
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

August 2020

Topology Optimization of Irregular Shaped Pressure Vessels Topology Optimization of Irregular Shaped Pressure Vessels

Using a Level-Set Method Using a Level-Set Method

John Michal Kremar
Clemson University, John.Kremar@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Kremar, John Michal, "Topology Optimization of Irregular Shaped Pressure Vessels Using a Level-Set
Method" (2020). All Theses. 3379.
https://tigerprints.clemson.edu/all_theses/3379

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3379?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

TOPOLOGY OPTIMIZATION OF IRREGULAR SHAPED PRESSURE VESSELS
USING A LEVEL-SET METHOD

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

John Michal Kremar

August 2020

Accepted by:

Dr. Georges Fadel, Committee Chair

Dr. Lonny Thompson

Dr. Vincent Ervin

ii

ABSTRACT

Advances in manufacturing capabilities, such as additive manufacturing, have expanded

the design freedom given to engineers enabling more efficient designs through the use of

complex geometries. However, determining the optimal geometric structure for a given set of

performance criteria can be quite challenging when given such design freedom. One technique

to do so is with the use of topology optimization methods, in which optimal material distribution

within a given design space is determined. Many established topology optimization methods are

developed such that a set of boundary conditions are prescribed to the design domain and

remain fixed throughout the optimization process of determining the material distribution. This

eliminates the ability to implement design dependent loading conditions, such as pressure

loading, which requires tracking (following) the pressure surface as the geometry evolves during

the optimization process. In this thesis, a level-set topology optimization method is

implemented based on voxel elements on design domains in ℝ3 subjected to internal pressure

loading, such as in the case of a non-spherical or cylindrical pressure vessel.

Following a thorough literature review, a level-set function was chosen to define a crisp

material/void boundary for identifying loading conditions caused by the applied pressure. This

pressure loading is calculated as an applied traction across all material elements, excluding

exterior surface nodes. This results in an equal and opposite cancelation throughout the

material domain and leaving forces only at desired nodes along the material/void boundary. This

implementation only requires material elements to be meshed, allowing for remeshing

throughout the process to increase accuracy while saving computational cost by excluding void

regions. Additionally, to improve convergence, the Lagrangian formulation of a penalty is

iii

replaced by a method analogous to PID-control systems as the algorithm hones in on

convergence.

To test the effectiveness of the method and the practicality of designing an irregular

pressure vessel, the gas storage tanks of the MK-16 rebreather for the US NAVY were

redesigned within the current system’s geometric constraints in an effort to increase gas storage

capacity. To do this, an outside domain geometry of the irregular shaped pressure vessel was

defined, and not subject to change, while the optimization code was executed on the interior

structure to minimize compliance subjected to an overall volume fraction constraint. This was

done at various target volume fractions, and then stresses and compliance values were analyzed

and compared to the existing pressure vessel of the MK-16. The findings of this research

concluded that designing an irregular shaped pressure vessel is a viable means of increasing

storage capacity although future work would need to be executed to manufacture and

experimentally validate these findings.

iv

DEDICATION

This thesis is dedicated to my family and friends for all of their love and support

throughout this journey. This research would not have been possible without the support of

many individuals in particular my parents, Connie and Jason, for their immense love, support,

and guidance throughout my entire life. I certainly would not have made it to where I am

without them. Additionally, I would like to dedicate this work to my brother, Clark, for his

friendship, brilliant young mind, and continual competitiveness. I cannot wait to see what the

future has in store for you little brother, even if it means beating me on occasion.

v

ACKNOWLEDGEMENTS

I would like to thank and express my deepest gratitude to some of the most influential

individuals who helped make this research possible. Firstly, I would like to thank my advisor, Dr.

Fadel, for his time, wisdom, and guidance throughout this journey. Additionally, I would like to

thank the Science, Mathematics, And Research for Transformation (SMART) scholarship for

service program for providing me with the opportunity to pursue my academic interest and

career goals. I would also like to thank my committee members, Dr. Thompson and Dr. Ervin for

their time and contributions.

Furthermore, I would like to thank all of the professors that have dedicated their time

and efforts towards my education. I would like to recognize Dr. Ferguson, of North Carolina

State University, for establishing the academic foundation and sparking the interest in design

optimization. Which was then further developed by the teachings of Dr. Fadel and Dr. Wiecek at

Clemson University. Additionally, I would like to express my appreciations to Dr. Li and Dr.

Thomspon for their knowledge and teachings of the finite element method. The works of this

research draws strongly on the principles taught by these professors and without their

dedication and passion I would not have been able to accomplish what I have, or developed my

interest in the topics.

Additionally, I would like to recognize the support from my sponsoring facility through

the SMART program. The mentorship and comradery of my coworkers during my internships at

NSWC – Panama City, FL have been an invaluable resource of knowledge and lessons

throughout my journey in academics, career, and life. I will forever be grateful for their role in

vi

my journey and the source of inspiration for this project. I look forward to working hand-in-hand

with my friends as I begin the next chapter of my life.

vii

Table of Contents

ABSTRACT ... ii

DEDICATION .. iv

ACKNOWLEDGEMENTS .. v

TABLE OF TABLES .. xii

TABLE OF FIGURES ... xiii

NOMENCLATURE ... xviii

 CHAPTER I: INTRODUCTION... 1

1.1 Motivation ... 2

1.2 Research Objectives .. 6

1.3 Thesis Outline .. 7

 CHAPTER II: LITERATURE REVIEW .. 8

2.1 Topology Optimization History and Overview .. 8

2.1.1 Ground Structure Approach ... 11

2.1.2 Homogenization Methods .. 12

2.1.3 Level-Set Methods .. 19

2.1.4 Topology Optimization Conclusion... 23

2.2 Level-Set Methods Formulation .. 24

2.2.1 Level-Set Function Parameterization ... 26

TITLE PAGE... i

Table of Contents (Continued)

viii

2.2.2 Geometry Mapping .. 30

2.2.3 Update Procedure .. 33

2.2.4 Regularization ... 39

2.3 Design Dependent Loading ... 41

 CHAPTER III: Methodology .. 47

3.1 Finite Element Analysis .. 47

3.2 Level-Set Method Formulation .. 60

3.3 Design Dependent Pressure Loading ... 67

3.3.1 Two-Dimensional Problems with Pressure Loading ... 67

3.3.2 Three-Dimensional Pressure Vessel Problems ... 73

 Chapter IV: Implementation .. 78

4.1 Problem Progression ... 79

4.2 Mesh Generation ... 82

4.3 Optimization Initialization ... 87

4.4 Optimization Loop ... 96

4.4.1 Finite Element Analysis ... 97

4.4.2 Postprocessing and Sensitivity Calculations ... 99

4.4.3 Convergence Checks ... 100

Table of Contents (Continued)

ix

4.4.4 Update Procedure .. 100

4.4.5 Preparation for Subsequent Iterations ... 104

4.5 Conclusion and Appendix Usage ... 108

 Chapter V: Preliminary Results .. 110

5.1 Constant Loading Conditions ... 110

5.2 Two-Dimensional Pressure Loading .. 119

5.3 Three-Dimensional Pressure Box .. 122

5.3.1 Trials and Issues .. 123

5.3.2 Pressure Box Solutions and Results .. 127

 Chapter VI: Irregular Shaped Pressure Vessel Results... 133

6.1 Existing Pressure Vessel... 133

6.2 Defining the Design Domain .. 137

6.3 Initial Results ... 141

6.4 Final Results ... 148

 CHAPTER VII: CONCLUSION ... 161

7.1 Thesis Overview ... 161

7.2 Discoveries from Research Objectives .. 163

7.3 Future Works ... 164

Table of Contents (Continued)

x

7.3.1 Refined Meshing ... 165

7.3.2 Stress Constraints ... 165

7.3.3 Designing for Additive Manufacturing ... 166

7.3.4 Experimental Validation ... 166

7.4 Final Remarks .. 167

 REFERENCES... 169

 APPENDICES .. 177

Appendix A: Flow Diagram .. 178

Appendix B: Mesh Generation Code ... 179

Appendix C: Main Code... 183

Appendix D: Initial Configuation Subfunction ... 194

Appendix E: Stiffness Matrix Calculation ... 196

Appendix F: FEA Code ... 199

Appendix G: Update Code... 202

Appendix H: Remesh Code .. 204

Appendix I: Polynomial Evaluation Code ... 209

Appendix J: Reading STL file Code ... 211

Appendix K: Cross-Section Viewing Code .. 212

Table of Contents (Continued)

xi

Appendix L: Solid Structure Plotting Code .. 221

Appendix M: Transparent Border Plotting Code ... 222

Appendix N: Stress Plotting Code ... 224

Appendix O: Void and STL Plotting Code .. 226

xii

TABLE OF TABLES

Table 1-1:Oxygen Tank Properties .. 6

Table 3-2: Master Element Node Coordinates .. 52

Table 4-3: ‘elements’ matrix format .. 90

Table 4-4: ‘nodes’ matrix format ... 91

Table 6-5: Existing Pressure Vessel Properties .. 135

Table 6-6: Existing Pressure Vessel FEA Results .. 136

Table 6-7: Meshing Summary .. 141

Table 6-8: Trials at Varying Target Volumes .. 147

Table 6-9: Remeshing Trials at Various Target Volumes ... 158

xiii

TABLE OF FIGURES

Figure 1-1: MK-16 Rebreather Front (left), back (right) .. 3

Figure 1-2: MK-16 Rebreather Components ... 4

Figure 1-3: Oxygen Tank .. 5

Figure 2-1: Ground Structure Approach Illustration ... 11

Figure 2-2: Typical Classes of Unit Cells. Left: Square with Square Hole, 13

Figure 2-3: Intermediate Density Versus Rigidity .. 17

Figure 2-4: Converging Corners in Moving Boundaries ... 20

Figure 2-5: Level-Set Method Visualization [34] ... 21

Figure 2-6: 1-D Basis Functions ... 27

Figure 2-7: Ranges of Influence [34] .. 28

Figure 2-8: Types of LSF Parameterization [34] ... 29

Figure 2-9: Types of Geometry Mapping [34] ... 31

Figure 2-10: Types of Update Information [34] ... 35

Figure 2-11: Effect of Variable LSF Gradients [34] .. 41

Figure 2-12: Identifying the 1st (Left) & 2nd (Right) Iso-Density Points [52] 43

Figure 2-13: Identifying Consecutive Iso-Density Points [52] ... 44

Figure 3-1: Hexahedral Master Element ... 52

Figure 3-2: Force Vector Computation from Void ... 57

Figure 3-3: Force Vector Computation from Material Domain ... 59

Figure 3-4: Dual LSF Structural Representation [50] ... 69

Figure 3-5: Example Level-Set Function .. 72

TABLE OF FIGURES (CONTINUED)

xiv

Figure 3-6: Approximate Dirac Function ... 72

Figure 3-7: Drastic Change in Constraint Violation ... 74

Figure 3-8: Volume Crosses Target then goes Unstable ... 75

Figure 3-9: Volume Fraction with PID-type Penalty .. 77

Figure 4-1: 2-D LSM Input Interface .. 80

Figure 4-2: 2-D Pressure Problem Definition... 81

Figure 4-3: 3-D Pressure Problem Definition... 82

Figure 4-4: STL Projection .. 84

Figure 4-5: YZ-Cross Section Projection ... 85

Figure 4-6: Node Relative Positioning ... 87

Figure 4-7: Fixed Boundary Conditions ... 95

Figure 4-8: Basic Flow Chart .. 96

Figure 5-1: Simply Supported Beam with Distributed Loading ... 111

Figure 5-2: Distributed Load Optimized Structure .. 111

Figure 5-3: Distributed Load Deflection Plot ... 111

Figure 5-4: Distributed Loading Compliance and Volume Fraction Plots 112

Figure 5-5: Cantilevered Beam Problem ... 113

Figure 5-6: RBF Initial Structure... 113

Figure 5-7: RBF Initial Level-Set Function .. 114

Figure 5-8: RBF Structure at Iteration 60 .. 115

Figure 5-9: RBF Level-Set Function at Iteration 60 .. 115

xv

Figure 5-10: RBF Final Structure .. 116

Figure 5-11: RBF Final Level-Set Function ... 116

Figure 5-12: RBF Compliance Versus Iteration .. 117

Figure 5-13: RBF Volume Fraction Versus Iteration .. 117

Figure 5-14: 3-D Cantilevered Beam Problem ... 118

Figure 5-15: 3-D Cantilevered Beam Deformed Structure .. 118

Figure 5-16: Iso-Density Identification During Early Iterations ... 119

Figure 5-17: Iso-Density Line Errors .. 120

Figure 5-18: 2-D Pressure Loaded Structure and Deformation ... 121

Figure 5-19: 2-D Pressure Loading Level-Set Functions .. 121

Figure 5-20: Pressure Box Problem Definition .. 123

Figure 5-21: Pressure Box 40x20x10 Starting Void and Deformation ... 123

Figure 5-22: Pressure Box 40x20x10 Iteration 75 Void and Deformation 124

Figure 5-23: Pressure Box 60x30x15 Volume and Compliance Versus Iteration 125

Figure 5-24: Pressure Box Intermediate Densities, Iterations 1 and 20 125

Figure 5-25: Pressure Box Intermediate Densities, Iterations 40 and 60 125

Figure 5-26: Pressure Box Intermediate Densities, Iteration 62 ... 126

Figure 5-27: Pressure Box Intermediate Densities, Iteration 90 ... 126

Figure 5-28: Pressure Box Multiple Starting Voids Compliance and Volume 127

Figure 5-29: One Starting Void Iterations 20 and 30 ... 128

Figure 5-30: One Starting Void Iterations 40 and 75 ... 128

TABLE OF FIGURES (CONTINUED)

xvi

Figure 5-31: One Starting Void Volume and Compliance .. 129

Figure 5-32: One Starting Void PID Terms ... 129

Figure 5-33: One Starting Void Penalty Term .. 129

Figure 5-34: One Starting Void Shape Sensitivity .. 130

Figure 5-35: Multiple Starting Voids Iterations 1 and 68 .. 130

Figure 5-36: Multiple Starting Voids Volume and Compliance ... 131

Figure 5-37: Real Valued Pressure Box Volume and Compliance ... 132

Figure 6-1: MK-16 Back Cover Removed ... 133

Figure 6-2: Existing Pressure Vessel Dimensions .. 134

Figure 6-3: Existing Sphere Stresses(PSI) Pressure=5,000 PSI and 0.0625” Elements 136

Figure 6-4: Proposed Pressure Vessel Geometry for MK-16 ... 137

Figure 6-5: Proposed Pressure Vessel Dimensions ... 138

Figure 6-6: Proposed Pressure Vessel in MK-16 Assembly ... 139

Figure 6-7: Mesh with 0.2” Element Size .. 140

Figure 6-8: Volume and Compliance, Target Volume of 0.45, Pressure Calculation from Void . 142

Figure 6-9: Stress Plot Iteration 76, View Window: X(0,6.75) Y(2,6) Z(0,12.25) 143

Figure 6-10: Top Rib, View Window: X(0,2.75) Y(2.75,5) Z(7,12.75) ... 144

Figure 6-11: Side Rib, View Window X(0,3.5) Y(3.5,7.25) Z(3.75,6.5) ... 145

Figure 6-12: Bottom Rib, View Window X(0,2.75) Y(2.75,5) Z(0,3.75) .. 145

Figure 6-13: Connection Beam, Trial 33, Iteration 25, View Window X(0,6.75) Y(1.5,3.75)

Z(0,11.5) ... 146

TABLE OF FIGURES (CONTINUED)

xvii

Figure 6-14: Design Points Volume Fraction Versus Compliance .. 148

Figure 6-15: Volume and Compliance, 𝐾 = 10.50.2, 𝜆𝑜 = 0.5, and 𝜆𝑃𝐼𝐷 = 0.5 149

Figure 6-16: Volume and Compliance, 𝐾 = 0.50.21, 𝜆𝑜 = 0.5, and 𝜆𝑃𝐼𝐷 = 0.5 150

Figure 6-17: Volume and Compliance, 𝐾 = 0.50.21, 𝜆𝑜 = 0.5, and 𝜆𝑃𝐼𝐷 = 1 151

Figure 6-18: Vreq=0.45 Final, Interior Front View, Window: X(0,6.75) Y(2,6) Z(0,12.25) 152

Figure 6-19: Vreq=0.45 Final, Front View, Window: X(0,6.75) Y(2,6) Z(0,12.25) 153

Figure 6-20: Final Structure from Bottom, Z=8.7” Through Z=12.75” ... 154

Figure 6-21: Final Structure, Z=7.5” Through Z=8.7”... 154

Figure 6-22 Final Structure, Z=5.4” Through Z=7.5” .. 154

Figure 6-23: Final Structure, Z=3.9” Through Z=5.4”... 155

Figure 6-24: Final Structure, Z=0” Through Z=3.9” .. 155

Figure 6-25: Smoothed Geometry Bottom .. 156

Figure 6-26: Smoothed Geometry Middle .. 157

Figure 6-27: Smoothed Geometry Top .. 157

Figure 6-28: Remeshing Pareto Front ... 159

Figure 6-29: Volume Fraction and Compliance Designs from Trial #29 160

TABLE OF FIGURES (CONTINUED)

xviii

NOMENCLATURE

Symbol Definition Pages

LSM Level-Set Method

20, 21, 22, 23, 25, 26, 29, 30, 39, 40, 41, 42,

44, 46, 47, 64, 66, 67, 71, 73, 76, 77, 78, 79,

80, 118, 122, 124, 127

LSF Level-Set Function

20, 22, 25, 26, 29, 30, 31, 32, 33, 36, 39, 40,

41, 44, 45, 46, 47, 57, 63, 64, 65, 66, 67, 68,

69, 70, 72, 73, 75, 79, 80, 88, 92, 93, 94, 98,

99, 100, 101, 102, 103, 104, 105, 106, 107,

109, 112, 113, 114, 122, 126, 132, 141, 149,

150, 163

FEA Finite Element Analysis
47, 63, 71, 79, 104, 105, 107, 136, 149, 163,

167

SIMP
Solid Isotropic Material with
Penalization

12, 17, 18, 24, 32, 41, 42, 44, 46, 63, 78, 80,

161

�̃�𝑖𝑗𝑘𝑙 Effective elasticity tensor 15, 16

𝐴𝑖𝑗𝑘𝑙 Elasticity tensor 15, 16, 37, 38, 45, 50

𝜌 Density fraction 15, 16

𝑃 Power penalty 15, 16

�̃�𝑖 Pseudo density at i 18, 93

𝑁𝑖
List of elements within element

i’s neighborhood

18, 93, 94

𝐻𝑖𝑗
Radial weighting factor from

element i to element j

18, 93, 94

𝑣𝑗 Element j’s volume 18, 93

𝑥𝑗 Design variable at j 18

𝑟 Radius 18, 37, 94

𝜑 Level-Set Function 20, 21, 26, 36, 37, 38, 39, 41, 63, 64, 66, 93

𝐷 Design Domain
20, 21, 35, 45, 46, 63, 69, 71, 81, 93, 111,

113

𝛺 Material Domain
20, 21, 35, 36, 37, 48, 49, 51, 54, 55, 63, 64,

65, 68, 69, 70, 71, 93, 94, 95, 100

𝛤 Material/Void interface
20, 21, 24, 35, 36, 37, 49, 51, 56, 58, 59, 63,

68, 71, 93, 95

𝐷\Ω Void Domain 20, 21, 63, 68, 93

𝑐 Iso-contour plane 21, 30, 36

𝑋
Location within design domain or

a collective design state

20, 21, 26, 45, 46, 63, 68, 69, 71, 93

𝑠𝑖 Design variable 26, 27, 28, 29, 33, 36, 37, 92, 93

xix

Symbol Definition Pages

𝑁𝑖 Shape Function 26, 36, 37, 53, 54, 55, 56

𝑐𝑖 Centroid of basis function kernel 26, 64

IBT Immersed Boundary Technique 31, 32, 165

X-FEM eXtended Finite Element Method 31

𝑐(𝑥) Design’s compliance 34, 35, 61, 62, 64, 65, 67, 69, 99

{𝑈} Global deformation vector 34, 35, 60, 61, 62, 67, 99

[𝐾] Global stiffness matrix 34, 35, 56, 60, 62, 67, 99

{𝐹} Global force vector 34, 35, 46, 59, 60, 62, 67, 113

{𝑢𝑒} Elemental deformation vector 34, 35, 62, 65, 67, 69, 77, 99, 100

{𝑘𝑒} Elemental stiffness matrix 34, 35, 56, 62, 65, 67, 69, 77, 99, 100

𝑁 Total number of elements 34, 35, 62, 67, 99, 100

𝑉(𝑥) Design’s volume
34, 35, 37, 61, 62, 64, 65, 67, 70, 74, 76, 77,

100, 101, 168

𝑉𝑟𝑒𝑞 Required volume goal
34, 35, 61, 62, 64, 65, 67, 70, 74, 76, 77,

100, 101, 152, 153, 168

𝑢𝑜 Prescribed displacements 34, 35, 61, 62, 67

𝛤𝐷 Dirichlet boundary 35, 45, 59, 61, 62, 67

𝛤𝑁 Neumann boundary 35, 45, 46, 58, 61, 62, 67, 68, 69, 71

𝛤𝐻 Homogeneous boundary 35, 45, 58, 61, 62, 67, 68

𝑅 Arbitrary response 35, 36, 37, 38, 39, 93, 94

∫𝑑𝑆 Integral along path
36, 37, 46, 56, 71

𝛿Ω𝑛
Boundary variation in normal

direction

35, 36, 41

𝒏 Normal of material boundary 35, 36, 45, 46, 49, 67, 71

𝐵(𝑟) Hole with radius 𝑟 37

𝜆 Lamé’s 1st parameter 37, 38, 45

𝜇 Shear modulus 37, 38

𝑒(𝑢) Strain tensor 37, 38, 45

SQP
Sequential Quadratic

Programming

38

MMA Method of Moving Asymptotes 38

CONLIN
CONvex LINearization

approximations

38

𝜏 Pseudo time interval 39, 64, 66

𝑣 LSF design change velocity 38, 39, 45, 64, 65, 66, 70, 77, 100, 103

CFL
Courant-Friedrichs-Lewy

condition

39, 66, 88, 103, 150

ℎ LSF grid spacing 39, 66, 71

xx

Symbol Definition Pages

ψ Pressure LSF 45, 46, 67, 68, 69, 70, 71

φ Free boundary LSF 45, 67, 68, 69, 70

𝑝 Pressure 45, 46

휀
Positive constant for Dirac

approximation function

46, 71, 72

𝒖 Displacement field 38, 47, 48, 49, 61

𝑢𝑖 Displacement in the ith direction 48, 49, 50, 51, 53, 55, 56, 71

𝛿𝑢 Variational displacement field 48, 49, 55, 56, 60, 71

𝜎𝑖𝑗 State of stress 35, 48, 49, 50, 51, 62, 66

𝜏𝑖𝑗 Shear Stress 48, 49, 51

𝑏𝑖 Body force in the ith direction 48, 49, 51

휀𝑖𝑗 State of strain 50, 51, 55

𝛾𝑖𝑗 Engineering shear strain 50, 51, 55

[𝐶] Constitutive matrix 50, 51, 55, 56

𝐸 Modulus of elasticity 50, 51

𝜈 Poison’s ratio 50, 51, 111, 112

𝑡𝑖 Traction force 49, 51, 56, 62, 71

ξ
‘Xi’ Relative x direction for

master element

52, 53, 54, 55, 56, 58, 59, 90

η
‘Eta’ Relative y direction for

master element

52, 53, 54, 55, 56, 58, 59, 90

ζ
‘Zeta’ Relative z direction for

master element

52, 53, 54, 55, 56, 58, 59, 90

𝑒 Element number
54, 56, 58, 59, 62, 64, 65, 66, 67, 69, 70, 93,

94, 100

𝑎 Node number 53, 54, 55, 57

[𝐽] Jacobian matrix 54, 55, 56

{𝑑} Displacement vector 55, 56, 60, 71

[𝑩]
Arranged matrix of partial

derivatives of shape functions

55, 56

𝑓𝑖
𝑎 Force at the ath node in the ith

direction

56, 57, 58, 59, 111

𝑙𝑖
Element length in the ith

direction

58, 59, 83, 91

𝐿 Lagrangian function 46, 58, 59, 67, 69, 70, 71, 81

𝜆𝑖
Lagrange multiplier for the ith

iteration

62, 64, 65, 70, 100

𝛼 Lagrange scaling factor
62, 64, 65, 70, 73, 74, 77, 88, 100, 101, 128,

141, 149, 150, 151, 168

xxi

Symbol Definition Pages

𝛾 Lagrangian multiplication factor 65, 73, 101, 128, 141, 149

𝐾𝑃 Proportional gain 74

𝐾𝐼 Integral gain
76, 77, 88, 101, 102, 128, 141, 149, 150,

151, 168

𝐾𝐷 Derivative gain
76, 77, 88, 101, 102, 128, 141, 149, 150,

151, 168

1

 CHAPTER I: INTRODUCTION

Since the 1950’s [1], computational analysis has been used by engineers to aid in the

design process and provide rapid simulation results to support and substitute expensive and

time consuming experimental results. Originally, computational analysis tools were primarily

used for design confirmation to provide preliminary results before committing to testing, in

efforts to limit overall testing time and budget. However, as the capabilities of computational

analysis increased, so too did its influence on the design process. Combined with mathematical

concepts in optimization, these analysis tools were quickly incorporated into the initial design

and component generation phases of the engineering process as the field of computer-aided

optimization emerged. Later, the evolution into topology optimization [2] has provided a

powerful design tool for determining optimal material distribution for a given domain,

conditions and objectives. This allows for structural configurations to be determined as opposed

to size optimization determining a finite set of geometric design parameters. Increases in

manufacturing capabilities, such as additive manufacturing, have given a practical use for these

obscure structural geometries generated by topology optimization, increasing its popularity and

usefulness. This in turn led to a growth in popularity and accessibility evident by many

Computer-Aided Design (CAD) and computational analysis software tools now providing

packages that allow engineers to implement topology optimization. These well-established

topology optimization methods require a user to define a design domain with locked,

unchangeable features along with static loading conditions. However, in many situations, a

component experiences design dependent loading conditions which cause the boundary

conditions of the analysis to vary with the material distribution, for example pressure loading.

When a component is subjected to pressure loading, the resultant force is exerted in the surface

2

normal direction with a magnitude proportional to the surface area. Therefore, the locations as

well as magnitudes of loading change as the material distribution changes. This thesis explores

various ways to account for such loading conditions in topology optimization and provides a

method to do so for 3 dimensional domains.

1.1 Motivation

One occurrence of pressure loading is in pressure vessels which act as a storage device

to isolate gas or liquid mediums at a differential pressure from its surroundings. Due to its

manufacturability and strength in symmetry, the majority of pressure vessels are round or

spherical. Pressurized gas storage is common among life support systems to house a supply of

breathing gasses to a single user or a group of users in a hostile environment. These systems are

customary in the realms of marine diving, aerospace, fire & rescue, and mineral mining. The

duration these devices can be used is heavily dependent upon the gas supply quantity.

Therefore, it would be extremely advantageous to increase the carrying capacity of a pressure

vessel. Evident from the ideal gas law, there are only two ways to accomplish this goal: increase

storage volume, or increase storage pressure. Breathing gas pressure vessels store gasses at

high pressures, typically ranging from 3,000 to 5,000 PSI [3]. Although research has been done

to utilize composite materials to construct pressure vessels capable of holding 10,000-15,000 PSI

[4], little research has been done to examine variations in size and shape because solid

mechanics provides well-established formulations for hoop and longitudinal stresses in both

cylindrical and spherical pressure vessels, the predominant shapes used.

In 2017, diving and life support engineers at the Naval Surface Warfare Center-Panama

City Division (NSWC-PCD), introduced a proposal to utilize additive manufacturing to construct

3

uniquely shaped pressure vessels [5]. Additive manufacturing enables the incorporation of

internal supporting features as well as varying wall thicknesses that would be required in an

irregular shaped pressure vessel. This development would allow engineers to design gas storage

around the available space of a system’s geometric constraints.

 Because of the recycling of breathing gasses, increased gas capacity has an even more

drastic impact on duration when dealing with rebreather systems. One such device heavily used

by the US NAVY is the MK-16 Closed Circuit Mixed Gas Rebreather, figure 1-1. This rebreather is

worn like a backpack where the face shown in the left image faces the diver’s back.

Figure 1-1: MK-16 Rebreather Front (left), back (right)

To provide a real-world example for the design of an irregular shaped pressure vessel, the MK-

16 rebreather system, figure 1-1, is used to determine the effectiveness of such a development.

Within the housing of the MK-16 backpack, there are four main components: the scrubber, the

4

diluent tank, the oxygen tank, and the Primary Electronics Assembly (PEA), which are each

labeled in figure 1-2. The scrubber houses calcium hydroxide that chemically reacts with exhaled

CO2 to allow for a portion of the exhaled breath to be inhaled. To account for the loss of gas in

the breathing loop, or the increased pressure with depth, the PEA determines the appropriate

amount of Diluent and Oxygen to add to the breathing loop from their respective storage tanks

depending upon the partial pressure of oxygen in the system. Because the diver consumes

oxygen based on their work rate, and metabolically requires a specific range of pO2, the fraction

of 02 in the breathing loop varies. Thus, the use of both an oxygen tank and a diluent tank is

required. [3]

Figure 1-2: MK-16 Rebreather Components

5

 As seen in figure 1-2, there are large regions of unused space around the spherical

pressure vessels. Additionally, the internal components of the rebreather are symmetric along

the center line. Therefore, if an irregular pressure vessel was designed to replace one of the

spherical pressure vessels, as long as it does not cross the centerline, it can be mirrored to

replace the other storage tank. Below figure 1-3 shows the dimensions of the spherical oxygen

tank and table 1-1 presents some of the important data for this existing pressure vessel that will

be needed to compare results of the designed irregular pressure vessel.

Figure 1-3: Oxygen Tank

6

Table 1-1:Oxygen Tank Properties

Property Value

Wet Volume 175±10 in.3

Outer Diameter 7.2 in.

Working Pressure 3,000 PSI

Material Inconel 718

With this information, an effective irregular shaped pressure vessel would be one that fits within

the geometric constraints of the system provided by the MK-16 rebreather and supports a

working pressure of 3,000 PSI while holding a wet volume of at least 175 in3.

1.2 Research Objectives

This thesis focuses on topology optimization with design dependent pressure loading in

3-dimensional space by addressing the following research questions:

RQ1. Can the interior geometry of an irregular shaped pressure vessel, subjected to internal

pressure on its surfaces, be designed to efficiently store high pressure gas using topology

optimization methods?

A hypothesis is that yes, topology optimization can be used to design the internal structure of

such an irregular shaped tank, that could then be manufactured using additive manufacturing.

To solve this research question, a second research question can be identified:

7

RQ2. Can an efficient method be developed to track (follow) design dependent pressure loading

conditions on the interior surface for 3-dimensional spaces for use in a topology optimization

algorithm?

A hypothesis is that by adapting a level-set topology optimization approach, it is possible to

track changing pressure surfaces as the design evolves during the iterative design process.

1.3 Thesis Outline

 With the motivation and objectives introduced, the remainder of this thesis is broken

into 5 chapters. Chapter 2 reviews current literature regarding topology optimization methods,

their origins as well as possible methods of incorporating design dependent loading. Chapter 3

breaks down the mathematical methodology used to achieve the research objectives. Chapter 4

discusses how this established method was executed in MATLAB. Chapter 5 presents

intermediate results that progress the problem from basic topology optimization problems to a

simplified pressure vessel problem, then Chapter 6 presents the results from executing these

established methods on the real-world design problem involving the MK-16 rebreather. Finally,

Chapter 6 concludes the work that was done for this thesis and presents future work to expand

upon.

8

 CHAPTER II: LITERATURE REVIEW

 In an effort to develop the best approach to solve the design problem and accomplish

the research objectives, a review of existing methods and their origin was conducted. This

chapter is organized as follows: section 2.1 overviews topology optimization methods and their

origins, section 2.2 dives further into the formulation of the level-set method and finally section

2.3 addresses the incorporation of design dependent loading into topology optimization

methods.

2.1 Topology Optimization History and Overview

 A major limiting factor to an engineer designing a particular component is the

manufacturing techniques available and their associated cost. However, with recent advances in

manufacturing techniques, notably additive manufacturing, the engineer can be given more

design freedom allowing for increasing complexity in components. Naturally, this increased

complexity should be justified by serving some benefit and aid the engineer to improve a

system’s performance. For this, optimization methods have proved to be useful tools to

systematically aid engineers in achieving a design that maximizes or minimizes (whichever is

desired) the design’s performance based on specified criteria. Due to many optimization

processes’ iterative nature and complex performance criteria, these optimization methods have

been coupled with computational analysis techniques into a field known as computer-aided

optimization. These computational techniques originally served the purpose of validating and

analyzing designs, but, when tied to an optimization algorithm, they form a powerful design

improvement and generation tool. Shortly following the establishment of finite element

methods by Turner et al. in 1955 [1], Lucien Schmit recognized the potential of coupling

9

optimization methods with finite-element analysis for structural design in the 1960’s [6]. Since

then, researchers have developed and refined various methods of executing computer-aided

optimization allowing for the development of efficient material distribution directly benefiting

the designer’s objectives for the component or system.

Computer-aided structural optimization has branched into numerous methods but can

be distinguished by two root groups: first being shape and size optimization and the second

being topology optimization [2]. Shape and size optimization focus on varying a relatively small

number of parameters, such as dimensions or cross-sectional shape, of a design. Thus, shape

and size optimization are typically fast and efficient at refining a design to improve its

performance, but require an initial close-to-optimal design. Conversely, topology optimization is

defined as a computational material distribution method for synthesizing structures without

preconceived shape to optimally perform a specific task [7]. This offers innovative and high-

performance structures however with increased computational cost and design complexity.

Topology optimization itself can be broken into 3 major categories: ground structure [8],

homogenization methods [9] and level-set methods [10]. Each of these main categories differ in

how they define the structure and thus their assignment of optimization parameters.

As in any field of study, the development of methods to execute topology optimization

is spurred by a desire to overcome existing obstacles. In the field of topology optimization, there

are several recurring obstacles that constantly are addressed and form the root cause for each

of these major categories of optimization to have been developed. Computational limitations

have always been an issue but can be mitigated via simplifications, approximations, and creative

use of resources. Although, this problem may always exist with the continuing pursuit of higher

10

accuracy, increased analysis complexity and larger domain sizes, technological advances have

seriously aided the ability to push capabilities and allow for the use and development of

methods previously thought impractical or even impossible. Other more pressing and

challenging hurdles specific to the field include chattering, checkerboarding, mesh dependencies

and initial conditions [11]–[13]. Chattering is the result of a large number of regions of a domain

flipping back and forth between having material and not among successive iterations of the

optimization procedure. This causes oscillating performances, lack of convergence and stalling

of the algorithm. Checkerboarding occurs when a large region of the domain contains a

patterned occurrence of material and void regions causing the result to become improper and

not practical for manufacturing. The existence of these problems occurs from ill-possed problem

formulation and implementation. Additionally, many of these algorithms seek to achieve

consistent results regardless of starting points and domain meshing. These can be particularly

challenging due to the nature of many gradient based optimization algorithms converging to

local optima. Heuristic algorithms known for better achieving global minima and not stalling at

local minima prove to be inefficient and impractical to use due to the number of design

variables and the computational cost of objective analysis. However, with advances in

technologies, there have been several uses of these optimization algorithms such as simulated

annealing, and genetic algorithms [14]–[17]. On one hand, mesh dependency to some degree

will always influence an optimized part’s topology as it is known that analysis accuracy is

strongly influenced by component meshing. However, at a certain point, there is a diminishing

return on accuracy versus mesh refinement, and at this point, topology algorithms seek to

mitigate the effect of a mesh on their final results. To counteract all these common issues in

11

topology optimization, researchers have developed numerous creative means of implementing

filtering, penalization, and regularization techniques within algorithms.

2.1.1 Ground Structure Approach

In a ground structure approach to topology optimization, the domain is divided into

nodes, then each node is connected to all possible other nodes like a truss structure. That is, all

node to node connections that do not directly overlay another node on their path. From here,

the optimization algorithm determines which of these trusses are to stay and which are not

needed [8], [18]. This has been done both binarily (i.e. on or off) or with continuous variables

that represent the cross-section of each member. Figure 2-1 below illustrates this concept for a

cantilevered beam, the left depicts the initial setup with all node to node connections being

made, then the right shows a later iteration after the optimization algorithm has removed some

of the trusses.

Figure 2-1: Ground Structure Approach Illustration

12

2.1.2 Homogenization Methods

Introduced in the early 1980’s [19], homogenization theory parameterizes the geometry

of microstructures within a macrostructure of interest. Recently this method has proven ideal

for dealing with composites, lattice structures and any micro-structured materials where

anisotropy comes into play [20]. However, homogenization methods were originally developed

for periodic structures. They were quickly adapted for the objective of optimizing generic

material distribution problems as an alternate to existing ground structure approaches. Upon its

conception, the homogenization method did not prove extremely effective or practical due to

the need to define and analyze geometry on a microstructure scale [20], [21]. This was the case

until its oversimplification into density-based topology optimization which parameterizes the

microstructure based solely on density [22]. This density is then directly correlated to the

material’s modulus of elasticity. The issue with these density-based optimization methods laid

in the ill-posed nature of the optimization problem which was overcome by the revolutionizing

paper by Bendsoe [23] as the popular Solid Isotropic Material with Penalization (SIMP) method

began to be formulated. SIMP has since grown to be the most popular form of topology

optimization due to its simplistic implementation and ability to generate complex geometries.

Due to advances in additive manufacturing’s ability to create finely graded microstructures, a

resurgence of conventional homogenization methods has occurred as it now has more practical

applications [20].

The design of the topology of a structure of interest consists in determining the optimal

placement of material (locations of material and locations of void) within a domain of interest.

This can be formulated into the 0-1 problem by being interpreted as, at a given spatial location,

should there be material or not. This 0-1 problem formulation is the root problem statement of

13

all topology optimization formulations; however, this problem statement has some drawbacks.

The largest drawbacks of these on-off natured problems is the lack of existence of a solution

that satisfies optimality conditions and the results are sensitive to mesh discretization [24].

Researchers recognized that a solution to this problem was the consideration of a

heterogeneous material allowing for the use of porous regions at the microscale. This effectively

converts the on-off nature of the problem to a continuous design variable problem [21]. These

micro-level porous regions are characterized by a chosen class of unit cells, each being defined

by an appropriate number of design variables used to describe its specific geometry. Figure 2-2

below depicts typical classes of unit cells used in homogenization methods including square with

square holes, square with rectangular holes and rank-2 layered material.

Figure 2-2: Typical Classes of Unit Cells. Left: Square with Square Hole,

Middle: Square with Rectangular Hole, Right: Rank-2 Layered Material

It should be noted that, for analysis purposes, these unit cells are evaluated as if they

are infinitely small, but also infinitely many, and thus the microstructures alter the effective

material properties of that region based on micromechanics of their geometry and defined

parameters [24]. This allows for a correlation between parameters of the microstructure and

the macro effective material properties to be formulated. From the figure above, the right

14

image depicts a rank-2 unit cell. This is defined as a rank-2 classification due to the usage of two

scales where the overall unit cell and solid left portion is on one scale and the thickness of the

flanges to the right are of another scale. The incorporation of microstructures allows designs to

possess intermediate values for material properties allowing for a continuous gradient of

performance as parameters change, as opposed to the discontinuous nature of an on-off

problem formulation. However, at the final solution of an optimization process, the user

typically wishes to have a design of exclusively solid or void regions for manufacturability

purposes. Naturally, topology optimization problems are either subjected to a volume fraction

constraint or have an objective to limit the volume fraction, both of which result in the seeking

of the most efficient use of material. In the homogenization method, the use of microstructures

and their effective material properties derived from micromechanics inherently results in

intermediate regions between void and solid with microscopic inclusions having less than

proportional rigidity [24], [25]. During the optimization process, large regions with porous

microstructures could achieve a more efficient use of material distribution by evolving to the

necessary subregions being completely solid and the others, completely void. Therefore, it is

expected that the homogenization method will result in a solution with the majority of elements

completely solid or completely void.

 The following process outlines the typical flow of the implementation of the

homogenization method for topology optimization. First, the class, or classes, of microstructures

to be used must be chosen and then effective material properties can be calculated by forming a

functional relation to microlevel design variables. Next, the problem must be formulated by

defining the desired objective criteria and constraints, as well as the reference domain, loading

15

conditions and boundary conditions. Once all of this is established, optimization of the geometry

may commence. In this iterative optimization procedure, analysis is run for the current design,

the objective is computed, convergence is checked, and design variables are updated before

returning to the start of this loop for the subsequent iteration. Finally, once the optimization

process converges, post-processing can be done to interpret and evaluate the results [24].

 In the late 1980’s, Bendsoe explained how to implement a partial relaxation of these

methods by restricting the homogenization method to a subclass of microstructures [26]. In this

paper, Bendsoe still defines material distribution based on artificial composite material with

microstructures just as the original homogenization method does; however, this paper opens

the door to simplifications and modifications to the homogenization method to increase its

practicality and ease of implementation. Shortly following this progression, researchers realized

that, if the type of unit cell microstructure was limited to only one, the microstructures could be

parameterized solely based on density as opposed to unit cell relative dimension parameters.

The following year, Bendsoe published another paper [23] to further simplify the

homogenization method. In this paper, Bendsoe proposes a means of directly relating

intermediate density values to an effective modulus of elasticity for analysis via a power law as

shown in the equation below. Where �̃�𝑖𝑗𝑘𝑙 and 𝐴𝑖𝑗𝑘𝑙 are the effective elasticity tensor and

original solid material’s elasticity tensor respectively, while 𝜌 is the density fraction and P the

power penalty,

 �̃�𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝑘𝑙𝜌
𝑃 (2.1)

16

with typical power penalties lying between 2 and 7 [11]. To eliminate numerical artifacts and

ensure the analysis is well conditioned for optimization, a completely void element is modeled

as a very weak (orders of magnitude less) compliant material as opposed to having a modulus of

elasticity of 0. This modifies the previous equation into the one shown below. Where Amin

typically equals something along the lines of Aijkl*10-9.

 �̃�𝑖𝑗𝑘𝑙 = (𝐴𝑖𝑗𝑘𝑙 − 𝐴𝑚𝑖𝑛)𝜌
𝑃 + 𝐴𝑚𝑖𝑛 (2.2)

This expression to model an effective modulus of elasticity implicitly penalizes

intermediate densities as it assigns less than proportional rigidity compared to material use. It

has the same effect as original homogenization methods by allowing for a continuous function

for structural rigidity while forcing converged solutions to possess mainly completely solid or

completely void elements [22]. This relation of material cost to structural stiffness can be seen

in the figure below where it is clear that intermediate values of density (not 0 or 1) will result in

an inefficient use of structural rigidity.

17

Figure 2-3: Intermediate Density Versus Rigidity

 Using this expression for material properties, Bendsoe’s paper [23] validates the

concept by comparing these optimization results to those of classical homogenization methods

using composites with voids. Simultaneously, Rozvany formulated and tweaked this concept to

eliminate and mitigate other undesirable kinks common to all existing topology optimization

methods. In his works [27], [28], Rozvany established the ‘Solid Isotropic Material with

Penalization’ (SIMP) method for topology optimization. Since then, the SIMP method has grown

to become the most common, robust, and utilized means of topology optimization. Similar to

Bendsoe, Rozvany used intermediate densities to represent porous material modeled via a

power law, but Rozvany added regularization techniques formalizing the method.

18

 Although the use of intermediate densities aids the algorithm’s characteristics, it

remains ill-posed with common problems including checkerboarding and stalling in local

minima. Since its inception by Rozvany, a large focus by researchers has been to generate

effective regularization techniques. A common approach is the use of a density filter where the

optimization variables are no longer directly the density values used in the power law for

analysis but instead, a pseudo density is calculated based on the surrounding optimization

variables [7]. These density filters take a radially weighted average of density values in a local

neighborhood of elements. This type of filter can be implemented by employing the following

equation.

 �̃�𝑖 =
∑ 𝐻𝑖𝑗𝑗∈𝑁𝑖

𝑣𝑗𝑥𝑗
∑ 𝐻𝑖𝑗𝑗∈𝑁𝑖

𝑣𝑗
 (2.3)

 Where �̃�𝑖 and 𝑥𝑗 are the pseudo densities used in analysis and the optimization design

variables respectively, while 𝑣𝑗 is the given element’s volume. Additionally, 𝑁𝑖 identifies the

element’s neighborhood of other elements and 𝐻𝑖𝑗 the radial weighting factor of each of those

elements. Both can be defined as:

 𝑁𝑖 = {𝑗: 𝑑𝑖𝑠𝑡(𝑖, 𝑗) ≤ 𝑟} (2.4)

 𝐻𝑖𝑗 = 𝑟 − 𝑑𝑖𝑠𝑡(𝑖, 𝑗) (2.5)

 Despite being the most common form of topology optimization, the homogenization

and SIMP methods may have several drawbacks depending on the specified problem. Since

these methods utilize a fictitious intermediate design state throughout the domain during the

optimization process, they can make it difficult to identify boundaries. The identification of

19

boundaries may be important for applications such as geometry control, pressure loading, and

component interactions. For these reasons, researchers pursued other methods of topology

optimization to overcome these drawbacks for a given application.

2.1.3 Level-Set Methods

 The third major category of topology optimization methods is that of level-set methods.

In 1988 mathematicians Stanley Osher and James Sethian published a paper [29] proposing a

new method to tackle problems of moving boundaries and fronts implicitly. These types of

problems were commonly found in the fields of fluid dynamics, computational geometry, and

image processing. Prior to this development, many methods for boundary problems proved

complex and computationally expensive. They typically involved a Taylor Series formulation or

assigned a large number of points along a boundary, moved each point based on a velocity field,

and then formed the moved boundary as the spline connecting each of the points’ new

coordinates [30], [31]. This method proved cumbersome, particularly when boundaries

expanded or shrunk, as this would result in the linear distance between defined points either

separating and reducing accuracy, or converging, causing computational inefficiencies. This was

typically resolved by redefining evenly spaced points along the boundary prior to the following

iteration, adding additional computational burden. However, the largest issue was in the event

of sharp corners, particularly when the front is moving inwards upon itself [29]. This can be seen

in figure 2-4 below where the consecutive points cross and result in a discontinuous or

undesired geometrical representation of the boundary.

20

Figure 2-4: Converging Corners in Moving Boundaries

 The method proposed by Osher and Sethian avoids this problem by implicitly defining

the boundary as opposed to a series of coordinate points splined together. Osher and Sethian

termed their method as ‘Propagation of Surfaces under Curvature’ (PSC) in which a scheme was

generated to follow an N-1 dimensional surface in a N dimensional space via a fixed Eulerian

framework [29]. With this, the front no longer needs to be defined as a function nor a series of

points. This method formulation evolved into what is known today as the Level-Set Method

(LSM); in which a boundary, 𝛤, in ℝ𝑛 space is defined as an iso-contour of an evolving function,

𝜑(𝑋), in ℝ𝑛+1 space known as the ‘Level-Set Function’ (LSF), where X is the ℝ𝑛 spatial

coordinate [32]. In many cases, such as topology optimization, this boundary delineates the

interface between two regions such as those containing material and those being void. To

identify two regions using a LSF, one is defined as the region of the function above the iso-

contour and the other, the areas below. For shape optimization, the regions of interest in the

design domain (𝐷) are the material domain (𝛺), void domain (𝐷 𝛺⁄), and the interface of the

two (𝛤) [33]. Mathematically, the relation of these regions to the LSF is represented in equation

21

2.6 below and visually illustrated in figure 2-5. Note the iso-contour level 𝜑 = 𝑐 is held

constant throughout the entire optimization process and typically taken as 𝑐 = 0.

 {

𝜑(𝑋) > 𝑐 𝑋 ∈ Ω ′𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙′

𝜑(𝑋) = 𝑐 𝑋 ∈ 𝛤 ′𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′

𝜑(𝑋) < 𝑐 𝑋 ∈ (𝐷\Ω) ′𝑉𝑜𝑖𝑑′

} (2.6)

Figure 2-5: Level-Set Method Visualization [34]

 The use of level-set functions to define boundaries and regions has expanded to a wide

variety of mathematical and engineering problems including fluids, thermal, electro-mechanical

and electro-magnetic due to its inherent advantages in crisp boundary descriptions [34]. For

these same reasons, in 1998 the LSM was suggested to be used in topology optimization as well

[35]. Shortly thereafter, in 2000 two formulations of level-set based topology optimization were

22

published. Sethian and Wiegmann [36] developed their method using a finite difference

mechanical model with evolutionary stress criterion to adjust their LSF throughout the

optimization process. And the other paper by De Ruiter and Van Keulen [17], incorporated radial

bases functions into their LSF formulation and utilized a genetic algorithm for their optimization.

Noticing LSM’s close resemblance to shape optimization, Osher and Santosa [37] and Allaire [38]

established a shape-sensitivity based framework that has become the most popular approach of

a level-set based topology optimization formulation today.

 Frequently, the update procedure and evolution of the LSF is done by propagating the

front through a pseudo time dependent PDE known as the Hamilton-Jacobi equation. To do this,

sensitivities are converted to a velocity field which is applied to the current level-set function to

determine the subsequent iteration’s level-set function [34], [39] location. Fundamentally, this

concept of LSMs only evolves boundaries, they may merge or split, but the method in this form

does not allow for the nucleation of new holes, making LSMs merely shape optimization

problems. This was the case until [40] where Allaire incorporated the use of topological

derivatives via a reaction term to the Hamilton Jacobi Equation allowing for the nucleation of

holes throughout the middle of the domain. The update procedure of a level-set based topology

optimization algorithm is further explained in section 2.2.3.

 As is the case for the homogenization and other topology optimization methods, several

intrinsic issues arise when implementing the LSM for topology optimization. These result in the

formulation being ill-posed, in the emergence of numerical artifacts, and in improper

convergence behavior. To combat this, as in the case with other methods, the LSM requires

regularization techniques. Numerous methods of implementing regularization have been

23

implemented and experimented on all phases and aspects of the LSM formulation for topology

optimization and are further discussed in section 2.2. Limited research has been done, but

regularization techniques have also been looked at as a means to allow the LSM to account for

length-scale control and manufacturing constraints [41], [42].

2.1.4 Topology Optimization Conclusion

Since its inception as rudimentary shape and size design optimization, advances in

analysis techniques and computational capabilities have spurred a rapid expansive research field

for computer aided design. As these optimization methods were formulated and grew in

capability, not only was an optimal size and shape able to be determined, entire structural

formulation and part creation was possible as topologies of optimal designs could change [2]. To

do so, researchers had to develop regularization methods to overcome the numerical issues

related to the initial algorithm formulations which resulted in ill-posed problems, numerical

artifacts, mesh dependencies and poor convergence behavior. The resulting topology

optimization procedures enabled complex geometrical part creation. Although idealized as

optimal, these parts still needed to be manufacturable. This spurred geometrical constraints as

well as taking advantage of advances in manufacturing such as additive manufacturing [20],

[41].

Over the years, three main branches of topology optimization for structural members

have distinguished themselves: ground structure approaches [8], [18], homogenization methods

[20], [21], [24], and level-set methods [33], [34], [38], [39]. Ground structure approaches offer

the least computationally demanding option with their simple structural representation as

trusses connecting nodes. However, this method lacks geometric control compared to its

24

counterparts. The second approach, the homogenization method, modifies a domain at the

microstructure level to allow for continuous values and performance behavior, aided by the

well-posed nature of the method. The homogenization method was simplified into a density-

based approach by Rozvany [22] as it evolved into the most popular form of topology

optimization used and known to date, SIMP. The final category of topology optimization is the

Level-Set method which implicitly defines boundaries via a Level-Set function of a higher order

domain. This allows for crisp boundary representations which can be advantageous depending

upon the nature of the problem at hand. Due to its continuing progression, topology

optimization has grown as a viable design tool that takes advantage of computational analysis

capabilities as well as manufacturing techniques advances.

It should be noted that each of these methods is developed for applications with

constant loading conditions and boundary conditions with respect to the reference domain.

Therefore, each would need to be subjected to modifications to be capable of handling

situations in which these boundary conditions are changing. For example, in the case of a

pressure loading situation, although the magnitude of the pressure may not change and would

always be applied perpendicular to the boundary, 𝛤, the location of this boundary may be

unknown and part of the optimization problem. Thus, the nodal force magnitudes and directions

will change with every design change by the topology optimization.

2.2 Level-Set Methods Formulation

 The nature of topology optimization with pressure loading requires evolving or design

dependent loading conditions as opposed to standard constant loading conditions. That is, at

every iteration of the optimization process, the locations, directions and magnitudes of the

25

forces are subject to change based on the current geometric configuration. Due to the ability of

the level-set method to provide crisp material boundaries throughout the optimization process

and the nature of the current research objectives, a deeper investigation of this method was

taken. The following section breaks down the process of implementing a Level Set Method

(LSM) for topology optimization and various methods of executing regularization techniques to

ensure the algorithm performs as desired.

 Implementing a LSM for structural optimization simply just refers to the means of using

a Level Set Function (LSF) to define the material/void boundary and distinguish regions of

material within the domain. This leaves room for a great deal of flexibility in formulating a

complete LSM for topology optimization. Regardless of this formulation, any LSM will be

comprised of three major components namely the parameterization of the level-set function,

the mechanical model, and the optimization procedure [34]. Each of these three tasks can be

accomplished by a variety of means that each influence the performance, speed and

effectiveness of the algorithm. It is up to the designer’s choice as to how these components are

carried out. The following subsections describe further in-depth the methods found in the

research that have been used to carry out each of these three components along with the pros

and cons of each decision. As stated before, in its base form, any topology optimization method

may be ill-posed, contain numerical artifacts and possibly have poor convergence behavior. In

order to induce desired results from the formulated algorithm, regularization techniques must

be implemented. These regularization techniques can be implemented across all three of these

major components.

26

2.2.1 Level-Set Function Parameterization

 The first major component the designer must chose to be able to implement a LSM is

determining how the LSF is defined. The LSF defines the material distribution and boundary

locations. Therefore, the parameters that define the LSF, s, become the optimization variables

[10]. Thus, the LSF needs to be parameterized in such a way that the update procedure can use

design sensitivities to modify the parameters of the LSF resulting in appropriate geometry

changes. Typically, this parameterization is done by discretizing the domain and inserting an

array of basis kernel functions each subject to a coefficient (design variable) controlling their

magnitude. This discretization can position the kernels coincident or independent of analysis

node points. The kernel functions are each a function of the spatial distance from the kernel’s

centroid. The LSF itself is then computed as the summation of these kernels multiplied by their

coefficient. This is represented in the equation below where 𝜑(𝑋, 𝑠) is the LSF value at spatial

position ‘𝑋’ and current design variables ‘𝑠’ and 𝑁𝑖 refer to the particular kernel centered at

position ‘𝑐𝑖’ and its associated coefficient ‘𝑠𝑖’. Researchers have used a variety of basis functions

for LSMs including bilinear [33], [38], radial [43], [44] and spectral [45] basis functions due to

their varying attributes in efforts to improve performance given the specific optimization task.

 𝜑(𝑋, 𝑠) =∑ 𝑁𝑖(‖𝑋 − 𝑐𝑖‖)𝑠𝑖
𝑖

 (2.7)

 For both linear basis functions and radial basis functions, the kernel equals 1 at its

centroid position and goes to zero away from this location. Therefore, when inputted into

equation 2.7 above, the design variable 𝑠𝑖 assigns the kernel’s maximum value, occurring at its

centroid location. The difference between a linear basis function and a radial basis function is

that, in a linear basis function, the function linearly approaches from 1 at its origin to 0 at an

27

assigned outer range of influence, whereas a radial basis function decreases non-linearly from 1

based on the distance (or radius in 2D and 3D) from its origin. The range of influence of a radial

basis kernel is controlled by a tuning parameter, α [43]. Figure 2-6 shows a 1-D example of both

a linear and a radial basis function. Where a segment is discretized into 10 equally spaced

sections and 9 kernels are positioned at x values 1 through 9 and, in this case, assigned

coefficients 𝑠𝑖 = [1 3 4 5 4.5 5.75 6 5 2]. In this example, the linear basis

function has a range of influence of 2 and the radial basis function has a tuning parameter of

α=1.

Figure 2-6: 1-D Basis Functions

28

 The range of influence of each basis function determines the size of the domain that is

impacted by a given parameter to determine the resulting geometry. This influences the

geometric control of the domain as well as the optimization performance. The smaller this

influence is, the more control the algorithm will have on the geometry allowing for the creation

of smaller feature sizes. However, this also limits the rate of convergence [44]. For example, if

each kernel only influences up to the adjacent kernels, as in the 1-D linear basis function in the

figure above, then the adjustment of each parameter can only displace the interface by a

distance equal to the spacing between each kernel. On the other hand, if these kernels’

influences overlap, the algorithm can move the interface more between each iteration but

cannot represent small variations and features along the iso-contour. Van Dijk, [34], categorizes

the amount of influence into 3 categories: local [13], mid-range [43] and global [44] depicted in

the figure below. The black dots show how many kernels, of the diagram, influence each

position of the level-set function. Note that typically, in global basis functions, nearly all kernels

will influence the entire domain to some degree, despite the figure only showing these four

kernels.

Figure 2-7: Ranges of Influence [34]

Apart from linear and radial basis functions, other methods such as a spectral

parameterization or a Boolean combination of moving shapes have been explored as well. A

spectral parameterization of the level-set function utilizes a Fourier series where the coefficients

29

of the Fourier series are the optimization variables [45]. This method has proved beneficial for

periodic structures but also results in coarse design resolution. In a Boolean combination of

shapes, a series of shapes are scattered throughout the domain and the optimization variables

define the positioning and height of each of these shapes, allowing them to translate

throughout the domain [46]. Figure 2-8 below provides an illustration of these differing basis

functions.

Figure 2-8: Types of LSF Parameterization [34]

When formulating a LSM for topology optimization, there are a great deal of options as

to how the level-set function can be parameterized. This choice will determine how the

optimization variables are defined, the rate of convergence, and the ability to define small

feature sizes. Regularization can be added to the definition of the LSF in several ways. The

design variables 𝑠𝑖 can be subjected to a filtering or smoothing scheme to prevent drastic jumps

30

and near discontinuities from forming. Additionally, because the structural geometry is only

defined as the intersection of the iso-contour plane and the LSF, there may exist an infinite

number of LSFs for a given geometry. Some may be steep, flat, oscillating or a combination in

regions of the domain, which would negatively impact the movement of the boundary front. To

prevent this from occurring, the LSF can be periodically reinitialized. To do this, the current

values of the optimization variables are recalculated such that the geometry and iso-contour of

the LSF are maintained [13], [43]. This stabilizes the optimization performance each iteration by

maintaining a constant gradient along the boundary. The advantages and need for this will be

further explained in the update procedure section (2.2.3).

2.2.2 Geometry Mapping

 Once the LSF has been established, its information has to be transferred to the analysis

so that sensitivities and updates can then be found. As mentioned previously, a fixed iso-

contour (typically c=0) of the LSF determines the interface of the geometry, and an assigned

convention denotes which phase, material or void, is located above this contour. However, the

decision comes in how this geometry is mapped and represented in the mechanical model.

These decisions strongly influence the computational cost, accuracy of the structural model and

the emergence of numerical artifacts. In Van Dijk’s review of LSMs for topology optimization

[34], the author covers three major techniques to do this: a conforming mesh [47], [48], an

immersed boundary technique [46], [49] and a density-based approach [2], [43]. These three

methods are depicted in the following figure 2-9 and explained below.

31

Figure 2-9: Types of Geometry Mapping [34]

 The first and most intuitive means to geometrically represent the LSF for structural

analysis is to directly take the material region at a given design, discretize it, and re-mesh the

geometry every iteration. This method provides the most accurate structural performance

prediction for the given design [48]. This has proven to be essential for geometries containing

sharp interfaces and optimization problems with stress constraints [39], [50]. However, a major

downside to this method and the reason it is not used often is the additional computational

burden it creates on the algorithm. Another mild drawback to this technique is the introduction

of noise between iterations as the discretization is changing at every iteration.

 The second method attempts to maintain as much of this accuracy while reducing the

computational burden. This is done via an Immersed Boundary Techniques (IBTs), eliminating

the need to completely re-mesh by maintaining a fixed discretization of the domain and only

modifying elements along the boundary. As seen in figure 2-9, only elements that would be cut

by the interface are reshaped to fit within the iso-contour where material would be. The most

common method to implement this technique is to use the eXtended Finite Element Method (X-

FEM) [46], [49]. In this method, the integration bounds in computing the stiffness matrix for a

boundary finite element are altered to only integrate over the material portions of the element.

32

This eliminates the void regions from being modeled as an artificially weak material, as is the

case with density-based methods such as SIMP. This provides a more accurate model for stress

concentrations. Additionally, geometry mapping using an IBT allows for the enforcement of

boundary conditions directly along the interface [34]. Drawbacks to this method are that it

introduces noise, particularly as an element along the boundary flickers between being on and

off in the analysis. Furthermore, the algorithm may attempt to exploit poor discretizations

resulting in ill-conditioning of the structural model. This can be remedied with smoothing and

filtering of the LSF.

 The final and most popular technique to represent a geometry provided by a LSF for

analysis purposes is to perform a density-based approach [43]. This is quite similar to the SIMP

method described in the Homogenization section (2.1.2), in that the discretization of the design

domain is kept fixed and elemental density values are calculated as the fraction of the element

within the material domain and then used to compute a proportional stiffness value. However,

the major difference from the SIMP method is that only elements cut by the iso-contour of the

LSF experience an intermediate density and all the other elements are either represented by the

solid or void material. Similarly to SIMP method, the void material is modeled by an artificial

extremely weak material as to eliminate numerical issues [2]. This method is significantly more

computationally efficient; however, it concedes some analysis accuracy.

 Of the three methods described, both the conforming mesh and IBTs techniques result

in a model with crisp black-and-white domains and boundaries, resulting in higher structural

accuracy (needed for stress or sharp geometries) at the expense of added computational time.

33

The third method, the density approach, is extremely efficient and easy to implement, making it

the most commonly used method.

2.2.3 Update Procedure

 Now that the LSF has been parameterized and the resulting geometry has been

transferred to the mechanical model for analysis, the update procedure for subsequent

iterations must be established so that an optimal design can be achieved. As with the LSF

parameterization and geometry mapping, the update procedure can be executed in a variety of

ways. The goal is to iteratively compute new optimization variable, 𝒔, such that the objective will

improve and eventually converge to an optimal design. As the majority of these procedures do

not search globally, most of the time, these optimal designs can only be claimed to be local

minima or maxima. To improve the algorithm and prevent it from stalling at a suboptimal local

minimum, various regularization and relaxation techniques are implemented.

Within the realm of topology optimization, there are numerous objectives and

optimization problems that can be formulated depending on the user’s goals. Additionally, there

are various types of update information that can be used and tied to a method for calculating

new design parameters. Collectively these three aspects form the update procedure, and each is

briefly discussed below.

 First, the desired objective must be established. This formulates the optimization

problem statement which has to be driving the optimizer subject to defined constraints. For

topology optimization, the typical objectives may look like: minimize compliance, minimize

volume, synthesize a compliant mechanism that achieves some goal, or maximize heat transfer

[7], [10]. In designing a compliant mechanism, the goal is to maximize or minimize displacement

34

values at a given location when the domain is subjected to input forces or deflection values at

another specific location. For example, this type of objective could be used in designing some

sort of clamping mechanism. A heat transfer objective may be utilized when designing a

conductive component such as a heat sink subjected to a boundary condition with a heat source

or sink. The other two common objectives, minimum compliance and minimum volume, are

typically addressed together to attempt to generate the ‘strongest’ and ‘lightest’ structure.

Since cost or weight can be related to amount of material used, an engineer seeks to design a

part that accomplishes some goal (such as holding a force) by using the minimum amount of

material. Because of this, researchers originally attempted to implement an optimization

problem with a minimum volume goal subject to stress constraints to determine the minimum

size structure that would not fail [8]. The incorporation of stress constraints proved to be

complex and resulted in many numerical errors, so researchers then formulized a minimum

compliance objective subject to a volume constraint [11]. This proved to be much simpler and

easier to implement, and became the most prevalent formulation for structural problems, and a

benchmark for many update algorithms. The compliance of a given design, 𝑐(𝑥), is defined as

the summation of the elemental strain energies, and the optimization formulation is shown in

equation 2.8 below [24] where 𝑈 and 𝐾 are the global deformation vector and stiffness matrix

respectively and 𝑢𝑒 and 𝑘𝑒 are the corresponding elemental values for each of the 𝑁 elements.

The constraints on the objective are such that the design’s volume, 𝑉(𝑥), is less than the

required volume allowed, 𝑉𝑟𝑒𝑞, and the displacements are such that their product with the

global stiffness matrix equals the global force vector, 𝐹. Additionally, the appropriate boundary

conditions must be applied such that assigned displacement values, 𝑢𝑜, are on the Dirichlet

35

boundary, 𝛤𝐷, traction values applied to the Neumann boundary, 𝛤𝑁, and zero stress on the

homogeneous boundary, 𝛤𝐻.

min
𝑥
: 𝑐(𝑥) = 𝑈𝑇𝐾𝑈 =∑𝑢𝑒

𝑇𝑘𝑒𝑢𝑒

𝑁

𝑒=1

𝑆. 𝑇. : 𝑉(𝑥) ≤ 𝑉𝑟𝑒𝑞
𝐾𝑈 = 𝐹

𝑢 = 𝑢𝑜 𝑜𝑛 𝛤𝐷
𝜎(𝑢)𝑛 = 𝑡 𝑜𝑛 𝛤𝑁
𝜎(𝑢)𝑛 = 0 𝑜𝑛 𝛤𝐻

(2.8)

Once the objective and constraints are established, the type of update information must

be determined. In Van Dijk’s review [34], there are three predominant types of update

information identified. These include shape sensitivity [37], [38], parameter sensitivity [43], [46],

and topological sensitivity [13], [40], which are each depicted in figure 2-10 below from left to

right respectively. In the figure, Ω represent the material region of the domain, 𝐷 represents the

void regions, and 𝛤 the boundary between the two. Each of these update informations are then

correlated to a generalized change in response, 𝛿𝑅, where the response of interest may be an

objective or constraint.

Figure 2-10: Types of Update Information [34]

36

 The left image of figure 2-10 above illustrates variational shape sensitivity, which can be

defined as the change in a response function caused by changes in shape of the material domain

generated by infinitesimal changes in the normal direction along the boundary [37], [38]. By

taking the path integral, ∫𝑑𝑆, along the boundary, 𝛤, a generalized 1st order variational

response (𝛿𝑅) due to boundary variation in the normal direction (𝛿Ω𝑛), can be modeled as

shown in equation 2.9 below where 𝑑𝑠𝑅 is the shape gradient of the response, which depends

on the particular response definition of interest [34].

 𝛿𝑅 = ∫ 𝑑𝑠𝑅𝛿Ω𝑛 𝑑𝑆
𝛤

 (2.9)

 The center image of figure 2-10 depicts sensitivities directly related to the optimization

variables 𝒔 [34], [46]. Undoubtedly this depends upon the parameterization of the LSF, but

taking the popular parameterization as defined in equation 2.7, with 𝑁𝑖 and 𝑠𝑖 being the

individual kernel functions and their associated coefficients, and using an iso-contour of 𝑐 = 0 ,

the variations of optimization variables (𝛿𝑠𝑖) can be related to variations in material domain

(𝛿Ω) with the following equation

 ∑𝑁𝑖𝛿𝑠𝑖 + ∇𝜑 ∙ 𝛿Ω
𝑖

= 0 (2.10)

And defining the outward normal of the material boundary, 𝒏, as:

 𝒏 =
−∇𝜑

‖∇𝜑‖
 (2.11)

37

Substituting equations 2.10 and 2.11 into 2.9, the parameterized shape sensitivity can be

defined as:

𝜕𝑅

𝜕𝑠𝑖
= ∫ 𝑑𝑠𝑅

𝛤

𝑁𝑖
‖∇𝜑‖

𝑑𝑆 (2.12)

 The third primary type of variation that sensitivities are derived from, is that of

topological variations. This is exemplified in the right image of figure 2-10 above and can be

viewed as the change in a response due to the perforation of an infinitesimal hole [40]. As the

previous sensitivities mentioned are merely shape sensitivities, the topological sensitivity is

required to alter the interior of the domain and increase the topological complexity of the

domain by nucleating new holes. The topological gradient of response (𝑑𝜏𝑅) can be generically

expressed given the equation below where 𝐵(𝑟) represents a hole B with radius r and 𝑉(∙) is a

measure of volume.

 𝑑𝜏𝑅 = lim
𝑟→0

𝑅(Ω 𝐵(𝑟)⁄) − 𝑅(Ω)

𝑉(𝐵(𝑟))
 (2.13)

Using the minimum compliance objective formulated in equation 2.8, Allaire et al. [40] derives

this topological gradient of response of a 2-D domain as:

 𝑑𝜏𝑅 =
𝜋(𝜆 + 2𝜇)

2𝜇(𝜆 + 𝜇)
{4𝜇𝐴𝑒(𝑢) ∙ 𝑒(𝑢) + (𝜆 − 𝜇)𝑡𝑟(𝐴𝑒(𝑢))𝑡𝑟(𝑒(𝑢))} (2.14)

38

And for a 3-D domain:

 𝑑𝜏𝑅 =
𝜋(𝜆 + 2𝜇)

𝜇(9𝜆 + 14𝜇)
{20𝜇𝐴𝑒(𝑢) ∙ 𝑒(𝑢) + (3𝜆 − 2𝜇)𝑡𝑟(𝐴𝑒(𝑢))𝑡𝑟(𝑒(𝑢))} (2.15)

Where 𝑡𝑟 is the trace of a matrix, λ is Lamé’s 1st parameter, μ is the shear modulus, 𝐴 is the

fourth order stiffness tensor and 𝑒(𝑢) is the strain tensor with displacement values u.

 Now that various forms of sensitivities have been identified, the specific update

procedure method can be established. Apart from heuristic methods [17], there are two main

types of update procedures. The first is the use of mathematical programming through well-

established optimization methods such as Sequential Quadratic Programming (SQP), Method of

Moving Asymptotes (MMA) and CONvex LINearization approximations (CONLIN) [33]. The

second, and more popular method, views the update procedure as a quasi-temporal process by

advancing the boundaries based on velocity fields [13], [43]. Typically, this is done so by using a

partial differential governing equation known as the Hamilton-Jacobi equation, shown in

equation 2.16 below with τ representing the pseudo time. Because this equation only uses

shape sensitivities, the update procedure does not allow for the nucleation of new holes. The

ability to increase topological complexity can be done however by adding a reaction term, 𝑅(𝜑),

derived from topological sensitivities (equations 2.14 and 2.15) that acts as sink or source term

to the PDE [13], [40]. Combining the Hamilton-Jacobi equation with the outward normal

definition established in equation 2.11 and adding this reaction term, it can be rewritten as

shown in equation 2.17, where 𝑣𝑛 is derived from the variational shape sensitivities.

39

𝜕𝜑

𝜕𝜏
+ ∇𝜑 ∙ 𝑣 = 0 (2.16)

𝜕𝜑

𝜕𝜏
− 𝑣𝑛‖∇𝜑‖ − 𝑅(𝜑) = 0 (2.17)

 To determine an appropriate time step, ∆𝜏, such that the LSF progresses stably toward

an optimum, the Courant-Friedrichs-Lewy (CFL) condition is used, where h is the grid spacing

from the discretization of the LSF [13], [34], [43].

 ∆𝜏 𝑚𝑎𝑥(𝑣𝑛) ≤ ℎ (2.18)

2.2.4 Regularization

 As mentioned before and with other topology optimization methods, an original

formulation requires regularization techniques to obtain a well posed optimization problem,

remove numerical artifacts, improve convergence behavior and control geometric properties.

This is no different for LSMs. In fact, regularization can be applied to each of the three

components previously discussed based on the nature of the given problem [34]. Many times,

these regularization techniques come in the form of penalties or filtering schemes. In the LSF

parameterization, the optimization variables themselves may be subjected to filtering

techniques or bounded by minimum or maximum values to insure smoothness and consistency.

Regularization can be applied to the geometry mapping aspect of LSMs depending on the

method of executing the geometry mapping. For example, in the case of using a density-based

method, intermediate densities can be penalized to insure black-and-white solutions [51].

40

The majority of regularization techniques however are applied to the update procedure

portion of the LSM. Sensitivity values are often filtered, scaled or mapped to avoid mesh-

dependent solutions and to obtain smooth geometric designs [13]. Additionally, the perimeter

or length of an iso-contour can be penalized to prevent unnecessary perforations or porosity

from forming and ensure smoothness of designs [38], [50]. Perimeter regularization is helpful to

achieve a well-posed problem, avoid numerical artifacts and smooth the geometry. However, it

may heavily restrict potential designs leading to suboptimal convergence.

As seen in the Hamilton-Jacobi equation (equation 2.16 or 2.17), the gradient of the LSF

plays a large role in the update of the parameters from iteration to iteration. The steeper the

gradient is, the larger the parameters will be modified and vise-versa. Additionally, if there is a

large region close to the intersecting plane forming the iso-contour, there will be a much larger

change in the interface and material domain, this is illustrated in figure 2-11 below. Because of

how important the gradient of the LSF is, particularly near the iso-contour, many regularization

techniques focus here to insure consistent and desired behavior [34]. One method known as

Tikhonov regularization adds a penalty term associated with the gradient of the LSF [42].

Another way to handle this issue is to periodically reinitialize the LSF to a signed-distance

function, allowing the LSF to evolve appropriately, but establishing a constant gradient before

larger variations in gradient or larger regions near the iso-contour can form [13], [43]. When re-

initialization is performed, the current LSF is used to map to the given geometry then this

geometry is used to calculate LSF parameters such that there exists a constant gradient and the

geometry is maintained as best as possible. This concept is very prominent amongst LSM

implementations.

41

Figure 2-11: Effect of Variable LSF Gradients [34]

2.3 Design Dependent Loading

 Often topology optimization is implemented with given boundary conditions and tries to

determine the optimal material distribution under a specified objective function. In this case,

the boundary conditions are established prior to optimization and maintained constant

throughout the process. In elastic analysis, these boundary conditions are in the form of forces

and fixed degrees of freedom, however given the nature of the current research objectives in

this thesis, this is not the case. The forces acting on the component are pressure forces, applied

from inside the part to the material boundary, which changes as the material distribution

changes. This raises the need to modify the existing topology optimization methods to allow for

design dependent loading. Researchers have implemented means of adapting both the SIMP

method [52]–[55] and the LSM [47], [50] for design dependent loading. The two main tasks

when adapting for design dependent loading are to effectively diagnose the loading condition

given a specific material distribution and to appropriately modify the update procedure to

account for the changing loading conditions. Another common form of design dependent

loading is in the case of self weight loads. Huang et al. [54] address this for 2-D cases by using a

42

modified SIMP method known as ‘Bi-directional Evolutionary Structural Optimization’ (BESO)

method with progressive target volume constraints. With pressure loading conditions however

it can be quite challenging for the SIMP method to identify the loading condition due to the uses

of intermediate densities and gray scale designs throughout the process, whereas with the LSM,

the material interface is explicitly defined.

 To establish the loading conditions of a pressure load using the SIMP method, a

boundary search scheme must be used. Lee and Edmund [52] establish a method to do this for a

2-dimensional domain, which follows these steps:

1. Establish a small region that will always remain void (set densities and sensitivities of

these elements to zero)

2. Establish an intermediate density value to apply the pressure loading to (typically start

at 0.2 and slowly increase to 0.4 over optimization iterations to limit the formation of

islands)

3. Use elemental density values to get nodal density values (average density of all

elements containing a given node)

4. Linearly interpolate these nodal densities to identify iso-density points (points with

density values equivalent to that established in step 2)

5. Starting from the centroid of the prescribed void and in a user defined search direction,

with a minimal tolerance, find an initial iso-density point, figure 2-12 left

6. In another prespecified search direction orthogonal to the first find the second point,

using a much larger directional tolerance (wider search cone), figure 2-12 right

43

7. Identify all consecutive points as an iso-density point within one element length and

having the smallest change in segment angle from the previous point to the current

point versus the current point to the new point, figure 2-13

8. This is repeated until a loop is established (connecting back to the 1st point) or a domain

boundary is hit

9. Pressure force is applied to the line segments between iterative points and equivalent

nodal loads are determined for the analysis

 The processes of identifying the first two points is depicted in figure 2-12 below and

choosing consecutive points in figure 2-13. In figure 2-12 the hashed area represents the

predefined void region, the dots represent the iso-density points, and the dashed lines the

search direction cone. In determining consecutive points, the angles are compared to one

another and need to have a common arbitrary reference, horizontal to the right in this case.

Note that in figure 2-13, point C is chosen from B instead of point D because it has the lesser

change in angle. This process can be very sensitive and may create islands, stall, or generate

numerical artifacts causing the optimization to take advantage of improper boundary

identification during one iteration.

Figure 2-12: Identifying the 1st (Left) & 2nd (Right) Iso-Density Points [52]

44

Figure 2-13: Identifying Consecutive Iso-Density Points [52]

Zhang et al. [55] address problems in 3-dimensions with design dependent loading cases

while using the SIMP method. This is done by decomposing the 3-D case into a series of 2-D

cases and executing a similar 2-D boundary search algorithm to the one mentioned above.

Although desired results are achieved, it is noted that this process for 3-D cases is quite

computationally expensive and inefficient.

Another proposed boundary identification method by Wang et al. [53] uses image

segmentation techniques with a LSF. This method still uses the SIMP method for topology

optimization, material distribution and analysis, but to identify the locations of the pressure

loading, a LSM is used. In this method, a specific iteration’s material distribution generated by

the SIMP method is viewed as a gray scale image. Then a Distanced Regularized Level Set

Evolution (DRLSE) method is used for image segmentation and the 0-level contour of the LSF is

used to represent the pressure locations.

Contrary to the SIMP method’s widespread use of intermediate densities, making it

difficult to identify the material boundary for pressure loading to be applied, the LSM explicitly

defines this interface, making it much simpler to execute topology optimization with design

45

dependent loading. Any finite element analysis is comprised of 3 boundaries within the domain:

a Neumann boundary 𝛤𝑁 where traction forces are applied, a homogeneous boundary 𝛤𝐻 that is

free of forces and a Dirichlet boundary condition 𝛤𝐷 where displacement values are prescribed.

It is noticed that standard topology optimization maintains fixed Neumann and Dirichlet

boundary condition and only modifies the homogeneous boundary. Xia et al. propose a means

to modify different types of boundaries by using multiple LSFs [47]. This is done by using

separate sensitivities, Hamilton-Jacobi equations and update timesteps. Using a Boolean

combination of the separate LSFs, the geometry of the design and designation of boundaries are

determined. In a follow-on paper [50], this concept is applied to pressure loading problems. In

this method, one LSF, ψ, represents the pressure boundary and another LSF, 𝛷, represents the

free boundary. The material domain is defined as the regions where both LSFs are below the iso-

contour level and this geometry can be represented in the following equation.

 Ω = {𝑥 | 𝑚𝑎𝑥(ψ(𝑥), φ(𝑥)) < 0, 𝑥 ∈ 𝐷} (2.19)

 The update velocities for the Hamilton-Jacobi are then derived as:

 𝑣ψ = (2𝑑𝑖𝑣(𝑝𝑜𝑢) + 𝐴𝑒(𝑢) ∙ 𝑒(𝑢) − 𝜆)𝑛 (2.20)

 𝑣φ = (𝐴𝑒(𝑢) ∙ 𝑒(𝑢) − 𝜆)𝑛 (2.21)

Where 𝜆 is the penalty from the Lagrangian formulation with the volumetric constraint

moved into the objective function. A special check and modification to velocities are done to

prevent the update procedure to cause the Neumann and Homogeneous boundaries to cross, as

this would have no practical meaning and defeat the purpose of the optimization problem with

pressure loading.

46

 For the finite element analysis of this method [50], a fixed Eulerian mesh is used with

the void modeled by an artificially weak material and the geometry mapping is done with a

density-based approach. The pressure load is to be applied on the Neumann boundary defined

by ψ(𝑥) = 0 which can be written as the line integral along the boundary as shown as the

middle equality of equation 2.22. Through the use of a Dirac function, this path integral can be

converted to an integral over the full domain, shown on the right side of equation 2.22.

 𝑭 = ∫ 𝑝 𝑑𝑠
𝛤𝑁

= −∫ 𝑝𝑜𝑛𝛿𝛤𝑁 𝑑𝑥
𝐷

 (2.22)

With 휀 being a small positive constant based on the discretization grid size of the LSF, this Dirac

function on the Neumann boundary 𝛤𝑁 is defined as:

 𝛿𝛤𝑁𝑛 =
1

2
∇(

ψ(𝑥)

√ψ2(𝑥) + 휀2
) (2.23)

 This method utilizes the benefits of a LSM when applied to a topology optimization

problem with design dependent pressure loading conditions as opposed to the complex and

time consuming methods developed to modify the SIMP method to accomplish the same task.

47

 CHAPTER III: Methodology

Following a literature review, it was decided that the use of a Level-Set method (LSM)

would best suit the objective of using topology optimization to determine an ideal material

distribution for an irregular shaped pressure vessel. This chapter dives further into the

derivation of the methods that were used to accomplish this task. For any optimization

procedure, an analysis of the system’s response to design variables must be conducted to

effectively evaluate performance and implement changes. Here, a linear elastic finite element

analysis (FEA) method is used to evaluate the structural response of a given iteration’s material

distribution. The response field generated by the FEA allows the use of a LSM to effectively

modify a Level-Set function (LSF) which is used to implicitly define the material distribution for a

subsequent iteration. This optimization process is repeated until an assigned objective is met

and all constraints are satisfied. This chapter is organized as follows: section 3.1 summarizes the

finite element analysis procedure, section 3.2 covers the generic methodology of using the

Level-Set method for topology optimization and finally section 3.3 addresses the modifications

of the LSM required for problems with design dependent pressure loading in both ℝ2 and ℝ3.

3.1 Finite Element Analysis

 As the structure changes every iteration, so too does its response which is used to

evaluate the effectiveness of the current structure and assign update information for the

following iterations. To evaluate this response of the structure, the finite element method is

executed upon each iteration of the optimization. Here, a linear elastic finite element analysis is

used, where a structure with defined material properties and boundary conditions is evaluated

to identify a displacement field, 𝒖. In order to implement the finite element analysis, a weak

48

form must be derived from the governing equations then, with a discretized structural domain,

a system of equations can be solved to compute this displacement field at each discretized

node. For notation, the cartesian components of the displacement vector, �⃗⃗�, throughout the

domain, 𝛺, can be expressed as:

�⃗⃗� = 𝑢𝑖 = [𝑢𝑥 𝑢𝑦 𝑢𝑧] (3.1)

 From solid mechanics, in a 3-dimensional domain using a cartesian coordinate system,

the equations of equilibrium for a statically elastic problem are:

𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑧
𝜕𝑧

+ 𝑏𝑥 = 0 (3.2)

𝜕𝜏𝑦𝑥

𝜕𝑥
+
𝜕𝜎𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑦𝑧

𝜕𝑧
+ 𝑏𝑦 = 0 (3.3)

𝜕𝜏𝑧𝑥
𝜕𝑥

+
𝜕𝜏𝑧𝑦

𝜕𝑦
+
𝜕𝜎𝑧𝑧
𝜕𝑧

+ 𝑏𝑧 = 0 (3.4)

Where 𝜎𝑖𝑖 and 𝜏𝑖𝑗 represent the normal and shear states of stress respectively, and 𝑏𝑖 the body

force in the ith direction.

To derive a weak form to be used, the Galerkin weighted residual method is used. This is

done by defining the PDEs from the equations of equilibrium as residuals and the variational

displacements, 𝛿𝑢𝑖, as the weighting function. In tensor form, the resulting equation is derived

for 𝑖 = 1,2,3.

∫ 𝛿𝑢𝑖(𝜎𝑖𝑗,𝑗 + 𝑏𝑖)
𝛺

𝑑𝛺 = 0 (3.5)

49

Where 𝜎𝑖𝑗,𝑗 is the partial derivative of the stress 𝜎𝑖𝑗, (where 𝜎𝑖𝑗 represents both 𝜎𝑖𝑖 and 𝜏𝑖𝑗)

with respect to the direction of 𝑗 and summed over 𝑗 = 1,2,3. Separating the stress components

from the body force:

∫ (𝜎𝑖𝑗,𝑗)𝛿𝑢𝑖
𝛺

𝑑𝛺 +∫ 𝛿𝑢𝑖𝑏𝑖
𝛺

𝑑𝛺 = 0 (3.6)

Using the identity:

 ∇ ∙ ({𝜎𝑖𝑗}𝛿𝑢) = ∇ ∙ {𝜎𝑖𝑗}𝛿𝑢 + ∇𝛿𝑢 ∙ {𝜎𝑖𝑗} (3.7)

And the Divergence Theorem:

∫ (∇ ∙ {𝑢})
𝑉

𝑑𝑉 = ∫ ({𝑢} ∙ {𝑛})
𝛤

𝑑𝛤 (3.8)

Equation 3.5 can be written as:

∫ 𝜎𝑖𝑗𝛿𝑢 ∙�⃗⃗�𝑖
𝛤

𝑑𝛤 −∫ ∇𝛿𝑢𝑖 ∙ 𝜎𝑖𝑗
Ω

𝑑Ω +∫ 𝛿𝑢𝑖𝑏𝑖
Ω

𝑑Ω = 0 (3.9)

Combining equation 3.9 for 𝑖 = 1,2,3 the weak form becomes:

(3.10)

∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑡𝑥
𝑡𝑦
𝑡𝑧

}
𝛤

𝑑𝛤

−∫

(

[
𝜕𝛿𝑢𝑥
𝜕𝑥

𝜕𝛿𝑢𝑦

𝜕𝑦

𝜕𝛿𝑢𝑧
𝜕𝑦

𝜕𝛿𝑢𝑦

𝜕𝑧
+
𝜕𝛿𝑢𝑧
𝜕𝑦

𝜕𝛿𝑢𝑥
𝜕𝑧

+
𝜕𝛿𝑢𝑧
𝜕𝑥

𝜕𝛿𝑢𝑥
𝜕𝑦

+
𝜕𝛿𝑢𝑦

𝜕𝑥
]

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

)

Ω

𝑑Ω

+∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑏𝑥
𝑏𝑦
𝑏𝑧

}
Ω

𝑑Ω = 0

50

Where 𝑡𝑖, represents the traction forces along the boundary. The Cauchy strain tensor,

𝜖𝑖𝑗, can be defined by displacements, �⃗⃗�, using the strain-displacement relation:

𝜖𝑖𝑗 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (3.11)

Where 𝑢𝑖,𝑗 is the partial derivative of the 𝑖𝑡ℎ component of deflection with respect to the

direction of 𝑗, allowing the engineering strain to be written as:

{휀} =

{

휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

=

{

휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
2휀𝑦𝑧
2휀𝑥𝑧
2휀𝑥𝑦}

=

{

𝜕𝑢𝑥
𝜕𝑥
𝜕𝑢𝑦

𝜕𝑦
𝜕𝑢𝑧
𝜕𝑧

(
𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧
𝜕𝑦
)

(
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑥
)

(
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑥
)
}

 (3.12)

Using Hooke’s law (equation 3.13) stresses and strains can then be related using the 4th

order tensor 𝑨𝑖𝑗𝑘𝑙.

 𝜎𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙휀𝑘𝑙 (3.13)

With ν being the Poisson’s ratio and 𝐸 being the Young’s modulus of elasticity, Hooke’s law can

be written into a constitutive matrix [𝐶] for isotropic materials that relates the 6 independent

strain components with stress components. Note the use of engineering strain for the shear

components.

51

(3.14)

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

=
𝐸

(1 + 𝜈)(1 − 2𝜈)

[

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0
(1 − 2𝜈)

2
0 0

0 0 0 0
(1 − 2𝜈)

2
0

0 0 0 0 0
(1 − 2𝜈)

2]

{

휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

To prevent numerical artifacts in the optimization process, the void regions are defined by an

artificially weak material, as opposed to not being modeled, by multiplying the modulus of

elasticity by 0.0001. Combining equations 3.12 and 3.14 into the weak form of equation 3.10

results in:

∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑦] {

𝑡𝑥
𝑡𝑦
𝑡𝑧

}
𝛤

𝑑𝛤

−∫

(

[𝛿휀𝑥𝑥 𝛿휀𝑦𝑦 𝛿휀𝑧𝑧 𝛿𝛾𝑦𝑧 𝛿𝛾𝑥𝑧 𝛿𝛾𝑥𝑦][𝑪]

{

휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

)

Ω

𝑑Ω

+∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑏𝑥
𝑏𝑦
𝑏𝑧

}
Ω

𝑑Ω = 0

(3.15)

 Now that the weak form has been established, in order to evaluate it, the domain must

be discretized into elements and nodes. This discretization allows for the use of shape functions

within each element to approximate the response field (displacements), which can then be

evaluated in equation 3.15 above to develop a system of equations that can then be solved to

52

determine nodal displacements. To simplify the meshing procedure and the computation of the

stiffness matrix, all of the elements are equivalent in shape and size. Here 8-node hexahedral

elements are used. A generalized master element shape and node relation can be depicted in

figure 3-1 below where ξ, η, and ζ represent the 3 relative coordinate directions for the local

element. These coordinates of the master element nodes can be found in table 3-2.

Figure 3-1: Hexahedral Master Element

Table 3-2: Master Element Node Coordinates

Node Number 𝜉 휂 휁

1 -1 -1 -1

2 1 -1 -1

3 1 1 -1

4 -1 1 -1

5 -1 -1 1

6 1 -1 1

7 1 1 1

8 -1 1 1

53

 Using this master element definition, at each node (𝑎 = 1: 8) a tri-linear shape

function, 𝑁𝑎, can be expressed with the following equation.

𝑁𝑎(𝜉, 휂, 휁) =

1

8
(1 + 𝜉𝑎𝜉)(1 + 휂𝑎휂)(1 + 휁𝑎휁), 𝑎 = 1,2,… ,8 (3.16)

These shape functions have a value of 1 at their respective node and a value of 0 at all other

nodes allowing a field variable to be approximated throughout the element’s domain as the

summation of these shape functions multiplied by the respective nodal value of the field

variable. Using the displacement vector, 𝑢𝑖, as the field variable, the approximation of

displacement throughout the domain within a given element can be expressed as:

𝑢𝑖(𝜉, 휂, 휁) = ∑𝑁𝑎(𝜉, 휂, 휁)𝑢𝑖

𝑎

𝑛

𝑎=1

 (3.17)

Where 𝑢𝑖
𝑎 is the displacement value in the 𝑖𝑡ℎ direction at node a and 𝑛 is the number of nodes

the element contains, 8 in this case. Similarly, partial derivatives of field variables can be

expressed as:

 𝜕𝑢𝑖
𝜕𝑥𝑗

(𝜉, 휂, 휁) = ∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉𝑗

𝑛

𝑎=1

𝑢𝑖
𝑎 (3.18)

Where 𝜉𝑗 for 𝑗 = 1,2,3 are the three relative directions of the master element, 𝜉𝑗 = [𝜉 휂 휁].

Note, these shape functions are defined over the master element’s domain. To transform these

equations to the x, y, z domain of the real element, a Jacobian matrix (equation 3.19) is used.

54

[𝐽] =

[

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑧

𝜕𝜉
𝜕𝑥

𝜕휂

𝜕𝑦

𝜕휂

𝜕𝑧

𝜕휂
𝜕𝑥

𝜕휁

𝜕𝑦

𝜕휁

𝜕𝑧

𝜕휁]

= ∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉𝑖
𝑥𝑗
𝑎

𝑛

𝑎=1

=

[

 ∑

𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉
𝑥𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉
𝑦
𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉
𝑧𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휂
𝑥𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휂
𝑦
𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휂
𝑧𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휁
𝑥𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휁
𝑦
𝑎

𝑛

𝑎=1

∑
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휁
𝑧𝑎

𝑛

𝑎=1]

(3.19)

With this relation given by the Jacobian matrix, the shape functions can be written in terms of

the domain for the real element (3.20) and integration bounds of the real element can be

translated to the master element (3.21).

[

𝜕𝑁𝑎(𝑥, 𝑦, 𝑧)

𝜕𝑥
𝜕𝑁𝑎(𝑥, 𝑦, 𝑧)

𝜕𝑦

𝜕𝑁𝑎(𝑥, 𝑦, 𝑧)

𝜕𝑧]

= [𝑱]−1

[

𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕𝜉
𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휂

𝜕𝑁𝑎(𝜉, 휂, 휁)

𝜕휁]

 (3.20)

∫ 𝑑Ω →
𝑒

Ω

∫ ∫ ∫ 𝑑𝑒𝑡([𝑱])𝑑𝜉𝑑휂𝑑휁
1

−1

1

−1

1

−1

 (3.21)

55

 Using these shape functions, the strain tensor in equation 3.12 can be expressed as:

{휀} =

{

휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

=

{

𝑢1,1
𝑢2,2
𝑢3,3

𝑢2,3 + 𝑢3,2
𝑢1,3 + 𝑢3,1
𝑢1,2 + 𝑢2,1}

= ∑

[

𝑁𝑎,1 0 0

0 𝑁𝑎,2 0

0 0 𝑁𝑎,3
0 𝑁𝑎,3 𝑁𝑎,2
𝑁𝑎,3 0 𝑁𝑎,1
𝑁𝑎,2 𝑁𝑎,1 0]

𝑛

𝑎=1

{

𝑢1
𝑎

𝑢2
𝑎

𝑢3
𝑎
} (3.22)

Where 𝑁𝑎,𝑖 is the partial derivative of the shape function for node a with respect to the 𝑖𝑡ℎ

coordinate direction. Removing the summation by expanding the matrix this can be written as:

{휀} =

[

𝑁1,1 0 0

0 𝑁1,2 0

0 0 𝑁1,3
0 𝑁1,3 𝑁1,2
𝑁1,3 0 𝑁1,1
𝑁1,2 𝑁1,1 0

|

|

𝑁2,1 0 0

0 𝑁2,2 0

0 0 𝑁2,3
0 𝑁2,3 𝑁2,2
𝑁2,3 0 𝑁2,1
𝑁2,2 𝑁2,1 0

|

|

…
…
…
…
…
…

|

|

𝑁8,1 0 0

0 𝑁8,2 0

0 0 𝑁8,3
0 𝑁8,3 𝑁8,2
𝑁8,3 0 𝑁8,1
𝑁8,2 𝑁8,1 0]

{

𝑢1
1

𝑢2
1

𝑢3
1

𝑢1
2

𝑢2
2

𝑢3
2

⋮ }

= [𝑩]{𝑑} (3.23)

Establishing the matrix in equation 3.23 as [𝑩] and the displacement vector as {𝑑}, the

second integral of the weak form found in equation 3.15 can be rewritten using the relation in

equation 3.21 as:

∫

(

[𝛿휀𝑥𝑥 𝛿휀𝑦𝑦 𝛿휀𝑧𝑧 𝛿𝛾𝑦𝑧 𝛿𝛾𝑥𝑧 𝛿𝛾𝑥𝑦][𝑪]

{

휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

)

Ω

𝑑Ω

= {𝛿𝑑}𝑇∭[𝑩]𝑇[𝑪][𝑩]𝑑𝑒𝑡([𝑱])𝑑𝜉𝑑휂𝑑휁

1

−1

{𝑑}

(3.24)

56

Numerical integration via Gaussian quadrature is used to evaluate this integral. Because the

shape functions are tri-linear, 2 Gauss points are used in each direction for a total of 8 Gauss

points. These points have every combination of 𝜉𝑖 = ±
1
√3
⁄ for each of the coordinate

directions, 𝜉, 휂, and 휁, and an equal weighting of 1. To execute this numerical integration, the

function inside the integral is then evaluated at each of these points, multiplied by their

respective weighting and summed together. For the 8-node hexahedral, this results in a 24x24

matrix for the element, [𝒌𝒆], known as the elemental stiffness matrix.

{𝛿𝑑}𝑇∭[𝑩]𝑇[𝑪][𝑩]𝑑𝑒𝑡([𝑱])𝑑𝜉𝑑휂𝑑휁

1

−1

{𝑑} = {𝛿𝑑}𝑇[𝒌𝒆]24𝑥24{𝑑} (3.25)

Because the nodes are shared by multiple elements, a global stiffness matrix for the entire

domain can be assembled by correlating common degrees of freedom, deflections of nodes in a

particular direction, and summing them together. This global stiffness matrix is denoted by [𝑲]

and is square with dimensions equal to 3 times the total number of nodes.

Following a similar approach to that of the second integral, the first integral can be

written as:

∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑡𝑥
𝑡𝑦
𝑡𝑧

}
𝛤

𝑑𝛤 = {𝛿𝑑}𝑇∫

[

𝑁1 0 0
0 𝑁1 0
0 0 𝑁1
𝑁2 0 0
0 𝑁2 0
0 0 𝑁2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

⋮ ⋮ ⋮̅̅ ̅̅ ̅̅ ̅̅ ̅]

𝑑𝑆
𝛤𝑡

= {𝛿𝑑}𝑇

{

𝑓1
1

𝑓2
1

𝑓3
1

𝑓1
2

𝑓2
2

𝑓3
2

⋮ }

24𝑥1

(3.26)

57

Where 𝑓𝑖
𝑎 is the nodal force value in the 𝑖𝑡ℎ direction for node a. Pressure is defined as an

outward normal force per unit area and is applied to the interior material/void boundary.

Although the 2-D application by Xia et al. [50] uses an approximate Dirac-delta function on the

LSF to establish this loading condition, here mesh and structural representation of each element

is used. If the entire domain is meshed, and elements are simply defined as void or having

material, the pressure forces can be calculated as outward normal forces for every void

element. Although forces are applied to every void element, due to uniform element sizes,

forces within the void region are cancelled out, resulting in only forces being applied to the

boundary between void and solid regions. As illustrated in figure 3-2 adjacent void elements will

have their outward normal forces cancel out, leaving only desired force components along the

boundary.

Figure 3-2: Force Vector Computation from Void

58

The force components for one void element can be calculated as:

{𝑓𝑒}24𝑥1 =

{

𝑓𝑥
1

𝑓𝑦
1

𝑓𝑧
1

𝑓𝑥
2

𝑓𝑦
2

𝑓𝑧
2

⋮ }

=
𝑝𝑜
4

{

𝜉1𝑙𝑦𝑙𝑧
휂1𝑙𝑥𝑙𝑧
휁1𝑙𝑥𝑙𝑦

𝜉2𝑙𝑦𝑙𝑧
휂2𝑙𝑥𝑙𝑧
휁2𝑙𝑥𝑙𝑦

⋮ }

 (3.27)

Where 𝑝𝑜 is the nominal pressure value and [𝑙𝑥 𝑙𝑦 𝑙𝑧] is the edge lengths of the element.

The use of the master element node coordinates in equation 3.27 are simply to denote the sign

of the force to ensure it is outward normal and only works because the node coordinates are ±1.

If a different master element is used, this relation would be inaccurate.

In a similar manner, if regions of the void are not meshed, the material domain can be

used to formulate the force vector by applying an inward normal force to every solid element.

As in the case with using the void elements, adjacent solid elements will result in the cancelling

of forces at shared nodes. This leaves only force on the material boundary, including both the

Homogeneous, 𝛤𝐻, and Neuman, 𝛤𝑁, boundary. Because the pressure force should only be

applied to the Neuman boundary which is along the interior boundary, nodes along the exterior,

or homogeneous boundary, are stored and set to zero following the assembly of the force

vector. This concept is shown in figure 3-3 below where the left image shows all of the force

components and the right shows the resultant forces following the global assembly process and

zeroing out the homogeneous boundary, represented by the circles and labeled with 𝛤.

59

Figure 3-3: Force Vector Computation from Material Domain

As with equation 3.27 for the elemental outward force vector for the void elements, the

negative provides the inward force vector for the solid element, as seen in equation 3.28.

{𝑓𝑒}24𝑥1 =

{

𝑓𝑥
1

𝑓𝑦
1

𝑓𝑧
1

𝑓𝑥
2

𝑓𝑦
2

𝑓𝑧
2

⋮ }

=
−𝑝𝑜
4

{

𝜉1𝑙𝑦𝑙𝑧
휂1𝑙𝑥𝑙𝑧
휁1𝑙𝑥𝑙𝑦

𝜉2𝑙𝑦𝑙𝑧
휂2𝑙𝑥𝑙𝑧
휁2𝑙𝑥𝑙𝑦

⋮ }

 (3.28)

Similar to the assembly of the global stiffness matrix, a global force vector, {𝐹}, can be

assembled by summing common global degrees of freedom between elements. This is where

adjacent void elements cancel out their force.

60

The third integral of the weak form (equation 3.15) can be cancelled out because the

body forces are neglected in the current circumstances. This leaves only the first (equation 3.26)

and second (equation 3.25) integrals, which can be expressed with the global force vector and

stiffness matrix respectively. Using the assembly process previously mentioned for these and

exchanging the elemental displacements, {𝑑}, with the global displacement vector, {𝑢},

equation 3.29 is achieved.

{𝛿𝑢}𝑇{𝐹} − {𝛿𝑢}𝑇[𝑲]{𝑢} = 0 (3.29)

Rearranging and cancelling out the variational deflections, the equation can be re-written as a

system of equations.

[𝑲]{𝑢} = {𝐹} (3.30)

Before the system of equations can be solved, Dirichlet boundary conditions must be applied. In

the current implementation, these boundary conditions come in the form of fixed degrees of

freedom and therefore the partitioning method can be used. To ensure the displacement values

of the fixed degrees of freedom are set to zero, the corresponding rows and columns of the

stiffness matrix and force vector are removed, allowing the remaining system of equations to be

solved to achieve a displacement vector field for all of the nodes within the domain.

3.2 Level-Set Method Formulation

 Now that a given structural configuration can be analyzed to determine its response

(deflection vector field) through the use of the finite element analysis method, this structure

61

needs to be iteratively modified to optimize a particular objective function subject to a set of

constraints. As mentioned earlier, the Level-Set method has been chosen to execute this

optimization procedure due to its inherent benefits from the implicit boundary representation,

aiding in pressure loading application. This section provides a detailed mathematical explanation

of the Level-Set method. The modifications that had to be made to this method in order to

implement the topology optimization with design dependent pressure loads are explained in the

following section, 3.3.

 Ideally the objective for such a problem would be to maximize the internal void volume

such that the part does not fail due to stress criteria. However, as mentioned in section 2.2.3,

this type of objective formulation gives rise to various difficulties. Therefore, similarly to the

development of many topology optimization methods, the problem has been rewritten into a

minimum compliance objective. Although it should be mentioned that, in future works, it would

be desired to revert back to the original maximum void volume objective, see chapter 7:

Conclusion. This being said, the objective for the works of this project has been set to minimize

the compliance, c(x), or total strain energy of the system. This objective formulation is then

subject to constraints such that the design’s material volume fraction, 𝑉(𝑥), is equal to the

required volume fraction, 𝑉𝑟𝑒𝑞 (chosen such that the void volume satisfies the wet volume

requirement of the pressure vessel), the displacement field, {𝑢}, is such that the finite element

analysis equation (equation 3.30) is satisfied, and the appropriate boundary conditions are

applied. These boundary conditions ensure that the assigned displacement values, 𝑢𝑜, are on

the Dirichlet boundary, 𝛤𝐷, traction values applied to the Neumann boundary, 𝛤𝑁, and zero

stress on the homogeneous boundary, 𝛤𝐻. This optimization formulation is shown in equation

62

3.31. Note, 𝑉 refers to the volume fraction that the material takes (used volume divided by

design space) up and the volume fraction of the void could be expressed as 1 − 𝑉.

min
𝑥
: 𝑐(𝑥) = 𝑈𝑇𝐾𝑈 =∑𝑢𝑒

𝑇𝑘𝑒𝑢𝑒

𝑁

𝑒=1

𝑆. 𝑇. : 𝑉(𝑥) = 𝑉𝑟𝑒𝑞
[𝑲]{𝑢} = {𝐹}

𝑢 = 𝑢𝑜 𝑜𝑛 𝛤𝐷
𝜎(𝑢)𝑛 = 𝑡 𝑜𝑛 𝛤𝑁
𝜎(𝑢)𝑛 = 0 𝑜𝑛 𝛤𝐻

(3.31)

 In order to effectively treat the volume constraint, it must be moved into the objective

and a penalty must be applied, corresponding to the violation of the constraint to drive the

problem towards an optimal solution that also satisfies the constraints. To do this, a Lagrangian

is used and the resultant objective function can be seen in equation 3.32.

 𝐿 = 𝑐(𝑥) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = (∑𝒖𝑒
𝑇𝒌𝑒𝒖𝑒

𝑁

𝑖=1

) + 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞)
2

 (3.32)

 Where 𝜆𝑖 is the Lagrange multiplier for the 𝑖𝑡ℎ iteration. The constraint derived term, 𝑉(𝑥) −

𝑉𝑟𝑒𝑞, is squared to ensure a smooth application of the penalty due to its slope of zero when the

volume is equivalent to the target volume. Additionally, as seen from equation 3.32, the penalty

is applied to violations both above and below the target volume. This is done intentionally as

any structure could always reduce its compliance by adding material and therefore the optimal

solution to the original optimization formulation, equation 3.31, will be one such that the

volume is equivalent to the target volume.

 Now that the objective and constraints have been formulated, an optimization process

needs to be executed to determine the ideal material distribution. Unlike other topology

63

optimization methods such as the SIMP method, the Level-Set method does not directly modify

this material distribution within the domain. Instead the Level-Set method modifies a function,

the level-set function, 𝜑, that then implicitly defines the structure based on its zero-level

contour. As shown in equation 3.32, for the works of this research, negative LSF values are

defined as material in the structure, and positive values as void.

 {

𝜑(𝑋) < 0 𝑋 ∈ Ω ′𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙′

𝜑(𝑋) = 0 𝑋 ∈ 𝛤 ′𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′

𝜑(𝑋) > 0 𝑋 ∈ (𝐷\Ω) ′𝑉𝑜𝑖𝑑′

} (3.33)

 The level-set function itself is defined by tri-linear basis functions discretized throughout

the domain, see section 2.2.1. Upon running each optimization, an initial structure is defined by

the user and the starting LSF is defined as a signed distance function based on this structure.

That is, the magnitude of the LSF at a given location is the Euclidean distance to the nearest

location in the structure of the opposite phase (solid or void), and the sign of the LSF is such that

is satisfies equation 3.33.

Now that the LSF have been defined, its relationship to the structure for analysis

purposes has to be established as per section 2.2.2 ‘Geometry Mapping’. Here a fixed Eulerian

field is used to ease and accelerate the response calculations by the FEA method. However,

instead of using an intermediate density for the structural representation, the process is further

simplified, and the elements are only evaluated as completely void or solid (note void elements

still have an artificially weak material property). To allow for improved geometric representation

without invoking extensive computational burdens, the domain’s discretization is periodically

re-meshed, exempting void regions as the algorithm converges. Following re-meshing, a

subsequent iteration can add material into these void regions and the appropriate elements will

64

be added to the mesh. This allows for fast and easy conversion of the LSF to a structural

representation for response and volume analysis. Because the elements of the structure are

merely “on” or “off”, the volume fraction can be evaluated as the number of “on” elements

multiplied by one element’s volume and divided by the total volume of the design domain.

As many LSM currently do, the evolution of the LSF is done by viewing the update

procedure as a quasi-temporal, 𝜏, process through the use of a Hamilton-Jacobi equation.

𝜕𝜑

𝜕𝜏
+ ∇𝜑 ∙ 𝑣 = 0 (3.34)

Where 𝑣 is a scalar velocity field based on shape derivatives. Note the absence of the reaction

term derived from topological derivatives found in the Hamilton-Jacobi equation of section

2.2.3. This is due to the nature of the internal pressure vessel problem, where one continuous

void is desired, therefore, sink and source terms to nucleate voids are removed.

These velocities, 𝑣, are derived from sensitivity analysis and chosen as a descent

direction for the Lagrangian, equation 3.32. The sensitivity for a given element is defined as the

change in response with respect to a change in domain. Taking the partial derivative of the

Lagrangian in equation 3.32 for a particular element, 𝑒, results in the following equation.

𝜕𝐿

𝜕𝛺
|𝑒 =

𝜕𝑐

𝜕𝛺
|𝑒 + 2𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞)

𝜕𝑉

𝜕𝛺
|𝑒 (3.35)

 As shown in equation 3.35, there are only two terms that contain a response from the

material distribution. These are the sensitivity of compliance,
𝜕𝑐

𝜕𝛺
|𝑒, and the sensitivity of the

volume,
𝜕𝑉

𝜕𝛺
|𝑒. The shape sensitivity of an element for the compliance term of the objective is

shown in equation 3.36 [13], [38]. Because the volume response has a direct correlation to a

65

change in the domain, the shape sensitivities for the volume response are 1 and uniform across

the entire domain, equation 3.37.

𝜕𝑐

𝜕𝛺
|𝑒 = −𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 (3.36)

𝜕𝑉

𝜕𝛺
|𝑒 = 1 (3.37)

Plugging both equations 3.36 and 3.37 into the partial derivative of the Lagrangian, equation

3.35, and establishing the Hamilton-Jacobi velocity field as the decent direction, elemental

velocities can be expressed as:

 𝑣|𝑒 = −
𝜕𝐿

𝜕𝛺
|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞) (3.38)

Recalling that 𝜆𝑖 is the Lagrange multiplier for the penalty and therefore the coefficient of ‘2’ on

the second term in equation 3.35 can be absorbed into this multiplier. This Lagrange multiplier

needs to start small as to allow for the structure’s update to be dominated by the compliance

sensitivity to achieve an optimum solution and not fall into a local minimum. However, as the

iteration procedure hones in upon the final solution, this multiplier needs to increase to ensure

that the volume constraint is satisfied. This update of the Lagrange multiplier is done by a factor,

𝛼, every iteration, as seen in equation 3.39. The physical values used for 𝜆0 and 𝛼 are discussed

in chapter 4.

 𝜆𝑖 = 𝛼𝜆𝑖−1 (3.39)

 Once the velocities are found, the Hamilton-Jacobi equation (equation 3.34) can be used

to update the LSF accordingly. However, prior to this update, the velocities are filtered to

66

smooth them so that mesh-dependent solutions are avoided and to obtain smooth geometric

designs. Additionally, locations that are to remain a particular structural phase (solid or void)

have their corresponding velocities set to 0. This includes the boundary of the pressure vessel,

as it is desired for those to remain solid. Finally, the Hamilton-Jacobi equation itself is solved

using an upwind finite difference scheme.

 𝜑𝑖+1 = 𝜑𝑖 − ∆t(∇𝜑 ∙ 𝑣) (3.40)

Where ∆t is the timestep of each modification of the LSF. In order to effectively modify the LSF,

this time step must satisfy the ‘Courant-Friedrichs-Lewy’ (CFL) condition [10], [34], shown in

equation 3.41, with ℎ being the distance between grid-points of the LSF and 𝑣 being the

velocities

 ∆𝑡 ≤
ℎ

𝑚𝑎𝑥|𝑣|
 (3.41)

The gradient of the LSF, ∇𝜑, is evaluated using a central difference scheme. Due to the generally

poor accuracy of an explicit method to calculate the gradient, it is advised that this time step be

much smaller than this stability limit [34]. However, multiple time steps can be executed with a

single finite element analysis, allowing for reasonable shape changes to occur despite the small

timestep.

 As mentioned in section 2.2.3 and evident in the update procedure of the LSF, the

gradient of the LSF plays a crucial role in the effectiveness of the LSM. Because of this, the LSF is

periodically reinitialized to a signed distance function based on the current structure. This

ensures a consistent gradient and prevents large regions near the zero-level contour. The same

process as establishing the first LSF function is used to do this.

67

3.3 Design Dependent Pressure Loading

 The above explained Level-Set method is a generic implementation that is designed for

topology optimization with static loading and boundary conditions. That is, the user defines the

design space, fixed boundary conditions and loading conditions which all remain constant

throughout the entire process of optimizing the material distribution. However, the case of

optimizing a pressure vessel falls under the umbrella of design-dependent loading, because, as

the structure changes, so do the loading conditions. Because of this, the LSM described in

section 3.2 needs to be modified. In this research, the LSM was first modified to mimic the work

of Xia et al. [50] for 2-dimensional cases. Then it was further modified to allow for the topology

optimization of 3-dimensional pressure vessels. Defining 𝑝𝑜 as the pressure value, for both ℝ2

and ℝ3, the optimization problem can be formulated as:

min
𝑥
: 𝑐(𝑥) = 𝑈𝑇𝐾𝑈 =∑𝑢𝑒

𝑇𝑘𝑒𝑢𝑒

𝑁

𝑒=1

𝑆. 𝑇. : 𝑉(𝑥) ≤ 𝑉𝑟𝑒𝑞
[𝑲]{𝑢} = {𝐹}

𝑢 = 𝑢𝑜 𝑜𝑛 𝛤𝐷
𝜎(𝑢)𝑛 = 𝑝𝑜 𝑜𝑛 𝛤𝑁
𝜎(𝑢)𝑛 = 0 𝑜𝑛 𝛤𝐻

 (3.42)

3.3.1 Two-Dimensional Problems with Pressure Loading

 Before the end goal of optimizing a 3-D pressure vessel is done, the LSM procedure is

modified for a 2-D domain. To do this, the works of Xia et al. [50] were followed and

implemented. The first and major modification to the method is the use of two LSFs, 𝛷 & 𝜓, to

define both the ‘free’ homogeneous boundary, 𝛤𝐻, and the ‘pressure’ Neumann boundary, 𝛤𝑁,

respectively. Because the structure is now defined by two LSFs, each defining a boundary, the

68

material phase of the domain is defined as the region where both LSFs are below the zero-level

iso-contour. The structural implicit relation between the LSF and the structure is then defined

as:

{

𝛷(𝑋) < 0 𝑎𝑛𝑑 𝜓(𝑋) < 0 𝑋 ∈ Ω ′𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙′

𝛷(𝑋) > 0 𝑜𝑟 𝜓(𝑋) > 0 𝑋 ∈ (𝐷\Ω) ′𝑉𝑜𝑖𝑑′

𝛷(𝑋) = 0 𝑎𝑛𝑑 𝜓(𝑋) < 0 𝑋 ∈ 𝛤𝐻 ′𝐹𝑟𝑒𝑒 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′

𝜓(𝑋) = 0 𝑎𝑛𝑑 𝛷(𝑋) < 0 𝑋 ∈ 𝛤𝑁 ′𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′}

 (3.43)

In the implementation, the material can be defined as the locations were the maximum of the

two LSFs is less than zero. Furthermore, because in many 2-D applications the pressure loading

is applied at the edge of the domain, even if 𝜓’s zero-level contour extends past this boundary

of the domain, the pressure force should still be applied. If 𝜓’s zero-level contour would extend

past the domain, without modification, it would result in segmentation and a non-continuous

boundary for the force to be applied to. This modification is done by defining a LSF, 𝜓𝑜, such

that its zero-level contour is congruent to the edge of the domain that the force is applied from.

Then, following an update, 𝜓 for the subsequent iterations is taken as the maximum between

this updated LSF, 𝜓𝑢𝑝𝑑𝑎𝑡𝑒𝑑, and 𝜓𝑜, equation 3.44. This ensures that the zero-level contour for

𝜓 is either within the domain, or congruent to the desired boundary creating a continuous

boundary for the pressure to be applied on. These concepts for the structural representation are

illustrated in figure 3-4 where the force is intended to be applied from the top edge of the

domain and the structure is fixed on the left and right sides. Here an updated 𝜓 shown in 3-4.c

would cross the top edge of the domain causing portions to not have pressure forces applied,

but when taken as the maximum between 𝜓 in 3-4.c and 𝜓𝑜 in 3-4.d, these portions have their

zero-level contour converted to be congruent to the edge of the domain as shown by the red

69

line in 3-4.a representing the pressure boundary, 𝛤𝑁. Additionally, defining the solid regions as

locations where the maximum of 𝛷, shown in 3-3.b, and 𝜓 is less than zero, the appropriate

material distribution is achieved as shown in 3-4.a.

 𝜓𝑖+1(𝑥) = max{𝜓𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑥) , 𝜓𝑜(𝑥)} (3.44)

Figure 3-4: Dual LSF Structural Representation [50]

To update the structure, each LSF is subjected to its own Hamilton-Jacobi equation and

shape sensitivity. The compliance sensitivity analyses for both of these LSFs are defined as [50]:

𝜕𝐶𝛷
𝜕𝛺

|𝑒 = −𝒖𝑒
𝑇𝒌𝑒𝒖𝑒 (3.45)

𝜕𝐶𝜓

𝜕𝛺
|𝑒 = −𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 2∇ ∙ (𝑝𝑜𝒖𝑒) (3.46)

70

Where 𝑝𝑜 is the magnitude of the pressure load. The volume sensitivity for both Hamilton-

Jacobi equations is a constant, 1, the same as defined in equation 3.37. As in equation 3.32, the

volume constraint can be brought into the objective to formulate a Lagrangian. Following the

same process for equation 3.38, by using the sensitivities for the compliance and volume, and

choosing the descent direction for the Lagrangian, the velocities for both Hamilton-Jacobi

equations can be expressed as shown in equations 3.47 and 3.48.

 𝑣𝛷|𝑒 = −
𝜕𝐿

𝜕𝛺
|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞) (3.47)

 𝑣𝜓|𝑒 = −
𝜕𝐿

𝜕𝛺
|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 + 2∇ ∙ (𝑝𝑜𝒖𝑒) − 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞) (3.48)

 In many real-world applications of this optimization objective, the structural component

is used to isolate a pressurized area from a non-pressurized area. Therefore, the boundaries of

these two interfaces must not intersect, as this would defeat the purpose and have no physical

meaning. To ensure this is the case, an additional procedure is applied with a prescribed

minimum thickness, t. First for all locations along each border the shortest distance to the

opposite border is found. Then for any distance value less than or equal to prescribed thickness

requires a modified velocity. First, the largest magnitude of the two sensitivities at their

respective border is determined. This is done to ensure a continued decent of the objective.

Then, the magnitude of this velocity is assigned to the opposite border such that both

boundaries progress along the same direction, keeping the thickness equal. Finally, to ensure

smooth updates to the LSF, the change in velocity is diffused radially amongst the velocity field

the change took place on. In using an upwind finite difference scheme (equation 3.40) to update

the LSFs, the two timesteps must be equal to maintain a minimum thickness where velocity

71

modifications were applied. This timestep is defined as the minimum of the two that would be

established individually.

 The last modification to the LSM for this 2-D pressure case is in the force application

within the FEA procedure. Standard topology optimization algorithms with static loading cases

establish a global force vector prior to the optimization loop that is held constant. This cannot

be done for the case of design dependent loading. For pressure loading cases, the first integral

of the weak form (equation 3.15) can be expressed with the pressure value, 𝑝𝑜, as shown in the

middle equality of equation 3.49 which can then be converted from a surface integral to an

integral over the full domain using the divergence theorem (equation 3.8), shown in the right

equality of 3.49.

∫ [𝛿𝑢𝑥 𝛿𝑢𝑦 𝛿𝑢𝑧] {

𝑡𝑥
𝑡𝑦
𝑡𝑧

}
𝛤

𝑑𝛤 = {𝛿𝑑}𝑇∫ 𝑝𝑜𝑑𝑆
𝛤𝑁

= −{𝛿𝑑}𝑇∫ 𝑝𝑜𝑛𝛿𝛤𝑁𝑑𝛺
𝐷

 (3.49)

Where 𝑛 is the outward normal direction of the boundary and 𝛿𝛤𝑁 is the Dirac function for the

Neumann boundary, 𝛤𝑁. With the 𝜓’s zero-contour defining this boundary, this Dirac function

can be approximated as:

 𝛿𝛤𝑁𝑛 ≈
1

2
∇(

ψ(𝑥)

√ψ2(𝑥) + 휀2
) (3.50)

Where 휀 is a small positive parameter recommended to be between ℎ 10⁄ and ℎ 2⁄ , with ℎ

being the elemental grid size [50]. Smaller values of 휀 will result in the approximate force being

applied to a tighter band along the iso-contour but with coarse directionality, while larger values

72

will diffuse the applied force but offer smoother application directions. An example of equation

3.50 with 휀 = 0.2 is shown in figure 3-6 for the example LSF in figure 3-5 with a grid size of 0.4.

Figure 3-5: Example Level-Set Function

Figure 3-6: Approximate Dirac Function

73

3.3.2 Three-Dimensional Pressure Vessel Problems

 Once the LSM was modified for pressure loading cases in 2-D it was then modified for 3-

dimensional internal pressure loading cases. The process that was developed for this is quite

different from the 2-D case. Due to the nature of the problem, pressure loading on all internal

surfaces, the material distribution can be defined by one LSF. This greatly simplifies the 2-D

process by only requiring one Hamilton-Jacobi equation and set of velocities, which are set to

the original design velocity of the compliance minimization problem (equation 3.38). In fact, the

original LSM formulation performs well initially. However, it has convergence and unstable

oscillation issues as the volume fraction nears the target volume fraction, giving rise to a need to

modify the LSM to overcome these issues.

The two terms that lead to the velocity field of equation 3.38 stem from the elemental

strain energy and the penalty from the volume constraint violation. In the case of internal

pressure loading, this compliance component of the velocity will almost always be positive,

correlating to adding material in the Hamilton-Jacobi equation. As for the penalty component,

the magnitude will reach zero as the volume approaches the target volume fraction. This

occurrence is amplified if the relative change in constraint violation between iterations is larger

than the scaling factor, 𝛼, on the Lagrange multiplier, 𝜆, equation 3.39. Thus, this combination

of events leads to the update procedure adding too much material suddenly as the penalty term

decreases. Once this occurs, the subsequent iteration will have a much higher than necessary

penalty term as the Lagrange multiplier is much larger compared to when the algorithm initially

hit that relative volume fraction due to the continuous increased scaling, equation 3.39. This

then causes the algorithm to drastically remove material and this process is repeated as the

algorithm oscillates and becomes unstable. This concept is illustrated in the volume versus

74

iteration plot shown in figure 3-7. Intuitively, the solution to this problem requires the penalty

term to only be modified based on the constraint violation as opposed to being completely

recalculated based solely on the current volume fraction. One penalty application method found

in the literature that acts as such can be found in the works of Wei et al. [43]. Here an increasing

multiplication factor, 𝛾, multiplies the constraint violation, which is then added to the previous

iteration’s Lagrange multiplier.

 𝜆𝑖 = 𝜆𝑖−1 + 𝛾𝑖(𝑉𝑖(𝑥) − 𝑉𝑟𝑒𝑞) (3.51)

 𝛾𝑖+1 = max(𝛾𝑖 + 0.05 , 5) (3.52)

Where the increase of 𝛾 is linear and capped to a value of 5.

Figure 3-7: Drastic Change in Constraint Violation

75

 A second issue commonly found in the 3-D pressure vessel problem is in the event the

volume constraint flips signs. For example, if the structure has a volume fraction near the target

value and a small change in the structure occurs such that the volume fraction is just on the

other side of the target volume. With regards to the velocity calculation, equation 3.38, for this

example, this event causes the ensuing iteration to have similar values for the first term in the

velocity equation, derived from the compliance, while having a drastic change in the penalty

term. This situation leads to an undesired update of the LSF. This occurrence can be shown in

the plot of volume versus iteration found in figure 3-8. Although the use of a penalty

formulation such as the one in equations 3.51 and 3.52 mitigates this situation from occurring,

there still arises convergence issues, particularly if the volume fraction rapidly approaches the

target as the ‘momentum’ tends to continue removing material when not desired.

Figure 3-8: Volume Crosses Target then goes Unstable

76

 To solve the convergence issues when optimizing a 3-D pressure vessel, a correlation

was made between the different methods of applying penalties and the concept of

‘Proportional, Integral and Derivative control’ (PID). The original penalty term defined for the

LSM in equation 3.38 closely resembles that of proportional control as the difference in current

volume fraction and target volume fraction are multiplied by the Lagrange multiplier. The

penalty formulation by Wei et al. [43] can be viewed as the summation over the iterations of the

volume constraint violation multiplied by the iteration’s Lagrange multiplier. This mirrors the

definition of integral control. Finally, an intuitive method to aid against the second common

issue mentioned above is to add a predictive term, echoing derivative control. All of these are

combined to form a PID-type penalty formulation to be used as the volume fraction approaches

the target volume. The three terms for the proportional, integral, and derivative violations can

be written as shown in equations 3.53-3.55.

 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 = 𝑉𝑖 − 𝑉𝑟𝑒𝑞 (3.53)

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 =
1

𝑛
∑𝑉𝑖−𝑎

𝑛−1

𝑎=0

− 𝑉𝑟𝑒𝑞 (3.54)

 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 = 2𝑉𝑖 − 𝑉𝑖−1 − 𝑉𝑟𝑒𝑞 (3.55)

Where 𝑛 is a positive integer defining the number of previous iterations the integral term uses.

Here the derivative term uses a finite difference approximation with the previous iteration and

forecast one iteration using this slope. Each of these terms is then applied to a unique scaling

factor, 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷, which can be modified for tuning purposes. Then these are summed to

make the total control term for the iteration. Similarly to equation 3.51, this control term is then

77

added to the previous iteration’s penalty to determine the penalty term that is to be applied to

the current iteration.

(3.56)

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖−1 + 𝜆𝑖 [𝐾𝑃(𝑉𝑖 − 𝑉𝑟𝑒𝑞) + 𝐾𝐼 (
1

𝑛
∑𝑉𝑖−𝑎

𝑛−1

𝑎=0

− 𝑉𝑟𝑒𝑞) + 𝐾𝐷(2𝑉𝑖 − 𝑉𝑖−1 − 𝑉𝑟𝑒𝑞)]

Combined with the compliance sensitivity found in equation 3.36, the design update velocities

from equation 3.38 can be written as:

 𝑣|𝑒 = 𝒖𝑒
𝑇𝒌𝑒𝒖𝑒 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 (3.57)

The use of this method has prevented unstable oscillations and improper convergence behavior

in implementing the LSM to topologically optimize a 3-dimensional pressure vessel. This effect

can be seen in the volume versus iteration plot found in figure 3-9. Note the use of the original

penalty formulation for the initial iterations until the volume nears the target volume. This

change is apparent where the volume fraction levels off and has a slight bump up as the integral

and derivative control kick in.

Figure 3-9: Volume Fraction with PID-type Penalty

78

 Chapter IV: Implementation

 This chapter discusses the physical implementation of how the methods previously

established have been executed resulting in the optimization of an irregular shaped pressure

vessel. To ensure understanding of the Level-Set Method, first a standard ℝ2 and ℝ3 static

loading topology optimization code was created. Then, a ℝ2 code to handle design dependent

pressure loading was written before expanding it to a generic rectangular prism in ℝ3. Here is

were the procedure for optimizing a pressure vessel was established while maintaining a simple

geometry. Finally, this code was modified to handle an irregularly shaped domain. This chapter

discusses this progression along with the details of this final phase. To address such a problem,

two codes have been developed. The first code interprets an STL file to develop a mesh for the

domain. Once the mesh has been created, it is used in a second code that implements the Level-

Set method to determine a structural design that minimizes compliance while achieving a

specific volume fraction.

 The optimization code can be broken down into two main parts: an initialization phase,

and an optimization loop that executes the topology optimization itself. The code strongly

follows the 2-D discrete implementation of the Level-Set method in MATLAB by Challis [13], with

occasional references to a LSM using Radial Basis Functions by Wei et al. [43]. Extensions to 3-

dimensions were aided by references from the 3-dimensional SIMP implementation in MATLAB

by Kai et al. [7]. These codes were built upon to be able to handle a random domain as well as

internal pressure loading.

This chapter is organized as follows: section 4.1 summarizes the progression of the

research as the problem was broken down, section 4.2 overviews the mesh generation code,

79

section 4.3 covers the initialization phase of the optimization code, section 4.4 addresses the

implementation of the LSM within the optimization loop of the code, and finally section 4.5

summarizes the code and introduces the appendices.

4.1 Problem Progression

Once it was determined to utilize the Level-Set method to optimize an irregular pressure

vessel, a basic understanding was developed by developing code to optimize a 2-D domain

subjected to static loading conditions. This was done mirroring the works of Challis [13] and Wei

et al. [43]. Two separate LSF parameterizations and geometry mapping were done to compare

and deepen the understanding of the method. The first utilized linear basis functions where the

discretization of LSF control points coincided with the FEA mesh, thus resulting in a discrete

level-set method, limiting the elements to merely ‘on’ or ‘off’. Increasing complexity, the second

used radial basis functions and a density-based geometry mapping. This allows for a smoother

structural representation and changes in response. To test and ensure robustness across a

variety of structures, a user interface was developed to input problem parameters and adjust

LSF parameters. This interface can be seen below in figure 4-1 where the number of elements in

both x and y direction, the loading conditions, the Dirichlet boundary conditions along with the

LSM parameters of step length, topological weighting factor and volume fraction constraint can

all be defined.

80

Figure 4-1: 2-D LSM Input Interface

After establishing this generic 2-dimensional topology optimization, the problem was

further developed to account for design dependent pressure loads. Two methods were used to

do this. The first uses SIMP, a density-based topology optimization, by following the works of

Edmund and Lee [52] as explained in section 2.3. For the second method, the works of Xia et al.

[47], [50] as discussed in sections 2.3 and 3.3.1 were mirrored. Here two separate LSFs were

implemented to model both the homogeneous boundary and the Neumann boundary, each of

which were subjected to their own Hamilton-Jacobi equations. To prevent boundary crossing,

the velocity modification method discussed in 3.3.1 was used. Additionally, the pressure force

was calculated based on an approximate Dirac function for the level-set function as established

in equations 3.49 and 3.50. For this phase, a rectangular domain was used with a pressure

loading applied from the bottom side and pinned boundary conditions applied on both the

lower left and right corners. Figure 4-2 illustrates this design problem.

81

Figure 4-2: 2-D Pressure Problem Definition

At this point, the domains were shifted to 3 dimensions. As in the 2-dimension

problems, first problems with constant loading conditions were solved then the progression to

pressure loading was done. Initially, internal pressure loading was applied to a rectangular

cuboid domain, as shown in figure 4-3 below where the left image shows the initial geometry

and the right shows the deformation plot of this geometry. In the left image, the outer boundary

is shown by a transparent orange so that the structure itself can be visualized by the void

elements plotted as purple.

82

Figure 4-3: 3-D Pressure Problem Definition

During this phase, the formulation of the PID-type penalty, discussed in section 3.3.2, proved to

be effective. Here a fixed Eulerian mesh is used where all elements are of equal cuboid size and

remain as such throughout the optimization. The next progression involved implementing the

methods established here towards an irregularly shaped design domain as opposed to the

rectangular cuboid shown in figure 4-3. This final phase is discussed in further detail throughout

the remainder of this chapter as it involves the conversion of an STL file into a voxelated mesh,

discussed in section 4.2 and the implementation of the level-set method for optimization

discussed in section 4.3.

4.2 Mesh Generation

To establish the irregular shape that is to be optimized, an STL file of the part is

converted to a finite element mesh that can be used by the optimization and finite element

analysis codes. An STL part is defined by a series of triangles that form the outer boundary of the

83

component. Each corner of a triangle is defined by a node with x, y, and z coordinates. In order

to differentiate the interior from the exterior of the part, an outward normal vector for each

triangular shape is also provided. An example of how this information is presented in the ASCII

STL file is shown below.

 …

facet normal 9.753949e-02 8.394471e-01 5.346163e-01
 outer loop
 vertex 1.472648e+02 2.135673e+02 1.981356e+02
 vertex 1.472694e+02 2.134192e+02 1.983673e+02
 vertex 1.472710e+02 2.133868e+02 1.984179e+02
 endloop
 endfacet
 facet normal 8.069924e-02 8.404727e-01 5.358109e-01
 outer loop
 vertex 1.472710e+02 2.133868e+02 1.984179e+02
 vertex 1.472694e+02 2.134192e+02 1.983673e+02
 vertex 1.472699e+02 2.134033e+02 1.983922e+02
 endloop
 endfacet

 …

Here the ‘facet normal’ defines the x, y, z components of the outward normal for the

triangle that is defined by the 3 ‘vertex’ below. Each of these vertices then provide their x, y, z

coordinates. This section from ‘facet normal’ to ‘endfacet’ is then repeated for each of

the triangle surfaces that define the part’s outer geometry.

 The code ‘MakeMesh.m’ converts the assigned STL file into an array of elements each

with the lengths [𝑙𝑥 𝑙𝑦 𝑙𝑧] defined by the user in the variable ‘voxelsize’. Using this

element size along with the maximum and minimum vertex values in each direction, ‘ranges’,

the maximum possible number of elements in each direction is defined. With this information, a

3-D matrix, ‘cells’, of size equal to the maximum elements in each direction is constructed

and filled with the value of -1. The indices of this matrix represent each possible hexahedral

element of the mesh. This matrix will be modified such that each element of the matrix

84

designates the on-off nature of the element in the part. A value of 1 refers to there being

material and thus the element will become part of the mesh, whereas a value of -1 denotes void

regions that will be excluded from the mesh. Additionally, centroid coordinates for each of these

possible elements is established.

To formulate this ‘cells’ matrix, each triangular face of the STL with a z component in

its normal is evaluated to determine which 𝑥 and 𝑦 centroids lie within the triangular face

projected onto the xy-plane. Each of the centroid coordinates that intersects this projection is

then evaluated to determine the z-value the face has at that particular x, y coordinate. As

illustrated in figure 4-4, this process identifies the x, y centroid coordinates, represented by the

red arrows, that would intersect the given STL triangle, represented by the red triangle,

projected in the z-direction. Then the z-value of this intersection is determined.

Figure 4-4: STL Projection

85

From here, all indices of the ‘cells’ matrix corresponding to these x and y coordinates

with z-values greater than this intersection are multiplied by -1. Therefore, if the face is the 1st

face crossed in the projection, all cells after it will be turned on, 1, and all prior cells will remain

off, -1. Then if a particular face is the second or final face crossed, all the prior cells will remain

the same, and the following cells will be turned back off. This concept for an arbitrary yz-cross

section at any x value is illustrated in figure 4-5 below, where the boxes represent the indices of

the ‘cells’ matrix and the red lines represent the intersection of the STL surfaces and the

cross-section.

Figure 4-5: YZ-Cross Section Projection

This process of generating the appropriate ‘cells’ matrix is done between lines 14 and 50 of

the script ‘MakeMesh.m’, found in appendix B.

86

In optimizing a pressure vessel, it is critical to keep the outer boundary solid, as to

maintain the component’s ability to be a pressure vessel. This is done immediately following the

completion of the ‘cells’ matrix (lines 55 through 58) by summing all of the neighboring

indices of the matrix via a convolution with a 3x3x3 matrix of ones, therefore if all values of

‘cells’ are positive one within a 3x3x3 matrix centered at a given location, this convolution

would produce a value of 27. Then boundary elements can be defined as values of this

convolution less than 27, with a ‘cells’ matrix value of 1, as shown in the code below.

cells=permute(cells,[2,1,3]);
outer=(cells==1).*(convn(cells,ones(3,3,3),'same')<27);
outer(cells(:)==-1)=[];
Boundary=nonzeros(outer(:)'.*(1:nnz(cells==1)));

Once each possible element is deemed on or off via the ‘cells’ matrix, the actual list

of elements and nodes has to be generated, characterized in the variables ‘elements’ and

‘nodes’. Here ‘elements’ contains a row for each element of the mesh and 8 columns for

each node number of the given element. These node numbers are ordered such that for the

given element they follow the relative positioning as shown in figure 4-6. As for the ‘nodes’

variable, each row correlates to the particular node number referenced in ‘elements’, and

each of these rows contains three columns for the x, y, and z coordinates of the node. Despite

the physical translation of the geometry in the STL file, these nodes start at the origin, such that

if the first index of ‘cells’ was 1, its first node would have the coordinates (0,0,0).

87

Figure 4-6: Node Relative Positioning

To generate these lists of nodes and elements, the indices of ‘cells’ that have a value

of 1 are iteratively considered to make an element. The nodes for the element are then

determined, and if the node already exists in the ‘nodes’ matrix, that node number is used in the

‘elements’ matrix, otherwise a new entry to the ‘nodes’ matrix is made and used. This process is

executed in lines 73 through 89. Once this is complete, the mesh is plotted to confirm correct

operation and that the chosen ‘voxelsize’ sufficiently captures geometric features for the

user. Then the variables ‘elements’, ‘nodes’ and ‘boundary’ are saved to be used in the

topology optimization of the domain.

4.3 Optimization Initialization

During the initialization phase, the material parameters, optimization parameters, and

initial geometry are setup along with a few ‘book-keeping’ items. The material properties for the

modulus of elasticity and poison’s ratio are saved as variables ‘E’ and ‘nu’ with values of

29.5*10^6 and 0.29 respectively as these are the material properties for Inconel718, a known

88

3D printed metal for high pressure and life support devices. When doing nominal runs ‘E’ and

‘nu’ were saved as 1 and 0.3 respectively. The level-set parameters that are defined here are:

• volReq=0.45: The volume fraction goal for the topology optimization

• stepLength=2: The number of ‘Courant-Friedrichs-Lewy’ (CFL) time steps the

evolution equation is solved at each iteration, this is explained further in the update

procedure section

• numReinit=2: The frequency at which the LSF is reinitialized, a value of 2 refers to

the LSF being reinitialized every other iteration

• max_itr=200: The maximum number of iterations that will be executed before the

program aborts the loop if a convergence criterion has not been established yet

• La=1/2: The initial Lagrange multiplier for the first phase of the optimization, 𝜆1 from

equation 3.38

• La2=1/10: The initial Lagrange multiplier for the second phase of the optimization

once the penalty formulation has switched from just proportional to a PID-type

penalty, 𝜆𝑖 from equation 3.56

• alpha=1/0.95: Scaling factor for Lagrange multipliers, equation 3.39

• PID=[1,0.5,0.1]: The gains applied to each portion of the PID-type penalty,

[𝐾𝑝 𝐾𝐼 𝐾𝐷] from equation 3.56

From the paper presenting the 2-D discrete LS topology optimization code written in MATLAB by

V.J. Challis [13], the suggested values for the frequency of reinitialization are between 2 and 6.

The justification behind the range is that if the number is too small, no new holes can nucleate

in the design, and if too large, the LSF becomes very steep, leading to poor accuracy when

89

solving the evolution equation. This same paper [13], suggest that the ‘stepLength’ variable

be set between the minimum number of element in a coordinate direction divided by 10, and

the maximum number of elements divided by 5. These recommendations were for a 2-

dimensional case, claiming that if the number was too low, the design change will be slow and

converge to a poor local minimum, and if the number was too large, the design will change

rapidly with the possibility of removing material from important supporting features. During

trials of the 3-D pressure box, numbers on the upper end of this range led to severe oscillations

and therefore the number was set very low, which seemed to help the convergence. The use of

the Lagrange multipliers and the ‘PID’ variables to better control some of these issues is further

explained in the update procedure.

For both cases in 3-D, the geometry is defined by a series of hexahedral (box) elements

comprised of 8 nodes each. For irregular shapes, a discretization of the domain converts

geometry from an STL file into defined elements and nodes, ‘MakeMesh.m’ section 4.2,

otherwise a patterned discretization is established prior to the optimization. Because this

geometry is voxelated so that every element is exactly of the same size and shape, the

elemental stiffness matrices, established in equation 3.25, are all equivalent and can be

calculated once prior to the optimization loop in the subfunction ‘stiff3D(E,nu,Esize)’.

Using the relative local element node order illustrated in figure 3-1 used for the finite element

method and the mesh generation process from section 4.2, the ‘elements’ matrix has one row

for every element and 8 columns for each node corresponding to the element’s local node

positioning. An example of the first few elements are shown in table 4-3 below. The ‘nodes’

90

matrix contains a row for each node of the mesh and 3 columns for the x, y, and z coordinates of

the node, an example of the first few nodes are shown in table 4-4.

Figure 3-1: Hexahedral Master Element

Table 4-3: ‘elements’ matrix format

Element # Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

1 1 2 3 4 5 6 7 8

2 2 9 10 3 6 11 12 7

3 13 4 14 15 16 8 17 18

4 4 3 19 14 8 7 20 17

5 3 10 21 19 7 12 22 20

6 15 14 23 24 18 17 25 26

91

Table 4-4: ‘nodes’ matrix format

Node # X-coordinate Y-coordinate Z-coordinate

1 2 2 0

2 2.25 2 0

3 2.25 2.25 0

4 2 2.25 0

5 2 2 0.25

6 2.25 2 0.25

7 2.25 2.25 0.25

8 2 2.25 0.25

9 2.5 2 0

10 2.5 2.25 0

11 2.5 2.25 0

12 2.5 2.25 0.25

Once the mesh is imported, an initial geometry with an array of voids can be

formulated, using the subfunction ‘InitialStruc’. This array of voids is determined by a

user defined 3x3 matrix ‘init’, which for example can be set to

[4,4,4;3,3,3;10,10,10]. The first row of this matrix, [4,4,4], denotes the size of each

initial void in the three coordinate directions. The second row of this matrix, [3,3,3], denotes the

gap between each initial void in each direction, and the final row, [10,10,10] represents how

many times this void and structure pattern are repeated in each direction. This subfunction

‘InitialStruc’ uses the imported mesh data of ‘elements’, ‘nodes’, and ‘boundary’ along

with the variable ‘init’ to generate the following outputs:

• struc: True/false matrix of material distribution

• Esize: [𝑙𝑥 𝑙𝑦 𝑙𝑧] size of the elements in the mesh

• map: A vector specifying the index of the level-set function belonging to each

element

92

• noF: List of degrees of freedom belonging to the homogeneous boundary

where no forces should be applied to

• exterior: List of indices of ‘struc’ that lie outside of the design domain

In implementing these initial voids, this array is centered and trimmed to ensure that all

boundary elements start as solid. With all of this, the initial geometry is created and stored into

a 3-D matrix saved as ‘struc’. This matrix has the size of the maximum number of elements in

each direction and has a value of ‘1’ if the element has material and a ‘0’ if the element is void.

Indicies of the ‘struc’ matrix that are outside of the imported geometry are set to ‘1’ as well

and will stay as such throughout the entire process. Despite not containing material, ‘struc’

indices outside the domain are set to a value of 1 to ensure proper LSF values along the outer

edges of the pressure vessel when initializing to a signed distance function. Following the

execution of the subfunction ‘InitialStruc’, a meshed grid of the centroid coordinate for

each of the indices of ‘struc’ are stored into the variables ‘sX’, ‘sY’, and ‘sZ’ for the three

coordinate directions respectively. Additionally, the total volume, stored as ‘volTot’, is

calculated as the product of the components of ‘Esize’ multiplied by the number of elements.

 Once the initial structure has been established, the initial level-set function can be

computed as a signed distance function. Unlike in the situation with the rectangular cuboid

design domain or the initial phases of the irregular shaped domain where the level-set function

coincides with the discretization of the meshed finite elements, here the LSF is disjointed and

spaced at 1.5 times the size of the elements. LSF kernel values or design variables, ‘𝑠𝑖’ in

equation 2.7, are stored in a matrix, ‘lsf’. Shown in equation 4.1, the convention of the level-

set function defines any positive value as void and any negative as solid. With this convention

and utilizing the image processing toolbox and its ‘bwdist’ function, the initialization of the LSF

93

to a signed distance function can be done by first finding a signed distance function of the

structure then linearly interpolating to the grid points of the LSF discretization, shown in the two

lines of code below. The function ‘bwdist’ evaluates the Euclidean distance from each element

to the nearest non-zero element. Therefore, the first half of the first line of code evaluates the

void regions of the LSF (positive values), and the second term evaluates the LSF for the solid

regions which are negative values, thus the subtraction of the terms. The built-in function

‘griddata’ is used to execute this linear interpolation.

lsf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1);

lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ);

{

𝜑(𝑋) < 0 𝑋 ∈ Ω ′𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙′

𝜑(𝑋) = 0 𝑋 ∈ 𝛤 ′𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒′

𝜑(𝑋) > 0 𝑋 ∈ (𝐷\Ω) ′𝑉𝑜𝑖𝑑′

} (4.1)

Once the level-set function is defined, a list of the LSF indices that lie on the boundary or

outside the design domain are saved in the variable ‘bearing’, which is used later to set the

Hamilton-Jacobi velocities of these indices to zero. There are indices of the ‘struc’ matrix that

lie outside of the design domain because the size of the structure matrix is squared off to the

maximum number of elements in each direction. Additionally, the matrix ‘Hie’ is defined to be

used during filtering sensitivities from the elements. The conversion from elemental sensitivities

to LSF sensitivities is done using the basic filter defined in equation 4.2, similar to density filters

used in density-based topology optimization methods.

 𝜕𝑅

𝜕𝑠𝑖

̃
=
∑ 𝐻𝑖𝑒𝑉𝑒

𝜕𝑅
𝜕𝛺𝑒∈𝑁𝑖

|𝑒

∑ 𝐻𝑖𝑒𝑉𝑒𝑒∈𝑁𝑖

 (4.2)

94

Where 𝐻𝑖𝑒 are weighting factors and 𝑁𝑖 defines the neighborhood of elements, 𝑒, for a

particular LSF index, 𝑖. Each element having its own volume, 𝑉𝑒, and computed response

sensitivity,
𝜕𝑅

𝜕𝛺
|𝑒. These neighborhoods are defined as:

𝑁𝑖 = {𝑒 ∶ 𝑑𝑖𝑠𝑡(𝑖, 𝑒) ≤ 𝑟} (4.3)

Here the operator 𝑑𝑖𝑠𝑡(𝑖, 𝑒) refers to the Euclidean distance between the center of the 𝑒𝑡ℎ

element and the 𝑖𝑡ℎ index of the LSF, and 𝑟 is the size of the neighborhood or filter, set to 1.25

times the LSF discretization spacing. The weighting factor, 𝐻𝑖𝑒, is then defined as:

 𝐻𝑖𝑒 = 𝑟 − 𝑑𝑖𝑠𝑡(𝑖, 𝑒) (4.4)

The final portion of the code prior to the optimization loop determines the loading

conditions, fixed boundary conditions and the elemental stiffness matrix. Because the topology

optimization problem contains pressure loading, the force vector for the finite element analysis

has to be computed every iteration as the design changes. Despite this, a value for the nodal

force component magnitude of each element that is void is defined as the perpendicular surface

area times the nominal pressure value and divided evenly amongst each node on the respective

surface of the element, equation 3.27 and 3.28. This is computed as

‘Po=circshift(Esize,1).*circshift(Esize,-1)*Pressure/4’ during this

initialization phase, where ‘Esize’ is a 1x3 vector of the size of each element in the x, y, and z

direction respectively and ‘Pressure’ is the nominal PSI value of the internal pressurized gas.

The Dirichlet boundary condition, or fixed degrees of freedom, are determined to be 4 nodes

with one fixed in all directions and the other three having a roller boundary condition in each of

the three coordinate directions. These three points with roller boundary conditions are each

95

projected along from the pinned node along the direction they are allowed to deform in. A 2-

dimensional representation of this is shown in figure 4-7 below. Because the nodes of the

Dirichlet boundary need to belong to elements that contain material, only nodes of elements

belonging to the border are considered. The chosen set of nodes and their constraints are

shown on the figure and selected as the set that has the maximum distance from the pinned

point. This search is done in lines 86 through 102 of the code, but are only executed if the values

are not already saved in the loaded mesh file. Once the 4 nodes are determined for the 3-D

problem, they are converted to a list of 9 fixed degrees of freedom for the finite element

process, 3 for the pinned node and 2 for each of the other three elements with roller conditions,

saved as ‘fixeddofs’.

Figure 4-7: Fixed Boundary Conditions

96

4.4 Optimization Loop

Following the initialization, the code enters the optimization loop to determine the

optimal internal geometry. This is done in a while loop until a variable, ‘flag’, no longer equals

to 0. The current iteration number is stored as the counter ‘i’. This loop follows the basic flow

chart shown below in figure 4-8 and can be broken down into 5 parts: 1 finite element analysis,

2 postprocessing and sensitivity calculations, 3 convergence check, 4 update procedure, and 5

preparation for the subsequent iteration. Each of these will be divided into their respective

subsection and explained further in detail. Additionally, a more in-depth flowchart can be found

in appendix [A].

Figure 4-8: Basic Flow Chart

97

4.4.1 Finite Element Analysis

At the beginning of each loop of the optimization, finite element analysis is run to

determine the displacement values for all of the nodes which will be used to calculate the strain

energy densities and sensitivities of each element. To aid in organization, this is all done in a

subfunction ‘[U,K,F]=FEA_3DP5(struc,elements,map,KE,Po,noF,fixeddofs,

oldstruc,oldK,oldF)‘. This function has the following inputs:

• struc: The true false matrix of material distribution

• elements: The matrix of elements and their corresponding nodes

• map: A vector specifying the index of the level-set function belonging to each

element

• KE: The elemental stiffness matrix computed previously from ‘stiff3D’

• Po: The force components applied to each void element’s nodes

• noF: The degrees of freedom that are on the outer boundary

• fixeddofs: The degrees of freedom that are to have no deflection

• oldstruc: The previous iteration’s structure

• oldK: The previous iteration’s global K matrix

• oldF: The previous iteration’s global force vector

and the following outputs:

• U: Deflection values for each degree of freedom

• K: The global stiffness matrix

• F: The global force vector

98

Within the subfunction, the global stiffness matrix and force vector, ‘K’ and ‘F’, are

initialized as the previous iteration’s, ‘oldK’ and ‘oldF’, and then only need to be modified

accordingly as opposed to completely recalculated every iteration. First the current structure is

compared to the previous iteration’s structure (input ‘oldstruc’) to identify the indices of

the LSF that have changed since the previous iteration. Using the ‘map’ vector, these indices are

set to correspond to the elements that have changed, ‘ele’. Next, for each element that has

changed, the previous iteration’s elemental stiffness matrix (Ke_old) and force vector

(Fe_old) are computed along with the current iteration’s elemental stiffness matrix (Ke) and

force vector (Fe). Then at the appropriate indices (dof(ele(i),:)) of the global stiffness

matrix (K) and force vector (F), the previous iteration’s elemental stiffness matrix is subtracted

out and the current one’s added in. This process can be found in lines 54 through 63 of the

subfunction and has proved to save orders of magnitude in computational time every iteration

that uses the same mesh from the previous iteration, because it eliminates looping through

every element of the domain each time during the assembly process. Following the assembly

process, the force vector components along the homogeneous boundary, the exterior surface of

the pressure vessel, are set to zero with the ‘noF’ index list, ‘F(noF)=0’. Once the global

stiffness matrix and force vectors are computed, the fixed degrees of freedom are applied via

the partitioning method, using the following lines of code. The free degrees of freedom

‘freedofs’ can be computed as:

 freedofs=setdiff(1:3*numnodes,fixeddofs)

Then the remaining system of equations is computed using the standard MATLAB backslash

operator as:

U(freedofs,:)=K(freedofs,freedofs)\F(freedofs,:)

99

The function outputs the displacement values along with the new global stiffness matrix and

global force vector that are to be saved as a starting point for the following iteration.

4.4.2 Postprocessing and Sensitivity Calculations

Directly following the computation of the nodal displacements, the strain energies of

each element are computed. As defined in section 3.23.2, the strain energy, C, of the system is

equivalent to the summation of the elemental strain energies, as shown in equation 4.5 below,

where U is the deflection vector, K is the global stiffness matrix, N is the number of elements, 𝒖𝑒

is the elemental deflections, and 𝒌𝑒 is the elemental stiffness matrix.

 𝐶 = 𝑼𝑇𝑲𝑼 =∑𝒖𝑒
𝑇𝒌𝑒𝒖𝑒

𝑁

𝑖=1

 (4.5)

Because of the defined LSF to structure relation, equation 4.1, and the sensitivity of

compliance computed in equation 3.36, the negative of the strain energies for each element are

saved into ‘CompE’. This is done via the following lines of code (lines 123-125):

for(e=1:numelem)

 CompE(e)=-

max(struc(map(e)),0.0001)*U(dof(e,:))'*ke*U(dof(e,:));

end

After this, the overall objective, i.e. system compliance, ‘obj(i)’ is computed as the

summation of ‘CompE’. Because the structure matrix is defined as 1 where material is and 0

where void, the current volume fraction ‘vol(i)’ is computed as the sum of the structure

matrix that is meshed multiplied by the volume of one element and divided by the total volume

calculated during the initialization phase as ‘volTot’. This phase of the loop is also where the

iteration data is printed to the command window, and, if desired, plots are created and saved

into video files.

100

4.4.3 Convergence Checks

Immediately following this, a quick check for convergence is done if the optimization has

done at least 5 iterations. There are two checks for convergence. The first being: is the volume

within a specified tolerance (0.003 for this problem) of the target volume fraction, and the

previous 5 iterations are all within 5% compliance of the current iteration’s? The second check

for convergence is if the iteration counter, ‘i’ has reached the maximum allowed iterations,

‘max_itr’. These convergence checks are done between lines 134 and 141.

4.4.4 Update Procedure

Once convergence is checked and it is determined that the optimization procedure

needs to continue, the LSF is updated for the following iteration. To do this, design velocities,

equations 3.38 and 3.56, are computed based on the objective function and constraints. Then

the LSF can be updated via the Hamilton-Jacobi equation (equation 3.34) and these velocities.

The mathematical description of a minimum compliance structure subjected to pressure loading

can be found in equation 3.42. Following the process in section 3.2, the Lagrangian derived in

equation 3.32 and associated design update velocities for the Hamilton-Jacobi equation, found

in equations 3.38 and 3.57, are restated as:

𝐿 = (∑𝒖𝑒

𝑇𝒌𝑒𝒖𝑒

𝑁

𝑖=1

) + 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞)
2

 (3.32)

𝑣|𝑒 = −

𝜕𝐿

𝜕𝛺
|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 𝜆𝑖(𝑉(𝑥) − 𝑉𝑟𝑒𝑞) (3.38)

𝑣|𝑒 = 𝒖𝑒

𝑇𝒌𝑒𝒖𝑒 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 (3.57)

Using the filtering scheme from equation 4.2 with the weighting factors in ‘Hie’, the elemental

velocities can be converted to LSF velocities. As discussed in section 3.3.2, equation 3.38 is used

101

initially, and then 3.57 is used once the optimization approaches the target volume. Recall this

term ‘𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖’ in equation 3.57 is defined as:

(3.56)

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖−1 + 𝜆𝑖 [𝐾𝑃(𝑉𝑖 − 𝑉𝑟𝑒𝑞) + 𝐾𝐼 (
1

𝑛
∑𝑉𝑖−𝑎

𝑛−1

𝑎=0

− 𝑉𝑟𝑒𝑞) + 𝐾𝐷(2𝑉𝑖 − 𝑉𝑖−1 − 𝑉𝑟𝑒𝑞)]

The Lagrange multipliers for the 𝑖𝑡ℎ iteration, 𝜆𝑖, are stored as ‘La’ and ‘La2’ for equations 3.38

and 3.56 respectively because once the penalty method switches from the original formulation a

separate Lagrange multiplier is used. Following equation 3.39, the Lagrange multipliers starts

small, 0.25 and 0.1 respectively, and are updated by a factor α, stored as ‘alpha’, set to 1.05.

Although the Lagrange multiplier for the original formulation, ‘La’, is updated every iteration,

the second Lagrange multiplier, ‘La2’, is increased by the same factor, α, only upon the volume

stalling for 5 iterations. This stalling is defined as 5 consecutive iterations with less than a 0.005

change in volume fraction.

The first term of the design velocities for both equations 3.38 and 3.57 come from the

compliance term, being the individual components of the ‘CompE’ calculated in the post

processing section as shown in equation 4.5. Then these terms are converted for the LSF using

equation 4.2 and stored as ‘shapeSens’. As discussed in section 3.3.2, the second term for

these velocities serves as a penalty based on the volume constraint, with an original formulation

shown in equation 3.38 and the PID-type scheme in equation 3.56. This original scheme is

utilized until the volume enters a specified range of the required volume. This range is set to

±0.05. From this point on, the penalty term is computed following the PID-type scheme. The

final penalty term prior to entering this range is saved to a vector ‘Control’. Then each

102

iteration attempts to track the progression of the volume fraction and modify this control value

accordingly. The gains, [𝐾𝑝 𝐾𝐼 𝐾𝐷], serve as scaling factors between the proportional,

integral, and derivative terms respectively. Within the code, these factors are stored in the

vector ‘PID’ and set to [1,0.5,0.1]. The computation of the design update velocities is

done in lines 144 through 164, which are shown below.

%Update Procedure--

if(abs(vol(i)-volReq)<0.05)

 relax=1; %Stop relaxed penalty if within volume band (0.1)

end

if(relax==0) %Execute relaxed penalty

 La=alpha*La;

 Penalty=La*(vol(i)-volReq);

 Control=[];

 Control(i)=Penalty;

else

 if(max(vol(max(1,i-5):i))-min(vol(max(1,i-5):i))<0.002&&i>5)

 La2=alpha*La2;%Update Lagrange mult on PID if volume

hasn't changed

 end

 Control(i)=La2*PID*[(vol(i)-volReq);...

 ((sum(vol(max(1,i-4):i))/numel(max(1,i-4):i))-volReq);..

 (2*vol(i)-vol(max(1,i-1))-volReq)];

 Penalty=sum(Control);

End

shapeSens=reshape((Hij*CompE)./max(sum(Hij,2),0.0001),LSFsize);

SensTotal=(shapeSens/max(abs(shapeSens(:))))+Penalty;

Here ‘SensTotal’ contains the design velocities for the Hamilton-Jacobi equation. Note that

the ‘shapeSens’ values are normalized by dividing them by their largest absolute value. Also,

the ‘Control’ term is saved as a vector to allow for its analysis following the optimization to

aid in debugging and tuning.

The physical update of the LSF is done in a subfunction ‘updatestep3’. In this

function, the LSF, sensitivities, step length, element size, and list of elements that cannot change

are passed as inputs and the updated LSF along with the new structure serve as the function’s

103

outputs. The first thing that is done in this subfunction is the smoothing or filtering of the

velocities. This is done by a 3-D convolution with the matrix ‘[C]’ defined as:

𝐶(: , : ,1) = [
0 1 0
1 2 1
0 1 0

] /27

𝐶(: , : ,2) = [
1 2 1
2 3 2
1 2 1

] /27

𝐶(: , : ,3) = [
0 1 0
1 2 1
0 1 0

] /27

(4.6)

In effect, this takes each term as the weighted average of itself and the neighboring indices that

would form a 3x3x3 matrix around it. This ‘[C]’ matrix weights the center element with a value

of 3, and all of the indices ±1 in the i, j, k directions a weight of 2. The ‘[C]’ matrix is divided by

27 so that the sum of all of the indices equals 1 to make it a true weighted average.

From here, the sensitivities for the locations where the LSF are not supposed to change

are set to 0, this list of elements that are locked is found in the variable ‘bearing’. The final

step of the update is to apply the Hamilton-Jacobi equation (equation 3.34), which is done in the

subfunction ‘[struc,lsf] = evolve(v,g,lsf,stepLength,w)’. Here the inputs

‘v’, ‘g’ and ‘w’ refer to the terms 𝑣, 𝑔, and 𝑤 of the Hamilton-Jacobi equation and

‘stepLength’ is the number of ‘Courant-Friedrichs-Lewy’ (CFL), equation 3.41, time steps the

evolution equation is solved at each iteration. Note this subfunction incorporates the

topological derivative, 𝑔, and its weighting term, 𝑤, to formulate the reaction term of the

Hamilton-Jacobi equation, here these terms are set to 0 for the optimization of pressure vessels.

In the code, the time step found in equation 3.40 is stored as ‘dt’, and is calculated to be 10% of

the stability condition. Then 10 of these timesteps are done for the prescribed value of

104

‘stepLength’. The gradient of the LSF for the Hamilton-Jacobi equation is evaluated with a

finite difference scheme. To prevent errors along the perimeter, LSF values are extended to

form a border. Then using the ‘circshift’ command both a positive and negative finite

difference in each coordinate direction can be computed. To calculate the update for one

iteration, the following lines of code repeat the computation of the Hamilton-Jacobi equation

based on the value of ‘stepLength’.

for(i=1:(10*stepLength))

 dpx=circshift(lsf,[-1,0,0])-lsf; %Find derivatives on the

grid

 dmx=lsf-circshift(lsf,[1,0,0]);

 dpy=circshift(lsf,[0,-1,0])-lsf;

 dmy=lsf-circshift(lsf,[0,1,0]);

 dpz=circshift(lsf,[0,0,-1])-lsf;

 dmz=lsf-circshift(lsf,[0,0,1]);

 %Update LSF

 lsf=lsf-dt*min(vFull,0).*sqrt(min(dmx,0).^2+max(dpx,0).^2+…

min(dmy,0).^2+max(dpy,0).^2+min(dmz,0).^2+max(dpz,0).^

2)…

-dt*max(vFull,0).*sqrt(max(dmx,0).^2+min(dpx,0).^2+…

max(dmy,0).^2+min(dpy,0).^2+max(dmz,0).^2+min(dpz,0).^

2);

end

4.4.5 Preparation for Subsequent Iterations

Following the update of the LSF, a few book-keeping items are taken care of in

preparation for the following iteration. The majority of this comes in the form of mesh

consideration and determining if the structure should be re-meshed or if elements need to be

added to the existing mesh. However, prior to this the old structure is saved as ‘oldstruc’ for

the FEA to compare to the new structure. Then a re-mesh determination is considered. This

determination is stored in the iterative counter ‘mesh’ and re-meshing occurs when this

counter is zero. To be set to zero the following if statements are considered:

105

if(mesh>=5)

 if(mesh>=8 && max(abs(vol(i-4:i)-volReq))<band)

 mesh=0; disp('option1');

 band=0.8*band;

 Esize=0.85*Esize;

elseif(numel(setdiff(find((strucoldstruc)==1),[map;exterior]))>=…

0.3*numelem)

 mesh=0; disp('option2');

 band=0.15;

 Esize=repelem((prod(Esize)*(sum(struc(map)+…

numel(setdiff(find((strucoldstruc)==1),[map;exterior]…

))))/(1.2*numelem))^(1/3),3);

 elseif(numnodes>100000)

 mesh=0; disp('option3');

 Esize=repelem((prod(Esize)*sum(struc(map))/…

 (0.75*numelem))^(1/3),3);

 end

end

This first ensures that the domain is not re-meshed within 5 iterations of remeshing.

Then three checks are conducted to determine if the domain should be re-meshed. The first of

these checks is on the convergence behavior of the volume fraction. Here if the volume fraction

is consistently within a range of the goal volume for the past 5 iterations, the algorithm

determines remeshing should occur by setting ‘mesh’ to 0 and assigning a new element size at

85% of the existing size. Additionally, this tolerance band is initialized to 0.15 and is reduced

each time the algorithm re-meshes via this criterion. A second criteria for remeshing is if a large

number of elements would need to be added to the mesh based on the last evolution of the LSF.

This large number of elements is considered to be 30% of the existing number of elements. Here

the element size is chosen such that there would be roughly a 10% increase in the number of

elements. Finally, the last criteria deeming the need to re-mesh is in the event of too many

nodes as this causes the FEA procedure to be too computationally expensive. In this event the

element size is chosen such that there would be roughly a 25% reduction in the number of

elements.

106

Following this logic flow to determine if re-meshing should be done, one of three

possible processes is executed. These include: 1 re-meshing the domain, 2 reverting to original

structure, 3 reinitializing the LSF and adding appropriate elements to the mesh. The process of

re-meshing occurs if the variable ‘mesh’ is zero and is executed in the subfunction ‘remesh’.

The flow of this subfunction closely resembles the script ‘Make_Mesh.m’ discussed in section

4.2. However, in this case once the ‘cells’ matrix is formulated, the LSF is used to generate the

‘struc’ matrix based on the new element size. Then only the ‘cells’ that also correspond to

material domain in ‘struc’ are meshed into elements. This process omits void regions from

being part of the mesh and having to be modeled as artificially weak material, similar to a

conforming mesh or an immersed boundary technique discussed in section 2.2.2. The outputs of

the subfunction ‘remesh’ include new values for:

• struc: The new material distribution representation based on the new

element size

• elements: The new global node to element relations

• nodes: The new coordinates for each of the nodes in the mesh

• map: The new relation from elements to ‘struc’ indices

• boundary: The new list of elements along the border of the design domain

• noF: The new degrees of freedom that are on the outer boundary

• [sX,sY and sZ]: The new meshgrid of the coordinate centroids for the

indices of ‘struc’

• exterior: The new indices of the structure that lie outside of the design

domain

107

After the subfunction ‘remesh’ is called, if there are too many nodes (greater than 100,000)

the function is called again with a slightly larger element size. Finally, once the appropriate mesh

is conducted, new values are computed for the remaining variables that need to be updated.

These variables include: the weighting terms ‘Hie’, nodal pressure value ‘Po’, the degrees of

freedom matrix ‘dof’, elemental stiffness matrix ‘ke’, and the fixed degrees of freedom

‘fixeddofs’.

If re-meshing does not occur, the next thing that is checked is if the structure is

completely solid. Since the compliance sensitivity is always negative, if the Lagrange multiplier

starts too small and the initial void region is too thin, there is a rare chance that in the initial

iterations, the update may remove all void elements, making the structure completely solid. This

makes the FEA analysis meaningless since there is no force applied on the inside, and results in

no displacements nor shape sensitivities, causing the algorithm to never recover or add any void

back. To prevent this from occurring, if the structure is completely solid, the code reverts back

to the initial geometry and once the Lagrange multiplier is large enough this problem would not

happen again, thus highlighting the importance of starting with an appropriate Lagrange

multiplier to limit wasted iterations that result in a completely solid structure.

If neither remeshing nor restarting occurred, the LSF is periodically reinitialized and

elements are added to the mesh if needed. This periodicity of reinitialization is defined by the

user defined variable ‘numReinit’ and is done so with the following lines of code.

108

if(~mod(i,numReinit)) %reinitialize LSF

sdf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1);

 lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ);

 lsf(Nanind)=sdf(map(id))-d./Esize(1);

 struc=griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0;

 struc(map(boundary))=1; struc(exterior)=1;

 clear sdf

end

To determine the indices of any elements that need to be added to the mesh for finite element

analysis during the subsequent iteration, the following line is used:

add=setdiff(find((struc-oldstruc)==1),[map;exterior]);

For each of these indices, the new elements and nodes are appended to their respective

variables. Additionally, the appropriate entries to ‘map’, ‘dof’, and ‘Hie’ are appended to their

stored variables. Finally, to prevent numerical errors with the time saving method of reusing and

modifying the previous iteration’s global stiffness matrix, the new elements are assembled into

‘oldK’ as the artificially weak material to simulate the element having already been part of the

mesh and modeled as void.

4.5 Conclusion and Appendix Usage

To optimize an irregular shaped pressure vessel defined by an STL file, the geometry is

first converted to a voxelated mesh ideal for topology optimization, done so in the

‘Make_Mesh.m’ script. Then the optimization code takes this meshed domain, applies user

defined parameters to establish a topology optimization problem statement to be solved using

the Level-Set method and generates an initial void geometry. During the optimization, this void

is modified such that a prescribed volume fraction goal is achieved while the overall compliance

of the structure is minimized. The first phases allow the user to define various level-set and

problem parameters, then prepares the code to enter the optimization loop. The main portion

109

of the code is done during the second phase, the optimization loop, where the optimal structure

is found. This loop is comprised of 5 main components to analyze the response of the structure,

evaluate the response, check for convergence, update the LSF, and prepare for the subsequent

iteration. As the algorithm converges, the domain is re-meshed to smaller element sizes,

omitting the void to reduce computational expenses of the increased number of nodes. This is a

viable solution due to the forces being calculated as inward normal throughout the solid domain

as opposed to outward normal throughout the void. Additionally, regions omitted during the

remeshing procedure can be added to the solid domain by appending the appropriate elements

to the mesh as needed.

A detailed flow diagram of this optimization loop can be found in appendix A where

each of these main components is identified by dashed boxes. Following this flow chart, the

code itself is presented in appendices B-O. Appendix B contains the script for generating the

mesh, followed by appendix C containing the main optimization code. Appendices D through J

contain all of the subfunctions necessary to execute these two scripts. Appendices K through O

contain the script and associated subfunctions to view the structure and stress distribution at

chosen cross-sections and iterations. Each of these sections start with a table that lists all the

associated variables along with their size and a brief description. In regard to the variables’ size,

the notation of ‘r’, ‘c’, and ‘p’ refer to an arbitrary number of rows, columns, or pages that may

be different on each run of the code. Also, the notation of NSx, NSy, and NSz refer to the

number of structural elements in the x, y, and z directions respectively, while NLx, NLy, and NLz

refer to the number of LSF kernels in each direction. Additionally, the codes can be found online

at: https://github.com/JKremar/Irregular_Pressure_Vessel_Topology_Optimization.

https://github.com/JKremar/Irregular_Pressure_Vessel_Topology_Optimization

110

 Chapter V: Preliminary Results

 This chapter discusses the results that were produced throughout the various phases of

the problem evolution prior to solving the topology optimization problem of an irregular shaped

pressure vessel. This is done in hopes to provide insight to the development and formulation of

the final product and justification for the methodologies and implementation procedures

discussed in chapters 3 and 4. Mirroring the problem progression established in section 4.1, this

chapter is organized as follows: section 5.1 discusses results from constant loading conditions in

both ℝ2 and ℝ3, section 5.2 covers the findings from 2-dimensional design dependent loading

trials, and section 5.3 introduces the 3-dimensional pressure cases using a rectangular cuboid

design domain. Note, for the entirety of this chapter, all deformation plots are magnified for

clarity and visibility.

5.1 Constant Loading Conditions

 To develop an understanding of the level-set method, standard codes were made to

optimize 2-dimensional structures with constant loading conditions. The first of these codes

uses a discrete material representation with the discretization of the level-set function

coinciding with the finite element mesh. This code was tied to the user interface shown in figure

4-1 to allow for testing of the algorithm and multiple trials at various parameters and starting

conditions. One run of the code was to optimize a simply supported beam subjected to a

distributed load from the bottom edge, as shown in figure 5-1.

111

Figure 5-1: Simply Supported Beam with Distributed Loading

When optimizing this structure, nominal values were used for the modulus of elasticity and

force loading. A Poison’s ratio of 𝜈 = 0.3 was used and the domain was discretized into 100

elements in the x-direction and 50 in the y-direction. The following level-set parameters were

used: step length of 3, reinitialization frequency of 2, and a topological sensitivity weighting of 3

for the reaction term on the Hamilton-Jacobi equation. With these parameters and a volume

fraction goal of 30%, the structure and deformed structure shown in figures 5-2 and 5-3 were

achieved.

Figure 5-2: Distributed Load Optimized Structure

Figure 5-3: Distributed Load Deflection Plot

112

Figure 5-4 shows the volume fraction and compliance by iteration plots.

Figure 5-4: Distributed Loading Compliance and Volume Fraction Plots

 The second code for 2-dimensional static loading conditions increased the complexity by

utilizing radial basis function (RBF) to parameterize the LSF (see section 2.2.1) and a density-

based geometry mapping (see section 2.2.3) to allow for the use of intermediate densities for

each element cut by the cross-section of the iso-contour of the LSF. This allows for the use of a

contour map with much smoother representation of the geometry as opposed to the pixelated

results from the discrete implementation shown in figures 5-2 and 5-3. A cantilevered beam,

figure 5-5, was optimized using this method with nominal values for the force value and

modulus of elasticity, a Poison’s ratio of 𝜈 = 0.3, and a volume goal of 35% material.

113

Figure 5-5: Cantilevered Beam Problem

For the implementation, the domain was discretized into a 30x60 square element mesh. In this

example there was not a reaction term derived from topological sensitivities used in the

Hamilton-Jacobi equation to update the LSF. Because of this, the initial structure, figures 5-6 and

5-7, had a series of holes due to the lack of ability to add holes throughout the optimization.

Figure 5-6: RBF Initial Structure

114

Figure 5-7: RBF Initial Level-Set Function

Additionally, the method of updating the Lagrange multiplier was modified from the method

used in the discrete example. Instead, the update method shown in equations 3.51 and 3.52 was

used. An intermediate structure and LSF at iteration 60 are shown below in figures 5-8 and 5-9.

115

Figure 5-8: RBF Structure at Iteration 60

Figure 5-9: RBF Level-Set Function at Iteration 60

116

Throughout the optimization, the ‘truss’ members on the right side of the figure were phased

out as the algorithm added material to the remaining structural members, as shown in the final

structure shown in figure 5-10.

Figure 5-10: RBF Final Structure

Figure 5-11: RBF Final Level-Set Function

117

This can be seen in the volume fraction and compliance versus iteration plots shown in figures

5-12 and 5-13 where there are evident spikes between iterations 65 and 75 as these sections

were phased out.

Figure 5-12: RBF Compliance Versus Iteration

Figure 5-13: RBF Volume Fraction Versus Iteration

It should be noted that this implementation struggled to completely converge depending on the

target volume fraction, where it would become unstable, oscillate, and fail to converge. Both of

these level-set methods in ℝ2, provided results comparable to the literature [13], [43].

118

 Following the implementation of the LSM for static loading cases in ℝ2, the method was

expanded to ℝ3. Here a cantilevered beam, shown in figure 5-14 was discretized into 60x4x30

cubic elements. As in the first 2-dimensional case, a discrete geometry representation was used.

The deformation of the final solution can be seen in figure 5-15.

Figure 5-14: 3-D Cantilevered Beam Problem

Figure 5-15: 3-D Cantilevered Beam Deformed Structure

119

5.2 Two-Dimensional Pressure Loading

 The first phase of the progression toward topology optimization of an irregular shaped

pressure vessel is to solve problems in ℝ2 with design dependent pressure loading. Two

methods were attempted during this phase, which led to the decision to pursue using the Level-

Set Method. The first of these methods modeled the approaches developed by Lee and Edmund

[52] using a density-based topology optimization, identifying an iso-density line as described in

section 2.3. The second method modeled the work of Xia et al. [47], [50] by using a level-set

method with two level-set functions to model the pressure and free boundary independently.

 This first method proved effective in identifying the pressure boundary when the

density distribution is crisp, as so with initial geometries, shown in figure 5-16. Here the intent is

to simulate a pressure vessel in ℝ2 by optimizing a structure with internal voids. Figure 5-16

shows the density distribution on a grey scale of a square structure with 2 initial voids, cropped

vertically for visibility. Iso-density points are located and marked with blue circles and the

pressure boundary is illustrated by the orange and yellow lines connecting these points.

Figure 5-16: Iso-Density Identification During Early Iterations

120

However, congruent with density-based optimizations, the intermediate iterations tend to blur

the density variation throughout the design domain as the algorithm determines the optimal

material distribution. This causes issues with the current method of identifying the pressure

boundary. As shown in figure 5-17, as this density distribution gradient flattens with more

intermediate densities at a later iteration of the optimization, the method struggles to identify

the appropriate locations to apply the pressure forces. The geometry of figure 5-17 started as

one centrally located void and here it can be seen that there are unnecessary iso-density points

forming islands. This causes the pressure loading path to be improperly determined as it loops

over itself, X=8, Y=25 in figure 5-17.

Figure 5-17: Iso-Density Line Errors

Additionally, this method does not translate to ℝ3 as this would cause the algorithm to perform

this operation at every cross-section and slicing them together.

121

 The second method implemented for design dependent pressure loading problems in

ℝ2 followed the works of Xia et al. [47], [50] described in sections 2.3 and 3.3.1. To determine

the effectiveness of this concept, it was used to solve the problem as defined in figure 4-2. Here

a rectangular domain is pinned on both bottom edges and subjected to an upward pressure

loading from the bottom edge. This closely resembles the problem described and solved in

figure 5-1 with the exception of the forces now being design dependent and following the

material boundary as it moves.

Figure 5-18: 2-D Pressure Loaded Structure and Deformation

Figure 5-19: 2-D Pressure Loading Level-Set Functions

122

As to be expected, figure 5-19 shows the algorithm optimized the structure to form an arch,

converging in 68 iterations. The use of a LSM proved to be effective in allowing the material

domain to remain solid (no intermediate densities) and identifying the locations and magnitudes

of the design dependent pressure loads. With these discoveries it was determined that the use

of a level-set method would be ideal for a pressure vessel.

5.3 Three-Dimensional Pressure Box

 After using a level-set method to solve design dependent pressure loading problems in

ℝ2 (section 5.2) and static loading problems in ℝ3 (section 5.1), these two concepts were

combined to optimize 3-dimensional structures with design dependent pressure loads. Before

attempting to solve irregular shapes, however, the design domain was simplified to a box with

internal pressure at the void/material interface as shown in figure 4-3. Similar to the first

implementation of static loading in ℝ2, a discrete material representation was used with LSF

nodes coinciding with element centers. As discussed in the explanation of defining fixed

boundary conditions for 3-dimensional problems (section 4.3 and figure 4-7), the pressure boxes

were fixed at the origin and given roller boundary conditions at the corners located on the

coordinate axes allowing for deflection in their respective direction. This is shown in figure 5-20.

As in a pressure vessel, the outer boundary is forced to stay solid and the interior void is subject

to change during the optimization. As the method was developed and trials were run, nominal

values were used for the modulus of elasticity and pressure.

123

Figure 5-20: Pressure Box Problem Definition

5.3.1 Trials and Issues

 At first, this problem was executed with 40 elements in the x-direction, 20 elements in

the y-direction and 10 in the z-direction and an initial condition with one centrally located void

as seen in figure 5-21. Note, for all void plots the outer surface of the pressure vessel is modeled

as a transparent orange and the interior void elements a solid purple.

Figure 5-21: Pressure Box 40x20x10 Starting Void and Deformation

124

The algorithm performs well initially, as seen in figure 5-22 with ribs and other internal support

structures being generated at iteration 75.

Figure 5-22: Pressure Box 40x20x10 Iteration 75 Void and Deformation

Despite appropriate moves during initial iterations, unfortunately the optimization fails to

converge on a solution and instead begins adding too much material until it eventually is a solid

structure. At this point the LSM will never be able to remove material because of the lack of a

reaction term from topological derivatives in the Hamilton-Jacobi equation.

 It was recognized that the supporting structures approached elemental thickness at the

near convergence states before rapidly diverging. This could prove particularly troublesome

especially when combined with the discrete material nature of the LSM’s current formulation. A

couple of the experimented solutions to this were to 1) maintain the structure’s aspect ratios

and refine the mesh and 2) Incorporate the use of intermediate densities. The volume fraction

and compliance versus iteration for a trial with a mesh size of 60x30x15 can be seen in figure

5-23, and the void structure and deformations of the trial with intermediate densities can be

seen in figures 5-24 through 5-27. Here the deflection plots for iterations 1, 20, 40 and 60 are

neglected because the deflections are unrecognizable at a consistent magnification factor used

for iterations 62 and 90.

125

Figure 5-23: Pressure Box 60x30x15 Volume and Compliance Versus Iteration

Figure 5-24: Pressure Box Intermediate Densities, Iterations 1 and 20

Figure 5-25: Pressure Box Intermediate Densities, Iterations 40 and 60

126

Figure 5-26: Pressure Box Intermediate Densities, Iteration 62

Figure 5-27: Pressure Box Intermediate Densities, Iteration 90

Both changes seemed to help by giving more geometric control compared to the initial

results, however the algorithm continued to experience improper behavior close to the target

volume, seen in figures 3-7, 3-8, and 5-23.

To attempt to solve these issues, other modifications were tried. In an effort to aid the

starting condition and flexibility of the LSF evolution, the initial structure was subjected to a

127

variety of void shapes and multi-void array patterns, mimicking what was done with the radial

basis functions in ℝ2. These multi void starting conditions provided improved results upon

initially reaching the target volume fraction, however failed to solve the issues of final

convergence. Figure 5-28 shows both the compliance and volume fraction versus iteration plots

for a trial with 5x5x5 voids spaced 2 elements apart in all directions and patterned 8, 4, and 2

times in each coordinate direction, respectively. As seen in figure 5-28, although many times the

LSM will attempt to recover from this improper performance, it fails to reach objective values

previously found and has unstable behavior. Other attempted solutions involved flipping the

objective and constraint, and modifying the Lagrange multiplier update, all with limited success.

Figure 5-28: Pressure Box Multiple Starting Voids Compliance and Volume

 5.3.2 Pressure Box Solutions and Results

 As explained in sections 3.3.2 and 4.4.4, it was recognized that the various Lagrange

multiplier update and penalty schemes from the literature harbored great similarities to

concepts of PID controls. With this in mind, the penalty formulation was modified to act as a PID

controller would (equation 3.56). The figures below show the results from two runs of the

128

algorithm with this modification. The first having an initial condition of one large void (figures

5-29 through 5-34) and the second an array of smaller voids (figures 5-35 and 5-36). In both

cases, the problem is unitless with a domain of 60x30x15, the material properties have the

modulus of elasticity set to 1 and Poison’s ratio to 0.3, and there is a pressure force of 1 from all

interior voids. The Lagrange multipliers were initialized to 𝜆𝑜 = 0.001 and 𝜆𝑃𝐼𝐷 = 0.001 with an

update factor of 𝛼 = 1.11. Additionally, it was discovered that PID gains of 𝐾𝑃 = 0.5, 𝐾𝐼 = 1, and

𝐾𝐷 = 0.25 provided stable convergence behavior across most starting conditions.

Figure 5-29: One Starting Void Iterations 20 and 30

Figure 5-30: One Starting Void Iterations 40 and 75

The following plots show the iteration data for this run. Figure 5-32 shows the individual terms

found in equations 3.53, 3.54 and 3.55 multiplied by their respective controller gains. Figure

129

5-33, shows the difference between the penalty term used in this implementation and what

would have been used with the original Lagrangian penalty method. Note the non-zero value at

the end, and the 2 lines coinciding for the first 20 iterations because the original formulation is

used initially. The justification for this non-zero penalty can be seen in figure 5-34 where the

average shape sensitivity is clearly negative, and the maximum is zero.

Figure 5-31: One Starting Void Volume and Compliance

Figure 5-32: One Starting Void PID Terms

Figure 5-33: One Starting Void Penalty Term

130

Figure 5-34: One Starting Void Shape Sensitivity

Figure 5-35 and 5-36 show the initial and final void structures and the volume and

compliance versus iteration plot for a trial with multiple starting voids by using an ‘init’ matrix

of [3,3,3;2,2,2;10,6,2] (explained in section 4.3). The one starting void trial converged in 75

iterations with a compliance of 205.342, whereas the trial with multiple voids converged in 68

iterations with a compliance of 181.628.

Figure 5-35: Multiple Starting Voids Iterations 1 and 68

131

Figure 5-36: Multiple Starting Voids Volume and Compliance

 Once the method was established and working correctly, trials were done with practical

material and pressure values as opposed to the prior trials using nominal values. Here the

domain used maintained the aspect ratios of the previous trials but was given dimensions of

11.6”x5.8”x2.9”, resulting in the same outer volume as the existing pressure vessel for the MK-

16. The domain was again discretized into 60 elements in x, 30 in y, and 15 in the z-direction,

making each element a cube of length 0.1934”. Because the existing pressure vessel is made

from Inconel718, the assigned material properties were set to 29.5x106 PSI for the modulus of

elasticity and 0.29 for the Poison’s ratio. The void was modeled with a pressure of 5,000 PSI. The

volume and compliance versus iteration is shown below in figure 5-37. Here the importance of

not having too small of a starting Lagrange multiplier was discovered, as it would cause the

structure to turn completely solid, eliminating the ability to recover and add voids. Thus, the

check for a solid structure and reverting back to the initial condition as explained in the

preparation for the subsequent iteration found in section 4.4.5 was implemented.

132

Figure 5-37: Real Valued Pressure Box Volume and Compliance

Having dealt with regular shapes and identified the various issues with the algorithm

and possible ways to address convergence issues, the next chapter describes the application of

the LSF approach to an irregular shaped pressure vessel.

133

 Chapter VI: Irregular Shaped Pressure Vessel Results

 Using the methods established in chapter 3, the implementation procedures laid out in

chapter 4, and the incremental progression of the problem executed in chapter 5, this chapter

discusses the results and findings when applying these principles to determine a geometric

structure for an irregularly shaped pressure vessel. This chapter is organized as follows: section

6.1 overviews the existing pressure vessel, section 6.2 defines the design space for the irregular

shaped pressure vessel, section 6.3 covers the initial results of using the formulation directly as

established for the pressure box, and section 6.4 presents the results after applying the re-

meshing method and disjointing the level-set function from the finite element mesh.

6.1 Existing Pressure Vessel

 As discussed in the introduction in chapter 1, the ability to utilize topology optimization

to determine a geometric structure for an irregular shaped pressure vessel would be tested on

an existing NAVY diving rebreather, the MK-16. This system can be seen in figures 1-1, 1-2 and

6-1 with the back cover removed.

Figure 6-1: MK-16 Back Cover Removed

134

As seen in figure 6-1 and labeled in figure 1-2, there are two spherical gas storage pressure

vessels in the rig. The left side houses the diluent, shown in orange, and the right-side stores

oxygen, shown in green. Due to symmetry and assuming a desire to store an equal quantity of

gas in each, only one of these pressure vessels needs to be considered. The dimensions of the

pressure vessel can be seen in figure 6-2 in the cross-section drawing view, and relevant

properties can be seen in table 6-5.

Figure 6-2: Existing Pressure Vessel Dimensions

135

Table 6-5: Existing Pressure Vessel Properties

Property Value

Material Inconel 718

Modulus of Elasticity 29.5x106 PSI

Poison’s Ratio 0.29

Yield Strength 150 KSI

Outer Diameter 7.20 in.

Thickness 0.13 in.

Displaced Volume 195.43 in.3

Wet Volume 175±10 in.3

Working Pressure 3,000 PSI

In order to compare the results of the irregular pressure vessel to the existing spherical

design, this component was exported to an STL, meshed by ‘MakeMesh.m’ (section 4.2,

Appendix B) and analyzed with the same finite element analysis procedure used during the

topology optimization procedure. This meshing was done with voxel elements just as the

irregular shaped pressure vessel will be processed, and to visualize convergence behavior, the

meshing was carried out with 0.125”, 0.1”, and 0.0625” element sizes. To compare the linearity

in the results, the finite element analysis was executed with an internal pressure of 3,000 PSI,

5,000 PSI, and 12,000 PSI. The results from this analysis can be found in table 6-6 and a stress

plot of the 0.0625 mesh subjected to 5,000 PSI is shown below in figure 6-3. Note the use of

voxel elements leads to increased stress concentrations, particularly with larger elements.

136

Table 6-6: Existing Pressure Vessel FEA Results

Mesh
Size

of
Elements

of
Nodes

Pressure
(PSI)

Max
Deflection (in.)

Compliance
(in-lb/in3)

Max VonMises
Stress (PSI)

0.0625” 82852 144159

3000 0.0225 372.692 58528.05

5000 0.0372 1035.256 97546.75

12000 0.09 5963.075 234112.2

0.1” 20195 44111

3000 0.0231 415.626 52974.3

5000 0.0385 1154.517 88290.5

12000 0.0923 6650.015 211897.2

0.125” 10341 25664

3000 0.0266 453.5255 56591.95

5000 0.0444 1259.794 94319.92

12000 0.1066 7256.41 226367.8

Figure 6-3: Existing Sphere Stresses(PSI) Pressure=5,000 PSI and 0.0625” Elements

137

6.2 Defining the Design Domain

 Once the existing system was chosen and defined, the design space for the irregular

shaped pressure vessel needed to be established. Because the method for optimizing a pressure

vessel used in this thesis fixed the outer boundary of the pressure vessel during optimization,

defining the design domain meant determining the outer geometry of the pressure vessel.

Without changing the rest of the MK-16 and due to the symmetry of the MK-16 and the

assumption of wanting equal oxygen and diluent storage capacity, this meant expanding the

sphere such that it does not interfere with other components, leaving a tolerance, nor cross the

center line of the MK-16. This was done in SolidWorks and the resulting part can be seen in

figure 6-4. For reference, later in the chapter, sides of this geometry are labeled.

Figure 6-4: Proposed Pressure Vessel Geometry for MK-16

138

This geometry has a displaced volume of 369.89 in.3, an 89% increase from the existing spherical

pressure vessel. For an idea of size, several of the dimensions are displayed in figure 6-5 and the

geometry can be seen in place of the oxygen tank within the MK-16 assembly in figure 6-6.

Figure 6-5: Proposed Pressure Vessel Dimensions

139

Figure 6-6: Proposed Pressure Vessel in MK-16 Assembly

 In order to establish a viable mesh for the finite element method to use during

optimization, the geometry needs to be converted to and exported as an STL file to be read by

the ‘MakeMesh.m’ script developed in MATLAB, section 4.2 and appendix B. The generated STL

file resulted in 40,448 triangular faces to define the geometry of this proposed pressure vessel.

Using the ‘MakeMesh.m’ script, the geometry was discretized into numerous meshes with

varying element sizes. Figure 6-7 shows this meshing executed with 0.2” voxel element size.

140

Figure 6-7: Mesh with 0.2” Element Size

Upon meshing this geometry, it was discovered that to achieve an ideal response from

the finite element analysis, the geometry should be rotated such that as many surfaces as

possible are parallel to a cartesian plane. Thus, the geometry was rotated and re-meshed. Table

6-7 summarizes the results from meshing the geometry with different element sizes and

orientations. Note that during the optimization, boundary elements are not subject to change

and are forced ‘on’, thus the last two columns denote the number of boundary elements and

volume fraction of the interior, respectively.

141

Table 6-7: Meshing Summary

No.
Voxel
Size

Orientation
of

Elements
of

Nodes
Degrees of

Freedom
Boundary
Elements

Center
Fraction

1 0.25” Original 23,782 27,399 82,197 6,440 0.729

2 0.25” Rotated 23,593 26,730 80,190 5,618 0.762

3 0.2” Original 46,308 51,913 155,739 10,223 0.779

4 0.2” Rotated 45,768 50,591 151,773 8,831 0.807

5 0.1875” Rotated 56,326 102,120 306,360 10,233 0.818

6 0.15” Rotated 109,738 118,377 355,131 16,183 0.853

7 0.125” Original 189,514 203,710 611,130 26,825 0.858

8 0.1” Original 370,160 392,267 1,176,801 42,260 0.886

9 0.1” Rotated 369,417 388,694 1,116,082 36,918 0.900

6.3 Initial Results

This section presents the data from directly using the method and implementation

procedure that provided stable convergence for the rectangular cuboid design domain

problems, section 5.3.2. That is, a discrete material representation was used with the LSF

discretization coinciding with the element mesh and the pressure being calculated as outward

normal from every void element, figure 3-2 and equation 3.27. Due to the computational

expenses and limitations of MATLAB, it was determined to start with the 0.25” mesh, No.2 in

table 6-3, to optimize the interior structure of the proposed pressure vessel. Considering the

proposed geometry’s total volume, the mesh’s interior volume fraction, and desiring a void

volume larger than the existing pressure vessel, the initial target volume fraction was set to

0.45, equating to a void volume of 203 in3. The PID gains, [𝐾𝑝 𝐾𝐼 𝐾𝐷], for best convergence

were determined to be [1 0.5 0.2]. Initial Lagrange multipliers were set to 𝜆𝑜 = 0.1 and

𝜆𝑃𝐼𝐷 = 0.1 with an update factor of 𝛼 = 1.11. The material properties were set to that of

Inconel718, and a pressure value of 3,000 PSI. With these conditions the optimization converged

142

in 76 iterations with a compliance of 3538.95 in-lb/in3, max stress of 54,128 PSI as seen in the

plots shown in figure 6-8.

Figure 6-8: Volume and Compliance, Target Volume of 0.45, Pressure Calculation from Void

 As seen in figure 6-8, as with many of the trials, there were frequently large oscillations,

iterations 9 and 20 here, as opposed to the steady convergence seen in the pressure box

optimizations, figure 5-37. Many variations of PID gains, starting Lagrange multipliers, and

penalty formulations were attempted to correct this, however the aforementioned conditions

proved the best. Once the structure itself was analyzed, another issue became apparent,

checkerboarding. Different element sizes and filtering techniques were attempted to solve this

issue with little success. Despite this, several structural geometric features were able to be

distinguished, circled in red on figure 6-9 and highlighted in figures 6-10 through 6-12. The

maximum Von Mises Stress of this final structure was 54,128 PSI with an average of 11,596 PSI,

although it should be noted with such large element sizes these peaks are caused by

exaggerated stress concentrations.

143

Figure 6-9: Stress Plot Iteration 76, View Window: X(0,6.75) Y(2,6) Z(0,12.25)

 Marked by the red “1” in figure 6-9, the structure contains a rib connecting the back

face with the angled top face. Figure 6-10 shows this feature closer from both the left and right

views. Here it can be seen that the feature connects the two surfaces like a rib but leaves the

upper portion hollow for more volume.

144

Figure 6-10: Top Rib, View Window: X(0,2.75) Y(2.75,5) Z(7,12.75)

The second label in figure 6-9 shows another rib located midway up the connection

between the near surface (out of window to view interior) and the back surface. As with the top

rib, there is a small opening at its center. This is shown in frigure 6-11. Finally, the third label in

figure 6-9 shows a rib located along the bottom of the pressure vessel, this is shown closer in

figure 6-12.

145

Figure 6-11: Side Rib, View Window X(0,3.5) Y(3.5,7.25) Z(3.75,6.5)

Figure 6-12: Bottom Rib, View Window X(0,2.75) Y(2.75,5) Z(0,3.75)

146

Another common feature found in many of the results from optimizing this domain was

a connection beam from the front to the back surfaces. An example of this can be seen in an

intermediate design at iteration 25 of 93 for trial #33, shown below in figure 6-13. Here the

optimization has over-shot the target volume and is currently at a volume fraction of 0.345.

Figure 6-13: Connection Beam, Trial 33, Iteration 25, View Window X(0,6.75) Y(1.5,3.75)

Z(0,11.5)

 Once parameters that provided stable convergence were determined, the optimization

was run with varying target volumes to determine a Pareto front. The results from these

optimizations can be seen in table 6-8. As expected, this shows that as material volume

increases, the compliance and stresses decrease. This was the case for all target volumes, with

the exception of 50% material, where it is believed that the algorithm stalled at a local

147

minimum. Note the maximum iterations was set to 200, and three of these trials reached this

criterion, despite having final volumes extremely close to their target volume.

Table 6-8: Trials at Varying Target Volumes

Target
Volume
Fraction

Final
Volume
Fraction

Void
Volume

(in.3)

Final
Compliance
(in-lb/in3)

Max
VonMises

Stress (PSI)

Average
VonMises

Stress (PSI)
Iterations

0.25 0.2400 282.4 40,204 320,266 36,268 200

0.30 0.2993 260.4 11,077 143,465 22,953 60

0.35 0.3527 240.5 8,988 143,300 19,233 58

0.40 0.3999 223.0 5,392 73,471 14,812 200

0.45 0.4502 204.3 3,539 54,128 11,596 76

0.50 0.5013 185.3 3,737 82,753 14,368 200

 Additionally, each iteration from all of the executed trials were compiled into a scatter

plot, figure 6-14, to grasp an idea of the design space available with the given domain along with

a visual for the Pareto front. Final values from the runs shown in table 6-8 are highlighted and

labeled. Note, the majority of the trials were done with a target volume fraction of 0.45, thus

the heavy clustering in this region. The fact that some of the volume specific trials were not

along the Pareto front compared to other design points is indicative of the algorithm finding

local minima. Additionally, it should be noted that these points that would be pareto optimal to

the volume specific results were found mid-way through highly unstable trials that never

converged.

148

Figure 6-14: Design Points Volume Fraction Versus Compliance

6.4 Final Results

 After analyzing the results with the implementation used for the 3-D pressure box,

section 5.3.2, it was determined that the structures were sub-optimal, based on the apparent

pareto-front with some solutions dominating it, the non-conclusive convergence behavior, and

the presence of checkerboarding. It was believed that the meshed elements’ size, along with the

filtering techniques, were the main contributors to these undesired results. The use of a finer

mesh proved impractical due to the computational burdens caused by the increase in the

number of degrees of freedom, as shown in table 6-7. Trials were executed with 0.2” voxel

elements, however, any smaller elements were infeasible. Here, is where it was conceived to

change the definition of the pressure loading from the void region to the material domain,

figure 3-3 and equation 3.28, allowing for the mesh to begin the optimization with 0.25” voxel

elements and re-mesh excluding void regions as the voids increased in size. This would in turn

149

allow for increased geometric definition while remaining under the computational limits. This

schematic change also addressed the filtering technique. Because the elements would be re-

meshed to a smaller size, the LSF had to be decoupled from the FEA mesh. To correlate the

elements’ sensitivity to the LSF kernels, the weighted neighborhood filtering scheme is

implemented, equation 4.2. These changes proved to improve structural performance and aid

against checkerboarding. The results of this final implementation are shown here in this section.

 Immediately following this schematic change, the identical starting structure and PID

gains from section 6.3 were tried, �⃗⃗⃗� = [1 0.5 0.2]. Additionally, it was observed that initial

Lagrange multipliers of 𝜆𝑜 = 0.5 and 𝜆𝑃𝐼𝐷 = 0.5 were required to prevent the structure from

turning completely solid, section 4.4.5. To slow the increase of the penalty, a Lagrangian update

factor of 𝛼 = 1.05 was used. Figure 6-15 shows the volume and compliance versus iteration

from this execution. As seen in the figure, following the start of the PID implementation, the

system experiences unstable oscillation. However, prior to this, the compliance values can be

seen as far superior than the previous implementation, an indication of the removal of

checkerboarding (section 6.3).

Figure 6-15: Volume and Compliance, �⃗⃗⃗� = [1 0.5 0.2], 𝜆𝑜 = 0.5, and 𝜆𝑃𝐼𝐷 = 0.5

150

To prevent this unstable oscillation, the proportional gain was reduced, and the derivative gain

was increased, to a new set of gain values of �⃗⃗⃗� = [0.5 0.2 1]. The results of this trial can be

seen in figure 6-16, where the stable convergence behavior can be observed after 194

iterations.

Figure 6-16: Volume and Compliance, �⃗⃗⃗� = [0.5 0.2 1], 𝜆𝑜 = 0.5, and 𝜆𝑃𝐼𝐷 = 0.5

 After observing the results, it was determined that there were several geometric

features with a thickness of one element as the volume first crosses the target volume. Then

upon the first undershoot of the target volume, some of these features are removed and once

the LSF reinitializes it would not be able to add these features back. To minimize the overshoot

of the optimization once the PID terms kick in, the Lagrange multiplier was increased to 𝜆𝑃𝐼𝐷 =

1, for a faster response in control change. Additionally, the Hamilton-Jacobi time step was

reduced to 30% of the CFL condition, equation 3.41. As seen in figure 6-17, this resulted in less

initial undershoot and a faster convergence.

151

Figure 6-17: Volume and Compliance, �⃗⃗⃗� = [0.5 0.2 1], 𝜆𝑜 = 0.5, and 𝜆𝑃𝐼𝐷 = 1

These algorithm parameters resulted in the optimization converging in 142 iterations with a

final compliance of 385.81 in-lb/in3, maximum VonMises stress of 49,179 PSI and an average

stress of 8,231 PSI. The final structure was comprised of 0.15” voxel elements. The stress plots

with the four sides’ outer walls removed, leaving the top and bottom uncropped, are shown in

figures 6-18 with front views and in 6-19 with rear views. Refer to figure 6-4 for orientation and

face descriptions.

152

Figure 6-18: Vreq=0.45 Final, Interior Front View, Window: X(0,6.75) Y(2,6) Z(0,12.25)

As seen in figure 6-18, it is evident that this implementation provided improved results from

section 6.3 as there are numerous structural features present and no signs of checkerboarding.

It is apparent that the algorithm developed several layers to subdivide the domain vertically and

support the larger exterior surfaces by joining them together. Despite this, there are sufficient

openings such that the geometry provides one continuous void region.

153

Figure 6-19: Vreq=0.45 Final, Front View, Window: X(0,6.75) Y(2,6) Z(0,12.25)

To better convey the resulting structure, each of these ‘layers’ of the final geometry are shown

in the following figures as cross-sections in the z-direction and the full domain shown in the x

and y directions. Figure 6-20 shows the upper cross-section from z=8.7” to z=12.75” while 6-21

through 6-24 show the cross-sections between 8.7”, 7.5”, 5.4”, 3.9”, and 0” respectfully.

154

Figure 6-20: Final Structure from Bottom, Z=8.7” Through Z=12.75”

Figure 6-21: Final Structure, Z=7.5” Through Z=8.7”

Figure 6-22 Final Structure, Z=5.4” Through Z=7.5”

155

Figure 6-23: Final Structure, Z=3.9” Through Z=5.4”

Figure 6-24: Final Structure, Z=0” Through Z=3.9”

156

To get a smoother representation of the structure, the level-set function itself was

converted to an STL file to model the void. Then this void structure was combined with the

original exterior model of the irregular pressure vessel, as shown in figure 6-4, and subtracted

using a Boolean operation. This results in a final smoothed geometry by eliminating voxelated

structure. These smoothed results can be seen at various cross sections throughout the

geometry in figures 6-25, 6-26, and 6-27.

Figure 6-25: Smoothed Geometry Bottom

157

Figure 6-26: Smoothed Geometry Middle

Figure 6-27: Smoothed Geometry Top

158

 Similar to section 6.3, once the algorithm was performing properly for a volume fraction

of 45%, multiple trials were executed at varying volume fractions to develop a Pareto curve for

the objective design space. The results from these trials can be seen in table 6-9. Recall the

existing spherical pressure vessel having a void volume of 175 in.3, thus each of these volume

fractions would achieve an improvement in storage capacity. The compliance achieved by these

various volume fractions is not linear and shows drastic increases with volume fractions less

than 40%. Although this is to be expected as the boundary elements are required to remain

solid, the use of discrete voxel elements of such large size would have a much more drastic

effect on this. This is because at 0.25” elements the boundary consist of 23.8% of the total

elements and 14.7% with 0.15” elements, table 6-7, therefore the remaining available volume to

generate support features is drastically limited. Additionally, the use of voxel elements has an

impact on the maximum stresses as it causes stress concentrations that would be able to be

reduced with a conforming mesh allowing for the smoothing of surfaces. Thus, the high peak

stresses yet low average stresses.

Table 6-9: Remeshing Trials at Various Target Volumes

Target
Volume
Fraction

Achieved
Volume
Fraction

Void
Volume

(in.3)

Achieved
Compliance
(in-lb/in3)

Max
VonMises

Stress (PSI)

Average
VonMises

Stress (PSI)
Iterations

0.25 0.246 278.10 5,619.19 462,720 24,341 91

0.30 0.297 259.01 1,127.85 178,185 12,931 115

0.35 0.351 239.04 860.33 115,611 12,310 200

0.40 0.394 223.28 564.49 86,540 7,465 170

0.45 0.450 202.60 385.81 49,179 8,231 142

0.50 0.504 182.857 264.45 52,086 5,877 95

Additionally, all of the iterations from every trial executed were plotted to visualize this Pareto

front, as seen in figure 6-28. This figure provides a clear understanding of the minimum

achievable compliance at a specific volume fraction. The tightness of the scatter points,

159

compared to figure 6-14, indicated the improved performance and removal of checkerboard.

Figure 6-29 shows when visualizing the points for one trial with a large initial overshoot, such as

the one shown in figure 6-16, it was apparent that the designs follow the pareto front, then

after the overshoot compliance values were offset from the pareto front as the volume fraction

increased back towards the target volume. This hysteresis type behavior indicates the inability

to return to previous designs once support features have been removed. Thus, the motivation to

reduce the amount of overshoot, as discussed at the beginning of this section. Additionally,

these reasons combined with the lack of available material are believed to be the cause of both

trials at 25% and 30% volume to not be along the pareto front, as they are dominated by other

designs at their volume fraction.

Figure 6-28: Remeshing Pareto Front

160

Figure 6-29: Volume Fraction and Compliance Designs from Trial #29

161

 CHAPTER VII: CONCLUSION

Overall, the research presented in this thesis establishes a means to implement

topology optimization on an irregularly shaped pressure vessel. Chapter 1 discusses the

motivation behind conducting such research and lays down research objectives and questions.

Discussed further in section 7.2, the results of this research have deemed conclusive to both

research questions proposed in section 1.2. In pursuit of these research questions, a theoretical

irregular shaped pressure vessel was designed for the MK-16 rebreather, in which an increased

gas storage capacity was achieved. This chapter is organized as follows: section 7.1 summarizes

the work that was done for this research by following the chapters outlined in this thesis,

section 7.2 addresses the research questions posed at the beginning of this research, and

sections 7.3 discusses future works that should be done to further the developments made by

this research. Section 7.4 wraps up final remarks and main takeaways from this research.

7.1 Thesis Overview

Following the introduction to the research objectives and motivation, an extensive

literature review was conducted, chapter 2. Here, the foundations and variations of topology

optimization were examined. The field of topology optimization was broken into 3 major

methods: a ground structure approach, homogenization methods, and level-set methods.

Additional research was conducted to observe any current methods of tackling design

dependent pressure loading problems, where two main methods were found for problems in

ℝ2. The first utilized a modification of the SIMP method, a branch of homogenization methods,

where iso-density points throughout the design domain are consecutively connected to

establish a location to apply the pressure forces. This method proved ineffective and would be

162

computationally demanding when extrapolated to 3-dimensional problems, figures 2-12, 2-13,

and 5-17. The second method implements the level-set method with two independent level-set

functions, one to define the homogeneous free boundary and the other to define the Neumann

pressure boundary, figures 3-4, 5-18, and 5-19. With the knowledge gathered from the literature

review it was determined that the use of a level-set method would be best suited to optimize a

pressure vessel in ℝ3.

Chapter 3 then goes on to lay out the governing equations and mathematical derivation

of the methods that were used to conduct this optimization. Ensuing these derivations, chapter

4 dives into the practical implementation procedure used to execute these methods. For the

extent of this research, all computations were performed in MATLAB, and the developed source

code can be viewed in the appendices or online at: https://github.com/JKremar/Irregular

_Pressure_Vessel_Topology_Optimization. Section 4.1 also lays out the progression of the

research problem as it evolved step by step, incorporating additional complexities until reaching

the overall research objectives.

Chapter 5 presents the preliminary results of the initial phases of this progression. Here,

standard level-set methods in ℝ2 were developed for constant loading conditions before

expanding to ℝ3. Then, design dependent pressure loading was explored in ℝ2, followed by a

simplified pressure loading problem in ℝ3, where the design domain was restricted to

rectangular cuboid shapes. As explained in section 3.3.2, at this phase of the progression a PID-

type penalty scheme was developed and implemented to improve convergence behavior. After

the groundwork had been established, the developed method was evaluated for redesigning the

existing spherical pressure vessels used to store breathing gases in a MK-16 rebreather into an

https://github.com/JKremar/Irregular_Pressure_Vessel_Topology_Optimization
https://github.com/JKremar/Irregular_Pressure_Vessel_Topology_Optimization

163

irregular shaped pressure vessel for increased storage capacity. The results of this can be seen in

chapter 6. In order to achieve proper optimization performance and convergence behavior, the

LSF was decoupled from the FEA mesh and the structural domain was allowed to re-mesh to a

smaller element size as the material volume fraction was decreased.

7.2 Discoveries from Research Objectives

 The beginning of this research, section 1.2, established 2 research questions and their

associated hypothesis. To discuss the discoveries of this thesis in regard to each question, they

are restated here for reference:

RQ1: “Can the interior geometry of an irregular shaped pressure vessel, subjected to internal

pressure on its surfaces, be designed to efficiently store high pressure gas using

topology optimization methods?”

H1: “Yes, topology optimization can be used to design the internal structure of such an irregular

shaped tank, that could then it can be manufactured using additive manufacturing.”

Discovery: Yes, topology optimization can be used to design an irregular shaped pressure vessel.

It was determined that the use and modification of a level-set method proved beneficial

in doing so by providing crisp material and void distinctions throughout the optimization

process. Manufacturing and testing of the resulting structures were not conducted

within the scopes of this research and are further expanded upon in the future works of

section 7.4.3.

164

RQ2: “Can an efficient method be developed to track (follow) design dependent pressure

loading conditions on the interior surface for 3-dimensional spaces for use in a topology

optimization algorithm?”

H2: “By adapting a level-set topology optimization approach, it is possible to track changing

pressure surfaces as the design evolves during the iterative design process.”

Discovery: Although a level-set method explicitly defines the material/void boundary of the

design domain, it was determined that the simplest and most effective means of

applying design dependent pressure loading was to apply an inward normal stress on

each element containing material and zeroing nodes along the homogeneous boundary.

This resulted in an equal and opposite cancelation of forces throughout the interior of

the material domain where elements were adjacent to each other. The cancellation of

these adjacent forces, left only desired forces along the Dirichlet boundary, located at

the interior material/void boundary of the pressure vessel.

7.3 Future Works

Although this research effectively addressed each of the research questions proposed at

the beginning of this work, there remains a great deal of tasks that would need to be completed

before an irregular shaped pressure vessel could be efficiently designed, manufactured, and

used. The majority of these tasks fall into the categories of further refining the mesh, utilizing

stress constraints, properties of additive manufacturing, and experimental evaluation.

165

7.3.1 Refined Meshing

 Although the final implementation used here in this thesis refines the mesh as the

volume fraction decreases and the structure begins to converge, it still utilizes a grid of voxel

elements. To more appropriately represent the structure and evaluate stresses, the finite

element method should utilize a much more refined mesh. This is primarily due to the presence

of stress concentrations caused by the jagged structural representation of the gridded voxel

elements. Additionally, an improved meshing technique would allow for a much better

structural representation and control of design changes throughout the optimization, as it is

believed this was the cause of many of the difficulties experienced during this research. Two

possible means of accomplishing this task could be the adoption of a conforming mesh or an

immersed boundary technique, section 2.2.2. Although to effectively utilize either of these

would result in an enormous increase in computational costs.

7.3.2 Stress Constraints

 As mentioned in section 3.2, ideally the optimization problem would be posed as to

minimize structural volume (maximizing void volume) subject to a maximum stress constraint.

However, as found during the literature review (section 2.2.3), this causes added difficulty in

developing proper update sensitivities for optimization. Additionally, as mentioned in section

2.2.2, to properly impose stress constraints, a conforming mesh is required, thus the future

work mentioned in 7.4.1. Because of these reasons, the use of stress constraints was deemed

out of the scopes of this research, and the minimum compliance formulation was used with post

process stress evaluations.

166

7.3.3 Designing for Additive Manufacturing

Due to the internal features of an irregular shaped pressure vessel, the components

would need to be created using additive manufacturing techniques. The material properties of

additive manufacturing are known to be non-isotropic based on print direction and heavily

dependent on a wide variety of print parameters. Because of this, printed samples with known

and controllable design parameters should be created and tested to accurately establish

material parameters to be used during the analysis phase of the optimization. Additionally,

because of the completely enclosed nature of a pressure vessel, support materials could not be

manually removed, and the part would need to be printed at an appropriate angle to allow for a

proper build without the need of support material. Due to the non-isotropic behavior and the

inability to use support material, it could prove advantageous to have print direction as an

additional optimization parameter.

Furthermore, the results from the optimization would need to go through a post-

processing phase, during which features such as the connecting ports would need to be added.

7.3.4 Experimental Validation

 Due to the high values of strain energy within an in-use pressure vessel, they can be

extremely dangerous upon failure. This combined with the life supporting functionality they

often possess; pressure vessels are subjected to extensive validation and safety testing. For

diving and life support purposes, this involves surviving a hydrostatic burst test at four times

working pressure. This gives the system a factor of safety of 4, suitable for proper use and safe

handling. Additionally, visual, and ultra-sonic inspections are regularly performed on pressure

vessels to detect any defects or deformities. This would prove quite difficult to accomplish

167

based on the compartmentalization of the irregular shaped pressure vessels derived in this

thesis and some other means of inspection would have to be executed.

7.4 Final Remarks

This thesis investigates various topology optimization methods and concludes that the

modification of a Level-Set Method best suits the design problem of optimizing an irregular

shaped pressure vessel. Throughout the development of this modified Level-Set Method for

pressure vessels, 3 main innovations were discovered and implemented:

1. FEA assembly consolidation:

Discussed in section 4.4.1, during the optimization loop, the previous iteration’s

structure, stiffness matrix, and force vector are stored. Then during the finite

element analysis procedure, the current and previous structures are compared,

and the assembly procedure is executed only on the changed elements and

modified from the previous stiffness matrix and force vector accordingly. This

reduces the computational time from an estimated 175 hours to less than 10

hours. Note, the entire assembly process has to be executed following

remeshing, therefore excessive re-meshing would result in added computational

time.

2. PID-type optimization penalty:

When testing various methods found in the literature of implementing the

volume constraint penalty to solve unstable convergence issues, similarities to

control concepts of proportional, integral, and derivative controllers were

168

recognized. This inspired the implementation of a PID-type penalty, converting

the penalty from equation 3.38 to equation 3.56.

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝜆𝑖(𝑉(𝑥)−𝑉𝑟𝑒𝑞) (3.38)

(3.56)

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖−1 + 𝜆𝑖 [𝐾𝑃(𝑉𝑖 − 𝑉𝑟𝑒𝑞) + 𝐾𝐼 (
1

𝑛
∑𝑉𝑖−𝑎

𝑛−1

𝑎=0

− 𝑉𝑟𝑒𝑞) + 𝐾𝐷(2𝑉𝑖 − 𝑉𝑖−1 − 𝑉𝑟𝑒𝑞)]

3. Inward normal pressure calculations:

Switching the pressure loading from being calculated as outward normal, as

shown in figure 3-2, to being defined as inward normal, figure 3-3, removes the

need to have the entire design domain meshed. This allows void regions to be

excluded from finite element meshing, reducing computational costs, or

allowing for mesh refinement while maintaining computational cost.

This work establishes a strong foundation on which additional work can be built upon to

finalize a thorough and robust procedure to design an optimal irregular shaped pressure vessel

to exploit the expanding design space that additive manufacturing provides.

169

 REFERENCES

[1] M. J. TURNER, R. W. CLOUGH, H. C. MARTIN, and L. J. TOPP, “Stiffness and Deflection

Analysis of Complex Structures,” J. Aeronaut. Sci., vol. 23, no. 9, pp. 805–823, Sep. 1956,

doi: 10.2514/8.3664.

[2] M. P. Bendsoe and O. Sigmund, Topology Optimization Theory, Methods and Applications

- Second Edition, 2nd ed. Springer-Verlag Berlin Heidelberg, 2004.

[3] M. L. Nuckols, W. C. Tucker, and A. J. Sarich, Life Support Systems Design: Diving and

Hyperbaric Applications. Needham Heights, Mass: Simon & Schuster Custom Publishing,

1996.

[4] McLaughlan P. B. and Grimes-Ledesma L. R., “Composite Overwrapped Pressure Vessels,”

Nasa/Sp–2011–573, no. March, pp. 1–20, 2011.

[5] J. Cornman, “Additive Manufacturing of Pressure Vessels.” Naval Surface Warfare Center,

Panama City Division, Panama City, FL, p. 1, 2017.

[6] L. A. Schmit and R. L. Fox, “An integrated approach to structural synthesis and analysis,”

AIAA J., vol. 3, no. 6, pp. 1104–1112, 1965, doi: 10.2514/3.3062.

[7] L. Kai and T. Andres, “An efficient 3D topology optimization code written in Matlab,”

Springer, vol. 50, no. 6, pp. 1175–1196, 2014, doi: 10.1007/s00158-014-1107-x.

[8] B. H. V. Topping, “Shape optimization of skeletal structures: A review,” J. Struct. Eng.

(United States), vol. 109, no. 8, pp. 1933–1951, 1983, doi: 10.1061/(ASCE)0733-

9445(1983)109:8(1933).

170

[9] G. Allaire, E. Bonnetier, G. Francfort, and F. Jouve, “Shape optimization by the

homogenization method,” Numer. Math., vol. 76, no. 1, pp. 27–68, 1997, doi:

10.1007/s002110050253.

[10] J. A. Sethian, Level Set Methods and Fast Marching Methods Evolving Interfaces in

Computational Geometry, vol. 39, no. 1. Cambridge University Press, 1999.

[11] G. I. N. Rozvany, “Aims, scope, methods, history and unified terminology of computer-

aided topology optimization in structural mechanics,” Structural and Multidisciplinary

Optimization, vol. 21, no. 2. pp. 90–108, Apr-2001, doi: 10.1007/s001580050174.

[12] O. Sigmund, “A 99 line topology optimization code written in matlab,” Struct. Multidiscip.

Optim., vol. 21, no. 2, pp. 120–127, Apr. 2001, doi: 10.1007/s001580050176.

[13] V. J. Challis, “A discrete level-set topology optimization code written in Matlab,” Springer,

vol. 41, no. 3, pp. 453–464, 2010, doi: 10.1007/s00158-009-0430-0.

[14] M. Ohsaki, “Genetic algorithm for topology optimization of trusses,” Comput. Struct., vol.

57, no. 2, pp. 219–225, Oct. 1995, doi: 10.1016/0045-7949(94)00617-C.

[15] S. Y. Wang, K. Tai, and M. Y. Wang, “An enhanced genetic algorithm for structural

topology optimization,” Int. J. Numer. Methods Eng., vol. 65, no. 1, pp. 18–44, Jan. 2006,

doi: 10.1002/nme.1435.

[16] E. Biyikli and A. C. To, “Proportional topology optimization: A new non-sensitivity method

for solving stress constrained and minimum compliance problems and its

implementation in MATLAB,” PLoS One, vol. 10, no. 12, Dec. 2015, doi:

10.1371/journal.pone.0145041.

171

[17] M. J. de Ruiter and F. van Keulen, “Topology Optimization: Approaching the Material

Distribution Problem using a Topological Function Description,” in Computational

Techniques for Materials, Composites and Composite Structures, 2000, doi:

10.4203/ccp.67.1.13.

[18] T. Hagishita and M. Ohsaki, “Topology optimization of trusses by growing ground

structure method,” Struct. Multidiscip. Optim., vol. 37, no. 4, pp. 377–393, Jan. 2009, doi:

10.1007/s00158-008-0237-4.

[19] F. Mignot, J. P. Puel, and P. M. Suquet, “Homogenization and bifurcation of perforated

plates,” Int. J. Eng. Sci., vol. 18, no. 2, pp. 409–414, 1980, doi: 10.1016/0020-

7225(80)90060-9.

[20] G. ALLAIRE, L. CAVALLINA, N. MIYAKE, T. OKA, and T. YACHIMURA, “The Homogenization

Method for Topology Optimization of Structures: Old and New,” Interdiscip. Inf. Sci., vol.

25, no. 2, pp. 75–146, 2019, doi: 10.4036/iis.2019.b.01.

[21] G. Allaire, “Periodic homogenization - Asintotic expansion homogeneization (Master lect.

1),” no. December, pp. 13–16, 2010.

[22] G. I. N. Rozvany, M. Zhou, and T. Birker, “Generalized shape optimization without

homogenization,” Struct. Optim., vol. 4, no. 3–4, pp. 250–252, Sep. 1992, doi:

10.1007/bf01742754.

[23] M. P. Bendsøe, “Optimal shape design as a material distribution problem,” Struct. Optim.,

vol. 1, no. 4, pp. 193–202, Dec. 1989, doi: 10.1007/BF01650949.

[24] M. P. Bendsøe, Optimization of Structural Topology, Shape, and Material. Springer-Verlag

172

Berlin Heidelberg, 1995.

[25] K. Suzuki and N. Kikuchi, “A homogenization method for shape and topology

optimization,” Comput. Methods Appl. Mech. Eng., vol. 93, no. 3, pp. 291–318, 1991, doi:

10.1016/0045-7825(91)90245-2.

[26] M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a

homogenization method,” Comput. Methods Appl. Mech. Eng., vol. 71, no. 2, pp. 197–

224, 1988, doi: 10.1016/0045-7825(88)90086-2.

[27] G. I. N. Rozvany and M. Zhou, “The COC algorithm, part I: Cross-section optimization or

sizing,” Comput. Methods Appl. Mech. Eng., vol. 89, no. 1–3, pp. 281–308, 1991, doi:

10.1016/0045-7825(91)90045-8.

[28] M. Zhou and G. I. N. Rozvany, “The COC algorithm, Part II: Topological, geometrical and

generalized shape optimization,” Comput. Methods Appl. Mech. Eng., vol. 89, no. 1–3,

pp. 309–336, 1991, doi: 10.1016/0045-7825(91)90046-9.

[29] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed:

Algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys., vol. 79, no. 1, pp.

12–49, 1988, doi: 10.1016/0021-9991(88)90002-2.

[30] W. F. Noh and P. Woodward, “SLIC (Simple Line Interface Calculation),” 1976, pp. 330–

340.

[31] H. M. Wu, E. A. Overman, and N. J. Zabusky, “Steady-state solutions of the euler

equations in two dimensions: Rotating and translating V-states with limiting cases. I.

Numerical algorithms and results,” J. Comput. Phys., vol. 53, no. 1, pp. 42–71, 1984, doi:

173

10.1016/0021-9991(84)90051-2.

[32] J. A. Sethian, “Evolution, Implementation, and Application of Level Set and Fast Marching

Methods for Advancing Fronts,” J. Comput. Phys., vol. 169, no. 2, pp. 503–555, May 2001,

doi: 10.1006/jcph.2000.6657.

[33] M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology

optimization,” Comput. Methods Appl. Mech. Eng., vol. 192, no. 1–2, pp. 227–246, Jan.

2003, doi: 10.1016/S0045-7825(02)00559-5.

[34] N. P. Van Dijk, K. Maute, M. Langelaar, and F. Van Keulen, “Level-set methods for

structural topology optimization : a review,” Struct. Multidiscip. Optim., vol. 48, no. 3, pp.

437–472, 2013, doi: 10.1007/s00158-013-0912-y.

[35] R. B. Haber and M. P. Bendsøe, “Problem formulation, solution procedures and

geometric modeling: Key issues in variable-topology optimization,” in 7th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,

1998, doi: 10.2514/6.1998-4948.

[36] J. A. Sethian and A. Wiegmann, “Structural Boundary Design via Level Set and Immersed

Interface Methods,” J. Comput. Phys., 2000, doi: 10.1006/jcph.2000.6581.

[37] S. J. Osher and F. Santosa, “Level Set Methods for Optimization Problems Involving

Geometry and Constraints,” J. Comput. Phys., 2001, doi: 10.1006/jcph.2001.6789.

[38] G. Allaire, F. Jouve, and A. M. Toader, “Structural optimization using sensitivity analysis

and a level-set method,” J. Comput. Phys., vol. 194, no. 1, pp. 363–393, Feb. 2004, doi:

10.1016/j.jcp.2003.09.032.

174

[39] S. Osher and R. P. Fedkiw, “Level Set Methods: An Overview and Some Recent Results,” J.

Comput. Phys., vol. 169, no. 2, pp. 463–502, May 2001, doi: 10.1006/jcph.2000.6636.

[40] G. Allaire, F. De Gournay, F. Jouve, and A. M. Toader, “Structural optimization using

topological and shape sensitivity via a level set method,” Control Cybern., vol. 34, no. 1,

pp. 59–81, 2005.

[41] L. Fernandez, “Topology Optimization Using a Level Set Penalization With Constrained

Topology Features,” Graduate School of Clemson University, 2013.

[42] T. Yamada, K. Izui, S. Nishiwaki, and A. Takezawa, “A topology optimization method

based on the level set method incorporating a fictitious interface energy,” Comput.

Methods Appl. Mech. Eng., vol. 199, no. 45–48, pp. 2876–2891, Nov. 2010, doi:

10.1016/j.cma.2010.05.013.

[43] P. Wei, Z. Li, X. Li, and M. Y. Wang, “An 88-line MATLAB code for the parameterized level

set method based topology optimization using radial basis functions,” Springer, vol. 58,

no. 2, pp. 831–849, 2018.

[44] S. Wang and M. Y. Wang, “Radial basis functions and level set method for structural

topology optimization,” Int. J. Numer. Methods Eng., vol. 65, no. 12, pp. 2060–2090, Mar.

2006, doi: 10.1002/nme.1536.

[45] A. A. Gomes and A. Suleman, “Application of spectral level set methodology in topology

optimization,” Struct. Multidiscip. Optim., vol. 31, no. 6, pp. 430–443, Jun. 2006, doi:

10.1007/s00158-006-0005-2.

[46] L. Van Miegroet and P. Duysinx, “Stress concentration minimization of 2D filets using X-

175

FEM and level set description,” Struct. Multidiscip. Optim., 2007, doi: 10.1007/s00158-

006-0091-1.

[47] Q. Xia, M. Y. Wang, and T. Shi, “A level set method for shape and topology optimization

of both structure and support of continuum structures,” Comput. Methods Appl. Mech.

Eng., vol. 272, pp. 340–353, Apr. 2014, doi: 10.1016/j.cma.2014.01.014.

[48] S. H. Ha and S. Cho, “Level set based topological shape optimization of geometrically

nonlinear structures using unstructured mesh,” Comput. Struct., vol. 86, no. 13–14, pp.

1447–1455, Jul. 2008, doi: 10.1016/j.compstruc.2007.05.025.

[49] T. P. Fries and T. Belytschko, “The extended/generalized finite element method: An

overview of the method and its applications,” Int. J. Numer. Methods Eng., vol. 84, no. 3,

pp. 253–304, Oct. 2010, doi: 10.1002/nme.2904.

[50] Q. Xia, M. Wang, and T. Shi, “Topology optimization with pressure load through a level

set method,” Comput. Methods Appl. Mech. Engrg., vol. 283, pp. 177–195, 2015, doi:

10.1016/j.cma.2014.09.022.

[51] N. P. Van Dijk, M. Langelaar, and F. Van Keulen, “Explicit level-set-based topology

optimization using an exact Heaviside function and consistent sensitivity analysis,” Int. J.

Numer. Methods Eng., vol. 91, no. 1, pp. 67–97, Jul. 2012, doi: 10.1002/nme.4258.

[52] E. Lee and J. R. R. A. Martins, “Structural topology optimization with design-dependent

pressure loads,” Comput. Methods Appl. Mech. Eng., 2012, doi:

10.1016/j.cma.2012.04.007.

[53] C. Wang, M. Zhao, and T. Ge, “Structural topology optimization with design-dependent

176

pressure loads,” Struct. Multidiscip. Optim., vol. 53, no. 5, pp. 1005–1018, 2016, doi:

10.1007/s00158-015-1376-z.

[54] X. Huang and Y. M. Xie, “Evolutionary topology optimization of continuum structures

including design-dependent self-weight loads,” Finite Elem. Anal. Des., vol. 47, no. 8, pp.

942–948, 2011, doi: 10.1016/j.finel.2011.03.008.

[55] H. Zhang, S. T. Liu, and X. Zhang, “Topology optimization of 3D structures with design-

dependent loads,” Acta Mech. Sin. Xuebao, vol. 26, no. 5, pp. 767–775, Oct. 2010, doi:

10.1007/s10409-010-0370-3.

177

APPENDICES

178

Appendix A: Flow Diagram

179

Appendix B: Mesh Generation Code

Variable Name Variable Size Description

voxelsize 1x3 length of meshed elements in x, y and z
directions

faces (#triangles)x3 Outward normal direction components of STL
faces

vertices 3x3x(#triangles) (each node of the triangle)x(x, y, z coordinate of
the node)x(each STL triangle)

ranges 2x3 minimum STL node coordinates over the
maximum

x_centroids 1x(c) x-coordinates of the centroid for each cell

y_centroids 1x(c) y-coordinates of the centroid for each cell

z_centroids 1x(c) z-coordinates of the centroid for each cell

xyfaces (r)x1 List of STL faces that have a z component

X (r)x(c) X values from a meshgrid of x and y centroids

Y (r)x(c) X values from a meshgrid of x and y centroids

numxyzf 1x4 [number of cell elements in x, y, and z then the
number of xy-faces]

cells (r)x(c)x(p) Logic representation of if a cell has material or
not (-1=void, 1=solid)

p 3x2 x and y coordinates of the 3 nodes that make up
the given triangle

intersects (r)x(c) Logic value of which x and y centroids are within
the given triangle

A scalar Area of given triangle

up scalar 1,2,3 index value for cross product to make
shape function

down scalar 1,2,3 index value for cross product to make
shape function

Plane 2x2 Coefficient representation of shape function for
triangle

I (r)x1 Indices of x and y centroids that are within the
given triangle

z_int (r)x1 Z values of where the STL triangle intersects each
x, y centroid

mult 1x(c) Numbers to multiply along z to change 'cells'

outer 1x(c) Indices of cell that are not completely
surrounded by elements

Boundary 1x(c) Elements that are part of the border

180

Variable Name Variable Size Description

nelx scalar Number of elements in x

nely scalar Number of elements in y

nelz scalar Number of elements in z

Elements (r)x(c) List of element numbers

n1z (r)x1 List of node one z-coordinates for each element

n1x (r)x1 List of node one x-coordinates for each element

n1y (r)x1 List of node one y-coordinates for each element

Relative 8x1 Relative node numberings from node 1 for each
element

Nodes (r)x3 List of all possible node coordinates

ind (r)x1 Indices for repeated nodes

Nodes (r)x3 List of all possible node coordinates

elements (r)x8 Final element list for mesh

nodes (r)x3 Final node list for mesh

N scalar Next node number index

Make_Mesh.m

close all 1
clear all 2
clc 3
 4
voxelsize=[0.5,0.5,0.5]; %element voxelsize in the x, y, and z direction 5
 6
if(numel(voxelsize)==1) 7
 voxelsize(1:3)= voxelsize; 8
end 9
 10
 11
[faces,vertices] = readSTL('Irregular Pressure Vessel.STL','inches'); 12
 13
ranges=[min(min(vertices),[],3);max(max(vertices),[],3)]; 14
x_centroids=ranges(1,1)+0.5*voxelsize(1): voxelsize(1):ranges(2,1); 15
y_centroids=ranges(1,2)+0.5*voxelsize(2): voxelsize(2):ranges(2,2); 16
z_centroids=ranges(1,3)+0.5*voxelsize(3): voxelsize(3):ranges(2,3); 17
xyfaces=find(faces(:,3)~=0); 18
disp('STL file read') 19
 20
[X,Y]=meshgrid(x_centroids,y_centroids); 21
numxyzf=[fliplr(size(X)),numel(z_centroids),numel(xyfaces)]; 22
cells=-1*ones(numxyzf([2,1,3])); 23
for(f=1:numxyzf(4)) 24
 p=vertices(:,1:2,xyfaces(f)); 25

181

 intersects=inpolygon(X,Y,p(:,1),p(:,2)); 26
 A=0.5*det([[1;1;1],p]); 27
 Plane=zeros(2); 28
 for(i=1:3) 29
 up=rem(i,3)+1; 30
 down=3-rem(4-i,3); 31
 Plane=Plane+0.5*vertices(i,3,xyfaces(f))*[0,p(down,1)-p(up,1);p(up,2)-32
p(down,2),p(up,1)*p(down,2)-p(down,1)*p(up,2)]/A; 33
 end 34
 I=find(intersects); 35
 if(~isempty(I)) 36
 z_int=poly2Deval(Plane,[X(I),Y(I)]); 37
 mult=-1*(z_centroids>=z_int)+(z_centroids<z_int); 38
 %[z_int,mult] 39
 t=0; 40
 for(i=1:numel(I)) 41
 %mult=-1*(z_centroids>=z_int(i))+(z_centroids<z_int(i)) 42
 [r,c]=ind2sub([numxyzf(2),numxyzf(3)],I(i)); 43
 cells(r,c,:)=cells(r,c,:).*permute(mult(i,:),[1,3,2]); 44
 %cells(r,c,:)=cells(r,c,:).*permute(mult,[1,3,2]); 45
 end 46
 end 47
 if(~mod(f,250)) 48
 fprintf('evaluated %d of %d faces \n',f,numxyzf(4)); 49
 end 50
end 51
 52
 53
 54
disp('generating mesh') 55
cells=permute(cells,[2,1,3]); 56
outer=(cells==1).*(convn(cells,ones(3,3,3),'same')<27); 57
outer(cells(:)==-1)=[]; 58
Boundary=nonzeros(outer(:)'.*(1:nnz(cells==1))); 59
 60
 61
nelx=numxyzf(1); nely=numxyzf(2); nelz=numxyzf(3); 62
Elements=1:nelx*nely*nelz; 63
n1z=floor((Elements-1)/(nelx*nely)); 64
n1x=rem((Elements-(nelx*nely).*floor((Elements-1)/(nelx*nely))-1),nelx); 65
n1y=floor((Elements-(nelx*nely).*floor((Elements-1)/(nelx*nely))-1)/nelx); 66
Relative=[0;1;nelx+2;nelx+1;... 67
 (nelx+1)*(nely+1);(nelx+1)*(nely+1)+1;(nelx+1)*(nely+1)+nelx+2;(nelx+1)*(nely+1)+nelx+1]; 68
Elements=(1+n1x+n1y*(nelx+1)+n1z*(nelx+1)*(nely+1))'+Relative'; 69
[Nodes(:,1),Nodes(:,2),Nodes(:,3)]=ind2sub([nelx+1,nely+1,nelz+1],1:(nelx+1)*(nely+1)*(nelz+1)); 70
Nodes=voxelsize.*(Nodes-[1,1,1]); 71
 72
 73
Elements=(cells(:)==1).*Elements; %find on elements 74
Elements((Elements(:,1)==0),:)=[]; %remove off elements 75
 76

182

elements=zeros(size(Elements)); 77
nodes=zeros(size(Nodes)); 78
N=1; 79
while(sum(elements(:)==0)>0) 80
 [c,r]=find(elements'==0,1); 81
 ind=find(Elements==Elements(r,c)); 82
 elements(ind)=N; 83
 nodes(N,:)=Nodes(Elements(r,c),:); 84
 N=N+1; 85
 if(~mod(N,1000)) 86
 fprintf('meshing node %d of %d \n',sum(elements(:)~=0),numel(Elements)); 87
 end 88
end 89
nodes(N:end,:)=[]; 90
 91
disp('plotting') 92
meshplot(elements, nodes, Boundary); axis equal 93
xlabel('x axis') 94
ylabel('y axis') 95
zlabel('z axis') 96
%meshplotlayer(elements, nodes, Boundary); 97
disp('done') 98

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

183

Appendix C: Main Code

Variable Name Variable Size Description
E scalar Modulus of Elasticity 29.5*10^6 PSI
nu scalar Poison's Ratio 0.29
Yield scalar Yield Strength 150*10^3 PSI
Pressure scalar Pressure in PSI applied to the interior set to 5000
elements (numelem)x8 Row for each element and a column for each of the

element's node numbers

nodes (numnodes)x3 [x,y,z] coordinates for each node
boundary (r)x1 List of elements that are on the boundary of the

geometry
Title character Folder name that all of the data will be saved to
volReq scalar Volumetric constraint goal, between 0 and 1
stepLength scalar Number of CFL time steps the evolution equation is

solved every iteration

numReinit scalar Frequency the LSF is reinitialized
topWeight scalar Weighting factor for topological derivative's

influence in Hamilton-Jacobi equation, set to 0 for
pressure vessels

max_itr scalar The maximum number of iterations the code will
run before it forces it to exit the loop

LSFspacing scalar Distance between LSF kernels

init 3x3 Defines the initial void geometry. 1st row defines
edge lengths of voids, 2nd row defines x,y,z gap
between voids and 3rd row the number of voids in
the x,y,and z directions

La scalar Lagrange multiplier for the first portion of the
optimization, initialized to 0. 5

La2 scalar Lagrange multiplier for the second portion of the
optimization, initialized to 1

alpha scalar Multiplication factor for the Lagrange multipliers,
set to 1/0.95

PID 1x3 Scaling factors for each of the PID terms, set to
[0.5,0.2,1]

relax scalar State of which type of penalty should be executed, 0
for proportional only, 1 for PID-type formulation

i scalar Iteration counter
flag scalar Loop termination state, 0 to continue optimization,

anything else to stop

184

Variable Name Variable Size Description
mesh scalar Iteration counter for remeshing, set to 0 when

remeshing should occur
band scalar Remeshing tolerance
s Scalar Percentage of CFL condition time step used
Domain 2x3 1st row is the minimum coordinates in x,y, and z of

the geometry and the second row is the maximum
struc (NSx)x(NSy)x(NSz) Material distribution, 0 for void 1 for material
Esize 1x3 x, y, and z edge lengths of each element

map (numelem)x1 Index positions of each element in the LSF
noF 1x(c) Degrees of freedom on homogeneous boundary for

FEA
exterior (r)x1 List of indices of ‘struc’ that are exterior to the

design domain
sX, sY, &

sZ

(NSx)x(NSy)x(NSz) Meshgrid of coordinates of the elements’ centroids

numnodes scalar Number of nodes in the FEA analysis
numelem scalar Number of elements in the FEA analysis
CompE (numelem)x1 2*Compliance of each element
volTot Scalar Total initial volume
LSFsize 1x3 Number of elements in the LSF in the x, y, and z

directions
cent 1x3 Center coordinates of the domain
lsfX, lsfY,

& lsfZ

(NLx)x(NLy)x(NLz) Meshgrid of coordinates of the LSF kernels

sdf (NSx)x(NSy)x(NSz) Signed distance function of the structure
lsf (NLx)x(NLy)x(NLz) Level-Set Function values
Nanind (r)x1 List of LSF kernels outside of ‘struc’
LSF2EleDist (numLSF)x(numelem) Distance from each LSF kernel to each centroid of

‘struc’
id (r)x1 List of ‘struc’ indices that are closest to ‘Nanind’ of

the LSF
d (r)x1 List of Euclidean distances corresponding to ‘id’
R Scalar Maximum filter distance for equation 4.3
Hij (numLSF)x(numelem) Weighting factors of filter for each LSF kernel and

each element
inside 1x(c) List of LSF indices inside of the design domain
bearing (r)x1 List of indices of the LSF that are to remain constant

and not change (regions outside the domain and the
boundary elements)

Po 1x3 Outward normal force each void element's nodes
experience

185

Variable Name Variable Size Description
dof (numelem)x24 Degrees of freedom for each element of the mesh
ke 24x24 Elemental stiffness matrix
B 6x24 B-matrix in elemental stiffness matrix calculation,

used for stress calculations
C 6x6 Constitutive relation for the material, used for stress

calculations
oldstruc (NSx)x(NSy)x(NSz) Previous iteration's 'struc' matrix used to

compare for changes in the FEA global matrices
oldK (#dofs)x(#dofs) Previous iteration's global stiffness matrix
oldF (#dofs)x1 Previous iteration's global force vector
fix 4*3 Node coordinates of the pinned node then each of

the roller conditioned nodes in x, y, and z
respectively

Nborder (#border
elements*8)*3

Node coordinates of each node of a border element

D_best scalar Current maximum sum of squares for 'dx', 'dy', and
'dz'

N1 1x3 Node coordinates of pinned node
Nx (r)x3 Node coordinates of all border nodes along the x-

direction of the pinned node
Ny (r)x3 Node coordinates of all border nodes along the y-

direction of the pinned node
Nz (r)x3 Node coordinates of all border nodes along the z-

direction of the pinned node
dx scalar Maximum distance from pinned node to any 'Nx'

node
ix scalar Index of 'Nx' that the maximum distanced node is
dy scalar Maximum distance from pinned node to any 'Ny'

node
iy scalar Index of 'Ny' that the maximum distanced node is
dz scalar Maximum distance from pinned node to any 'Nz'

node
iz scalar Index of 'Nz' that the maximum distanced node is
tf scalar Number of node coordinates that match 'fix'

nodes, should always equal 4
ind (line

105)

(r)x1 Node numbers for 'fix' nodes

fixeddofs 9x1 List of fixed degrees of freedom
folder character Folder name that all of the data will be saved to,

title with timestamp appended to it
U (#dofs)x1 Deflection values for each degree of freedom
e scalar Loop counter for each element

186

Variable Name Variable Size Description
obj 1x(i) Vector of all iteration's compliance
vol 1x(i) Vector of all iteration's volume fraction
shapeSens (NLx)x(NLy)x(NLz) Shape sensitivity calculated from elemental strain

energy densities
SensTotal (NLx)x(NLy)x(NLz) Shape sensitivity plus penalty
Con 1x(c) Initial control values to test
V (r)x1 Resulting volume fractions after control values
newlsf (NLx)x(NLy)x(NLz) Level-Set Function values after update
newstruc (NSx)x(NSy)x(NSz) ‘struc’ values after update
add (r)x1 List of ‘struc’ indices that need to be added to the

mesh
newmap (numelem)x1 Index positions of each element in the LSF after

update
Control 1x(i) Vector of all of the previous control terms
Penalty scalar The volume constraint penalty added to the shape

sensitivity to create velocities

ind

(line243)
4x1 Nodes that are closed the initial fixed nodes

mult 8x3 Matrix to multiply to ‘Esize’ to get a master
element

Nfull 8x3x(p) Nodes of elements to be added
Nall (r)x3 Nodes of elements to be added
Nnum (r)x1 Node numbers ‘#’ if already exist ‘0’ if a new node is

needed
L2ED (numLSF)x(numelem) Distance from each LSF kernel to each centroid of

‘struc’

Main Code

close all 1
clear all 2
clc 3
addpath([pwd,'\IrregularShapeSubfunctions']) 4
addpath([pwd,'\MakeMeshSubfunctions']) 5
%Attenpt to implement level-set topology optimization on a 3D structure with a 6
%pressure load being applied from a void in the center 7
%Calculates forces as outward normal for all void elements 8
disp('running...') 9
Title='RemeshIPVVol0.45'; 10
%Material Parameters and Working Pressure------------ 11
%Inconel718 12
E=29.5*10^6; %psi 13

187

nu=0.29; 14
Yield=150*10^3; %psi 15
Pressure=3000; %PSI 16
%-- 17
 18
%Geometry and Loading--------------- 19
load('RotatedIPVmesh25.mat') %imports 'elements' 'nodes' and 'boundary' from saved mesh file 20
load('RemeshStart25.mat')%load values of oldStruct,OldK,OldF to compare to 21
%------------------------------- 22
 23
% Establish Level-Set parameters----------------------- 24
volReq=0.25; 25
stepLength=2; 26
numReinit=3; 27
topWeight=0; 28
max_itr=200; 29
LSFspacing=0.375; 30
init=[3,3,3;2,2,2;10,10,10]; %edge length of initial void; gap between; repeated 31
maxNodes=75000; 32
La=1/2; La2=1; alpha=1/0.95; 33
PID=[0.5,0.2,1]; relax=0; 34
%--- 35
 36
%Initialization-- 37
i=1; flag=0; mesh=1; band=0.15; s=1; 38
%Initialize Struc---------------------------- 39
Domain=[min(nodes);max(nodes)]; 40
[struc,Esize,map,noF,exterior]=InitialStruc(elements,nodes,boundary,init); %map is a list for 41
each element, which struc index is used 42
[sX,sY,sZ]=meshgrid(Esize(1)/2:Esize(1):Domain(2,1),... 43
 Esize(2)/2:Esize(2):Domain(2,2),Esize(3)/2:Esize(3):Domain(2,3)); 44
sX=permute(sX,[2,1,3]); sY=permute(sY,[2,1,3]); sZ=permute(sZ,[2,1,3]); 45
numelem=size(elements,1); numnodes=size(nodes,1); 46
CompE=zeros(numelem,1); 47
volTot=prod(Esize)*numelem; 48
%Initialize LSF---------------------------- 49
LSFsize=ceil(Domain(2,:)/LSFspacing)+1; 50
cent=mean(Domain); 51
lsfX=LSFspacing*(LSFsize(1)-1)*linspace(-0.5,0.5,LSFsize(1))+cent(1); 52
lsfY=LSFspacing*(LSFsize(2)-1)*linspace(-0.5,0.5,LSFsize(2))+cent(2); 53
lsfZ=LSFspacing*(LSFsize(3)-1)*linspace(-0.5,0.5,LSFsize(3))+cent(3); 54
[lsfX,lsfY,lsfZ]=meshgrid(lsfX,lsfY,lsfZ); 55
lsfX=permute(lsfX,[2,1,3]); lsfY=permute(lsfY,[2,1,3]); lsfZ=permute(lsfZ,[2,1,3]); 56
sdf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1); %reinitialize LSF 57
lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ); 58
Nanind=find(isnan(lsf)); 59
LSF2EleDist=(nodes(elements(:,1),1)'+Esize(1)/2'-lsfX(:)).^2+... 60
 (nodes(elements(:,1),2)'+Esize(2)/2'-lsfY(:)).^2+... 61
 (nodes(elements(:,1),3)'+Esize(3)/2'-lsfZ(:)).^2; 62
%LSF2StrucDist=(sX(:)'-lsfX(:)).^2+(sY(:)'-lsfY(:)).^2+(sZ(:)'-lsfZ(:)).^2; 63
[d,id]=min(LSF2EleDist(Nanind,:),[],2); 64

188

lsf(Nanind)=sdf(map(id))-d./Esize(1); 65
struc=griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0; 66
%Filter and Update Prep--------------------------------------- 67
R=1.25*LSFspacing; 68
Hij=max(R-LSF2EleDist,0); 69
 70
inside=setdiff(1:numelem,boundary); 71
bearing=find(sum(lsfX(:)'>=nodes(elements(inside,1),1) &... 72
 lsfY(:)'>=nodes(elements(inside,1),2) &... 73
 lsfZ(:)'>=nodes(elements(inside,1),3) &... 74
 lsfX(:)'<=nodes(elements(inside,7),1) &... 75
 lsfY(:)'<=nodes(elements(inside,7),2) &... 76
 lsfZ(:)'<=nodes(elements(inside,7),3))==0); 77
%--- 78
 79
%Loading and Boundary Conditions--- 80
Po=circshift(Esize,1).*circshift(Esize,-1)*Pressure/4; 81
dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 82
[ke,B,C]=stiff3D(E,nu,Esize); 83
if(~isequal(struc,oldstruc)) 84
 oldstruc=[]; oldK=[]; oldF=[]; 85
end 86
if(~exist('fix')) 87
 Nborder=nodes(elements(boundary,:),:); 88
 D_best=0; 89
 for(b=1:size(Nborder,1)) %finds border points that would be best for coordinate oriented 90
B.C.s 91
 N1=Nborder(b,:); 92
 Nx=Nborder(Nborder(:,2)==N1(2) & Nborder(:,3)==N1(3),:); 93
 Ny=Nborder(Nborder(:,1)==N1(1) & Nborder(:,3)==N1(3),:); 94
 Nz=Nborder(Nborder(:,1)==N1(1) & Nborder(:,2)==N1(2),:); 95
 [dx,ix]=max(abs(sum(N1-Nx,2))); 96
 [dy,iy]=max(abs(sum(N1-Ny,2))); 97
 [dz,iz]=max(abs(sum(N1-Nz,2))); 98
 if(dx^2+dy^2+dz^2>D_best) 99
 D_best=dx^2+dy^2+dz^2; 100
 fix=[N1;Nx(ix,:);Ny(iy,:);Nz(iz,:)]; 101
 end 102
 end 103
end 104
[tf,ind]=ismember(fix,nodes,'rows'); 105
if(sum(tf)~=4) 106
 disp('constraint error') 107
end 108
fixeddofs=nonzeros(reshape((3*ind-[2,1,0]).*[1,1,1;~eye(3)],[],1)); 109
%-- 110
 111
%Save Initial-- 112
folder=strcat(Title,strrep(datestr(datetime),':',',')); 113
mkdir(folder); 114
save([pwd,'\',folder,'\','Iteration0'],'lsf','struc','La','alpha',... 115

189

 'init','volReq','ke','bearing','elements','nodes','boundary','map',... 116
 'max_itr','numReinit','Po','stepLength','PID','volTot','lsfX','lsfY','lsfZ') 117
clear LSF2EleDist; 118
disp(['Starting ',Title]) 119
%-- 120
 121
while(flag==0) 122
 [U,oldK,oldF]=FEA_3DP6(struc,elements,map,ke,Po,noF,fixeddofs,oldstruc,oldK,oldF); 123
 %evaluate sensitivities of each element-------------------------------- 124
 for(e=1:numelem) 125
 CompE(e)=-max(struc(map(e)),0.0001)*U(dof(e,:))'*ke*U(dof(e,:)); 126
 end 127
 128
 %Post Processing and Plotting-- 129
 obj(i)=-sum(CompE(:)); 130
 vol(i)=prod(Esize)*sum(struc(map))/volTot; 131
 disp(['It.:' num2str(i) ' Compl.:' sprintf('%10.4f',obj(i)) ' Vol.: ' 132
sprintf('%6.3f',vol(i))... 133
 ' La:' sprintf('%10.3f',La) ' LaPID:' sprintf('%10.5f',La2)]) 134
 135
 %check for convergence--- 136
 if(i>5) 137
 if((abs(vol(i)-volReq)<0.005) && all(abs(obj(end)-obj(end-5:end-1))<0.03*abs(obj(end)))) 138
 flag=1; 139
 end 140
 if(i>=max_itr) 141
 flag=2; 142
 end 143
 end 144
 145
 %Update Procedure-- 146
 if(relax==0 && abs(vol(i)-volReq)<=0.035) %(max(abs(vol(i-4:i)-147
volReq))<0.05 && relax==0) 148
 relax=1; %Stop relaxed penalty if within volume band (0.15) 149
 s=0.3; 150
 shapeSens=reshape((Hij*CompE)./max(sum(Hij,2),0.0001),LSFsize); 151
 SensTotal=(shapeSens/max(abs(shapeSens(:)))); 152
 Con=-0.75:0.005:0.75; 153
 V=zeros(numel(Con),1); 154
 for(c=1:numel(Con)) 155
 [newlsf]=updatestep3(lsf,SensTotal+Con(c),stepLength,bearing,Esize(1)); 156
 newstruc=(griddata(lsfX,lsfY,lsfZ,newlsf,sX,sY,sZ)<=0); 157
 newstruc(map(boundary))=1; newstruc(exterior)=1; 158
 add=setdiff(find((newstruc-struc)==1),[map;exterior]); 159
 newmap=[map;add]; 160
 V(c)=prod(Esize)*(sum(newstruc(newmap)))/volTot; 161
 end 162
 Control(i-1)=Con(find(V>=vol(i),1,'last')); 163
 end 164
 if(relax==0) %Execute relaxed penalty 165
 La=alpha*La; 166

190

 Penalty=La*(vol(i)-volReq); 167
% Control=[]; 168
% Control(i)=Penalty; 169
 else 170
 if(max(vol(max(1,i-5):i))-min(vol(max(1,i-5):i))<0.005 && i>5) 171
 La2=(alpha^2)*La2; %Update Lagrange multiplier on PID if volume hasn't changed 172
 end 173
 Control(i)=La2*PID*[(vol(i)-volReq);... 174
 ((sum(vol(max(1,i-4):i))/numel(max(1,i-4):i))-volReq);... 175
 (2*vol(i)-vol(max(1,i-1))-volReq)]; 176
 Penalty=sum(Control); 177
 end 178
 shapeSens=reshape((Hij*CompE)./max(sum(Hij,2),0.0001),LSFsize); 179
 SensTotal=(shapeSens/max(abs(shapeSens(:))))+Penalty; 180
 181
 %Save values every iteration--- 182
 save([pwd,'\',folder,'\','Iteration',num2str(i)],'lsf','struc','U',... 183
 'La','La2','shapeSens','SensTotal','Penalty','oldstruc',... 184
 'oldK','oldF','nodes','elements','map','CompE','exterior','boundary') 185
 %-- 186
 oldlsf=lsf; 187
 [lsf]=updatestep3(lsf,SensTotal,stepLength,bearing,s*Esize(1)); 188
 oldstruc=struc; 189
 struc=(griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0); 190
 struc(map(boundary))=1; struc(exterior)=1; 191
 %-- 192
 193
 add=setdiff(find((struc-oldstruc)==1),[map;exterior]); 194
 newmap=[map;add]; 195
 if((prod(Esize)*(sum(struc(newmap)))/volTot)<(volReq-0.04)) 196
 disp('Stepped Back') 197
 lsf=oldlsf; 198
 struc=(griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0); 199
 struc(map(boundary))=1; struc(exterior)=1; 200
 end 201
 202
 %Prep next iteration--- 203
 if(mesh>=5) 204
 if(mesh>=8 && max(abs(vol(i-4:i)-volReq))<band && Esize(1)>(3/32)) 205
 mesh=0; disp('option1'); 206
 band=0.8*band; 207
 Esize=max(0.75*Esize,1/8); 208
 elseif(sum(struc(map)==0)>0.5*numelem || numnodes>150000) 209
 mesh=0; disp('option2'); 210
 band=0.15; 211
 Esize=repelem((prod(Esize)*(sum(struc(map)+... 212
 numel(setdiff(find((struc-213
oldstruc)==1),[map;exterior]))))/(1.2*numelem))^(1/3),3); 214
 end 215
 end 216
 217

191

 218
 if(mesh==0) %Remesh 219
 fprintf('remeshing with element size: %2.5f\n',Esize(1)); 220
 [struc,elements,nodes,map,boundary,noF,sX,sY,sZ,exterior]=remesh(lsf,... 221
 [lsfX(:),lsfY(:),lsfZ(:)],Esize,'Rotated Irregular Pressure Vessel.STL'); 222
 numelem=size(elements,1); numnodes=size(nodes,1); 223
 fprintf('meshing complete with %d elements and %d nodes\n',numelem,numnodes); 224
 while(numnodes>160000) %retry if too many nodes 225
 Esize=Esize*1.05; 226
 fprintf('remeshing with element size: %2.5f\n',Esize(1)); 227
 [struc,elements,nodes,map,boundary,noF,sX,sY,sZ,exterior]=... 228
 remesh(lsf,[lsfX(:),lsfY(:),lsfZ(:)],Esize,'Rotated Irregular Pressure 229
Vessel.STL'); 230
 numelem=size(elements,1); numnodes=size(nodes,1); 231
 fprintf('meshing complete with %d elements and %d nodes\n',numelem,numnodes); 232
 end 233
 LSF2EleDist=(nodes(elements(:,1),1)'+Esize(1)/2'-lsfX(:)).^2+... 234
 (nodes(elements(:,1),2)'+Esize(2)/2'-lsfY(:)).^2+... 235
 (nodes(elements(:,1),3)'+Esize(3)/2'-lsfZ(:)).^2; 236
 [d,id]=min(LSF2EleDist(Nanind,:),[],2); 237
 Hij=max(R-LSF2EleDist,0); 238
 Po=circshift(Esize,1).*circshift(Esize,-1)*Pressure/4; 239
 dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 240
 [ke,B,C]=stiff3D(E,nu,Esize); 241
 oldstruc=[]; oldK=[]; oldF=[]; 242
 [~,ind]=min((fix(:,1)-nodes(:,1)').^2+(fix(:,2)-nodes(:,2)').^2+(fix(:,3)-243
nodes(:,3)').^2,[],2); 244
 fixeddofs=nonzeros(reshape((3*ind-[2,1,0]).*[1,1,1;~eye(3)],[],1)); 245
 clear LSF2EleDist; 246
 mesh=1; 247
 elseif((prod(Esize)*sum(struc(map))/volTot)>0.98) %If entire domain becomes solid revert back 248
to initial configuration 249
 disp('Domain solid reverting to original discritization') 250
 La=(alpha)^5*La; %Take a large step in La 251
 load('RotatedIPVmesh25.mat') 252
 load('RemeshStart25.mat') 253
 [struc,Esize,map,noF]=InitialStruc(elements,nodes,boundary,init); 254
 sdf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1); %reinitialize LSF 255
 lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ); 256
 Nanind=find(isnan(lsf)); 257
 LSF2EleDist=(nodes(elements(:,1),1)'+Esize(1)/2'-lsfX(:)).^2+... 258
 (nodes(elements(:,1),2)'+Esize(2)/2'-lsfY(:)).^2+... 259
 (nodes(elements(:,1),3)'+Esize(3)/2'-lsfZ(:)).^2; 260
 [d,id]=min(LSF2EleDist(Nanind,:),[],2); 261
 lsf(Nanind)=sdf(map(id))-d./Esize(1); 262
 struc=griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0; 263
 Hij=max(R-LSF2EleDist,0); 264
 Po=circshift(Esize,1).*circshift(Esize,-1)*Pressure/4; 265
 dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 266
 [ke,B,C]=stiff3D(E,nu,Esize); 267
 if(~isequal(struc,oldstruc)) 268

192

 oldstruc=[]; oldK=[]; oldF=[]; 269
 end 270
 clear LSF2EleDist; 271
 mesh=1; 272
 else 273
 if(~mod(i,numReinit)) %reinitialize LSF 274
 sdf=(~struc).*bwdist(struc)-struc.*bwdist(struc-1); %reinitialize LSF 275
 lsf=griddata(sX,sY,sZ,double(sdf),lsfX,lsfY,lsfZ); 276
 lsf(Nanind)=sdf(map(id))-d./Esize(1); 277
 struc=griddata(lsfX,lsfY,lsfZ,lsf,sX,sY,sZ)<=0; 278
 struc(map(boundary))=1; struc(exterior)=1; 279
 clear sdf 280
 end 281
 mesh=mesh+1; 282
 %Add elements if needed 283
 add=setdiff(find((struc-oldstruc)==1),[map;exterior]); 284
 if(~isempty(add)) 285
 oldnumN=numnodes; 286
 mult=[-1,-1,-1;1,-1,-1;1,1,-1;-1,1,-1;-1,-1,1;1,-1,1;1,1,1;-1,1,1]; 287
 Nfull=permute([sX(add),sY(add),sZ(add)],[3,2,1])+(Esize/2).*mult; 288
 Nall=reshape(permute(Nfull,[1,3,2]),[],3); 289
 [~,Nnum]=ismembertol(Nall,nodes,0.01*Esize(1),'ByRows',true); 290
 nodes=[nodes;Nall(Nnum==0,:)]; 291
 Nnum(Nnum==0)=(numnodes+1):(numnodes+sum(Nnum==0)); 292
 elements=[elements;reshape(Nnum,8,[])']; 293
 numnodes=size(nodes,1); 294
 numelem=size(elements,1); 295
 map=[map;add]; 296
 dof=[dof;3*repelem(elements(end-numel(add)+1:end,:),1,3)-repmat([2,1,0],1,8)]; 297
 L2ED=(nodes(elements(end-numel(add)+1:end,1),1)'+Esize(1)/2'-lsfX(:)).^2+... 298
 (nodes(elements(end-numel(add)+1:end,1),2)'+Esize(2)/2'-lsfX(:)).^2+... 299
 (nodes(elements(end-numel(add)+1:end,1),3)'+Esize(3)/2'-lsfX(:)).^2; 300
 Hij=[Hij,max(R-L2ED,0)]; 301
 K=oldK; F=oldF; 302
 oldF=[oldF;zeros(3*(numnodes-oldnumN),1)]; 303
 oldK=sparse(3*numnodes,3*numnodes); 304
 oldK(1:3*oldnumN,1:3*oldnumN)=K; 305
 for(a=1:numel(add)) 306
 oldK(dof(end+1-a,:),dof(end+1-a,:))=oldK(dof(end+1-a,:),dof(end+1-307
a,:))+0.0001*ke; 308
 end 309
 fprintf('Added %d elements, new node total:%d\n',numel(add),numnodes) 310
 clear K a N Nnum add L2ED 311
 end 312
 end 313
 CompE=zeros(numelem,1); 314
 i=i+1; 315
 %-- 316
end 317
%End of Optimization 318
 319

193

%Show Final Values 320
disp('done') 321

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

194

Appendix D: Initial Configuation Subfunction

Variable
Name

Variable Size Description

elements (numelem)x8 Row for each element and a column for each of the
element's node numbers

nodes (numnodes)x3 [x,y,z] coordinates for each node
boundary (r)x1 List of elements that are on the boundary of the geometry
init 3x3 Defines the initial void geometry. 1st row defines edge

lengths of voids, 2nd row defines x,y,z gap between voids
and 3rd row the number of voids in the x,y,and z
directions

struc (Nx)x(Ny)x(Nz) Material distribution, 0 for void 1 for material

Esize 1x3 x, y, and z edge lengths of each element
map (numelem)x1 Index positions of each element in the LSF
noF 1x(c) Degrees of freedom on homogeneous boundary for FEA
exterior (r)x1 List of indices of ‘struc’ that are exterior to the design

domain
Domain 2x3 1st row is the minimum coordinates in x,y, and z of the

geometry and the second row is the maximum

StrucSize (r)x(c)x(p) Number of elements in the structure in each direction
ind (r)x1 ‘struc’ indices for each meshed element

void (r)x(c)x(p) Structural representation of the initial void based on
‘init’

vs 1x3 Initial size of the initial void based on ‘init’

bounds 2x3 Start and end position in i,j,k indices of the LSF for the
initial void centered in the structure

bn (r)x8 Nodes that are on a boundary element

noFnodes (r)x1 Nodes that are on the boundary

InitialStruc.m

function [struc,Esize,map,noF,exterior] =InitialStruc(elements,nodes,boundary,init) 1
%Evaluates initial values prior to optimization loop 2
% 3
 4
Domain=[min(nodes);max(nodes)]; 5
Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 6

195

StrucSize=round((Domain(2,:)-Domain(1,:))./Esize); 7
struc=ones(StrucSize); 8
ind=round(nodes(elements(:,1),:)./Esize+1-Domain(1,:)./Esize); 9
map=sub2ind(StrucSize,ind(:,1),ind(:,2),ind(:,3)); %map is a list for each element, which struc 10
index is used 11
void=zeros(init(1,1)*init(3,1)+init(2,1)*(init(3,1)-1),... 12
 init(1,2)*init(3,2)+init(2,2)*(init(3,2)-1),... 13
 init(1,3)*init(3,3)+init(2,3)*(init(3,3)-1)); 14
void([0:init(3,1)-1]'*(init(1,1)+init(2,1))+[1:init(1,1)],... 15
 [0:init(3,2)-1]'*(init(1,2)+init(2,2))+[1:init(1,2)],... 16
 [0:init(3,3)-1]'*(init(1,3)+init(2,3))+[1:init(1,3)])=1; 17
vs=size(void); 18
bounds=round(mean(nodes)./Esize-vs/2); 19
void=void(max(1,2-bounds(1)):min(vs(1),StrucSize(1)-bounds(1)-1),... 20
 max(1,2-bounds(2)):min(vs(2),StrucSize(2)-bounds(2)-1),... 21
 max(1,2-bounds(3)):min(vs(3),StrucSize(3)-bounds(3)-1)); 22
bounds=[max(2,bounds);max(2,bounds)+size(void)-1]; 23
struc(bounds(1,1):bounds(2,1),bounds(1,2):bounds(2,2),bounds(1,3):bounds(2,3))=... 24
 max(0,struc(bounds(1,1):bounds(2,1),bounds(1,2):bounds(2,2),bounds(1,3):bounds(2,3))-void); 25
struc(map(boundary))=1; 26
struc(setdiff(1:prod(StrucSize),map))=1; 27
 28
 29
bn=elements(boundary,:); 30
bn=unique(bn(:)); 31
noFnodes=bn(find(sum(bn'==elements(:))<8)); 32
noF=reshape(3*noFnodes'-[2;1;0],1,[]); 33
exterior=(setdiff(1:numel(struc),map))'; 34
 35
end 36

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

196

Appendix E: Stiffness Matrix Calculation

Variable
Name

Size Description

E scalar Modulus of Elasticity
v scalar Poison's Ratio
lx scalar Length of each element in the x-direction
ly scalar Length of each element in the y-direction
lz scalar Length of each element in the z-direction
Ke 24x24 Elemental stiffness matrix
C 6*6 Constituitive relation for the material, used for stress

calculations

num_nodes scalar Number of nodes for each element
J 3*3 Jacobian matrix
dN 8x3 cell Derivatives of shape functions
n 2x2 1-D shape functions
dn 2x1 1-D derivative of shape functions
xy 2x2 2-D shape function in x and y for the given node

dxy 2x1 Partial derivative in x for 2-D shape function in x and y for the
given node

xdy 1x2 Partial derivative in y for 2-D shape function in x and y for the
given node

P_1D 1x2 Gauss Points in 1-D
W 1x8 Weighting factor for each Gauss point
GPts 3x8 Master element Gauss points
Ng 8x3x8 Derivatives of shape functions evaluated at each Gauss point
D scalar Number of directions (3 for 3-D)
G scalar Number of Gauss points (8)
delN 8x3 Derivative of shape function on real element
B 6x24 B-matrix in elemental stiffness matrix calculation, used for

stress calculations

stiff3D.m

function [Ke,B,C] = stiff3D(E,v,lx,ly,lz) 1
%Calculates the elemental stiffness matrices 2
 3
%Inputs: -E:modulus of elasticity 4
% -v:Poison's ratio 5
%Outputs: -Ke:elemental stiffness matrix 6
% -Ktr:element matrix for trace tensor 7
% -lamda:Lame Constant 8

197

 9
C=(E/((1+v)*(1-2*v)))*[[(1-v)*eye(3)+v*~eye(3)],zeros(3);zeros(3),((1-2*v)/2)*eye(3)]; 10
 11
 12
 13
if(nargin==2) 14
 %ke=[(3-v)/6 , (1+v)/8 , (-3-v)/12 , (3*v-1)/8 , (v-3)/12 , (-1-v)/8 , v/6 , (1-3*v)/8]; 15
 kp=[-(3*v-2)/9,1/24,-1/18,-(4*v-1)/24,(4*v-1)/24,1/36,1/48,-1/24,(6*v-5)/72,-(4*v-1)/48,-16
1/48,(4*v-1)/48,(3*v-1)/36,(3*v-2)/36]; 17
 k1=kp([1,2,2,3,5,5;2,1,2,4,6,7;2,2,1,4,7,6;3,4,4,1,8,8;5,6,7,8,1,2;5,7,6,8,2,1]); 18
 k2=kp([9,8,12,6,4,7;8,9,12,5,3,5;10,10,13,7,4,6;6,5,11,9,2,10;4,3,5,2,9,12;11,4,6,12,10,13]); 19
 k3=kp([6,7,4,9,12,8;7,6,4,10,13,10;5,5,3,8,12,9;9,10,2,6,11,5;12,13,10,11,6,4;2,12,9,4,5,3]); 20
 21
k4=kp([14,11,11,13,10,10;11,14,11,12,9,8;11,11,14,12,8,9;13,12,12,14,7,7;10,9,8,7,14,11;10,8,9,7,22
11,14]); 23
 k5=kp([1,2,8,3,5,4;2,1,8,4,6,11;8,8,1,5,11,6;3,4,5,1,8,2;5,6,11,8,1,8;4,11,6,2,8,1]); 24
 25
k6=kp([14,11,7,13,10,12;11,14,7,12,9,2;7,7,14,10,2,9;13,12,10,14,7,11;10,9,2,7,14,7;12,2,9,11,7,126
4]); 27
 28
 Ke=(E/((1+v)*(1-2*v)))*[k1,k2,k3,k4;k2',k5,k6,k3';k3',k6,k5',k2';k4,k3,k2,k1']; 29
 30
 dN_cent=0.25*[0,-1,-1,-1;0,1,-1,-1;0,1,1,-1;0,-1,1,-1;0,-1,-1,1;0,1,-1,1;0,1,1,1;0,-1,1,1]'; 31
 order=[1,0,0;0,2,0;0,0,3;0,3,2;3,0,1;2,1,0]; 32
 B=dN_cent([order+1,order+5,order+9,order+13,order+17,order+21,order+25,order+29]); 33
else 34
 if(nargin==3) 35
 if(numel(lx)==3) 36
 ly=lx(2); 37
 lz=lx(3); 38
 lx=lx(1); 39
 else 40
 ly=lx(1); 41
 lz=lx(1); 42
 lx=lx(1); 43
 end 44
 end 45
 num_nodes=8; 46
 J=[lx/2,ly/2,lz/2].*eye(3); 47
 dN=cell(8,3); 48
 n=[-1/2,1/2;1/2,1/2]; dn=[-1/2;1/2]; 49
 for(i=1:num_nodes) 50
 xy=n(floor(mod(i-1,4)/2)+1,:)'*n(floor(mod(i,4)/2)+1,:); %[y]'*[x] 51
 dxy=n(floor(mod(i-1,4)/2)+1,:)'*dn(floor(mod(i,4)/2)+1,:); %[y]'*[dx] 52
 xdy=dn(floor(mod(i-1,4)/2)+1,:)'*n(floor(mod(i,4)/2)+1,:); %[dy]'*[x] 53
 for(c=1:size(xy,2)) 54
 if(c<=size(dxy,2)) %because partial wrt x will have 1 less column 55
 dN{i,1}=[dN{i,1},permute(dxy(:,c)*n(floor((i-1)/4)+1,:),[1,3,2])]; 56
%[dxy(:,c)]*[z] 57
 end 58
 dN{i,2}=[dN{i,2},permute(xdy(:,c)*n(floor((i-1)/4)+1,:),[1,3,2])]; %[xdy(:,c)]*[z] 59

198

 dN{i,3}=[dN{i,3},permute(xy(:,c)*dn(floor((i-1)/4)+1,:),[1,3,2])]; %[xy(:,c)]*[dz] 60
 end 61
 end 62
 63
 P_1D=[-1/3^0.5,1/3^0.5]; W=ones(1,8); 64
 GPts=P_1D([1,1,1,1,2,2,2,2;1,1,2,2,1,1,2,2;1,2,1,2,1,2,1,2]); 65
 Ng=poly3Deval(dN,GPts); 66
 [num_nodes,D,G]=size(Ng); 67
 Ke=zeros(num_nodes*D); 68
 for(g=1:G) 69
 delN=J^-1*Ng(:,:,g)'; 70
 B=zeros(2*D,num_nodes*D); 71
 for(n=1:num_nodes) 72
 for(d=1:D) 73
 a=[1:d-1,d+1:3]; 74
 B(d,n*D-D+d)=delN(d,n); 75
 B(D+a(1),n*D-D+d)=delN(a(2),n); 76
 B(D+a(2),n*D-D+d)=delN(a(1),n); 77
 end 78
 end 79
 Ke=Ke+B'*C*B*det(J)*W(g); 80
 end 81
end 82
 83
 84
 85
end 86

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

199

Appendix F: FEA Code

Variable Name Size Description
struc (NSx)x(NSy)x(NSz) Material distribution, 0 for void 1 for material
elements (numelem)x8 Row for each element and a column for each of the

element's node numbers

map (numelem)x1 Index positions of each element in the LSF
KE 24x24 Elemental stiffness matrix
Po 1x3 Outward normal force each void element's nodes

experience

fixeddofs 9x1 List of fixed degrees of freedom
oldstruc (Nx)x(Ny)x(Nz) Previous iteration's 'struc' matrix used to compare for

changes in the FEA global matrices

oldK (#dofs)x(#dofs) Previous iteration's global stiffness matrix
oldF (#dofs)x1 Previous iteration's global force vector
numnodes scalar Number of nodes
numelements scalar Number of elements
U (#dofs)x1 Deflection values for each degree of freedom
dof (numelem)x24 Degrees of freedom for each element of the mesh
fe 24x1 Elemental force vector for a void element
F (#dofs)x1 Global force vector
K (#dofs)x(#dofs) Global stiffness matrix
eKE 24x24x(numelem) Each element's stiffness matrix
ele (r)x1 List of elements that changed since previous iteration

Ke_old 24x24 Previous iteration's elemental stiffness matrix
Ke 24x24 Current iteration's elemental stiffness matrix
Fe_old 24x1 Previous iteration's elemental force vector
Fe 24x1 Current iteration's elemental force vector
freedofs (r)x1 List of non-partitioned degrees of freedom

FEA_3DP6.m

function [U,K,F] = FEA_3DP6(struc,elements,map,KE,Po,noF,fixeddofs,oldstruc,oldK,oldF) 1
%for irregular shapes 2
 3
%Computes Finite element analysis for the structure where 1 means there is 4
%material and 0 corresponds to void 5
%Inputs: -struc:material distribution representation (1=material & 0=void) 6
% -elements:mapping of which nodes belong to each element and 7
% their relative positionings 8
% -KE:elemental k matrix 9
% -Po:magnitude of pressure 10

200

% -e:used in computation of diriac delta function to determine 11
% pressure loading for the given LSF 12
% -fixeddofs:[degrees of freedom that are fixed] 13
% -oldstruc:The previous structure that the K matrix was 14
% calculated for so that the elements that don't change don't 15
% need to be recomputed in the global K-matrix 16
% -oldK:Previous global K matrix to serve as starting point for 17
% the this iteration 18
%Outputs: -U:dispacement vector result from FEA 19
% -K:current global K matrix to be used as starting point for the 20
% next iteration 21
 22
 23
%Initialize F,K and U Matrices-------------------------------- 24
numnodes=max(max(elements)); 25
numelements=size(elements,1); 26
U=zeros(3*numnodes,1); 27
dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 28
fe=repmat(Po',8,1).*[1;1;1;-1;1;1;-1;-1;1;1;-1;1;1;1;-1;-1;1;-1;-1;-1;-1;1;-1;-1]; 29
%--- 30
 31
%--- 32
if(nargin<7 || isempty(oldK)|| isempty(oldF)) 33
 %compute full K matrix 34
 F=zeros(3*numnodes,1); 35
 K=sparse(3*numnodes,3*numnodes); 36
 eKE=permute(max(struc(map),0.0001),[3,2,1]).*KE; 37
 for(e=1:numelements) 38
 K(dof(e,:),dof(e,:))=K(dof(e,:),dof(e,:))+eKE(:,:,e); 39
 if(struc(map(e))==1) 40
 F(dof(e,:))=F(dof(e,:))+fe; 41
 end 42
 end 43
else 44
 %only modify K and F where needed 45
 K=oldK; F=oldF; 46
 ele=find(struc(map)-oldstruc(map)); %elements that changed 47
 for(i=1:numel(ele)) %0==no change, 1==added material, -1==removed material 48
 Ke_old=max(oldstruc(map(ele(i))),0.0001)*KE; 49
 Ke=max(struc(map(ele(i))),0.0001)*KE; 50
 K(dof(ele(i),:),dof(ele(i),:))=K(dof(ele(i),:),dof(ele(i),:))-Ke_old+Ke; 51
 Fe_old=oldstruc(map(ele(i)))*fe; 52
 Fe=struc(map(ele(i)))*fe; 53
 F(dof(ele(i),:))=F(dof(ele(i),:))-Fe_old+Fe; 54
 end 55
 56
end 57
 58
%Solve System of Equations 59
F(noF)=0; 60
freedofs=setdiff(1:3*numnodes,fixeddofs); 61

201

U(freedofs,:)=K(freedofs,freedofs)\F(freedofs,:); 62
 63
end 64

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

202

Appendix G: Update Code

Variable
Name

Size Description

lsf (NLx)x(NLy)x(NLz) Level-Set Function values
shapeSens (NLx)x(NLy)x(NLz) Shape sensitivity calculated from elemental strain

energy densities and penalties
stepLength scalar Number of CFL time steps the evolution equation is

solved every iteration

bearing (r)x1 List of indexes of the LSF that are to remain constant
and not change (regions outside the domain and the
boundary elements)

Le scalar Element length, used in determining CFL condition

C 3x3x3 Matrix to perform convolution with for sensitivity
smoothing

v (NLx)x(NLy)x(NLz) Velocities for the Hamilton-Jacobi equation
vFull (Nx+2)x(Ny+2)x(Nz+2) 'v' with a border of zeros
dt scalar Time step, 0.1 of the CFL condition
dpx (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the positive x direction
dmx (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the negative x direction
dpy (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the positive y direction
dmy (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the negative y direction
dpz (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the positive z direction
dmz (Nx+2)x(Ny+2)x(Nz+2) Finite difference in the negative z direction

Updatestep3

function [lsf] = updatestep3(lsf,shapeSens,stepLength,bearing,Le) 1
%updates the structure and the level-set function 2
 3
%smooth sensitivities 4
C=reshape([0,1,0;1,2,1;0,1,0;1,2,1;2,3,2;1,2,1;0,1,0;1,2,1;0,1,0],3,3,3)/27; 5
shapeSens=convn(padarray(shapeSens,[1,1,1],'replicate'),C,'valid'); 6
 7
%Insure load bearing pixels remain solid 8
shapeSens(bearing)=0; 9
 10
v=-shapeSens; 11
%add zeros to boarder of v 12
vFull=zeros(size(v)+2); vFull(2:end-1,2:end-1,2:end-1)=v; 13
lsf=padarray(lsf,[1,1,1],'replicate'); 14
 15
%determine timestep (based on CFL condition) 16

203

dt=Le*0.1/max(abs(v(:))); 17
 18
for(i=1:(10*stepLength)) 19
 dpx=circshift(lsf,[-1,0,0])-lsf; %Find derivatives on the grid 20
 dmx=lsf-circshift(lsf,[1,0,0]); 21
 dpy=circshift(lsf,[0,-1,0])-lsf; 22
 dmy=lsf-circshift(lsf,[0,1,0]); 23
 dpz=circshift(lsf,[0,0,-1])-lsf; 24
 dmz=lsf-circshift(lsf,[0,0,1]); 25
 %Update LSF 26
 lsf=lsf-27
dt*min(vFull,0).*sqrt(min(dmx,0).^2+max(dpx,0).^2+min(dmy,0).^2+max(dpy,0).^2+min(dmz,0).^2+max(d28
pz,0).^2) ... 29
 -30
dt*max(vFull,0).*sqrt(max(dmx,0).^2+min(dpx,0).^2+max(dmy,0).^2+min(dpy,0).^2+max(dmz,0).^2+min(d31
pz,0).^2); 32
end 33
 34
lsf=lsf(2:end-1,2:end-1,2:end-1); 35
 36
end 37

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

204

Appendix H: Remesh Code

Variable Name Size Description
lsf (NLx)x(NLy)x(NLz) Level-Set Function values
LSFcoord (numLSF)x3 Coordinates of LSF kernels
Esize 1x3 x, y, and z edge lengths of each element
file String STL file name
struc (NSx)x(NSy)x(NSz) Material distribution, 0 for void 1 for material
elements (numelem)x8 Row for each element and a column for each of the

element's node numbers
nodes (numnodes)x3 [x,y,z] coordinates for each node
map (numelem)x1 Index positions of each element in the LSF
boundary (r)x1 List of elements that are on the boundary of the

geometry
noF 1x(c) Degrees of freedom on homogeneous boundary for FEA
sX, sY, &

sZ

(NSx)x(NSy)x(NSz) Meshgrid of coordinates of the elements’ centroids

exterior (r)x1 List of indices of ‘struc’ that are exterior to the design
domain

faces (#triangles)x3 Outward normal direction components of STL faces
vertices 3x3x(#triangles) (each node of the triangle)x(x, y, z coordinate of the

node)x(each STL triangle)
ranges 2x3 minimum STL node coordinates over the maximum

x_centroids 1x(c) x-coordinates of the centroid for each cell
y_centroids 1x(c) y-coordinates of the centroid for each cell

z_centroids 1x(c) z-coordinates of the centroid for each cell
xyfaces (r)x1 List of STL faces that have a z component
X (r)x(c) X values from a meshgrid of x and y centroids
Y (r)x(c) X values from a meshgrid of x and y centroids
numxyzf 1x4 [number of cell elements in x, y, and z then the number

of xy-faces]
cells (r)x(c)x(p) Logic representation of if a cell has material or not (-

1=void, 1=solid)
p 3x2 x and y coordinates of the 3 nodes that make up the

given triangle
intersects (r)x(c) Logic value of which x and y centroids are within the

given triangle
A scalar Area of given triangle
up scalar 1,2,3 index value for cross product to make shape

function
down scalar 1,2,3 index value for cross product to make shape

function

205

Variable Name Size Description
Plane 2x2 Coefficient representation of shape function for triangle
I (r)x1 Indices of x and y centroids that are within the given

triangle
z_int (r)x1 Z values of where the STL triangle intersects each x, y

centroid
mult 1x(c) Numbers to multiply along z to change 'cells'
Domain 2x3 1st row is the minimum coordinates in x,y, and z of the

geometry and the second row is the maximum
Fullcells (r)x(c)x(p) ‘cells’ matrix bordered my -1’s
Nf_1458 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value

for cells without an element in the negative x-direction
Nf_2367 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value

for cells without an element in the positive x-direction
Nf_1256 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value

for cells without an element in the negative y-direction
Nf_3478 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value

for cells without an element in the positive y-direction
Nf_1234 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value

for cells without an element in the negative z-direction
Nf_5678 (r)x(c)x(p) True/False matrix the size of ‘Fullcells’ with a true value

for cells without an element in the positive z-direction
outer 1x(c) Indices of cell that are not completely surrounded by

elements
nelx scalar Number of elements in x
nely scalar Number of elements in y
nelz scalar Number of elements in z
Elements (r)x(c) List of element numbers
n1z (r)x1 List of node one z-coordinates for each element
n1x (r)x1 List of node one x-coordinates for each element
n1y (r)x1 List of node one y-coordinates for each element
Relative 8x1 Relative node numberings from node 1 for each element
Nodes (r)x3 List of all possible node coordinates
ind (r)x1 Indices for repeated nodes
N scalar Node number counter
mapFull (r)x(c)x(p) Same as ‘map’ but for a matrix with a border
noFnodes (r)x1 Nodes that are on the boundary

remesh.m

function [struc,elements,nodes,map,boundary,noF,sX,sY,sZ,exterior] = 1
remesh(lsf,LSFcoord,Esize,file) 2

206

%Remeshes material domain excluding void regions 3
 4
[faces,vertices]=readSTL(file,'inches'); 5
 6
ranges=[min(min(vertices),[],3);max(max(vertices),[],3)]; 7
x_centroids=ranges(1,1)+0.5*Esize(1):Esize(1):ranges(2,1); 8
y_centroids=ranges(1,2)+0.5*Esize(2):Esize(2):ranges(2,2); 9
z_centroids=ranges(1,3)+0.5*Esize(3):Esize(3):ranges(2,3); 10
xyfaces=find(faces(:,3)~=0); 11
 12
[X,Y]=meshgrid(x_centroids,y_centroids); 13
numxyzf=[fliplr(size(X)),numel(z_centroids),numel(xyfaces)]; 14
cells=-1*ones(numxyzf([2,1,3])); 15
for(f=1:numxyzf(4)) 16
 p=vertices(:,1:2,xyfaces(f)); 17
 intersects=inpolygon(X,Y,p(:,1),p(:,2)); 18
 A=0.5*det([[1;1;1],p]); 19
 Plane=zeros(2); 20
 for(i=1:3) 21
 up=rem(i,3)+1; 22
 down=3-rem(4-i,3); 23
 Plane=Plane+0.5*vertices(i,3,xyfaces(f))*[0,p(down,1)-p(up,1);p(up,2)-24
p(down,2),p(up,1)*p(down,2)-p(down,1)*p(up,2)]/A; 25
 end 26
 I=find(intersects); 27
 if(~isempty(I)) 28
 z_int=poly2Deval(Plane,[X(I),Y(I)]); 29
 mult=-1*(z_centroids>=z_int)+(z_centroids<z_int); 30
 for(i=1:numel(I)) 31
 [r,c]=ind2sub([numxyzf(2),numxyzf(3)],I(i)); 32
 cells(r,c,:)=cells(r,c,:).*permute(mult(i,:),[1,3,2]); 33
 end 34
 end 35
end 36
cells=permute(cells,[2,1,3]); 37
exterior=find(cells==-1); 38
 39
Domain=ranges-ranges(1,:); 40
[sX,sY,sZ]=meshgrid(Esize(1)/2:Esize(1):Domain(2,1),... 41
 Esize(2)/2:Esize(2):Domain(2,2),Esize(3)/2:Esize(3):Domain(2,3)); 42
sX=permute(sX,[2,1,3]); sY=permute(sY,[2,1,3]); sZ=permute(sZ,[2,1,3]); 43
struc=griddata(LSFcoord(:,1),LSFcoord(:,2),LSFcoord(:,3),lsf,sX,sY,sZ)<=0; 44
 45
 46
Fullcells=padarray(cells,[1,1,1],-1); 47
Nf_1458=(Fullcells-circshift(Fullcells,[1,0,0]))==2; 48
Nf_2367=(Fullcells-circshift(Fullcells,[-1,0,0]))==2; 49
Nf_1256=(Fullcells-circshift(Fullcells,[0,1,0]))==2; 50
Nf_3478=(Fullcells-circshift(Fullcells,[0,-1,0]))==2; 51
Nf_1234=(Fullcells-circshift(Fullcells,[0,0,1]))==2; 52
Nf_5678=(Fullcells-circshift(Fullcells,[0,0,-1]))==2; 53

207

 54
 55
outer=(cells==1).*(convn(cells,ones(3,3,3),'same')<27); 56
struc(find(outer))=1; 57
 58
 59
nelx=numxyzf(1); nely=numxyzf(2); nelz=numxyzf(3); 60
Elements=1:nelx*nely*nelz; 61
n1z=floor((Elements-1)/(nelx*nely)); 62
n1x=rem((Elements-(nelx*nely).*floor((Elements-1)/(nelx*nely))-1),nelx); 63
n1y=floor((Elements-(nelx*nely).*floor((Elements-1)/(nelx*nely))-1)/nelx); 64
Relative=[0;1;nelx+2;nelx+1;... 65
 (nelx+1)*(nely+1);(nelx+1)*(nely+1)+1;(nelx+1)*(nely+1)+nelx+2;(nelx+1)*(nely+1)+nelx+1]; 66
Elements=(1+n1x+n1y*(nelx+1)+n1z*(nelx+1)*(nely+1))'+Relative'; 67
[Nodes(:,1),Nodes(:,2),Nodes(:,3)]=ind2sub([nelx+1,nely+1,nelz+1],1:(nelx+1)*(nely+1)*(nelz+1)); 68
Nodes=Esize.*(Nodes-[1,1,1]); 69
 70
 71
Elements=(cells(:)==1 & struc(:)==1).*Elements; %find on elements 72
Elements((Elements(:,1)==0),:)=[]; %remove off elements 73
 74
elements=zeros(size(Elements)); 75
nodes=zeros(size(Nodes)); 76
N=1; 77
while(sum(elements(:)==0)>0) 78
 [c,r]=find(elements'==0,1); 79
 ind=find(Elements==Elements(r,c)); 80
 elements(ind)=N; 81
 nodes(N,:)=Nodes(Elements(r,c),:); 82
 N=N+1; 83
 if(~mod(N,5000)) 84
 fprintf('meshing node %d of %d \n',sum(elements(:)~=0),numel(Elements)); 85
 end 86
end 87
nodes(N:end,:)=[]; 88
 89
ind=round(nodes(elements(:,1),:)./Esize+1-Domain(1,:)./Esize); 90
map=sub2ind(numxyzf([1,2,3]),ind(:,1),ind(:,2),ind(:,3)); %map is a list for each element, which 91
struc index is used 92
mapFull=sub2ind(numxyzf([1,2,3])+2,ind(:,1)+1,ind(:,2)+1,ind(:,3)+1); 93
 94
boundary=find(outer(map)); 95
noFnodes=[elements(find(Nf_1458(mapFull)),[1,4,5,8]);... 96
 elements(find(Nf_2367(mapFull)),[2,3,6,7]);... 97
 elements(find(Nf_1256(mapFull)),[1,2,5,6]);... 98
 elements(find(Nf_3478(mapFull)),[3,4,7,8]);... 99
 elements(find(Nf_1234(mapFull)),[1,2,3,4]);... 100
 elements(find(Nf_5678(mapFull)),[5,6,7,8])]; 101
noF=reshape(3*unique(noFnodes(:)')-[2;1;0],1,[]); 102
 103

208

 104
end 105

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

209

Appendix I: Polynomial Evaluation Code

Variable Name Size Description
coef cell array Each cell contains coefficients for a function
points 3x(c) List of x,y,z coordinates to evaluate each function at
Req scalar Number of rows in coef
Ceq scalar Number of columns in coef

eval (r)x(c)x(p) Each function evaluated at each point
xp scalar Power of x to be multiplied to particular coefficient
yp scalar Power of y to be multiplied to particular coefficient

zp scalar Power of z to be multiplied to particular coefficient

poly3Deval.m

function [eval] = poly3Deval(coef,points) 1
if(iscell(coef)) 2
 [Req,Ceq]=size(coef); 3
else 4
 Req=1; 5
 Ceq=1; 6
end 7
if(nargin==1) 8
 P=input('at what location would you like to evaluate? :'); 9
else 10
 P=points; 11
end 12
eval=zeros([Req,Ceq,size(points,2)]); %Initializes function value matrix 13
for(r=1:Req) 14
 for(c=1:Ceq) 15
 for(p=1:size(points,2)) 16
 xp=0; 17
 for(i=size(coef{r,c},1):-1:1) 18
 yp=0; 19
 for(j=size(coef{r,c},2):-1:1) 20
 zp=0; 21
 for(k=size(coef{r,c},3):-1:1) 22
 eval(r,c,p)=eval(r,c,p)+coef{r,c}(i,j,k)*P(1,p)^xp*P(2,p)^yp*P(3,p)^zp; 23
 zp=zp+1; 24
 end 25
 yp=yp+1; 26
 end 27
 xp=xp+1; 28
 end 29
 end 30
 end 31

210

end 32
end 33

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

211

Appendix J: Reading STL file Code

Variable Name Size Description
filename Character STL file name
units Character Units the STL file is in
vertices 3x3x(#triangles) (each node of the triangle)x(x, y, z coordinate of the

node)x(each STL triangle)
faces (#triangles)x3 Outward normal direction components of STL faces
fid scalar File ID number in MATLAB
Title Character First line of the STL file
f scalar Face counter
line Character Current line being read
v scalar Vertex counter

readSTL.m

function [faces,vertices] = readSTL(filename,units) 1
%Reads an STL file found under the presribed filename and then filters and 2
%outputs the face normals and vertices of each face 3
 4
 5
fid=fopen(filename,'r'); 6
 7
Title=fgetl(fid); 8
f=0; 9
while(feof(fid)==0) 10
 line=fgetl(fid); 11
 if(contains(line,'facet normal')) 12
 f=f+1; 13
 v=0; 14
 faces(f,:)=str2num(line(17:end)); 15
 elseif(contains(line,'vertex')) 16
 v=v+1; 17
 vertices(v,:,f)=str2num(line(17:end)); 18
 end 19
end 20
fclose(fid); 21
 22
 23
if(units=='inches') 24
 vertices=vertices/25.4; 25
end 26
 27
end 28

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

212

Appendix K: Cross-Section Viewing Code

Variable
Name

Size Description

folder String Folder name that the iteration data is saved into
iteration scalar Which iteration to plot
Domain 2x3 1st row is the minimum coordinates in x,y, and z of the

geometry and the second row is the maximum
W 2x3 Current window view
Esize 1x3 x, y, and z edge lengths of each element
Done Logical T/F for when to exit the loop
mat_files (r)x1 cell array List of MATLAB data files in ‘folder’
volTot Scalar Total design domain volume
Yield Scalar Yield strength for the given material
VonoMises (numelem)x1 VonMises stress value for each element
StrucSize 1x3 Number of elements of the structure in each direction
ind (r)x1 Index positions for elements
e Scalar Counter through each element
stress 6x1 Stress state for the given element
CalcComp Logical T/F for if the elemental compliances need to be

calculated
OldNodes (numnodes)x3 Coordinates for undeformed nodes
Cent (numelem)x3 Centroid coordinates for each element
use (r)x1 List of elements to plot based on the current window
f Handle Figure Handle
Xrange Handle UI panel to control the x-value ranges of the view

window
Xmax_down Handle UI button to decrease the max range of the view window

in X
Xmax_up Handle UI button to increase the max range of the view window

in X
Xmax_Text Handle Text number indicator for max x range
Xmin_down Handle UI button to decrease the min range of the view window

in X
Xmin_up Handle UI button to increase the min range of the view window

in X
Xmin_Text Handle Text number indicator for min x range
Yrange Handle UI panel to control the y-value ranges of the view

window
Ymax_down Handle UI button to decrease the max range of the view window

in Y
Ymax_up Handle UI button to increase the max range of the view window

in Y

213

Variable
Name

Size Description

Ymax_Text Handle Text number indicator for max y range
Ymin_down Handle UI button to decrease the min range of the view window

in Y
Ymin_up Handle UI button to increase the min range of the view window

in Y
Ymin_Text Handle Text number indicator for min y range
Zrange Handle UI panel to control the z-value ranges of the view

window
Zmax_down Handle UI button to decrease the max range of the view window

in Z
Zmax_up Handle UI button to increase the max range of the view window

in Z
Zmax_Text Handle Text number indicator for max z range
Zmin_down Handle UI button to decrease the min range of the view window

in Z
Zmin_up Handle UI button to increase the min range of the view window

in Z
Zmin_Text Handle Text number indicator for min z range
DeflectTB Handle Toggle button to view deflected structure
MagSlide Handle Slider to control deflection magnification factor
MagText Handle Text indicator for magnification factor
P Handle Button group for which
tb1 Handle Buttom to view solid plot
tb2 Handle Button to view transparent plot
tb3 Handle Button to view stress plot
tb4 Handle Button to view only void elements
S Handle Button to save the current view
D Handle Button to finish and exit the code
itr Handle Text indicator for which iteration is plotted
CompTot Handle Text indicator for the iteration’s compliance
CompWin Handle Text indicator for the current window view’s compliance
VolTot Handle Text indicator for the iteration’s vonlume fraction
Volfrac Handle Text indicator for the current window view’s volume

fraction
Intfrac Handle Text indicator for the iteration’s vonlume fraction

excluding border
last 1x3 cell array Last plots conditions
CompE (numelem)x1 Compliance for each element
dof (numelem)x24 Degree of freedoms for each element
p Logical T/F indicator if plotting needs to be done

214

Variable
Name

Size Description

num Scalar The number of already saved figures so a figure doesn’t
get saved over

CrossSectionPlot.m

clear all 1
close all 2
clc 3
addpath([pwd,'\IrregularShapeSubfunctions']) 4
%Plots Cross-Sections of Structures 5
 6
folder='0.45finish23-May-2020 10,08,20'; %iIPV 30 v=0.45 7
iteration='end'; %iteration # or 'end' for last iteration 8
 9
 10
 11
global Domain W Esize Done 12
if(ischar(iteration)) 13
 mat_files=dir([folder,'/*.mat']); 14
 iteration=numel(mat_files)-1; 15
end 16
Done=0; 17
load([folder,'/Iteration0']) 18
Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 19
volTot=prod(Esize)*size(elements,1); 20
load([folder,'/Iteration',num2str(iteration)]) 21
Domain=[min(nodes);max(nodes)]; 22
W=Domain; 23
Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 24
[Ke,B,C]=stiff3D(29.5*10^6,0.29,Esize); 25
Yield=150*10^3; %psi 26
VonMises=zeros(size(elements,1),1); 27
StrucSize=size(struc); 28
 29
ind=find(struc(map)); 30
for(e=1:sum(struc(map))) 31
 stress=C*B*U(3*repelem(elements(ind(e),:),1,3)-repmat([2,1,0],1,8)); 32
 VonMises(ind(e))=sqrt(sum((stress(1:3)-stress([2,3,1])).^2)+6*sum(stress(4:6).^2))/sqrt(2); 33
end 34
CalcComp=~exist('compE','var'); 35
OldNodes=nodes; 36
Cent=nodes(elements(:,1),:)+Esize/2; 37
use=find(Cent(:,1)>=W(1,1)&Cent(:,1)<=W(2,1)&... 38
 Cent(:,2)>=W(1,2)&Cent(:,2)<=W(2,2)&... 39
 Cent(:,3)>=W(1,3)&Cent(:,3)<=W(2,3)); 40
f=figure('Units','normalized','color','w'); 41

215

fig=plotstructure(elements(use,:),nodes,struc,map(use)); 42
axis equal; axis tight; view([30,30]); drawnow; 43
xlabel('x'); ylabel('y'); zlabel('z'); 44
lgd=legend('Solid'); 45
lgd.Position=[0.85,0.85,0.1,0.1]; 46
 47
%X Limits Control Panel-- 48
Xrange=uipanel('Title','X Limits','Position',[0.01,0.775,0.18755,0.125]); 49
uicontrol(Xrange,'Style','text','String','Max:','Units','normalized','FontUnits','normalized',... 50
 'Position',[0,0.6,0.185,0.225],'FontSize',0.9); 51
Xmax_down=uicontrol(Xrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 52
 'Position',[0.2,0.6,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@XmaxDPushed); 53
Xmax_up=uicontrol(Xrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 54
 'Position',[0.5,0.6,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@XmaxUPushed); 55
Xmax_Text=uicontrol(Xrange,'Style','text','Units','normalized','FontUnits','normalized',... 56
 'Position',[0.775,0.6,0.22,0.225],'FontSize',0.9); 57
uicontrol(Xrange,'Style','text','String','Min:','Units','normalized','FontUnits','normalized',... 58
 'Position',[0,0.3,0.185,0.225],'FontSize',0.9); 59
Xmin_down=uicontrol(Xrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 60
 'Position',[0.2,0.3,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@XminDPushed); 61
Xmin_up=uicontrol(Xrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 62
 'Position',[0.5,0.3,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@XminUPushed); 63
Xmin_Text=uicontrol(Xrange,'Style','text','Units','normalized','FontUnits','normalized',... 64
 'Position',[0.775,0.3,0.22,0.225],'FontSize',0.9); 65
%-- 66
 67
%Y Limits Control Panel-- 68
Yrange=uipanel('Title','Y Limits','Position',[0.01,0.625,0.18755,0.125]); 69
uicontrol(Yrange,'Style','text','String','Max:','Units','normalized','FontUnits','normalized',... 70
 'Position',[0,0.6,0.185,0.225],'FontSize',0.9); 71
Ymax_down=uicontrol(Yrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 72
 'Position',[0.2,0.6,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@YmaxDPushed); 73
Ymax_up=uicontrol(Yrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 74
 'Position',[0.5,0.6,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@YmaxUPushed); 75
Ymax_Text=uicontrol(Yrange,'Style','text','Units','normalized','FontUnits','normalized',... 76
 'Position',[0.775,0.6,0.22,0.225],'FontSize',0.9); 77
uicontrol(Yrange,'Style','text','String','Min:','Units','normalized','FontUnits','normalized',... 78
 'Position',[0,0.3,0.185,0.225],'FontSize',0.9); 79
Ymin_down=uicontrol(Yrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 80
 'Position',[0.2,0.3,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@YminDPushed); 81
Ymin_up=uicontrol(Yrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 82
 'Position',[0.5,0.3,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@YminUPushed); 83
Ymin_Text=uicontrol(Yrange,'Style','text','Units','normalized','FontUnits','normalized',... 84
 'Position',[0.775,0.3,0.22,0.225],'FontSize',0.9); 85
%-- 86
 87
%Z Limits Control Panel-- 88
Zrange=uipanel('Title','Z Limits','Position',[0.01,0.475,0.18755,0.125]); 89
uicontrol(Zrange,'Style','text','String','Max:','Units','normalized','FontUnits','normalized',... 90
 'Position',[0,0.6,0.185,0.225],'FontSize',0.9); 91
Zmax_down=uicontrol(Zrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 92

216

 'Position',[0.2,0.6,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@ZmaxDPushed); 93
Zmax_up=uicontrol(Zrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 94
 'Position',[0.5,0.6,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@ZmaxUPushed); 95
Zmax_Text=uicontrol(Zrange,'Style','text','Units','normalized','FontUnits','normalized',... 96
 'Position',[0.775,0.6,0.22,0.225],'FontSize',0.9); 97
uicontrol(Zrange,'Style','text','String','Min:','Units','normalized','FontUnits','normalized',... 98
 'Position',[0,0.3,0.185,0.225],'FontSize',0.9); 99
Zmin_down=uicontrol(Zrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 100
 'Position',[0.2,0.3,0.25,0.225],'String','Down','FontSize',0.9,'Callback',@ZminDPushed); 101
Zmin_up=uicontrol(Zrange,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 102
 'Position',[0.5,0.3,0.25,0.225],'String','Up','FontSize',0.9,'Callback',@ZminUPushed); 103
Zmin_Text=uicontrol(Zrange,'Style','text','Units','normalized','FontUnits','normalized',... 104
 'Position',[0.775,0.3,0.22,0.225],'FontSize',0.9); 105
%-- 106
 107
%Deflection Controls--- 108
DeflecTB=uicontrol(f,'Style','togglebutton','Units','normalized','Position',[0.01,0.42,0.1875,0.0109
4],'String','Deflection','FontUnits','normalized','FontSize',0.75); 110
MagSlide=uicontrol(f,'Style','slider','Units','normalized','Position',[0.01,0.375,0.11,0.04],'Min111
',0,'Max',100,'Value',10,'SliderStep',[1/1000,0.01]); 112
MagText=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 113
 'Position',[0.12,0.375,0.08,0.04],'FontSize',0.75); 114
set(MagText,'String',sprintf('Mag:%3.1f',MagSlide.Value)) 115
%-- 116
%Plot Type Controls-- 117
P=uibuttongroup(f,'Position',[0.01,0.135,0.18755,0.21875],'Units','normalized');%'SelectionChange118
dFcn',@Ptype 119
tb1=uicontrol(P,'Style','togglebutton','Units','normalized','Position',[0.05,0.76,0.9,0.2],'Strin120
g','Solid','FontUnits','normalized','FontSize',0.75); 121
tb2=uicontrol(P,'Style','togglebutton','Units','normalized','Position',[0.05,0.52,0.9,0.2],'Strin122
g','Transparent','FontUnits','normalized','FontSize',0.75); 123
tb3=uicontrol(P,'Style','togglebutton','Units','normalized','Position',[0.05,0.28,0.9,0.2],'Strin124
g','Stress','FontUnits','normalized','FontSize',0.75); 125
tb4=uicontrol(P,'Style','togglebutton','Units','normalized','Position',[0.05,0.04,0.9,0.2],'Strin126
g','Void Only','FontUnits','normalized','FontSize',0.75); 127
%-- 128
 129
S=uicontrol(f,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 130
 'Position',[0.01,0.0775,0.1875,0.05],'String','Save','FontSize',0.9,'Callback',@SPushed); 131
D=uicontrol(f,'Style','pushbutton','Units','normalized','FontUnits','normalized',... 132
 'Position',[0.01,0.015,0.1875,0.05],'String','Done','FontSize',0.9,'Callback',@DPushed); 133
uicontrol(f,'Style','text','String','Iteration:','Units','normalized','FontUnits','normalized',..134
. 135
 'Position',[0.025,0.94,0.15,0.05],'FontSize',0.9); 136
itr=uicontrol(f,'Style','edit','Units','normalized','FontUnits','normalized',... 137
 'Position',[0.18,0.94,0.0575,0.05],'String',num2str(iteration),'FontSize',0.9); 138
 139
%Objective and Constraint Values--- 140
CompTot=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 141
 'Position',[0.7375,0.15,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 142
CompWin=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 143

217

 'Position',[0.7375,0.12,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 144
VolTot=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 145
 'Position',[0.7375,0.09,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 146
Volfrac=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 147
 'Position',[0.7375,0.06,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 148
Intfrac=uicontrol(f,'Style','text','Units','normalized','FontUnits','normalized',... 149
 'Position',[0.7375,0.03,0.25,0.025],'FontSize',0.9,'horizontalAlignment','right'); 150
set(VolTot,'String',sprintf('Total Volume Fraction:%1.3f',prod(Esize)*sum(struc(map))/volTot)) 151
set(Volfrac,'String',sprintf('Window Volume 152
Fraction:%1.3f',prod(Esize)*sum(struc(map(use)))/volTot)) 153
set(Intfrac,'String',sprintf('Window Interior Volume 154
Fraction:%1.3f',prod(Esize)*sum(struc(map(setdiff(use,boundary))))/volTot)) 155
set(CompTot,'String',sprintf('Total Compliance:%10.3f',-sum(CompE(:)))) 156
set(CompWin,'String',sprintf('Window Compliance:%10.3f',-sum(CompE(use)))) 157
%-- 158
 159
last={'Solid',num2str(iteration),0,MagSlide.Value}; 160
lastW=W; OldNodes=nodes; p=0; 161
set(Xmax_Text,'String',W(2,1)) 162
set(Xmin_Text,'String',W(1,1)) 163
set(Ymax_Text,'String',W(2,2)) 164
set(Ymin_Text,'String',W(1,2)) 165
set(Zmax_Text,'String',W(2,3)) 166
set(Zmin_Text,'String',W(1,3)) 167
 168
while(Done==0) 169
 pause(0.01) 170
 set(MagText,'String',sprintf('Mag:%3.1f',MagSlide.Value)) 171
 if(~isequal(lastW,W)) 172
 lastW=W; p=1; 173
 set(Xmax_Text,'String',W(2,1)) 174
 set(Xmin_Text,'String',W(1,1)) 175
 set(Ymax_Text,'String',W(2,2)) 176
 set(Ymin_Text,'String',W(1,2)) 177
 set(Zmax_Text,'String',W(2,3)) 178
 set(Zmin_Text,'String',W(1,3)) 179
 %xlim(W(:,1)); ylim(W(:,2)); zlim(W(:,3)); 180
 %Cent=nodes(elements(:,1),:)+Esize/2; 181
 use=find(Cent(:,1)>=W(1,1)&Cent(:,1)<=W(2,1)&... 182
 Cent(:,2)>=W(1,2)&Cent(:,2)<=W(2,2)&... 183
 Cent(:,3)>=W(1,3)&Cent(:,3)<=W(2,3)); 184
 set(CompTot,'String',sprintf('Total Compliance:%10.3f',-sum(CompE(:)))) 185
 set(CompWin,'String',sprintf('Window Compliance:%10.3f',-sum(CompE(use)))) 186
 set(VolTot,'String',sprintf('Total Volume 187
Fraction:%1.3f',prod(Esize)*sum(struc(map))/volTot)) 188
 set(Volfrac,'String',sprintf('Window Volume 189
Fraction:%1.3f',prod(Esize)*sum(struc(map(use)))/volTot)) 190
 set(Intfrac,'String',sprintf('Window Interior Volume 191
Fraction:%1.3f',prod(Esize)*sum(struc(map(setdiff(use,boundary))))/volTot)) 192
 end 193
 if(~strcmp(itr.String,last{2})) 194

218

 p=1; 195
 iteration=max(1,min([str2num(itr.String),(numel(mat_files)-1)])); 196
 set(itr,'String',num2str(iteration)); 197
 load([folder,'/Iteration',num2str(iteration)]) 198
 OldNodes=nodes; 199
 Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 200
 VonMises=zeros(size(elements,1),1); 201
 ind=find(struc(map)); 202
 for(e=1:sum(struc(map))) 203
 stress=C*B*U(3*repelem(elements(ind(e),:),1,3)-repmat([2,1,0],1,8)); 204
 VonMises(ind(e))=sqrt(sum((stress(1:3)-205
stress([2,3,1])).^2)+6*sum(stress(4:6).^2))/sqrt(2); 206
 end 207
 if(CalcComp==1) 208
 CompE=zeros(size(elements,1),1); 209
 dof=3*repelem(elements,1,3)-repmat([2,1,0],1,8); 210
 for(e=1:size(elements,1)) 211
 CompE(e)=-max(struc(map(e)),0.0001)*U(dof(e,:))'*ke*U(dof(e,:)); 212
 end 213
 end 214
 Cent=nodes(elements(:,1),:)+Esize/2; 215
 use=find(Cent(:,1)>=W(1,1)&Cent(:,1)<=W(2,1)&... 216
 Cent(:,2)>=W(1,2)&Cent(:,2)<=W(2,2)&... 217
 Cent(:,3)>=W(1,3)&Cent(:,3)<=W(2,3)); 218
 set(CompTot,'String',sprintf('Total Compliance:%10.3f',-sum(CompE(:)))) 219
 set(CompWin,'String',sprintf('Window Compliance:%10.3f',-sum(CompE(use)))) 220
 set(VolTot,'String',sprintf('Total Volume 221
Fraction:%1.3f',prod(Esize)*sum(struc(map))/volTot)) 222
 set(Volfrac,'String',sprintf('Window Volume 223
Fraction:%1.3f',prod(Esize)*sum(struc(map(use)))/volTot)) 224
 set(Intfrac,'String',sprintf('Window Interior Volume 225
Fraction:%1.3f',prod(Esize)*sum(struc(map(setdiff(use,boundary))))/volTot)) 226
 end 227
 if(DeflecTB.Value~=last{3}||(MagSlide.Value~=last{4}&&DeflecTB.Value==1)) 228
 p=1; 229
 end 230
 231
 if(p==1||~strcmp(P.SelectedObject.String,last{1})) 232
 cla 233
 colorbar('off'); legend('off'); 234
 nodes=OldNodes+DeflecTB.Value*MagSlide.Value*reshape(U,3,[])'; 235
 if(strcmp(P.SelectedObject.String,'Solid')) 236
 plotstructure(elements(use,:),nodes,struc,map(use)); 237
 lgd=legend('Solid'); 238
 lgd.Position=[0.85,0.85,0.1,0.1]; 239
 elseif(strcmp(P.SelectedObject.String,'Transparent')) 240
 plottrans(elements(use,:),nodes,struc,map(use),find(ismember(use,boundary))); 241
 elseif(strcmp(P.SelectedObject.String,'Stress')) 242
 plotstress(elements(use,:),nodes,struc,map(use),VonMises(use),Yield); 243
 else 244
 plotvoid(elements,nodes,struc); 245

219

 hold on; 246
 plotSTL('Rotated Irregular Pressure Vessel.STL'); 247
 lgd=legend('Void'); 248
 lgd.Position=[0.85,0.85,0.1,0.1]; 249
 end 250
 last={P.SelectedObject.String,itr.String,DeflecTB.Value,MagSlide.Value}; 251
 p=0; 252
 end 253
end 254
disp('Done') 255
 256
%X Max Functions--- 257
 function XmaxDPushed(scr,event) 258
 global Domain W Esize 259
 W(2,1)=min(Domain(2,1),max(W(1,1)+Esize(1),W(2,1)-Esize(1))); 260
 end 261
 262
 function XmaxUPushed(scr,event) 263
 global Domain W Esize 264
 W(2,1)=min(Domain(2,1),max(W(1,1)+Esize(1),W(2,1)+Esize(1))); 265
 end 266
%-- 267
 268
%X Min Functions--- 269
 function XminDPushed(scr,event) 270
 global Domain W Esize 271
 W(1,1)=max(Domain(1,1),min(W(2,1)-Esize(1),W(1,1)-Esize(1))); 272
 end 273
 274
 function XminUPushed(scr,event) 275
 global Domain W Esize 276
 W(1,1)=max(Domain(1,1),min(W(2,1)-Esize(1),W(1,1)+Esize(1))); 277
 end 278
%-- 279
 280
%Y Max Functions--- 281
 function YmaxDPushed(scr,event) 282
 global Domain W Esize 283
 W(2,2)=min(Domain(2,2),max(W(1,2)+Esize(2),W(2,2)-Esize(2))); 284
 end 285
 286
 function YmaxUPushed(scr,event) 287
 global Domain W Esize 288
 W(2,2)=min(Domain(2,2),max(W(1,2)+Esize(2),W(2,2)+Esize(2))); 289
 end 290
%-- 291
 292
%Y Min Functions--- 293
 function YminDPushed(scr,event) 294
 global Domain W Esize 295
 W(1,2)=max(Domain(1,2),min(W(2,2)-Esize(2),W(1,2)-Esize(2))); 296

220

 end 297
 298
 function YminUPushed(scr,event) 299
 global Domain W Esize 300
 W(1,2)=max(Domain(1,2),min(W(2,2)-Esize(2),W(1,2)+Esize(2))); 301
 end 302
%-- 303
 304
%Z Max Functions--- 305
 function ZmaxDPushed(scr,event) 306
 global Domain W Esize 307
 W(2,3)=min(Domain(2,3),max(W(1,3)+Esize(3),W(2,3)-Esize(3))); 308
 end 309
 310
 function ZmaxUPushed(scr,event) 311
 global Domain W Esize 312
 W(2,3)=min(Domain(2,3),max(W(1,3)+Esize(3),W(2,3)+Esize(3))); 313
 end 314
%-- 315
 316
%Z Min Functions--- 317
 function ZminDPushed(scr,event) 318
 global Domain W Esize 319
 W(1,3)=max(Domain(1,3),min(W(2,3)-Esize(3),W(1,3)-Esize(3))); 320
 end 321
 322
 function ZminUPushed(scr,event) 323
 global Domain W Esize 324
 W(1,3)=max(Domain(1,3),min(W(2,3)-Esize(3),W(1,3)+Esize(3))); 325
 end 326
%-- 327
 328
 329
%Plot type callbacks--------------------------------SolidPushed 330
 function SPushed(scr,event) 331
 %save figure 332
 num=numel(dir('*Cross*fig*'))+1; 333
 savefig(gcf,[pwd,'\','Cross-Section',num2str(num)]); 334
 end 335
 336
 function DPushed(scr,event) 337
 global Done 338
 Done=1; 339
 end 340

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

221

Appendix L: Solid Structure Plotting Code

Variable
Name

Size Description

elements (numelem)x8 Row for each element and a column for each of the
element's node numbers

nodes (numnodes)x3 Coordinates for each node

structure (r)x1 Material distribution, 0 for void 1 for material of
structure for given view

map (numelem)x1 Index positions of each element in the LSF

fig Handle Axis handle

E (r)x8 Solid elements of given view

s (r)x4x6 Node number faces

p Handle Patch handle

plotstructure.m

function [fig] = plotstructure(elements,nodes,structure,map) 1
 2
E=elements(find(structure(map)),:); 3
 4
s(:,:,1) = E(:,[1,4,3,2]); 5
s(:,:,2) = E(:,[1,2,6,5]); 6
s(:,:,3) = E(:,[2,3,7,6]); 7
s(:,:,4) = E(:,[3,4,8,7]); 8
s(:,:,5) = E(:,[4,1,5,8]); 9
s(:,:,6) = E(:,[5,6,7,8]); 10
 11
for(i=1:6) 12
 p=patch('Vertices',nodes,'Faces',s(:,:,i)); 13
 set(p,'facecolor',[0.9290, 0.6940, 14
0.1250],'edgecolor','black','FaceLighting','gouraud','AmbientStrength',0.5); 15
end 16
camlight left; lighting phong; 17
fig=gca; 18
 19
end 20

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

222

Appendix M: Transparent Border Plotting Code

Variable
Name

Size Description

elements (numelem)x8 Row for each element, column for each of element's nodes

nodes (numnodes)x3 Coordinates for each node

struc (NSx)x(NSy)x(NSz) Material distribution, 0 for void 1 for material

map (numelem)x1 Index positions of each element in the LSF

boundary (r)x1 List of elements that are on the boundary of the geometry

fig Handle Axis handle

Eouter (r)x8 Solid elements of given view that are part of the border

Ecenter (r)x8 Solid elements of given view that are not part of the border

s (r)x4x6 Node number faces for interior elements

o (r)x4x6 Node number faces for border elements

p Handle Patch handle

plottrans.m

function [fig] = plottrans(elements,nodes,struc,map,boundary) 1
 2
Eouter=elements(boundary,:); 3
Ecenter=elements(setdiff(find(struc(map)),boundary),:); 4
s(:,:,1) = Ecenter(:,[1,4,3,2]); 5
s(:,:,2) = Ecenter(:,[1,2,6,5]); 6
s(:,:,3) = Ecenter(:,[2,3,7,6]); 7
s(:,:,4) = Ecenter(:,[3,4,8,7]); 8
s(:,:,5) = Ecenter(:,[4,1,5,8]); 9
s(:,:,6) = Ecenter(:,[5,6,7,8]); 10
o(:,:,1) = Eouter(:,[1,4,3,2]); 11
o(:,:,2) = Eouter(:,[1,2,6,5]); 12
o(:,:,3) = Eouter(:,[2,3,7,6]); 13
o(:,:,4) = Eouter(:,[3,4,8,7]); 14
o(:,:,5) = Eouter(:,[4,1,5,8]); 15
o(:,:,6) = Eouter(:,[5,6,7,8]); 16
for(i=1:6) 17
 b=patch('Vertices',nodes,'Faces',o(:,:,i)); 18
 set(b,'facecolor',[0.8485,0.49959,0.17446],'FaceAlpha',0.1,'edgecolor','none'); 19
end 20
for(i=1:6) 21
 p=patch('Vertices',nodes,'Faces',s(:,:,i)); 22
 set(p,'facecolor',[0.60551,0.38649,0.69569],'edgecolor','black'); 23
end 24
lgd=legend([b,p],'Boundary','Solid') 25
lgd.Position=[0.85,0.85,0.1,0.1]; 26

223

fig=gca; 27
end 28

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

224

Appendix N: Stress Plotting Code

Variable Name Size Description

elements (numelem)x8 Row for each element and a column for each of the
element's node numbers

nodes (numnodes)x3 Coordinates for each node

structure (r)x1 Material distribution, 0 for void 1 for material of
structure for given view

map (numelem)x1 Index positions of each element in the LSF

stress (r)x1 VonMises stress state for each element

yield Scalar Yield strength for the given material

fig Handle Axis handle

E (r)x8 Solid elements of given view

s (r)x4x6 Node number faces

C (r)x1 Color for each element

p Handle Patch handle

cb Handle Color bar handle

plotstructure.m

function [fig] = plotstress(elements,nodes,structure,map,stress,yield) 1
 2
E=elements(find(structure(map)),:); 3
s(:,:,1) = E(:,[1,4,3,2]); 4
s(:,:,2) = E(:,[1,2,6,5]); 5
s(:,:,3) = E(:,[2,3,7,6]); 6
s(:,:,4) = E(:,[3,4,8,7]); 7
s(:,:,5) = E(:,[4,1,5,8]); 8
s(:,:,6) = E(:,[5,6,7,8]); 9
 10
colormap(jet) 11
caxis([0,yield]) 12
C=min(yield,stress(find(structure(map))));%(find(structure(map)))/yield); 13
fprintf('Max VonMises Stress: %10.2f Average Stress: %10.2f Yield: 14
%10.2f\n',max(stress),mean(stress),yield); 15
for(i=1:6) 16
 p=patch('Vertices',nodes,'Faces',s(:,:,i),'FaceVertexCData',C,'FaceColor','flat'); 17
 set(p,'FaceLighting','gouraud','AmbientStrength',0.5); 18
end 19
camlight left; lighting phong; 20
cb=colorbar('Position',[0.95,0.25,0.025,0.65],'AxisLocation','in'); 21
cb.Ticks=linspace(0,yield,6); 22
cb.TickLabels=strsplit([num2str(linspace(0,yield,6)),'\newline{Yield}']); 23

225

fig=gca; 24
end 25

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

226

Appendix O: Void and STL Plotting Code

Variable Name Size Description

elements (numelem)x8 Row for each element and a column for each of the
element's node numbers

nodes (numnodes)x3 Coordinates for each node

structure (r)x1 Material distribution, 0 for void 1 for material of
structure for given view

fig Handle Axis handle

faces (#triangles)x3 Outward normal direction components of STL faces

vertices 3x3x(#triangles) (each node of the triangle)x(x, y, z coordinate of the
node)x(each STL triangle)

stl Handle Patch handle for STL plot

Esize 1x3 Size of elements in each direction

void Logical Opposite of structure

[r,c,p] (numelem)x1 row, column, page index of void elements
respectively

cent (numvoid)x1 Centroid coordinates for void elements

Vnodes (r)x3 Node coordinates of void elements

E (r)x8 Solid elements of given view

s (r)x4x6 Node number faces

p Handle Patch handle for void plot

plotvoid.m

function [fig] = plotvoid(elements,nodes,structure) 1
 2
addpath([pwd,'\MakeMeshSubfunctions']) 3
[faces,vertices] = readSTL(file,'inches'); 4
 5
vertices=reshape(permute(vertices,[2,1,3]),3,[])'; 6
vertices=vertices-min(vertices); 7
 8
faces=reshape(1:size(vertices,1)/3,3,[])'; 9
stl=patch('Vertices',vertices,'Faces',faces); 10
set(stl,'facecolor',[0.60551,0.38649,0.69569],'FaceAlpha',0.1,'edgecolor','black'); 11
 12
 13
Esize=max(nodes(elements(1,:),:))-min(nodes(elements(1,:),:)); 14
void=find(~structure); 15
[r,c,p]=ind2sub(size(structure),void); 16
cent=[r,c,p].*Esize-0.5*Esize; 17
Vnodes=permute(cent,[3,2,1])+0.5.*Esize.*[-1,-1,-1;1,-1,-1;1,1,-1;-1,1,-1;-1,-1,1;1,-18
1,1;1,1,1;-1,1,1]; 19

227

Vnodes=reshape(permute(Vnodes,[2,1,3]),3,[])'; 20
E=reshape(1:size(Vnodes,1),8,[])'; 21
 22
s(:,:,1) = E(:,[1,4,3,2]); 23
s(:,:,2) = E(:,[1,2,6,5]); 24
s(:,:,3) = E(:,[2,3,7,6]); 25
s(:,:,4) = E(:,[3,4,8,7]); 26
s(:,:,5) = E(:,[4,1,5,8]); 27
s(:,:,6) = E(:,[5,6,7,8]); 28
 29
 30
for(i=1:6) 31
 p=patch('Vertices',Vnodes,'Faces',s(:,:,i)); 32
 set(p,'facecolor','yellow','edgecolor','black'); 33
end 34
 35
fig=gca; 36
 37
 38
 39
end 40

Published with MATLAB® R2018a

https://www.mathworks.com/products/matlab

	Topology Optimization of Irregular Shaped Pressure Vessels Using a Level-Set Method
	Recommended Citation

	tmp.1598621405.pdf.xuwrL

