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ABSTRACT 
 

Southern Flounder (Paralichthys lethostigma) is an economically important 

species that uses habitats across salinity gradients along the Atlantic Ocean and Gulf of 

Mexico. During winter, adults spawn offshore, and larvae migrate to estuaries. During 

spring, larvae settle, grow, and metamorphose into juveniles. Juveniles and adults 

continue to use estuaries until adults mature and migrate offshore to spawn. This 

presumed, migratory life history indicates that Southern Flounder is an estuarine-

dependent species. As with many estuarine-dependent species, growth, condition, and 

juvenile recruitment are highly variable across time and space. In response to declines 

across the species range, state managers have imposed a series of increasingly stringent 

regulations on Southern Flounder fisheries. However, recent stock assessments show no 

signs of recovery thus far, suggesting that factors other than fishing mortlity, such as 

environmental conditions and habitat-use patterns, may be contributing to the decline. 

My objectives were to 1) develop an index of juvenile Southern Flounder abundance to 

investigate relationships with environmental factors, and 2) use back-calculation and 

condition indices to investigate how observed patterns in growth and condition relate to 

habitat-use patterns. 

We developed an index of juvenile Southern Flounder abundance in Mobile Bay 

(1981 – 2018) and Perdido Bay (1988 – 2018) using historical Alabama survey data. 

Generalized additive models tested mechanistic hypotheses by relating environmental 

variables to juvenile abundance for short- and long-term analyses in Mobile and Perdido 

Bays. Models that included winter covariates were selected as best for all three analyses, 
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suggesting that environmental conditions during spawning and larval stages explain the 

most variation in year-class strength. Specifically, westerly winds, river discharge, and 

intermediate winter durations were positively correlated with juvenile abundance, and 

recent suboptimal conditions helped to explain dramatic declines in juvenile recruitment. 

We used 313 otoliths from Southern Flounder collected in Alabama’s coastal 

waters in 2004 – 2007 and 2018 – 2019 to investigate how age-specific contingent types 

impacted age-specific back-calculated growth rates and condition. We used linear mixed 

effects models with various random effect structures to account for age, growth, year, and 

individual effects. Age-0 and first-year estuarine and transient contingents had higher 

growth rates than freshwater contingents, but there was no difference in growth among 

contingents during the second year of life. Age-0 and age-1 estuarine and transient 

contingents had higher condition than freshwater contingents, but there was no difference 

in condition for age-2 Southern Flounder.  

Over the next century, the Gulf of Mexico is expected to see increased drought 

conditions, more intense storms, and warmer winter temperatures. This could impact the 

amount of river discharge that enters the estuary, thus impacting growth rates and overall 

abundance of young Southern Flounder. Warmer winters could interfere with 

reproductive success and the number of recruits surviving to the juvenile stage. As 

recruitment dynamics strongly influence adult abundance, our results should help inform 

expectations for Alabama’s Southern Flounder fishery in response to changing 

environmental conditions. Growth and condition are products of good estuarine habitat, 

and our results could assist in identifying high-quality estuarine habitats that could be 
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used for recently developed stocking programs and continued habitat restoration efforts 

in Alabama. 
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CHAPTER ONE 

WINTER CONDITIONS SHAPE SOUTHERN FLOUNDER (PARALICHTHYS 
LETHOSTIGMA) JUVENILE RECRUITMENT ALONG THE NORTHERN GULF OF 

MEXICO 
 

1. Introduction 

Biological recruitment of marine fishes occurs when offspring survive through 

early life stages, which have high and variable mortality, to a given size or age when 

mortality declines and stabilizes at a constant rate (Miller et al. 1991, Bradford & Cabana 

1997, Van der Veer et al. 2000). At this point during early life, the abundance of a cohort 

represents the annual level of recruitment to the population, which is also referred to as 

year-class strength (Bradford & Cabana 1997). It has been well established that annual 

variations in recruitment will fluctuate by orders of magnitude for most marine fishes 

(Pope & Macer 1996, Houde 2008, Houde 2009). This extreme annual variability in 

recruitment results from large numbers of eggs being produced each year by highly 

fecund females and high mortality during early life due to starvation, predation, or natural 

causes (Cushing 1975, Rijnsdorp et al. 1995, Van der Veer et al. 2000, Houde 2008). 

Given the importance of recruitment in forecasting future population sizes, much effort 

has been devoted to investigating biological and environmental variables affecting 

recruitment dynamics (Hjort 1914, Houde 2008). However, successfully predicting 

annual fluctuations in recruitment remains an elusive goal, especially as the climate 

continues to change (Bakun 1985, Houde 2008, Houde 2009). Nevertheless, continued 

research that investigates the causes of recruitment variability is needed to inform sound 

management (Subbey et al. 2014). This requires retrospective analyses of long-term 
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juvenile surveys, which can assist fisheries ecologists and managers in understanding the 

impacts of physical and biological factors affecting survival during early life stages 

(Houde 2008).  

Flatfish, like many other marine fishes, have the potential for high recruitment 

variability because of their migratory life history across marine and estuarine ecosystems, 

where larvae and juveniles encounter a diverse suite of predators, prey, and abiotic 

factors in many different habitats throughout early life (Miller et al. 1991). Generally, for 

flatfish, the importance of density-independent and -dependent factors differs with each 

stage during early life. Density-independent factors, such as wind, salinity, and 

temperature, can affect recruitment by altering the connectivity between offshore 

spawning grounds and estuarine nurseries, and are thought to play an important role in 

determining flatfish survival rates during the pelagic larval stage (Rijnsdorp et al. 1995, 

Cowen & Sponaugle 2009, Amorim et al. 2016, Coogan et al. 2019). Conversely, 

survival during the demersal juvenile phase is thought to depend on density-dependent 

factors, such as competition for optimal habitat and prey resources (Gibson 1994, 

Rijnsdorp et al. 1995). Density-independent abiotic factors likely generate recruitment 

variability during the egg and larval stages, while density-dependent biotic factors likely 

dampen recruitment variability during the juvenile stage (Van der Veer 1986, Miller et al. 

1991). Factors that generate variability are known as controlling factors, while those that 

dampen variability are known as regulating factors (Miller et al. 1991, Van der Veer et al. 

1994, 2000, Houde 2008). Year-class strength, therefore, is likely determined before the 
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juvenile stage for flatfish when controlling factors act on eggs and larvae (Van der Veer 

1986, Miller et al. 1991, Van der Veer et al. 2000). 

Southern Flounder (Paralichthys lethostigma) is an economically important 

species that use a variety of habitats across salinity gradients in and along the Atlantic 

Ocean and Gulf of Mexico. The species is distributed from North Carolina to Texas, but 

is absent from waters off the southern tip of Florida (GSMFC 2015). The presumed life 

history for Southern Flounder includes offshore spawning as adults and migrating to 

estuarine nurseries as larvae where they will settle, grow, and metamorphose into 

juveniles before moving offshore as adults and beginning the process again (Burke et al. 

1991, Fischer & Thompson 2004). This presumed life history indicates Southern 

Flounder is a marine estuarine dependent species (Elliott et al. 2007). 

Over the past several decades, recreational and commercial fishery landings and 

the adult abundance of Southern Flounder have declined across the species’ range for 

unknown reasons (Froeschke et al. 2011, Chagaris et al. 2012, GSMFC 2015, Flowers et 

al. 2019). In response, many state agencies tasked with the management of Southern 

Flounder have increased the minimum harvestable size, restricted gear types, decreased 

bag limits, and implemented full or partial season closures. Despite these changes in 

regulations, angler landings and fishery independent monitoring have shown few signs of 

recovery and some areas along the Gulf and Atlantic Coasts are seeing further declines 

(GSMFC 2015, Flowers et al. 2019). This suggests that other factors besides exploitation 

may be playing a role in determining Southern Flounder year-class strength, and the roles 

of environmental drivers should be investigated.  
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Several previous studies have found strong correlations between offshore wind 

and juvenile flatfish abundance (e.g. Nielsen et al. 1998, Taylor et al. 2010, Wilderbuer et 

al. 2013), and Werner et al. (1997) attributed it to possibly being the most studied abiotic 

factor affecting year-class strength of marine fishes. The hypothesized mechanism 

underlying these relationships is that wind-driven currents and circulation patterns 

influence the transport and feeding abilities of larval Southern Flounder. Therefore, wind 

blowing at the right time and direction may act as a controlling factor by positively 

affecting the number of larvae reaching coastal estuarine nursery habitats and surviving 

to the juvenile stage. 

River discharge could also act as a controlling factor for Southern Flounder in the 

northern Gulf of Mexico. Freshwater inflow into estuaries can potentially generate 

recruitment variability in several ways. Specifically, river discharge may advance larval 

ingress into estuaries by causing the stratification of the water column, which can result 

in bottom currents flowing upstream (Hare et al. 2005, Schieler et al. 2014). This could 

promote Southern Flounder larval transport into estuaries via selective tidal stream 

transport (i.e., using bottom currents and ebb tides), which may be enhanced during 

periods of high flow (Weinstein 1980, Boehlert & Mundy 1988, Burke et al. 1998, Jager 

1999, Taylor et al. 2010). Additionally, river discharge effects on estuarine salinities can 

impact the development and survival of Southern Flounder larvae and juveniles. While 

larvae have a zero tolerance of freshwater, juveniles and adults appear to use a variety of 

habitats across salinity gradients, from tidal freshwater to polyhaline habitats (Smith et al. 

1999a, Lowe et al. 2011, Farmer et al. 2013, Nims & Walther 2014). Although they have 
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a wide tolerance, the optimal salinities for juvenile Southern Flounder specific growth 

rates was found to be between 10 and 30‰ during a controlled laboratory experiment, 

and growth can subsequently influence the survival of juveniles (e.g., size-dependent 

predation and greater ability to escape; Howson & Targett 2020). Elevated river 

discharge during spring could also increase productivity in estuarine nursery habitats 

through subsidies of terrestrial nutrients (Cloern et al. 2001, Connolly et al. 2009), which 

could positively affect growth and survival of juveniles. 

Environmental temperature may act as a controlling factor on Southern Flounder 

recruitment by regulating the timing and duration of spawning events, hatching success, 

and overall growth potential during early life stages. Offshore migrations of 

reproductively mature Southern Flounder begins in response to a 4 – 5 °C drop in water 

temperature during the late fall months in the Gulf of Mexico (Reagan & Wingo 1985), 

and a prolonged period of batch spawning occurs in the Atlantic Ocean and Gulf of 

Mexico occurs during winter months when the temperature is between 14 and 18 °C 

(Miller et al. 1991, Smith et al. 1999b, Van Maaren & Daniels 2001, Watanabe et al. 

2006). The thermal conditions at which spawning and hatching occur could impact 

juvenile abundance by influencing the length of the spawning window, hatching success 

and timing, and ultimately, larval growth rates (GSMFC 2015). In a laboratory 

experiment, fertilized Southern Flounder eggs, acclimated to temperatures of 13, 17, 21 

and 25 °C, had highest hatching success and fastest larval growth at 17 °C (Van Maaren 

& Daniels 2001). Both hatching success and larval growth rates decreased with 

increasing temperature (Van Maaren & Daniels 2001), indicating that optimal conditions 
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for hatching and larval growth occurred at temperatures below 18 °C. Thus, a longer 

period of cold temperatures during winter may lead to a longer window of optimal 

thermal conditions for spawning and larval growth, increasing the probability of Southern 

Flounder larvae surviving to the juvenile stage (Cushing 1990, Mertz & Myers 1994).  

Environmental temperatures could also impact recruitment during the juvenile 

stage. After larval Southern Flounder ingress into estuaries and settle to benthic habitats, 

they will rapidly grow as juveniles during the spring months. There is a positive 

correlation between water temperature and metabolic processes during the juvenile stage, 

which increases growth while reducing stage duration (O’Connor et al. 2007, Del Toro-

Silva et al. 2008). Howson & Targett (2020) found the highest specific growth rates of 

juvenile Southern Flounder occurred at 25 – 26 °C, suggesting that warmer temperatures 

would be optimal for high growth rates, which would contribute to the likelihood of 

juvenile survival.  

The potential roles of wind, river discharge and seasonal temperature patterns as 

controlling factors in driving interannual variability of juvenile abundance, and possibly, 

declines in adult Southern Flounder abundance has not yet been investigated in the 

northeastern Gulf of Mexico. This work aimed to develop a historical index of juvenile 

abundance (to serve as an index of year-class strength) and investigate relationships 

between juvenile Southern Flounder abundance and controlling environmental factors. 

Specifically, we hypothesized that: 

H1.  Increased southerly winter winds will have a positive effect on juvenile  
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abundance by promoting the transport of eggs and larvae toward estuarine 

nursery habitats. Conversely, increased northerly winter winds will have a 

negative effect on juvenile abundance by causing a divergence from 

estuarine refuges.  

H2.  Increased easterly and westerly winter winds will have a positive effect on  

juvenile abundance by promoting along-shore transport and upwelling 

events. 

H3.  Elevated river discharge during winter and spring will have a positive 

impact on juvenile abundance by facilitating selective tidal stream 

transport into estuaries, creating optimal salinities for growth, and 

enhancing estuarine productivity. 

H4.  Longer, colder winters will result in increased juvenile abundance by 

lengthening the spawning window and duration of optimal thermal 

conditions for hatching and larval growth. 

H5.  Warmer spring conditions (indexed as growing degree-days) will lead to 

increased juvenile abundance due to positive effects on juvenile growth 

rates. 

Our study used catches of juvenile (age-0) flounder during May and June, and 

quantified biological recruitment (juvenile abundance during the first spring of life) as 

opposed to fishery recruitment, which refers to individuals surviving to the size at which 

they are able to be harvested (Van der Veer et al. 2000, Midway & Scharf 2012). The 

primary objective of this work was to test the above hypotheses using generalized 
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additive models (GAMs) to quantify the strength and direction of relationships between 

key environmental variables and our index of recruitment within two estuaries along the 

northeastern Gulf of Mexico. With improved understanding of these relationships, 

fisheries managers will be able to better anticipate the impact that large-scale 

environmental drivers can have on Southern Flounder year-class strength and subsequent 

population dynamics. 

2. Methods 

2.1 Study area 

Mobile Bay and Perdido Bay are neighboring estuaries along the northeastern 

Gulf of Mexico and have historically supported large harvests of Southern Flounder 

(GSMFC 2015, Figure 1). Mobile Bay is located in Alabama, and Perdido Bay is located 

in Alabama and Florida. Due to their shallow depths, Mobile Bay and Perdido Bay, like 

many coastal estuaries, are highly influenced by wind, freshwater discharge, and ambient 

air temperature, all of which could influence the quality of Southern Flounder habitats in 

these systems.  

Mobile Bay has the fourth largest river system in the United States, and receives 

the sixth largest volume of freshwater discharge in North America (mean daily discharge 

rate: 1850 m3/s; Morisawa 1968, Park et al. 2007). This large amount of freshwater input 

promotes a distinct salinity gradient, and influences salinities in the lower estuary during 

the high discharge period in winter and spring. There is also a distinct temperature 

gradient during early spring with waters in upper Mobile Bay being cooler than waters in 

lower Mobile Bay. During the summer and fall when the freshwater input is considerably 
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lower, the Gulf of Mexico has a greater influence on the estuary’s thermohaline dynamics 

and stratification occurs with large vertical and horizontal ranges of salinities and 

temperatures in Mobile Bay (Coogan et al. 2019). Perdido Bay can be broken into two 

salinity zones known as upper and lower Perdido Bay. Upper Perdido Bay is influenced 

by tidal forcing and freshwater inflow from the Perdido and Styx Rivers (mean daily 

discharge rate: 56 m3/s, Schropp et al. 1991, Grubbs & Pittman 1997, Xia et al. 2011). 

Lower Perdido Bay is influenced by tidal forcing, exhibits a vertical salinity gradient, and 

can have salinities greater than 30 ppt (Xia et al. 2011).  

2.2 Index of juvenile abundance 

An index of juvenile (age-0) Southern Flounder abundance was developed from a 

historical survey conducted monthly by the Alabama Department of Conservation and 

Natural Resources, Marine Resources Division (ADCNR/MRD) from 1981 – 2018, as 

part of the Fisheries Assessment and Monitoring Program (FAMP). This survey used 

4.88 m bottom trawls with 30.48 m of towline (more towline was used if the depth was 

greater than 9.14 m) to target benthic fishes, including juvenile and adult Southern 

Flounder, across Alabama coastal and estuarine waters (Figure 1). The trawls were pulled 

for 10 minutes at 2 – 2.5 knots with 0.36 m head rope. The bottom trawl consisted of a 

two-seam net with the innermost one having a 4.76 mm mesh. When flounder were 

caught, they were placed in ziploc bags that were put on ice and later frozen. In the 

laboratory, Southern Flounder were thawed, measured to the nearest millimeter standard 

length, and weighed to the nearest gram.  
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We examined the average monthly catch per unit effort (CPUE) of Southern 

Flounder across years to determine the most suitable time period to index juvenile 

Southern Flounder abundance in Mobile Bay (1981 – 2018) and Perdido Bay (1988 – 

2018). Average monthly CPUE was consistently highest during May and June, and the 

index was limited to these months. We believe this May – June time period allows for 

juvenile recruits (likely spawned in offshore waters form December to February; Glass et 

al. 2008) to migrate to estuaries where they will settle, metamorphose, and grow in areas 

sampled by the FAMP program. This time period is likely prior to any movement toward 

deeper or offshore habitats (not effectively sampled by the FAMP program) later in the 

growing season (Stokes 1977). 

Since Southern Flounder otoliths were not collected and ages were not assigned 

during the FAMP survey, we used otoliths and associated lengths from Auburn 

University’s and ADCNR/MRD’s historical collections from May and June 2004 – 2010 

(N = 132) to develop a length cutoff for age-0 juvenile Southern Flounder in the FAMP 

dataset. Two independent readers estimated age by counting the annuli on each otolith. If 

disagreement occurred, a third reader aged the otolith at question. The total lengths of 

age-0 Southern Flounder (no annuli present on the otolith) collected in Alabama during 

May and June ranged from 52 – 224 mm, while total lengths of age-1 Southern Flounder 

(one annulus present on the otolith) ranged from 157 – 404 mm. We established a length 

cutoff of 165 mm for age-0 Southern Flounder collected during May and June. Only 2 of 

the 67 age-0 Southern Flounder had lengths greater than 165 mm, and only 2 of the 65 

age-1 Southern Flounder had lengths less than 165 mm. Since the historical collections 
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recoded total length only and the FAMP survey recorded standard length only, we used a 

total to standard length regression for Southern Flounder developed by Harrington et al. 

(1979) (TL = 8.959 + 1.175 SL), and found that the maximum standard length of juvenile 

Southern Flounder was equal to 132.8 millimeters. Annual collections of flounder were 

summed together for each station. There was typically one 10-minute trawl per month at 

each station, but in rare cases, this ranged from 0 – 4 10-minute trawls in the entire May – 

June period at some individual stations (Mobile Bay: 93.3 % of stations in 1981 – 2018 

were sampled once per month in May and June; Perdido Bay: 89.9 % of stations in 1988 

– 2018 were sampled once per month in May and June).  

We only included stations that were sampled consistently across years in each 

estuary (surveyed in ≥ 90 % of years) in the analyses. To visually inspect trends in our 

index of juvenile abundance, catch values were averaged across stations within years 

(Mobile Bay: 1981 – 2018; Perdido Bay 1988 – 2018). In our statistical analysis using 

generalized additive models (see section 2.4 below), the annual cumulative catch at each 

station was the response variable, and the number of trawls at each station in each year 

was used an offset variable to account for variability in sampling Seffort.  

2.3 Environmental covariates 

We summarized environmental data for wind speed and direction, river discharge, 

winter duration, and growing degree-days to test specific hypotheses regarding the 

mechanisms affecting Southern Flounder recruitment. All environmental variables were 

mean-centered and scaled (by dividing the centered values by their standard deviations) 

to standardize each environmental variable and assist with model fitting. Prior to model 
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fitting, we checked to ensure multicollinearity was not present among the environmental 

covariates (according to Spearman’s correlation coefficient, r < 0.7) 

2.3.1 Wind 

Wind speed and direction (recorded every ten minutes) were acquired from the 

National Data Buoy Center (NDBC) from a buoy off the coast of Dauphin Island 

(DPIA1; Latitude/Longitude: 30.250° N -88.075° W). The average wind speed and 

direction were determined for each day. Wind direction was classified as northerly (NW-

N: 0 – 45°; N-NE: 316 – 359°), easterly (NE-SE: 46 – 135°), southerly (SE-SW: 136 – 

225°), and westerly (SW-NW: 226 – 315°) according to prevailing wind direction. Wind 

speed (m/s) and direction were summarized across all available years (1993, 1998 – 

2001, 2003 – 2018) during winter months (December – February) when larval Southern 

Flounder are likely in their pelagic stage and susceptible to offshore wind-driven 

currents. The cumulative wind speeds for each prevailing wind direction were used as 

individual covariates in our models.  

2.3.2 River discharge 

  We quantified river discharge to serve as an index of estuarine salinity conditions 

during the larval and juvenile phases, and to investigate its effects on counter-gradient 

transport of Southern Flounder via bottom waters. Monthly average freshwater discharge 

values were acquired for the Alabama and Tombigbee Rivers from the United States 

Geological Survey (USGS) at gauges 02428400 (Latitude/Longitude: 31.615°, -87.551°) 

and 02469761 (Latitude/Longitude: 31.758°, -88.129°), respectively. These values (m3/s) 

were summed since the confluence of these two rivers occurs upstream of Mobile Bay. 
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For Perdido Bay, we acquired monthly average freshwater discharge values for the 

Perdido (USGS Gauge 02376500; Latitude/Longitude: 30.690°, -87.440°) and Styx 

(USGS Gauge 02377570; Latitude/Longitude: 30.606°, -87.547°) Rivers, which were 

summed together to represent the freshwater input in Perdido Bay. Monthly river 

discharge values for both Mobile Bay (1981 – 2018) and Perdido Bay (1988 – 2018) 

were summed for each trimonthly period (December – February and March – May) to 

minimize the number of explanatory variables (Taylor et al. 2010), and provide 

representative indices of river discharge as a controlling factor during the larval 

(December – February) and juvenile (March – May) stages.  

2.3.3 Winter duration 

Winter duration was defined as the number of days each year that had a mean 

daily offshore surface water temperature of 18 °C or less. Hernandez et al. (2010) defined 

the winter season in the northern Gulf of Mexico as anything below 18 °C based on 

historic water temperature data from a single station located 18 km south of Dauphin 

Island, Alabama. Water temperature data from 2012 – 2016 were acquired from the 

NDBC’s Orange Beach Buoy (42012; Latitude/longitude: 30.064°, -87.551°). We used 

mean daily air temperature data collected from NOAA’s National Centers for 

Environmental Information (NCEI) Dauphin Island Number 2, (GHCND: 

USC00012172; Latitude/Longitude: 30.2505°, -88.0775°), AL, US station to predict the 

winter durations for years that water temperature data were unavailable (1981 – 2011, 

2017, 2018). To accomplish this, we developed an index of winter duration (number of 

days with a mean daily temperature ≤ 18 °C) for both the buoy and land-based station for 
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2012 – 2016. Given there was a positive, linear relationship between these two indices (p 

= 0.004, R2 = 0.95), we used the land-based winter duration index to predict the buoy 

winter duration index for all missing years from 1981 – 2018.  

2.3.4 Growing degree-days 

Growing degree-days, a method to quantify cumulative thermal conditions, were 

used as a metric of growth potential for juvenile Southern Flounder in Mobile Bay during 

each spring (March – June). Growing degree-days were calculated as: 

GDD = Σ (Tavg - T0) 

where Tavg is the average daily temperature and T0 is the temperature threshold at which 

growth is nonlinear or equal to zero. These non-negative values were then summed for 

each year. Although it is unknown what temperatures would cause Southern Flounder 

growth rates to equal zero, Malloy and Targett (1991) found that Summer Flounder 

growth rates were equal to zero when temperatures were between 2 and 10 °C in a 

laboratory study. Chezik et al. (2014) recommended standardized T0 values of 0, 5, 10 

and 15 °C for both freshwater and marine fishes. In this study, T0 was set to 15 °C. We 

attained mean daily estuarine water temperature data for March – June from stations at 

Meaher State Park, Alabama (located in northern Mobile Bay) and Dauphin Island, 

Alabama (located in southern Mobile Bay), and averaged these values together. This data 

was available from 2003 – 2018 through Alabama’s Real-Time Coastal Observing 

System (ARCOS; mymobilebay.com).  

2.4 Statistical analysis 
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 We used GAMs in package mgcv in R to investigate how these environmental 

covariates impacted our index of juvenile Southern Flounder abundance from 18 stations 

in Mobile Bay and 5 stations in Perdido Bay. GAMs are a flexible class of models that 

use smoothing functions to estimate potential nonlinear relationships between continuous 

covariates and the response variable (Wood 2017, Pedersen et al. 2019). Such flexible 

models have proven useful in previous investigations of environmental influences on fish 

recruitment dynamics (Cardinale & Arrhenius 2000, Stoner et al. 2001, Taylor et al. 

2010, Maynou et al. 2014). Due to limited time series of certain environmental variables, 

we conducted both a short-term (16-year) and long-term (38-year) analysis for Mobile 

Bay and a single long-term (31-year) analysis for Perdido Bay. The long-term analyses 

lacked environmental data for winter winds and spring estuarine growing degree-days. 

The short-term analysis for Mobile Bay included ten models. Eight models comprised of 

only individual covariates for four directional winter wind variables, winter river 

discharge, spring river discharge, and spring estuarine growing degree-days. We also 

tested two combined models, a ‘winter model’ and a ‘spring model,’ that included each of 

the individual covariates listed above for each season. The ‘winter model’ included all 

environmental factors during winter, while the ‘spring model’ included all environmental 

factors during spring. The long-term analyses for Mobile Bay and Perdido Bay included 

four models: three single-covariate models for winter river discharge, spring river 

discharge, and winter duration, as well as a combined ‘winter model’ that included winter 

river discharge and winter duration. Each model that was tested represented a clear 

hypothesis, previously described. 
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The time-series of juvenile Southern Flounder data from the FAMP survey 

contained many zero catches, which caused the data to be overdispersed. Therefore, a 

negative binomial distribution with a log-link function was used to fit all models. We 

used thin plate regression splines, which assumed the amount of smoothing in all 

covariates was the same, and choosing the number of knots was unwarranted (Wood 

2017, Pedersen et al. 2019). Station was used as a random effect to account for the lack of 

independence among observations collected at the same station across years, and it was 

also used as a smoother in this analysis (Pedersen et al. 2019). Since the number of 10-

minute trawls varied at each station per year, the log of effort (in minutes) was included 

as an offset variable. The best model was selected according to the least value of 

marginal likelihood. This method was preferred over generalized cross validation (GCV) 

and Akaike’s information criterion (AIC) because there is a greater resistance to 

overfitting, which leads to less smoothing parameter variability (Wood 2011, Pedersen et 

al. 2019). We examined partial residuals (the sums of smoothed covariate estimates 

within the best model and the residuals of the complete best model; Wood 2017) to 

quantify the direction and magnitude of environment-recruitment relationships. To 

understand how changes in environmental conditions may be affecting temporal trends in 

recruitment, we summarized temporal changes in these partial residuals.  

3. Results 

3.1 Index of juvenile abundance 

 The index of juvenile abundance in Mobile Bay indicated fluctuating abundance 

and an overall decline in juvenile Southern Flounder abundance from 1981 – 2018, 
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especially in recent years (Figure 2). Juveniles were collected at upstream and 

downstream stations in May and June over these 38 years in Mobile Bay (Figure 1). 

Across all years, the coefficient of variance was 164.42 %, and the mean number of 

flounder per trawl across years was 0.21. The index of juvenile abundance in Perdido Bay 

showed high interannual variability from 1988 – 2018 with a decline in recent years, but 

abundance peaked in 2015 (Figure 2). The coefficient of variance was 160.31 % across 

all years, and the mean number of flounder per trawl across years was 0.12.  Most 

juvenile Southern Flounder were caught from the upper reaches of Perdido Bay in May 

and June over these 31 years (Figure 1). The mean cumulative flounder catch across 

stations in Mobile Bay was not strongly correlated with the mean cumulative flounder 

catch across stations in Perdido Bay during the 31 years of sampling in which both bays 

were sampled (1988 – 2018; r = 0.28).  

3.2 Environmental covariates 

Time series of environmental covariates were highly variable and no temporal 

trends in wind, river discharge, winter duration, and estuarine water temperature were 

detected (all r < 0.35, Figure 3). Environmental variables were also not strongly 

correlated with one another (all r < 0.57) in any of the long-term or short-term times-

series analyses. The complete set of eight environmental covariates was maintained in the 

short-term analysis for Mobile Bay, and winter river discharge, spring river discharge, 

and winter duration were maintained in the long-term analyses for Mobile Bay and 

Perdido Bay. 

3.3 Sixteen-year Mobile Bay analysis 
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The winter model was selected as the best model to explain Southern Flounder 

abundance in Mobile Bay from 2003 – 2018, and the deviance explained by this model 

was 70.2 % (Table 1). Of the six variables included in the winter model, only river 

discharge (p = 0.026) and prevailing westerly winds (p < 0.001) were significant 

predictors of annual recruitment. Winter river discharge had a nonlinear, parabolic 

relationship with Southern Flounder juvenile abundance, where juvenile abundance was 

highest in years of intermediate winter river discharge and lower in years of very low or 

very high winter river discharge (Figure 4). Westerly winds were positively correlated 

with Southern Flounder juvenile abundance (Figure 4).  

The individual models that included growing degree-days or spring river 

discharge contained significant covariates within each respective model. Growing degree-

days had a significant, negative effect on Southern Flounder juvenile abundance, and the 

deviance explained by this model was 54.8 % (p = 0.006; Table 1). The overall effect of 

spring river discharge on juvenile abundance was variable, and suggested that highest 

abundances would likely result from low and extremely high rates of river discharge (p = 

0.003; Table 1). The deviance explained by the spring river discharge model was 66.4 % 

(Table 1). However, only growing degree-days was significant in the complete spring 

model that contained both of these spring covariates. Although these spring covariates 

were significant, the single-covariate models and complete spring model had higher 

marginal likelihood values and did not explain as much of the variability in juvenile 

abundance compared to the complete winter model.  

3.4 Thirty-eight-year Mobile Bay analysis 
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The winter model was also selected as the best model for the long-term analysis 

of juvenile Southern Flounder abundance in Mobile Bay (1981 – 2018), and the deviance 

explained by this model was 56.8 % (Table 1). Both covariates included in this model, 

river discharge (p < 0.001) and winter duration (p = 0.023), were significant (Figure 5). 

River discharge had a positive effect on Southern Flounder juvenile abundance in Mobile 

Bay from 1981 – 2018 (Figure 5). Winter duration had a nonlinear, parabolic relationship 

with Southern Flounder juvenile abundance, where the shortest and longest winters 

correlated with low juvenile abundance, and intermediate winter durations were 

correlated with high abundance (Figure 5).  

3.5 Thirty-one-year Perdido Bay analysis 

The winter model was selected as best for the 31-year analysis of juvenile 

Southern Flounder abundance in Perdido Bay (1988 – 2018), and the deviance explained 

by this model was 37.6 % (Table 1). However, the covariates included in this model, 

river discharge (p = 0.845) and winter duration (p = 0.306), were not significant 

predictors of juvenile abundance in Perdido Bay.  

4. Discussion 

The declining trend we observed in our index of juvenile Southern Flounder 

abundance, in conjunction with reports of declining recruitment, adult abundance, and 

stock size along the Gulf and Atlantic coasts (Froeschke et al. 2011, Chagaris et al. 2012, 

GSMFC 2015, Powers et al. 2018, Flowers et al. 2019) suggest that Southern Flounder 

populations across the species’ range may be declining due to low recruitment, especially 

in recent years. A recently completed stock assessment of Southern Flounder in Alabama 
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examined residuals from a stock recruitment relationship, and found below-average 

recruitment since 2011 (Powers et al. 2018), supporting observed trends in our juvenile 

abundance index. Likewise, a recent stock assessment of Southern Flounder in the South 

Atlantic (North Carolina to Florida) indicated a long-term trend of declining recruitment 

from 13 million estimated recruits in 1989 to only 4 million in 2017 (Flowers et al. 2019). 

In all but two years since 2005, recruitment of Southern Flounder in the South Atlantic 

has been lower than expected based on a previously developed stock-recruit relationship 

(Flowers et al. 2019), suggesting suboptimal environmental conditions may be affecting 

recruitment across the species’ range. Considering our findings and those of recent stock 

assessments, a more comprehensive analysis of Southern Flounder recruitment trends and 

key environmental conditions across the Atlantic and Gulf coasts seems warranted. 

Our results suggest that environmental conditions during the pelagic larval stage 

can help to explain variation in Southern Flounder year-class strength and can improve 

predictions of juvenile flatfish recruitment. This is consistent with findings from other 

studies of flatfish recruitment, which found that environmental conditions during the egg 

and larval stages act as controlling factors on recruitment dynamics (Van der Veer 1986, 

Taylor et al. 2010, Wilderbuer et al. 2013, Amorim et al. 2016). Larval fish are most 

sensitive to the environment since they are less tolerant of extreme physical conditions 

compared to their larger counterparts (Lasker 1981, Smith et al. 1999a, O’Connor et al. 

2007) and are exposed to greater rates of mortality due to starvation and predation 

(Anderson 1988, Cushing 1990). Therefore, small changes in environmental conditions 

can have a large impact on juvenile recruitment. The complete winter models were 
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selected as best in all our analyses, despite the number of years or covariates included. 

Therefore, the controlling factors of offshore winter winds, winter river discharge, and 

winter duration appear to be key factors generating variability in Southern Flounder 

recruitment along the Gulf of Mexico. Years with optimal winds, river discharge, and 

winter duration may enhance spawning conditions, larval transport, and habitat quality 

during the Southern Flounder egg, larval, and juvenile periods, which would likely 

produce the strongest year classes in the Gulf of Mexico. Similar mechanisms have been 

identified as controlling factors for Southern Flounder recruitment in the South Atlantic 

Ocean (Taylor et al. 2010), but some estuary-specific differences in the controlling 

factors of recruitment may exist as we found that environmental covariates that 

performed well for Mobile Bay did not explain much variability in neighboring Perdido 

Bay. 

The process of recruitment is complex and many factors beyond the physical 

conditions included here likely played contributing roles in the abundance of juvenile 

Southern Flounder. Larval and juvenile Southern Flounder are vulnerable to many 

physical conditions and biological processes, and it is this coupling that ultimately 

determines recruitment success (Houde 2009). In many studies, the incorporation of 

environmental variables strengthened the predictions of marine fish abundance 

(Froeschke et al. 2013, Morrongiello et al. 2014, Brosset et al. 2018). Although we only 

investigated physical mechanisms, we believed that they would directly impact biological 

processes occurring during early life stages of Southern Flounder (Amorim et al. 2016).  
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Many other studies have found strong correlations between offshore winds during 

the spawning window and indices of flatfish recruitment (Nielsen et al. 1998, Van der 

Veer & Witte 1999, Taylor et al. 2010). Some of the suggested mechanisms underlying 

these previously documented relationships may be applicable to the northern Gulf of 

Mexico. In our study, prevailing westerly winds during winter (December – February) 

were positively correlated with Southern Flounder juvenile abundance within the winter 

model for the short-term Mobile Bay analysis, expressing support for our hypothesis 

(H2). Results differed from our hypotheses (H1 and H2) since northerly, southerly, and 

easterly winds were not significant in predicting juvenile abundance in northern Gulf of 

Mexico estuaries. Southern Flounder produce buoyant, pelagic eggs, and while exact 

spawning locations in the Gulf of Mexico are unknown (GSMFC 2015), it is thought that 

spawning occurs over the inner and central continental shelf at depths between 20 – 60 m 

(Benson 1982). In the Northern Hemisphere, as winds displace surface water, the Coriolis 

effect causes the subsequent, deeper water layers to move, forming a clockwise spiral 

(Ekman 1905). The net movement of water occurs 90 degrees to the right of the wind 

direction with deeper waters moving up to replenish the displaced surface water (Ekman 

1905). These upwelling events can impact physical conditions in the estuary as a result of 

the mixing of deeper, offshore waters with shallow, inshore waters (Coogan et al. 2019), 

which could promote the transport of larvae into estuarine habitats (Pitts 1999). When 

winds blow from the west along the Gulf coast, upwelling of deeper waters potentially 

carrying Southern Flounder larvae north toward estuarine nurseries would occur as 

surface waters move offshore. In addition to larval transport, upwelling of nutrient-, 
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phytoplankton-, and zooplankton-rich waters may enhance primary and secondary 

production in coastal and estuarine environments (Dagg 1988), potentially decreasing 

starvation, and increasing survival of larval and juvenile fishes. Van der Veer & Witte 

(1999) concluded that wind-driven circulation may be a key determinant in year-class 

strength of plaice (Pleuronectes platessa) where easterly winds in the North Sea likely 

prompted upwelling near the Dutch coast. Increased offshore westerly winds can also 

promote the transport of pelagic eggs and larvae along coasts and barrier islands so that 

they may have a higher chance of encountering the passages to estuaries (Taylor et al. 

2010). If major offshore spawning areas for Southern Flounder are located west of 

Mobile Bay and Perdido Bay, the positive relationship between increased westerly winds 

and juvenile abundance found in our study would strongly support this mechanism of 

along-shore transport. While our study cannot conclusively identify the individual or 

combined wind-induced processes affecting Southern Flounder recruitment, upwelling 

events and along-shore transport appear to be plausible mechanisms that deserve further 

investigation.  

Like wind, river discharge may also contribute to egg and larval transport through 

stratification, movement, and exchange of estuarine and offshore waters (Dzwonkowski 

et al. 2011, 2015, Coogan et al. 2019). Previous studies of flatfish recruitment have found 

that such estuarine-shelf exchanges driven by river discharge during the spawning 

seasons likely influenced settlement into estuarine habitats (Taylor et al. 2010, Martinho 

et al. 2009). In our short-term Mobile Bay analysis, intermediate levels of river discharge 

resulted in the highest abundance of juvenile Southern Flounder. However, the range of 
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winter river discharge values in the short-term Mobile Bay analysis (2,317 – 12,818 m3/s) 

was limited compared to that in the long-term Mobile Bay analysis (2,056 – 15,895 m3/s), 

which included an additional 22 years of data with more years of extreme high and low 

flows. In the long-term analysis, a significant positive relationship emerged, supporting 

our hypothesis (H3) that high freshwater flows during winter are correlated with high 

abundances of juvenile Southern Flounder in the northern Gulf of Mexico. In addition to 

a wider range of discharge rates over many years, interacting effects of the covariates 

included in each analysis could help to explain the differing relationships between winter 

river discharge and juvenile abundance in the short- and long-term analyses for Mobile 

Bay (Stige et al. 2013). During high rates of river discharge, high influxes of new ocean 

water flows into the estuary generating some counter gradient flows (Du et al. 2018). 

Southern Flounder are known to use selective tidal stream transport where they vertically 

move to the bottom and use daytime ebb tides to avoid predation and migrate to the upper 

reaches of the estuary during periods of high winter river discharge in Mobile Bay 

(Weinstein 1980, Rijnsdorp et al. 1985, Boehlert & Mundy 1988, Burke et al. 1998, Jager 

1999, Taylor et al. 2010).  

Winter river discharge may also affect Southern Flounder recruitment by altering 

the salinity of estuarine waters during settlement periods and enhancing primary and 

secondary production in estuarine and offshore waters (Gibson 1994, Kimmerer 2002). 

Stickney & White (1974) found that recently metamorphosed Southern Flounder 

preferred low salinities (5 – 15 ‰). Therefore, high winter river discharge rates over a 

longer duration could increase the overall area and diversity of estuarine habitats with 
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these preferred, low salinities, which may increase post-metamorphosis survival and 

biological recruitment.  

To our knowledge, our study is one of the first to consider how winter duration 

might influence juvenile flatfish recruitment in estuaries along the Gulf of Mexico. 

Winter duration was found to be an important controlling factor and predictor of juvenile 

Southern Flounder abundance in Mobile Bay based on the long-term Mobile Bay 

analysis. Based on our findings, extremely long or short winters were followed by lower 

abundances of juvenile Southern Flounder, while intermediate winter durations appeared 

to have a positive effect on juvenile abundance. Winters of intermediate lengths may 

allow for a prolonged spawning period of optimal thermal conditions that increase 

hatching success of Southern Flounder eggs and increase larval growth rates (Cushing 

1990, Mertz & Myers 1994). Curran & Wilber (2019) observed higher abundance of 

juvenile Southern Flounder in years following colder winters in an estuarine tidal creek in 

Georgia, suggesting that these increased occurrences of colder winter temperatures may 

play a positive role in early life survival across estuarine systems. Rijnsdorp et al. (1992) 

found that strong year classes of sole (Solea solea) followed cold winters, and suggested 

that cold winters may have a positive impact on reproductive success. However, long, 

cold winters could also directly increase mortality rates of older adults, which could 

affect recruitment by reducing the spawning stock size (Rjinsdorp et al. 1992).  

These results differed from our hypothesis (H4) since there may be a limit to the 

positive effect that prolonged, cold temperatures during winter have on spawning and 

early survival. For example, the availability of larval prey can be time sensitive and 
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extremely long winters may interfere with plankton blooms, which typically occur as 

temperatures begin to rise (Cushing 1990). If winters are longer, these blooms may be 

delayed, potentially leading to larval starvation. Longer spawning windows during long 

winters could lead to increased cannibalism among juveniles, thus decreasing the overall 

number of recruits, as observed for Olive flounder (Paralichthys olivaceus) who typically 

have a long spawning season that lasts up to two months (Minami & Tanaka 1992).  

While growing degree-days was significant within the single-covariate model and 

the complete spring model, the relationship between growing-degree days and juvenile 

abundance was in the opposite direction of our hypothesis (H5). Spring growing degree-

days had a negative effect on Southern Flounder juvenile abundance in the short-term 

analysis. This suggests that extremely warm springs may not be optimal for biological 

processes, such as juvenile growth. The models that included growing degree-days were 

not selected as best, and controlling factors during the winter explained most variability 

in abundance.  

The results of this study and the projected changes in the severity and frequency 

of extreme environmental conditions help explain recent trends in recruitment and may 

help to predict Southern Flounder recruitment patterns in response to the changing 

environment. The partial residuals for each significant covariate served as an indicator of 

covariate effects on juvenile abundance. The partial residuals of westerly winds, winter 

river discharge, and winter duration within the winter models were all low in recent years 

(2012 – 2018), suggesting these environmental factors may have played a role in driving 

the low Southern Flounder juvenile abundance observed in Mobile Bay during recent 
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years (Figure 6). Our study suggests that the low number of Southern Flounder recruits 

resulting from suboptimal environmental conditions helps to explain the documented 

population declines in the northern Gulf of Mexico in recent years (Froeschke et al. 2011, 

Chagaris et al. 2012, GSMFC 2015, Powers et al. 2018). 

Over the next one hundred years, the Gulf of Mexico region is expected to see 

increased durations of dry conditions and increased intensity of precipitation events, as 

well as increased durations of heat waves and decreased cold snaps (Diffenbaugh et al. 

2005, Biasutti et al. 2012). Increased periods of dry conditions or intense rainfall could 

alter the amount of river discharge that enters each estuary, thus altering habitat 

availability and physical conditions that affect larval settlement in estuaries. If these 

prolonged dry periods overlap with Southern Flounder spawning and hatching in winter, 

we may expect negative impacts on recruitment due to low river discharge. It is 

anticipated that about 90 % of winters at the end of the 21st century will be warmer than 

previously recorded (Biasutti et al. 2012). Warmer winter temperatures in the Gulf Coast 

region may negatively affect Southern Flounder reproductive success by shortening the 

spawning window, reducing hatching success, and decreasing larval growth rates (Van 

Maaren & Daniels 2001, GSMFC 2015). Because human activity is typically highest 

within close proximity to the coasts, estuarine environments are strongly influenced by 

anthropogenic stressors, which could exacerbate these negative effects of climate change. 

These changing environmental conditions are concerning for estuarine species, especially 

those that use estuaries for nurseries or experience ontogenetic habitat shifts throughout 

their lifetimes (Ong et al. 2015). As recruitment dynamics influence future adult 
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abundance, our results should help inform managers’ expectations for the Southern 

Flounder fishery as environmental conditions continue to change. Managers may be able 

to better anticipate how environmental changes will affect adult abundance while 

assisting in setting user group expectations for the productivity of Southern Flounder 

populations along the northern Gulf of Mexico. 
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TABLES 
 
Table 1. Marginal likelihood and deviance explained of models that were run in each of 
the three analyses. P-values are given in parentheses for each model covariate. (WI= 
winter covariate; SP= spring covariate). 

Model Covariate(s) 
Marginal 

Likelihood 
(ML) 

Deviance 
Explained (%) 

Mobile Bay – 16-year analysis 

Winter model WI Northerly winds (p = 0.248) 90.658 70.2 

 WI Easterly winds (p = 0.479)   
 WI Southerly winds (p = 0.713)   
 WI Westerly winds (p < 0.001)   
 WI River discharge (p = 0.026)   
 WI Winter duration (p = 0.076)   

Westerly winds only WI Westerly winds (p < 0.001) 97.325 59.4 
Southerly winds only WI Southerly winds (p = 0.003) 100.41 55.8 

Growing degree-days only SP Growing degree days (p = 0.006) 101.2 54.8 
Spring model SP River discharge (p = 0.985) 101.2 54.8 

 SP Growing degree days (p = 0.006)   
Easterly winds only WI Easterly winds (p = 0.058) 104 55.6 

Spring river discharge only SP River discharge (p = 0.003) 104.2 66.4 
Northerly winds only WI Northerly winds (p = 0.241) 104.9 50 

Winter river discharge only WI River discharge  (p = 0.233) 104.92 49.9 
Winter duration only WI Winter duration (p = 0.501) 105.38 49.5 

Mobile Bay – 38-year analysis 

Winter model WI River discharge  (p < 0.001) 300.48 56.8 

 WI Winter duration  (p = 0.023)   
Winter river discharge only WI River discharge  (p < 0.001) 302.54 53.8 

Winter duration only WI Winter duration  (p = 0.073) 308.27 52.4 
Spring river discharge only SP River discharge  (p = 0.344) 309.03 50.4 

Perdido Bay – 31-year analysis 

Winter model WI River discharge  (p = 0.845) 75.644 37.6 

 WI Winter duration  (p = 0.306)   
Winter duration only WI Winter duration  (p = 0.257) 75.664 37.9 

Spring river discharge only SP River discharge  (p = 0.464) 75.834 32.6 
Winter river discharge only WI River discharge (p = 0.608) 75.946 32.5 
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FIGURES 

Figure 1. The twenty-three stations surveyed by Alabama Department of Conservation 
and Natural Resources, Marine Resources Division’s (ADCNR/MRD’s) Fisheries 
Assessment and Monitoring Program (FAMP). Eighteen stations were in Mobile Bay 
(light gray) and five were in Perdido Bay (dark gray). The size of the circle corresponds 
to the average number of juvenile (age-0) Southern Flounder collected per trawl (1981 – 
2018) during May and June. 
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Figure 2. Index of Southern Flounder juvenile (age-0) abundance from Mobile Bay, 
Alabama (1981 – 2018; black line) and Perdido Bay, Alabama (1988 – 2018; gray line). 
Juvenile abundance data was collected during bottom trawls conducted by Alabama 
Department of Conservation and Natural Resources, Marine Resources Division 
(ADCNR/MRD’s) as part of the Fisheries Assessment and Monitoring Program (FAMP). 
Juvenile abundance is measured as the mean catch of juvenile Southern Flounder per 
trawl during May – June (1981 – 2018). 
 
 
 
 
 
 
 
 
 
 
 



 45 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Environmental covariates over time: A) cumulative wind speed (m/s) for each 
prevailing direction B) monthly summed river discharge (m3/s) of the Alabama and 
Tombigbee Rivers during the winter (December – February) and spring (March – May) 



 46 

C) monthly summed river discharge (m3/s) of the Perdido and Styx Rivers during the 
winter (December – February) and spring (March – May) D) winter duration, or the 
number of days equal to or less than 18 °C E) growing degree days (March – May). Data 
in plots A, B, C, D, and E were used in the 16-year Mobile Bay analysis. Data in plots B 
and D were used in the 38-year Mobile Bay analysis. Data in plots C and D were used in 
the 31-year Perdido Bay analysis. 
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Figure 4. Partial residuals plots from a mixed-effects generalized additive models 
(GAM) for centered and scaled environmental predictor variables including A) river 
discharge and B) westerly winds, which both had significant effects on juvenile (age-0) 
Southern Flounder abundance in Mobile Bay, Alabama for the 16-year analysis (2003-
2018). Dots represent partial residuals, or the relationship between the covariate and the 
model residuals. 
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Figure 5. Partial residuals plots from a mixed-effects generalized additive model (GAM) 
for centered and scaled environmental predictor variables including A) river discharge 
and B) winter duration, which both had significant effects on juvenile (age-0) Southern 
Flounder abundance in Mobile Bay, Alabama for the 38-year analysis (1981- 2018). Dots 
represent partial residuals, or the relationship between the covariate and the model 
residuals.  
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Figure 6. Mean annual partial residuals showing the temporal influence of significant 
environmental covariates on juvenile Southern Flounder abundance from 1981 – 2018. 
Partial residuals for winter river discharge and winter duration were drawn from the 
winter model in the long-term (38-year) Mobile Bay analysis. Partial residuals for 
westerly winter winds were drawn from the winter model in the short-term (16-year) 
Mobile Bay analysis. Green tiles represent positive effects on juvenile abundance. Red 
tiles represent negative effects on juvenile abundance. 
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CHAPTER TWO 

EFFECTS OF AGE-SPECIFIC CONTINGENT TYPE ON SOUTHERN FLOUNDER 
(PARALICHTHYS LETHOSTIGMA) GROWTH AND CONDITION IN MOBILE BAY, 

ALABAMA 
 

1. Introduction 

Estuaries are dynamic environments that provide habitats for many economically 

important juvenile and adult fishes, including flatfish. Juvenile and adult flatfishes tend to 

occupy distinct habitats within estuaries based on their needs during specific life stages 

and seasons. Flatfish exhibit partial migration, a phenomenon where a single population 

comprises both resident and transient, migratory members (Jonsson & Jonsson 1993, 

Kerr et al. 2009, Chapman et al. 2011, Gillanders et al. 2015). The term “contingent” 

refers to a group of individuals who have similar migration behaviors over phases of life 

or across their entire lifetimes (Secor 2015). Specific contingents of a population have 

distinct patterns in habitat use within single estuary systems (Gillanders et al. 2015). 

Understanding partial migration of flatfish species is important for fisheries 

scientists to gain insight into recruitment and population dynamics as it relates to the 

costs and benefits of staying within or moving from a particular habitat (Jonsson & 

Jonsson 1993, Skov et al. 2013). These partial migration patterns can be largely explained 

by abiotic factors (e.g., salinity, temperature, dissolved oxygen), which in turn likely 

serve as proxies for biotic factors like predation and food availability (Able & Fodrie 

2015). Abiotic and biotic factors can have lasting effects on the growth and condition of 

estuarine fishes.  
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Growth and condition integrate the aggregate effects of many physical and 

biological processes that together determine habitat quality. Growth and condition have 

been considered effective indicators of estuarine habitat quality for juvenile flatfish in a 

number of previous studies (Meng et al. 2000, Phelan et al. 2000, Amara et al. 2009). 

Increases in growth and condition under optimal conditions in high quality estuarine 

habitats may ultimately confer survival advantages since smaller individuals are less 

tolerant of extreme physical conditions compared to their larger counterparts (Lasker 

1981, Smith et al. 1999, O’Connor et al. 2007) and are exposed to greater rates of 

mortality due to starvation and predation (Anderson 1988, Cushing 1990). However, 

when flatfish encounter suboptimal abiotic conditions or low prey availability in low-

quality habitats, stress hormones may be released, followed by the production of glucose 

to try to account for the lost energy where growth and condition could be negatively 

impacted (Iwama et al. 1999). Stress increases cortisol levels, which can lead to sex 

reversal for Paralichthyd flounder, where females differentiate to become males 

(Yamaguchi et al. 2010). This likely happens because it is energetically less expensive to 

be male as they produce sperm instead of eggs, grow slower, and reach a smaller size as 

adults (GSMFC 2015). 

Fish otoliths and other calcified structures keep record of slow and fast annual 

growth as incremental growth rings are laid down (Pannella 1971), and reflect ambient 

environments that fishes were exposed to during each year of life (Campana 1999). In 

most fish species, including flatfish, otolith growth correlates with somatic growth 

(Reichert et al. 2000, Gilliers et al. 2006). Hence, otolith increment widths and lengths at 
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capture can be used to estimate fish lengths during each year of life using back-

calculation methods. There are many widely used back-calculation methods that have 

been developed over the last century to estimate fish sizes-at-age (reviewed by Francis 

1990). Incorporating age, growth, and year effects can improve growth estimates by 

accounting for factors acting on growth variability (Weisberg et al. 2010). Elements, such 

as strontium, taken up by the fish through the gills are permanently retained in otoliths 

(Campana 1999). Strontium reflects the chemistry of the water, and strontium: calcium 

(Sr:Ca) ratios serve as tracers of fish movement as they differ among freshwater and 

estuarine habitats with low levels indicating freshwater habitat use and high levels 

indicating estuarine habitat use (Campana 1999, Kraus & Secor 2004). Elemental 

signatures within sectioned otoliths can be detected using laser ablation inductively 

coupled plasma mass spectrometry, energy-dispersive electron microphobes, wavelength-

dispersive electron microphobes, and proton-induced x-ray emission (Campana 1999). 

Changes in elemental concentrations across an otolith may indicate shifts in habitat use, 

and these shifts can be related to increment widths to understand linkages between age-

specific growth and habitat use.   

While otoliths provide a long-term record of growth and habitat use, condition 

provides a measure of energetic reserves at the time of collection, which could provide 

insight into understanding habitat quality within estuaries. Weight increases 

exponentially with length, and relative condition indices (weight-length relationships) 

assume that fish with greater body mass at a given length and those that exhibit positive 

allometric growth are in better condition (Froese 2006). Condition measures fish 
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physiological status (Champion et al. 2020), and therefore, high condition reflects good 

physical health and nutritional benefit due to increased energy storage.  

Southern Flounder (Paralichthys lethostigma) is an economically important 

species that exhibits sexually dimorphic growth where females grow larger and faster 

than males, consequently being the target for commercial and recreational catches 

(GSMFC 2015). The species uses a variety of habitats across salinity gradients in and 

along the Atlantic Ocean and Gulf of Mexico. Southern Flounder are distributed from 

North Carolina to Texas, but is absent from waters off the southern tip of Florida 

(GSMFC 2015). During winter, adult Southern Flounder spawn offshore, and larvae 

migrate to estuarine nurseries where they will grow, settle, and metamorphose into 

juveniles (Burke et al. 1991, Fischer & Thompson 2004). Furey et al. (2013) found that 

juvenile Southern Flounder moved up to 2 km day-1 and used a variety of habitats within 

a Texas estuary. While larvae have a zero tolerance of freshwater, juveniles and adults 

appear to use a variety of habitats across salinity gradients, from tidal freshwater to 

polyhaline habitats (Smith et al. 1999, Lowe et al. 2011, Farmer et al. 2013, Nims & 

Walther 2014). Southern Flounder can tolerate temperatures from 0 – 35°C and salinities 

from 0 – 36‰, but historically have been found in salinities up to 60‰ in Texas 

(GSMFC 2015). During the late fall, reproductively mature adults will begin moving 

offshore to begin the process again (Burke et al. 1991, Fischer & Thompson 2004). This 

presumed life history indicates Southern Flounder is a marine estuarine dependent 

species (Elliott et al. 2007). 
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The habitats that Southern Flounder encounter as they go from pelagic to benthic 

and offshore to inshore environments ultimately impact their growth rates and condition 

as a result of changing environmental conditions and new suites of prey and competitors 

(Van der Veer 1986, Chambers & Leggett 1992). Due to the many habitat types that they 

encounter within or outside of the estuary, it is not surprising that previous studies have 

found Southern Flounder growth rates and condition to be highly variable across time and 

space (Fitzhugh et al. 1996, Midway et al. 2015). A recent meta-analysis of Southern 

Flounder size-at-age data in Texas, Alabama, South Carolina, and North Carolina 

estuaries found that variability in male and female growth was as high within estuaries as 

it was among them, suggesting that differing environmental conditions within single 

estuary systems may be driving highly variable growth rates (Midway et al. 2015). In a 

recent laboratory study, Howson & Targett (2019) found that optimal linear growth rates 

(length gain for the duration of the experiment) occurred at 25 – 28° C and 14 – 22‰ for 

juvenile (45 – 100 mm TL) Southern Flounder collected from North Carolina and fed the 

same type and amount of food. They also found that optimal specific growth rates (% 

body weight growth per day) occurred at 25 – 26° C and 10 – 30‰ for these young-of-

the-year (Howson & Targett 2019). Therefore, growth and condition of various Southern 

Flounder contingents (migratory and resident) could be explained by distinct abiotic and 

biotic factors of the habitats they encounter.  

Previous work on Southern Flounder along the Gulf of Mexico has identified 

individuals that almost completely use freshwater regions or higher salinity regions of the 

estuary, as well as transient individuals that appear to move between salinity regions 
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(Farmer et al. 2013, Nims & Walther 2014). These differences may help to explain high 

variability in growth in single estuary systems. To understand the ecological importance 

of certain habitat types within estuaries, further research is needed to explore 

relationships between contingent types, growth, and condition. The potential roles of age-

specific contingent type on growth and condition of Southern Flounder has not yet been 

investigated in estuaries along the northern Gulf of Mexico. This work aims to investigate 

relationships between habitat-specific markers and back-calculated growth rates and 

condition (residuals from the weight-length relationships) of Southern Flounder in the 

northern Gulf of Mexico. Specifically, I hypothesized that: 

H1:          Age-0, first year, and second year Southern Flounder classified as 

estuarine residents will have faster growth rates than freshwater or transient 

contingents in response to optimal abiotic characteristics of estuarine habitats.  

H2:          Age-0, age-1, and age-2 Southern Flounder classified as estuarine 

residents would be in higher condition for reasons indicated above.  

The primary objective of this work is to test the above hypotheses using mixed 

effects linear models to investigate how observed patterns in growth and condition relate 

to patterns in habitat use. Many previous growth studies had limitations as they used 

caging methods or considered habitat-specific effects only within the area of collection 

(Guindon & Miller 1995, Meng et al. 2000, Phelan et al. 2000). Our study used Southern 

Flounder otoliths from fishery-dependent and fishery-independent collections to 

determine back-calculated lengths-at-age and otolith elemental composition to determine 

age-specific contingent types. With improved understanding of these relationships, our 
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work seeks to identify high-quality estuarine habitats by relating growth and condition to 

lifetime patterns of habitat use, as described by otolith chemistry. 

2. Methods 

2.1 Study area 

Mobile Bay, Alabama is an estuary along the northern Gulf of Mexico that has 

many different habitats and has historically supported large harvests of Southern 

Flounder (GSMFC 2015). Mobile Bay has the fourth largest river system in the United 

States, and receives the sixth largest volume of freshwater discharge in North America 

(mean daily discharge rate: 1850 m3/s; Morisawa 1968, Park et al. 2007). This large 

amount of freshwater input promotes a distinct salinity gradient, and influences salinities 

in the lower estuary during the high discharge period in winter and spring. The upper 

Mobile Bay is known as the Mobile-Tensaw River Delta (hereafter referred to as “the 

Delta;” Figure 1), which begins at the confluence of the Alabama and Tombigbee Rivers 

and is a freshwater region with salinities less than 1‰ for most of the year. The middle 

and lower Mobile Bay is characterized by estuarine habitats south of I-10 with salinities 

greater than 1‰ for most of the year (hereafter referred to as “Mobile Bay;” Figure 1). 

During the summer and fall when the freshwater input is considerably lower, the Gulf of 

Mexico has a greater influence on the estuary’s thermohaline dynamics and stratification 

occurs with large vertical and horizontal ranges of salinities and temperatures in Mobile 

Bay (Coogan et al. 2019).  

2.2 Flounder collections 
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We used 313 right sagittal otoliths from Southern Flounder (ages 0 – 4) collected 

in Alabama coastal waters in 2004 – 2007 and 2018 – 2019 to determine how back-

calculated growth rates and condition indices differ among age-specific contingents. 

Southern Flounder were collected by field researchers from Auburn University (2005 – 

2007), the Alabama Department of Conservation and Natural Resources, Marine 

Resources Division (ADCNR/MRD; 2004 – 2007, 2018 – 2019), and Clemson 

University (2018 – 2019), as well as from commercial and recreational fishermen.  

2.2.1 Fishery-independent collections 

Auburn University collected juvenile and adult Southern Flounder from five sites 

in the Delta and one just south of I-10 (Figure 1). Sampling occurred monthly in the 

summer and fall of 2005 – 2007 using pulsed-DC electrofishing (7.5 GPP, Smith-Root, 

Vancouver, Washington). Electrofishing transects were 10 – 15 minutes long, and the 

minimum total effort per sampling event was one hour. Southern Flounder were placed 

on ice and brought to the laboratory where they were measured. Sex was determined by 

macroscopic inspection of gonads when possible, and otoliths were removed for aging 

and elemental analysis. 

ADCNR/MRD’s Fisheries Assessment and Monitoring Program (FAMP) used 

4.88 m bottom trawls with 30.48 m of towline (more towline was used if the depth was 

greater than 9.14 m) to target benthic fishes, including juvenile and adult Southern 

Flounder, across Alabama coastal and estuarine waters. The trawls were pulled for 10 

minutes at 2 – 2.5 knots with 0.36 m head rope. The bottom trawl consisted of a two-

seam net with the innermost one having a 4.76 mm mesh. Sampling occurred monthly in 
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2018 – 2019 at 24 stations in Mississippi Sound, Mobile Bay, Little Lagoon, and Perdido 

Bay. Southern Flounder were collected at six of the total 24 stations (Figure 1). When 

flounder were caught, they were measured and placed in ziploc bags that were put on ice 

and later frozen. In the laboratory, sex was determined by macroscopic inspection of 

gonads when possible, and otoliths were removed for aging and elemental analysis.  

Juvenile and adult Southern Flounder were also collected by Clemson University 

in 2018 – 2019 at nine of the 12 total surveyed sites that spanned from the Delta to the 

barrier islands of Mobile Bay to quantify abiotic and biotic conditions across the salinity 

gradient (Figure 1). Stations were selected across the Delta and Mobile Bay to represent 

both freshwater and estuarine conditions. There were 1 – 2 sampling events each month 

in May – July 2018, and March, May – July 2019. The gear types used were boat 

electrofishing, beam trawls, and gillnets, which depended on salinity and habitat at each 

site. 

Pulsed DC boat electrofishing (Midwest Lake Electrofishing Systems Infinity 

Box) was used to target juvenile and adult Southern Flounder along the shorelines at 

oligohaline sites. Delta stations (north of I-10; Figure 1) were oligohaline in all months, 

while mesohaline stations (middle Mobile Bay along the eastern and western shore) were 

oligohaline in the spring, but were not sampled with electrofishing during summer due to 

elevated salinities. During each sampling event, six, 15-minute electrofishing transects 

were conducted at each site. A 1 m beam trawl with 2 mm mesh was towed for two 

minutes by boat along shallow shorelines and marsh edges to target small juveniles. At 

Delta stations, we completed a minimum of three beam trawl transects, and at Mobile 
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Bay sites (south of I-10; Figure 1), we completed a minimum of eight beam trawl 

transects. Gillnets (30 by 2.4 m with 127 mm stretch mesh) were used to target large 

juveniles and adults at Mobile Bay stations. During each sampling event, at least two 

gillnets had minimum soak times of 2 hours each, and they were set parallel to shore with 

one end forming a C-shaped “hook” toward the shore. The date, site, gear type, transect 

number, start and end time, start and end GPS coordinates, and start and end depth was 

recorded for each transect. All Southern Flounder were measured and placed on ice 

before returning to the laboratory where they were frozen until processing took place. 

During sample processing, sex was determined by macroscopic inspection of gonads 

when possible, and otoliths were removed for aging and elemental analysis. 

2.2.2 Fishery-dependent collections 

ADCNR/MRD collected adult Southern Flounder from commercial fish houses 

and recreation fishermen in 2004 – 2007. ADCNR/MRD collected from recreational 

anglers while conducting creel surveys by using protocols from NOAA Fisheries Marine 

Recreational Information Program (MRIP) and Access Point Angler Intercept Survey 

(APAIS) to randomly select public access locations across Alabama coastal waters. 

Clemson University also collected adult Southern Flounder in 2018 – 2019 from two 

commercial fish houses, opportunistic recreational fishermen at boat access points, and 

two major fishing tournaments (Alabama Deep Sea Fishing Rodeo 2018 – 2019; 

FloraBama Fishing Rodeo 2019). We used opportunistic hook-and-line sampling to target 

adult Southern Flounder, and we used both artificial (red jig heads and striped mullet 

Gulps) and live bait (spot, croaker, pinfish).  
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2.3 Back-calculated growth  

Right sagittal otoliths were removed, embedded in epoxy resin, sectioned with an 

Isomet low speed saw (Buehler), and polished using a MetaServ 250 grinder-polisher 

(Buehler). We consistently used right otoliths in this analysis since they were easier to 

read and left and right flounder otoliths are asymmetrical in regard to the core position 

and weight (Fischer & Thompson 2004). Sipe & Chittenden (2001) found that sectioned 

right otoliths of summer flounder (Paralichthys dentatus) had the clearest structure, as 

well as the highest confidence scores, lowest reading times, and highest agreement 

among readers. Farmer et al. (2013) also consistently used sectioned right otoliths of 

Southern Flounder for aging and otolith chemistry. The sectioned otoliths were placed 

under a compound microscope (Meiji) and photographed with a digital camera (Cannon 

Rebel). Two independent readers estimated age from these images by counting the annuli 

on each otolith. If disagreement occurred, a third reader aged the otolith at question. 

Transects were drawn on digital images along the ventral sides of the sulcal grooves 

using iSolution lite software (IMT i-Solution Inc., Stokie, Illinois). Growth increments 

were measured (mm) from the core to the end of each annulus, and from the core to the 

edge along these transects (Figure 2). A Dahl-Lea proportional method was used to back-

calculate growth rates of Southern Flounder (Lea 1910).  

2.4 Determining age-specific contingent type 

We used laser ablation inductively coupled plasma mass spectrometry (LA-

ICPMS) to determine Southern Flounder residencies from otolith elemental signatures. 

Strontium: calcium (Sr:Ca) ratios were used as a marker for salinity exposures. Details of 
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LA-ICPMS processing can be found in Chrisp et al. (in preparation). Briefly, sectioned 

and polished otoliths were processed at the Dauphin Island Sea Lab (DISL) 

instrumentation lab using an Agilent 7700x quadrupole inductively coupled plasma mass 

spectrometer (ICPMS) coupled to a 213 nm Nd:YAG NWR laser. Mounted otoliths were 

rinsed with deionized water and cleaned using low power cleaning pre-ablation (40 µm 

spot, 100 µm/sec, 20% laser power, 5 Hz) to remove contaminants on the otolith surface 

along the same transect as the chemistry analysis ablation. Otolith Sr:Ca was quantified 

from the core to the distal edge along a straight transect parallel to the sulcal groove, with 

an elemental reading collected every 0.6 s. Standard methods were used to assess 

analytical precision, quantify detection limits, and correct for instrument drift (Longerich 

et al. 1996, Farmer et al. 2013). To summarize time series of otolith Sr:Ca values, a 

regime shift detection algorithm was used to detect significant shifts in otolith Sr:Ca 

values along the laser ablation transects (Rodionov 2004). 

Analysis of ambient water chemistry, salinity, and otolith edge chemistry showed 

that a threshold of 1.71 mmol/mol Sr:Ca could be used to indicate habitat use above or 

below 1 psu (Chrisp et al. in preparation). Any Sr:Ca value above this value was 

considered to be estuarine habitat use and anything below, tidal freshwater habitat use. 

The proportion of values above and below this threshold value was quantified for each 

year of growth (proportion of the laser ablation transect between each otolith annuli). We 

created three age-specific contingency classes and defined them as freshwater resident, 

estuarine resident, or transient to group individuals with similar habitat-use patterns 

during each year of life (Chrisp et al. in preparation). The individuals that spent 90% or 
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more of the year in freshwater habitats were classified as freshwater residents. The 

individuals that spent 90% or more of the year in estuarine habitats were classified as 

estuarine residents. The individuals that spent less than 90% of the year in either habitat 

were classified as transients. Our age-specific contingent classes (freshwater resident, 

transient, estuarine resident) are similar to previously described Southern Flounder 

contingent types observed in Alabama (Farmer et al. 2013) and Texas (Nims and Walther 

2014), and should provide insight into the ecological consequences of these general 

patterns in habitat use.  

2.5 Statistical analyses 

2.5.1 Growth 

We used linear mixed effects models using package lme4 in R version 3.6.1 (R 

Development Core Team 2019) to investigate how age-specific contingent types 

impacted age-specific back-calculated growth rates of Southern Flounder. We accounted 

for any age, year and individual fish growth effects by incorporating random effects of 

sex, age at capture, and/or cohort into the models (Weisberg 2010). We conducted these 

analyses for age-0, first-year of life (hereafter referred to as “first-year”), and second-year 

of life (hereafter referred to as “second-year”). Southern Flounder included in the age-0 

and first-year growth analyses were collected from March – December, and those 

included in the second-year growth analysis were collected from May – December. We 

assumed January 1 to be the date of birth and April 1 to be the date of otolith annuli 

formation (Glass et al. 2008, Corey et al. 2017). For the age-0 growth analysis, the 

response variable was growth rate (mm d-1), which allowed for comparisons of fish 
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collected at different times throughout the year. Contingent type was used as a fixed 

effect, and cohort was used as a random intercept to account for any intrinsic differences 

in growth rates among year-classes. Typically, sex cannot be macroscopically identified 

in juveniles and was not included as a random intercept in the age-0 growth analysis.  

The age-0 analysis quantified growth rates of flounder whose otoliths had zero 

annuli, while the first-year growth analysis quantified annual growth of flounder whose 

otoliths had at least one annulus. Southern Flounder that were ages 1 – 4 and 2 – 4 were 

used for the first-year growth analysis and second-year growth analysis, respectfully. The 

response variable, growth (mm), was back-calculated using the total length at capture and 

otolith width from the core to the end of the first annulus for first-year growth, and the 

otolith width from the end of the first annulus to the end of the second annulus for 

second-year growth. Contingent type was modeled as a fixed effect. The random effect 

structures for these analyses were determined with model selection fitted with restricted 

maximum likelihood (REML) and compared based on AICc. Burnham & Anderson 

(2002) suggested using AICc with small sample sizes (the number of observations 

divided by the number of parameters is less than 40), and any difference between AIC 

and AICc for larger sample sizes would be negligible. The best model was selected 

according to the least value of AICc and highest weight value. Models were significantly 

different from one another when the ΔAICc values differed by two or more. For the first-

year growth analysis, seven models with different random effect structures were 

considered that included cohort, age at capture, and sex. Models included one random 

intercept, two random intercepts, or all three random intercepts. If a model did not 
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converge, the 'L-BFGS-B' optimizer (package optimix) was applied. For the second-year 

growth analysis, two models included individual intercepts of sex and age at capture, and 

one model included both of these random intercepts. Cohort was not included as a 

random intercept in the second-year growth analysis because there were not enough 

unique observations for the older cohorts, and we wanted to maintain the highest possible 

sample size within the analysis. For all growth and condition analyses, a Shapiro-Wilk 

test was used to test the normality of the residuals, and assumptions for linearity and 

homoscedasticity were verified by examining diagnostic residual plots. P-values from 

post-hoc multiple comparisons among contingent types were adjusted for multiple 

comparisons using Tukey’s post-hoc test for each age-specific growth and condition 

analysis (package multcomp; normal if p > 0.05). 

2.5.2 Condition 

Flounder with weight data (g) available were used to assess if condition differed 

among age-specific contingent types. Condition indices were measured using the 

residuals of the log10 weight versus log10 total length relationship (Figure 3). Forty-three 

outliers were removed from the condition analyses if lengths and weights did not follow 

this positive, linear relationship and were assumed to have errors in weight 

measurements. To investigate if the condition of Southern Flounder differed among age-

specific contingent types, we used linear mixed effects models using package lme4 in R 

while accounting for intrinsic factors affecting growth (Weisberg 2010). We conducted 

these analyses for age-0, age-1, and age-2 Southern Flounder. Southern Flounder 

included in the age-0 and age-1 condition analyses were collected from March – 



 65 

December, and those included in the age-2 condition analysis were collected from May – 

December. January 1 was assumed to be the date of birth and April 1 was assumed to be 

the date of otolith annuli formation (Nieland et al. 2002, Corey et al. 2017) . We used a 

fixed effect of contingent type and a random intercept for cohort in the age-0 condition 

analysis. Sex was not included as a random intercept in the age-0 condition analysis due 

to unidentified sex for most individuals. For the age-1 condition analysis, the random 

effect structure was determined with model selection fitted with REML and compared 

based on AICc metrics as described above for the growth analyses. Two models included 

random intercepts of cohort and sex, one model included both of these random intercepts, 

and the best model was selected according to the least value of AICc along with the 

examination of AICc weights and ΔAICc values. For the age-2 condition analysis, we 

used a fixed effect of contingent type and a random intercept for sex. Cohort was not 

included in the age-2 condition analysis since there were not enough unique observations 

for the oldest fish, and we wanted to maintain the highest possible sample size within the 

analysis.  

3. Results 

3.1 Back-calculated growth among age-specific contingents 

Twenty-six age-0 Southern Flounder were included in our analysis that related 

growth rate to contingent type. Mean growth rates of age-0 Southern Flounder were 

1.061 mm d-1 (range 0.705 – 1.525 mm d-1) for estuarine residents, 0.907 mm d-1 (range 

0.499 – 1.411 mm d-1) for transient contingents, and 0.722 mm d-1 (range 0.527 – 0.979 

mm d-1) for freshwater residents. Highest age-0 growth rates occurred in transient and 
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estuarine contingents (Figure 4a). According to the multiple comparisons test, growth 

rates of age-0 transient and estuarine flounder were statistically similar (p = 0.677). Age-

0 freshwater flounder had significantly lower growth rates than transient (p < 0.001) and 

estuarine (p < 0.001) age-0 Southern Flounder.  

Two hundred eighty-seven Southern Flounder were used in the first-year growth 

analysis (30 males, 257 females). The model containing random intercepts for sex, age at 

capture, and cohort was selected as the best model to explain intrinsic variability in 

Southern Flounder growth rates during the first year of life (Table 1). The random 

intercepts were highest for females, age-1 flounder, and the 2018 year-class (Figure 5). 

Growth rates of transient and estuarine Southern Flounder were statistically similar (p = 

0.913), and significantly higher (p < 0.001; p < 0.001, respectively) than freshwater 

residents during the first year of life (Figure 4b).  

Seventy-two Southern Flounder were used in the second-year growth analysis (3 

males, 69 females). The model that contained random intercepts for sex and cohort was 

selected as best to explain Southern Flounder growth rates during the second year of life 

(Table 2). Random intercepts were highest for females and the 2006 year-class (Figure 

6). Growth rates did not differ among contingent types during the second year of life 

(Figure 4c).  

3.2 Condition among age-specific contingents 

 Twenty-six age-0 Southern Flounder were included in the analysis, and transient 

and estuarine contingents had higher condition than freshwater contingents (Figure 7a). 

Condition indices of estuarine and transient flounder were statistically similar (p = 
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0.391), and condition indices of transient and freshwater flounder were statistically 

similar (p = 0.158). However, the condition of age-0 estuarine flounder was significantly 

higher than the condition of age-0 freshwater flounder (p = 0.004). 

 One hundred sixty Southern Flounder were used in the age-1 condition analysis 

(27 males, 133 females). The model that contained a random intercept for sex was 

selected as best to explain age-1 Southern Flounder condition (Table 3). The random 

intercepts were highest for females (Figure 8). Condition indices of estuarine and 

transient flounder were statistically similar (p = 0.651), and condition indices of transient 

and freshwater flounder were statistically similar (p = 0.651). However, the condition of 

age-1 estuarine flounder was significantly higher than the condition of age-1 freshwater 

flounder (p = 0.007; Figure 7b).  

Thirty-nine Southern Flounder were used in the age-2 condition analysis (3 males, 

36 females). The condition of age-2 Southern Flounder did not differ between contingent 

types (Figure 7c). 

4. Discussion 

 Physiological and behavioral responses (e.g. metabolic rates, movement patterns, 

feeding rates) resulting from dynamic abiotic factors within estuaries impact growth rates 

and condition of flatfish (Brett & Groves 1979, Iwama et al. 1999, Taylor & Miller 

2001). Our results support previous work (e.g., Malloy & Targett 1991, Henne & 

Watanabe 2003, Glass et al. 2008, O'Neill et al. 2011, Howson & Targett 2019) that 

found salinity to be an important factor for growth and condition of Southern Flounder 

and other flatfish, especially during early life. The distinct salinity gradient and observed 
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differences in growth rates and condition among Southern Flounder contingent types 

during the first year of life in Mobile Bay suggests the estuary may vary spatially in 

habitat value (Lankford & Targett 1994, Glass et al. 2008, Midway et al. 2015). This 

study expanded knowledge on flatfish growth rates and condition because it led to 

understanding differences among age-specific resident and migratory contingents across 

salinity gradients in single estuary systems without the caging limitations presented in 

previous studies (Guindon & Miller 1995, Meng et al. 2000, Phelan et al. 2000).   

Our results indicated that contingent type is an important factor used to determine 

Southern Flounder growth rates and condition in Mobile Bay during the first year of life. 

We found that optimal growth occurred for age-0 and first-year Southern Flounder 

classified as estuarine contingents in Mobile Bay (salinities > 1 psu), which is consistent 

with our hypothesis (H1), as well as the results of Henne & Watanabe (2003) and 

Howson & Targett (2019). Growth rates and condition of age-0, first-year, and age-1 

transient contingents were not significantly different than estuarine residents, suggesting 

there may be nutritional benefits of moving that outweigh the costs of energy expenditure 

and predation risk. These responses may be associated with life-history characteristics as 

larvae are spawned offshore in high salinity waters and migrate to estuaries. Juveniles 

may grow faster as transient or estuarine contingents during the first year of life since 

more time and energy would likely be required to reach the freshwater habitats in the 

Delta. Since freshwater contingents spent at least 90% of their short lives in the Delta, 

energy allocated to growth may have instead been used for migration, buoyancy 

maintenance, and osmoregulation during the larval and juvenile stages (Brett 1979, 
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Moustakas et al. 2004, Howson & Targett 2019). Sampio and Bianchini (2002) found that 

growth rates of another juvenile Paralichthyd flounder (Brazillian flounder, Paralichthys 

orbinyanus) were lower in freshwater possibly due to energy expenditure involved in 

osmoregulation. Additionally, freshwater habitats within estuaries are associated with 

maximum turbidity, which could impair visibility when searching for food (Schubel 

1968). 

River-dominated estuaries like Mobile Bay are highly productive ecosystems 

where nutrients are incorporated into coastal food webs (Abrantes et al. 2015). Mobile 

Bay has extremely high rates of river discharge, suggesting that nutrients can be 

transferred to estuarine habitats during periods of high flow. High nutrient concentrations 

and peak phytoplankton production can also be found in mesohaline regions as they are 

regenerated from particulate decomposition in the summer after periods of high river 

flow in winter and spring (Kemp & Boynton 1984). Therefore, the observed patterns in 

early life growth and condition of Southern Flounder may also be explained by spatial 

trends in estuarine primary production. This primary production in estuarine habitats can 

fuel more energetically dense prey for Southern Flounder.  

In our Mobile Bay study, mean growth rates of age-0 Southern Flounder were 

1.06 mm d-1 (range 0.71 – 1.53 mm d-1) for estuarine residents, 0.91 mm d-1 (range 0.50 – 

1.41 mm d-1) for transient contingents, and 0.72 mm d-1 (range 0.53 – 0.980 mm d-1) for 

freshwater residents. Our values were estimates since daily growth rings were not 

counted and hatch dates were assumed to be January 1st. Age-0 Southern Flounder ranged 

from 52 – 307 mm in this study, which is a broad size-range and these larger juveniles 
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could be growing faster than smaller juveniles as in other studies (Glass et al. 2008). 

Nevertheless, mean age-0 Southern Flounder growth rates in our study fell in the ranges 

of other age-0 Paralichthys species including Southern Flounder (1.20 – 1.40 mm d-1, 

Reichert & van der Veer 1991; 0.21 – 0.76 mm d-1, Glass et al. 2008; 0.40 – 1. 50 mm d-

1, Howson & Targett 2019), Summer Flounder (Paralichthys dentatus; 0.50 – 1.30 mm d-

1, Reichert & van der Veer 1991), and Japanese Flounder (Paralichthys olivaceus; 0.34 – 

0.94 mm d-1, Gwak et al. 2003). High growth results found in our study and Howson & 

Targett (2019), in conjunction with the largest observed random intercepts of recent 

cohorts in our first-year growth analysis (2015 – 2018; Figure 4a), suggest that juvenile 

Southern Flounder growth rates may have accelerated in recent years. Potential reasons 

for this include decreased competition and density-dependence due to high mortality rates 

leading to declining juvenile abundance (see Chapter 1), variable environmental 

conditions, or fishing-induced evolution of adults, which could select for younger age-at-

maturity and faster growth (Enberg et al. 2012). 

Although larger individuals have advantages over smaller individuals (e.g., size-

dependent predation and greater ability to escape), habitats that promote higher growth 

rates are often associated with higher predation risk (Werner & Anholttt 1993). In Mobile 

Bay, Southern Flounder appear to have higher growth rates and condition within 

estuarine habitats during their first year of life, but a behavioral tradeoff may be made 

since they could be more susceptible to mortality (Sogard 1997). Future studies that aim 

to quantify juvenile Southern Flounder mortality rates across salinity gradients would be 
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useful to see if higher predation was occurring in estuarine habitats that promote fast 

growth in Mobile Bay.  

We also found that optimal condition occurred for age-1 Southern Flounder 

classified as transient and estuarine contingents in Mobile Bay. Males had the highest 

random intercept for sex in the age-1 condition analysis, suggesting that age-1 males may 

have higher condition and energetic reserves than age-1 females (Figure 7). Although 

males had higher condition, females had the highest random intercepts for annual growth 

in the first- and second-year annual growth analyses (Figure 4b, Figure 5). Age-1 female 

Southern Flounder may be putting more energy toward growth, while males may be 

allocating their energy toward fat reserves, resulting in elevated condition.  

Results differed from our hypothesis (H2) since growth rates and condition did 

not differ among Southern Flounder contingent types for older individuals in the age-2 

condition and second-year growth analysis. Nelson (1969) found that salinity influenced 

the distribution and growth rates of juvenile Atlantic croaker (Micropogonias undulatus), 

another economically important estuarine fish, more than adults. The only other 

Paralichthyd flounder found in Mobile Bay is the Gulf Flounder (Paralichthys 

albiguttata). Adult Gulf Flounder are found in high salinity waters so a lack of co-

occurrence could allow age-2 Southern Flounder to use and benefit from habitats across 

the salinity gradient in Mobile Bay (Glass et al. 2008).  

Sustainable management of the declining species along the Gulf of Mexico is 

crucial in the face of climate change. Over the next one hundred years, the Gulf of 

Mexico region is expected to see increased durations of dry conditions and increased 
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intensity of precipitation events, as well as increased durations of heat waves and 

decreased cold snaps (Diffenbaugh et al. 2005, Biasutti et al. 2012). Increased periods of 

dry conditions or intense rainfall could alter the amount of freshwater input that enters 

each estuary, thus altering growth rates and condition of Southern Flounder, especially 

for juveniles. Because human activity is typically highest within close proximity to the 

coasts, estuarine environments are strongly influenced by anthropogenic stressors and 

fishing pressure, which could exacerbate these negative effects of climate change. This is 

concerning for estuarine species, especially those that use estuaries for nurseries or 

experience ontogenetic habitat shifts throughout their lifetimes (Ong et al. 2015).  

Growth and condition were highest for young-of-the-year Southern Flounder that 

were classified as transient or estuarine contingents, and it is important to protect habitats 

so these individuals can survive to the harvestable stage. Therefore, these habitats could 

also be productive for estuarine fishes that serve as prey and predators of Southern 

Flounder. Our work can assist managers in setting user group expectations for the 

productivity of Southern Flounder populations along the northeastern Gulf of Mexico. 

Additionally, ADCNR/MRD recently developed a stock enhancement program, and the 

results of this study could help in selecting locations to stock new recruits so they may 

have the best chances of growing rapidly and surviving at higher rates. Ultimately, these 

results may assist with ongoing habitat conservation and restoration efforts to support 

high quality habitats of estuarine fishes. 
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TABLES 
 
Table 1. Random effect model structure for first-year growth analysis. The models were 
listed in order from most to least optimal, and were fitted using restricted maximum 
likelihood estimation. df = degrees of freedom. LL = log likelihood. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Random effect growth covariates df LL AICc ΔAICc Weight 
Cohort + Age at capture + Sex 7 -1485.7 2985.9 0.0 0.949 

Cohort + Sex 6 -1489.7 2991.7 5.8 0.051 
Age at capture + Sex 6 -1501.8 3015.9 30.0 <0.001 

Cohort + Age at capture 6 -1508.9 3030.0 44.1 <0.001 
Cohort 5 -1510.6 3031.3 45.5 <0.001 

Age at capture 5 -1525.8 3061.9 76.0 <0.001 
Sex 5 -1527.7 3065.7 79.8 <0.001 
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Table 2. Random effect model structure for second-year growth analysis. The models 
were listed in order from most to least optimal, and were fitted using restricted maximum 
likelihood estimation. df = degrees of freedom. LL = log likelihood. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Random effect growth covariates df LL AICc ΔAICc Weight 
Sex 5 -326.9 664.8 0.0 0.675 

Age at capture + Sex 6 -326.5 666.4 1.6 0.306 
Age at capture  5 -330.5 671.9 7.1 0.019 
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Table 3. Random effect model structure for the age-1 condition analysis. The models 
were listed in order from most to least optimal, and were fitted using restricted maximum 
likelihood estimation. df = degrees of freedom. LL = log likelihood. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Random effect growth covariates df LL AICc ΔAICc Weight 
Sex 5 314.1 -617.8 0.0 0.670 

Cohort + Sex 6 314.4 -616.2 1.6 0.300 
Cohort  5 311.0 -611.6 6.2 0.030 
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FIGURES 

Figure 1. Southern Flounder were collected at twenty stations in Alabama by Alabama 
Department of Conservation and Natural Resources, Marine Resources Division’s 
(ADCNR/MRD’s) Fisheries Assessment and Monitoring Program (FAMP; 2018 – 2019; 
triangles), Auburn University (2005 – 2007; squares, stars), and Clemson University 
(2018 – 2019; circles, stars). Southern Flounder harvested in freshwater habitats were 
collected from the Delta (north of I-10). Southern Flounder harvested in estuarine 
habitats were collected from Mobile Bay (south of I-10). 
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Figure 2. Sectioned right sagittal otolith from an age-2 Southern Flounder. Transects 
were drawn along the ventral side of the sulcal groove. Growth increments were 
measured (mm) from the core to the end of the first annulus (A1), from the first to the 
second annulus (A2), and from the core to the edge. 
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Figure 3. Residuals of the log10 total lengths (mm) fitted against the log10 weights (g) of 
Southern Flounder (ages 0 – 2) in Mobile Bay, AL. 
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Figure 4. Southern Flounder A) observed age-0 growth rates (size at collection divided 
by number of days at large [assuming January 1 hatch date]), B) annual back-calculated 
first-year growth, and C) annual back-calculated second-year growth of freshwater 
(purple), transient (green), and estuarine (orange) Southern Flounder contingents in 
Mobile Bay, AL. The lower case letters indicate significant differences (p < 0.05) among 
age-specific contingent types. 
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Figure 5. Random intercepts for each A) cohort, B) age at capture, and C) sex derived 
from the model that best explained growth rates among contingent types in the first-year 
growth analysis. Blue circles represent values greater than the mean, and red circles 
represent those less than the mean.  
 
 
 
 
 
 
 
 
 
 
 



 90 

 
Figure 6. Random intercepts for each sex derived from the model that best explained 
growth rates among contingent types in the second-year growth analysis. The blue circle 
represents a value greater than the mean, and the red circle represents a value less than 
the mean. 
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Figure 7. Southern Flounder A) age-0 condition (residuals of the log10 weight versus 
log10 total length relationship), B) age-1 condition, and C) age-2 condition of freshwater 
(purple), transient (green), and estuarine (orange) Southern Flounder contingents in 
Mobile Bay, AL. The lower case letters indicate significant differences (p < 0.05) among 
age-specific contingent types. 
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Figure 8. Random intercepts for each sex derived from the model that best explained 
condition among contingent types in the age-1 condition analysis. The blue circle 
represents a value greater than the mean, and the red circle represents a value less than 
the mean. 
 
 
 

 
  


	Environmental Drivers of Southern Flounder (Paralichthys lethostigma) Growth, Condition, and Juvenile Recruitment Along the Northern Gulf of Mexico
	Recommended Citation

	Microsoft Word - MeghanAngelina_Thesis.docx

