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ABSTRACT 

Advances in manufacturing capabilities, such as additive manufacturing, have expanded 

the design freedom given to engineers enabling more efficient designs through the use of 

complex geometries. However, determining the optimal geometric structure for a given set of 

performance criteria can be quite challenging when given such design freedom. One technique 

to do so is with the use of topology optimization methods, in which optimal material distribution 

within a given design space is determined. Many established topology optimization methods are 

developed such that a set of boundary conditions are prescribed to the design domain and 

remain fixed throughout the optimization process of determining the material distribution. This 

eliminates the ability to implement design dependent loading conditions, such as pressure 

loading, which requires tracking (following) the pressure surface as the geometry evolves during 

the optimization process. In this thesis, a level-set topology optimization method is 

implemented based on voxel elements on design domains in ℝ3 subjected to internal pressure 

loading, such as in the case of a non-spherical or cylindrical pressure vessel.  

Following a thorough literature review, a level-set function was chosen to define a crisp 

material/void boundary for identifying loading conditions caused by the applied pressure. This 

pressure loading is calculated as an applied traction across all material elements, excluding 

exterior surface nodes. This results in an equal and opposite cancelation throughout the 

material domain and leaving forces only at desired nodes along the material/void boundary. This 

implementation only requires material elements to be meshed, allowing for remeshing 

throughout the process to increase accuracy while saving computational cost by excluding void 

regions. Additionally, to improve convergence, the Lagrangian formulation of a penalty is 
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replaced by a method analogous to PID-control systems as the algorithm hones in on 

convergence.  

To test the effectiveness of the method and the practicality of designing an irregular 

pressure vessel, the gas storage tanks of the MK-16 rebreather for the US NAVY were 

redesigned within the current system’s geometric constraints in an effort to increase gas storage 

capacity. To do this, an outside domain geometry of the irregular shaped pressure vessel was 

defined, and not subject to change, while the optimization code was executed on the interior 

structure to minimize compliance subjected to an overall volume fraction constraint. This was 

done at various target volume fractions, and then stresses and compliance values were analyzed 

and compared to the existing pressure vessel of the MK-16. The findings of this research 

concluded that designing an irregular shaped pressure vessel is a viable means of increasing 

storage capacity although future work would need to be executed to manufacture and 

experimentally validate these findings.  
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 CHAPTER I: INTRODUCTION 

Since the 1950’s [1], computational analysis has been used by engineers to aid in the 

design process and provide rapid simulation results to support and substitute expensive and 

time consuming experimental results. Originally, computational analysis tools were primarily 

used for design confirmation to provide preliminary results before committing to testing, in 

efforts to limit overall testing time and budget. However, as the capabilities of computational 

analysis increased, so too did its influence on the design process. Combined with mathematical 

concepts in optimization, these analysis tools were quickly incorporated into the initial design 

and component generation phases of the engineering process as the field of computer-aided 

optimization emerged. Later, the evolution into topology optimization [2] has provided a 

powerful design tool for determining optimal material distribution for a given domain, 

conditions and objectives. This allows for structural configurations to be determined as opposed 

to size optimization determining a finite set of geometric design parameters. Increases in 

manufacturing capabilities, such as additive manufacturing, have given a practical use for these 

obscure structural geometries generated by topology optimization, increasing its popularity and 

usefulness. This in turn led to a growth in popularity and accessibility evident by many 

Computer-Aided Design (CAD) and computational analysis software tools now providing 

packages that allow engineers to implement topology optimization. These well-established 

topology optimization methods require a user to define a design domain with locked, 

unchangeable features along with static loading conditions. However, in many situations, a 

component experiences design dependent loading conditions which cause the boundary 

conditions of the analysis to vary with the material distribution, for example pressure loading. 

When a component is subjected to pressure loading, the resultant force is exerted in the surface 
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normal direction with a magnitude proportional to the surface area. Therefore, the locations as 

well as magnitudes of loading change as the material distribution changes. This thesis explores 

various ways to account for such loading conditions in topology optimization and provides a 

method to do so for 3 dimensional domains. 

1.1 Motivation  

One occurrence of pressure loading is in pressure vessels which act as a storage device 

to isolate gas or liquid mediums at a differential pressure from its surroundings. Due to its 

manufacturability and strength in symmetry, the majority of pressure vessels are round or 

spherical. Pressurized gas storage is common among life support systems to house a supply of 

breathing gasses to a single user or a group of users in a hostile environment. These systems are 

customary in the realms of marine diving, aerospace, fire & rescue, and mineral mining. The 

duration these devices can be used is heavily dependent upon the gas supply quantity. 

Therefore, it would be extremely advantageous to increase the carrying capacity of a pressure 

vessel. Evident from the ideal gas law, there are only two ways to accomplish this goal: increase 

storage volume, or increase storage pressure. Breathing gas pressure vessels store gasses at 

high pressures, typically ranging from 3,000 to 5,000 PSI [3]. Although research has been done 

to utilize composite materials to construct pressure vessels capable of holding 10,000-15,000 PSI 

[4], little research has been done to examine variations in size and shape because solid 

mechanics provides well-established formulations for hoop and longitudinal stresses in both 

cylindrical and spherical pressure vessels, the predominant shapes used.   

In 2017, diving and life support engineers at the Naval Surface Warfare Center-Panama 

City Division (NSWC-PCD), introduced a proposal to utilize additive manufacturing to construct 
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uniquely shaped pressure vessels [5]. Additive manufacturing enables the incorporation of 

internal supporting features as well as varying wall thicknesses that would be required in an 

irregular shaped pressure vessel. This development would allow engineers to design gas storage 

around the available space of a system’s geometric constraints. 

 Because of the recycling of breathing gasses, increased gas capacity has an even more 

drastic impact on duration when dealing with rebreather systems. One such device heavily used 

by the US NAVY is the MK-16 Closed Circuit Mixed Gas Rebreather, figure 1-1. This rebreather is 

worn like a backpack where the face shown in the left image faces the diver’s back.   

 

Figure 1-1: MK-16 Rebreather Front (left), back (right) 

To provide a real-world example for the design of an irregular shaped pressure vessel, the MK-

16 rebreather system, figure 1-1, is used to determine the effectiveness of such a development. 

Within the housing of the MK-16 backpack, there are four main components: the scrubber, the 
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diluent tank, the oxygen tank, and the Primary Electronics Assembly (PEA), which are each 

labeled in figure 1-2. The scrubber houses calcium hydroxide that chemically reacts with exhaled 

CO2 to allow for a portion of the exhaled breath to be inhaled. To account for the loss of gas in 

the breathing loop, or the increased pressure with depth, the PEA determines the appropriate 

amount of Diluent and Oxygen to add to the breathing loop from their respective storage tanks 

depending upon the partial pressure of oxygen in the system. Because the diver consumes 

oxygen based on their work rate, and metabolically requires a specific range of pO2, the fraction 

of 02 in the breathing loop varies. Thus, the use of both an oxygen tank and a diluent tank is 

required. [3] 

 

Figure 1-2: MK-16 Rebreather Components 
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 As seen in figure 1-2, there are large regions of unused space around the spherical 

pressure vessels. Additionally, the internal components of the rebreather are symmetric along 

the center line. Therefore, if an irregular pressure vessel was designed to replace one of the 

spherical pressure vessels, as long as it does not cross the centerline, it can be mirrored to 

replace the other storage tank. Below figure 1-3 shows the dimensions of the spherical oxygen 

tank and table 1-1 presents some of the important data for this existing pressure vessel that will 

be needed to compare results of the designed irregular pressure vessel. 

 

Figure 1-3: Oxygen Tank 
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Table 1-1:Oxygen Tank Properties 

Property Value 

Wet Volume 175±10 in.3 

Outer Diameter 7.2 in. 

Working Pressure 3,000 PSI 

Material Inconel 718 

 

With this information, an effective irregular shaped pressure vessel would be one that fits within 

the geometric constraints of the system provided by the MK-16 rebreather and supports a 

working pressure of 3,000 PSI while holding a wet volume of at least 175 in3.  

1.2 Research Objectives  

This thesis focuses on topology optimization with design dependent pressure loading in 

3-dimensional space by addressing the following research questions: 

RQ1. Can the interior geometry of an irregular shaped pressure vessel, subjected to internal 

pressure on its surfaces, be designed to efficiently store high pressure gas using topology 

optimization methods? 

A hypothesis is that yes, topology optimization can be used to design the internal structure of 

such an irregular shaped tank, that could then be manufactured using additive manufacturing. 

To solve this research question, a second research question can be identified: 
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RQ2. Can an efficient method be developed to track (follow) design dependent pressure loading 

conditions on the interior surface for 3-dimensional spaces for use in a topology optimization 

algorithm? 

A hypothesis is that by adapting a level-set topology optimization approach, it is possible to 

track changing pressure surfaces as the design evolves during the iterative design process. 

1.3 Thesis Outline 

 With the motivation and objectives introduced, the remainder of this thesis is broken 

into 5 chapters. Chapter 2 reviews current literature regarding topology optimization methods, 

their origins as well as possible methods of incorporating design dependent loading. Chapter 3 

breaks down the mathematical methodology used to achieve the research objectives. Chapter 4 

discusses how this established method was executed in MATLAB. Chapter 5 presents 

intermediate results that progress the problem from basic topology optimization problems to a 

simplified pressure vessel problem, then Chapter 6 presents the results from executing these 

established methods on the real-world design problem involving the MK-16 rebreather. Finally, 

Chapter 6 concludes the work that was done for this thesis and presents future work to expand 

upon. 
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 CHAPTER II: LITERATURE REVIEW 

 In an effort to develop the best approach to solve the design problem and accomplish 

the research objectives, a review of existing methods and their origin was conducted. This 

chapter is organized as follows: section 2.1 overviews topology optimization methods and their 

origins, section 2.2 dives further into the formulation of the level-set method and finally section 

2.3 addresses the incorporation of design dependent loading into topology optimization 

methods.  

2.1 Topology Optimization History and Overview 

 A major limiting factor to an engineer designing a particular component is the 

manufacturing techniques available and their associated cost. However, with recent advances in 

manufacturing techniques, notably additive manufacturing, the engineer can be given more 

design freedom allowing for increasing complexity in components.  Naturally, this increased 

complexity should be justified by serving some benefit and aid the engineer to improve a 

system’s performance. For this, optimization methods have proved to be useful tools to 

systematically aid engineers in achieving a design that maximizes or minimizes (whichever is 

desired) the design’s performance based on specified criteria. Due to many optimization 

processes’ iterative nature and complex performance criteria, these optimization methods have 

been coupled with computational analysis techniques into a field known as computer-aided 

optimization.  These computational techniques originally served the purpose of validating and 

analyzing designs, but, when tied to an optimization algorithm, they form a powerful design 

improvement and generation tool.  Shortly following the establishment of finite element 

methods by Turner et al. in 1955 [1], Lucien Schmit recognized the potential of coupling 
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optimization methods with finite-element analysis for structural design in the 1960’s [6].  Since 

then, researchers have developed and refined various methods of executing computer-aided 

optimization allowing for the development of efficient material distribution directly benefiting 

the designer’s objectives for the component or system. 

Computer-aided structural optimization has branched into numerous methods but can 

be distinguished by two root groups: first being shape and size optimization and the second 

being topology optimization [2]. Shape and size optimization focus on varying a relatively small 

number of parameters, such as dimensions or cross-sectional shape, of a design. Thus, shape 

and size optimization are typically fast and efficient at refining a design to improve its 

performance, but require an initial close-to-optimal design. Conversely, topology optimization is 

defined as a computational material distribution method for synthesizing structures without 

preconceived shape to optimally perform a specific task [7]. This offers innovative and high-

performance structures however with increased computational cost and design complexity. 

Topology optimization itself can be broken into 3 major categories: ground structure [8], 

homogenization methods [9] and level-set methods [10]. Each of these main categories differ in 

how they define the structure and thus their assignment of optimization parameters.  

As in any field of study, the development of methods to execute topology optimization 

is spurred by a desire to overcome existing obstacles. In the field of topology optimization, there 

are several recurring obstacles that constantly are addressed and form the root cause for each 

of these major categories of optimization to have been developed. Computational limitations 

have always been an issue but can be mitigated via simplifications, approximations, and creative 

use of resources. Although, this problem may always exist with the continuing pursuit of higher 
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accuracy, increased analysis complexity and larger domain sizes, technological advances have 

seriously aided the ability to push capabilities and allow for the use and development of 

methods previously thought impractical or even impossible. Other more pressing and 

challenging hurdles specific to the field include chattering, checkerboarding, mesh dependencies 

and initial conditions [11]–[13]. Chattering is the result of a large number of regions of a domain 

flipping back and forth between having material and not among successive iterations of the 

optimization procedure. This causes oscillating performances, lack of convergence and stalling 

of the algorithm. Checkerboarding occurs when a large region of the domain contains a 

patterned occurrence of material and void regions causing the result to become improper and 

not practical for manufacturing. The existence of these problems occurs from ill-possed problem 

formulation and implementation. Additionally, many of these algorithms seek to achieve 

consistent results regardless of starting points and domain meshing. These can be particularly 

challenging due to the nature of many gradient based optimization algorithms converging to 

local optima. Heuristic algorithms known for better achieving global minima and not stalling at 

local minima prove to be inefficient and impractical to use due to the number of design 

variables and the computational cost of objective analysis. However, with advances in 

technologies, there have been several uses of these optimization algorithms such as simulated 

annealing, and genetic algorithms [14]–[17]. On one hand, mesh dependency to some degree 

will always influence an optimized part’s topology as it is known that analysis accuracy is 

strongly influenced by component meshing. However, at a certain point, there is a diminishing 

return on accuracy versus mesh refinement, and at this point, topology algorithms seek to 

mitigate the effect of a mesh on their final results. To counteract all these common issues in 
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topology optimization, researchers have developed numerous creative means of implementing 

filtering, penalization, and regularization techniques within algorithms.   

2.1.1 Ground Structure Approach 

In a ground structure approach to topology optimization, the domain is divided into 

nodes, then each node is connected to all possible other nodes like a truss structure. That is, all 

node to node connections that do not directly overlay another node on their path. From here, 

the optimization algorithm determines which of these trusses are to stay and which are not 

needed [8], [18]. This has been done both binarily (i.e. on or off) or with continuous variables 

that represent the cross-section of each member.  Figure 2-1 below illustrates this concept for a 

cantilevered beam, the left depicts the initial setup with all node to node connections being 

made, then the right shows a later iteration after the optimization algorithm has removed some 

of the trusses. 

 

Figure 2-1: Ground Structure Approach Illustration 
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2.1.2 Homogenization Methods 

Introduced in the early 1980’s [19], homogenization theory parameterizes the geometry 

of microstructures within a macrostructure of interest. Recently this method has proven ideal 

for dealing with composites, lattice structures and any micro-structured materials where 

anisotropy comes into play [20]. However, homogenization methods were originally developed 

for periodic structures. They were quickly adapted for the objective of optimizing generic 

material distribution problems as an alternate to existing ground structure approaches. Upon its 

conception, the homogenization method did not prove extremely effective or practical due to 

the need to define and analyze geometry on a microstructure scale [20], [21].  This was the case 

until its oversimplification into density-based topology optimization which parameterizes the 

microstructure based solely on density [22].  This density is then directly correlated to the 

material’s modulus of elasticity.  The issue with these density-based optimization methods laid 

in the ill-posed nature of the optimization problem which was overcome by the revolutionizing 

paper by Bendsoe [23] as the popular Solid Isotropic Material with Penalization (SIMP) method 

began to be formulated. SIMP has since grown to be the most popular form of topology 

optimization due to its simplistic implementation and ability to generate complex geometries.  

Due to advances in additive manufacturing’s ability to create finely graded microstructures, a 

resurgence of conventional homogenization methods has occurred as it now has more practical 

applications [20].  

The design of the topology of a structure of interest consists in determining the optimal 

placement of material (locations of material and locations of void) within a domain of interest. 

This can be formulated into the 0-1 problem by being interpreted as, at a given spatial location, 

should there be material or not. This 0-1 problem formulation is the root problem statement of 
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all topology optimization formulations; however, this problem statement has some drawbacks. 

The largest drawbacks of these on-off natured problems is the lack of existence of a solution 

that satisfies optimality conditions and the results are sensitive to mesh discretization [24]. 

Researchers recognized that a solution to this problem was the consideration of a 

heterogeneous material allowing for the use of porous regions at the microscale. This effectively 

converts the on-off nature of the problem to a continuous design variable problem [21]. These 

micro-level porous regions are characterized by a chosen class of unit cells, each being defined 

by an appropriate number of design variables used to describe its specific geometry. Figure 2-2 

below depicts typical classes of unit cells used in homogenization methods including square with 

square holes, square with rectangular holes and rank-2 layered material. 

 
Figure 2-2: Typical Classes of Unit Cells. Left: Square with Square Hole,  

Middle: Square with Rectangular Hole, Right: Rank-2 Layered Material 

It should be noted that, for analysis purposes, these unit cells are evaluated as if they 

are infinitely small, but also infinitely many, and thus the microstructures alter the effective 

material properties of that region based on micromechanics of their geometry and defined 

parameters [24]. This allows for a correlation between parameters of the microstructure and 

the macro effective material properties to be formulated. From the figure above, the right 
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image depicts a rank-2 unit cell. This is defined as a rank-2 classification due to the usage of two 

scales where the overall unit cell and solid left portion is on one scale and the thickness of the 

flanges to the right are of another scale. The incorporation of microstructures allows designs to 

possess intermediate values for material properties allowing for a continuous gradient of 

performance as parameters change, as opposed to the discontinuous nature of an on-off 

problem formulation. However, at the final solution of an optimization process, the user 

typically wishes to have a design of exclusively solid or void regions for manufacturability 

purposes. Naturally, topology optimization problems are either subjected to a volume fraction 

constraint or have an objective to limit the volume fraction, both of which result in the seeking 

of the most efficient use of material. In the homogenization method, the use of microstructures 

and their effective material properties derived from micromechanics inherently results in 

intermediate regions between void and solid with microscopic inclusions having less than 

proportional rigidity [24], [25]. During the optimization process, large regions with porous 

microstructures could achieve a more efficient use of material distribution by evolving to the 

necessary subregions being completely solid and the others, completely void. Therefore, it is 

expected that the homogenization method will result in a solution with the majority of elements 

completely solid or completely void. 

 The following process outlines the typical flow of the implementation of the 

homogenization method for topology optimization. First, the class, or classes, of microstructures 

to be used must be chosen and then effective material properties can be calculated by forming a 

functional relation to microlevel design variables. Next, the problem must be formulated by 

defining the desired objective criteria and constraints, as well as the reference domain, loading 
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conditions and boundary conditions. Once all of this is established, optimization of the geometry 

may commence. In this iterative optimization procedure, analysis is run for the current design, 

the objective is computed, convergence is checked, and design variables are updated before 

returning to the start of this loop for the subsequent iteration. Finally, once the optimization 

process converges, post-processing can be done to interpret and evaluate the results [24]. 

 In the late 1980’s, Bendsoe explained how to implement a partial relaxation of these 

methods by restricting the homogenization method to a subclass of microstructures [26]. In this 

paper, Bendsoe still defines material distribution based on artificial composite material with 

microstructures just as the original homogenization method does; however, this paper opens 

the door to simplifications and modifications to the homogenization method to increase its 

practicality and ease of implementation. Shortly following this progression, researchers realized 

that, if the type of unit cell microstructure was limited to only one, the microstructures could be 

parameterized solely based on density as opposed to unit cell relative dimension parameters. 

The following year, Bendsoe published another paper [23] to further simplify the 

homogenization method. In this paper, Bendsoe proposes a means of directly relating 

intermediate density values to an effective modulus of elasticity for analysis via a power law as 

shown in the equation below. Where �̃�𝑖𝑗𝑘𝑙  and 𝐴𝑖𝑗𝑘𝑙  are the effective elasticity tensor and 

original solid material’s elasticity tensor respectively, while 𝜌 is the density fraction and P the 

power penalty, 

 �̃�𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝑘𝑙𝜌
𝑃 (2.1) 
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with typical power penalties lying between 2 and 7 [11]. To eliminate numerical artifacts and 

ensure the analysis is well conditioned for optimization, a completely void element is modeled 

as a very weak (orders of magnitude less) compliant material as opposed to having a modulus of 

elasticity of 0. This modifies the previous equation into the one shown below. Where Amin 

typically equals something along the lines of Aijkl*10-9. 

 �̃�𝑖𝑗𝑘𝑙 = (𝐴𝑖𝑗𝑘𝑙 − 𝐴𝑚𝑖𝑛)𝜌
𝑃 + 𝐴𝑚𝑖𝑛 (2.2) 

This expression to model an effective modulus of elasticity implicitly penalizes 

intermediate densities as it assigns less than proportional rigidity compared to material use. It 

has the same effect as original homogenization methods by allowing for a continuous function 

for structural rigidity while forcing converged solutions to possess mainly completely solid or 

completely void elements [22]. This relation of material cost to structural stiffness can be seen 

in the figure below where it is clear that intermediate values of density (not 0 or 1) will result in 

an inefficient use of structural rigidity. 
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Figure 2-3: Intermediate Density Versus Rigidity 

 Using this expression for material properties, Bendsoe’s paper [23] validates the 

concept by comparing these optimization results to those of classical homogenization methods 

using composites with voids. Simultaneously, Rozvany formulated and tweaked this concept to 

eliminate and mitigate other undesirable kinks common to all existing topology optimization 

methods. In his works [27], [28], Rozvany established the ‘Solid Isotropic Material with 

Penalization’ (SIMP) method for topology optimization. Since then, the SIMP method has grown 

to become the most common, robust, and utilized means of topology optimization. Similar to 

Bendsoe, Rozvany used intermediate densities to represent porous material modeled via a 

power law, but Rozvany added regularization techniques formalizing the method. 
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 Although the use of intermediate densities aids the algorithm’s characteristics, it 

remains ill-posed with common problems including checkerboarding and stalling in local 

minima. Since its inception by Rozvany, a large focus by researchers has been to generate 

effective regularization techniques. A common approach is the use of a density filter where the 

optimization variables are no longer directly the density values used in the power law for 

analysis but instead, a pseudo density is calculated based on the surrounding optimization 

variables [7]. These density filters take a radially weighted average of density values in a local 

neighborhood of elements. This type of filter can be implemented by employing the following 

equation. 

 �̃�𝑖 =
∑ 𝐻𝑖𝑗𝑗∈𝑁𝑖

𝑣𝑗𝑥𝑗
∑ 𝐻𝑖𝑗𝑗∈𝑁𝑖

𝑣𝑗
 (2.3) 

 Where �̃�𝑖 and 𝑥𝑗 are the pseudo densities used in analysis and the optimization design 

variables respectively, while 𝑣𝑗 is the given element’s volume. Additionally, 𝑁𝑖  identifies the 

element’s neighborhood of other elements and 𝐻𝑖𝑗 the radial weighting factor of each of those 

elements. Both can be defined as: 

 𝑁𝑖 = {𝑗: 𝑑𝑖𝑠𝑡(𝑖, 𝑗) ≤ 𝑟} (2.4) 

 𝐻𝑖𝑗 = 𝑟 − 𝑑𝑖𝑠𝑡(𝑖, 𝑗) (2.5) 

 Despite being the most common form of topology optimization, the homogenization 

and SIMP methods may have several drawbacks depending on the specified problem. Since 

these methods utilize a fictitious intermediate design state throughout the domain during the 

optimization process, they can make it difficult to identify boundaries. The identification of 
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boundaries may be important for applications such as geometry control, pressure loading, and 

component interactions. For these reasons, researchers pursued other methods of topology 

optimization to overcome these drawbacks for a given application.     

2.1.3 Level-Set Methods 

 The third major category of topology optimization methods is that of level-set methods. 

In 1988 mathematicians Stanley Osher and James Sethian published a paper [29] proposing a 

new method to tackle problems of moving boundaries and fronts implicitly. These types of 

problems were commonly found in the fields of fluid dynamics, computational geometry, and 

image processing. Prior to this development, many methods for boundary problems proved 

complex and computationally expensive. They typically involved a Taylor Series formulation or 

assigned a large number of points along a boundary, moved each point based on a velocity field, 

and then formed the moved boundary as the spline connecting each of the points’ new 

coordinates [30], [31]. This method proved cumbersome, particularly when boundaries 

expanded or shrunk, as this would result in the linear distance between defined points either 

separating and reducing accuracy, or converging, causing computational inefficiencies. This was 

typically resolved by redefining evenly spaced points along the boundary prior to the following 

iteration, adding additional computational burden. However, the largest issue was in the event 

of sharp corners, particularly when the front is moving inwards upon itself [29]. This can be seen 

in figure 2-4 below where the consecutive points cross and result in a discontinuous or 

undesired geometrical representation of the boundary.  
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Figure 2-4: Converging Corners in Moving Boundaries 

 The method proposed by Osher and Sethian avoids this problem by implicitly defining 

the boundary as opposed to a series of coordinate points splined together. Osher and Sethian 

termed their method as ‘Propagation of Surfaces under Curvature’ (PSC) in which a scheme was 

generated to follow an N-1 dimensional surface in a N dimensional space via a fixed Eulerian 

framework [29]. With this, the front no longer needs to be defined as a function nor a series of 

points. This method formulation evolved into what is known today as the Level-Set Method 

(LSM); in which a boundary, 𝛤, in ℝ𝑛 space is defined as an iso-contour of an evolving function, 

𝜑(𝑋), in ℝ𝑛+1 space known as the ‘Level-Set Function’ (LSF), where X is the ℝ𝑛 spatial 

coordinate [32]. In many cases, such as topology optimization, this boundary delineates the 

interface between two regions such as those containing material and those being void. To 

identify two regions using a LSF, one is defined as the region of the function above the iso-

contour and the other, the areas below. For shape optimization, the regions of interest in the 

design domain (𝐷) are the material domain (𝛺), void domain (𝐷 𝛺⁄ ), and the interface of the 

two (𝛤) [33]. Mathematically, the relation of these regions to the LSF is represented in equation 
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2.6 below and visually illustrated in figure 2-5. Note the iso-contour level 𝜑 = 𝑐 is held 

constant throughout the entire optimization process and typically taken as 𝑐 = 0.  

 {

𝜑(𝑋) > 𝑐 𝑋 ∈ Ω ′𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙′

𝜑(𝑋) = 𝑐 𝑋 ∈ 𝛤 ′𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′

𝜑(𝑋) < 𝑐 𝑋 ∈ (𝐷\Ω) ′𝑉𝑜𝑖𝑑′

} (2.6) 

 

Figure 2-5: Level-Set Method Visualization [34] 

 The use of level-set functions to define boundaries and regions has expanded to a wide 

variety of mathematical and engineering problems including fluids, thermal, electro-mechanical 

and electro-magnetic due to its inherent advantages in crisp boundary descriptions [34]. For 

these same reasons, in 1998 the LSM was suggested to be used in topology optimization as well 

[35]. Shortly thereafter, in 2000 two formulations of level-set based topology optimization were 
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published. Sethian and Wiegmann [36] developed their method using a finite difference 

mechanical model with evolutionary stress criterion to adjust their LSF throughout the 

optimization process. And the other paper by De Ruiter and Van Keulen [17], incorporated radial 

bases functions into their LSF formulation and utilized a genetic algorithm for their optimization. 

Noticing LSM’s close resemblance to shape optimization, Osher and Santosa [37] and Allaire [38] 

established a shape-sensitivity based framework that has become the most popular approach of 

a level-set based topology optimization formulation today.  

 Frequently, the update procedure and evolution of the LSF is done by propagating the 

front through a pseudo time dependent PDE known as the Hamilton-Jacobi equation. To do this, 

sensitivities are converted to a velocity field which is applied to the current level-set function to 

determine the subsequent iteration’s level-set function [34], [39] location. Fundamentally, this 

concept of LSMs only evolves boundaries, they may merge or split, but the method in this form 

does not allow for the nucleation of new holes, making LSMs merely shape optimization 

problems. This was the case until [40] where Allaire incorporated the use of topological 

derivatives via a reaction term to the Hamilton Jacobi Equation allowing for the nucleation of 

holes throughout the middle of the domain. The update procedure of a level-set based topology 

optimization algorithm is further explained in section 2.2.3. 

 As is the case for the homogenization and other topology optimization methods, several 

intrinsic issues arise when implementing the LSM for topology optimization. These result in the 

formulation being ill-posed, in the emergence of numerical artifacts, and in improper 

convergence behavior. To combat this, as in the case with other methods, the LSM requires 

regularization techniques. Numerous methods of implementing regularization have been 
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implemented and experimented on all phases and aspects of the LSM formulation for topology 

optimization and are further discussed in section 2.2. Limited research has been done, but 

regularization techniques have also been looked at as a means to allow the LSM to account for 

length-scale control and manufacturing constraints [41], [42].  

2.1.4 Topology Optimization Conclusion 

Since its inception as rudimentary shape and size design optimization, advances in 

analysis techniques and computational capabilities have spurred a rapid expansive research field 

for computer aided design. As these optimization methods were formulated and grew in 

capability, not only was an optimal size and shape able to be determined, entire structural 

formulation and part creation was possible as topologies of optimal designs could change [2]. To 

do so, researchers had to develop regularization methods to overcome the numerical issues 

related to the initial algorithm formulations which resulted in ill-posed problems, numerical 

artifacts, mesh dependencies and poor convergence behavior. The resulting topology 

optimization procedures enabled complex geometrical part creation. Although idealized as 

optimal, these parts still needed to be manufacturable. This spurred geometrical constraints as 

well as taking advantage of advances in manufacturing such as additive manufacturing [20], 

[41].  

Over the years, three main branches of topology optimization for structural members 

have distinguished themselves: ground structure approaches [8], [18], homogenization methods 

[20], [21], [24], and level-set methods [33], [34], [38], [39]. Ground structure approaches offer 

the least computationally demanding option with their simple structural representation as 

trusses connecting nodes. However, this method lacks geometric control compared to its 
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counterparts. The second approach, the homogenization method, modifies a domain at the 

microstructure level to allow for continuous values and performance behavior, aided by the 

well-posed nature of the method. The homogenization method was simplified into a density-

based approach by Rozvany [22] as it evolved into the most popular form of topology 

optimization used and known to date, SIMP. The final category of topology optimization is the 

Level-Set method which implicitly defines boundaries via a Level-Set function of a higher order 

domain. This allows for crisp boundary representations which can be advantageous depending 

upon the nature of the problem at hand. Due to its continuing progression, topology 

optimization has grown as a viable design tool that takes advantage of computational analysis 

capabilities as well as manufacturing techniques advances. 

It should be noted that each of these methods is developed for applications with 

constant loading conditions and boundary conditions with respect to the reference domain. 

Therefore, each would need to be subjected to modifications to be capable of handling 

situations in which these boundary conditions are changing. For example, in the case of a 

pressure loading situation, although the magnitude of the pressure may not change and would 

always be applied perpendicular to the boundary, 𝛤, the location of this boundary may be 

unknown and part of the optimization problem. Thus, the nodal force magnitudes and directions 

will change with every design change by the topology optimization. 

2.2 Level-Set Methods Formulation 

 The nature of topology optimization with pressure loading requires evolving or design 

dependent loading conditions as opposed to standard constant loading conditions. That is, at 

every iteration of the optimization process, the locations, directions and magnitudes of the 
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forces are subject to change based on the current geometric configuration. Due to the ability of 

the level-set method to provide crisp material boundaries throughout the optimization process 

and the nature of the current research objectives, a deeper investigation of this method was 

taken. The following section breaks down the process of implementing a Level Set Method 

(LSM) for topology optimization and various methods of executing regularization techniques to 

ensure the algorithm performs as desired. 

 Implementing a LSM for structural optimization simply just refers to the means of using 

a Level Set Function (LSF) to define the material/void boundary and distinguish regions of 

material within the domain. This leaves room for a great deal of flexibility in formulating a 

complete LSM for topology optimization. Regardless of this formulation, any LSM will be 

comprised of three major components namely the parameterization of the level-set function, 

the mechanical model, and the optimization procedure [34]. Each of these three tasks can be 

accomplished by a variety of means that each influence the performance, speed and 

effectiveness of the algorithm. It is up to the designer’s choice as to how these components are 

carried out. The following subsections describe further in-depth the methods found in the 

research that have been used to carry out each of these three components along with the pros 

and cons of each decision. As stated before, in its base form, any topology optimization method 

may be ill-posed, contain numerical artifacts and possibly have poor convergence behavior. In 

order to induce desired results from the formulated algorithm, regularization techniques must 

be implemented. These regularization techniques can be implemented across all three of these 

major components.  
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2.2.1 Level-Set Function Parameterization 

 The first major component the designer must chose to be able to implement a LSM is 

determining how the LSF is defined. The LSF defines the material distribution and boundary 

locations. Therefore, the parameters that define the LSF, s, become the optimization variables 

[10]. Thus, the LSF needs to be parameterized in such a way that the update procedure can use 

design sensitivities to modify the parameters of the LSF resulting in appropriate geometry 

changes. Typically, this parameterization is done by discretizing the domain and inserting an 

array of basis kernel functions each subject to a coefficient (design variable) controlling their 

magnitude. This discretization can position the kernels coincident or independent of analysis 

node points. The kernel functions are each a function of the spatial distance from the kernel’s 

centroid. The LSF itself is then computed as the summation of these kernels multiplied by their 

coefficient. This is represented in the equation below where 𝜑(𝑋, 𝑠) is the LSF value at spatial 

position ‘𝑋’ and current design variables ‘𝑠’ and 𝑁𝑖  refer to the particular kernel centered at 

position ‘𝑐𝑖’ and its associated coefficient ‘𝑠𝑖’. Researchers have used a variety of basis functions 

for LSMs including bilinear [33], [38], radial [43], [44] and spectral [45] basis functions due to 

their varying attributes in efforts to improve performance given the specific optimization task.  

 𝜑(𝑋, 𝑠) =∑ 𝑁𝑖(‖𝑋 − 𝑐𝑖‖)𝑠𝑖
𝑖

 (2.7) 

 For both linear basis functions and radial basis functions, the kernel equals 1 at its 

centroid position and goes to zero away from this location. Therefore, when inputted into 

equation 2.7 above, the design variable 𝑠𝑖  assigns the kernel’s maximum value, occurring at its 

centroid location. The difference between a linear basis function and a radial basis function is 

that, in a linear basis function, the function linearly approaches from 1 at its origin to 0 at an 
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assigned outer range of influence, whereas a radial basis function decreases non-linearly from 1 

based on the distance (or radius in 2D and 3D) from its origin. The range of influence of a radial 

basis kernel is controlled by a tuning parameter, α [43]. Figure 2-6 shows a 1-D example of both 

a linear and a radial basis function. Where a segment is discretized into 10 equally spaced 

sections and 9 kernels are positioned at x values 1 through 9 and, in this case, assigned 

coefficients 𝑠𝑖 = [1 3 4 5 4.5 5.75 6 5 2]. In this example, the linear basis 

function has a range of influence of 2 and the radial basis function has a tuning parameter of 

α=1.  

 

Figure 2-6: 1-D Basis Functions 
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 The range of influence of each basis function determines the size of the domain that is 

impacted by a given parameter to determine the resulting geometry. This influences the 

geometric control of the domain as well as the optimization performance. The smaller this 

influence is, the more control the algorithm will have on the geometry allowing for the creation 

of smaller feature sizes. However, this also limits the rate of convergence [44]. For example, if 

each kernel only influences up to the adjacent kernels, as in the 1-D linear basis function in the 

figure above, then the adjustment of each parameter can only displace the interface by a 

distance equal to the spacing between each kernel. On the other hand, if these kernels’ 

influences overlap, the algorithm can move the interface more between each iteration but 

cannot represent small variations and features along the iso-contour. Van Dijk, [34], categorizes 

the amount of influence into 3 categories: local [13], mid-range [43] and global [44] depicted in 

the figure below. The black dots show how many kernels, of the diagram, influence each 

position of the level-set function. Note that typically, in global basis functions, nearly all kernels 

will influence the entire domain to some degree, despite the figure only showing these four 

kernels.  

 

Figure 2-7: Ranges of Influence [34] 

Apart from linear and radial basis functions, other methods such as a spectral 

parameterization or a Boolean combination of moving shapes have been explored as well. A 

spectral parameterization of the level-set function utilizes a Fourier series where the coefficients 
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of the Fourier series are the optimization variables [45]. This method has proved beneficial for 

periodic structures but also results in coarse design resolution. In a Boolean combination of 

shapes, a series of shapes are scattered throughout the domain and the optimization variables 

define the positioning and height of each of these shapes, allowing them to translate 

throughout the domain [46]. Figure 2-8 below provides an illustration of these differing basis 

functions. 

 
Figure 2-8: Types of LSF Parameterization [34] 

When formulating a LSM for topology optimization, there are a great deal of options as 

to how the level-set function can be parameterized. This choice will determine how the 

optimization variables are defined, the rate of convergence, and the ability to define small 

feature sizes. Regularization can be added to the definition of the LSF in several ways. The 

design variables 𝑠𝑖  can be subjected to a filtering or smoothing scheme to prevent drastic jumps 
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and near discontinuities from forming. Additionally, because the structural geometry is only 

defined as the intersection of the iso-contour plane and the LSF, there may exist an infinite 

number of LSFs for a given geometry. Some may be steep, flat, oscillating or a combination in 

regions of the domain, which would negatively impact the movement of the boundary front. To 

prevent this from occurring, the LSF can be periodically reinitialized. To do this, the current 

values of the optimization variables are recalculated such that the geometry and iso-contour of 

the LSF are maintained [13], [43]. This stabilizes the optimization performance each iteration by 

maintaining a constant gradient along the boundary. The advantages and need for this will be 

further explained in the update procedure section (2.2.3). 

2.2.2 Geometry Mapping 

 Once the LSF has been established, its information has to be transferred to the analysis 

so that sensitivities and updates can then be found.  As mentioned previously, a fixed iso-

contour (typically c=0) of the LSF determines the interface of the geometry, and an assigned 

convention denotes which phase, material or void, is located above this contour. However, the 

decision comes in how this geometry is mapped and represented in the mechanical model. 

These decisions strongly influence the computational cost, accuracy of the structural model and 

the emergence of numerical artifacts. In Van Dijk’s review of LSMs for topology optimization 

[34], the author covers three major techniques to do this: a conforming mesh [47], [48], an 

immersed boundary technique [46], [49] and a density-based approach [2], [43]. These three 

methods are depicted in the following figure 2-9 and explained below. 
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Figure 2-9: Types of Geometry Mapping [34] 

 The first and most intuitive means to geometrically represent the LSF for structural 

analysis is to directly take the material region at a given design, discretize it, and re-mesh the 

geometry every iteration. This method provides the most accurate structural performance 

prediction for the given design [48]. This has proven to be essential for geometries containing 

sharp interfaces and optimization problems with stress constraints [39], [50]. However, a major 

downside to this method and the reason it is not used often is the additional computational 

burden it creates on the algorithm. Another mild drawback to this technique is the introduction 

of noise between iterations as the discretization is changing at every iteration.  

 The second method attempts to maintain as much of this accuracy while reducing the 

computational burden. This is done via an Immersed Boundary Techniques (IBTs), eliminating 

the need to completely re-mesh by maintaining a fixed discretization of the domain and only 

modifying elements along the boundary. As seen in figure 2-9, only elements that would be cut 

by the interface are reshaped to fit within the iso-contour where material would be. The most 

common method to implement this technique is to use the eXtended Finite Element Method (X-

FEM) [46], [49]. In this method, the integration bounds in computing the stiffness matrix for a 

boundary finite element are altered to only integrate over the material portions of the element. 



 

32 
 

This eliminates the void regions from being modeled as an artificially weak material, as is the 

case with density-based methods such as SIMP. This provides a more accurate model for stress 

concentrations. Additionally, geometry mapping using an IBT allows for the enforcement of 

boundary conditions directly along the interface [34]. Drawbacks to this method are that it 

introduces noise, particularly as an element along the boundary flickers between being on and 

off in the analysis. Furthermore, the algorithm may attempt to exploit poor discretizations 

resulting in ill-conditioning of the structural model. This can be remedied with smoothing and 

filtering of the LSF.  

 The final and most popular technique to represent a geometry provided by a LSF for 

analysis purposes is to perform a density-based approach [43]. This is quite similar to the SIMP 

method described in the Homogenization section (2.1.2), in that the discretization of the design 

domain is kept fixed and elemental density values are calculated as the fraction of the element 

within the material domain and then used to compute a proportional stiffness value. However, 

the major difference from the SIMP method is that only elements cut by the iso-contour of the 

LSF experience an intermediate density and all the other elements are either represented by the 

solid or void material.  Similarly to SIMP method, the void material is modeled by an artificial 

extremely weak material as to eliminate numerical issues [2]. This method is significantly more 

computationally efficient; however, it concedes some analysis accuracy.  

 Of the three methods described, both the conforming mesh and IBTs techniques result 

in a model with crisp black-and-white domains and boundaries, resulting in higher structural 

accuracy (needed for stress or sharp geometries) at the expense of added computational time. 
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The third method, the density approach, is extremely efficient and easy to implement, making it 

the most commonly used method.  

2.2.3 Update Procedure 

 Now that the LSF has been parameterized and the resulting geometry has been 

transferred to the mechanical model for analysis, the update procedure for subsequent 

iterations must be established so that an optimal design can be achieved. As with the LSF 

parameterization and geometry mapping, the update procedure can be executed in a variety of 

ways. The goal is to iteratively compute new optimization variable, 𝒔, such that the objective will 

improve and eventually converge to an optimal design. As the majority of these procedures do 

not search globally, most of the time, these optimal designs can only be claimed to be local 

minima or maxima. To improve the algorithm and prevent it from stalling at a suboptimal local 

minimum, various regularization and relaxation techniques are implemented.  

Within the realm of topology optimization, there are numerous objectives and 

optimization problems that can be formulated depending on the user’s goals. Additionally, there 

are various types of update information that can be used and tied to a method for calculating 

new design parameters. Collectively these three aspects form the update procedure, and each is 

briefly discussed below. 

 First, the desired objective must be established. This formulates the optimization 

problem statement which has to be driving the optimizer subject to defined constraints. For 

topology optimization, the typical objectives may look like: minimize compliance, minimize 

volume, synthesize a compliant mechanism that achieves some goal, or maximize heat transfer 

[7], [10]. In designing a compliant mechanism, the goal is to maximize or minimize displacement 
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values at a given location when the domain is subjected to input forces or deflection values at 

another specific location. For example, this type of objective could be used in designing some 

sort of clamping mechanism. A heat transfer objective may be utilized when designing a 

conductive component such as a heat sink subjected to a boundary condition with a heat source 

or sink. The other two common objectives, minimum compliance and minimum volume, are 

typically addressed together to attempt to generate the ‘strongest’ and ‘lightest’ structure. 

Since cost or weight can be related to amount of material used, an engineer seeks to design a 

part that accomplishes some goal (such as holding a force) by using the minimum amount of 

material. Because of this, researchers originally attempted to implement an optimization 

problem with a minimum volume goal subject to stress constraints to determine the minimum 

size structure that would not fail [8]. The incorporation of stress constraints proved to be 

complex and resulted in many numerical errors, so researchers then formulized a minimum 

compliance objective subject to a volume constraint [11]. This proved to be much simpler and 

easier to implement, and became the most prevalent formulation for structural problems, and a 

benchmark for many update algorithms. The compliance of a given design, 𝑐(𝑥), is defined as 

the summation of the elemental strain energies, and the optimization formulation is shown in 

equation 2.8 below [24] where 𝑈 and 𝐾 are the global deformation vector and stiffness matrix 

respectively and 𝑢𝑒 and 𝑘𝑒 are the corresponding elemental values for each of the 𝑁 elements. 

The constraints on the objective are such that the design’s volume, 𝑉(𝑥), is less than the 

required volume allowed, 𝑉𝑟𝑒𝑞, and the displacements are such that their product with the 

global stiffness matrix equals the global force vector, 𝐹. Additionally, the appropriate boundary 

conditions must be applied such that assigned displacement values, 𝑢𝑜, are on the Dirichlet 
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boundary, 𝛤𝐷, traction values applied to the Neumann boundary, 𝛤𝑁, and zero stress on the 

homogeneous boundary, 𝛤𝐻.  

 

min
𝑥
: 𝑐(𝑥) = 𝑈𝑇𝐾𝑈 =∑𝑢𝑒

𝑇𝑘𝑒𝑢𝑒

𝑁

𝑒=1

𝑆. 𝑇. : 𝑉(𝑥) ≤ 𝑉𝑟𝑒𝑞
𝐾𝑈 = 𝐹

𝑢 = 𝑢𝑜 𝑜𝑛 𝛤𝐷
𝜎(𝑢)𝑛 = 𝑡 𝑜𝑛  𝛤𝑁
𝜎(𝑢)𝑛 = 0 𝑜𝑛  𝛤𝐻

 
(2.8) 

Once the objective and constraints are established, the type of update information must 

be determined. In Van Dijk’s review [34], there are three predominant types of update 

information identified. These include shape sensitivity [37], [38], parameter sensitivity [43], [46], 

and topological sensitivity [13], [40], which are each depicted in figure 2-10 below from left to 

right respectively. In the figure, Ω represent the material region of the domain, 𝐷 represents the 

void regions, and 𝛤 the boundary between the two. Each of these update informations are then 

correlated to a generalized change in response, 𝛿𝑅, where the response of interest may be an 

objective or constraint.  

 

Figure 2-10: Types of Update Information [34] 
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 The left image of figure 2-10 above illustrates variational shape sensitivity, which can be 

defined as the change in a response function caused by changes in shape of the material domain 

generated by infinitesimal changes in the normal direction along the boundary [37], [38]. By 

taking the path integral, ∫𝑑𝑆, along the boundary, 𝛤, a generalized 1st order variational 

response (𝛿𝑅) due to boundary variation in the normal direction (𝛿Ω𝑛), can be modeled as 

shown in equation 2.9 below where 𝑑𝑠𝑅 is the shape gradient of the response, which depends 

on the particular response definition of interest [34].  

 𝛿𝑅 = ∫ 𝑑𝑠𝑅𝛿Ω𝑛 𝑑𝑆
𝛤

 (2.9) 

 The center image of figure 2-10 depicts sensitivities directly related to the optimization 

variables 𝒔 [34], [46]. Undoubtedly this depends upon the parameterization of the LSF, but 

taking the popular parameterization as defined in equation 2.7, with 𝑁𝑖  and 𝑠𝑖  being the 

individual kernel functions and their associated coefficients, and using an iso-contour of 𝑐 = 0 , 

the variations of optimization variables (𝛿𝑠𝑖) can be related to variations in material domain 

(𝛿Ω) with the following equation 

 ∑𝑁𝑖𝛿𝑠𝑖 + ∇𝜑 ∙ 𝛿Ω
𝑖

= 0 (2.10) 

And defining the outward normal of the material boundary, 𝒏, as: 

 𝒏 =
−∇𝜑

‖∇𝜑‖
 (2.11) 



 

37 
 

Substituting equations 2.10 and 2.11 into 2.9, the parameterized shape sensitivity can be 

defined as: 

 
𝜕𝑅

𝜕𝑠𝑖
= ∫ 𝑑𝑠𝑅

𝛤

𝑁𝑖
‖∇𝜑‖

𝑑𝑆 (2.12) 

 The third primary type of variation that sensitivities are derived from, is that of 

topological variations. This is exemplified in the right image of figure 2-10 above and can be 

viewed as the change in a response due to the perforation of an infinitesimal hole [40]. As the 

previous sensitivities mentioned are merely shape sensitivities, the topological sensitivity is 

required to alter the interior of the domain and increase the topological complexity of the 

domain by nucleating new holes. The topological gradient of response (𝑑𝜏𝑅) can be generically 

expressed given the equation below where 𝐵(𝑟) represents a hole B with radius r and 𝑉(∙) is a 

measure of volume.  

 𝑑𝜏𝑅 = lim
𝑟→0

𝑅(Ω 𝐵(𝑟)⁄ ) − 𝑅(Ω)

𝑉(𝐵(𝑟))
 (2.13) 

Using the minimum compliance objective formulated in equation 2.8, Allaire et al. [40] derives 

this topological gradient of response of a 2-D domain as: 

 𝑑𝜏𝑅 =
𝜋(𝜆 + 2𝜇)

2𝜇(𝜆 + 𝜇)
{4𝜇𝐴𝑒(𝑢) ∙ 𝑒(𝑢) + (𝜆 − 𝜇)𝑡𝑟(𝐴𝑒(𝑢))𝑡𝑟(𝑒(𝑢))} (2.14) 
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And for a 3-D domain: 

 𝑑𝜏𝑅 =
𝜋(𝜆 + 2𝜇)

𝜇(9𝜆 + 14𝜇)
{20𝜇𝐴𝑒(𝑢) ∙ 𝑒(𝑢) + (3𝜆 − 2𝜇)𝑡𝑟(𝐴𝑒(𝑢))𝑡𝑟(𝑒(𝑢))} (2.15) 

Where 𝑡𝑟 is the trace of a matrix, λ is Lamé’s 1st parameter, μ is the shear modulus, 𝐴 is the 

fourth order stiffness tensor and 𝑒(𝑢) is the strain tensor with displacement values u. 

 Now that various forms of sensitivities have been identified, the specific update 

procedure method can be established. Apart from heuristic methods [17], there are two main 

types of update procedures. The first is the use of mathematical programming through well-

established optimization methods such as Sequential Quadratic Programming (SQP), Method of 

Moving Asymptotes (MMA) and CONvex LINearization approximations (CONLIN) [33]. The 

second, and more popular method, views the update procedure as a quasi-temporal process by 

advancing the boundaries based on velocity fields [13], [43]. Typically, this is done so by using a 

partial differential governing equation known as the Hamilton-Jacobi equation, shown in 

equation 2.16 below with τ representing the pseudo time. Because this equation only uses 

shape sensitivities, the update procedure does not allow for the nucleation of new holes. The 

ability to increase topological complexity can be done however by adding a reaction term, 𝑅(𝜑), 

derived from topological sensitivities (equations 2.14 and 2.15) that acts as sink or source term 

to the PDE [13], [40]. Combining the Hamilton-Jacobi equation with the outward normal 

definition established in equation 2.11 and adding this reaction term, it can be rewritten as 

shown in equation 2.17, where 𝑣𝑛 is derived from the variational shape sensitivities. 
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𝜕𝜑

𝜕𝜏
+ ∇𝜑 ∙ 𝑣 = 0 (2.16) 

 
𝜕𝜑

𝜕𝜏
− 𝑣𝑛‖∇𝜑‖ − 𝑅(𝜑) = 0 (2.17) 

 To determine an appropriate time step, ∆𝜏, such that the LSF progresses stably toward 

an optimum, the Courant-Friedrichs-Lewy (CFL) condition is used, where h is the grid spacing 

from the discretization of the LSF [13], [34], [43].  

 ∆𝜏 𝑚𝑎𝑥(𝑣𝑛) ≤ ℎ (2.18) 

2.2.4 Regularization 

 As mentioned before and with other topology optimization methods, an original 

formulation requires regularization techniques to obtain a well posed optimization problem, 

remove numerical artifacts, improve convergence behavior and control geometric properties. 

This is no different for LSMs. In fact, regularization can be applied to each of the three 

components previously discussed based on the nature of the given problem [34]. Many times, 

these regularization techniques come in the form of penalties or filtering schemes. In the LSF 

parameterization, the optimization variables themselves may be subjected to filtering 

techniques or bounded by minimum or maximum values to insure smoothness and consistency. 

Regularization can be applied to the geometry mapping aspect of LSMs depending on the 

method of executing the geometry mapping. For example, in the case of using a density-based 

method, intermediate densities can be penalized to insure black-and-white solutions [51].  
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The majority of regularization techniques however are applied to the update procedure 

portion of the LSM. Sensitivity values are often filtered, scaled or mapped to avoid mesh-

dependent solutions and to obtain smooth geometric designs [13]. Additionally, the perimeter 

or length of an iso-contour can be penalized to prevent unnecessary perforations or porosity 

from forming and ensure smoothness of designs [38], [50]. Perimeter regularization is helpful to 

achieve a well-posed problem, avoid numerical artifacts and smooth the geometry. However, it 

may heavily restrict potential designs leading to suboptimal convergence.  

As seen in the Hamilton-Jacobi equation (equation 2.16 or 2.17), the gradient of the LSF 

plays a large role in the update of the parameters from iteration to iteration. The steeper the 

gradient is, the larger the parameters will be modified and vise-versa. Additionally, if there is a 

large region close to the intersecting plane forming the iso-contour, there will be a much larger 

change in the interface and material domain, this is illustrated in figure 2-11 below. Because of 

how important the gradient of the LSF is, particularly near the iso-contour, many regularization 

techniques focus here to insure consistent and desired behavior [34]. One method known as 

Tikhonov regularization adds a penalty term associated with the gradient of the LSF [42]. 

Another way to handle this issue is to periodically reinitialize the LSF to a signed-distance 

function, allowing the LSF to evolve appropriately, but establishing a constant gradient before 

larger variations in gradient or larger regions near the iso-contour can form [13], [43]. When re-

initialization is performed, the current LSF is used to map to the given geometry then this 

geometry is used to calculate LSF parameters such that there exists a constant gradient and the 

geometry is maintained as best as possible. This concept is very prominent amongst LSM 

implementations. 
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Figure 2-11: Effect of Variable LSF Gradients [34] 

2.3 Design Dependent Loading 

 Often topology optimization is implemented with given boundary conditions and tries to 

determine the optimal material distribution under a specified objective function. In this case, 

the boundary conditions are established prior to optimization and maintained constant 

throughout the process. In elastic analysis, these boundary conditions are in the form of forces 

and fixed degrees of freedom, however given the nature of the current research objectives in 

this thesis, this is not the case. The forces acting on the component are pressure forces, applied 

from inside the part to the material boundary, which changes as the material distribution 

changes. This raises the need to modify the existing topology optimization methods to allow for 

design dependent loading. Researchers have implemented means of adapting both the SIMP 

method [52]–[55] and the LSM [47], [50] for design dependent loading. The two main tasks 

when adapting for design dependent loading are to effectively diagnose the loading condition 

given a specific material distribution and to appropriately modify the update procedure to 

account for the changing loading conditions. Another common form of design dependent 

loading is in the case of self weight loads. Huang et al. [54] address this for 2-D cases by using a 
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modified SIMP method known as ‘Bi-directional Evolutionary Structural Optimization’ (BESO) 

method with progressive target volume constraints. With pressure loading conditions however 

it can be quite challenging for the SIMP method to identify the loading condition due to the uses 

of intermediate densities and gray scale designs throughout the process, whereas with the LSM, 

the material interface is explicitly defined. 

 To establish the loading conditions of a pressure load using the SIMP method, a 

boundary search scheme must be used. Lee and Edmund [52] establish a method to do this for a 

2-dimensional domain, which follows these steps: 

1. Establish a small region that will always remain void (set densities and sensitivities of 

these elements to zero) 

2. Establish an intermediate density value to apply the pressure loading to (typically start 

at 0.2 and slowly increase to 0.4 over optimization iterations to limit the formation of 

islands) 

3. Use elemental density values to get nodal density values (average density of all 

elements containing a given node) 

4. Linearly interpolate these nodal densities to identify iso-density points (points with 

density values equivalent to that established in step 2)  

5. Starting from the centroid of the prescribed void and in a user defined search direction, 

with a minimal tolerance, find an initial iso-density point, figure 2-12 left 

6. In another prespecified search direction orthogonal to the first find the second point, 

using a much larger directional tolerance (wider search cone), figure 2-12 right 
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7. Identify all consecutive points as an iso-density point within one element length and 

having the smallest change in segment angle from the previous point to the current 

point versus the current point to the new point, figure 2-13 

8. This is repeated until a loop is established (connecting back to the 1st point) or a domain 

boundary is hit 

9. Pressure force is applied to the line segments between iterative points and equivalent 

nodal loads are determined for the analysis 

 The processes of identifying the first two points is depicted in figure 2-12 below and 

choosing consecutive points in figure 2-13. In figure 2-12 the hashed area represents the 

predefined void region, the dots represent the iso-density points, and the dashed lines the 

search direction cone. In determining consecutive points, the angles are compared to one 

another and need to have a common arbitrary reference, horizontal to the right in this case. 

Note that in figure 2-13, point C is chosen from B instead of point D because it has the lesser 

change in angle. This process can be very sensitive and may create islands, stall, or generate 

numerical artifacts causing the optimization to take advantage of improper boundary 

identification during one iteration. 

 

Figure 2-12: Identifying the 1st (Left) & 2nd (Right) Iso-Density Points [52] 
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Figure 2-13: Identifying Consecutive Iso-Density Points [52] 

Zhang et al. [55] address problems in 3-dimensions with design dependent loading cases 

while using the SIMP method. This is done by decomposing the 3-D case into a series of 2-D 

cases and executing a similar 2-D boundary search algorithm to the one mentioned above. 

Although desired results are achieved, it is noted that this process for 3-D cases is quite 

computationally expensive and inefficient. 

Another proposed boundary identification method by Wang et al. [53] uses image 

segmentation techniques with a LSF. This method still uses the SIMP method for topology 

optimization, material distribution and analysis, but to identify the locations of the pressure 

loading, a LSM is used. In this method, a specific iteration’s material distribution generated by 

the SIMP method is viewed as a gray scale image. Then a Distanced Regularized Level Set 

Evolution (DRLSE) method is used for image segmentation and the 0-level contour of the LSF is 

used to represent the pressure locations. 

Contrary to the SIMP method’s widespread use of intermediate densities, making it 

difficult to identify the material boundary for pressure loading to be applied, the LSM explicitly 

defines this interface, making it much simpler to execute topology optimization with design 
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dependent loading. Any finite element analysis is comprised of 3 boundaries within the domain: 

a Neumann boundary 𝛤𝑁 where traction forces are applied, a homogeneous boundary 𝛤𝐻 that is 

free of forces and a Dirichlet boundary condition 𝛤𝐷 where displacement values are prescribed. 

It is noticed that standard topology optimization maintains fixed Neumann and Dirichlet 

boundary condition and only modifies the homogeneous boundary. Xia et al. propose a means 

to modify different types of boundaries by using multiple LSFs [47]. This is done by using 

separate sensitivities, Hamilton-Jacobi equations and update timesteps. Using a Boolean 

combination of the separate LSFs, the geometry of the design and designation of boundaries are 

determined. In a follow-on paper [50], this concept is applied to pressure loading problems. In 

this method, one LSF, ψ, represents the pressure boundary and another LSF, 𝛷, represents the 

free boundary. The material domain is defined as the regions where both LSFs are below the iso-

contour level and this geometry can be represented in the following equation.  

 Ω = {𝑥 | 𝑚𝑎𝑥(ψ(𝑥), φ(𝑥)) < 0, 𝑥 ∈ 𝐷} (2.19) 

 The update velocities for the Hamilton-Jacobi are then derived as: 

 𝑣ψ = (2𝑑𝑖𝑣(𝑝𝑜𝑢) + 𝐴𝑒(𝑢) ∙ 𝑒(𝑢) − 𝜆)𝑛 (2.20) 

 𝑣φ = (𝐴𝑒(𝑢) ∙ 𝑒(𝑢) − 𝜆)𝑛 (2.21) 

Where 𝜆 is the penalty from the Lagrangian formulation with the volumetric constraint 

moved into the objective function. A special check and modification to velocities are done to 

prevent the update procedure to cause the Neumann and Homogeneous boundaries to cross, as 

this would have no practical meaning and defeat the purpose of the optimization problem with 

pressure loading.  
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 For the finite element analysis of this method [50], a fixed Eulerian mesh is used with 

the void modeled by an artificially weak material and the geometry mapping is done with a 

density-based approach. The pressure load is to be applied on the Neumann boundary defined 

by ψ(𝑥) = 0 which can be written as the line integral along the boundary as shown as the 

middle equality of equation 2.22. Through the use of a Dirac function, this path integral can be 

converted to an integral over the full domain, shown on the right side of equation 2.22.  

 𝑭 = ∫ 𝑝 𝑑𝑠
𝛤𝑁

= −∫ 𝑝𝑜𝑛𝛿𝛤𝑁  𝑑𝑥
𝐷

 (2.22) 

With 휀 being a small positive constant based on the discretization grid size of the LSF, this Dirac 

function on the Neumann boundary 𝛤𝑁 is defined as: 

 𝛿𝛤𝑁𝑛 =
1

2
∇(

ψ(𝑥)

√ψ2(𝑥) + 휀2
) (2.23) 

 This method utilizes the benefits of a LSM when applied to a topology optimization 

problem with design dependent pressure loading conditions as opposed to the complex and 

time consuming methods developed to modify the SIMP method to accomplish the same task. 
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 CHAPTER III: Methodology 

Following a literature review, it was decided that the use of a Level-Set method (LSM) 

would best suit the objective of using topology optimization to determine an ideal material 

distribution for an irregular shaped pressure vessel. This chapter dives further into the 

derivation of the methods that were used to accomplish this task. For any optimization 

procedure, an analysis of the system’s response to design variables must be conducted to 

effectively evaluate performance and implement changes. Here, a linear elastic finite element 

analysis (FEA) method is used to evaluate the structural response of a given iteration’s material 

distribution. The response field generated by the FEA allows the use of a LSM to effectively 

modify a Level-Set function (LSF) which is used to implicitly define the material distribution for a 

subsequent iteration. This optimization process is repeated until an assigned objective is met 

and all constraints are satisfied. This chapter is organized as follows: section 3.1 summarizes the 

finite element analysis procedure, section 3.2 covers the generic methodology of using the 

Level-Set method for topology optimization and finally section 3.3 addresses the modifications 

of the LSM required for problems with design dependent pressure loading in both ℝ2 and ℝ3. 

3.1 Finite Element Analysis 

 As the structure changes every iteration, so too does its response which is used to 

evaluate the effectiveness of the current structure and assign update information for the 

following iterations. To evaluate this response of the structure, the finite element method is 

executed upon each iteration of the optimization. Here, a linear elastic finite element analysis is 

used, where a structure with defined material properties and boundary conditions is evaluated 

to identify a displacement field, 𝒖. In order to implement the finite element analysis, a weak 
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form must be derived from the governing equations then, with a discretized structural domain, 

a system of equations can be solved to compute this displacement field at each discretized 

node. For notation, the cartesian components of the displacement vector, �⃗⃗�, throughout the 

domain, 𝛺, can be expressed as: 

 
�⃗⃗� = 𝑢𝑖 = [𝑢𝑥 𝑢𝑦 𝑢𝑧] (3.1) 

 From solid mechanics, in a 3-dimensional domain using a cartesian coordinate system, 

the equations of equilibrium for a statically elastic problem are: 

 
𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑧
𝜕𝑧

+ 𝑏𝑥 = 0 (3.2) 

 
𝜕𝜏𝑦𝑥

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑦𝑧

𝜕𝑧
+ 𝑏𝑦 = 0 (3.3) 

 
𝜕𝜏𝑧𝑥
𝜕𝑥

+
𝜕𝜏𝑧𝑦

𝜕𝑦
+
𝜕𝜎𝑧𝑧
𝜕𝑧

+ 𝑏𝑧 = 0 (3.4) 

Where 𝜎𝑖𝑖 and 𝜏𝑖𝑗  represent the normal and shear states of stress respectively, and 𝑏𝑖 the body 

force in the ith direction.  

To derive a weak form to be used, the Galerkin weighted residual method is used. This is 

done by defining the PDEs from the equations of equilibrium as residuals and the variational 

displacements, 𝛿𝑢𝑖, as the weighting function. In tensor form, the resulting equation is derived 

for 𝑖 = 1,2,3. 

 
∫ 𝛿𝑢𝑖(𝜎𝑖𝑗,𝑗 + 𝑏𝑖)
𝛺

𝑑𝛺 = 0 (3.5) 
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Where 𝜎𝑖𝑗,𝑗 is the partial derivative of the stress 𝜎𝑖𝑗, (where 𝜎𝑖𝑗 represents both 𝜎𝑖𝑖 and 𝜏𝑖𝑗)  

with respect to the direction of 𝑗 and summed over 𝑗 = 1,2,3. Separating the stress components 

from the body force: 

 
∫ (𝜎𝑖𝑗,𝑗)𝛿𝑢𝑖
𝛺

𝑑𝛺 +∫ 𝛿𝑢𝑖𝑏𝑖
𝛺

𝑑𝛺 = 0 (3.6) 

Using the identity: 

 ∇ ∙ ({𝜎𝑖𝑗}𝛿𝑢) = ∇ ∙ {𝜎𝑖𝑗}𝛿𝑢 + ∇𝛿𝑢 ∙ {𝜎𝑖𝑗} (3.7) 

And the Divergence Theorem: 

 
∫ (∇ ∙ {𝑢})
𝑉

𝑑𝑉 = ∫ ({𝑢} ∙ {𝑛})
𝛤

𝑑𝛤 (3.8) 

Equation 3.5 can be written as: 

 
∫ 𝜎𝑖𝑗𝛿𝑢 ∙�⃗⃗�𝑖
𝛤

𝑑𝛤 −∫ ∇𝛿𝑢𝑖 ∙ 𝜎𝑖𝑗
Ω

𝑑Ω +∫ 𝛿𝑢𝑖𝑏𝑖
Ω

𝑑Ω = 0 (3.9) 

Combining equation 3.9 for 𝑖 = 1,2,3 the weak form becomes: 

(3.10) 

∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑡𝑥
𝑡𝑦
𝑡𝑧

}
𝛤

𝑑𝛤

−∫

(

 
 
 
[
𝜕𝛿𝑢𝑥
𝜕𝑥

𝜕𝛿𝑢𝑦

𝜕𝑦

𝜕𝛿𝑢𝑧
𝜕𝑦

𝜕𝛿𝑢𝑦

𝜕𝑧
+
𝜕𝛿𝑢𝑧
𝜕𝑦

𝜕𝛿𝑢𝑥
𝜕𝑧

+
𝜕𝛿𝑢𝑧
𝜕𝑥

𝜕𝛿𝑢𝑥
𝜕𝑦

+
𝜕𝛿𝑢𝑦

𝜕𝑥
]

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 

)

 
 
 

Ω

𝑑Ω

+∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑏𝑥
𝑏𝑦
𝑏𝑧

}
Ω

𝑑Ω = 0 
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Where 𝑡𝑖, represents the traction forces along the boundary. The Cauchy strain tensor, 

𝜖𝑖𝑗, can be defined by displacements, �⃗⃗�, using the strain-displacement relation: 

 
𝜖𝑖𝑗 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (3.11) 

Where 𝑢𝑖,𝑗 is the partial derivative of the 𝑖𝑡ℎ component of deflection with respect to the 

direction of 𝑗, allowing the engineering strain to be written as: 

 

{휀} =

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

=

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
2휀𝑦𝑧
2휀𝑥𝑧
2휀𝑥𝑦}

 
 

 
 

=

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜕𝑢𝑥
𝜕𝑥
𝜕𝑢𝑦

𝜕𝑦
𝜕𝑢𝑧
𝜕𝑧

(
𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧
𝜕𝑦
)

(
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑥
)

(
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑥
)
}
 
 
 
 
 
 

 
 
 
 
 
 

 (3.12) 

Using Hooke’s law (equation 3.13) stresses and strains can then be related using the 4th 

order tensor 𝑨𝑖𝑗𝑘𝑙.  

 𝜎𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙휀𝑘𝑙 (3.13) 

With ν being the Poisson’s ratio and 𝐸 being the Young’s modulus of elasticity, Hooke’s law can 

be written into a constitutive matrix [𝐶] for isotropic materials that relates the 6 independent 

strain components with stress components. Note the use of engineering strain for the shear 

components. 
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(3.14) 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

=
𝐸

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 
 
 
 
1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0
(1 − 2𝜈)

2
0 0

0 0 0 0
(1 − 2𝜈)

2
0

0 0 0 0 0
(1 − 2𝜈)

2 ]
 
 
 
 
 
 
 
 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

 

To prevent numerical artifacts in the optimization process, the void regions are defined by an 

artificially weak material, as opposed to not being modeled, by multiplying the modulus of 

elasticity by 0.0001. Combining equations 3.12 and 3.14 into the weak form of equation 3.10 

results in: 

∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑦] {

𝑡𝑥
𝑡𝑦
𝑡𝑧

}
𝛤

𝑑𝛤

−∫

(

 
 
 
[𝛿휀𝑥𝑥 𝛿휀𝑦𝑦 𝛿휀𝑧𝑧 𝛿𝛾𝑦𝑧 𝛿𝛾𝑥𝑧 𝛿𝛾𝑥𝑦][𝑪]

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

)

 
 
 

Ω

𝑑Ω

+∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑏𝑥
𝑏𝑦
𝑏𝑧

}
Ω

𝑑Ω = 0 

(3.15) 

 Now that the weak form has been established, in order to evaluate it, the domain must 

be discretized into elements and nodes. This discretization allows for the use of shape functions 

within each element to approximate the response field (displacements), which can then be 

evaluated in equation 3.15 above to develop a system of equations that can then be solved to 
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determine nodal displacements. To simplify the meshing procedure and the computation of the 

stiffness matrix, all of the elements are equivalent in shape and size. Here 8-node hexahedral 

elements are used. A generalized master element shape and node relation can be depicted in 

figure 3-1 below where ξ, η, and ζ represent the 3 relative coordinate directions for the local 

element. These coordinates of the master element nodes can be found in table 3-2. 

 
Figure 3-1: Hexahedral Master Element 

Table 3-2: Master Element Node Coordinates 

Node Number 𝜉 휂 휁 

1 -1 -1 -1 

2 1 -1 -1 

3 1 1 -1 

4 -1 1 -1 

5 -1 -1 1 

6 1 -1 1 

7 1 1 1 

8 -1 1 1 
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 Using this master element definition, at each node (𝑎 = 1: 8) a tri-linear shape 

function, 𝑁𝑎, can be expressed with the following equation. 

 
𝑁𝑎(𝜉, 휂, 휁) =

1

8
(1 + 𝜉𝑎𝜉)(1 + 휂𝑎휂)(1 + 휁𝑎휁),      𝑎 = 1,2,… ,8 (3.16) 

These shape functions have a value of 1 at their respective node and a value of 0 at all other 

nodes allowing a field variable to be approximated throughout the element’s domain as the 

summation of these shape functions multiplied by the respective nodal value of the field 

variable. Using the displacement vector, 𝑢𝑖, as the field variable, the approximation of 

displacement throughout the domain within a given element can be expressed as: 

 
𝑢𝑖(𝜉, 휂, 휁) = ∑𝑁𝑎(𝜉, 휂, 휁)𝑢𝑖

𝑎

𝑛

𝑎=1

 (3.17) 

Where 𝑢𝑖
𝑎 is the displacement value in the 𝑖𝑡ℎ direction at node a and 𝑛 is the number of nodes 

the element contains, 8 in this case. Similarly, partial derivatives of field variables can be 

expressed as: 

  𝜕𝑢𝑖
𝜕𝑥𝑗

(𝜉, 휂, 휁) = ∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉𝑗

𝑛

𝑎=1

𝑢𝑖
𝑎 (3.18) 

Where 𝜉𝑗 for 𝑗 = 1,2,3 are the three relative directions of the master element, 𝜉𝑗 = [𝜉 휂 휁]. 

Note, these shape functions are defined over the master element’s domain. To transform these 

equations to the x, y, z domain of the real element, a Jacobian matrix (equation 3.19) is used. 
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[𝐽] =

[
 
 
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑧

𝜕𝜉
𝜕𝑥

𝜕휂

𝜕𝑦

𝜕휂

𝜕𝑧

𝜕휂
𝜕𝑥

𝜕휁

𝜕𝑦

𝜕휁

𝜕𝑧

𝜕휁]
 
 
 
 
 
 

= ∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉𝑖
𝑥𝑗
𝑎

𝑛

𝑎=1

=

[
 
 
 
 
 
 
 
 ∑

𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉
𝑥𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉
𝑦
𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉
𝑧𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휂
𝑥𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휂
𝑦
𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휂
𝑧𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휁
𝑥𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휁
𝑦
𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휁
𝑧𝑎

𝑛

𝑎=1 ]
 
 
 
 
 
 
 
 

 

(3.19) 

With this relation given by the Jacobian matrix, the shape functions can be written in terms of 

the domain for the real element (3.20) and integration bounds of the real element can be 

translated to the master element (3.21). 

[
 
 
 
 
 
 
𝜕𝑁𝑎(𝑥, 𝑦, 𝑧)

𝜕𝑥
𝜕𝑁𝑎(𝑥, 𝑦, 𝑧)

𝜕𝑦

𝜕𝑁𝑎(𝑥, 𝑦, 𝑧)

𝜕𝑧 ]
 
 
 
 
 
 

= [𝑱]−1

[
 
 
 
 
 
 
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휂

𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휁 ]
 
 
 
 
 
 

 (3.20) 

∫ 𝑑Ω →
𝑒

Ω

∫ ∫ ∫ 𝑑𝑒𝑡([𝑱])𝑑𝜉𝑑휂𝑑휁
1

−1

1

−1

1

−1

 (3.21) 
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 Using these shape functions, the strain tensor in equation 3.12 can be expressed as: 

 

{휀} =

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

=

{
 
 

 
 

𝑢1,1
𝑢2,2
𝑢3,3

𝑢2,3 + 𝑢3,2
𝑢1,3 + 𝑢3,1
𝑢1,2 + 𝑢2,1}

 
 

 
 

= ∑

[
 
 
 
 
 
 
𝑁𝑎,1 0 0

0 𝑁𝑎,2 0

0 0 𝑁𝑎,3
0 𝑁𝑎,3 𝑁𝑎,2
𝑁𝑎,3 0 𝑁𝑎,1
𝑁𝑎,2 𝑁𝑎,1 0 ]

 
 
 
 
 
 

𝑛

𝑎=1

{

𝑢1
𝑎

𝑢2
𝑎

𝑢3
𝑎
} (3.22) 

Where 𝑁𝑎,𝑖  is the partial derivative of the shape function for node a with respect to the 𝑖𝑡ℎ 

coordinate direction. Removing the summation by expanding the matrix this can be written as: 

{휀} =

[
 
 
 
 
 
 
𝑁1,1 0 0

0 𝑁1,2 0

0 0 𝑁1,3
0 𝑁1,3 𝑁1,2
𝑁1,3 0 𝑁1,1
𝑁1,2 𝑁1,1 0

|

|

𝑁2,1 0 0

0 𝑁2,2 0

0 0 𝑁2,3
0 𝑁2,3 𝑁2,2
𝑁2,3 0 𝑁2,1
𝑁2,2 𝑁2,1 0

|

|

…
…
…
…
…
…

|

|

𝑁8,1 0 0

0 𝑁8,2 0

0 0 𝑁8,3
0 𝑁8,3 𝑁8,2
𝑁8,3 0 𝑁8,1
𝑁8,2 𝑁8,1 0 ]

 
 
 
 
 
 

{
 
 
 

 
 
 
𝑢1
1

𝑢2
1

𝑢3
1

𝑢1
2

𝑢2
2

𝑢3
2

⋮ }
 
 
 

 
 
 

= [𝑩]{𝑑} (3.23) 

Establishing the matrix in equation 3.23 as [𝑩] and the displacement vector as {𝑑}, the 

second integral of the weak form found in equation 3.15 can be rewritten using the relation in 

equation 3.21 as:  

 

∫

(

 
 
 
[𝛿휀𝑥𝑥 𝛿휀𝑦𝑦 𝛿휀𝑧𝑧 𝛿𝛾𝑦𝑧 𝛿𝛾𝑥𝑧 𝛿𝛾𝑥𝑦][𝑪]

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

)

 
 
 

Ω

𝑑Ω

= {𝛿𝑑}𝑇∭[𝑩]𝑇[𝑪][𝑩]𝑑𝑒𝑡([𝑱])𝑑𝜉𝑑휂𝑑휁

1

−1

{𝑑} 

(3.24) 
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Numerical integration via Gaussian quadrature is used to evaluate this integral. Because the 

shape functions are tri-linear, 2 Gauss points are used in each direction for a total of 8 Gauss 

points. These points have every combination of 𝜉𝑖 = ±
1
√3
⁄  for each of the coordinate 

directions, 𝜉, 휂, and 휁, and an equal weighting of 1. To execute this numerical integration, the 

function inside the integral is then evaluated at each of these points, multiplied by their 

respective weighting and summed together. For the 8-node hexahedral, this results in a 24x24 

matrix for the element, [𝒌𝒆], known as the elemental stiffness matrix. 

 

{𝛿𝑑}𝑇∭[𝑩]𝑇[𝑪][𝑩]𝑑𝑒𝑡([𝑱])𝑑𝜉𝑑휂𝑑휁

1

−1

{𝑑} = {𝛿𝑑}𝑇[𝒌𝒆]24𝑥24{𝑑} (3.25) 

Because the nodes are shared by multiple elements, a global stiffness matrix for the entire 

domain can be assembled by correlating common degrees of freedom, deflections of nodes in a 

particular direction, and summing them together. This global stiffness matrix is denoted by [𝑲] 

and is square with dimensions equal to 3 times the total number of nodes. 

Following a similar approach to that of the second integral, the first integral can be 

written as: 

∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑡𝑥
𝑡𝑦
𝑡𝑧

}
𝛤

𝑑𝛤 = {𝛿𝑑}𝑇∫

[
 
 
 
 
 
 
𝑁1 0 0
0 𝑁1 0
0 0 𝑁1
𝑁2 0 0
0 𝑁2 0
0 0 𝑁2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

⋮ ⋮ ⋮̅̅ ̅̅ ̅̅ ̅̅ ̅ ]
 
 
 
 
 
 

𝑑𝑆
𝛤𝑡

= {𝛿𝑑}𝑇

{
 
 
 

 
 
 
𝑓1
1

𝑓2
1

𝑓3
1

𝑓1
2

𝑓2
2

𝑓3
2

⋮ }
 
 
 

 
 
 

24𝑥1

 
(3.26) 
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Where 𝑓𝑖
𝑎 is the nodal force value in the 𝑖𝑡ℎ direction for node a. Pressure is defined as an 

outward normal force per unit area and is applied to the interior material/void boundary. 

Although the 2-D application by Xia et al. [50] uses an approximate Dirac-delta function on the 

LSF to establish this loading condition, here mesh and structural representation of each element 

is used. If the entire domain is meshed, and elements are simply defined as void or having 

material, the pressure forces can be calculated as outward normal forces for every void 

element. Although forces are applied to every void element, due to uniform element sizes, 

forces within the void region are cancelled out, resulting in only forces being applied to the 

boundary between void and solid regions. As illustrated in figure 3-2 adjacent void elements will 

have their outward normal forces cancel out, leaving only desired force components along the 

boundary.  

 

Figure 3-2: Force Vector Computation from Void 
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The force components for one void element can be calculated as: 

 

{𝑓𝑒}24𝑥1 =

{
 
 
 

 
 
 
𝑓𝑥
1

𝑓𝑦
1

𝑓𝑧
1

𝑓𝑥
2

𝑓𝑦
2

𝑓𝑧
2

⋮ }
 
 
 

 
 
 

=
𝑝𝑜
4

{
 
 
 

 
 
 
𝜉1𝑙𝑦𝑙𝑧
휂1𝑙𝑥𝑙𝑧
휁1𝑙𝑥𝑙𝑦

𝜉2𝑙𝑦𝑙𝑧
휂2𝑙𝑥𝑙𝑧
휁2𝑙𝑥𝑙𝑦

⋮ }
 
 
 

 
 
 

 (3.27) 

Where 𝑝𝑜 is the nominal pressure value and [𝑙𝑥 𝑙𝑦 𝑙𝑧] is the edge lengths of the element. 

The use of the master element node coordinates in equation 3.27 are simply to denote the sign 

of the force to ensure it is outward normal and only works because the node coordinates are ±1. 

If a different master element is used, this relation would be inaccurate. 

In a similar manner, if regions of the void are not meshed, the material domain can be 

used to formulate the force vector by applying an inward normal force to every solid element. 

As in the case with using the void elements, adjacent solid elements will result in the cancelling 

of forces at shared nodes. This leaves only force on the material boundary, including both the 

Homogeneous, 𝛤𝐻, and Neuman, 𝛤𝑁, boundary. Because the pressure force should only be 

applied to the Neuman boundary which is along the interior boundary, nodes along the exterior, 

or homogeneous boundary, are stored and set to zero following the assembly of the force 

vector. This concept is shown in figure 3-3 below where the left image shows all of the force 

components and the right shows the resultant forces following the global assembly process and 

zeroing out the homogeneous boundary, represented by the circles and labeled with 𝛤. 
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Figure 3-3: Force Vector Computation from Material Domain 

As with equation 3.27 for the elemental outward force vector for the void elements, the 

negative provides the inward force vector for the solid element, as seen in equation 3.28. 

 

{𝑓𝑒}24𝑥1 =

{
 
 
 

 
 
 
𝑓𝑥
1

𝑓𝑦
1

𝑓𝑧
1

𝑓𝑥
2

𝑓𝑦
2

𝑓𝑧
2

⋮ }
 
 
 

 
 
 

=
−𝑝𝑜
4

{
 
 
 

 
 
 
𝜉1𝑙𝑦𝑙𝑧
휂1𝑙𝑥𝑙𝑧
휁1𝑙𝑥𝑙𝑦

𝜉2𝑙𝑦𝑙𝑧
휂2𝑙𝑥𝑙𝑧
휁2𝑙𝑥𝑙𝑦

⋮ }
 
 
 

 
 
 

 (3.28) 

Similar to the assembly of the global stiffness matrix, a global force vector, {𝐹}, can be 

assembled by summing common global degrees of freedom between elements. This is where 

adjacent void elements cancel out their force.  
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The third integral of the weak form (equation 3.15) can be cancelled out because the 

body forces are neglected in the current circumstances. This leaves only the first (equation 3.26) 

and second (equation 3.25) integrals, which can be expressed with the global force vector and 

stiffness matrix respectively. Using the assembly process previously mentioned for these and 

exchanging the elemental displacements, {𝑑}, with the global displacement vector, {𝑢}, 

equation 3.29 is achieved. 

 
{𝛿𝑢}𝑇{𝐹} − {𝛿𝑢}𝑇[𝑲]{𝑢} = 0 (3.29) 

Rearranging and cancelling out the variational deflections, the equation can be re-written as a 

system of equations. 

 
[𝑲]{𝑢} = {𝐹} (3.30) 

Before the system of equations can be solved, Dirichlet boundary conditions must be applied. In 

the current implementation, these boundary conditions come in the form of fixed degrees of 

freedom and therefore the partitioning method can be used. To ensure the displacement values 

of the fixed degrees of freedom are set to zero, the corresponding rows and columns of the 

stiffness matrix and force vector are removed, allowing the remaining system of equations to be 

solved to achieve a displacement vector field for all of the nodes within the domain. 

3.2 Level-Set Method Formulation 

 Now that a given structural configuration can be analyzed to determine its response 

(deflection vector field) through the use of the finite element analysis method, this structure 
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needs to be iteratively modified to optimize a particular objective function subject to a set of 

constraints. As mentioned earlier, the Level-Set method has been chosen to execute this 

optimization procedure due to its inherent benefits from the implicit boundary representation, 

aiding in pressure loading application. This section provides a detailed mathematical explanation 

of the Level-Set method. The modifications that had to be made to this method in order to 

implement the topology optimization with design dependent pressure loads are explained in the 

following section, 3.3. 

 Ideally the objective for such a problem would be to maximize the internal void volume 

such that the part does not fail due to stress criteria. However, as mentioned in section 2.2.3, 

this type of objective formulation gives rise to various difficulties. Therefore, similarly to the 

development of many topology optimization methods, the problem has been rewritten into a 

minimum compliance objective. Although it should be mentioned that, in future works, it would 

be desired to revert back to the original maximum void volume objective, see chapter 7: 

Conclusion. This being said, the objective for the works of this project has been set to minimize 

the compliance, c(x), or total strain energy of the system. This objective formulation is then 

subject to constraints such that the design’s material volume fraction, 𝑉(𝑥), is equal to the 

required volume fraction, 𝑉𝑟𝑒𝑞 (chosen such that the void volume satisfies the wet volume 

requirement of the pressure vessel), the displacement field, {𝑢}, is such that the finite element 

analysis equation (equation 3.30) is satisfied, and the appropriate boundary conditions are 

applied. These boundary conditions ensure that the assigned displacement values, 𝑢𝑜, are on 

the Dirichlet boundary, 𝛤𝐷, traction values applied to the Neumann boundary, 𝛤𝑁, and zero 

stress on the homogeneous boundary, 𝛤𝐻. This optimization formulation is shown in equation 
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3.31. Note, 𝑉 refers to the volume fraction that the material takes (used volume divided by 

design space) up and the volume fraction of the void could be expressed as 1 − 𝑉. 

 

min
𝑥
: 𝑐(𝑥) = 𝑈𝑇𝐾𝑈 =∑𝑢𝑒

𝑇𝑘𝑒𝑢𝑒

𝑁

𝑒=1

𝑆. 𝑇. : 𝑉(𝑥) = 𝑉𝑟𝑒𝑞
[𝑲]{𝑢} = {𝐹}

𝑢 = 𝑢𝑜 𝑜𝑛 𝛤𝐷
𝜎(𝑢)𝑛 = 𝑡 𝑜𝑛  𝛤𝑁
𝜎(𝑢)𝑛 = 0 𝑜𝑛  𝛤𝐻

 
(3.31) 

 In order to effectively treat the volume constraint, it must be moved into the objective 

and a penalty must be applied, corresponding to the violation of the constraint to drive the 

problem towards an optimal solution that also satisfies the constraints. To do this, a Lagrangian 

is used and the resultant objective function can be seen in equation 3.32. 

 𝐿 = 𝑐(𝑥) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = (∑𝒖𝑒
𝑇𝒌𝑒𝒖𝑒

𝑁

𝑖=1

) + 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞)
2

 (3.32) 

 Where 𝜆𝑖 is the Lagrange multiplier for the 𝑖𝑡ℎ iteration. The constraint derived term, 𝑉(𝑥) −

𝑉𝑟𝑒𝑞, is squared to ensure a smooth application of the penalty due to its slope of zero when the 

volume is equivalent to the target volume. Additionally, as seen from equation 3.32, the penalty 

is applied to violations both above and below the target volume. This is done intentionally as 

any structure could always reduce its compliance by adding material and therefore the optimal 

solution to the original optimization formulation, equation 3.31, will be one such that the 

volume is equivalent to the target volume.  

 Now that the objective and constraints have been formulated, an optimization process 

needs to be executed to determine the ideal material distribution. Unlike other topology 
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optimization methods such as the SIMP method, the Level-Set method does not directly modify 

this material distribution within the domain. Instead the Level-Set method modifies a function, 

the level-set function, 𝜑, that then implicitly defines the structure based on its zero-level 

contour. As shown in equation 3.32, for the works of this research, negative LSF values are 

defined as material in the structure, and positive values as void.  

 {

𝜑(𝑋) < 0 𝑋 ∈ Ω ′𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙′

𝜑(𝑋) = 0 𝑋 ∈ 𝛤 ′𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′

𝜑(𝑋) > 0 𝑋 ∈ (𝐷\Ω) ′𝑉𝑜𝑖𝑑′

} (3.33) 

 The level-set function itself is defined by tri-linear basis functions discretized throughout 

the domain, see section 2.2.1. Upon running each optimization, an initial structure is defined by 

the user and the starting LSF is defined as a signed distance function based on this structure. 

That is, the magnitude of the LSF at a given location is the Euclidean distance to the nearest 

location in the structure of the opposite phase (solid or void), and the sign of the LSF is such that 

is satisfies equation 3.33. 

Now that the LSF have been defined, its relationship to the structure for analysis 

purposes has to be established as per section 2.2.2 ‘Geometry Mapping’. Here a fixed Eulerian 

field is used to ease and accelerate the response calculations by the FEA method. However, 

instead of using an intermediate density for the structural representation, the process is further 

simplified, and the elements are only evaluated as completely void or solid (note void elements 

still have an artificially weak material property). To allow for improved geometric representation 

without invoking extensive computational burdens, the domain’s discretization is periodically 

re-meshed, exempting void regions as the algorithm converges. Following re-meshing, a 

subsequent iteration can add material into these void regions and the appropriate elements will 
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be added to the mesh. This allows for fast and easy conversion of the LSF to a structural 

representation for response and volume analysis. Because the elements of the structure are 

merely “on” or “off”, the volume fraction can be evaluated as the number of “on” elements 

multiplied by one element’s volume and divided by the total volume of the design domain.  

As many LSM currently do, the evolution of the LSF is done by viewing the update 

procedure as a quasi-temporal, 𝜏, process through the use of a Hamilton-Jacobi equation. 

 
𝜕𝜑

𝜕𝜏
+ ∇𝜑 ∙ 𝑣 = 0 (3.34) 

Where 𝑣 is a scalar velocity field based on shape derivatives. Note the absence of the reaction 

term derived from topological derivatives found in the Hamilton-Jacobi equation of section 

2.2.3. This is due to the nature of the internal pressure vessel problem, where one continuous 

void is desired, therefore, sink and source terms to nucleate voids are removed.  

These velocities, 𝑣, are derived from sensitivity analysis and chosen as a descent 

direction for the Lagrangian, equation 3.32. The sensitivity for a given element is defined as the 

change in response with respect to a change in domain. Taking the partial derivative of the 

Lagrangian in equation 3.32 for a particular element, 𝑒, results in the following equation.  

 
𝜕𝐿

𝜕𝛺
|𝑒 =

𝜕𝑐

𝜕𝛺
|𝑒 + 2𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞)

𝜕𝑉

𝜕𝛺
|𝑒 (3.35) 

 As shown in equation 3.35, there are only two terms that contain a response from the 

material distribution. These are the sensitivity of compliance, 
𝜕𝑐

𝜕𝛺
|𝑒, and the sensitivity of the 

volume, 
𝜕𝑉

𝜕𝛺
|𝑒. The shape sensitivity of an element for the compliance term of the objective is 

shown in equation 3.36 [13], [38]. Because the volume response has a direct correlation to a 
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change in the domain, the shape sensitivities for the volume response are 1 and uniform across 

the entire domain, equation 3.37.  

 
𝜕𝑐

𝜕𝛺
|𝑒 = −𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 (3.36) 

 
𝜕𝑉

𝜕𝛺
|𝑒 = 1 (3.37) 

Plugging both equations 3.36 and 3.37 into the partial derivative of the Lagrangian, equation 

3.35, and establishing the Hamilton-Jacobi velocity field as the decent direction, elemental 

velocities can be expressed as: 

 𝑣|𝑒 = −
𝜕𝐿

𝜕𝛺
|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞) (3.38) 

Recalling that 𝜆𝑖 is the Lagrange multiplier for the penalty and therefore the coefficient of ‘2’ on 

the second term in equation 3.35 can be absorbed into this multiplier. This Lagrange multiplier 

needs to start small as to allow for the structure’s update to be dominated by the compliance 

sensitivity to achieve an optimum solution and not fall into a local minimum. However, as the 

iteration procedure hones in upon the final solution, this multiplier needs to increase to ensure 

that the volume constraint is satisfied. This update of the Lagrange multiplier is done by a factor, 

𝛼, every iteration, as seen in equation 3.39. The physical values used for 𝜆0 and 𝛼 are discussed 

in chapter 4. 

 𝜆𝑖 = 𝛼𝜆𝑖−1 (3.39) 

 Once the velocities are found, the Hamilton-Jacobi equation (equation 3.34) can be used 

to update the LSF accordingly. However, prior to this update, the velocities are filtered to 
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smooth them so that mesh-dependent solutions are avoided and to obtain smooth geometric 

designs. Additionally, locations that are to remain a particular structural phase (solid or void) 

have their corresponding velocities set to 0. This includes the boundary of the pressure vessel, 

as it is desired for those to remain solid. Finally, the Hamilton-Jacobi equation itself is solved 

using an upwind finite difference scheme.  

 𝜑𝑖+1 = 𝜑𝑖 − ∆t(∇𝜑 ∙ 𝑣) (3.40) 

Where ∆t is the timestep of each modification of the LSF. In order to effectively modify the LSF, 

this time step must satisfy the ‘Courant-Friedrichs-Lewy’ (CFL) condition [10], [34], shown in 

equation 3.41, with ℎ being the distance between grid-points of the LSF and 𝑣 being the 

velocities 

 ∆𝑡 ≤
ℎ

𝑚𝑎𝑥|𝑣|
 (3.41) 

The gradient of the LSF, ∇𝜑, is evaluated using a central difference scheme. Due to the generally 

poor accuracy of an explicit method to calculate the gradient, it is advised that this time step be 

much smaller than this stability limit [34]. However, multiple time steps can be executed with a 

single finite element analysis, allowing for reasonable shape changes to occur despite the small 

timestep. 

 As mentioned in section 2.2.3 and evident in the update procedure of the LSF, the 

gradient of the LSF plays a crucial role in the effectiveness of the LSM. Because of this, the LSF is 

periodically reinitialized to a signed distance function based on the current structure. This 

ensures a consistent gradient and prevents large regions near the zero-level contour. The same 

process as establishing the first LSF function is used to do this. 
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3.3 Design Dependent Pressure Loading 

 The above explained Level-Set method is a generic implementation that is designed for 

topology optimization with static loading and boundary conditions. That is, the user defines the 

design space, fixed boundary conditions and loading conditions which all remain constant 

throughout the entire process of optimizing the material distribution. However, the case of 

optimizing a pressure vessel falls under the umbrella of design-dependent loading, because, as 

the structure changes, so do the loading conditions. Because of this, the LSM described in 

section 3.2 needs to be modified. In this research, the LSM was first modified to mimic the work 

of Xia et al. [50] for 2-dimensional cases. Then it was further modified to allow for the topology 

optimization of 3-dimensional pressure vessels. Defining 𝑝𝑜 as the pressure value, for both ℝ2 

and ℝ3, the optimization problem can be formulated as: 

 

min
𝑥
: 𝑐(𝑥) = 𝑈𝑇𝐾𝑈 =∑𝑢𝑒

𝑇𝑘𝑒𝑢𝑒

𝑁

𝑒=1

𝑆. 𝑇. : 𝑉(𝑥) ≤ 𝑉𝑟𝑒𝑞
[𝑲]{𝑢} = {𝐹}

𝑢 = 𝑢𝑜 𝑜𝑛 𝛤𝐷
𝜎(𝑢)𝑛 = 𝑝𝑜 𝑜𝑛  𝛤𝑁
𝜎(𝑢)𝑛 = 0 𝑜𝑛  𝛤𝐻

 (3.42) 

3.3.1 Two-Dimensional Problems with Pressure Loading 

 Before the end goal of optimizing a 3-D pressure vessel is done, the LSM procedure is 

modified for a 2-D domain. To do this, the works of Xia et al. [50] were followed and 

implemented. The first and major modification to the method is the use of two LSFs, 𝛷 & 𝜓, to 

define both the ‘free’ homogeneous boundary, 𝛤𝐻, and the ‘pressure’ Neumann boundary, 𝛤𝑁, 

respectively. Because the structure is now defined by two LSFs, each defining a boundary, the 
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material phase of the domain is defined as the region where both LSFs are below the zero-level 

iso-contour. The structural implicit relation between the LSF and the structure is then defined 

as: 

 

{
 

 
𝛷(𝑋) < 0 𝑎𝑛𝑑 𝜓(𝑋) < 0 𝑋 ∈ Ω ′𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙′

𝛷(𝑋) > 0 𝑜𝑟 𝜓(𝑋) > 0 𝑋 ∈ (𝐷\Ω) ′𝑉𝑜𝑖𝑑′

𝛷(𝑋) = 0 𝑎𝑛𝑑 𝜓(𝑋) < 0 𝑋 ∈ 𝛤𝐻 ′𝐹𝑟𝑒𝑒 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′

𝜓(𝑋) = 0 𝑎𝑛𝑑 𝛷(𝑋) < 0 𝑋 ∈ 𝛤𝑁 ′𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′}
 

 

 (3.43) 

In the implementation, the material can be defined as the locations were the maximum of the 

two LSFs is less than zero. Furthermore, because in many 2-D applications the pressure loading 

is applied at the edge of the domain, even if 𝜓’s zero-level contour extends past this boundary 

of the domain, the pressure force should still be applied. If 𝜓’s zero-level contour would extend 

past the domain, without modification, it would result in segmentation and a non-continuous 

boundary for the force to be applied to. This modification is done by defining a LSF, 𝜓𝑜, such 

that its zero-level contour is congruent to the edge of the domain that the force is applied from. 

Then, following an update, 𝜓 for the subsequent iterations is taken as the maximum between 

this updated LSF, 𝜓𝑢𝑝𝑑𝑎𝑡𝑒𝑑, and 𝜓𝑜, equation 3.44. This ensures that the zero-level contour for 

𝜓 is either within the domain, or congruent to the desired boundary creating a continuous 

boundary for the pressure to be applied on. These concepts for the structural representation are 

illustrated in figure 3-4 where the force is intended to be applied from the top edge of the 

domain and the structure is fixed on the left and right sides. Here an updated 𝜓 shown in 3-4.c 

would cross the top edge of the domain causing portions to not have pressure forces applied, 

but when taken as the maximum between 𝜓 in 3-4.c and 𝜓𝑜 in 3-4.d, these portions have their 

zero-level contour converted to be congruent to the edge of the domain as shown by the red 
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line in 3-4.a representing the pressure boundary, 𝛤𝑁. Additionally, defining the solid regions as 

locations where the maximum of 𝛷, shown in 3-3.b, and 𝜓 is less than zero, the appropriate 

material distribution is achieved as shown in 3-4.a. 

 𝜓𝑖+1(𝑥) = max{𝜓𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑥) ,  𝜓𝑜(𝑥)} (3.44) 

 

Figure 3-4: Dual LSF Structural Representation [50] 

To update the structure, each LSF is subjected to its own Hamilton-Jacobi equation and 

shape sensitivity. The compliance sensitivity analyses for both of these LSFs are defined as [50]: 

 
𝜕𝐶𝛷
𝜕𝛺

|𝑒 = −𝒖𝑒
𝑇𝒌𝑒𝒖𝑒 (3.45) 

 
𝜕𝐶𝜓

𝜕𝛺
|𝑒 = −𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 2∇ ∙ (𝑝𝑜𝒖𝑒) (3.46) 
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Where 𝑝𝑜 is the magnitude of the pressure load. The volume sensitivity for both Hamilton-

Jacobi equations is a constant, 1, the same as defined in equation 3.37. As in equation 3.32, the 

volume constraint can be brought into the objective to formulate a Lagrangian. Following the 

same process for equation 3.38, by using the sensitivities for the compliance and volume, and 

choosing the descent direction for the Lagrangian, the velocities for both Hamilton-Jacobi 

equations can be expressed as shown in equations 3.47 and 3.48. 

 𝑣𝛷|𝑒 = −
𝜕𝐿

𝜕𝛺
|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞) (3.47) 

 𝑣𝜓|𝑒 = −
𝜕𝐿

𝜕𝛺
|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 + 2∇ ∙ (𝑝𝑜𝒖𝑒) − 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞) (3.48) 

 In many real-world applications of this optimization objective, the structural component 

is used to isolate a pressurized area from a non-pressurized area. Therefore, the boundaries of 

these two interfaces must not intersect, as this would defeat the purpose and have no physical 

meaning. To ensure this is the case, an additional procedure is applied with a prescribed 

minimum thickness, t. First for all locations along each border the shortest distance to the 

opposite border is found. Then for any distance value less than or equal to prescribed thickness 

requires a modified velocity. First, the largest magnitude of the two sensitivities at their 

respective border is determined. This is done to ensure a continued decent of the objective. 

Then, the magnitude of this velocity is assigned to the opposite border such that both 

boundaries progress along the same direction, keeping the thickness equal. Finally, to ensure 

smooth updates to the LSF, the change in velocity is diffused radially amongst the velocity field 

the change took place on. In using an upwind finite difference scheme (equation 3.40) to update 

the LSFs, the two timesteps must be equal to maintain a minimum thickness where velocity 
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modifications were applied. This timestep is defined as the minimum of the two that would be 

established individually. 

 The last modification to the LSM for this 2-D pressure case is in the force application 

within the FEA procedure. Standard topology optimization algorithms with static loading cases 

establish a global force vector prior to the optimization loop that is held constant. This cannot 

be done for the case of design dependent loading. For pressure loading cases, the first integral 

of the weak form (equation 3.15) can be expressed with the pressure value, 𝑝𝑜, as shown in the 

middle equality of equation 3.49 which can then be converted from a surface integral to an 

integral over the full domain using the divergence theorem (equation 3.8), shown in the right 

equality of 3.49. 

 

∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑡𝑥
𝑡𝑦
𝑡𝑧

}
𝛤

𝑑𝛤 = {𝛿𝑑}𝑇∫ 𝑝𝑜𝑑𝑆
𝛤𝑁

= −{𝛿𝑑}𝑇∫ 𝑝𝑜𝑛𝛿𝛤𝑁𝑑𝛺
𝐷

 (3.49) 

Where 𝑛 is the outward normal direction of the boundary and 𝛿𝛤𝑁  is the Dirac function for the 

Neumann boundary, 𝛤𝑁. With the 𝜓’s zero-contour defining this boundary, this Dirac function 

can be approximated as: 

 𝛿𝛤𝑁𝑛 ≈
1

2
∇(

ψ(𝑥)

√ψ2(𝑥) + 휀2
) (3.50) 

Where 휀 is a small positive parameter recommended to be between ℎ 10⁄  and ℎ 2⁄ , with ℎ 

being the elemental grid size [50]. Smaller values of 휀 will result in the approximate force being 

applied to a tighter band along the iso-contour but with coarse directionality, while larger values 
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will diffuse the applied force but offer smoother application directions. An example of equation 

3.50 with 휀 = 0.2 is shown in figure 3-6 for the example LSF in figure 3-5 with a grid size of 0.4. 

 

Figure 3-5: Example Level-Set Function 

 

Figure 3-6: Approximate Dirac Function 
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3.3.2 Three-Dimensional Pressure Vessel Problems 

 Once the LSM was modified for pressure loading cases in 2-D it was then modified for 3-

dimensional internal pressure loading cases. The process that was developed for this is quite 

different from the 2-D case. Due to the nature of the problem, pressure loading on all internal 

surfaces, the material distribution can be defined by one LSF. This greatly simplifies the 2-D 

process by only requiring one Hamilton-Jacobi equation and set of velocities, which are set to 

the original design velocity of the compliance minimization problem (equation 3.38). In fact, the 

original LSM formulation performs well initially. However, it has convergence and unstable 

oscillation issues as the volume fraction nears the target volume fraction, giving rise to a need to 

modify the LSM to overcome these issues.  

The two terms that lead to the velocity field of equation 3.38 stem from the elemental 

strain energy and the penalty from the volume constraint violation. In the case of internal 

pressure loading, this compliance component of the velocity will almost always be positive, 

correlating to adding material in the Hamilton-Jacobi equation. As for the penalty component, 

the magnitude will reach zero as the volume approaches the target volume fraction. This 

occurrence is amplified if the relative change in constraint violation between iterations is larger 

than the scaling factor, 𝛼, on the Lagrange multiplier, 𝜆, equation 3.39. Thus, this combination 

of events leads to the update procedure adding too much material suddenly as the penalty term 

decreases. Once this occurs, the subsequent iteration will have a much higher than necessary 

penalty term as the Lagrange multiplier is much larger compared to when the algorithm initially 

hit that relative volume fraction due to the continuous increased scaling, equation 3.39. This 

then causes the algorithm to drastically remove material and this process is repeated as the 

algorithm oscillates and becomes unstable. This concept is illustrated in the volume versus 



 

74 
 

iteration plot shown in figure 3-7. Intuitively, the solution to this problem requires the penalty 

term to only be modified based on the constraint violation as opposed to being completely 

recalculated based solely on the current volume fraction. One penalty application method found 

in the literature that acts as such can be found in the works of Wei et al. [43]. Here an increasing 

multiplication factor, 𝛾, multiplies the constraint violation, which is then added to the previous 

iteration’s Lagrange multiplier. 

 𝜆𝑖 = 𝜆𝑖−1 + 𝛾𝑖(𝑉𝑖(𝑥) − 𝑉𝑟𝑒𝑞) (3.51) 

 𝛾𝑖+1 = max(𝛾𝑖 + 0.05 , 5) (3.52) 

Where the increase of 𝛾 is linear and capped to a value of 5. 

 

Figure 3-7: Drastic Change in Constraint Violation 
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 A second issue commonly found in the 3-D pressure vessel problem is in the event the 

volume constraint flips signs. For example, if the structure has a volume fraction near the target 

value and a small change in the structure occurs such that the volume fraction is just on the 

other side of the target volume. With regards to the velocity calculation, equation 3.38, for this 

example, this event causes the ensuing iteration to have similar values for the first term in the 

velocity equation, derived from the compliance, while having a drastic change in the penalty 

term. This situation leads to an undesired update of the LSF. This occurrence can be shown in 

the plot of volume versus iteration found in figure 3-8. Although the use of a penalty 

formulation such as the one in equations 3.51 and 3.52 mitigates this situation from occurring, 

there still arises convergence issues, particularly if the volume fraction rapidly approaches the 

target as the ‘momentum’ tends to continue removing material when not desired.  

 

Figure 3-8: Volume Crosses Target then goes Unstable 
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 To solve the convergence issues when optimizing a 3-D pressure vessel, a correlation 

was made between the different methods of applying penalties and the concept of 

‘Proportional, Integral and Derivative control’ (PID). The original penalty term defined for the 

LSM in equation 3.38 closely resembles that of proportional control as the difference in current 

volume fraction and target volume fraction are multiplied by the Lagrange multiplier. The 

penalty formulation by Wei et al. [43] can be viewed as the summation over the iterations of the 

volume constraint violation multiplied by the iteration’s Lagrange multiplier. This mirrors the 

definition of integral control. Finally, an intuitive method to aid against the second common 

issue mentioned above is to add a predictive term, echoing derivative control. All of these are 

combined to form a PID-type penalty formulation to be used as the volume fraction approaches 

the target volume. The three terms for the proportional, integral, and derivative violations can 

be written as shown in equations 3.53-3.55. 

 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 = 𝑉𝑖 − 𝑉𝑟𝑒𝑞 (3.53) 

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 =
1

𝑛
∑𝑉𝑖−𝑎

𝑛−1

𝑎=0

− 𝑉𝑟𝑒𝑞 (3.54) 

 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 = 2𝑉𝑖 − 𝑉𝑖−1 − 𝑉𝑟𝑒𝑞 (3.55) 

Where 𝑛 is a positive integer defining the number of previous iterations the integral term uses. 

Here the derivative term uses a finite difference approximation with the previous iteration and 

forecast one iteration using this slope. Each of these terms is then applied to a unique scaling 

factor, 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷, which can be modified for tuning purposes. Then these are summed to 

make the total control term for the iteration. Similarly to equation 3.51, this control term is then 
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added to the previous iteration’s penalty to determine the penalty term that is to be applied to 

the current iteration. 

(3.56) 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖−1 + 𝜆𝑖 [𝐾𝑃(𝑉𝑖 − 𝑉𝑟𝑒𝑞) + 𝐾𝐼 (
1

𝑛
∑𝑉𝑖−𝑎

𝑛−1

𝑎=0

− 𝑉𝑟𝑒𝑞) + 𝐾𝐷(2𝑉𝑖 − 𝑉𝑖−1 − 𝑉𝑟𝑒𝑞)] 

Combined with the compliance sensitivity found in equation 3.36, the design update velocities 

from equation 3.38 can be written as: 

 𝑣|𝑒 = 𝒖𝑒
𝑇𝒌𝑒𝒖𝑒 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 (3.57) 

The use of this method has prevented unstable oscillations and improper convergence behavior 

in implementing the LSM to topologically optimize a 3-dimensional pressure vessel. This effect 

can be seen in the volume versus iteration plot found in figure 3-9. Note the use of the original 

penalty formulation for the initial iterations until the volume nears the target volume. This 

change is apparent where the volume fraction levels off and has a slight bump up as the integral 

and derivative control kick in.  

 

Figure 3-9: Volume Fraction with PID-type Penalty 
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 Chapter IV: Implementation 

 This chapter discusses the physical implementation of how the methods previously 

established have been executed resulting in the optimization of an irregular shaped pressure 

vessel. To ensure understanding of the Level-Set Method, first a standard ℝ2 and ℝ3 static 

loading topology optimization code was created. Then, a ℝ2 code to handle design dependent 

pressure loading was written before expanding it to a generic rectangular prism in ℝ3. Here is 

were the procedure for optimizing a pressure vessel was established while maintaining a simple 

geometry. Finally, this code was modified to handle an irregularly shaped domain. This chapter 

discusses this progression along with the details of this final phase. To address such a problem, 

two codes have been developed. The first code interprets an STL file to develop a mesh for the 

domain. Once the mesh has been created, it is used in a second code that implements the Level-

Set method to determine a structural design that minimizes compliance while achieving a 

specific volume fraction. 

 The optimization code can be broken down into two main parts: an initialization phase, 

and an optimization loop that executes the topology optimization itself. The code strongly 

follows the 2-D discrete implementation of the Level-Set method in MATLAB by Challis [13], with 

occasional references to a LSM using Radial Basis Functions by Wei et al. [43]. Extensions to 3-

dimensions were aided by references from the 3-dimensional SIMP implementation in MATLAB 

by Kai et al. [7]. These codes were built upon to be able to handle a random domain as well as 

internal pressure loading.  

This chapter is organized as follows: section 4.1 summarizes the progression of the 

research as the problem was broken down, section 4.2 overviews the mesh generation code, 
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section 4.3 covers the initialization phase of the optimization code, section 4.4 addresses the 

implementation of the LSM within the optimization loop of the code, and finally section 4.5 

summarizes the code and introduces the appendices. 

4.1 Problem Progression 

Once it was determined to utilize the Level-Set method to optimize an irregular pressure 

vessel, a basic understanding was developed by developing code to optimize a 2-D domain 

subjected to static loading conditions. This was done mirroring the works of Challis [13] and Wei 

et al. [43]. Two separate LSF parameterizations and geometry mapping were done to compare 

and deepen the understanding of the method. The first utilized linear basis functions where the 

discretization of LSF control points coincided with the FEA mesh, thus resulting in a discrete 

level-set method, limiting the elements to merely ‘on’ or ‘off’. Increasing complexity, the second 

used radial basis functions and a density-based geometry mapping. This allows for a smoother 

structural representation and changes in response. To test and ensure robustness across a 

variety of structures, a user interface was developed to input problem parameters and adjust 

LSF parameters. This interface can be seen below in figure 4-1 where the number of elements in 

both x and y direction, the loading conditions, the Dirichlet boundary conditions along with the 

LSM parameters of step length, topological weighting factor and volume fraction constraint can 

all be defined.  
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Figure 4-1: 2-D LSM Input Interface 

After establishing this generic 2-dimensional topology optimization, the problem was 

further developed to account for design dependent pressure loads. Two methods were used to 

do this. The first uses SIMP, a density-based topology optimization, by following the works of 

Edmund and Lee [52] as explained in section 2.3. For the second method, the works of Xia et al. 

[47], [50] as discussed in sections 2.3 and 3.3.1 were mirrored. Here two separate LSFs were 

implemented to model both the homogeneous boundary and the Neumann boundary, each of 

which were subjected to their own Hamilton-Jacobi equations. To prevent boundary crossing, 

the velocity modification method discussed in 3.3.1 was used. Additionally, the pressure force 

was calculated based on an approximate Dirac function for the level-set function as established 

in equations 3.49 and 3.50. For this phase, a rectangular domain was used with a pressure 

loading applied from the bottom side and pinned boundary conditions applied on both the 

lower left and right corners. Figure 4-2 illustrates this design problem. 
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Figure 4-2: 2-D Pressure Problem Definition 

At this point, the domains were shifted to 3 dimensions. As in the 2-dimension 

problems, first problems with constant loading conditions were solved then the progression to 

pressure loading was done. Initially, internal pressure loading was applied to a rectangular 

cuboid domain, as shown in figure 4-3 below where the left image shows the initial geometry 

and the right shows the deformation plot of this geometry. In the left image, the outer boundary 

is shown by a transparent orange so that the structure itself can be visualized by the void 

elements plotted as purple. 
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Figure 4-3: 3-D Pressure Problem Definition 

During this phase, the formulation of the PID-type penalty, discussed in section 3.3.2, proved to 

be effective. Here a fixed Eulerian mesh is used where all elements are of equal cuboid size and 

remain as such throughout the optimization. The next progression involved implementing the 

methods established here towards an irregularly shaped design domain as opposed to the 

rectangular cuboid shown in figure 4-3. This final phase is discussed in further detail throughout 

the remainder of this chapter as it involves the conversion of an STL file into a voxelated mesh, 

discussed in section 4.2 and the implementation of the level-set method for optimization 

discussed in section 4.3. 

4.2 Mesh Generation 

To establish the irregular shape that is to be optimized, an STL file of the part is 

converted to a finite element mesh that can be used by the optimization and finite element 

analysis codes. An STL part is defined by a series of triangles that form the outer boundary of the 
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component. Each corner of a triangle is defined by a node with x, y, and z coordinates. In order 

to differentiate the interior from the exterior of the part, an outward normal vector for each 

triangular shape is also provided. An example of how this information is presented in the ASCII 

STL file is shown below. 

   … 

facet normal 9.753949e-02 8.394471e-01 5.346163e-01 
      outer loop 
         vertex 1.472648e+02 2.135673e+02 1.981356e+02 
         vertex 1.472694e+02 2.134192e+02 1.983673e+02 
         vertex 1.472710e+02 2.133868e+02 1.984179e+02 
      endloop 
   endfacet 
   facet normal 8.069924e-02 8.404727e-01 5.358109e-01 
      outer loop 
         vertex 1.472710e+02 2.133868e+02 1.984179e+02 
         vertex 1.472694e+02 2.134192e+02 1.983673e+02 
         vertex 1.472699e+02 2.134033e+02 1.983922e+02 
      endloop 
   endfacet 

   … 

Here the ‘facet normal’ defines the x, y, z components of the outward normal for the 

triangle that is defined by the 3 ‘vertex’ below. Each of these vertices then provide their x, y, z 

coordinates. This section from ‘facet normal’ to ‘endfacet’ is then repeated for each of 

the triangle surfaces that define the part’s outer geometry. 

 The code ‘MakeMesh.m’ converts the assigned STL file into an array of elements each 

with the lengths [𝑙𝑥 𝑙𝑦 𝑙𝑧] defined by the user in the variable ‘voxelsize’. Using this 

element size along with the maximum and minimum vertex values in each direction, ‘ranges’, 

the maximum possible number of elements in each direction is defined. With this information, a 

3-D matrix, ‘cells’, of size equal to the maximum elements in each direction is constructed 

and filled with the value of -1. The indices of this matrix represent each possible hexahedral 

element of the mesh. This matrix will be modified such that each element of the matrix 
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designates the on-off nature of the element in the part. A value of 1 refers to there being 

material and thus the element will become part of the mesh, whereas a value of -1 denotes void 

regions that will be excluded from the mesh. Additionally, centroid coordinates for each of these 

possible elements is established.  

To formulate this ‘cells’ matrix, each triangular face of the STL with a z component in 

its normal is evaluated to determine which 𝑥 and 𝑦 centroids lie within the triangular face 

projected onto the xy-plane. Each of the centroid coordinates that intersects this projection is 

then evaluated to determine the z-value the face has at that particular x, y coordinate. As 

illustrated in figure 4-4, this process identifies the x, y centroid coordinates, represented by the 

red arrows, that would intersect the given STL triangle, represented by the red triangle, 

projected in the z-direction. Then the z-value of this intersection is determined.  

 

Figure 4-4: STL Projection 
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From here, all indices of the ‘cells’ matrix corresponding to these x and y coordinates 

with z-values greater than this intersection are multiplied by -1. Therefore, if the face is the 1st 

face crossed in the projection, all cells after it will be turned on, 1, and all prior cells will remain 

off, -1. Then if a particular face is the second or final face crossed, all the prior cells will remain 

the same, and the following cells will be turned back off. This concept for an arbitrary yz-cross 

section at any x value is illustrated in figure 4-5 below, where the boxes represent the indices of 

the ‘cells’ matrix and the red lines represent the intersection of the STL surfaces and the 

cross-section. 

 

Figure 4-5: YZ-Cross Section Projection 

This process of generating the appropriate ‘cells’ matrix is done between lines 14 and 50 of 

the script ‘MakeMesh.m’, found in appendix B.  
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In optimizing a pressure vessel, it is critical to keep the outer boundary solid, as to 

maintain the component’s ability to be a pressure vessel. This is done immediately following the 

completion of the ‘cells’ matrix (lines 55 through 58) by summing all of the neighboring 

indices of the matrix via a convolution with a 3x3x3 matrix of ones, therefore if all values of 

‘cells’ are positive one within a 3x3x3 matrix centered at a given location, this convolution 

would produce a value of 27. Then boundary elements can be defined as values of this 

convolution less than 27, with a ‘cells’ matrix value of 1, as shown in the code below. 

cells=permute(cells,[2,1,3]); 
outer=(cells==1).*(convn(cells,ones(3,3,3),'same')<27); 
outer(cells(:)==-1)=[]; 
Boundary=nonzeros(outer(:)'.*(1:nnz(cells==1))); 

Once each possible element is deemed on or off via the ‘cells’ matrix, the actual list 

of elements and nodes has to be generated, characterized in the variables ‘elements’ and 

‘nodes’. Here ‘elements’ contains a row for each element of the mesh and 8 columns for 

each node number of the given element. These node numbers are ordered such that for the 

given element they follow the relative positioning as shown in figure 4-6. As for the ‘nodes’ 

variable, each row correlates to the particular node number referenced in ‘elements’, and 

each of these rows contains three columns for the x, y, and z coordinates of the node. Despite 

the physical translation of the geometry in the STL file, these nodes start at the origin, such that 

if the first index of ‘cells’ was 1, its first node would have the coordinates (0,0,0). 
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Figure 4-6: Node Relative Positioning 

To generate these lists of nodes and elements, the indices of ‘cells’ that have a value 

of 1 are iteratively considered to make an element. The nodes for the element are then 

determined, and if the node already exists in the ‘nodes’ matrix, that node number is used in the 

‘elements’ matrix, otherwise a new entry to the ‘nodes’ matrix is made and used. This process is 

executed in lines 73 through 89. Once this is complete, the mesh is plotted to confirm correct 

operation and that the chosen ‘voxelsize’ sufficiently captures geometric features for the 

user. Then the variables ‘elements’, ‘nodes’ and ‘boundary’ are saved to be used in the 

topology optimization of the domain. 

4.3 Optimization Initialization 

During the initialization phase, the material parameters, optimization parameters, and 

initial geometry are setup along with a few ‘book-keeping’ items. The material properties for the 

modulus of elasticity and poison’s ratio are saved as variables ‘E’ and ‘nu’ with values of 

29.5*10^6 and 0.29 respectively as these are the material properties for Inconel718, a known 
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3D printed metal for high pressure and life support devices. When doing nominal runs ‘E’ and 

‘nu’ were saved as 1 and 0.3 respectively. The level-set parameters that are defined here are: 

•  volReq=0.45: The volume fraction goal for the topology optimization 

• stepLength=2: The number of ‘Courant-Friedrichs-Lewy’ (CFL) time steps the 

evolution equation is solved at each iteration, this is explained further in the update 

procedure section 

• numReinit=2: The frequency at which the LSF is reinitialized, a value of 2 refers to 

the LSF being reinitialized every other iteration  

• max_itr=200: The maximum number of iterations that will be executed before the 

program aborts the loop if a convergence criterion has not been established yet 

• La=1/2: The initial Lagrange multiplier for the first phase of the optimization, 𝜆1 from 

equation 3.38   

• La2=1/10: The initial Lagrange multiplier for the second phase of the optimization 

once the penalty formulation has switched from just proportional to a PID-type 

penalty, 𝜆𝑖 from equation 3.56 

• alpha=1/0.95: Scaling factor for Lagrange multipliers, equation 3.39 

• PID=[1,0.5,0.1]: The gains applied to each portion of the PID-type penalty, 

[𝐾𝑝 𝐾𝐼 𝐾𝐷] from equation 3.56 

From the paper presenting the 2-D discrete LS topology optimization code written in MATLAB by 

V.J. Challis [13], the suggested values for the frequency of reinitialization are between 2 and 6. 

The justification behind the range is that if the number is too small, no new holes can nucleate 

in the design, and if too large, the LSF becomes very steep, leading to poor accuracy when 
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solving the evolution equation. This same paper [13], suggest that the ‘stepLength’ variable 

be set between the minimum number of element in a coordinate direction divided by 10, and 

the maximum number of elements divided by 5. These recommendations were for a 2-

dimensional case, claiming that if the number was too low, the design change will be slow and 

converge to a poor local minimum, and if the number was too large, the design will change 

rapidly with the possibility of removing material from important supporting features. During 

trials of the 3-D pressure box, numbers on the upper end of this range led to severe oscillations 

and therefore the number was set very low, which seemed to help the convergence. The use of 

the Lagrange multipliers and the ‘PID’ variables to better control some of these issues is further 

explained in the update procedure. 

For both cases in 3-D, the geometry is defined by a series of hexahedral (box) elements 

comprised of 8 nodes each. For irregular shapes, a discretization of the domain converts 

geometry from an STL file into defined elements and nodes, ‘MakeMesh.m’ section 4.2, 

otherwise a patterned discretization is established prior to the optimization. Because this 

geometry is voxelated so that every element is exactly of the same size and shape, the 

elemental stiffness matrices, established in equation 3.25, are all equivalent and can be 

calculated once prior to the optimization loop in the subfunction ‘stiff3D(E,nu,Esize)’. 

Using the relative local element node order illustrated in figure 3-1 used for the finite element 

method and the mesh generation process from section 4.2, the ‘elements’ matrix has one row 

for every element and 8 columns for each node corresponding to the element’s local node 

positioning. An example of the first few elements are shown in table 4-3 below. The ‘nodes’ 
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matrix contains a row for each node of the mesh and 3 columns for the x, y, and z coordinates of 

the node, an example of the first few nodes are shown in table 4-4.  

 

Figure 3-1: Hexahedral Master Element 

Table 4-3: ‘elements’ matrix format 

Element # Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 

1 1 2 3 4 5 6 7 8 

2 2 9 10 3 6 11 12 7 

3 13 4 14 15 16 8 17 18 

4 4 3 19 14 8 7 20 17 

5 3 10 21 19 7 12 22 20 

6 15 14 23 24 18 17 25 26 
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Table 4-4: ‘nodes’ matrix format 

Node # X-coordinate Y-coordinate Z-coordinate 

1 2 2 0 

2 2.25 2 0 

3 2.25 2.25 0 

4 2 2.25 0 

5 2 2 0.25 

6 2.25 2 0.25 

7 2.25 2.25 0.25 

8 2 2.25 0.25 

9 2.5 2 0 

10 2.5 2.25 0 

11 2.5 2.25 0 

12 2.5 2.25 0.25 

Once the mesh is imported, an initial geometry with an array of voids can be 

formulated, using the subfunction ‘InitialStruc’. This array of voids is determined by a 

user defined 3x3 matrix ‘init’, which for example can be set to 

[4,4,4;3,3,3;10,10,10]. The first row of this matrix, [4,4,4], denotes the size of each 

initial void in the three coordinate directions. The second row of this matrix, [3,3,3], denotes the 

gap between each initial void in each direction, and the final row, [10,10,10] represents how 

many times this void and structure pattern are repeated in each direction. This subfunction 

‘InitialStruc’ uses the imported mesh data of ‘elements’, ‘nodes’, and ‘boundary’ along 

with the variable ‘init’ to generate the following outputs: 

• struc: True/false matrix of material distribution 

• Esize: [𝑙𝑥 𝑙𝑦 𝑙𝑧] size of the elements in the mesh 

• map: A vector specifying the index of the level-set function belonging to each 

element 
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• noF: List of degrees of freedom belonging to the homogeneous boundary 

where no forces should be applied to 

• exterior: List of indices of ‘struc’ that lie outside of the design domain 

In implementing these initial voids, this array is centered and trimmed to ensure that all 

boundary elements start as solid. With all of this, the initial geometry is created and stored into 

a 3-D matrix saved as ‘struc’. This matrix has the size of the maximum number of elements in 

each direction and has a value of ‘1’ if the element has material and a ‘0’ if the element is void. 

Indicies of the ‘struc’ matrix that are outside of the imported geometry are set to ‘1’ as well 

and will stay as such throughout the entire process. Despite not containing material, ‘struc’ 

indices outside the domain are set to a value of 1 to ensure proper LSF values along the outer 

edges of the pressure vessel when initializing to a signed distance function. Following the 

execution of the subfunction ‘InitialStruc’, a meshed grid of the centroid coordinate for 

each of the indices of ‘struc’ are stored into the variables ‘sX’, ‘sY’, and ‘sZ’ for the three 

coordinate directions respectively. Additionally, the total volume, stored as ‘volTot’, is 

calculated as the product of the components of ‘Esize’ multiplied by the number of elements.  

 Once the initial structure has been established, the initial level-set function can be 

computed as a signed distance function. Unlike in the situation with the rectangular cuboid 

design domain or the initial phases of the irregular shaped domain where the level-set function 

coincides with the discretization of the meshed finite elements, here the LSF is disjointed and 

spaced at 1.5 times the size of the elements. LSF kernel values or design variables, ‘𝑠𝑖’ in 

equation 2.7, are stored in a matrix, ‘lsf’. Shown in equation 4.1, the convention of the level-

set function defines any positive value as void and any negative as solid. With this convention 

and utilizing the image processing toolbox and its ‘bwdist’ function, the initialization of the LSF 
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to a signed distance function can be done by first finding a signed distance function of the 

structure then linearly interpolating to the grid points of the LSF discretization, shown in the two 

lines of code below. The function ‘bwdist’ evaluates the Euclidean distance from each element 

to the nearest non-zero element. Therefore, the first half of the first line of code evaluates the 

void regions of the LSF (positive values), and the second term evaluates the LSF for the solid 

regions which are negative values, thus the subtraction of the terms. The built-in function 

‘griddata’ is used to execute this linear interpolation. 

lsf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1); 

lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ); 

 
{

𝜑(𝑋) < 0 𝑋 ∈ Ω ′𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙′

𝜑(𝑋) = 0 𝑋 ∈ 𝛤 ′𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′

𝜑(𝑋) > 0 𝑋 ∈ (𝐷\Ω) ′𝑉𝑜𝑖𝑑′

} (4.1) 

Once the level-set function is defined, a list of the LSF indices that lie on the boundary or 

outside the design domain are saved in the variable ‘bearing’, which is used later to set the 

Hamilton-Jacobi velocities of these indices to zero. There are indices of the ‘struc’ matrix that 

lie outside of the design domain because the size of the structure matrix is squared off to the 

maximum number of elements in each direction. Additionally, the matrix ‘Hie’ is defined to be 

used during filtering sensitivities from the elements. The conversion from elemental sensitivities 

to LSF sensitivities is done using the basic filter defined in equation 4.2, similar to density filters 

used in density-based topology optimization methods.  

 𝜕𝑅

𝜕𝑠𝑖

̃
=
∑ 𝐻𝑖𝑒𝑉𝑒

𝜕𝑅
𝜕𝛺𝑒∈𝑁𝑖

|𝑒

∑ 𝐻𝑖𝑒𝑉𝑒𝑒∈𝑁𝑖

 (4.2) 
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Where 𝐻𝑖𝑒 are weighting factors and 𝑁𝑖 defines the neighborhood of elements, 𝑒, for a 

particular LSF index, 𝑖. Each element having its own volume, 𝑉𝑒, and computed response 

sensitivity, 
𝜕𝑅

𝜕𝛺
|𝑒. These neighborhoods are defined as:  

 
𝑁𝑖 = {𝑒 ∶ 𝑑𝑖𝑠𝑡(𝑖, 𝑒) ≤ 𝑟} (4.3) 

Here the operator 𝑑𝑖𝑠𝑡(𝑖, 𝑒) refers to the Euclidean distance between the center of the 𝑒𝑡ℎ 

element and the 𝑖𝑡ℎ index of the LSF, and 𝑟 is the size of the neighborhood or filter, set to 1.25 

times the LSF discretization spacing. The weighting factor, 𝐻𝑖𝑒, is then defined as: 

 𝐻𝑖𝑒 = 𝑟 − 𝑑𝑖𝑠𝑡(𝑖, 𝑒) (4.4) 

The final portion of the code prior to the optimization loop determines the loading 

conditions, fixed boundary conditions and the elemental stiffness matrix. Because the topology 

optimization problem contains pressure loading, the force vector for the finite element analysis 

has to be computed every iteration as the design changes. Despite this, a value for the nodal 

force component magnitude of each element that is void is defined as the perpendicular surface 

area times the nominal pressure value and divided evenly amongst each node on the respective 

surface of the element, equation 3.27 and 3.28. This is computed as 

‘Po=circshift(Esize,1).*circshift(Esize,-1)*Pressure/4’ during this 

initialization phase, where ‘Esize’ is a 1x3 vector of the size of each element in the x, y, and z 

direction respectively and ‘Pressure’ is the nominal PSI value of the internal pressurized gas. 

The Dirichlet boundary condition, or fixed degrees of freedom, are determined to be 4 nodes 

with one fixed in all directions and the other three having a roller boundary condition in each of 

the three coordinate directions. These three points with roller boundary conditions are each 



 

95 
 

projected along from the pinned node along the direction they are allowed to deform in. A 2-

dimensional representation of this is shown in figure 4-7 below. Because the nodes of the 

Dirichlet boundary need to belong to elements that contain material, only nodes of elements 

belonging to the border are considered. The chosen set of nodes and their constraints are 

shown on the figure and selected as the set that has the maximum distance from the pinned 

point. This search is done in lines 86 through 102 of the code, but are only executed if the values 

are not already saved in the loaded mesh file. Once the 4 nodes are determined for the 3-D 

problem, they are converted to a list of 9 fixed degrees of freedom for the finite element 

process, 3 for the pinned node and 2 for each of the other three elements with roller conditions, 

saved as ‘fixeddofs’. 

 

Figure 4-7: Fixed Boundary Conditions 
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4.4 Optimization Loop 

Following the initialization, the code enters the optimization loop to determine the 

optimal internal geometry. This is done in a while loop until a variable, ‘flag’, no longer equals 

to 0. The current iteration number is stored as the counter ‘i’. This loop follows the basic flow 

chart shown below in figure 4-8 and can be broken down into 5 parts: 1 finite element analysis, 

2 postprocessing and sensitivity calculations, 3 convergence check, 4 update procedure, and 5 

preparation for the subsequent iteration. Each of these will be divided into their respective 

subsection and explained further in detail. Additionally, a more in-depth flowchart can be found 

in appendix [A]. 

 
Figure 4-8: Basic Flow Chart 
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4.4.1 Finite Element Analysis 

At the beginning of each loop of the optimization, finite element analysis is run to 

determine the displacement values for all of the nodes which will be used to calculate the strain 

energy densities and sensitivities of each element. To aid in organization, this is all done in a 

subfunction ‘[U,K,F]=FEA_3DP5(struc,elements,map,KE,Po,noF,fixeddofs, 

oldstruc,oldK,oldF)‘. This function has the following inputs: 

• struc: The true false matrix of material distribution 

• elements: The matrix of elements and their corresponding nodes 

• map: A vector specifying the index of the level-set function belonging to each 

element 

• KE: The elemental stiffness matrix computed previously from ‘stiff3D’ 

• Po: The force components applied to each void element’s nodes 

• noF: The degrees of freedom that are on the outer boundary 

• fixeddofs: The degrees of freedom that are to have no deflection 

• oldstruc: The previous iteration’s structure 

• oldK: The previous iteration’s global K matrix 

• oldF: The previous iteration’s global force vector 

and the following outputs: 

• U: Deflection values for each degree of freedom 

• K: The global stiffness matrix 

• F: The global force vector 
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Within the subfunction, the global stiffness matrix and force vector, ‘K’ and ‘F’, are 

initialized as the previous iteration’s, ‘oldK’ and ‘oldF’, and then only need to be modified 

accordingly as opposed to completely recalculated every iteration. First the current structure is 

compared to the previous iteration’s structure (input ‘oldstruc’) to identify the indices of 

the LSF that have changed since the previous iteration. Using the ‘map’ vector, these indices are 

set to correspond to the elements that have changed, ‘ele’. Next, for each element that has 

changed, the previous iteration’s elemental stiffness matrix (Ke_old) and force vector 

(Fe_old) are computed along with the current iteration’s elemental stiffness matrix (Ke) and 

force vector (Fe). Then at the appropriate indices ( dof(ele(i),:) ) of the global stiffness 

matrix (K) and force vector (F), the previous iteration’s elemental stiffness matrix is subtracted 

out and the current one’s added in. This process can be found in lines 54 through 63 of the 

subfunction and has proved to save orders of magnitude in computational time every iteration 

that uses the same mesh from the previous iteration, because it eliminates looping through 

every element of the domain each time during the assembly process. Following the assembly 

process, the force vector components along the homogeneous boundary, the exterior surface of 

the pressure vessel, are set to zero with the ‘noF’ index list, ‘F(noF)=0’. Once the global 

stiffness matrix and force vectors are computed, the fixed degrees of freedom are applied via 

the partitioning method, using the following lines of code. The free degrees of freedom 

‘freedofs’ can be computed as: 

 freedofs=setdiff(1:3*numnodes,fixeddofs) 

Then the remaining system of equations is computed using the standard MATLAB backslash 

operator as: 

U(freedofs,:)=K(freedofs,freedofs)\F(freedofs,:) 
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The function outputs the displacement values along with the new global stiffness matrix and 

global force vector that are to be saved as a starting point for the following iteration. 

4.4.2 Postprocessing and Sensitivity Calculations 

Directly following the computation of the nodal displacements, the strain energies of 

each element are computed. As defined in section 3.23.2, the strain energy, C, of the system is 

equivalent to the summation of the elemental strain energies, as shown in equation 4.5 below, 

where U is the deflection vector, K is the global stiffness matrix, N is the number of elements, 𝒖𝑒 

is the elemental deflections, and 𝒌𝑒 is the elemental stiffness matrix. 

 𝐶 = 𝑼𝑇𝑲𝑼 =∑𝒖𝑒
𝑇𝒌𝑒𝒖𝑒

𝑁

𝑖=1

 (4.5) 

Because of the defined LSF to structure relation, equation 4.1, and the sensitivity of 

compliance computed in equation 3.36, the negative of the strain energies for each element are 

saved into ‘CompE’. This is done via the following lines of code (lines 123-125): 

for(e=1:numelem) 

    CompE(e)=-

max(struc(map(e)),0.0001)*U(dof(e,:))'*ke*U(dof(e,:)); 

end 

After this, the overall objective, i.e. system compliance, ‘obj(i)’ is computed as the 

summation of ‘CompE’. Because the structure matrix is defined as 1 where material is and 0 

where void, the current volume fraction ‘vol(i)’ is computed as the sum of the structure 

matrix that is meshed multiplied by the volume of one element and divided by the total volume 

calculated during the initialization phase as ‘volTot’. This phase of the loop is also where the 

iteration data is printed to the command window, and, if desired, plots are created and saved 

into video files. 
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4.4.3 Convergence Checks 

Immediately following this, a quick check for convergence is done if the optimization has 

done at least 5 iterations. There are two checks for convergence. The first being: is the volume 

within a specified tolerance (0.003 for this problem) of the target volume fraction, and the 

previous 5 iterations are all within 5% compliance of the current iteration’s? The second check 

for convergence is if the iteration counter, ‘i’ has reached the maximum allowed iterations, 

‘max_itr’. These convergence checks are done between lines 134 and 141. 

4.4.4 Update Procedure 

Once convergence is checked and it is determined that the optimization procedure 

needs to continue, the LSF is updated for the following iteration. To do this, design velocities, 

equations 3.38 and 3.56, are computed based on the objective function and constraints. Then 

the LSF can be updated via the Hamilton-Jacobi equation (equation 3.34) and these velocities. 

The mathematical description of a minimum compliance structure subjected to pressure loading 

can be found in equation 3.42. Following the process in section 3.2, the Lagrangian derived in 

equation 3.32 and associated design update velocities for the Hamilton-Jacobi equation, found 

in equations 3.38 and 3.57, are restated as: 

 
𝐿 = (∑𝒖𝑒

𝑇𝒌𝑒𝒖𝑒

𝑁

𝑖=1

) + 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞)
2

 (3.32) 

 
𝑣|𝑒 = −

𝜕𝐿

𝜕𝛺
|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞) (3.38) 

 
𝑣|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 (3.57) 

Using the filtering scheme from equation 4.2 with the weighting factors in ‘Hie’, the elemental 

velocities can be converted to LSF velocities. As discussed in section 3.3.2, equation 3.38 is used 
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initially, and then 3.57 is used once the optimization approaches the target volume. Recall this 

term ‘𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖’ in equation 3.57 is defined as: 

(3.56) 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖−1 + 𝜆𝑖 [𝐾𝑃(𝑉𝑖 − 𝑉𝑟𝑒𝑞) + 𝐾𝐼 (
1

𝑛
∑𝑉𝑖−𝑎

𝑛−1

𝑎=0

− 𝑉𝑟𝑒𝑞) + 𝐾𝐷(2𝑉𝑖 − 𝑉𝑖−1 − 𝑉𝑟𝑒𝑞)] 

The Lagrange multipliers for the 𝑖𝑡ℎ iteration, 𝜆𝑖, are stored as ‘La’ and ‘La2’ for equations 3.38 

and 3.56 respectively because once the penalty method switches from the original formulation a 

separate Lagrange multiplier is used. Following equation 3.39, the Lagrange multipliers starts 

small, 0.25 and 0.1 respectively, and are updated by a factor α, stored as ‘alpha’, set to 1.05. 

Although the Lagrange multiplier for the original formulation, ‘La’, is updated every iteration, 

the second Lagrange multiplier, ‘La2’, is increased by the same factor, α, only upon the volume 

stalling for 5 iterations. This stalling is defined as 5 consecutive iterations with less than a 0.005 

change in volume fraction. 

The first term of the design velocities for both equations 3.38 and 3.57 come from the 

compliance term, being the individual components of the ‘CompE’ calculated in the post 

processing section as shown in equation 4.5. Then these terms are converted for the LSF using 

equation 4.2 and stored as ‘shapeSens’. As discussed in section 3.3.2, the second term for 

these velocities serves as a penalty based on the volume constraint, with an original formulation 

shown in equation 3.38 and the PID-type scheme in equation 3.56. This original scheme is 

utilized until the volume enters a specified range of the required volume. This range is set to 

±0.05. From this point on, the penalty term is computed following the PID-type scheme. The 

final penalty term prior to entering this range is saved to a vector ‘Control’. Then each 
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iteration attempts to track the progression of the volume fraction and modify this control value 

accordingly. The gains, [𝐾𝑝 𝐾𝐼 𝐾𝐷], serve as scaling factors between the proportional, 

integral, and derivative terms respectively. Within the code, these factors are stored in the 

vector ‘PID’ and set to [1,0.5,0.1]. The computation of the design update velocities is 

done in lines 144 through 164, which are shown below. 

%Update Procedure------------------------------------------------ 

if(abs(vol(i)-volReq)<0.05) 

    relax=1;    %Stop relaxed penalty if within volume band (0.1) 

end 

if(relax==0)    %Execute relaxed penalty 

    La=alpha*La; 

    Penalty=La*(vol(i)-volReq); 

    Control=[]; 

    Control(i)=Penalty; 

else 

    if(max(vol(max(1,i-5):i))-min(vol(max(1,i-5):i))<0.002&&i>5) 

        La2=alpha*La2;%Update Lagrange mult on PID if volume 

hasn't changed 

    end 

    Control(i)=La2*PID*[(vol(i)-volReq);... 

        ((sum(vol(max(1,i-4):i))/numel(max(1,i-4):i))-volReq);.. 

        (2*vol(i)-vol(max(1,i-1))-volReq)]; 

    Penalty=sum(Control); 

End 

shapeSens=reshape((Hij*CompE)./max(sum(Hij,2),0.0001),LSFsize); 

SensTotal=(shapeSens/max(abs(shapeSens(:))))+Penalty; 

 

Here ‘SensTotal’ contains the design velocities for the Hamilton-Jacobi equation. Note that 

the ‘shapeSens’ values are normalized by dividing them by their largest absolute value. Also, 

the ‘Control’ term is saved as a vector to allow for its analysis following the optimization to 

aid in debugging and tuning. 

The physical update of the LSF is done in a subfunction ‘updatestep3’. In this 

function, the LSF, sensitivities, step length, element size, and list of elements that cannot change 

are passed as inputs and the updated LSF along with the new structure serve as the function’s 
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outputs. The first thing that is done in this subfunction is the smoothing or filtering of the 

velocities. This is done by a 3-D convolution with the matrix ‘[C]’ defined as: 

 

𝐶(: , : ,1) = [
0 1 0
1 2 1
0 1 0

] /27 

𝐶(: , : ,2) = [
1 2 1
2 3 2
1 2 1

] /27 

𝐶(: , : ,3) = [
0 1 0
1 2 1
0 1 0

] /27 

(4.6) 

In effect, this takes each term as the weighted average of itself and the neighboring indices that 

would form a 3x3x3 matrix around it. This ‘[C]’ matrix weights the center element with a value 

of 3, and all of the indices ±1 in the i, j, k directions a weight of 2. The ‘[C]’ matrix is divided by 

27 so that the sum of all of the indices equals 1 to make it a true weighted average.  

From here, the sensitivities for the locations where the LSF are not supposed to change 

are set to 0, this list of elements that are locked is found in the variable ‘bearing’. The final 

step of the update is to apply the Hamilton-Jacobi equation (equation 3.34), which is done in the 

subfunction ‘[struc,lsf] = evolve(v,g,lsf,stepLength,w)’.  Here the inputs 

‘v’, ‘g’ and ‘w’ refer to the terms 𝑣, 𝑔, and 𝑤 of the Hamilton-Jacobi equation and 

‘stepLength’ is the number of ‘Courant-Friedrichs-Lewy’ (CFL), equation 3.41, time steps the 

evolution equation is solved at each iteration. Note this subfunction incorporates the 

topological derivative, 𝑔, and its weighting term, 𝑤, to formulate the reaction term of the 

Hamilton-Jacobi equation, here these terms are set to 0 for the optimization of pressure vessels. 

In the code, the time step found in equation 3.40 is stored as ‘dt’, and is calculated to be 10% of 

the stability condition. Then 10 of these timesteps are done for the prescribed value of 
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‘stepLength’. The gradient of the LSF for the Hamilton-Jacobi equation is evaluated with a 

finite difference scheme. To prevent errors along the perimeter, LSF values are extended to 

form a border. Then using the ‘circshift’ command both a positive and negative finite 

difference in each coordinate direction can be computed. To calculate the update for one 

iteration, the following lines of code repeat the computation of the Hamilton-Jacobi equation 

based on the value of ‘stepLength’. 

for(i=1:(10*stepLength)) 

    dpx=circshift(lsf,[-1,0,0])-lsf;  %Find derivatives on the 

grid 

    dmx=lsf-circshift(lsf,[1,0,0]); 

    dpy=circshift(lsf,[0,-1,0])-lsf; 

    dmy=lsf-circshift(lsf,[0,1,0]); 

    dpz=circshift(lsf,[0,0,-1])-lsf; 

    dmz=lsf-circshift(lsf,[0,0,1]); 

    %Update LSF 

    lsf=lsf-dt*min(vFull,0).*sqrt(min(dmx,0).^2+max(dpx,0).^2+… 

min(dmy,0).^2+max(dpy,0).^2+min(dmz,0).^2+max(dpz,0).^

2)… 

-dt*max(vFull,0).*sqrt(max(dmx,0).^2+min(dpx,0).^2+… 

max(dmy,0).^2+min(dpy,0).^2+max(dmz,0).^2+min(dpz,0).^

2); 

end 

4.4.5 Preparation for Subsequent Iterations 

Following the update of the LSF, a few book-keeping items are taken care of in 

preparation for the following iteration. The majority of this comes in the form of mesh 

consideration and determining if the structure should be re-meshed or if elements need to be 

added to the existing mesh. However, prior to this the old structure is saved as ‘oldstruc’ for 

the FEA to compare to the new structure. Then a re-mesh determination is considered. This 

determination is stored in the iterative counter ‘mesh’ and re-meshing occurs when this 

counter is zero. To be set to zero the following if statements are considered: 
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if(mesh>=5) 

   if(mesh>=8 && max(abs(vol(i-4:i)-volReq))<band) 

      mesh=0;   disp('option1'); 

      band=0.8*band; 

      Esize=0.85*Esize; 

   

elseif(numel(setdiff(find((strucoldstruc)==1),[map;exterior]))>=… 

0.3*numelem) 

      mesh=0;   disp('option2'); 

      band=0.15; 

      Esize=repelem((prod(Esize)*(sum(struc(map)+… 

numel(setdiff(find((strucoldstruc)==1),[map;exterior]…

))))/(1.2*numelem))^(1/3),3); 

   elseif(numnodes>100000) 

      mesh=0;   disp('option3'); 

      Esize=repelem((prod(Esize)*sum(struc(map))/… 

           (0.75*numelem))^(1/3),3); 

   end 

end 

This first ensures that the domain is not re-meshed within 5 iterations of remeshing. 

Then three checks are conducted to determine if the domain should be re-meshed. The first of 

these checks is on the convergence behavior of the volume fraction. Here if the volume fraction 

is consistently within a range of the goal volume for the past 5 iterations, the algorithm 

determines remeshing should occur by setting ‘mesh’ to 0 and assigning a new element size at 

85% of the existing size. Additionally, this tolerance band is initialized to 0.15 and is reduced 

each time the algorithm re-meshes via this criterion. A second criteria for remeshing is if a large 

number of elements would need to be added to the mesh based on the last evolution of the LSF. 

This large number of elements is considered to be 30% of the existing number of elements. Here 

the element size is chosen such that there would be roughly a 10% increase in the number of 

elements. Finally, the last criteria deeming the need to re-mesh is in the event of too many 

nodes as this causes the FEA procedure to be too computationally expensive. In this event the 

element size is chosen such that there would be roughly a 25% reduction in the number of 

elements.  
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Following this logic flow to determine if re-meshing should be done, one of three 

possible processes is executed. These include: 1 re-meshing the domain, 2 reverting to original 

structure, 3 reinitializing the LSF and adding appropriate elements to the mesh. The process of 

re-meshing occurs if the variable ‘mesh’ is zero and is executed in the subfunction ‘remesh’. 

The flow of this subfunction closely resembles the script ‘Make_Mesh.m’ discussed in section 

4.2. However, in this case once the ‘cells’ matrix is formulated, the LSF is used to generate the 

‘struc’ matrix based on the new element size. Then only the ‘cells’ that also correspond to 

material domain in ‘struc’ are meshed into elements. This process omits void regions from 

being part of the mesh and having to be modeled as artificially weak material, similar to a 

conforming mesh or an immersed boundary technique discussed in section 2.2.2. The outputs of 

the subfunction ‘remesh’ include new values for:  

• struc: The new material distribution representation based on the new 

element size 

• elements: The new global node to element relations 

• nodes: The new coordinates for each of the nodes in the mesh 

• map: The new relation from elements to ‘struc’ indices 

• boundary: The new list of elements along the border of the design domain 

• noF: The new degrees of freedom that are on the outer boundary 

• [sX,sY and sZ]: The new meshgrid of the coordinate centroids for the 

indices of ‘struc’ 

• exterior: The new indices of the structure that lie outside of the design 

domain 
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After the subfunction ‘remesh’ is called, if there are too many nodes (greater than 100,000) 

the function is called again with a slightly larger element size. Finally, once the appropriate mesh 

is conducted, new values are computed for the remaining variables that need to be updated. 

These variables include: the weighting terms ‘Hie’, nodal pressure value ‘Po’, the degrees of 

freedom matrix ‘dof’, elemental stiffness matrix ‘ke’, and the fixed degrees of freedom 

‘fixeddofs’.  

If re-meshing does not occur, the next thing that is checked is if the structure is 

completely solid. Since the compliance sensitivity is always negative, if the Lagrange multiplier 

starts too small and the initial void region is too thin, there is a rare chance that in the initial 

iterations, the update may remove all void elements, making the structure completely solid. This 

makes the FEA analysis meaningless since there is no force applied on the inside, and results in 

no displacements nor shape sensitivities, causing the algorithm to never recover or add any void 

back. To prevent this from occurring, if the structure is completely solid, the code reverts back 

to the initial geometry and once the Lagrange multiplier is large enough this problem would not 

happen again, thus highlighting the importance of starting with an appropriate Lagrange 

multiplier to limit wasted iterations that result in a completely solid structure. 

If neither remeshing nor restarting occurred, the LSF is periodically reinitialized and 

elements are added to the mesh if needed. This periodicity of reinitialization is defined by the 

user defined variable ‘numReinit’ and is done so with the following lines of code. 
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if(~mod(i,numReinit))   %reinitialize LSF 

sdf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1); 

     lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ); 

     lsf(Nanind)=sdf(map(id))-d./Esize(1); 

     struc=griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0; 

     struc(map(boundary))=1; struc(exterior)=1; 

     clear sdf 

end 

To determine the indices of any elements that need to be added to the mesh for finite element 

analysis during the subsequent iteration, the following line is used: 

add=setdiff(find((struc-oldstruc)==1),[map;exterior]); 

For each of these indices, the new elements and nodes are appended to their respective 

variables. Additionally, the appropriate entries to ‘map’, ‘dof’, and ‘Hie’ are appended to their 

stored variables. Finally, to prevent numerical errors with the time saving method of reusing and 

modifying the previous iteration’s global stiffness matrix, the new elements are assembled into 

‘oldK’ as the artificially weak material to simulate the element having already been part of the 

mesh and modeled as void. 

4.5 Conclusion and Appendix Usage 

To optimize an irregular shaped pressure vessel defined by an STL file, the geometry is 

first converted to a voxelated mesh ideal for topology optimization, done so in the 

‘Make_Mesh.m’ script. Then the optimization code takes this meshed domain, applies user 

defined parameters to establish a topology optimization problem statement to be solved using 

the Level-Set method and generates an initial void geometry. During the optimization, this void 

is modified such that a prescribed volume fraction goal is achieved while the overall compliance 

of the structure is minimized. The first phases allow the user to define various level-set and 

problem parameters, then prepares the code to enter the optimization loop. The main portion 
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of the code is done during the second phase, the optimization loop, where the optimal structure 

is found. This loop is comprised of 5 main components to analyze the response of the structure, 

evaluate the response, check for convergence, update the LSF, and prepare for the subsequent 

iteration. As the algorithm converges, the domain is re-meshed to smaller element sizes, 

omitting the void to reduce computational expenses of the increased number of nodes. This is a 

viable solution due to the forces being calculated as inward normal throughout the solid domain 

as opposed to outward normal throughout the void. Additionally, regions omitted during the 

remeshing procedure can be added to the solid domain by appending the appropriate elements 

to the mesh as needed. 

A detailed flow diagram of this optimization loop can be found in appendix A where 

each of these main components is identified by dashed boxes. Following this flow chart, the 

code itself is presented in appendices B-O. Appendix B contains the script for generating the 

mesh, followed by appendix C containing the main optimization code. Appendices D through J 

contain all of the subfunctions necessary to execute these two scripts. Appendices K through O 

contain the script and associated subfunctions to view the structure and stress distribution at 

chosen cross-sections and iterations. Each of these sections start with a table that lists all the 

associated variables along with their size and a brief description. In regard to the variables’ size, 

the notation of ‘r’, ‘c’, and ‘p’ refer to an arbitrary number of rows, columns, or pages that may 

be different on each run of the code. Also, the notation of NSx, NSy, and NSz refer to the 

number of structural elements in the x, y, and z directions respectively, while NLx, NLy, and NLz 

refer to the number of LSF kernels in each direction. Additionally, the codes can be found online 

at: https://github.com/JKremar/Irregular_Pressure_Vessel_Topology_Optimization. 

https://github.com/JKremar/Irregular_Pressure_Vessel_Topology_Optimization
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 Chapter V: Preliminary Results 

 This chapter discusses the results that were produced throughout the various phases of 

the problem evolution prior to solving the topology optimization problem of an irregular shaped 

pressure vessel. This is done in hopes to provide insight to the development and formulation of 

the final product and justification for the methodologies and implementation procedures 

discussed in chapters 3 and 4. Mirroring the problem progression established in section 4.1, this 

chapter is organized as follows: section 5.1 discusses results from constant loading conditions in 

both ℝ2 and ℝ3, section 5.2 covers the findings from 2-dimensional design dependent loading 

trials, and section 5.3 introduces the 3-dimensional pressure cases using a rectangular cuboid 

design domain. Note, for the entirety of this chapter, all deformation plots are magnified for 

clarity and visibility. 

5.1 Constant Loading Conditions 

 To develop an understanding of the level-set method, standard codes were made to 

optimize 2-dimensional structures with constant loading conditions. The first of these codes 

uses a discrete material representation with the discretization of the level-set function 

coinciding with the finite element mesh. This code was tied to the user interface shown in figure 

4-1 to allow for testing of the algorithm and multiple trials at various parameters and starting 

conditions. One run of the code was to optimize a simply supported beam subjected to a 

distributed load from the bottom edge, as shown in figure 5-1. 
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Figure 5-1: Simply Supported Beam with Distributed Loading 

When optimizing this structure, nominal values were used for the modulus of elasticity and 

force loading. A Poison’s ratio of 𝜈 = 0.3 was used and the domain was discretized into 100 

elements in the x-direction and 50 in the y-direction. The following level-set parameters were 

used: step length of 3, reinitialization frequency of 2, and a topological sensitivity weighting of 3 

for the reaction term on the Hamilton-Jacobi equation. With these parameters and a volume 

fraction goal of 30%, the structure and deformed structure shown in figures 5-2 and 5-3 were 

achieved. 

 

Figure 5-2: Distributed Load Optimized Structure 

 

Figure 5-3: Distributed Load Deflection Plot 
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Figure 5-4 shows the volume fraction and compliance by iteration plots. 

 

Figure 5-4: Distributed Loading Compliance and Volume Fraction Plots 

 The second code for 2-dimensional static loading conditions increased the complexity by 

utilizing radial basis function (RBF) to parameterize the LSF (see section 2.2.1) and a density-

based geometry mapping (see section 2.2.3) to allow for the use of intermediate densities for 

each element cut by the cross-section of the iso-contour of the LSF. This allows for the use of a 

contour map with much smoother representation of the geometry as opposed to the pixelated 

results from the discrete implementation shown in figures 5-2 and 5-3. A cantilevered beam, 

figure 5-5, was optimized using this method with nominal values for the force value and 

modulus of elasticity, a Poison’s ratio of 𝜈 = 0.3, and a volume goal of 35% material.  
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Figure 5-5: Cantilevered Beam Problem 

For the implementation, the domain was discretized into a 30x60 square element mesh. In this 

example there was not a reaction term derived from topological sensitivities used in the 

Hamilton-Jacobi equation to update the LSF. Because of this, the initial structure, figures 5-6 and 

5-7, had a series of holes due to the lack of ability to add holes throughout the optimization.  

 

Figure 5-6: RBF Initial Structure 
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Figure 5-7: RBF Initial Level-Set Function  

Additionally, the method of updating the Lagrange multiplier was modified from the method 

used in the discrete example. Instead, the update method shown in equations 3.51 and 3.52 was 

used. An intermediate structure and LSF at iteration 60 are shown below in figures 5-8 and 5-9. 
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Figure 5-8: RBF Structure at Iteration 60 

 

Figure 5-9: RBF Level-Set Function at Iteration 60 
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Throughout the optimization, the ‘truss’ members on the right side of the figure were phased 

out as the algorithm added material to the remaining structural members, as shown in the final 

structure shown in figure 5-10. 

 

Figure 5-10: RBF Final Structure 

 

Figure 5-11: RBF Final Level-Set Function 
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This can be seen in the volume fraction and compliance versus iteration plots shown in figures 

5-12 and 5-13 where there are evident spikes between iterations 65 and 75 as these sections 

were phased out. 

 

Figure 5-12: RBF Compliance Versus Iteration 

 

Figure 5-13: RBF Volume Fraction Versus Iteration 

It should be noted that this implementation struggled to completely converge depending on the 

target volume fraction, where it would become unstable, oscillate, and fail to converge. Both of 

these level-set methods in ℝ2, provided results comparable to the literature [13], [43]. 
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 Following the implementation of the LSM for static loading cases in ℝ2, the method was 

expanded to ℝ3. Here a cantilevered beam, shown in figure 5-14 was discretized into 60x4x30 

cubic elements. As in the first 2-dimensional case, a discrete geometry representation was used. 

The deformation of the final solution can be seen in figure 5-15.   

 

Figure 5-14: 3-D Cantilevered Beam Problem 

 

Figure 5-15: 3-D Cantilevered Beam Deformed Structure 
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5.2 Two-Dimensional Pressure Loading 

 The first phase of the progression toward topology optimization of an irregular shaped 

pressure vessel is to solve problems in ℝ2 with design dependent pressure loading. Two 

methods were attempted during this phase, which led to the decision to pursue using the Level-

Set Method. The first of these methods modeled the approaches developed by Lee and Edmund 

[52] using a density-based topology optimization, identifying an iso-density line as described in 

section 2.3. The second method modeled the work of Xia et al. [47], [50] by using a level-set 

method with two level-set functions to model the pressure and free boundary independently. 

 This first method proved effective in identifying the pressure boundary when the 

density distribution is crisp, as so with initial geometries, shown in figure 5-16. Here the intent is 

to simulate a pressure vessel in ℝ2 by optimizing a structure with internal voids. Figure 5-16 

shows the density distribution on a grey scale of a square structure with 2 initial voids, cropped 

vertically for visibility. Iso-density points are located and marked with blue circles and the 

pressure boundary is illustrated by the orange and yellow lines connecting these points. 

 

Figure 5-16: Iso-Density Identification During Early Iterations 
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However, congruent with density-based optimizations, the intermediate iterations tend to blur 

the density variation throughout the design domain as the algorithm determines the optimal 

material distribution. This causes issues with the current method of identifying the pressure 

boundary. As shown in figure 5-17, as this density distribution gradient flattens with more 

intermediate densities at a later iteration of the optimization, the method struggles to identify 

the appropriate locations to apply the pressure forces. The geometry of figure 5-17 started as 

one centrally located void and here it can be seen that there are unnecessary iso-density points 

forming islands. This causes the pressure loading path to be improperly determined as it loops 

over itself, X=8, Y=25 in figure 5-17. 

 

Figure 5-17: Iso-Density Line Errors 

Additionally, this method does not translate to ℝ3 as this would cause the algorithm to perform 

this operation at every cross-section and slicing them together.  
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 The second method implemented for design dependent pressure loading problems in 

ℝ2 followed the works of Xia et al. [47], [50] described in sections 2.3 and 3.3.1. To determine 

the effectiveness of this concept, it was used to solve the problem as defined in figure 4-2. Here 

a rectangular domain is pinned on both bottom edges and subjected to an upward pressure 

loading from the bottom edge. This closely resembles the problem described and solved in 

figure 5-1 with the exception of the forces now being design dependent and following the 

material boundary as it moves.  

 

Figure 5-18: 2-D Pressure Loaded Structure and Deformation 

 

Figure 5-19: 2-D Pressure Loading Level-Set Functions 
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As to be expected, figure 5-19 shows the algorithm optimized the structure to form an arch, 

converging in 68 iterations. The use of a LSM proved to be effective in allowing the material 

domain to remain solid (no intermediate densities) and identifying the locations and magnitudes 

of the design dependent pressure loads. With these discoveries it was determined that the use 

of a level-set method would be ideal for a pressure vessel. 

5.3 Three-Dimensional Pressure Box 

 After using a level-set method to solve design dependent pressure loading problems in 

ℝ2 (section 5.2) and static loading problems in ℝ3 (section 5.1), these two concepts were 

combined to optimize 3-dimensional structures with design dependent pressure loads. Before 

attempting to solve irregular shapes, however, the design domain was simplified to a box with 

internal pressure at the void/material interface as shown in figure 4-3. Similar to the first 

implementation of static loading in ℝ2, a discrete material representation was used with LSF 

nodes coinciding with element centers. As discussed in the explanation of defining fixed 

boundary conditions for 3-dimensional problems (section 4.3 and figure 4-7), the pressure boxes 

were fixed at the origin and given roller boundary conditions at the corners located on the 

coordinate axes allowing for deflection in their respective direction. This is shown in figure 5-20. 

As in a pressure vessel, the outer boundary is forced to stay solid and the interior void is subject 

to change during the optimization. As the method was developed and trials were run, nominal 

values were used for the modulus of elasticity and pressure. 
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Figure 5-20: Pressure Box Problem Definition 

5.3.1 Trials and Issues 

 At first, this problem was executed with 40 elements in the x-direction, 20 elements in 

the y-direction and 10 in the z-direction and an initial condition with one centrally located void 

as seen in figure 5-21. Note, for all void plots the outer surface of the pressure vessel is modeled 

as a transparent orange and the interior void elements a solid purple. 

 

Figure 5-21: Pressure Box 40x20x10 Starting Void and Deformation 
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The algorithm performs well initially, as seen in figure 5-22 with ribs and other internal support 

structures being generated at iteration 75. 

 

Figure 5-22: Pressure Box 40x20x10 Iteration 75 Void and Deformation 

Despite appropriate moves during initial iterations, unfortunately the optimization fails to 

converge on a solution and instead begins adding too much material until it eventually is a solid 

structure. At this point the LSM will never be able to remove material because of the lack of a 

reaction term from topological derivatives in the Hamilton-Jacobi equation. 

 It was recognized that the supporting structures approached elemental thickness at the 

near convergence states before rapidly diverging. This could prove particularly troublesome 

especially when combined with the discrete material nature of the LSM’s current formulation. A 

couple of the experimented solutions to this were to 1) maintain the structure’s aspect ratios 

and refine the mesh and 2) Incorporate the use of intermediate densities. The volume fraction 

and compliance versus iteration for a trial with a mesh size of 60x30x15 can be seen in figure 

5-23, and the void structure and deformations of the trial with intermediate densities can be 

seen in figures 5-24 through 5-27. Here the deflection plots for iterations 1, 20, 40 and 60 are 

neglected because the deflections are unrecognizable at a consistent magnification factor used 

for iterations 62 and 90. 
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Figure 5-23: Pressure Box 60x30x15 Volume and Compliance Versus Iteration 

 

Figure 5-24: Pressure Box Intermediate Densities, Iterations 1 and 20 

 

Figure 5-25: Pressure Box Intermediate Densities, Iterations 40 and 60 
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Figure 5-26: Pressure Box Intermediate Densities, Iteration 62 

 

Figure 5-27: Pressure Box Intermediate Densities, Iteration 90 

Both changes seemed to help by giving more geometric control compared to the initial 

results, however the algorithm continued to experience improper behavior close to the target 

volume, seen in figures 3-7, 3-8, and 5-23.  

To attempt to solve these issues, other modifications were tried. In an effort to aid the 

starting condition and flexibility of the LSF evolution, the initial structure was subjected to a 
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variety of void shapes and multi-void array patterns, mimicking what was done with the radial 

basis functions in ℝ2. These multi void starting conditions provided improved results upon 

initially reaching the target volume fraction, however failed to solve the issues of final 

convergence. Figure 5-28 shows both the compliance and volume fraction versus iteration plots 

for a trial with 5x5x5 voids spaced 2 elements apart in all directions and patterned 8, 4, and 2 

times in each coordinate direction, respectively. As seen in figure 5-28, although many times the 

LSM will attempt to recover from this improper performance, it fails to reach objective values 

previously found and has unstable behavior. Other attempted solutions involved flipping the 

objective and constraint, and modifying the Lagrange multiplier update, all with limited success. 

 

Figure 5-28: Pressure Box Multiple Starting Voids Compliance and Volume 

 5.3.2 Pressure Box Solutions and Results 

 As explained in sections 3.3.2 and 4.4.4, it was recognized that the various Lagrange 

multiplier update and penalty schemes from the literature harbored great similarities to 

concepts of PID controls. With this in mind, the penalty formulation was modified to act as a PID 

controller would (equation 3.56). The figures below show the results from two runs of the 
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algorithm with this modification. The first having an initial condition of one large void (figures 

5-29 through 5-34) and the second an array of smaller voids (figures 5-35 and 5-36). In both 

cases, the problem is unitless with a domain of 60x30x15, the material properties have the 

modulus of elasticity set to 1 and Poison’s ratio to 0.3, and there is a pressure force of 1 from all 

interior voids. The Lagrange multipliers were initialized to 𝜆𝑜 = 0.001 and 𝜆𝑃𝐼𝐷 = 0.001 with an 

update factor of 𝛼 = 1.11. Additionally, it was discovered that PID gains of 𝐾𝑃 = 0.5, 𝐾𝐼 = 1, and 

𝐾𝐷 = 0.25 provided stable convergence behavior across most starting conditions.  

 

Figure 5-29: One Starting Void Iterations 20 and 30 

 

Figure 5-30: One Starting Void Iterations 40 and 75 

The following plots show the iteration data for this run. Figure 5-32 shows the individual terms 

found in equations 3.53, 3.54 and 3.55 multiplied by their respective controller gains. Figure 



 

129 
 

5-33, shows the difference between the penalty term used in this implementation and what 

would have been used with the original Lagrangian penalty method. Note the non-zero value at 

the end, and the 2 lines coinciding for the first 20 iterations because the original formulation is 

used initially. The justification for this non-zero penalty can be seen in figure 5-34 where the 

average shape sensitivity is clearly negative, and the maximum is zero.   

 

Figure 5-31: One Starting Void Volume and Compliance 

 

Figure 5-32: One Starting Void PID Terms 

 

Figure 5-33: One Starting Void Penalty Term 
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Figure 5-34: One Starting Void Shape Sensitivity 

Figure 5-35 and 5-36 show the initial and final void structures and the volume and 

compliance versus iteration plot for a trial with multiple starting voids by using an ‘init’ matrix 

of [3,3,3;2,2,2;10,6,2] (explained in section 4.3). The one starting void trial converged in 75 

iterations with a compliance of 205.342, whereas the trial with multiple voids converged in 68 

iterations with a compliance of 181.628. 

 

Figure 5-35: Multiple Starting Voids Iterations 1 and 68  
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Figure 5-36: Multiple Starting Voids Volume and Compliance 

 Once the method was established and working correctly, trials were done with practical 

material and pressure values as opposed to the prior trials using nominal values. Here the 

domain used maintained the aspect ratios of the previous trials but was given dimensions of 

11.6”x5.8”x2.9”, resulting in the same outer volume as the existing pressure vessel for the MK-

16. The domain was again discretized into 60 elements in x, 30 in y, and 15 in the z-direction, 

making each element a cube of length 0.1934”. Because the existing pressure vessel is made 

from Inconel718, the assigned material properties were set to 29.5x106 PSI for the modulus of 

elasticity and 0.29 for the Poison’s ratio. The void was modeled with a pressure of 5,000 PSI. The 

volume and compliance versus iteration is shown below in figure 5-37. Here the importance of 

not having too small of a starting Lagrange multiplier was discovered, as it would cause the 

structure to turn completely solid, eliminating the ability to recover and add voids. Thus, the 

check for a solid structure and reverting back to the initial condition as explained in the 

preparation for the subsequent iteration found in section 4.4.5 was implemented. 
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Figure 5-37: Real Valued Pressure Box Volume and Compliance 

Having dealt with regular shapes and identified the various issues with the algorithm 

and possible ways to address convergence issues, the next chapter describes the application of 

the LSF approach to an irregular shaped pressure vessel.
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 Chapter VI: Irregular Shaped Pressure Vessel Results 

 Using the methods established in chapter 3, the implementation procedures laid out in 

chapter 4, and the incremental progression of the problem executed in chapter 5, this chapter 

discusses the results and findings when applying these principles to determine a geometric 

structure for an irregularly shaped pressure vessel. This chapter is organized as follows: section 

6.1 overviews the existing pressure vessel, section 6.2 defines the design space for the irregular 

shaped pressure vessel, section 6.3 covers the initial results of using the formulation directly as 

established for the pressure box, and section 6.4 presents the results after applying the re-

meshing method and disjointing the level-set function from the finite element mesh. 

6.1 Existing Pressure Vessel  

 As discussed in the introduction in chapter 1, the ability to utilize topology optimization 

to determine a geometric structure for an irregular shaped pressure vessel would be tested on 

an existing NAVY diving rebreather, the MK-16. This system can be seen in figures 1-1, 1-2 and 

6-1 with the back cover removed. 

 

Figure 6-1: MK-16 Back Cover Removed 
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As seen in figure 6-1 and labeled in figure 1-2, there are two spherical gas storage pressure 

vessels in the rig. The left side houses the diluent, shown in orange, and the right-side stores 

oxygen, shown in green. Due to symmetry and assuming a desire to store an equal quantity of 

gas in each, only one of these pressure vessels needs to be considered. The dimensions of the 

pressure vessel can be seen in figure 6-2 in the cross-section drawing view, and relevant 

properties can be seen in table 6-5. 

 

Figure 6-2: Existing Pressure Vessel Dimensions 
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Table 6-5: Existing Pressure Vessel Properties 

Property Value 

Material Inconel 718 

Modulus of Elasticity 29.5x106 PSI 

Poison’s Ratio 0.29 

Yield Strength 150 KSI 

Outer Diameter 7.20 in. 

Thickness 0.13 in. 

Displaced Volume 195.43 in.3 

Wet Volume 175±10 in.3 

Working Pressure 3,000 PSI 

  

In order to compare the results of the irregular pressure vessel to the existing spherical 

design, this component was exported to an STL, meshed by ‘MakeMesh.m’ (section 4.2, 

Appendix B) and analyzed with the same finite element analysis procedure used during the 

topology optimization procedure. This meshing was done with voxel elements just as the 

irregular shaped pressure vessel will be processed, and to visualize convergence behavior, the 

meshing was carried out with 0.125”, 0.1”, and 0.0625” element sizes. To compare the linearity 

in the results, the finite element analysis was executed with an internal pressure of 3,000 PSI, 

5,000 PSI, and 12,000 PSI. The results from this analysis can be found in table 6-6 and a stress 

plot of the 0.0625 mesh subjected to 5,000 PSI is shown below in figure 6-3. Note the use of 

voxel elements leads to increased stress concentrations, particularly with larger elements. 
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Table 6-6: Existing Pressure Vessel FEA Results 

Mesh 
Size 

# of 
Elements 

# of 
Nodes 

Pressure 
(PSI) 

Max 
Deflection (in.) 

Compliance 
(in-lb/in3) 

Max VonMises 
Stress (PSI) 

0.0625” 82852 144159 

3000  0.0225 372.692 58528.05 

5000 0.0372 1035.256 97546.75 

12000 0.09 5963.075 234112.2  

0.1” 20195 44111 

3000 0.0231 415.626 52974.3 

5000 0.0385 1154.517 88290.5 

12000  0.0923 6650.015 211897.2 

0.125” 10341 25664 

3000 0.0266 453.5255 56591.95 

5000 0.0444 1259.794 94319.92 

12000 0.1066 7256.41 226367.8 

 

Figure 6-3: Existing Sphere Stresses(PSI) Pressure=5,000 PSI and 0.0625” Elements 
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6.2 Defining the Design Domain 

 Once the existing system was chosen and defined, the design space for the irregular 

shaped pressure vessel needed to be established. Because the method for optimizing a pressure 

vessel used in this thesis fixed the outer boundary of the pressure vessel during optimization, 

defining the design domain meant determining the outer geometry of the pressure vessel. 

Without changing the rest of the MK-16 and due to the symmetry of the MK-16 and the 

assumption of wanting equal oxygen and diluent storage capacity, this meant expanding the 

sphere such that it does not interfere with other components, leaving a tolerance, nor cross the 

center line of the MK-16. This was done in SolidWorks and the resulting part can be seen in 

figure 6-4. For reference, later in the chapter, sides of this geometry are labeled.  

 

Figure 6-4: Proposed Pressure Vessel Geometry for MK-16 
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This geometry has a displaced volume of 369.89 in.3, an 89% increase from the existing spherical 

pressure vessel. For an idea of size, several of the dimensions are displayed in figure 6-5 and the 

geometry can be seen in place of the oxygen tank within the MK-16 assembly in figure 6-6. 

 

Figure 6-5: Proposed Pressure Vessel Dimensions 
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Figure 6-6: Proposed Pressure Vessel in MK-16 Assembly 

 In order to establish a viable mesh for the finite element method to use during 

optimization, the geometry needs to be converted to and exported as an STL file to be read by 

the ‘MakeMesh.m’ script developed in MATLAB, section 4.2 and appendix B. The generated STL 

file resulted in 40,448 triangular faces to define the geometry of this proposed pressure vessel. 

Using the ‘MakeMesh.m’ script, the geometry was discretized into numerous meshes with 

varying element sizes. Figure 6-7 shows this meshing executed with 0.2” voxel element size. 
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Figure 6-7: Mesh with 0.2” Element Size 

Upon meshing this geometry, it was discovered that to achieve an ideal response from 

the finite element analysis, the geometry should be rotated such that as many surfaces as 

possible are parallel to a cartesian plane. Thus, the geometry was rotated and re-meshed. Table 

6-7 summarizes the results from meshing the geometry with different element sizes and 

orientations. Note that during the optimization, boundary elements are not subject to change 

and are forced ‘on’, thus the last two columns denote the number of boundary elements and 

volume fraction of the interior, respectively. 
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Table 6-7: Meshing Summary 

No. 
Voxel 
Size 

Orientation 
# of 

Elements 
# of 

Nodes 
# Degrees of 

Freedom 
Boundary 
Elements 

Center 
Fraction 

1 0.25” Original 23,782 27,399 82,197 6,440 0.729 

2 0.25” Rotated 23,593 26,730 80,190 5,618 0.762 

3 0.2” Original 46,308 51,913 155,739 10,223 0.779 

4 0.2” Rotated 45,768 50,591 151,773 8,831 0.807 

5 0.1875” Rotated 56,326 102,120 306,360 10,233 0.818 

6 0.15” Rotated 109,738 118,377 355,131 16,183 0.853 

7 0.125” Original 189,514 203,710 611,130 26,825 0.858 

8 0.1” Original 370,160 392,267 1,176,801 42,260 0.886 

9 0.1” Rotated 369,417 388,694 1,116,082 36,918 0.900 

6.3 Initial Results 

This section presents the data from directly using the method and implementation 

procedure that provided stable convergence for the rectangular cuboid design domain 

problems, section 5.3.2. That is, a discrete material representation was used with the LSF 

discretization coinciding with the element mesh and the pressure being calculated as outward 

normal from every void element, figure 3-2 and equation 3.27. Due to the computational 

expenses and limitations of MATLAB, it was determined to start with the 0.25” mesh, No.2 in 

table 6-3, to optimize the interior structure of the proposed pressure vessel. Considering the 

proposed geometry’s total volume, the mesh’s interior volume fraction, and desiring a void 

volume larger than the existing pressure vessel, the initial target volume fraction was set to 

0.45, equating to a void volume of 203 in3. The PID gains, [𝐾𝑝 𝐾𝐼 𝐾𝐷], for best convergence 

were determined to be [1 0.5 0.2]. Initial Lagrange multipliers were set to  𝜆𝑜 = 0.1 and 

𝜆𝑃𝐼𝐷 = 0.1 with an update factor of 𝛼 = 1.11. The material properties were set to that of 

Inconel718, and a pressure value of 3,000 PSI. With these conditions the optimization converged 
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in 76 iterations with a compliance of 3538.95 in-lb/in3, max stress of 54,128 PSI as seen in the 

plots shown in figure 6-8. 

 

Figure 6-8: Volume and Compliance, Target Volume of 0.45, Pressure Calculation from Void 

 As seen in figure 6-8, as with many of the trials, there were frequently large oscillations, 

iterations 9 and 20 here, as opposed to the steady convergence seen in the pressure box 

optimizations, figure 5-37. Many variations of PID gains, starting Lagrange multipliers, and 

penalty formulations were attempted to correct this, however the aforementioned conditions 

proved the best. Once the structure itself was analyzed, another issue became apparent, 

checkerboarding. Different element sizes and filtering techniques were attempted to solve this 

issue with little success. Despite this, several structural geometric features were able to be 

distinguished, circled in red on figure 6-9 and highlighted in figures 6-10 through 6-12. The 

maximum Von Mises Stress of this final structure was 54,128 PSI with an average of 11,596 PSI, 

although it should be noted with such large element sizes these peaks are caused by 

exaggerated stress concentrations. 
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Figure 6-9: Stress Plot Iteration 76, View Window: X(0,6.75) Y(2,6) Z(0,12.25) 

 Marked by the red “1” in figure 6-9, the structure contains a rib connecting the back 

face with the angled top face. Figure 6-10 shows this feature closer from both the left and right 

views. Here it can be seen that the feature connects the two surfaces like a rib but leaves the 

upper portion hollow for more volume. 
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Figure 6-10: Top Rib, View Window: X(0,2.75) Y(2.75,5) Z(7,12.75)  

The second label in figure 6-9 shows another rib located midway up the connection 

between the near surface (out of window to view interior) and the back surface. As with the top 

rib, there is a small opening at its center. This is shown in frigure 6-11. Finally, the third label in 

figure 6-9 shows a rib located along the bottom of the pressure vessel, this is shown closer in 

figure 6-12. 
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Figure 6-11: Side Rib, View Window X(0,3.5) Y(3.5,7.25) Z(3.75,6.5) 

 

Figure 6-12: Bottom Rib, View Window X(0,2.75) Y(2.75,5) Z(0,3.75) 
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Another common feature found in many of the results from optimizing this domain was 

a connection beam from the front to the back surfaces. An example of this can be seen in an 

intermediate design at iteration 25 of 93 for trial #33, shown below in figure 6-13. Here the 

optimization has over-shot the target volume and is currently at a volume fraction of 0.345.   

 

Figure 6-13: Connection Beam, Trial 33, Iteration 25, View Window X(0,6.75) Y(1.5,3.75) 

Z(0,11.5) 

 Once parameters that provided stable convergence were determined, the optimization 

was run with varying target volumes to determine a Pareto front. The results from these 

optimizations can be seen in table 6-8. As expected, this shows that as material volume 

increases, the compliance and stresses decrease. This was the case for all target volumes, with 

the exception of 50% material, where it is believed that the algorithm stalled at a local 
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minimum. Note the maximum iterations was set to 200, and three of these trials reached this 

criterion, despite having final volumes extremely close to their target volume.  

Table 6-8: Trials at Varying Target Volumes 

Target 
Volume 
Fraction 

Final 
Volume 
Fraction 

Void 
Volume 

(in.3) 

Final 
Compliance 
(in-lb/in3) 

Max 
VonMises 

Stress (PSI) 

Average 
VonMises 

Stress (PSI) 
Iterations 

0.25 0.2400 282.4 40,204 320,266 36,268 200 

0.30 0.2993 260.4 11,077 143,465 22,953 60 

0.35 0.3527 240.5 8,988 143,300 19,233 58 

0.40 0.3999 223.0 5,392 73,471 14,812 200 

0.45 0.4502 204.3 3,539 54,128 11,596 76 

0.50 0.5013 185.3 3,737 82,753 14,368 200 

 

 Additionally, each iteration from all of the executed trials were compiled into a scatter 

plot, figure 6-14, to grasp an idea of the design space available with the given domain along with 

a visual for the Pareto front. Final values from the runs shown in table 6-8 are highlighted and 

labeled. Note, the majority of the trials were done with a target volume fraction of 0.45, thus 

the heavy clustering in this region. The fact that some of the volume specific trials were not 

along the Pareto front compared to other design points is indicative of the algorithm finding 

local minima. Additionally, it should be noted that these points that would be pareto optimal to 

the volume specific results were found mid-way through highly unstable trials that never 

converged. 
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Figure 6-14: Design Points Volume Fraction Versus Compliance 

6.4 Final Results 

 After analyzing the results with the implementation used for the 3-D pressure box, 

section 5.3.2, it was determined that the structures were sub-optimal, based on the apparent 

pareto-front with some solutions dominating it, the non-conclusive convergence behavior, and 

the presence of checkerboarding. It was believed that the meshed elements’ size, along with the 

filtering techniques, were the main contributors to these undesired results. The use of a finer 

mesh proved impractical due to the computational burdens caused by the increase in the 

number of degrees of freedom, as shown in table 6-7. Trials were executed with 0.2” voxel 

elements, however, any smaller elements were infeasible. Here, is where it was conceived to 

change the definition of the pressure loading from the void region to the material domain, 

figure 3-3 and equation 3.28, allowing for the mesh to begin the optimization with 0.25” voxel 

elements and re-mesh excluding void regions as the voids increased in size. This would in turn 
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allow for increased geometric definition while remaining under the computational limits. This 

schematic change also addressed the filtering technique. Because the elements would be re-

meshed to a smaller size, the LSF had to be decoupled from the FEA mesh. To correlate the 

elements’ sensitivity to the LSF kernels, the weighted neighborhood filtering scheme is 

implemented, equation 4.2. These changes proved to improve structural performance and aid 

against checkerboarding. The results of this final implementation are shown here in this section. 

 Immediately following this schematic change, the identical starting structure and PID 

gains from section 6.3 were tried, �⃗⃗⃗� = [1 0.5 0.2]. Additionally, it was observed that initial 

Lagrange multipliers of  𝜆𝑜 = 0.5 and 𝜆𝑃𝐼𝐷 = 0.5 were required to prevent the structure from 

turning completely solid, section 4.4.5. To slow the increase of the penalty, a Lagrangian update 

factor of 𝛼 = 1.05 was used. Figure 6-15 shows the volume and compliance versus iteration 

from this execution. As seen in the figure, following the start of the PID implementation, the 

system experiences unstable oscillation. However, prior to this, the compliance values can be 

seen as far superior than the previous implementation, an indication of the removal of 

checkerboarding (section 6.3). 

 

Figure 6-15: Volume and Compliance, �⃗⃗⃗� = [1 0.5 0.2], 𝜆𝑜 = 0.5, and 𝜆𝑃𝐼𝐷 = 0.5 
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To prevent this unstable oscillation, the proportional gain was reduced, and the derivative gain 

was increased, to a new set of gain values of �⃗⃗⃗� = [0.5 0.2 1]. The results of this trial can be 

seen in figure 6-16, where the stable convergence behavior can be observed after 194 

iterations.  

 

Figure 6-16: Volume and Compliance, �⃗⃗⃗� = [0.5 0.2 1], 𝜆𝑜 = 0.5, and 𝜆𝑃𝐼𝐷 = 0.5 

  After observing the results, it was determined that there were several geometric 

features with a thickness of one element as the volume first crosses the target volume. Then 

upon the first undershoot of the target volume, some of these features are removed and once 

the LSF reinitializes it would not be able to add these features back. To minimize the overshoot 

of the optimization once the PID terms kick in, the Lagrange multiplier was increased to 𝜆𝑃𝐼𝐷 =

1, for a faster response in control change. Additionally, the Hamilton-Jacobi time step was 

reduced to 30% of the CFL condition, equation 3.41. As seen in figure 6-17, this resulted in less 

initial undershoot and a faster convergence. 
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Figure 6-17: Volume and Compliance, �⃗⃗⃗� = [0.5 0.2 1], 𝜆𝑜 = 0.5, and 𝜆𝑃𝐼𝐷 = 1 

These algorithm parameters resulted in the optimization converging in 142 iterations with a 

final compliance of 385.81 in-lb/in3, maximum VonMises stress of 49,179 PSI and an average 

stress of 8,231 PSI. The final structure was comprised of 0.15” voxel elements. The stress plots 

with the four sides’ outer walls removed, leaving the top and bottom uncropped, are shown in 

figures 6-18 with front views and in 6-19 with rear views. Refer to figure 6-4 for orientation and 

face descriptions.  
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Figure 6-18: Vreq=0.45 Final, Interior Front View, Window: X(0,6.75) Y(2,6) Z(0,12.25) 

As seen in figure 6-18, it is evident that this implementation provided improved results from 

section 6.3 as there are numerous structural features present and no signs of checkerboarding. 

It is apparent that the algorithm developed several layers to subdivide the domain vertically and 

support the larger exterior surfaces by joining them together. Despite this, there are sufficient 

openings such that the geometry provides one continuous void region. 
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Figure 6-19: Vreq=0.45 Final, Front View, Window: X(0,6.75) Y(2,6) Z(0,12.25) 

To better convey the resulting structure, each of these ‘layers’ of the final geometry are shown 

in the following figures as cross-sections in the z-direction and the full domain shown in the x 

and y directions. Figure 6-20 shows the upper cross-section from z=8.7” to z=12.75” while 6-21 

through 6-24 show the cross-sections between 8.7”, 7.5”, 5.4”, 3.9”, and 0” respectfully. 
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Figure 6-20: Final Structure from Bottom, Z=8.7” Through Z=12.75” 

 

Figure 6-21: Final Structure, Z=7.5” Through Z=8.7” 

 

Figure 6-22 Final Structure, Z=5.4” Through Z=7.5” 
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Figure 6-23: Final Structure, Z=3.9” Through Z=5.4” 

 

Figure 6-24: Final Structure, Z=0” Through Z=3.9” 
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To get a smoother representation of the structure, the level-set function itself was 

converted to an STL file to model the void. Then this void structure was combined with the 

original exterior model of the irregular pressure vessel, as shown in figure 6-4, and subtracted 

using a Boolean operation. This results in a final smoothed geometry by eliminating voxelated 

structure. These smoothed results can be seen at various cross sections throughout the 

geometry in figures 6-25, 6-26, and 6-27. 

 

Figure 6-25: Smoothed Geometry Bottom 
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Figure 6-26: Smoothed Geometry Middle 

 

Figure 6-27: Smoothed Geometry Top 
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 Similar to section 6.3, once the algorithm was performing properly for a volume fraction 

of 45%, multiple trials were executed at varying volume fractions to develop a Pareto curve for 

the objective design space. The results from these trials can be seen in table 6-9. Recall the 

existing spherical pressure vessel having a void volume of 175 in.3, thus each of these volume 

fractions would achieve an improvement in storage capacity. The compliance achieved by these 

various volume fractions is not linear and shows drastic increases with volume fractions less 

than 40%. Although this is to be expected as the boundary elements are required to remain 

solid, the use of discrete voxel elements of such large size would have a much more drastic 

effect on this. This is because at 0.25” elements the boundary consist of 23.8% of the total 

elements and 14.7% with 0.15” elements, table 6-7, therefore the remaining available volume to 

generate support features is drastically limited. Additionally, the use of voxel elements has an 

impact on the maximum stresses as it causes stress concentrations that would be able to be 

reduced with a conforming mesh allowing for the smoothing of surfaces. Thus, the high peak 

stresses yet low average stresses. 

Table 6-9: Remeshing Trials at Various Target Volumes 

Target 
Volume 
Fraction 

Achieved 
Volume 
Fraction 

Void 
Volume 

(in.3) 

Achieved 
Compliance 
(in-lb/in3) 

Max 
VonMises 

Stress (PSI) 

Average 
VonMises 

Stress (PSI) 
Iterations 

0.25 0.246 278.10 5,619.19 462,720 24,341 91 

0.30 0.297 259.01 1,127.85 178,185 12,931 115 

0.35 0.351 239.04 860.33 115,611 12,310 200 

0.40 0.394 223.28 564.49 86,540 7,465 170 

0.45 0.450 202.60 385.81 49,179 8,231 142 

0.50 0.504 182.857 264.45 52,086 5,877 95 

Additionally, all of the iterations from every trial executed were plotted to visualize this Pareto 

front, as seen in figure 6-28. This figure provides a clear understanding of the minimum 

achievable compliance at a specific volume fraction. The tightness of the scatter points, 
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compared to figure 6-14, indicated the improved performance and removal of checkerboard. 

Figure 6-29 shows when visualizing the points for one trial with a large initial overshoot, such as 

the one shown in figure 6-16, it was apparent that the designs follow the pareto front, then 

after the overshoot compliance values were offset from the pareto front as the volume fraction 

increased back towards the target volume. This hysteresis type behavior indicates the inability 

to return to previous designs once support features have been removed. Thus, the motivation to 

reduce the amount of overshoot, as discussed at the beginning of this section. Additionally, 

these reasons combined with the lack of available material are believed to be the cause of both 

trials at 25% and 30% volume to not be along the pareto front, as they are dominated by other 

designs at their volume fraction.   

 

Figure 6-28: Remeshing Pareto Front  
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Figure 6-29: Volume Fraction and Compliance Designs from Trial #29 
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 CHAPTER VII: CONCLUSION 

Overall, the research presented in this thesis establishes a means to implement 

topology optimization on an irregularly shaped pressure vessel. Chapter 1 discusses the 

motivation behind conducting such research and lays down research objectives and questions. 

Discussed further in section 7.2, the results of this research have deemed conclusive to both 

research questions proposed in section 1.2. In pursuit of these research questions, a theoretical 

irregular shaped pressure vessel was designed for the MK-16 rebreather, in which an increased 

gas storage capacity was achieved. This chapter is organized as follows: section 7.1 summarizes 

the work that was done for this research by following the chapters outlined in this thesis, 

section 7.2 addresses the research questions posed at the beginning of this research, and 

sections 7.3 discusses future works that should be done to further the developments made by 

this research. Section 7.4 wraps up final remarks and main takeaways from this research.  

7.1 Thesis Overview 

Following the introduction to the research objectives and motivation, an extensive 

literature review was conducted, chapter 2. Here, the foundations and variations of topology 

optimization were examined. The field of topology optimization was broken into 3 major 

methods: a ground structure approach, homogenization methods, and level-set methods. 

Additional research was conducted to observe any current methods of tackling design 

dependent pressure loading problems, where two main methods were found for problems in 

ℝ2. The first utilized a modification of the SIMP method, a branch of homogenization methods, 

where iso-density points throughout the design domain are consecutively connected to 

establish a location to apply the pressure forces. This method proved ineffective and would be 
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computationally demanding when extrapolated to 3-dimensional problems, figures 2-12, 2-13, 

and 5-17. The second method implements the level-set method with two independent level-set 

functions, one to define the homogeneous free boundary and the other to define the Neumann 

pressure boundary, figures 3-4, 5-18, and 5-19. With the knowledge gathered from the literature 

review it was determined that the use of a level-set method would be best suited to optimize a 

pressure vessel in ℝ3.  

Chapter 3 then goes on to lay out the governing equations and mathematical derivation 

of the methods that were used to conduct this optimization. Ensuing these derivations, chapter 

4 dives into the practical implementation procedure used to execute these methods. For the 

extent of this research, all computations were performed in MATLAB, and the developed source 

code can be viewed in the appendices or online at: https://github.com/JKremar/Irregular 

_Pressure_Vessel_Topology_Optimization. Section 4.1 also lays out the progression of the 

research problem as it evolved step by step, incorporating additional complexities until reaching 

the overall research objectives.  

Chapter 5 presents the preliminary results of the initial phases of this progression. Here, 

standard level-set methods in ℝ2 were developed for constant loading conditions before 

expanding to ℝ3. Then, design dependent pressure loading was explored in ℝ2, followed by a 

simplified pressure loading problem in ℝ3, where the design domain was restricted to 

rectangular cuboid shapes. As explained in section 3.3.2, at this phase of the progression a PID-

type penalty scheme was developed and implemented to improve convergence behavior. After 

the groundwork had been established, the developed method was evaluated for redesigning the 

existing spherical pressure vessels used to store breathing gases in a MK-16 rebreather into an 

https://github.com/JKremar/Irregular_Pressure_Vessel_Topology_Optimization
https://github.com/JKremar/Irregular_Pressure_Vessel_Topology_Optimization
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irregular shaped pressure vessel for increased storage capacity. The results of this can be seen in 

chapter 6. In order to achieve proper optimization performance and convergence behavior, the 

LSF was decoupled from the FEA mesh and the structural domain was allowed to re-mesh to a 

smaller element size as the material volume fraction was decreased. 

7.2 Discoveries from Research Objectives 

 The beginning of this research, section 1.2, established 2 research questions and their 

associated hypothesis. To discuss the discoveries of this thesis in regard to each question, they 

are restated here for reference: 

RQ1: “Can the interior geometry of an irregular shaped pressure vessel, subjected to internal 

pressure on its surfaces, be designed to efficiently store high pressure gas using 

topology optimization methods?” 

H1: “Yes, topology optimization can be used to design the internal structure of such an irregular 

shaped tank, that could then it can be manufactured using additive manufacturing.” 

Discovery: Yes, topology optimization can be used to design an irregular shaped pressure vessel. 

It was determined that the use and modification of a level-set method proved beneficial 

in doing so by providing crisp material and void distinctions throughout the optimization 

process. Manufacturing and testing of the resulting structures were not conducted 

within the scopes of this research and are further expanded upon in the future works of 

section 7.4.3. 
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RQ2: “Can an efficient method be developed to track (follow) design dependent pressure 

loading conditions on the interior surface for 3-dimensional spaces for use in a topology 

optimization algorithm?” 

H2: “By adapting a level-set topology optimization approach, it is possible to track changing 

pressure surfaces as the design evolves during the iterative design process.” 

Discovery: Although a level-set method explicitly defines the material/void boundary of the 

design domain, it was determined that the simplest and most effective means of 

applying design dependent pressure loading was to apply an inward normal stress on 

each element containing material and zeroing nodes along the homogeneous boundary. 

This resulted in an equal and opposite cancelation of forces throughout the interior of 

the material domain where elements were adjacent to each other. The cancellation of 

these adjacent forces, left only desired forces along the Dirichlet boundary, located at 

the interior material/void boundary of the pressure vessel. 

7.3 Future Works 

Although this research effectively addressed each of the research questions proposed at 

the beginning of this work, there remains a great deal of tasks that would need to be completed 

before an irregular shaped pressure vessel could be efficiently designed, manufactured, and 

used. The majority of these tasks fall into the categories of further refining the mesh, utilizing 

stress constraints, properties of additive manufacturing, and experimental evaluation. 
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7.3.1 Refined Meshing 

 Although the final implementation used here in this thesis refines the mesh as the 

volume fraction decreases and the structure begins to converge, it still utilizes a grid of voxel 

elements. To more appropriately represent the structure and evaluate stresses, the finite 

element method should utilize a much more refined mesh. This is primarily due to the presence 

of stress concentrations caused by the jagged structural representation of the gridded voxel 

elements. Additionally, an improved meshing technique would allow for a much better 

structural representation and control of design changes throughout the optimization, as it is 

believed this was the cause of many of the difficulties experienced during this research. Two 

possible means of accomplishing this task could be the adoption of a conforming mesh or an 

immersed boundary technique, section 2.2.2. Although to effectively utilize either of these 

would result in an enormous increase in computational costs. 

7.3.2 Stress Constraints 

 As mentioned in section 3.2, ideally the optimization problem would be posed as to 

minimize structural volume (maximizing void volume) subject to a maximum stress constraint. 

However, as found during the literature review (section 2.2.3), this causes added difficulty in 

developing proper update sensitivities for optimization. Additionally, as mentioned in section 

2.2.2, to properly impose stress constraints, a conforming mesh is required, thus the future 

work mentioned in 7.4.1. Because of these reasons, the use of stress constraints was deemed 

out of the scopes of this research, and the minimum compliance formulation was used with post 

process stress evaluations.  
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7.3.3 Designing for Additive Manufacturing 

Due to the internal features of an irregular shaped pressure vessel, the components 

would need to be created using additive manufacturing techniques. The material properties of 

additive manufacturing are known to be non-isotropic based on print direction and heavily 

dependent on a wide variety of print parameters. Because of this, printed samples with known 

and controllable design parameters should be created and tested to accurately establish 

material parameters to be used during the analysis phase of the optimization. Additionally, 

because of the completely enclosed nature of a pressure vessel, support materials could not be 

manually removed, and the part would need to be printed at an appropriate angle to allow for a 

proper build without the need of support material. Due to the non-isotropic behavior and the 

inability to use support material, it could prove advantageous to have print direction as an 

additional optimization parameter. 

Furthermore, the results from the optimization would need to go through a post-

processing phase, during which features such as the connecting ports would need to be added. 

7.3.4 Experimental Validation 

 Due to the high values of strain energy within an in-use pressure vessel, they can be 

extremely dangerous upon failure. This combined with the life supporting functionality they 

often possess; pressure vessels are subjected to extensive validation and safety testing. For 

diving and life support purposes, this involves surviving a hydrostatic burst test at four times 

working pressure. This gives the system a factor of safety of 4, suitable for proper use and safe 

handling. Additionally, visual, and ultra-sonic inspections are regularly performed on pressure 

vessels to detect any defects or deformities. This would prove quite difficult to accomplish 
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based on the compartmentalization of the irregular shaped pressure vessels derived in this 

thesis and some other means of inspection would have to be executed.  

7.4 Final Remarks 

This thesis investigates various topology optimization methods and concludes that the 

modification of a Level-Set Method best suits the design problem of optimizing an irregular 

shaped pressure vessel. Throughout the development of this modified Level-Set Method for 

pressure vessels, 3 main innovations were discovered and implemented: 

1. FEA assembly consolidation:  

Discussed in section 4.4.1, during the optimization loop, the previous iteration’s 

structure, stiffness matrix, and force vector are stored. Then during the finite 

element analysis procedure, the current and previous structures are compared, 

and the assembly procedure is executed only on the changed elements and 

modified from the previous stiffness matrix and force vector accordingly. This 

reduces the computational time from an estimated 175 hours to less than 10 

hours. Note, the entire assembly process has to be executed following 

remeshing, therefore excessive re-meshing would result in added computational 

time. 

2. PID-type optimization penalty: 

When testing various methods found in the literature of implementing the 

volume constraint penalty to solve unstable convergence issues, similarities to 

control concepts of proportional, integral, and derivative controllers were 
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recognized. This inspired the implementation of a PID-type penalty, converting 

the penalty from equation 3.38 to equation 3.56. 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝜆𝑖(𝑉(𝑥)−𝑉𝑟𝑒𝑞) (3.38) 

(3.56) 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖−1 + 𝜆𝑖 [𝐾𝑃(𝑉𝑖 − 𝑉𝑟𝑒𝑞) + 𝐾𝐼 (
1

𝑛
∑𝑉𝑖−𝑎

𝑛−1

𝑎=0

− 𝑉𝑟𝑒𝑞) + 𝐾𝐷(2𝑉𝑖 − 𝑉𝑖−1 − 𝑉𝑟𝑒𝑞)] 

3. Inward normal pressure calculations: 

Switching the pressure loading from being calculated as outward normal, as 

shown in figure 3-2, to being defined as inward normal, figure 3-3, removes the 

need to have the entire design domain meshed. This allows void regions to be 

excluded from finite element meshing, reducing computational costs, or 

allowing for mesh refinement while maintaining computational cost. 

This work establishes a strong foundation on which additional work can be built upon to 

finalize a thorough and robust procedure to design an optimal irregular shaped pressure vessel 

to exploit the expanding design space that additive manufacturing provides.  
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Appendix A: Flow Diagram
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Appendix B: Mesh Generation Code 

Variable Name Variable Size Description 

voxelsize 1x3 length of meshed elements in x, y and z 
directions 

faces (#triangles)x3 Outward normal direction components of STL 
faces 

vertices 3x3x(#triangles) (each node of the triangle)x(x, y, z coordinate of 
the node)x(each STL triangle) 

ranges 2x3 minimum STL node coordinates over the 
maximum 

x_centroids 1x(c) x-coordinates of the centroid for each cell 

y_centroids 1x(c) y-coordinates of the centroid for each cell 

z_centroids 1x(c) z-coordinates of the centroid for each cell 

xyfaces (r)x1 List of STL faces that have a z component 

X (r)x(c) X values from a meshgrid of x and y centroids 

Y (r)x(c) X values from a meshgrid of x and y centroids 

numxyzf 1x4 [number of cell elements in x, y, and z then the 
number of xy-faces] 

cells (r)x(c)x(p) Logic representation of if a cell has material or 
not (-1=void, 1=solid) 

p 3x2 x and y coordinates of the 3 nodes that make up 
the given triangle 

intersects (r)x(c) Logic value of which x and y centroids are within 
the given triangle 

A scalar Area of given triangle 

up scalar 1,2,3 index value for cross product to make 
shape function 

down scalar 1,2,3 index value for cross product to make 
shape function 

Plane 2x2 Coefficient representation of shape function for 
triangle  

I (r)x1 Indices of x and y centroids that are within the 
given triangle 

z_int (r)x1 Z values of where the STL triangle intersects each 
x, y centroid 

mult 1x(c) Numbers to multiply along z to change 'cells' 

outer 1x(c) Indices of cell that are not completely 
surrounded by elements 

Boundary 1x(c) Elements that are part of the border 
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Variable Name Variable Size Description 

nelx scalar Number of elements in x 

nely scalar Number of elements in y 

nelz scalar Number of elements in z 

Elements (r)x(c) List of element numbers 

n1z (r)x1 List of node one z-coordinates for each element 

n1x (r)x1 List of node one x-coordinates for each element 

n1y (r)x1 List of node one y-coordinates for each element 

Relative 8x1 Relative node numberings from node 1 for each 
element 

Nodes (r)x3 List of all possible node coordinates 

ind (r)x1 Indices for repeated nodes 

Nodes (r)x3 List of all possible node coordinates 

elements (r)x8 Final element list for mesh 

nodes (r)x3 Final node list for mesh 

N scalar Next node number index 

 

Make_Mesh.m 

close all 1 
clear all 2 
clc 3 
 4 
voxelsize=[0.5,0.5,0.5];       %element voxelsize in the x, y, and z direction 5 
 6 
if(numel(voxelsize)==1) 7 
    voxelsize(1:3)= voxelsize; 8 
end 9 
 10 
 11 
[faces,vertices] = readSTL('Irregular Pressure Vessel.STL','inches'); 12 
 13 
ranges=[min(min(vertices),[],3);max(max(vertices),[],3)]; 14 
x_centroids=ranges(1,1)+0.5*voxelsize(1): voxelsize(1):ranges(2,1); 15 
y_centroids=ranges(1,2)+0.5*voxelsize(2): voxelsize(2):ranges(2,2); 16 
z_centroids=ranges(1,3)+0.5*voxelsize(3): voxelsize(3):ranges(2,3); 17 
xyfaces=find(faces(:,3)~=0); 18 
disp('STL file read') 19 
 20 
[X,Y]=meshgrid(x_centroids,y_centroids); 21 
numxyzf=[fliplr(size(X)),numel(z_centroids),numel(xyfaces)]; 22 
cells=-1*ones(numxyzf([2,1,3])); 23 
for(f=1:numxyzf(4)) 24 
    p=vertices(:,1:2,xyfaces(f)); 25 
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    intersects=inpolygon(X,Y,p(:,1),p(:,2)); 26 
    A=0.5*det([[1;1;1],p]); 27 
    Plane=zeros(2); 28 
    for(i=1:3) 29 
        up=rem(i,3)+1; 30 
        down=3-rem(4-i,3); 31 
        Plane=Plane+0.5*vertices(i,3,xyfaces(f))*[0,p(down,1)-p(up,1);p(up,2)-32 
p(down,2),p(up,1)*p(down,2)-p(down,1)*p(up,2)]/A; 33 
    end 34 
    I=find(intersects); 35 
    if(~isempty(I)) 36 
        z_int=poly2Deval(Plane,[X(I),Y(I)]); 37 
        mult=-1*(z_centroids>=z_int)+(z_centroids<z_int); 38 
        %[z_int,mult] 39 
        t=0; 40 
        for(i=1:numel(I)) 41 
            %mult=-1*(z_centroids>=z_int(i))+(z_centroids<z_int(i)) 42 
            [r,c]=ind2sub([numxyzf(2),numxyzf(3)],I(i)); 43 
            cells(r,c,:)=cells(r,c,:).*permute(mult(i,:),[1,3,2]); 44 
            %cells(r,c,:)=cells(r,c,:).*permute(mult,[1,3,2]); 45 
        end 46 
    end 47 
    if(~mod(f,250)) 48 
        fprintf('evaluated %d of %d faces \n',f,numxyzf(4)); 49 
    end 50 
end 51 
 52 
 53 
 54 
disp('generating mesh') 55 
cells=permute(cells,[2,1,3]); 56 
outer=(cells==1).*(convn(cells,ones(3,3,3),'same')<27); 57 
outer(cells(:)==-1)=[]; 58 
Boundary=nonzeros(outer(:)'.*(1:nnz(cells==1))); 59 
 60 
 61 
nelx=numxyzf(1);    nely=numxyzf(2);    nelz=numxyzf(3); 62 
Elements=1:nelx*nely*nelz; 63 
n1z=floor((Elements-1)/(nelx*nely)); 64 
n1x=rem((Elements-(nelx*nely).*floor((Elements-1)/(nelx*nely))-1),nelx); 65 
n1y=floor((Elements-(nelx*nely).*floor((Elements-1)/(nelx*nely))-1)/nelx); 66 
Relative=[0;1;nelx+2;nelx+1;... 67 
    (nelx+1)*(nely+1);(nelx+1)*(nely+1)+1;(nelx+1)*(nely+1)+nelx+2;(nelx+1)*(nely+1)+nelx+1]; 68 
Elements=(1+n1x+n1y*(nelx+1)+n1z*(nelx+1)*(nely+1))'+Relative'; 69 
[Nodes(:,1),Nodes(:,2),Nodes(:,3)]=ind2sub([nelx+1,nely+1,nelz+1],1:(nelx+1)*(nely+1)*(nelz+1)); 70 
Nodes=voxelsize.*(Nodes-[1,1,1]); 71 
 72 
 73 
Elements=(cells(:)==1).*Elements;   %find on elements 74 
Elements((Elements(:,1)==0),:)=[];  %remove off elements 75 
 76 
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elements=zeros(size(Elements)); 77 
nodes=zeros(size(Nodes)); 78 
N=1; 79 
while(sum(elements(:)==0)>0) 80 
    [c,r]=find(elements'==0,1); 81 
    ind=find(Elements==Elements(r,c)); 82 
    elements(ind)=N; 83 
    nodes(N,:)=Nodes(Elements(r,c),:); 84 
    N=N+1; 85 
    if(~mod(N,1000)) 86 
        fprintf('meshing node %d of %d \n',sum(elements(:)~=0),numel(Elements)); 87 
    end 88 
end 89 
nodes(N:end,:)=[]; 90 
 91 
disp('plotting') 92 
meshplot(elements, nodes, Boundary);    axis equal 93 
xlabel('x axis') 94 
ylabel('y axis') 95 
zlabel('z axis') 96 
%meshplotlayer(elements, nodes, Boundary); 97 
disp('done') 98 

Published with MATLAB® R2018a 
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Appendix C: Main Code 

Variable Name Variable Size Description 
E scalar Modulus of Elasticity 29.5*10^6 PSI 
nu scalar Poison's Ratio 0.29 
Yield scalar Yield Strength 150*10^3 PSI 
Pressure scalar Pressure in PSI applied to the interior set to 5000 
elements (numelem)x8 Row for each element and a column for each of the 

element's node numbers 

nodes (numnodes)x3 [x,y,z] coordinates for each node 
boundary (r)x1 List of elements that are on the boundary of the 

geometry 
Title character Folder name that all of the data will be saved to 
volReq scalar Volumetric constraint goal, between 0 and 1 
stepLength scalar Number of CFL time steps the evolution equation is 

solved every iteration 

numReinit scalar Frequency the LSF is reinitialized 
topWeight scalar Weighting factor for topological derivative's 

influence in Hamilton-Jacobi equation, set to 0 for 
pressure vessels 

max_itr scalar The maximum number of iterations the code will 
run before it forces it to exit the loop 

LSFspacing scalar Distance between LSF kernels 

init 3x3 Defines the initial void geometry. 1st row defines 
edge lengths of voids, 2nd row defines x,y,z gap 
between voids and 3rd row the number of voids in 
the x,y,and z directions 

La scalar Lagrange multiplier for the first portion of the 
optimization, initialized to 0. 5 

La2 scalar Lagrange multiplier for the second portion of the 
optimization, initialized to 1 

alpha scalar Multiplication factor for the Lagrange multipliers, 
set to 1/0.95 

PID 1x3 Scaling factors for each of the PID terms, set to 
[0.5,0.2,1] 

relax scalar State of which type of penalty should be executed, 0 
for proportional only, 1 for PID-type formulation 

i scalar Iteration counter 
flag scalar Loop termination state, 0 to continue optimization, 

anything else to stop  
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Variable Name Variable Size Description 
mesh scalar Iteration counter for remeshing, set to 0 when 

remeshing should occur 
band scalar Remeshing tolerance 
s Scalar Percentage of CFL condition time step used 
Domain 2x3 1st row is the minimum coordinates in x,y, and z of 

the geometry and the second row is the maximum 
struc (NSx)x(NSy)x(NSz) Material distribution, 0 for void 1 for material 
Esize 1x3 x, y, and z edge lengths of each element 

map (numelem)x1 Index positions of each element in the LSF 
noF 1x(c) Degrees of freedom on homogeneous boundary for 

FEA 
exterior (r)x1 List of indices of ‘struc’ that are exterior to the 

design domain 
sX, sY, & 

sZ 

(NSx)x(NSy)x(NSz) Meshgrid of coordinates of the elements’ centroids 

numnodes scalar Number of nodes in the FEA analysis 
numelem scalar Number of elements in the FEA analysis 
CompE (numelem)x1 2*Compliance of each element 
volTot Scalar Total initial volume 
LSFsize 1x3 Number of elements in the LSF in the x, y, and z 

directions 
cent 1x3 Center coordinates of the domain 
lsfX, lsfY, 

& lsfZ 

(NLx)x(NLy)x(NLz) Meshgrid of coordinates of the LSF kernels 

sdf (NSx)x(NSy)x(NSz) Signed distance function of the structure 
lsf (NLx)x(NLy)x(NLz) Level-Set Function values 
Nanind (r)x1 List of LSF kernels outside of ‘struc’ 
LSF2EleDist (numLSF)x(numelem) Distance from each LSF kernel to each centroid of 

‘struc’ 
id (r)x1 List of ‘struc’ indices that are closest to ‘Nanind’ of 

the LSF 
d (r)x1 List of Euclidean distances corresponding to ‘id’ 
R Scalar Maximum filter distance for equation 4.3 
Hij (numLSF)x(numelem) Weighting factors of filter for each LSF kernel and 

each element 
inside 1x(c) List of LSF indices inside of the design domain 
bearing (r)x1 List of indices of the LSF that are to remain constant 

and not change (regions outside the domain and the 
boundary elements) 

Po 1x3 Outward normal force each void element's nodes 
experience 
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Variable Name Variable Size Description 
dof (numelem)x24 Degrees of freedom for each element of the mesh 
ke 24x24 Elemental stiffness matrix 
B 6x24 B-matrix in elemental stiffness matrix calculation, 

used for stress calculations 
C 6x6 Constitutive relation for the material, used for stress 

calculations 
oldstruc (NSx)x(NSy)x(NSz) Previous iteration's 'struc' matrix used to 

compare for changes in the FEA global matrices 
oldK (#dofs)x(#dofs) Previous iteration's global stiffness matrix 
oldF (#dofs)x1 Previous iteration's global force vector 
fix 4*3 Node coordinates of the pinned node then each of 

the roller conditioned nodes in x, y, and z 
respectively 

Nborder (#border 
elements*8)*3 

Node coordinates of each node of a border element 

D_best scalar Current maximum sum of squares for 'dx', 'dy', and 
'dz' 

N1 1x3 Node coordinates of pinned node 
Nx (r)x3 Node coordinates of all border nodes along the x-

direction of the pinned node 
Ny (r)x3 Node coordinates of all border nodes along the y-

direction of the pinned node 
Nz (r)x3 Node coordinates of all border nodes along the z-

direction of the pinned node 
dx scalar Maximum distance from pinned node to any 'Nx' 

node 
ix scalar Index of 'Nx' that the maximum distanced node is 
dy scalar Maximum distance from pinned node to any 'Ny' 

node 
iy scalar Index of 'Ny' that the maximum distanced node is 
dz scalar Maximum distance from pinned node to any 'Nz' 

node 
iz scalar Index of 'Nz' that the maximum distanced node is 
tf scalar Number of node coordinates that match 'fix' 

nodes, should always equal 4 
ind (line 

105) 

(r)x1 Node numbers for 'fix' nodes 

fixeddofs 9x1 List of fixed degrees of freedom 
folder character Folder name that all of the data will be saved to, 

title with timestamp appended to it 
U (#dofs)x1 Deflection values for each degree of freedom 
e scalar Loop counter for each element 
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Variable Name Variable Size Description 
obj 1x(i) Vector of all iteration's compliance 
vol 1x(i) Vector of all iteration's volume fraction 
shapeSens (NLx)x(NLy)x(NLz) Shape sensitivity calculated from elemental strain 

energy densities 
SensTotal (NLx)x(NLy)x(NLz) Shape sensitivity plus penalty 
Con 1x(c) Initial control values to test 
V (r)x1 Resulting volume fractions after control values 
newlsf (NLx)x(NLy)x(NLz) Level-Set Function values after update 
newstruc (NSx)x(NSy)x(NSz) ‘struc’ values after update 
add (r)x1 List of ‘struc’ indices that need to be added to the 

mesh 
newmap (numelem)x1 Index positions of each element in the LSF after 

update 
Control 1x(i) Vector of all of the previous control terms 
Penalty scalar The volume constraint penalty added to the shape 

sensitivity to create velocities 

ind 

(line243) 
4x1 Nodes that are closed the initial fixed nodes 

mult 8x3 Matrix to multiply to ‘Esize’ to get a master 
element 

Nfull 8x3x(p) Nodes of elements to be added 
Nall (r)x3 Nodes of elements to be added 
Nnum (r)x1 Node numbers ‘#’ if already exist ‘0’ if a new node is 

needed 
L2ED (numLSF)x(numelem) Distance from each LSF kernel to each centroid of 

‘struc’ 
 

Main Code 
 

close all 1 
clear all 2 
clc 3 
addpath([pwd,'\IrregularShapeSubfunctions']) 4 
addpath([pwd,'\MakeMeshSubfunctions']) 5 
%Attenpt to implement level-set topology optimization on a 3D structure with a 6 
%pressure load being applied from a void in the center 7 
%Calculates forces as outward normal for all void elements 8 
disp('running...') 9 
Title='RemeshIPVVol0.45'; 10 
%Material Parameters and Working Pressure------------ 11 
%Inconel718 12 
E=29.5*10^6;    %psi 13 
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nu=0.29; 14 
Yield=150*10^3; %psi 15 
Pressure=3000;  %PSI 16 
%---------------------------------------------------- 17 
 18 
%Geometry and Loading--------------- 19 
load('RotatedIPVmesh25.mat')   %imports 'elements' 'nodes' and 'boundary' from saved mesh file 20 
load('RemeshStart25.mat')%load values of oldStruct,OldK,OldF to compare to 21 
%------------------------------- 22 
 23 
% Establish Level-Set parameters----------------------- 24 
volReq=0.25; 25 
stepLength=2; 26 
numReinit=3; 27 
topWeight=0; 28 
max_itr=200; 29 
LSFspacing=0.375; 30 
init=[3,3,3;2,2,2;10,10,10];    %edge length of initial void; gap between; repeated 31 
maxNodes=75000; 32 
La=1/2;    La2=1;  alpha=1/0.95; 33 
PID=[0.5,0.2,1];    relax=0; 34 
%------------------------------------------------------- 35 
 36 
%Initialization-------------------------------------------------------- 37 
i=1;    flag=0; mesh=1; band=0.15;  s=1; 38 
%Initialize Struc---------------------------- 39 
Domain=[min(nodes);max(nodes)]; 40 
[struc,Esize,map,noF,exterior]=InitialStruc(elements,nodes,boundary,init);   %map is a list for 41 
each element, which struc index is used 42 
[sX,sY,sZ]=meshgrid(Esize(1)/2:Esize(1):Domain(2,1),... 43 
    Esize(2)/2:Esize(2):Domain(2,2),Esize(3)/2:Esize(3):Domain(2,3)); 44 
sX=permute(sX,[2,1,3]); sY=permute(sY,[2,1,3]); sZ=permute(sZ,[2,1,3]); 45 
numelem=size(elements,1);   numnodes=size(nodes,1); 46 
CompE=zeros(numelem,1); 47 
volTot=prod(Esize)*numelem; 48 
%Initialize LSF---------------------------- 49 
LSFsize=ceil(Domain(2,:)/LSFspacing)+1; 50 
cent=mean(Domain); 51 
lsfX=LSFspacing*(LSFsize(1)-1)*linspace(-0.5,0.5,LSFsize(1))+cent(1); 52 
lsfY=LSFspacing*(LSFsize(2)-1)*linspace(-0.5,0.5,LSFsize(2))+cent(2); 53 
lsfZ=LSFspacing*(LSFsize(3)-1)*linspace(-0.5,0.5,LSFsize(3))+cent(3); 54 
[lsfX,lsfY,lsfZ]=meshgrid(lsfX,lsfY,lsfZ); 55 
lsfX=permute(lsfX,[2,1,3]); lsfY=permute(lsfY,[2,1,3]); lsfZ=permute(lsfZ,[2,1,3]); 56 
sdf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1); %reinitialize LSF 57 
lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ); 58 
Nanind=find(isnan(lsf)); 59 
LSF2EleDist=(nodes(elements(:,1),1)'+Esize(1)/2'-lsfX(:)).^2+... 60 
            (nodes(elements(:,1),2)'+Esize(2)/2'-lsfY(:)).^2+... 61 
            (nodes(elements(:,1),3)'+Esize(3)/2'-lsfZ(:)).^2; 62 
%LSF2StrucDist=(sX(:)'-lsfX(:)).^2+(sY(:)'-lsfY(:)).^2+(sZ(:)'-lsfZ(:)).^2; 63 
[d,id]=min(LSF2EleDist(Nanind,:),[],2); 64 
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lsf(Nanind)=sdf(map(id))-d./Esize(1); 65 
struc=griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0; 66 
%Filter and Update Prep--------------------------------------- 67 
R=1.25*LSFspacing; 68 
Hij=max(R-LSF2EleDist,0); 69 
 70 
inside=setdiff(1:numelem,boundary); 71 
bearing=find(sum(lsfX(:)'>=nodes(elements(inside,1),1) &... 72 
    lsfY(:)'>=nodes(elements(inside,1),2) &... 73 
    lsfZ(:)'>=nodes(elements(inside,1),3) &... 74 
    lsfX(:)'<=nodes(elements(inside,7),1) &... 75 
    lsfY(:)'<=nodes(elements(inside,7),2) &... 76 
    lsfZ(:)'<=nodes(elements(inside,7),3))==0); 77 
%------------------------------------------------------------------------------------- 78 
 79 
%Loading and Boundary Conditions------------------------------------------- 80 
Po=circshift(Esize,1).*circshift(Esize,-1)*Pressure/4; 81 
dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 82 
[ke,B,C]=stiff3D(E,nu,Esize); 83 
if(~isequal(struc,oldstruc)) 84 
    oldstruc=[];  oldK=[];  oldF=[]; 85 
end 86 
if(~exist('fix')) 87 
    Nborder=nodes(elements(boundary,:),:); 88 
    D_best=0; 89 
    for(b=1:size(Nborder,1))    %finds border points that would be best for coordinate oriented 90 
B.C.s 91 
        N1=Nborder(b,:); 92 
        Nx=Nborder(Nborder(:,2)==N1(2) & Nborder(:,3)==N1(3),:); 93 
        Ny=Nborder(Nborder(:,1)==N1(1) & Nborder(:,3)==N1(3),:); 94 
        Nz=Nborder(Nborder(:,1)==N1(1) & Nborder(:,2)==N1(2),:); 95 
        [dx,ix]=max(abs(sum(N1-Nx,2))); 96 
        [dy,iy]=max(abs(sum(N1-Ny,2))); 97 
        [dz,iz]=max(abs(sum(N1-Nz,2))); 98 
        if(dx^2+dy^2+dz^2>D_best) 99 
            D_best=dx^2+dy^2+dz^2; 100 
            fix=[N1;Nx(ix,:);Ny(iy,:);Nz(iz,:)]; 101 
        end 102 
    end 103 
end 104 
[tf,ind]=ismember(fix,nodes,'rows'); 105 
if(sum(tf)~=4) 106 
    disp('constraint error') 107 
end 108 
fixeddofs=nonzeros(reshape((3*ind-[2,1,0]).*[1,1,1;~eye(3)],[],1)); 109 
%-------------------------------------------------------------------------- 110 
 111 
%Save Initial-------------------------------------------------------------- 112 
folder=strcat(Title,strrep(datestr(datetime),':',',')); 113 
mkdir(folder); 114 
save([pwd,'\',folder,'\','Iteration0'],'lsf','struc','La','alpha',... 115 
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    'init','volReq','ke','bearing','elements','nodes','boundary','map',... 116 
    'max_itr','numReinit','Po','stepLength','PID','volTot','lsfX','lsfY','lsfZ') 117 
clear LSF2EleDist; 118 
disp(['Starting ',Title]) 119 
%-------------------------------------------------------------------------- 120 
 121 
while(flag==0) 122 
    [U,oldK,oldF]=FEA_3DP6(struc,elements,map,ke,Po,noF,fixeddofs,oldstruc,oldK,oldF); 123 
    %evaluate sensitivities of each element-------------------------------- 124 
    for(e=1:numelem) 125 
        CompE(e)=-max(struc(map(e)),0.0001)*U(dof(e,:))'*ke*U(dof(e,:)); 126 
    end 127 
 128 
    %Post Processing and Plotting------------------------------------------ 129 
    obj(i)=-sum(CompE(:)); 130 
    vol(i)=prod(Esize)*sum(struc(map))/volTot; 131 
    disp(['It.:' num2str(i) ' Compl.:' sprintf('%10.4f',obj(i)) ' Vol.: ' 132 
sprintf('%6.3f',vol(i))... 133 
        '  La:' sprintf('%10.3f',La) '  LaPID:' sprintf('%10.5f',La2)]) 134 
 135 
    %check for convergence------------------------------------------------- 136 
    if(i>5) 137 
        if((abs(vol(i)-volReq)<0.005) && all(abs(obj(end)-obj(end-5:end-1))<0.03*abs(obj(end)))) 138 
            flag=1; 139 
        end 140 
        if(i>=max_itr) 141 
            flag=2; 142 
        end 143 
    end 144 
 145 
    %Update Procedure------------------------------------------------------ 146 
    if(relax==0 && abs(vol(i)-volReq)<=0.035)                          %(max(abs(vol(i-4:i)-147 
volReq))<0.05 && relax==0) 148 
        relax=1;    %Stop relaxed penalty if within volume band (0.15) 149 
        s=0.3; 150 
        shapeSens=reshape((Hij*CompE)./max(sum(Hij,2),0.0001),LSFsize); 151 
        SensTotal=(shapeSens/max(abs(shapeSens(:)))); 152 
        Con=-0.75:0.005:0.75; 153 
        V=zeros(numel(Con),1); 154 
        for(c=1:numel(Con)) 155 
            [newlsf]=updatestep3(lsf,SensTotal+Con(c),stepLength,bearing,Esize(1)); 156 
            newstruc=(griddata(lsfX,lsfY,lsfZ,newlsf,sX,sY,sZ)<=0); 157 
            newstruc(map(boundary))=1; newstruc(exterior)=1; 158 
            add=setdiff(find((newstruc-struc)==1),[map;exterior]); 159 
            newmap=[map;add]; 160 
            V(c)=prod(Esize)*(sum(newstruc(newmap)))/volTot; 161 
        end 162 
        Control(i-1)=Con(find(V>=vol(i),1,'last')); 163 
    end 164 
    if(relax==0)    %Execute relaxed penalty 165 
        La=alpha*La; 166 
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        Penalty=La*(vol(i)-volReq); 167 
%         Control=[]; 168 
%         Control(i)=Penalty; 169 
    else 170 
        if(max(vol(max(1,i-5):i))-min(vol(max(1,i-5):i))<0.005 && i>5) 171 
            La2=(alpha^2)*La2;  %Update Lagrange multiplier on PID if volume hasn't changed 172 
        end 173 
        Control(i)=La2*PID*[(vol(i)-volReq);... 174 
            ((sum(vol(max(1,i-4):i))/numel(max(1,i-4):i))-volReq);... 175 
            (2*vol(i)-vol(max(1,i-1))-volReq)]; 176 
        Penalty=sum(Control); 177 
    end 178 
    shapeSens=reshape((Hij*CompE)./max(sum(Hij,2),0.0001),LSFsize); 179 
    SensTotal=(shapeSens/max(abs(shapeSens(:))))+Penalty; 180 
 181 
    %Save values every iteration------------------------------------------- 182 
    save([pwd,'\',folder,'\','Iteration',num2str(i)],'lsf','struc','U',... 183 
        'La','La2','shapeSens','SensTotal','Penalty','oldstruc',... 184 
        'oldK','oldF','nodes','elements','map','CompE','exterior','boundary') 185 
    %---------------------------------------------------------------------- 186 
    oldlsf=lsf; 187 
    [lsf]=updatestep3(lsf,SensTotal,stepLength,bearing,s*Esize(1)); 188 
    oldstruc=struc; 189 
    struc=(griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0); 190 
    struc(map(boundary))=1; struc(exterior)=1; 191 
    %---------------------------------------------------------------------- 192 
 193 
    add=setdiff(find((struc-oldstruc)==1),[map;exterior]); 194 
    newmap=[map;add]; 195 
    if((prod(Esize)*(sum(struc(newmap)))/volTot)<(volReq-0.04)) 196 
        disp('Stepped Back') 197 
        lsf=oldlsf; 198 
        struc=(griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0); 199 
        struc(map(boundary))=1; struc(exterior)=1; 200 
    end 201 
 202 
    %Prep next iteration--------------------------------------------------- 203 
    if(mesh>=5) 204 
        if(mesh>=8 && max(abs(vol(i-4:i)-volReq))<band && Esize(1)>(3/32)) 205 
            mesh=0;   disp('option1'); 206 
            band=0.8*band; 207 
            Esize=max(0.75*Esize,1/8); 208 
        elseif(sum(struc(map)==0)>0.5*numelem || numnodes>150000) 209 
            mesh=0;   disp('option2'); 210 
            band=0.15; 211 
            Esize=repelem((prod(Esize)*(sum(struc(map)+... 212 
                numel(setdiff(find((struc-213 
oldstruc)==1),[map;exterior]))))/(1.2*numelem))^(1/3),3); 214 
        end 215 
    end 216 
 217 
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 218 
    if(mesh==0) %Remesh 219 
        fprintf('remeshing with element size: %2.5f\n',Esize(1)); 220 
        [struc,elements,nodes,map,boundary,noF,sX,sY,sZ,exterior]=remesh(lsf,... 221 
            [lsfX(:),lsfY(:),lsfZ(:)],Esize,'Rotated Irregular Pressure Vessel.STL'); 222 
        numelem=size(elements,1);   numnodes=size(nodes,1); 223 
        fprintf('meshing complete with %d elements and %d nodes\n',numelem,numnodes); 224 
        while(numnodes>160000)   %retry if too many nodes 225 
            Esize=Esize*1.05; 226 
            fprintf('remeshing with element size: %2.5f\n',Esize(1)); 227 
            [struc,elements,nodes,map,boundary,noF,sX,sY,sZ,exterior]=... 228 
                remesh(lsf,[lsfX(:),lsfY(:),lsfZ(:)],Esize,'Rotated Irregular Pressure 229 
Vessel.STL'); 230 
            numelem=size(elements,1);   numnodes=size(nodes,1); 231 
            fprintf('meshing complete with %d elements and %d nodes\n',numelem,numnodes); 232 
        end 233 
        LSF2EleDist=(nodes(elements(:,1),1)'+Esize(1)/2'-lsfX(:)).^2+... 234 
            (nodes(elements(:,1),2)'+Esize(2)/2'-lsfY(:)).^2+... 235 
            (nodes(elements(:,1),3)'+Esize(3)/2'-lsfZ(:)).^2; 236 
        [d,id]=min(LSF2EleDist(Nanind,:),[],2); 237 
        Hij=max(R-LSF2EleDist,0); 238 
        Po=circshift(Esize,1).*circshift(Esize,-1)*Pressure/4; 239 
        dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 240 
        [ke,B,C]=stiff3D(E,nu,Esize); 241 
        oldstruc=[];  oldK=[];  oldF=[]; 242 
        [~,ind]=min((fix(:,1)-nodes(:,1)').^2+(fix(:,2)-nodes(:,2)').^2+(fix(:,3)-243 
nodes(:,3)').^2,[],2); 244 
        fixeddofs=nonzeros(reshape((3*ind-[2,1,0]).*[1,1,1;~eye(3)],[],1)); 245 
        clear LSF2EleDist; 246 
        mesh=1; 247 
    elseif((prod(Esize)*sum(struc(map))/volTot)>0.98) %If entire domain becomes solid revert back 248 
to initial configuration 249 
        disp('Domain solid reverting to original discritization') 250 
        La=(alpha)^5*La;    %Take a large step in La 251 
        load('RotatedIPVmesh25.mat') 252 
        load('RemeshStart25.mat') 253 
        [struc,Esize,map,noF]=InitialStruc(elements,nodes,boundary,init); 254 
        sdf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1); %reinitialize LSF 255 
        lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ); 256 
        Nanind=find(isnan(lsf)); 257 
        LSF2EleDist=(nodes(elements(:,1),1)'+Esize(1)/2'-lsfX(:)).^2+... 258 
            (nodes(elements(:,1),2)'+Esize(2)/2'-lsfY(:)).^2+... 259 
            (nodes(elements(:,1),3)'+Esize(3)/2'-lsfZ(:)).^2; 260 
        [d,id]=min(LSF2EleDist(Nanind,:),[],2); 261 
        lsf(Nanind)=sdf(map(id))-d./Esize(1); 262 
        struc=griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0; 263 
        Hij=max(R-LSF2EleDist,0); 264 
        Po=circshift(Esize,1).*circshift(Esize,-1)*Pressure/4; 265 
        dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 266 
        [ke,B,C]=stiff3D(E,nu,Esize); 267 
        if(~isequal(struc,oldstruc)) 268 
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            oldstruc=[];  oldK=[];  oldF=[]; 269 
        end 270 
        clear LSF2EleDist; 271 
        mesh=1; 272 
    else 273 
        if(~mod(i,numReinit))   %reinitialize LSF 274 
            sdf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1); %reinitialize LSF 275 
            lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ); 276 
            lsf(Nanind)=sdf(map(id))-d./Esize(1); 277 
            struc=griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0; 278 
            struc(map(boundary))=1; struc(exterior)=1; 279 
            clear sdf 280 
        end 281 
        mesh=mesh+1; 282 
        %Add elements if needed 283 
        add=setdiff(find((struc-oldstruc)==1),[map;exterior]); 284 
        if(~isempty(add)) 285 
            oldnumN=numnodes; 286 
            mult=[-1,-1,-1;1,-1,-1;1,1,-1;-1,1,-1;-1,-1,1;1,-1,1;1,1,1;-1,1,1]; 287 
            Nfull=permute([sX(add),sY(add),sZ(add)],[3,2,1])+(Esize/2).*mult; 288 
            Nall=reshape(permute(Nfull,[1,3,2]),[],3); 289 
            [~,Nnum]=ismembertol(Nall,nodes,0.01*Esize(1),'ByRows',true); 290 
            nodes=[nodes;Nall(Nnum==0,:)]; 291 
            Nnum(Nnum==0)=(numnodes+1):(numnodes+sum(Nnum==0)); 292 
            elements=[elements;reshape(Nnum,8,[])']; 293 
            numnodes=size(nodes,1); 294 
            numelem=size(elements,1); 295 
            map=[map;add]; 296 
            dof=[dof;3*repelem(elements(end-numel(add)+1:end,:),1,3)-repmat([2,1,0],1,8)]; 297 
            L2ED=(nodes(elements(end-numel(add)+1:end,1),1)'+Esize(1)/2'-lsfX(:)).^2+... 298 
                (nodes(elements(end-numel(add)+1:end,1),2)'+Esize(2)/2'-lsfX(:)).^2+... 299 
                (nodes(elements(end-numel(add)+1:end,1),3)'+Esize(3)/2'-lsfX(:)).^2; 300 
            Hij=[Hij,max(R-L2ED,0)]; 301 
            K=oldK; F=oldF; 302 
            oldF=[oldF;zeros(3*(numnodes-oldnumN),1)]; 303 
            oldK=sparse(3*numnodes,3*numnodes); 304 
            oldK(1:3*oldnumN,1:3*oldnumN)=K; 305 
            for(a=1:numel(add)) 306 
                oldK(dof(end+1-a,:),dof(end+1-a,:))=oldK(dof(end+1-a,:),dof(end+1-307 
a,:))+0.0001*ke; 308 
            end 309 
            fprintf('Added %d elements, new node total:%d\n',numel(add),numnodes) 310 
            clear K a N Nnum add L2ED 311 
        end 312 
    end 313 
    CompE=zeros(numelem,1); 314 
    i=i+1; 315 
    %---------------------------------------------------------------------- 316 
end 317 
%End of Optimization 318 
 319 
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%Show Final Values 320 
disp('done') 321 

Published with MATLAB® R2018a 
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Appendix D: Initial Configuation Subfunction 

 

Variable 
Name 

Variable Size Description 

elements (numelem)x8 Row for each element and a column for each of the 
element's node numbers 

nodes (numnodes)x3 [x,y,z] coordinates for each node 
boundary (r)x1 List of elements that are on the boundary of the geometry 
init 3x3 Defines the initial void geometry. 1st row defines edge 

lengths of voids, 2nd row defines x,y,z gap between voids 
and 3rd row the number of voids in the x,y,and z 
directions 

struc (Nx)x(Ny)x(Nz) Material distribution, 0 for void 1 for material 

Esize 1x3 x, y, and z edge lengths of each element 
map (numelem)x1 Index positions of each element in the LSF 
noF 1x(c) Degrees of freedom on homogeneous boundary for FEA 
exterior (r)x1 List of indices of ‘struc’ that are exterior to the design 

domain 
Domain 2x3 1st row is the minimum coordinates in x,y, and z of the 

geometry and the second row is the maximum 

StrucSize (r)x(c)x(p) Number of elements in the structure in each direction 
ind (r)x1 ‘struc’ indices for each meshed element 

void (r)x(c)x(p) Structural representation of the initial void based on 
‘init’ 

vs 1x3 Initial size of the initial void based on ‘init’ 

bounds 2x3 Start and end position in i,j,k indices of the LSF for the 
initial void centered in the structure  

bn (r)x8 Nodes that are on a boundary element 

noFnodes (r)x1 Nodes that are on the boundary 

 

InitialStruc.m 

function [struc,Esize,map,noF,exterior] =InitialStruc(elements,nodes,boundary,init) 1 
%Evaluates initial values prior to optimization loop 2 
% 3 
 4 
Domain=[min(nodes);max(nodes)]; 5 
Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 6 
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StrucSize=round((Domain(2,:)-Domain(1,:))./Esize); 7 
struc=ones(StrucSize); 8 
ind=round(nodes(elements(:,1),:)./Esize+1-Domain(1,:)./Esize); 9 
map=sub2ind(StrucSize,ind(:,1),ind(:,2),ind(:,3));  %map is a list for each element, which struc 10 
index is used 11 
void=zeros(init(1,1)*init(3,1)+init(2,1)*(init(3,1)-1),... 12 
    init(1,2)*init(3,2)+init(2,2)*(init(3,2)-1),... 13 
    init(1,3)*init(3,3)+init(2,3)*(init(3,3)-1)); 14 
void([0:init(3,1)-1]'*(init(1,1)+init(2,1))+[1:init(1,1)],... 15 
    [0:init(3,2)-1]'*(init(1,2)+init(2,2))+[1:init(1,2)],... 16 
    [0:init(3,3)-1]'*(init(1,3)+init(2,3))+[1:init(1,3)])=1; 17 
vs=size(void); 18 
bounds=round(mean(nodes)./Esize-vs/2); 19 
void=void(max(1,2-bounds(1)):min(vs(1),StrucSize(1)-bounds(1)-1),... 20 
    max(1,2-bounds(2)):min(vs(2),StrucSize(2)-bounds(2)-1),... 21 
    max(1,2-bounds(3)):min(vs(3),StrucSize(3)-bounds(3)-1)); 22 
bounds=[max(2,bounds);max(2,bounds)+size(void)-1]; 23 
struc(bounds(1,1):bounds(2,1),bounds(1,2):bounds(2,2),bounds(1,3):bounds(2,3))=... 24 
    max(0,struc(bounds(1,1):bounds(2,1),bounds(1,2):bounds(2,2),bounds(1,3):bounds(2,3))-void); 25 
struc(map(boundary))=1; 26 
struc(setdiff(1:prod(StrucSize),map))=1; 27 
 28 
 29 
bn=elements(boundary,:); 30 
bn=unique(bn(:)); 31 
noFnodes=bn(find(sum(bn'==elements(:))<8)); 32 
noF=reshape(3*noFnodes'-[2;1;0],1,[]); 33 
exterior=(setdiff(1:numel(struc),map))'; 34 
 35 
end 36 

Published with MATLAB® R2018a 
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Appendix E: Stiffness Matrix Calculation 

Variable 
Name 

Size Description 

E scalar Modulus of Elasticity 
v scalar Poison's Ratio 
lx scalar Length of each element in the x-direction 
ly scalar Length of each element in the y-direction 
lz scalar Length of each element in the z-direction 
Ke 24x24 Elemental stiffness matrix 
C 6*6 Constituitive relation for the material, used for stress 

calculations 

num_nodes scalar Number of nodes for each element 
J 3*3 Jacobian matrix 
dN 8x3 cell Derivatives of shape functions 
n 2x2 1-D shape functions 
dn 2x1 1-D derivative of shape functions 
xy 2x2 2-D shape function in x and y for the given node 

dxy 2x1 Partial derivative in x for 2-D shape function in x and y for the 
given node  

xdy 1x2 Partial derivative in y for 2-D shape function in x and y for the 
given node  

P_1D 1x2 Gauss Points in 1-D 
W 1x8 Weighting factor for each Gauss point 
GPts 3x8 Master element Gauss points 
Ng 8x3x8 Derivatives of shape functions evaluated at each Gauss point 
D scalar Number of directions (3 for 3-D) 
G scalar Number of Gauss points (8) 
delN 8x3 Derivative of shape function on real element 
B 6x24 B-matrix in elemental stiffness matrix calculation, used for 

stress calculations 

 

stiff3D.m 

function [Ke,B,C] = stiff3D(E,v,lx,ly,lz) 1 
%Calculates the elemental stiffness matrices 2 
 3 
%Inputs:    -E:modulus of elasticity 4 
%           -v:Poison's ratio 5 
%Outputs:   -Ke:elemental stiffness matrix 6 
%           -Ktr:element matrix for trace tensor 7 
%           -lamda:Lame Constant 8 
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 9 
C=(E/((1+v)*(1-2*v)))*[[(1-v)*eye(3)+v*~eye(3)],zeros(3);zeros(3),((1-2*v)/2)*eye(3)]; 10 
 11 
 12 
 13 
if(nargin==2) 14 
    %ke=[(3-v)/6 , (1+v)/8 , (-3-v)/12 , (3*v-1)/8 , (v-3)/12 , (-1-v)/8 , v/6 , (1-3*v)/8]; 15 
    kp=[-(3*v-2)/9,1/24,-1/18,-(4*v-1)/24,(4*v-1)/24,1/36,1/48,-1/24,(6*v-5)/72,-(4*v-1)/48,-16 
1/48,(4*v-1)/48,(3*v-1)/36,(3*v-2)/36]; 17 
    k1=kp([1,2,2,3,5,5;2,1,2,4,6,7;2,2,1,4,7,6;3,4,4,1,8,8;5,6,7,8,1,2;5,7,6,8,2,1]); 18 
    k2=kp([9,8,12,6,4,7;8,9,12,5,3,5;10,10,13,7,4,6;6,5,11,9,2,10;4,3,5,2,9,12;11,4,6,12,10,13]); 19 
    k3=kp([6,7,4,9,12,8;7,6,4,10,13,10;5,5,3,8,12,9;9,10,2,6,11,5;12,13,10,11,6,4;2,12,9,4,5,3]); 20 
    21 
k4=kp([14,11,11,13,10,10;11,14,11,12,9,8;11,11,14,12,8,9;13,12,12,14,7,7;10,9,8,7,14,11;10,8,9,7,22 
11,14]); 23 
    k5=kp([1,2,8,3,5,4;2,1,8,4,6,11;8,8,1,5,11,6;3,4,5,1,8,2;5,6,11,8,1,8;4,11,6,2,8,1]); 24 
    25 
k6=kp([14,11,7,13,10,12;11,14,7,12,9,2;7,7,14,10,2,9;13,12,10,14,7,11;10,9,2,7,14,7;12,2,9,11,7,126 
4]); 27 
 28 
    Ke=(E/((1+v)*(1-2*v)))*[k1,k2,k3,k4;k2',k5,k6,k3';k3',k6,k5',k2';k4,k3,k2,k1']; 29 
 30 
    dN_cent=0.25*[0,-1,-1,-1;0,1,-1,-1;0,1,1,-1;0,-1,1,-1;0,-1,-1,1;0,1,-1,1;0,1,1,1;0,-1,1,1]'; 31 
    order=[1,0,0;0,2,0;0,0,3;0,3,2;3,0,1;2,1,0]; 32 
    B=dN_cent([order+1,order+5,order+9,order+13,order+17,order+21,order+25,order+29]); 33 
else 34 
    if(nargin==3) 35 
        if(numel(lx)==3) 36 
            ly=lx(2); 37 
            lz=lx(3); 38 
            lx=lx(1); 39 
        else 40 
            ly=lx(1); 41 
            lz=lx(1); 42 
            lx=lx(1); 43 
        end 44 
    end 45 
    num_nodes=8; 46 
    J=[lx/2,ly/2,lz/2].*eye(3); 47 
    dN=cell(8,3); 48 
    n=[-1/2,1/2;1/2,1/2];   dn=[-1/2;1/2]; 49 
    for(i=1:num_nodes) 50 
        xy=n(floor(mod(i-1,4)/2)+1,:)'*n(floor(mod(i,4)/2)+1,:);     %[y]'*[x] 51 
        dxy=n(floor(mod(i-1,4)/2)+1,:)'*dn(floor(mod(i,4)/2)+1,:);   %[y]'*[dx] 52 
        xdy=dn(floor(mod(i-1,4)/2)+1,:)'*n(floor(mod(i,4)/2)+1,:);   %[dy]'*[x] 53 
        for(c=1:size(xy,2)) 54 
            if(c<=size(dxy,2))      %because partial wrt x will have 1 less column 55 
                dN{i,1}=[dN{i,1},permute(dxy(:,c)*n(floor((i-1)/4)+1,:),[1,3,2])];    56 
%[dxy(:,c)]*[z] 57 
            end 58 
            dN{i,2}=[dN{i,2},permute(xdy(:,c)*n(floor((i-1)/4)+1,:),[1,3,2])];   %[xdy(:,c)]*[z] 59 
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            dN{i,3}=[dN{i,3},permute(xy(:,c)*dn(floor((i-1)/4)+1,:),[1,3,2])];   %[xy(:,c)]*[dz] 60 
        end 61 
    end 62 
 63 
    P_1D=[-1/3^0.5,1/3^0.5];    W=ones(1,8); 64 
    GPts=P_1D([1,1,1,1,2,2,2,2;1,1,2,2,1,1,2,2;1,2,1,2,1,2,1,2]); 65 
    Ng=poly3Deval(dN,GPts); 66 
    [num_nodes,D,G]=size(Ng); 67 
    Ke=zeros(num_nodes*D); 68 
    for(g=1:G) 69 
        delN=J^-1*Ng(:,:,g)'; 70 
        B=zeros(2*D,num_nodes*D); 71 
        for(n=1:num_nodes) 72 
            for(d=1:D) 73 
                a=[1:d-1,d+1:3]; 74 
                B(d,n*D-D+d)=delN(d,n); 75 
                B(D+a(1),n*D-D+d)=delN(a(2),n); 76 
                B(D+a(2),n*D-D+d)=delN(a(1),n); 77 
            end 78 
        end 79 
        Ke=Ke+B'*C*B*det(J)*W(g); 80 
    end 81 
end 82 
 83 
 84 
 85 
end 86 

Published with MATLAB® R2018a 
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Appendix F: FEA Code 

Variable Name Size Description 
struc (NSx)x(NSy)x(NSz) Material distribution, 0 for void 1 for material 
elements (numelem)x8 Row for each element and a column for each of the 

element's node numbers 

map (numelem)x1 Index positions of each element in the LSF 
KE 24x24 Elemental stiffness matrix 
Po 1x3 Outward normal force each void element's nodes 

experience 

fixeddofs 9x1 List of fixed degrees of freedom 
oldstruc (Nx)x(Ny)x(Nz) Previous iteration's 'struc' matrix used to compare for 

changes in the FEA global matrices 

oldK (#dofs)x(#dofs) Previous iteration's global stiffness matrix 
oldF (#dofs)x1 Previous iteration's global force vector 
numnodes scalar Number of nodes 
numelements scalar Number of elements 
U (#dofs)x1 Deflection values for each degree of freedom 
dof (numelem)x24 Degrees of freedom for each element of the mesh 
fe 24x1 Elemental force vector for a void element 
F (#dofs)x1 Global force vector 
K (#dofs)x(#dofs) Global stiffness matrix 
eKE 24x24x(numelem) Each element's stiffness matrix 
ele (r)x1 List of elements that changed since previous iteration 

Ke_old 24x24 Previous iteration's elemental stiffness matrix 
Ke 24x24 Current iteration's elemental stiffness matrix 
Fe_old 24x1 Previous iteration's elemental force vector 
Fe 24x1 Current iteration's elemental force vector 
freedofs (r)x1 List of non-partitioned degrees of freedom 

 

FEA_3DP6.m 

function [U,K,F] = FEA_3DP6(struc,elements,map,KE,Po,noF,fixeddofs,oldstruc,oldK,oldF) 1 
%for irregular shapes 2 
 3 
%Computes Finite element analysis for the structure where 1 means there is 4 
%material and 0 corresponds to void 5 
%Inputs:    -struc:material distribution representation (1=material & 0=void) 6 
%           -elements:mapping of which nodes belong to each element and 7 
%           their relative positionings 8 
%           -KE:elemental k matrix 9 
%           -Po:magnitude of pressure 10 
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%           -e:used in computation of diriac delta function to determine 11 
%                   pressure loading for the given LSF 12 
%           -fixeddofs:[degrees of freedom that are fixed] 13 
%           -oldstruc:The previous structure that the K matrix was 14 
%                   calculated for so that the elements that don't change don't 15 
%                   need to be recomputed in the global K-matrix 16 
%           -oldK:Previous global K matrix to serve as starting point for 17 
%                   the this iteration 18 
%Outputs:   -U:dispacement vector result from FEA 19 
%           -K:current global K matrix to be used as starting point for the 20 
%                   next iteration 21 
 22 
 23 
%Initialize F,K and U Matrices-------------------------------- 24 
numnodes=max(max(elements)); 25 
numelements=size(elements,1); 26 
U=zeros(3*numnodes,1); 27 
dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 28 
fe=repmat(Po',8,1).*[1;1;1;-1;1;1;-1;-1;1;1;-1;1;1;1;-1;-1;1;-1;-1;-1;-1;1;-1;-1]; 29 
%------------------------------------------------------------- 30 
 31 
%------------------------------------------------------------- 32 
if(nargin<7 || isempty(oldK)|| isempty(oldF)) 33 
    %compute full K matrix 34 
    F=zeros(3*numnodes,1); 35 
    K=sparse(3*numnodes,3*numnodes); 36 
    eKE=permute(max(struc(map),0.0001),[3,2,1]).*KE; 37 
    for(e=1:numelements) 38 
        K(dof(e,:),dof(e,:))=K(dof(e,:),dof(e,:))+eKE(:,:,e); 39 
        if(struc(map(e))==1) 40 
            F(dof(e,:))=F(dof(e,:))+fe; 41 
        end 42 
    end 43 
else 44 
    %only modify K and F where needed 45 
    K=oldK;  F=oldF; 46 
    ele=find(struc(map)-oldstruc(map));    %elements that changed 47 
    for(i=1:numel(ele))     %0==no change, 1==added material, -1==removed material 48 
        Ke_old=max(oldstruc(map(ele(i))),0.0001)*KE; 49 
        Ke=max(struc(map(ele(i))),0.0001)*KE; 50 
        K(dof(ele(i),:),dof(ele(i),:))=K(dof(ele(i),:),dof(ele(i),:))-Ke_old+Ke; 51 
        Fe_old=oldstruc(map(ele(i)))*fe; 52 
        Fe=struc(map(ele(i)))*fe; 53 
        F(dof(ele(i),:))=F(dof(ele(i),:))-Fe_old+Fe; 54 
    end 55 
 56 
end 57 
 58 
%Solve System of Equations 59 
F(noF)=0; 60 
freedofs=setdiff(1:3*numnodes,fixeddofs); 61 
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U(freedofs,:)=K(freedofs,freedofs)\F(freedofs,:); 62 
 63 
end 64 

Published with MATLAB® R2018a 
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Appendix G: Update Code 

Variable 
Name 

Size Description 

lsf (NLx)x(NLy)x(NLz) Level-Set Function values 
shapeSens (NLx)x(NLy)x(NLz) Shape sensitivity calculated from elemental strain 

energy densities and penalties 
stepLength scalar Number of CFL time steps the evolution equation is 

solved every iteration 

bearing (r)x1 List of indexes of the LSF that are to remain constant 
and not change (regions outside the domain and the 
boundary elements) 

Le scalar Element length, used in determining CFL condition 

C 3x3x3 Matrix to perform convolution with for sensitivity 
smoothing 

v (NLx)x(NLy)x(NLz) Velocities for the Hamilton-Jacobi equation 
vFull (Nx+2)x(Ny+2)x(Nz+2) 'v' with a border of zeros 
dt scalar Time step, 0.1 of the CFL condition 
dpx (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the positive x direction 
dmx (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the negative x direction 
dpy (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the positive y direction 
dmy (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the negative y direction 
dpz (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the positive z direction 
dmz (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the negative z direction 

 

Updatestep3 

function [lsf] = updatestep3(lsf,shapeSens,stepLength,bearing,Le) 1 
%updates the structure and the level-set function 2 
 3 
%smooth sensitivities 4 
C=reshape([0,1,0;1,2,1;0,1,0;1,2,1;2,3,2;1,2,1;0,1,0;1,2,1;0,1,0],3,3,3)/27; 5 
shapeSens=convn(padarray(shapeSens,[1,1,1],'replicate'),C,'valid'); 6 
 7 
%Insure load bearing pixels remain solid 8 
shapeSens(bearing)=0; 9 
 10 
v=-shapeSens; 11 
%add zeros to boarder of v 12 
vFull=zeros(size(v)+2); vFull(2:end-1,2:end-1,2:end-1)=v; 13 
lsf=padarray(lsf,[1,1,1],'replicate'); 14 
 15 
%determine timestep (based on CFL condition) 16 
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dt=Le*0.1/max(abs(v(:))); 17 
 18 
for(i=1:(10*stepLength)) 19 
    dpx=circshift(lsf,[-1,0,0])-lsf;  %Find derivatives on the grid 20 
    dmx=lsf-circshift(lsf,[1,0,0]); 21 
    dpy=circshift(lsf,[0,-1,0])-lsf; 22 
    dmy=lsf-circshift(lsf,[0,1,0]); 23 
    dpz=circshift(lsf,[0,0,-1])-lsf; 24 
    dmz=lsf-circshift(lsf,[0,0,1]); 25 
    %Update LSF 26 
    lsf=lsf-27 
dt*min(vFull,0).*sqrt(min(dmx,0).^2+max(dpx,0).^2+min(dmy,0).^2+max(dpy,0).^2+min(dmz,0).^2+max(d28 
pz,0).^2) ... 29 
        -30 
dt*max(vFull,0).*sqrt(max(dmx,0).^2+min(dpx,0).^2+max(dmy,0).^2+min(dpy,0).^2+max(dmz,0).^2+min(d31 
pz,0).^2); 32 
end 33 
 34 
lsf=lsf(2:end-1,2:end-1,2:end-1); 35 
 36 
end 37 

Published with MATLAB® R2018a 
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Appendix H: Remesh Code 

Variable Name Size Description 
lsf (NLx)x(NLy)x(NLz) Level-Set Function values 
LSFcoord (numLSF)x3 Coordinates of LSF kernels 
Esize 1x3 x, y, and z edge lengths of each element 
file String STL file name 
struc (NSx)x(NSy)x(NSz) Material distribution, 0 for void 1 for material 
elements (numelem)x8 Row for each element and a column for each of the 

element's node numbers 
nodes (numnodes)x3 [x,y,z] coordinates for each node 
map (numelem)x1 Index positions of each element in the LSF 
boundary (r)x1 List of elements that are on the boundary of the 

geometry 
noF 1x(c) Degrees of freedom on homogeneous boundary for FEA 
sX, sY, & 

sZ 

(NSx)x(NSy)x(NSz) Meshgrid of coordinates of the elements’ centroids 

exterior (r)x1 List of indices of ‘struc’ that are exterior to the design 
domain 

faces (#triangles)x3 Outward normal direction components of STL faces 
vertices 3x3x(#triangles) (each node of the triangle)x(x, y, z coordinate of the 

node)x(each STL triangle) 
ranges 2x3 minimum STL node coordinates over the maximum 

x_centroids 1x(c) x-coordinates of the centroid for each cell 
y_centroids 1x(c) y-coordinates of the centroid for each cell 

z_centroids 1x(c) z-coordinates of the centroid for each cell 
xyfaces (r)x1 List of STL faces that have a z component 
X (r)x(c) X values from a meshgrid of x and y centroids 
Y (r)x(c) X values from a meshgrid of x and y centroids 
numxyzf 1x4 [number of cell elements in x, y, and z then the number 

of xy-faces] 
cells (r)x(c)x(p) Logic representation of if a cell has material or not (-

1=void, 1=solid) 
p 3x2 x and y coordinates of the 3 nodes that make up the 

given triangle 
intersects (r)x(c) Logic value of which x and y centroids are within the 

given triangle 
A scalar Area of given triangle 
up scalar 1,2,3 index value for cross product to make shape 

function 
down scalar 1,2,3 index value for cross product to make shape 

function 
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Variable Name Size Description 
Plane 2x2 Coefficient representation of shape function for triangle  
I (r)x1 Indices of x and y centroids that are within the given 

triangle 
z_int (r)x1 Z values of where the STL triangle intersects each x, y 

centroid 
mult 1x(c) Numbers to multiply along z to change 'cells' 
Domain 2x3 1st row is the minimum coordinates in x,y, and z of the 

geometry and the second row is the maximum 
Fullcells (r)x(c)x(p) ‘cells’ matrix bordered my -1’s 
Nf_1458 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value 

for cells without an element in the negative x-direction 
Nf_2367 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value 

for cells without an element in the positive x-direction 
Nf_1256 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value 

for cells without an element in the negative y-direction 
Nf_3478 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value 

for cells without an element in the positive y-direction 
Nf_1234 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value 

for cells without an element in the negative z-direction 
Nf_5678 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value 

for cells without an element in the positive z-direction 
outer 1x(c) Indices of cell that are not completely surrounded by 

elements 
nelx scalar Number of elements in x 
nely scalar Number of elements in y 
nelz scalar Number of elements in z 
Elements (r)x(c) List of element numbers 
n1z (r)x1 List of node one z-coordinates for each element 
n1x (r)x1 List of node one x-coordinates for each element 
n1y (r)x1 List of node one y-coordinates for each element 
Relative 8x1 Relative node numberings from node 1 for each element 
Nodes (r)x3 List of all possible node coordinates 
ind (r)x1 Indices for repeated nodes 
N scalar Node number counter 
mapFull (r)x(c)x(p) Same as ‘map’ but for a matrix with a border 
noFnodes (r)x1 Nodes that are on the boundary 

 

remesh.m 

function [struc,elements,nodes,map,boundary,noF,sX,sY,sZ,exterior] = 1 
remesh(lsf,LSFcoord,Esize,file) 2 
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%Remeshes material domain excluding void regions 3 
 4 
[faces,vertices]=readSTL(file,'inches'); 5 
 6 
ranges=[min(min(vertices),[],3);max(max(vertices),[],3)]; 7 
x_centroids=ranges(1,1)+0.5*Esize(1):Esize(1):ranges(2,1); 8 
y_centroids=ranges(1,2)+0.5*Esize(2):Esize(2):ranges(2,2); 9 
z_centroids=ranges(1,3)+0.5*Esize(3):Esize(3):ranges(2,3); 10 
xyfaces=find(faces(:,3)~=0); 11 
 12 
[X,Y]=meshgrid(x_centroids,y_centroids); 13 
numxyzf=[fliplr(size(X)),numel(z_centroids),numel(xyfaces)]; 14 
cells=-1*ones(numxyzf([2,1,3])); 15 
for(f=1:numxyzf(4)) 16 
    p=vertices(:,1:2,xyfaces(f)); 17 
    intersects=inpolygon(X,Y,p(:,1),p(:,2)); 18 
    A=0.5*det([[1;1;1],p]); 19 
    Plane=zeros(2); 20 
    for(i=1:3) 21 
        up=rem(i,3)+1; 22 
        down=3-rem(4-i,3); 23 
        Plane=Plane+0.5*vertices(i,3,xyfaces(f))*[0,p(down,1)-p(up,1);p(up,2)-24 
p(down,2),p(up,1)*p(down,2)-p(down,1)*p(up,2)]/A; 25 
    end 26 
    I=find(intersects); 27 
    if(~isempty(I)) 28 
        z_int=poly2Deval(Plane,[X(I),Y(I)]); 29 
        mult=-1*(z_centroids>=z_int)+(z_centroids<z_int); 30 
        for(i=1:numel(I)) 31 
            [r,c]=ind2sub([numxyzf(2),numxyzf(3)],I(i)); 32 
            cells(r,c,:)=cells(r,c,:).*permute(mult(i,:),[1,3,2]); 33 
        end 34 
    end 35 
end 36 
cells=permute(cells,[2,1,3]); 37 
exterior=find(cells==-1); 38 
 39 
Domain=ranges-ranges(1,:); 40 
[sX,sY,sZ]=meshgrid(Esize(1)/2:Esize(1):Domain(2,1),... 41 
    Esize(2)/2:Esize(2):Domain(2,2),Esize(3)/2:Esize(3):Domain(2,3)); 42 
sX=permute(sX,[2,1,3]); sY=permute(sY,[2,1,3]); sZ=permute(sZ,[2,1,3]); 43 
struc=griddata(LSFcoord(:,1),LSFcoord(:,2),LSFcoord(:,3),lsf,sX,sY,sZ)<=0; 44 
 45 
 46 
Fullcells=padarray(cells,[1,1,1],-1); 47 
Nf_1458=(Fullcells-circshift(Fullcells,[1,0,0]))==2; 48 
Nf_2367=(Fullcells-circshift(Fullcells,[-1,0,0]))==2; 49 
Nf_1256=(Fullcells-circshift(Fullcells,[0,1,0]))==2; 50 
Nf_3478=(Fullcells-circshift(Fullcells,[0,-1,0]))==2; 51 
Nf_1234=(Fullcells-circshift(Fullcells,[0,0,1]))==2; 52 
Nf_5678=(Fullcells-circshift(Fullcells,[0,0,-1]))==2; 53 
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 54 
 55 
outer=(cells==1).*(convn(cells,ones(3,3,3),'same')<27); 56 
struc(find(outer))=1; 57 
 58 
 59 
nelx=numxyzf(1);    nely=numxyzf(2);    nelz=numxyzf(3); 60 
Elements=1:nelx*nely*nelz; 61 
n1z=floor((Elements-1)/(nelx*nely)); 62 
n1x=rem((Elements-(nelx*nely).*floor((Elements-1)/(nelx*nely))-1),nelx); 63 
n1y=floor((Elements-(nelx*nely).*floor((Elements-1)/(nelx*nely))-1)/nelx); 64 
Relative=[0;1;nelx+2;nelx+1;... 65 
    (nelx+1)*(nely+1);(nelx+1)*(nely+1)+1;(nelx+1)*(nely+1)+nelx+2;(nelx+1)*(nely+1)+nelx+1]; 66 
Elements=(1+n1x+n1y*(nelx+1)+n1z*(nelx+1)*(nely+1))'+Relative'; 67 
[Nodes(:,1),Nodes(:,2),Nodes(:,3)]=ind2sub([nelx+1,nely+1,nelz+1],1:(nelx+1)*(nely+1)*(nelz+1)); 68 
Nodes=Esize.*(Nodes-[1,1,1]); 69 
 70 
 71 
Elements=(cells(:)==1 & struc(:)==1).*Elements;   %find on elements 72 
Elements((Elements(:,1)==0),:)=[];  %remove off elements 73 
 74 
elements=zeros(size(Elements)); 75 
nodes=zeros(size(Nodes)); 76 
N=1; 77 
while(sum(elements(:)==0)>0) 78 
    [c,r]=find(elements'==0,1); 79 
    ind=find(Elements==Elements(r,c)); 80 
    elements(ind)=N; 81 
    nodes(N,:)=Nodes(Elements(r,c),:); 82 
    N=N+1; 83 
    if(~mod(N,5000)) 84 
        fprintf('meshing node %d of %d \n',sum(elements(:)~=0),numel(Elements)); 85 
    end 86 
end 87 
nodes(N:end,:)=[]; 88 
 89 
ind=round(nodes(elements(:,1),:)./Esize+1-Domain(1,:)./Esize); 90 
map=sub2ind(numxyzf([1,2,3]),ind(:,1),ind(:,2),ind(:,3));  %map is a list for each element, which 91 
struc index is used 92 
mapFull=sub2ind(numxyzf([1,2,3])+2,ind(:,1)+1,ind(:,2)+1,ind(:,3)+1); 93 
 94 
boundary=find(outer(map)); 95 
noFnodes=[elements(find(Nf_1458(mapFull)),[1,4,5,8]);... 96 
    elements(find(Nf_2367(mapFull)),[2,3,6,7]);... 97 
    elements(find(Nf_1256(mapFull)),[1,2,5,6]);... 98 
    elements(find(Nf_3478(mapFull)),[3,4,7,8]);... 99 
    elements(find(Nf_1234(mapFull)),[1,2,3,4]);... 100 
    elements(find(Nf_5678(mapFull)),[5,6,7,8])]; 101 
noF=reshape(3*unique(noFnodes(:)')-[2;1;0],1,[]); 102 
 103 
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 104 
end 105 
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Appendix I: Polynomial Evaluation Code 

Variable Name Size Description 
coef cell array Each cell contains coefficients for a function  
points 3x(c) List of x,y,z coordinates to evaluate each function at 
Req scalar Number of rows in coef 
Ceq scalar Number of columns in coef 

eval (r)x(c)x(p) Each function evaluated at each point 
xp scalar Power of x to be multiplied to particular coefficient 
yp scalar Power of y to be multiplied to particular coefficient 

zp scalar Power of z to be multiplied to particular coefficient 

 

poly3Deval.m 

function [eval] = poly3Deval(coef,points) 1 
if(iscell(coef)) 2 
    [Req,Ceq]=size(coef); 3 
else 4 
    Req=1; 5 
    Ceq=1; 6 
end 7 
if(nargin==1) 8 
    P=input('at what location would you like to evaluate? :'); 9 
else 10 
    P=points; 11 
end 12 
eval=zeros([Req,Ceq,size(points,2)]);         %Initializes function value matrix 13 
for(r=1:Req) 14 
    for(c=1:Ceq) 15 
        for(p=1:size(points,2)) 16 
            xp=0; 17 
            for(i=size(coef{r,c},1):-1:1) 18 
                yp=0; 19 
                for(j=size(coef{r,c},2):-1:1) 20 
                    zp=0; 21 
                    for(k=size(coef{r,c},3):-1:1) 22 
                        eval(r,c,p)=eval(r,c,p)+coef{r,c}(i,j,k)*P(1,p)^xp*P(2,p)^yp*P(3,p)^zp; 23 
                        zp=zp+1; 24 
                    end 25 
                    yp=yp+1; 26 
                end 27 
                xp=xp+1; 28 
            end 29 
        end 30 
    end 31 
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end 32 
end 33 
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Appendix J: Reading STL file Code 

Variable Name Size Description 
filename Character STL file name 
units Character Units the STL file is in 
vertices 3x3x(#triangles) (each node of the triangle)x(x, y, z coordinate of the 

node)x(each STL triangle) 
faces (#triangles)x3 Outward normal direction components of STL faces 
fid scalar File ID number in MATLAB 
Title Character First line of the STL file 
f scalar Face counter 
line Character Current line being read 
v scalar Vertex counter 

 

readSTL.m 

function [faces,vertices] = readSTL(filename,units) 1 
%Reads an STL file found under the presribed filename and then filters and 2 
%outputs the face normals and vertices of each face 3 
 4 
 5 
fid=fopen(filename,'r'); 6 
 7 
Title=fgetl(fid); 8 
f=0; 9 
while(feof(fid)==0) 10 
    line=fgetl(fid); 11 
    if(contains(line,'facet normal')) 12 
        f=f+1; 13 
        v=0; 14 
        faces(f,:)=str2num(line(17:end)); 15 
    elseif(contains(line,'vertex')) 16 
        v=v+1; 17 
        vertices(v,:,f)=str2num(line(17:end)); 18 
    end 19 
end 20 
fclose(fid); 21 
 22 
 23 
if(units=='inches') 24 
    vertices=vertices/25.4; 25 
end 26 
 27 
end 28 
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Appendix K: Cross-Section Viewing Code 

Variable 
Name 

Size Description 

folder String Folder name that the iteration data is saved into 
iteration scalar Which iteration to plot 
Domain 2x3 1st row is the minimum coordinates in x,y, and z of the 

geometry and the second row is the maximum 
W 2x3 Current window view 
Esize 1x3 x, y, and z edge lengths of each element 
Done Logical T/F for when to exit the loop 
mat_files (r)x1 cell array List of MATLAB data files in ‘folder’  
volTot Scalar Total design domain volume 
Yield Scalar Yield strength for the given material 
VonoMises (numelem)x1 VonMises stress value for each element 
StrucSize 1x3 Number of elements of the structure in each direction 
ind (r)x1 Index positions for elements 
e Scalar Counter through each element 
stress 6x1 Stress state for the given element 
CalcComp Logical T/F for if the elemental compliances need to be 

calculated 
OldNodes (numnodes)x3 Coordinates for undeformed nodes 
Cent (numelem)x3 Centroid coordinates for each element 
use (r)x1 List of elements to plot based on the current window 
f Handle Figure Handle 
Xrange Handle UI panel to control the x-value ranges of the view 

window 
Xmax_down Handle UI button to decrease the max range of the view window 

in X 
Xmax_up Handle UI button to increase the max range of the view window 

in X 
Xmax_Text Handle Text number indicator for max x range 
Xmin_down Handle UI button to decrease the min range of the view window 

in X 
Xmin_up Handle UI button to increase the min range of the view window 

in X 
Xmin_Text Handle Text number indicator for min x range 
Yrange Handle UI panel to control the y-value ranges of the view 

window 
Ymax_down Handle UI button to decrease the max range of the view window 

in Y 
Ymax_up Handle UI button to increase the max range of the view window 

in Y 
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Variable 
Name 

Size Description 

Ymax_Text Handle Text number indicator for max y range 
Ymin_down Handle UI button to decrease the min range of the view window 

in Y 
Ymin_up Handle UI button to increase the min range of the view window 

in Y 
Ymin_Text Handle Text number indicator for min y range 
Zrange Handle UI panel to control the z-value ranges of the view 

window 
Zmax_down Handle UI button to decrease the max range of the view window 

in Z 
Zmax_up Handle UI button to increase the max range of the view window 

in Z 
Zmax_Text Handle Text number indicator for max z range 
Zmin_down Handle UI button to decrease the min range of the view window 

in Z 
Zmin_up Handle UI button to increase the min range of the view window 

in Z 
Zmin_Text Handle Text number indicator for min z range 
DeflectTB Handle Toggle button to view deflected structure 
MagSlide Handle Slider to control deflection magnification factor 
MagText Handle Text indicator for magnification factor 
P Handle Button group for which  
tb1 Handle Buttom to view solid plot 
tb2 Handle Button to view transparent plot 
tb3 Handle Button to view stress plot 
tb4 Handle Button to view only void elements 
S Handle Button to save the current view 
D Handle Button to finish and exit the code 
itr Handle Text indicator for which iteration is plotted 
CompTot Handle Text indicator for the iteration’s compliance 
CompWin Handle Text indicator for the current window view’s compliance 
VolTot Handle Text indicator for the iteration’s vonlume fraction 
Volfrac Handle Text indicator for the current window view’s volume 

fraction 
Intfrac Handle Text indicator for the iteration’s vonlume fraction 

excluding border 
last 1x3 cell array Last plots conditions 
CompE (numelem)x1 Compliance for each element 
dof (numelem)x24 Degree of freedoms for each element 
p Logical T/F indicator if plotting needs to be done 
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Variable 
Name 

Size Description 

num Scalar The number of already saved figures so a figure doesn’t 
get saved over 

 

CrossSectionPlot.m 

clear all 1 
close all 2 
clc 3 
addpath([pwd,'\IrregularShapeSubfunctions']) 4 
%Plots Cross-Sections of Structures 5 
 6 
folder='0.45finish23-May-2020 10,08,20';    %iIPV 30 v=0.45 7 
iteration='end';    %iteration # or 'end' for last iteration 8 
 9 
 10 
 11 
global Domain W Esize Done 12 
if(ischar(iteration)) 13 
    mat_files=dir([folder,'/*.mat']); 14 
    iteration=numel(mat_files)-1; 15 
end 16 
Done=0; 17 
load([folder,'/Iteration0']) 18 
Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 19 
volTot=prod(Esize)*size(elements,1); 20 
load([folder,'/Iteration',num2str(iteration)]) 21 
Domain=[min(nodes);max(nodes)]; 22 
W=Domain; 23 
Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 24 
[Ke,B,C]=stiff3D(29.5*10^6,0.29,Esize); 25 
Yield=150*10^3; %psi 26 
VonMises=zeros(size(elements,1),1); 27 
StrucSize=size(struc); 28 
 29 
ind=find(struc(map)); 30 
for(e=1:sum(struc(map))) 31 
    stress=C*B*U(3*repelem(elements(ind(e),:),1,3)-repmat([2,1,0],1,8)); 32 
    VonMises(ind(e))=sqrt(sum((stress(1:3)-stress([2,3,1])).^2)+6*sum(stress(4:6).^2))/sqrt(2); 33 
end 34 
CalcComp=~exist('compE','var'); 35 
OldNodes=nodes; 36 
Cent=nodes(elements(:,1),:)+Esize/2; 37 
use=find(Cent(:,1)>=W(1,1)&Cent(:,1)<=W(2,1)&... 38 
    Cent(:,2)>=W(1,2)&Cent(:,2)<=W(2,2)&... 39 
    Cent(:,3)>=W(1,3)&Cent(:,3)<=W(2,3)); 40 
f=figure('Units','normalized','color','w'); 41 
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fig=plotstructure(elements(use,:),nodes,struc,map(use)); 42 
axis equal; axis tight;  view([30,30]);   drawnow; 43 
xlabel('x');    ylabel('y');    zlabel('z'); 44 
lgd=legend('Solid'); 45 
lgd.Position=[0.85,0.85,0.1,0.1]; 46 
 47 
%X Limits Control Panel---------------------------------------------------- 48 
Xrange=uipanel('Title','X Limits','Position',[0.01,0.775,0.18755,0.125]); 49 
uicontrol(Xrange,'Style','text','String','Max:','Units','normalized','FontUnits','normalized',... 50 
    'Position',[0,0.6,0.185,0.225],'FontSize',0.9); 51 
Xmax_down=uicontrol(Xrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 52 
    'Position',[0.2,0.6,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@XmaxDPushed); 53 
Xmax_up=uicontrol(Xrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 54 
    'Position',[0.5,0.6,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@XmaxUPushed); 55 
Xmax_Text=uicontrol(Xrange,'Style','text','Units','normalized','FontUnits','normalized',... 56 
    'Position',[0.775,0.6,0.22,0.225],'FontSize',0.9); 57 
uicontrol(Xrange,'Style','text','String','Min:','Units','normalized','FontUnits','normalized',... 58 
    'Position',[0,0.3,0.185,0.225],'FontSize',0.9); 59 
Xmin_down=uicontrol(Xrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 60 
    'Position',[0.2,0.3,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@XminDPushed); 61 
Xmin_up=uicontrol(Xrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 62 
    'Position',[0.5,0.3,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@XminUPushed); 63 
Xmin_Text=uicontrol(Xrange,'Style','text','Units','normalized','FontUnits','normalized',... 64 
    'Position',[0.775,0.3,0.22,0.225],'FontSize',0.9); 65 
%-------------------------------------------------------------------------- 66 
 67 
%Y Limits Control Panel---------------------------------------------------- 68 
Yrange=uipanel('Title','Y Limits','Position',[0.01,0.625,0.18755,0.125]); 69 
uicontrol(Yrange,'Style','text','String','Max:','Units','normalized','FontUnits','normalized',... 70 
    'Position',[0,0.6,0.185,0.225],'FontSize',0.9); 71 
Ymax_down=uicontrol(Yrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 72 
    'Position',[0.2,0.6,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@YmaxDPushed); 73 
Ymax_up=uicontrol(Yrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 74 
    'Position',[0.5,0.6,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@YmaxUPushed); 75 
Ymax_Text=uicontrol(Yrange,'Style','text','Units','normalized','FontUnits','normalized',... 76 
    'Position',[0.775,0.6,0.22,0.225],'FontSize',0.9); 77 
uicontrol(Yrange,'Style','text','String','Min:','Units','normalized','FontUnits','normalized',... 78 
    'Position',[0,0.3,0.185,0.225],'FontSize',0.9); 79 
Ymin_down=uicontrol(Yrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 80 
    'Position',[0.2,0.3,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@YminDPushed); 81 
Ymin_up=uicontrol(Yrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 82 
    'Position',[0.5,0.3,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@YminUPushed); 83 
Ymin_Text=uicontrol(Yrange,'Style','text','Units','normalized','FontUnits','normalized',... 84 
    'Position',[0.775,0.3,0.22,0.225],'FontSize',0.9); 85 
%-------------------------------------------------------------------------- 86 
 87 
%Z Limits Control Panel---------------------------------------------------- 88 
Zrange=uipanel('Title','Z Limits','Position',[0.01,0.475,0.18755,0.125]); 89 
uicontrol(Zrange,'Style','text','String','Max:','Units','normalized','FontUnits','normalized',... 90 
    'Position',[0,0.6,0.185,0.225],'FontSize',0.9); 91 
Zmax_down=uicontrol(Zrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 92 
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    'Position',[0.2,0.6,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@ZmaxDPushed); 93 
Zmax_up=uicontrol(Zrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 94 
    'Position',[0.5,0.6,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@ZmaxUPushed); 95 
Zmax_Text=uicontrol(Zrange,'Style','text','Units','normalized','FontUnits','normalized',... 96 
    'Position',[0.775,0.6,0.22,0.225],'FontSize',0.9); 97 
uicontrol(Zrange,'Style','text','String','Min:','Units','normalized','FontUnits','normalized',... 98 
    'Position',[0,0.3,0.185,0.225],'FontSize',0.9); 99 
Zmin_down=uicontrol(Zrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 100 
    'Position',[0.2,0.3,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@ZminDPushed); 101 
Zmin_up=uicontrol(Zrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 102 
    'Position',[0.5,0.3,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@ZminUPushed); 103 
Zmin_Text=uicontrol(Zrange,'Style','text','Units','normalized','FontUnits','normalized',... 104 
    'Position',[0.775,0.3,0.22,0.225],'FontSize',0.9); 105 
%-------------------------------------------------------------------------- 106 
 107 
%Deflection Controls------------------------------------------------------- 108 
DeflecTB=uicontrol(f,'Style','togglebutton','Units','normalized','Position',[0.01,0.42,0.1875,0.0109 
4],'String','Deflection','FontUnits','normalized','FontSize',0.75); 110 
MagSlide=uicontrol(f,'Style','slider','Units','normalized','Position',[0.01,0.375,0.11,0.04],'Min111 
',0,'Max',100,'Value',10,'SliderStep',[1/1000,0.01]); 112 
MagText=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 113 
    'Position',[0.12,0.375,0.08,0.04],'FontSize',0.75); 114 
set(MagText,'String',sprintf('Mag:%3.1f',MagSlide.Value)) 115 
%-------------------------------------------------------------------------- 116 
%Plot Type Controls-------------------------------------------------------- 117 
P=uibuttongroup(f,'Position',[0.01,0.135,0.18755,0.21875],'Units','normalized');%'SelectionChange118 
dFcn',@Ptype 119 
tb1=uicontrol(P,'Style','togglebutton','Units','normalized','Position',[0.05,0.76,0.9,0.2],'Strin120 
g','Solid','FontUnits','normalized','FontSize',0.75); 121 
tb2=uicontrol(P,'Style','togglebutton','Units','normalized','Position',[0.05,0.52,0.9,0.2],'Strin122 
g','Transparent','FontUnits','normalized','FontSize',0.75); 123 
tb3=uicontrol(P,'Style','togglebutton','Units','normalized','Position',[0.05,0.28,0.9,0.2],'Strin124 
g','Stress','FontUnits','normalized','FontSize',0.75); 125 
tb4=uicontrol(P,'Style','togglebutton','Units','normalized','Position',[0.05,0.04,0.9,0.2],'Strin126 
g','Void Only','FontUnits','normalized','FontSize',0.75); 127 
%-------------------------------------------------------------------------- 128 
 129 
S=uicontrol(f,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 130 
    'Position',[0.01,0.0775,0.1875,0.05],'String','Save','FontSize',0.9,'Callback',@SPushed); 131 
D=uicontrol(f,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 132 
    'Position',[0.01,0.015,0.1875,0.05],'String','Done','FontSize',0.9,'Callback',@DPushed); 133 
uicontrol(f,'Style','text','String','Iteration:','Units','normalized','FontUnits','normalized',..134 
. 135 
    'Position',[0.025,0.94,0.15,0.05],'FontSize',0.9); 136 
itr=uicontrol(f,'Style','edit','Units','normalized','FontUnits','normalized',... 137 
    'Position',[0.18,0.94,0.0575,0.05],'String',num2str(iteration),'FontSize',0.9); 138 
 139 
%Objective and Constraint Values------------------------------------------- 140 
CompTot=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 141 
    'Position',[0.7375,0.15,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 142 
CompWin=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 143 
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    'Position',[0.7375,0.12,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 144 
VolTot=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 145 
    'Position',[0.7375,0.09,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 146 
Volfrac=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 147 
    'Position',[0.7375,0.06,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 148 
Intfrac=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 149 
    'Position',[0.7375,0.03,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 150 
set(VolTot,'String',sprintf('Total Volume Fraction:%1.3f',prod(Esize)*sum(struc(map))/volTot)) 151 
set(Volfrac,'String',sprintf('Window Volume 152 
Fraction:%1.3f',prod(Esize)*sum(struc(map(use)))/volTot)) 153 
set(Intfrac,'String',sprintf('Window Interior Volume 154 
Fraction:%1.3f',prod(Esize)*sum(struc(map(setdiff(use,boundary))))/volTot)) 155 
set(CompTot,'String',sprintf('Total Compliance:%10.3f',-sum(CompE(:)))) 156 
set(CompWin,'String',sprintf('Window Compliance:%10.3f',-sum(CompE(use)))) 157 
%-------------------------------------------------------------------------- 158 
 159 
last={'Solid',num2str(iteration),0,MagSlide.Value}; 160 
lastW=W;    OldNodes=nodes;    p=0; 161 
set(Xmax_Text,'String',W(2,1)) 162 
set(Xmin_Text,'String',W(1,1)) 163 
set(Ymax_Text,'String',W(2,2)) 164 
set(Ymin_Text,'String',W(1,2)) 165 
set(Zmax_Text,'String',W(2,3)) 166 
set(Zmin_Text,'String',W(1,3)) 167 
 168 
while(Done==0) 169 
    pause(0.01) 170 
    set(MagText,'String',sprintf('Mag:%3.1f',MagSlide.Value)) 171 
    if(~isequal(lastW,W)) 172 
        lastW=W;    p=1; 173 
        set(Xmax_Text,'String',W(2,1)) 174 
        set(Xmin_Text,'String',W(1,1)) 175 
        set(Ymax_Text,'String',W(2,2)) 176 
        set(Ymin_Text,'String',W(1,2)) 177 
        set(Zmax_Text,'String',W(2,3)) 178 
        set(Zmin_Text,'String',W(1,3)) 179 
        %xlim(W(:,1));   ylim(W(:,2));   zlim(W(:,3)); 180 
        %Cent=nodes(elements(:,1),:)+Esize/2; 181 
        use=find(Cent(:,1)>=W(1,1)&Cent(:,1)<=W(2,1)&... 182 
            Cent(:,2)>=W(1,2)&Cent(:,2)<=W(2,2)&... 183 
            Cent(:,3)>=W(1,3)&Cent(:,3)<=W(2,3)); 184 
        set(CompTot,'String',sprintf('Total Compliance:%10.3f',-sum(CompE(:)))) 185 
         set(CompWin,'String',sprintf('Window Compliance:%10.3f',-sum(CompE(use)))) 186 
        set(VolTot,'String',sprintf('Total Volume 187 
Fraction:%1.3f',prod(Esize)*sum(struc(map))/volTot)) 188 
        set(Volfrac,'String',sprintf('Window Volume 189 
Fraction:%1.3f',prod(Esize)*sum(struc(map(use)))/volTot)) 190 
        set(Intfrac,'String',sprintf('Window Interior Volume 191 
Fraction:%1.3f',prod(Esize)*sum(struc(map(setdiff(use,boundary))))/volTot)) 192 
    end 193 
    if(~strcmp(itr.String,last{2})) 194 
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        p=1; 195 
        iteration=max(1,min([str2num(itr.String),(numel(mat_files)-1)])); 196 
        set(itr,'String',num2str(iteration)); 197 
        load([folder,'/Iteration',num2str(iteration)]) 198 
        OldNodes=nodes; 199 
        Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 200 
        VonMises=zeros(size(elements,1),1); 201 
        ind=find(struc(map)); 202 
        for(e=1:sum(struc(map))) 203 
            stress=C*B*U(3*repelem(elements(ind(e),:),1,3)-repmat([2,1,0],1,8)); 204 
            VonMises(ind(e))=sqrt(sum((stress(1:3)-205 
stress([2,3,1])).^2)+6*sum(stress(4:6).^2))/sqrt(2); 206 
        end 207 
        if(CalcComp==1) 208 
            CompE=zeros(size(elements,1),1); 209 
            dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 210 
            for(e=1:size(elements,1)) 211 
                CompE(e)=-max(struc(map(e)),0.0001)*U(dof(e,:))'*ke*U(dof(e,:)); 212 
            end 213 
        end 214 
        Cent=nodes(elements(:,1),:)+Esize/2; 215 
        use=find(Cent(:,1)>=W(1,1)&Cent(:,1)<=W(2,1)&... 216 
            Cent(:,2)>=W(1,2)&Cent(:,2)<=W(2,2)&... 217 
            Cent(:,3)>=W(1,3)&Cent(:,3)<=W(2,3)); 218 
        set(CompTot,'String',sprintf('Total Compliance:%10.3f',-sum(CompE(:)))) 219 
        set(CompWin,'String',sprintf('Window Compliance:%10.3f',-sum(CompE(use)))) 220 
        set(VolTot,'String',sprintf('Total Volume 221 
Fraction:%1.3f',prod(Esize)*sum(struc(map))/volTot)) 222 
        set(Volfrac,'String',sprintf('Window Volume 223 
Fraction:%1.3f',prod(Esize)*sum(struc(map(use)))/volTot)) 224 
        set(Intfrac,'String',sprintf('Window Interior Volume 225 
Fraction:%1.3f',prod(Esize)*sum(struc(map(setdiff(use,boundary))))/volTot)) 226 
    end 227 
    if(DeflecTB.Value~=last{3}||(MagSlide.Value~=last{4}&&DeflecTB.Value==1)) 228 
        p=1; 229 
    end 230 
 231 
    if(p==1||~strcmp(P.SelectedObject.String,last{1})) 232 
        cla 233 
        colorbar('off');    legend('off'); 234 
        nodes=OldNodes+DeflecTB.Value*MagSlide.Value*reshape(U,3,[])'; 235 
        if(strcmp(P.SelectedObject.String,'Solid')) 236 
            plotstructure(elements(use,:),nodes,struc,map(use)); 237 
            lgd=legend('Solid'); 238 
            lgd.Position=[0.85,0.85,0.1,0.1]; 239 
        elseif(strcmp(P.SelectedObject.String,'Transparent')) 240 
            plottrans(elements(use,:),nodes,struc,map(use),find(ismember(use,boundary))); 241 
        elseif(strcmp(P.SelectedObject.String,'Stress')) 242 
            plotstress(elements(use,:),nodes,struc,map(use),VonMises(use),Yield); 243 
        else 244 
            plotvoid(elements,nodes,struc); 245 
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            hold on; 246 
            plotSTL('Rotated Irregular Pressure Vessel.STL'); 247 
            lgd=legend('Void'); 248 
            lgd.Position=[0.85,0.85,0.1,0.1]; 249 
        end 250 
        last={P.SelectedObject.String,itr.String,DeflecTB.Value,MagSlide.Value}; 251 
        p=0; 252 
    end 253 
end 254 
disp('Done') 255 
 256 
%X Max Functions----------------------------------------------------------- 257 
    function XmaxDPushed(scr,event) 258 
        global Domain W Esize 259 
        W(2,1)=min(Domain(2,1),max(W(1,1)+Esize(1),W(2,1)-Esize(1))); 260 
    end 261 
 262 
    function XmaxUPushed(scr,event) 263 
        global Domain W Esize 264 
        W(2,1)=min(Domain(2,1),max(W(1,1)+Esize(1),W(2,1)+Esize(1))); 265 
    end 266 
%-------------------------------------------------------------------------- 267 
 268 
%X Min Functions----------------------------------------------------------- 269 
    function XminDPushed(scr,event) 270 
        global Domain W Esize 271 
        W(1,1)=max(Domain(1,1),min(W(2,1)-Esize(1),W(1,1)-Esize(1))); 272 
    end 273 
 274 
    function XminUPushed(scr,event) 275 
        global Domain W Esize 276 
        W(1,1)=max(Domain(1,1),min(W(2,1)-Esize(1),W(1,1)+Esize(1))); 277 
    end 278 
%-------------------------------------------------------------------------- 279 
 280 
%Y Max Functions----------------------------------------------------------- 281 
    function YmaxDPushed(scr,event) 282 
        global Domain W Esize 283 
        W(2,2)=min(Domain(2,2),max(W(1,2)+Esize(2),W(2,2)-Esize(2))); 284 
    end 285 
 286 
    function YmaxUPushed(scr,event) 287 
        global Domain W Esize 288 
        W(2,2)=min(Domain(2,2),max(W(1,2)+Esize(2),W(2,2)+Esize(2))); 289 
    end 290 
%-------------------------------------------------------------------------- 291 
 292 
%Y Min Functions----------------------------------------------------------- 293 
    function YminDPushed(scr,event) 294 
        global Domain W Esize 295 
        W(1,2)=max(Domain(1,2),min(W(2,2)-Esize(2),W(1,2)-Esize(2))); 296 
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    end 297 
 298 
    function YminUPushed(scr,event) 299 
        global Domain W Esize 300 
        W(1,2)=max(Domain(1,2),min(W(2,2)-Esize(2),W(1,2)+Esize(2))); 301 
    end 302 
%-------------------------------------------------------------------------- 303 
 304 
%Z Max Functions----------------------------------------------------------- 305 
    function ZmaxDPushed(scr,event) 306 
        global Domain W Esize 307 
        W(2,3)=min(Domain(2,3),max(W(1,3)+Esize(3),W(2,3)-Esize(3))); 308 
    end 309 
 310 
    function ZmaxUPushed(scr,event) 311 
        global Domain W Esize 312 
        W(2,3)=min(Domain(2,3),max(W(1,3)+Esize(3),W(2,3)+Esize(3))); 313 
    end 314 
%-------------------------------------------------------------------------- 315 
 316 
%Z Min Functions----------------------------------------------------------- 317 
    function ZminDPushed(scr,event) 318 
        global Domain W Esize 319 
        W(1,3)=max(Domain(1,3),min(W(2,3)-Esize(3),W(1,3)-Esize(3))); 320 
    end 321 
 322 
    function ZminUPushed(scr,event) 323 
        global Domain W Esize 324 
        W(1,3)=max(Domain(1,3),min(W(2,3)-Esize(3),W(1,3)+Esize(3))); 325 
    end 326 
%-------------------------------------------------------------------------- 327 
 328 
 329 
%Plot type callbacks--------------------------------SolidPushed 330 
    function SPushed(scr,event) 331 
        %save figure 332 
        num=numel(dir('*Cross*fig*'))+1; 333 
        savefig(gcf,[pwd,'\','Cross-Section',num2str(num)]); 334 
    end 335 
 336 
    function DPushed(scr,event) 337 
        global Done 338 
        Done=1; 339 
    end 340 
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Appendix L: Solid Structure Plotting Code 

Variable 
Name 

Size Description 

elements (numelem)x8 Row for each element and a column for each of the 
element's node numbers 

nodes (numnodes)x3 Coordinates for each node 

structure (r)x1 Material distribution, 0 for void 1 for material of 
structure for given view 

map (numelem)x1 Index positions of each element in the LSF 

fig Handle Axis handle 

E (r)x8 Solid elements of given view 

s (r)x4x6 Node number faces 

p Handle Patch handle 

 

plotstructure.m 

function [fig] = plotstructure(elements,nodes,structure,map) 1 
 2 
E=elements(find(structure(map)),:); 3 
 4 
s(:,:,1) = E(:,[1,4,3,2]); 5 
s(:,:,2) = E(:,[1,2,6,5]); 6 
s(:,:,3) = E(:,[2,3,7,6]); 7 
s(:,:,4) = E(:,[3,4,8,7]); 8 
s(:,:,5) = E(:,[4,1,5,8]); 9 
s(:,:,6) = E(:,[5,6,7,8]); 10 
 11 
for(i=1:6) 12 
    p=patch('Vertices',nodes,'Faces',s(:,:,i)); 13 
    set(p,'facecolor',[0.9290, 0.6940, 14 
0.1250],'edgecolor','black','FaceLighting','gouraud','AmbientStrength',0.5); 15 
end 16 
camlight left; lighting phong; 17 
fig=gca; 18 
 19 
end 20 

Published with MATLAB® R2018a 

https://www.mathworks.com/products/matlab


 

222 
 

Appendix M: Transparent Border Plotting Code 

Variable 
Name 

Size Description 

elements (numelem)x8 Row for each element, column for each of element's nodes 

nodes (numnodes)x3 Coordinates for each node 

struc (NSx)x(NSy)x(NSz) Material distribution, 0 for void 1 for material 

map (numelem)x1 Index positions of each element in the LSF 

boundary (r)x1 List of elements that are on the boundary of the geometry 

fig Handle Axis handle 

Eouter (r)x8 Solid elements of given view that are part of the border 

Ecenter (r)x8 Solid elements of given view that are not part of the border 

s (r)x4x6 Node number faces for interior elements 

o (r)x4x6 Node number faces for border elements 

p Handle Patch handle 

 

plottrans.m 

function [fig] = plottrans(elements,nodes,struc,map,boundary) 1 
 2 
Eouter=elements(boundary,:); 3 
Ecenter=elements(setdiff(find(struc(map)),boundary),:); 4 
s(:,:,1) = Ecenter(:,[1,4,3,2]); 5 
s(:,:,2) = Ecenter(:,[1,2,6,5]); 6 
s(:,:,3) = Ecenter(:,[2,3,7,6]); 7 
s(:,:,4) = Ecenter(:,[3,4,8,7]); 8 
s(:,:,5) = Ecenter(:,[4,1,5,8]); 9 
s(:,:,6) = Ecenter(:,[5,6,7,8]); 10 
o(:,:,1) = Eouter(:,[1,4,3,2]); 11 
o(:,:,2) = Eouter(:,[1,2,6,5]); 12 
o(:,:,3) = Eouter(:,[2,3,7,6]); 13 
o(:,:,4) = Eouter(:,[3,4,8,7]); 14 
o(:,:,5) = Eouter(:,[4,1,5,8]); 15 
o(:,:,6) = Eouter(:,[5,6,7,8]); 16 
for(i=1:6) 17 
    b=patch('Vertices',nodes,'Faces',o(:,:,i)); 18 
    set(b,'facecolor',[0.8485,0.49959,0.17446],'FaceAlpha',0.1,'edgecolor','none'); 19 
end 20 
for(i=1:6) 21 
    p=patch('Vertices',nodes,'Faces',s(:,:,i)); 22 
    set(p,'facecolor',[0.60551,0.38649,0.69569],'edgecolor','black'); 23 
end 24 
lgd=legend([b,p],'Boundary','Solid') 25 
lgd.Position=[0.85,0.85,0.1,0.1]; 26 
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fig=gca; 27 
end 28 
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Appendix N: Stress Plotting Code 

Variable Name Size Description 

elements (numelem)x8 Row for each element and a column for each of the 
element's node numbers 

nodes (numnodes)x3 Coordinates for each node 

structure (r)x1 Material distribution, 0 for void 1 for material of 
structure for given view 

map (numelem)x1 Index positions of each element in the LSF 

stress (r)x1 VonMises stress state for each element 

yield Scalar Yield strength for the given material 

fig Handle Axis handle 

E (r)x8 Solid elements of given view 

s (r)x4x6 Node number faces 

C (r)x1 Color for each element 

p Handle Patch handle 

cb Handle Color bar handle 

 

plotstructure.m 

function [fig] = plotstress(elements,nodes,structure,map,stress,yield) 1 
 2 
E=elements(find(structure(map)),:); 3 
s(:,:,1) = E(:,[1,4,3,2]); 4 
s(:,:,2) = E(:,[1,2,6,5]); 5 
s(:,:,3) = E(:,[2,3,7,6]); 6 
s(:,:,4) = E(:,[3,4,8,7]); 7 
s(:,:,5) = E(:,[4,1,5,8]); 8 
s(:,:,6) = E(:,[5,6,7,8]); 9 
 10 
colormap(jet) 11 
caxis([0,yield]) 12 
C=min(yield,stress(find(structure(map))));%(find(structure(map)))/yield); 13 
fprintf('Max VonMises Stress: %10.2f Average Stress: %10.2f Yield: 14 
%10.2f\n',max(stress),mean(stress),yield); 15 
for(i=1:6) 16 
    p=patch('Vertices',nodes,'Faces',s(:,:,i),'FaceVertexCData',C,'FaceColor','flat'); 17 
    set(p,'FaceLighting','gouraud','AmbientStrength',0.5); 18 
end 19 
camlight left; lighting phong; 20 
cb=colorbar('Position',[0.95,0.25,0.025,0.65],'AxisLocation','in'); 21 
cb.Ticks=linspace(0,yield,6); 22 
cb.TickLabels=strsplit([num2str(linspace(0,yield,6)),'\newline{Yield}']); 23 
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fig=gca; 24 
end 25 
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Appendix O: Void and STL Plotting Code 

Variable Name Size Description 

elements (numelem)x8 Row for each element and a column for each of the 
element's node numbers 

nodes (numnodes)x3 Coordinates for each node 

structure (r)x1 Material distribution, 0 for void 1 for material of 
structure for given view 

fig Handle Axis handle 

faces (#triangles)x3 Outward normal direction components of STL faces 

vertices 3x3x(#triangles) (each node of the triangle)x(x, y, z coordinate of the 
node)x(each STL triangle) 

stl Handle Patch handle for STL plot 

Esize 1x3 Size of elements in each direction 

void Logical Opposite of structure 

[r,c,p] (numelem)x1 row, column, page index of void elements 
respectively 

cent (numvoid)x1 Centroid coordinates for void elements 

Vnodes (r)x3 Node coordinates of void elements 

E (r)x8 Solid elements of given view 

s (r)x4x6 Node number faces 

p Handle Patch handle for void plot 

 

plotvoid.m 

function [fig] = plotvoid(elements,nodes,structure) 1 
 2 
addpath([pwd,'\MakeMeshSubfunctions']) 3 
[faces,vertices] = readSTL(file,'inches'); 4 
 5 
vertices=reshape(permute(vertices,[2,1,3]),3,[])'; 6 
vertices=vertices-min(vertices); 7 
 8 
faces=reshape(1:size(vertices,1)/3,3,[])'; 9 
stl=patch('Vertices',vertices,'Faces',faces); 10 
set(stl,'facecolor',[0.60551,0.38649,0.69569],'FaceAlpha',0.1,'edgecolor','black'); 11 
 12 
 13 
Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 14 
void=find(~structure); 15 
[r,c,p]=ind2sub(size(structure),void); 16 
cent=[r,c,p].*Esize-0.5*Esize; 17 
Vnodes=permute(cent,[3,2,1])+0.5.*Esize.*[-1,-1,-1;1,-1,-1;1,1,-1;-1,1,-1;-1,-1,1;1,-18 
1,1;1,1,1;-1,1,1]; 19 
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Vnodes=reshape(permute(Vnodes,[2,1,3]),3,[])'; 20 
E=reshape(1:size(Vnodes,1),8,[])'; 21 
 22 
s(:,:,1) = E(:,[1,4,3,2]); 23 
s(:,:,2) = E(:,[1,2,6,5]); 24 
s(:,:,3) = E(:,[2,3,7,6]); 25 
s(:,:,4) = E(:,[3,4,8,7]); 26 
s(:,:,5) = E(:,[4,1,5,8]); 27 
s(:,:,6) = E(:,[5,6,7,8]); 28 
 29 
 30 
for(i=1:6) 31 
    p=patch('Vertices',Vnodes,'Faces',s(:,:,i)); 32 
    set(p,'facecolor','yellow','edgecolor','black'); 33 
end 34 
 35 
fig=gca; 36 
 37 
 38 
 39 
end 40 
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