm that uses net-metering would be 

414 kW/hr, or 84% of rooftop supply. The average net contribution to grid during 

summer months was 404 kW/hr (95%), and 208 kW/hr in winter months (91%). The total 

annual energy generation for an average farm was 1,104 MWh, with facility consumption 

only 193 MWh. The annual net to grid contribution for the typical farm as a peaking 

plant was 911 MWh, or 83%.   

These calculations were repeated for all 88 farms to determine the net 

contribution of all farms functioning as peaking plants to the distribution grid. The results 

are given in Table 3.31.  
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Table 0.23 Net contribution to utility grid for entire study area.   

 PV Supply Farm Demand1 Net to Grid 

average peak power (mW/hr)2:  59.2 7.6 51.6 87% 

average summer power (mW/hr)4: 47.0 2.1 44.9 96% 

average winter power (mW/hr)5: 22.3 2.1 20.2 91% 

sum annual energy (GWh/yr)6: 127.3 17.9 109.4 86% 
1 Demand calculations take into account 7% T&D losses  

2 The average hourly electric supply for the average day between 13 and 18, averaged for each day April through 

September.  

3 The average hourly electric supply for the average day between 9 and 12, and 17 through 18; averaged for each day 

October through March.  

4 The average hourly electric supply for the average day between 9 and 18, averaged for each day April through 

September. 

5 The average hourly electric supply for the average day between 9 and 18, averaged for each day October through 

March. 

6 Total energy produced for an average year.  

  

The average hourly summer peak supply was 59.2 MW/hr each day between 

13:00 and 18:00 for every day between April 1st and September 30th. The estimated 

hourly farm loads during the hours of facility peak load were 7.6 MW, which was only 

13% of the rooftop supply. This meant that a collective 51.6 MW/hr (87%) produced 

from all farms could be used to contribute to critical periods of peak demand for each 

hour between 13:00 and 18:00 for every day between April 1st and September 30th. 

Additionally, the sum of this total peak demand generated on all poultry house rooftops 

contributed was 45.4 GWh. 

The average hourly summer power contribution of all farms was 47 MW/hr for 

each hour between 9:00 and 18:00 for every day between April 1st and September 30th. 

The estimated hourly farm loads during the average day were 2.1 MW, which was only 

4% of the rooftop supply. This meant that a collective 44.9 MW/hr (96%) produced from 

all farms could be used to contribute to baseload for each hour between 13:00 and 18:00 

each day between April 1st and September 30th. 
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The average hourly winter power contribution of all farms was 22.3 MW/hr for 

each hour between 9:00 and 18:00 for every day between October 1st and March 31th. The 

estimated hourly farm loads during the average day were 2.1 MW, which was only 9% of 

the rooftop supply. This meant that a collective 20.2 MW/hr (91%) produced from all 

farms could be used to contribute to baseload for each hour between 13:00 and 18:00 

each day between October 1st and March 31th. 

Lastly, the sum annual energy generation from all farms in the study area was 

127.3 GWh. The estimated facility consumption was only 17.9 GWh, or 14% or supply. 

The annual net to grid was 109.4 GWh.  

These results demonstrate the significant benefits of meeting high, rural 

agricultural loads without distribution losses or infrastructure. These high net-to-grid 

percentages between 86 and 96% also demonstrate the substantial contributions that can 

be made to meeting demand of the surrounding rural community.  

  

DISCUSSION 

 

The solar irradiance values in this study are exceptionally conservative, possibly 

by as much as 40%. Many credible sources, including other NOAA and NREL models, 

give credence to potentially +1.5 kWh/m2/day for each azimuth orientation class. The 

results modeled by ESRI were chosen to prevent an optimistic bias that over-represented 

the potential success of a burgeoning technology. Additionally, it should be noted that the 

average rainfall for the study area was over twice that of the national average (O.  
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A regression analysis was done for the average power output in each season on 

each farm against its nominal capacity according to industry definitions. The results are 

given in Figure 3.10.  

 

Figure 0.1 Correlation between Farm PV peaking plant nominal capacity and 

average farm power supply during summer peak and winter shoulder periods.  

 

The slope of the line is the percentage of actual output relative to the technical 

potential of the electrical system. The average summer output is 53% of the nameplate 

capacity, and the average winter output is 25% of the nameplate capacity.  

Duke energy reported 53,240 South Carolina customers enrolled in annual and 

peak demand energy saving programs in 2017 (US EIA, 2018). The average residential 
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energy consumption in SC is 13,751 kWh/y. Gross annual farm energy supply is 

sufficient for 9,097 SC residents- or 7,793 net. Duke reported an estimated potential peak 

demand savings of 265 MW of electricity in 2017 and spent $9,336,000 for DSM 

incentives (US EIA, 2018). Actual measured peak-demand savings was only 0.5 MW 

(0.18%). Similarly, BREC reported 1.9 MW of installed nominal capacity between a 

collective 238 customers, yet only recorded a net 19.9 MWh back to the grid 2017. 

BREC’s recorded annual maximum peak demand, defined as the 60-minute interval 

which contains the highest sum of energy needed to satisfy a service area including 

losses, was 259 MW (the average peak demand is likely much lower). In addition to 

meeting the cost to supply high poultry farm loads, the average summer peak supply of 

all poultry farm rooftop PV is a total 37% peak-demand reduction for the local utility. 

Customer incentives for DSM can be substantially lower or provide a superior return on 

energy savings. The peak plant distribution will likely decrease T&D losses. The typical 

cost of land associated with solar will be replaced with a leasing agreement between the 

utility and farmer at the cost of a reduced electric rate or net metering. Other regular costs 

associated with PV DSM installation, such as permitting and certified technicians, can be 

internally supplied by a utility company. These economic benefits will be shared by both 

the utility company and the grower, allowing the poultry farmer a feasible method for PV 

applications (Dennis et al, 2016). Poultry houses consume minimal electricity for 

approximately ten weeks per year, allowing for unfiltered energy supply to the grid. The 

lifetime generating costs of solar electricity may decrease relative to conventional sources 
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of fuel and change the tipping point of solar technology adoption as a major energy 

supply contributor.  

CONCLUSION 

 

A cumulative 398 poultry houses in Oconee and Anderson Counties were 

analyzed for building dimensions, orientation, rooftop area, and rooftop slope to 

determine rooftop PV power and energy supply in light of facility consumption. (1) The 

typical farm consisted of four poultry houses, each 15.2 meters by 152.4 meters oriented 

East/West with a rooftop slope of 22.6º and a suitable rooftop area of 1,254 m2.  (2) 

These farms were grouped into 88 peaking plants with 499,485 m2 of productive solar 

cell collector area. The total annual solar irradiance striking that area was estimated to be 

677 GWh/yr, equal to 127.3 GWh (AC) of electricity. Seventy percent of this energy was 

generated during hours classified by a utility as above baseload (shoulder or peak). Total 

consumption for all poultry farms was only 17.9 GWh/yr, resulting in a net surplus of 

109.4 GWh (ac). More specifically, a single farm could produce an average of 496 kW/hr 

during critical peak periods, with 414 kW/hr being contributed as net-to-grid (83%). The 

average hourly summer peak power supply of all poultry farms was 59.2 mW/hr, while 

the coincidental farm summer peak demand was 7.6 mW/hr, resulting in a peak demand 

reduction potential of 51.6 mW/hr. Twenty-seven farms were located further than 3.28 

km from existing transmission lines, which would be the most impactful in peak demand 

reduction, the mitigation of T&D costs, and distributed energy supply to rural areas.  
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CONCLUSION I 

 

(1) A UAV captured 8,043 images at 139 poultry houses in Anderson and Oconee 

Counties to produce GIS data for solar energy applications, and (2) photogrammetric 

processing produced dense point clouds of each flight location for a total of 

1,626,284,298 points. Orthophotos of the study areas were generated from the acquired 

3D image sequences using Structure from Motion (SfM) techniques. (3) The actual 

building widths and lengths ranged from 10.8 to 184.0 m and the measurement error 

within the UAV-derived orthophotos was 0.69% on average. Building width measured 

error was 0.047 ± 0.13 m, or 0.32% mean error. Building lengths had a mean error of 

1.66 ± 0.48 m and 1.1% mean error. The actual building sidewall, side entrance, and peak 

heights ranged from 1.9 to 5.6 m and the measured error within the orthophotos was 

1.69% on average. Building heights had a mean error of 0.06 ±.04 m or 1.2% mean error. 

The higher vertical error was expected with the given flight parameters (non-oblique 

imagery), which was more suited for horizontal accuracy. (4) In contrast, satellite-derived 

orthomosaic images of the same building widths and lengths had a measurement error of 

-0.36%. Building lengths had a mean error of -0.46 ± 0.49 m or -0.30% mean error. 

Building widths had a mean error of -0.44 ± 0.14 m and -2.83% mean error. 

The results proved that using consumer-grade UAV’s and photogrammetric SfM 

could create accurate DSM and orthomosaics of a study area at efficient use of economic 

and temporal resources without the use of survey grade equipment or GCPs. When 

compared to the horizontal accuracy of readily available satellite imagery, the results 
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were mixed. The satellite-derived orthomosaic was more accurate on average for length 

predictions with a smaller average error. However, the UAV-derived orthomosaic images 

were more accurate for average width predictions. 

The the disparity in horizontal measurement accuracy between the compared 

remote sensing techniques was likely due to flight altitude and building shape. The 

rectangular building dimensions had an average length-to-width ratio of 10:1. The lower 

flight altitude of the UAV required 10 to 15 pictures to capture building lengths, and only 

1 to 3 photos for building widths. In contrast, the satellite field of view likely captured an 

entire building, if not an entire farm, in a single image frame. This would result in less 

stitching error in remodeling building length and may also explain the higher uniformity 

of error between building length and width measurements from satellite images.  

The satellite imagery had low cost and ease of access that allowed a convenient 

determination of structural orientation and planimetric dimensions. However, the UAV 

provided dependably current data, whereas the temporal accuracy of satellite imagery 

data was highly variable (sometimes ±12 months). The UAV-derived data was also 

useful for determining vertical dimensions, and therefore variables such as surface slope 

and aspect. Lastly, the UAV-derived data was more useful for absolute accuracy to 

establish true object positions in a geodetic coordinate system. This would be critical for 

analysis of spatial distribution or combining data with GIS data layers from other sources. 

With an average flight time of 13.5 minutes per farm area (2.5 ha), and an average GSD 

of 4.84 cm/pi, the results obtained from a relatively inexpensive UAV mounted camera 
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and image analysis demonstrated sufficient accuracy for planning and monitoring 

purposes in agricultural applications.  

 

CONCLUSION II 

 

A cumulative 398 poultry houses in Oconee and Anderson Counties were 

analyzed for building dimensions, orientation, rooftop area, and rooftop slope to 

determine rooftop PV power and energy supply in light of facility consumption. (1) The 

typical farm consisted of four poultry houses, each 15.2 meters by 152.4 meters oriented 

East/West with a rooftop slope of 22.6º and a suitable rooftop area of 1,254 m2.  (2) 

These farms were grouped into 88 peaking plants with 499,485 m2 of productive solar 

cell collector area. The total annual solar irradiance striking that area was estimated to be 

677 GWh/yr, equal to 127.3 GWh (AC) of electricity. Seventy percent of this energy was 

generated during hours classified by a utility as above baseload (shoulder or peak). Total 

consumption for all poultry farms was only 17.9 GWh/yr, resulting in a net surplus of 

109.4 GWh (ac). More specifically, a single farm could produce an average of 496 kW/hr 

during critical peak periods, with 414 kW/hr being contributed as net-to-grid (83%). The 

average hourly summer peak power supply of all poultry farms was 59.2 mW/hr, while 

the coincidental farm summer peak demand was 7.6 mW/hr, resulting in a peak demand 

reduction potential of 51.6 mW/hr. Twenty-seven farms were located further than 3.28 

km from existing transmission lines, which would be the most impactful in peak demand 

reduction, the mitigation of T&D costs, and distributed energy supply to rural areas.  
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Appendix A: Building Measurements 

 

Table A.1 Landing pad diameter measurement data (non-paired).  

Trial # Hand (cm) Agisoft (cm) 

1 74.45 74.5 

2 74.61 74.3 

3 74.45 74.3 

4 74.45 74.9 

5 74.61 73.8 

6 74.45 75.5 

7 74.61 75.1 

8 74.3 74.8 

9 74.61 75.2 

10 - 75.5 

11 - 75.7 

12 - 74 

13 - 74.7 

14 - 74.7 

15 - 76.1 

16 - 75 

17 - 74.5 

18 - 75.1 

19 - 78 

20 - 72 

21 - 73.8 

22 - 74.5 

23 - 75.3 

24 - 74.9 

25 - 73.4 

26 - 73.6 

27 - 73.7 

28 - 75.4 

29 - 73.5 

30 - 75.1 

31 - 72.3 
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Table A.2 Building width measurement data from blueprints and UAV-derived 

orthomosaic.   

Trial # blueprint (m)1 UAV (m)2 

1 16.46 16.1856 

2 12.19 11.4766 

3 15.24 15.3716 

4 15.24 16.3716 

5 16.46 16.5356 

6 15.24 15.3416 

7 12.19 12.1856 

8 12.80 12.2746 

9 15.24 15.3906 

10 15.24 15.3866 

11 15.24 15.2476 

12 15.24 15.2526 

13 15.24 15.3566 

14 10.97 10.9166 

15 15.24 15.2106 

16 15.24 15.1626 

17 15.24 15.1476 

18 16.46 16.3246 

19 15.85 15.1296 

20 12.19 11.8406 

21 15.24 15.0306 

22 15.24 15.1046 

23 15.24 14.9746 

24 15.24 16.2026 

25 12.19 12.1576 

26 15.24 15.1516 

27 15.24 15.0776 

28 15.24 14.9386 

29 15.24 15.0786 

30 15.24 15.2906 

31 15.24 15.2436 

1 Converted from imperial (blueprint ft x 0.3048 m) 

2 Corrected for roof overhang (Wi - 0.9144 m) 
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Table A.3 Building length measurement data from blueprint and UAV-derived 

orthomoasic.   

Trial # blueprint (m)1 UAV (m)2 

1 152.40 151.3931 

2 114.30 113.1521 

3 152.40 151.0331 

4 152.40 151.4011 

5 152.40 151.2161 

6 152.40 151.1731 

7 160.02 159.6251 

8 153.62 153.6801 

9 152.40 152.1931 

10 152.40 151.9161 

11 152.40 150.5581 

12 152.40 150.6891 

13 154.23 153.8241 

14 129.54 129.0331 

15 152.40 151.2721 

16 182.88 183.3881 

17 152.40 150.8931 

18 152.40 149.2181 

19 137.16 134.8751 

20 161.54 156.8641 

21 152.40 148.6431 

22 152.40 151.7481 

23 152.40 149.3871 

24 152.40 149.1921 

25 152.40 150.7671 

26 152.40 148.9271 

27 152.40 148.9661 

28 152.40 149.3481 

29 152.40 149.3911 

30 152.40 151.8181 

31 152.40 151.3811 

1 Converted from imperial (blueprint ft x 0.3048 m) 

2 Corrected for roof overhang (Li - 0.6096 m) 
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Table A.4 Building height measurement data.   

Trial # Hand (m) Agisoft (m) 

1 3.23 2.93 

2 2.44 2.44 

3 2.21 2.29 

4 1.92 1.86 

5 2.23 2.32 

6 2.13 2.07 

7 2.36 2.16 

8 2.44 2.35 

9 2.44 2.32 

10 2.69 2.64 

11 2.72 2.60 

12 2.21 2.10 

13 2.13 2.11 

14 2.26 2.22 

15 2.25 2.26 

16 5.74 5.55 

17 5.66 5.61 

18 4.40 4.45 

19 5.15 5.27 

20 5.15 5.46 

21 5.49 5.33 

22 5.41 5.24 

23 5.16 5.02 

24 5.13 5.02 

25 5.38 5.14 

26 5.38 5.16 

27 4.75 4.49 

28 4.70 4.75 

29 2.77 2.90 

30 2.77 2.55 

31 2.18 2.09 

32 2.21 2.24 

33 2.24 2.09 

34 2.29 2.38 

35 2.90 2.68 

36 2.92 2.80 

37 2.26 2.40 

38 3.34 3.40 

39 2.21 2.24 
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Table A.5 Building width measurements from blueprint and Satellite-derived 

orthomosaic. 

Trial # Blueprint (m)1 Satellite(m)2  Trial # Blueprint (m) Satellite (m) 

1 17.37 16.41  36 16.1544 16.1 

2 17.3736 15.96  37 16.1544 16.32 

3 17.3736 16.65  38 16.1544 16.47 

4 17.3736 16.23  39 16.1544 17.15 

5 17.3736 15.48  40 16.1544 13.9 

6 17.3736 16.29  41 16.1544 17.19 

7 13.1064 12.84  42 16.1544 16.09 

8 11.8872 11.86  43 16.1544 15.01 

9 13.1064 13.38  44 16.1544 13.98 

10 16.1544 16.74  45 16.1544 17.68 

11 16.1544 16.05  46 16.1544 18.01 

12 16.1544 17.59  47 16.1544 18.08 

13 16.1544 17.89  48 16.1544 18.15 

14 16.1544 16.54  49 11.8872 11.94 

15 16.1544 16.12  50 11.8872 13.83 

16 16.1544 16.41  51 11.8872 11.93 

17 16.1544 16.57  52 16.1544 16.56 

18 16.1544 17.53  53 16.1544 16.45 

19 17.3736 18.41  54 16.1544 16.53 

20 17.3736 18.17  55 16.1544 16.81 

21 17.3736 18.05  56 16.1544 16.82 

22 17.3736 18.25  57 16.1544 18.53 

23 11.8872 12.24  58 11.8872 12.49 

24 11.8872 12.54  59 11.8872 12.79 

25 13.1064 13.41  60 16.1544 16.15 

26 13.1064 13.84  61 16.1544 16.93 

27 16.1544 16.49  62 16.1544 17.45 

28 16.1544 16.51  63 16.1544 16.88 

29 13.1064 13.76  64 16.1544 16.74 

30 13.1064 13.22  65 16.1544 17.01 

31 13.716 12.96  66 16.1544 18.06 

32 13.716 13.78  67 16.1544 18.21 

33 13.716 14.35  68 16.1544 18.4 

34 13.716 13.11  69 16.1544 16.98 

35 16.1544 17.52  70 16.1544 16.74 
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Trial # Blueprint (m) Satellite(m)  Trial # Blueprint (m) Satellite (m) 

71 16.1544 17.44  106 16.1544 16.54 

72 13.1064 12.97  107 16.1544 16.94 

73 14.6304 14.75  108 13.1064 13.45 

74 16.1544 16.94  109 13.1064 13.55 

75 16.1544 16.42  110 13.1064 13.43 

76 16.1544 17.01  111 13.1064 13.07 

77 16.1544 16.54  112 13.1064 13.2 

78 16.1544 16.52  113 13.1064 13.04 

79 17.3736 19.36  114 16.1544 16.07 

80 17.3736 17.88  115 16.1544 16.17 

81 17.3736 19.11  116 16.1544 16.89 

82 17.3736 16.24  117 16.1544 16.44 

83 17.3736 17.25  118 16.1544 15.98 

84 17.3736 16.98  119 16.1544 15.87 

85 17.3736 17.56  120 16.1544 16.77 

86 16.764 16.69  121 16.1544 15.98 

87 16.764 16.54  122 16.1544 16.45 

88 16.764 16.99  123 16.1544 17.1 

89 16.764 17.21  124 16.1544 16.33 

90 13.1064 13.34  125 16.1544 16.38 

91 13.1064 13.55  126 16.1544 16.29 

92 16.1544 16.45  127 16.1544 16.87 

93 16.1544 16.79  128 16.1544 16.155 

94 16.1544 17.46  129 16.1544 16.34 

95 16.1544 17.21  130 16.1544 18.01 

96 16.1544 16.99  131 16.1544 18.08 

97 16.1544 17.03  132 13.1064 13.25 

98 16.1544 18.01  133 13.1064 13.01 

99 16.1544 16.55  134 16.1544 16.99 

100 16.1544 16.31  135 16.1544 17.24 

101 16.1544 16.82  136 16.1544 15.89 

102 16.1544 16.96  137 16.1544 16.18 

103 16.1544 16.73  138 16.1544 16.57 

104 16.1544 17.03  139 16.1544 16.39 

105 16.1544 16.87     

1 Converted from emperial (blueprint ft x 0.3048 m) 

2 Corrected for roof overhang (Wi - 0.9144 m) 
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Table A.6 Building length measurements from blueprint and Satellite-derived 

orthomosaic. 

Trial # Blueprint (m)1 Satellite(m)2  Trial # Blueprint (m) Satellite (m) 

1 153.01 153.76  36 153.01 153.46 

2 153.01 152.91  37 153.01 153.65 

3 153.01 153.34  38 153.01 152.96 

4 153.01 153.39  39 153.01 152.73 

5 153.01 152.76  40 153.01 153.55 

6 153.01 152.06  41 153.01 153.19 

7 114.91 114.88  42 153.01 152.88 

8 130.15 129.64  43 153.01 152.43 

9 122.53 122.46  44 153.01 153.37 

10 153.01 153.53  45 153.01 152.47 

11 153.01 153.32  46 153.01 153.09 

12 153.01 155.67  47 153.01 153.59 

13 153.01 155.25  48 153.01 152.04 

14 153.01 153.53  49 122.53 123.24 

15 153.01 153.03  50 122.53 123.33 

16 153.01 153.82  51 122.53 123.23 

17 153.01 152.72  52 122.53 124.1 

18 153.01 153.16  53 153.01 153.68 

19 153.01 153.56  54 153.01 153.81 

20 153.01 152.94  55 153.01 159.06 

21 153.01 153.09  56 154.84 156.03 

22 153.01 152.41  57 154.84 153.02 

23 122.53 125.71  58 130.15 130.21 

24 122.53 123.94  59 130.15 130.56 

25 122.53 123.41  60 153.01 152.8 

26 122.53 122.53  61 153.01 150.9 

27 153.01 153.25  62 153.01 152.3 

28 153.01 153.41  63 153.01 153.42 

29 160.63 163.95  64 153.01 150.99 

30 160.63 162.99  65 153.01 151.97 

31 154.23 156.18  66 183.49 185.96 

32 154.23 155.74  67 183.49 188.01 

33 154.23 155.6  68 183.49 179.99 

34 154.23 156.44  69 183.49 184.5 

35 153.01 153.2  70 183.49 183.07 



 151 

Trial # Blueprint (m) Satellite(m)  Trial # Blueprint (m) Satellite (m) 

71 153.01 153.46  106 153.01 155.01 

72 153.01 153.65  107 153.01 153.02 

73 153.01 152.96  108 153.01 154.54 

74 153.01 152.73  109 153.01 153.39 

75 153.01 153.55  110 153.01 155.87 

76 153.01 153.19  111 153.01 153.69 

77 153.01 152.88  112 122.53 122.56 

78 153.01 152.43  113 122.53 122.38 

79 153.01 153.37  114 153.01 152.72 

80 153.01 152.47  115 153.01 152.25 

81 153.01 153.09  116 153.01 152.07 

82 153.01 153.59  117 153.01 152.49 

83 153.01 152.04  118 153.01 152.88 

84 122.53 123.24  119 153.01 153.3 

85 122.53 123.33  120 153.01 152.6 

86 122.53 123.23  121 153.01 153.01 

87 122.53 124.1  122 137.77 153 

88 153.01 153.68  123 137.77 152.19 

89 153.01 153.81  124 153.01 137.29 

90 153.01 159.06  125 153.01 138.12 

91 154.84 156.03  126 153.01 152.69 

92 154.84 153.02  127 153.01 152.97 

93 130.15 130.21  128 153.01 153.4 

94 130.15 130.56  129 153.01 153.67 

95 153.01 152.8  130 153.01 153.22 

96 153.01 150.9  131 153.01 153.4 

97 153.01 152.3  132 130.15 129.66 

98 153.01 153.42  133 130.15 129.72 

99 153.01 150.99  134 153.01 152.92 

100 153.01 151.97  135 153.01 152.84 

101 183.49 185.96  136 153.01 152.95 

102 183.49 188.01  137 153.01 153 

103 183.49 179.99  138 153.01 153.48 

104 183.49 184.5  139 153.01 152.66 

105 183.49 183.07     

1 Converted from emperial (blueprint ft x 0.3048 m) 

2 Corrected for roof overhang (Li - 0.6096 m) 
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Appendix B: Hillshade Analysis for Building Shading 

 

 

To determine the effect of solar shading on the area of interest an illumination 

analysis was done in ArcGIS Pro (ESRI, 2019) using the HillShade tool on each farm 

DSM. Illumination duration and intensity were modeled by establishing a position for a 

light source and neighboring topography to quantify illumination values of each cell. The 

location of the sun can be established using the solar azimuth and the solar altitude. The 

solar azimuth is the angular direction of the sun, measured from north in clockwise 

degrees from 0 to 360. The solar altitude is the slope or angle of the illumination source 

above the horizon. The units are in degrees, from 0 (on the horizon) to 90 (overhead). 

The exact solar path for the study area on the days of interest was ascertained with values 

recorded by the Astronomical Applications Department of the US Naval Observatory, as 

seen in Table B.1.  

Table B.1 Solar altitude and azimuth for Westminster, SC on 3/21/19 (US NO, 

2019).  

Time (h:m) Altitude (o) Azimuth (o, E of N) 

7:00 -7.7 84.2 

8:00 4.8 92.8 

9:00 16.9 101.7 

10:00 28.7 111.7 

11:00 39.6 124.2 

12:00 48.7 140.9 

13:00 54.6 163.3 

14:00 55.4 189.6 

15:00 50.8 213.5 

16:00 42.4 231.7 

17:00 31.9 245.2 

18:00 20.3 255.8 

19:00 8.3 264.9 

20:00 -4.2 273.5 
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The solar azimuth and altitude were recorded each hour for Westminster SC on 

March 21st, 2019. As can be seen in the Altitude column of the table, the transition from 

negative to positive represent the sun breaching the horizon between 7:00 and 8:00, and 

again between 19:00 and 20:00.  

Figure B.1 provides example simulation output, demonstrating the variation of 

solar location and intensity throughout the day as a function of Earth rotation.   

 

Figure B.1 Hillshade Analysis hourly output on a poultry farm on March 21st, 2019. 
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Seasonal variation within the year was modeled by running the hourly simulation 

on four key calendar days: March 21st, June 21st, September 21st, and December 21st. 

These four days represent the extremes of seasonal variation in daylight duration, solar 

intensity, and solar angle for all 365 Julien days. The hourly hillshade value for each 0.15 

meters on each of the four seasonal days was then averaged to produce a representation 

of annual illumination.  

The hillshade illumination values were reclassified into a binary output raster. In 

typical hillshade analysis applications, any hillshade value between 1 and 255 would be 

determined as “being illuminated” and reclassified as a value of 1. However, for the 

purpose of photovoltaics, a certain illumination intensity has to be met in order for the 

use of the technology to be justified. Seasonal illumination thresholds established by a 

function of daylight duration was used to classify a cell as being in sunlight, as seen in 

Table B.2. 

Table B.2 Reclassified hillshade values with seasonal solar illumination threshold 

(Melius et al, 2013). 

Day 
Illumination 

Threshold (%) 

Hillshade values 

Reclassified as 0 

Hillshade values 

reclassified as 1 

March 60 0 - 152 153 - 254 

June 70 0 - 178.5 178.5 - 254 

September 60 0 - 152 153 - 254 

December 50 0 - 127.5 127.5 - 254 

 

The hillshade value for each hour was classified into "in sun" or "in shade" based 

on the percentage of illumination. March requires 60% illumination (values > 152), June 

requires 70% illumination (values > 178), September requires 60% illumination (values > 

152), and December requires 50% illumination (values > 127). The reclassified binary 
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values for each cell of each hourly raster layer for were then averaged for each of the 

respective four seasonal days, illustrating the interannual variability of solar illumination, 

and can be seen in Figure 3.7. All four seasonal averages were again averaged together to 

represent an annual average, which can be seen in Figure B.2. 
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Figure B.2. Seasonal average illumination duration (hr).  
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Figure B.3 annual average solar illumination duration (hr).  
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Appendix C: Geospatial Data Processing Workflow 

 

The input data was converted to a DSM file with 0.15-meter horizontal resolution 

in ArcGIS Pro (ESRI, 2019). Martin Isenburg’s proprietary LAStools were used for the 

improved data conversion quality (Isenburg, 2018). The data conversion process can be 

seen in figure C.1.  

 

 
 

Figure C.1 Input data preprocessing GIS workflow with tool parameters.  

1. Project

•"las2las (project)" 

•Target: UTM Zone 17 
North

•Output: laz

2. Tile

•"LASTile"

•Tile size- 100

•Buffer- 0 

3. Ground (PRO)

•Uncheck "Is LiDAR 
data"

•Terrain- town/flat

•granulatiry -default

•compute heights above 
ground

4. Classify (PRO)

•Building planarity- default

• forest ruggedness-default

•ground offset- default

•output- LAS

5. Create New LAS 
Dataset

•check "update statistics"

6. Merge

•"LASMerge"

•output-.las"

7. LAS Dataset to 
raster

•values: elevation

•CAT: Maximum 

•Void Fill Method: 
Natural Neighbor

•Output: float data type

•sampling value: 0.15 
meters

•Z factor: 1
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Project 

The input data has a spatial reference associated with the 3-D WGS 84 geographic 

projection. The data is converted to a 2-D projected coordinate system for the study area 

called UTM Zone 17 North.  

Tile 

Due to the large nature of the point cloud files, the tiling tool splits the points into 

multiple files of non-overlapping squares of a specified size and format. The optimal tile 

size for this study was found to be 100 units, and no buffer was applied.  

Ground 

The ground tool is used for bare-earth extraction, which classifies points into 

ground and non-ground classes. Both the ground, height, and classify tools classify each 

point based on the specifications defined in the American Society of Photogrammetry and 

Remote Sensing (ASPRS). The distinction between these two classes is determined by a 

terrain function, which instructs the tool to expect the environment’s typical vertical 

object heights off the ground. For our study, the most accurate results were accomplished 

with the “town/flat” class, which uses a default step size of 10 meters. According to the 

developer’s instructions, it is important to specify the horizontal and vertical units to the 

tool. Lastly, computing the height above ground for each point allows you to skip the 

LASheight step.  

Classify 
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This tool classifies buildings and high vegetation, requiring the bare-earth points 

and point heights above ground to be previously established.  This step also converts the 

file type from compressed points (.laz) to uncompressed points (.las).  

Create New LAS Dataset 

This tool creates a triangulated surface type that allows for rapid read/display 

processes of point cloud data. Calculating statistics allows for quality assurance and 

control through a summary report, which is generated as an auxiliary text file (.lasx). 

Statistics include average point spacing, range, elevation, and intensity values, quantity of 

data points per class code, existence of RGB values, as well as point format ID, Project 

ID, and file source ID.  

Merge 

An orthomosaic image was constructed from the dense cloud in the WGS 84 

geographic projection. Mosaic blending was applied, and hole filling was enabled.  

LAS Dataset to Raster 

This last step is the conversion of the data file types from point cloud (.las) to 

raster (tif).  A binning interpolation technique was used to determine a cell’s elevation 

values of the output raster which includes a maximum value Cell Assignment Method 

and natural neighbor interpolation for Void Filling Methods. The sampling cell size value 

was specified at 0.15 meters output resolution. The data output type was 32 bit floating 

point. 
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Appendix D: Poultry Facility Energy Consumption Data 

 

Table D.1 Average pullet farm electricity consumption (kWh/100m2).  

 Farm 

 1 2 3 4 5 6 7 8 

January 124 20 169 83 55 87 71 82 

February 129 40 251 93 64 28 105 86 

March 64 38 285 108 92 76 110 112 

April 128 48 143 80 84 31 75 24 

May 181 86 69 58 91 74 134 111 

June 204 132 85 115 114 71 212 20 

July 263 40 79 254 234 123 354 227 

August 219 145 87 294 333 106 328 221 

September 114 163 107 267 385 76 224 254 

October 130 165 77 155 328 112 101 68 

November 125 127 70 83 173 35 137 92 

December 131 104 102 59 63 49 111 49 

Total 1812 1107 1523 1651 2015 867 1962 1344 

 

Table D.2 Average broiler farm electricity consumption (kWh/100m2).     

 Farm 

 1 2 3 4 5 6 7 8 9 10 

January 82 22 44 137 85 32 70 165 167 198 

February 83 21 59 78 90 64 167 103 118 130 

March 88 30 62 139 193 130 43 113 117 133 

April 110 18 55 115 93 221 134 157 150 170 

May 149 26 130 165 165 145 141 80 84 100 

June 149 43 58 324 307 511 5 260 252 272 

July 228 35 155 200 81 657 143 83 49 62 

August 162 58 103 434 373 394 217 112 105 224 

September 182 30 95 336 447 239 28 128 144 130 

October 113 58 77 164 163 288 50 114 105 122 

November 88 23 26 199 462 215 191 184 178 209 

December 83 33 73 135 81 155 69 53 58 53 

Total 1518 395 938 2427 2541 3053 1258 1553 1526 1803 
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Table D.3 Average broiler farm electricity consumption (kWh/100m2).     

 Farm 

 11 12 13 14 15 16 17 18 19 20 

January 163 104 52 238 99 194 148 69 185 138 

February 76 86 120 265 93 186 130 72 88 68 

March 114 103 98 239 188 183 147 78 259 129 

April 122 106 109 286 77 146 150 103 77 155 

May 106 126 232 266 129 216 196 111 269 127 

June 201 198 64 311 78 157 165 93 227 366 

July 61 177 137 261 125 309 261 102 202 156 

August 108 211 223 340 149 241 195 145 272 317 

September 48 154 177 292 162 283 220 96 146 146 

October 119 138 26 271 142 186 138 88 288 167 

November 156 112 84 148 85 216 170 69 86 146 

December 75 98 103 276 139 139 114 64 126 78 

Total 1348 1612 1427 3193 1464 2457 2034 1090 2224 1993 

 

 

Table D.4 Average broiler farm electricity consumption (kWh/100m2).     

 Farm 

 21 22 23 24 25 26 27 28 29 30 

January 235 203 56 102 93 130 44 82 88 187 

February 151 161 134 91 136 149 63 86 63 79 

March 194 198 52 114 172 150 80 112 100 206 

April 367 317 113 156 143 158 67 24 56 126 

May 164 151 163 238 232 216 108 111 145 209 

June 464 389 119 309 233 233 109 20 133 328 

July 260 353 322 285 246 328 115 227 142 209 

August 413 377 187 406 295 366 137 221 220 422 

September 367 620 316 249 325 211 152 254 190 144 

October 262 190 117 175 159 353 74 68 145 239 

November 343 220 146 87 165 129 77 92 134 145 

December 189 175 133 110 116 161 54 49 76 86 

Total 3409 3353 1858 2321 2316 2585 1080 1344 1492 2381 
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Table D.5 Average broiler farm electricity consumption (kWh/100m2).    

 Farm 

 31 32 33 34 35 36 37 38 39 40 

January 92 154 159 147 133 67 129 108 81 89 

February 114 163 149 178 88 142 90 89 93 53 

March 106 142 149 104 32 68 102 109 139 130 

April 103 167 110 242 128 121 108 257 118 69 

May 125 104 156 167 254 226 143 141 226 177 

June 159 199 204 268 217 60 165 582 116 137 

July 147 162 322 509 367 275 200 143 228 204 

August 228 123 206 184 340 330 174 475 108 141 

September 177 264 334 507 227 120 172 270 137 107 

October 116 85 341 172 313 340 173 150 77 104 

November 120 202 147 177 86 60 98 110 102 40 

December 111 105 212 196 122 63 123 59 76 73 

Total 1599 1872 2488 2850 2307 1872 1678 2495 1499 1322 

 

 

Table D.6 Average broiler breeder farm electricity consumption (kWh/100m2).  
 Farm 1 Farm 2 

January 50 324 

February 43 320 

March 194 53 

April 209 180 

May 293 435 

June 400 512 

July 478 635 

August 497 669 

September 461 625 

October 345 446 

November 255 377 

December 149 292 

Total 3372 4867 
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The comparison of energy consumption by facility type is demonstrated in Figure D.1.  

 

 

Figure D.1 Comparison of poultry facility energy efficiency by bird type.  
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