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ABSTRACT 
 

Southern Flounder (Paralichthys lethostigma) is an economically important 

species along the northern Gulf of Mexico. Over the last several years, Southern Flounder 

populations have experienced drastic declines. Analysis of natural tags, such as otolith 

chemistry and stable isotopes, can be used to examine habitat-specific contributions to 

commercial and recreational fisheries. A better understanding of habitat-use patterns and 

food web dynamics of this species could provide insight into habitat conservation and 

harvest regulations to promote sustainability of this species.   

Water and otolith chemistry were used to quantify the proportional contributions 

of various residency patterns to the commercial and recreational harvest of historic (2004 

– 2007) and recent (2018 – 2019) Southern Flounder populations. Otolith strontium to 

calcium (Sr:Ca) values from laser ablation inductively coupled plasma mass spectrometry 

were used to quantify age-specific and lifetime residency patterns for Southern Flounder 

across Alabama’s seasonal salinity gradient. Flounder were classified into one of three 

contingent types: freshwater, estuarine, or transient. Our results suggest that contributions 

to the commercial and recreational fisheries were predominately from estuarine habitats, 

and freshwater habitats were important during the settlement phase. Specifically, 3% of 

commercially and recreationally harvested flounder were lifetime freshwater contingents, 

but 57% utilized freshwater during the first year of life.    

 We used bulk carbon (δ13C) and nitrogen (δ15N) isotopes, compound specific δ15N 

isotopes (AA-CSIA), and stomach content analysis (SCA) to determine trophic ecology 

and food web dynamics of Southern Flounder. We assigned location of harvest for 
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commercially and recreationally harvested flounder using δ13C and δ15N values from 

fishery-independent samples. In agreeance with otolith chemistry, isotope analysis results 

indicated greater contributions to commercial and recreational fisheries from estuarine 

habitats than freshwater habitats. Additionally, flounder harvested in lower portions of 

Mobile Bay appear to be consuming prey at higher trophic levels than other areas along 

Alabama’s coastal waters.  
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CHAPTER ONE 

SOUTHERN FLOUNDER RESIDENCY PATTERNS ACROSS A SEASONAL 
SALINITY GRADIENT 

 
INTRODUCTION 

Estuaries are essential to the ontogenetic development of many recreationally and 

commercially important fishes. As an interface between freshwater and marine 

ecosystems, estuaries are highly productive and extremely complex ecosystems that 

provide nursery habitat to numerous fish species (Beck et al. 2001; Able 2005). 

Understanding the benefits these habitats provide and the physical and bioenergetic 

movements of nutrients and organisms across estuarine habitats is essential to developing 

appropriate management and conservation actions (Nathan et al. 2008). Currently, 

anthropogenic impacts on estuaries are severely degrading their ecological and economic 

benefits (Creighton et al. 2015; Baker et al. 2017), by altering habitat and food web 

dynamics, affecting estuarine fish at various life stages (Courrat et al. 2009; Houde and 

Rutherford 2016). A better understanding of how fish utilize and benefit from a diverse 

suite of estuarine habitats is therefore essential to protect critical estuarine habitats and 

the fisheries that rely on them.  

Being a euryhaline, estuarine-dependent species, Southern Flounder (Paralichthys 

lethostigma) rely on estuaries for growth and ontogenetic development. Adult flounder 

spawn offshore and eggs are carried by tidal currents into estuaries where larvae undergo 

sinistral, craniofacial metamorphosis and begin settlement (Jager 1999; Schreiber 2006). 

Numerous abiotic (e.g., salinity, dissolved oxygen, temperature, nutrient flow) and biotic 

(e.g., prey availability, species competition, predator abundance) factors impact their 
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survival and distribution (Polis et al. 1997). Previous studies have shown that post-larval 

juveniles settle in sandy or muddy habitats, generally near vegetation (Burke et al. 1991; 

Powell and Schwartz 2006; Nañez-James et al. 2009). Larval flounder are tolerant of 

several environmental parameters, therefore settlement can occur across large salinity (0 

– 35 psu), temperature (12 – 39° C), and dissolved oxygen (2.8 – 6.5mg/L) levels (Taylor 

and Miller 2001; Nañez-James et al. 2009; Furey et al. 2013). As flounder require inshore 

habitats for survival through juvenile stages and growth to harvestable sizes, their 

accessibility to commercial and recreational harvest is also dependent on the suitability 

and quality of these critical inshore habitats.  

Southern Flounder sustain economically important recreational and commercial 

fisheries across their geographic range (Froeschke et al. 2011; Flowers et al. 2019). Over 

the last several years, this species has seen drastic declines in adult abundance across 

their entire range (VanderKooy 2015; Flowers et al. 2019). For Alabama in particular, 

population declines, and the resulting diminished harvest, have resulted in recent landings 

that are less than a quarter of historic averages (VanderKooy 2015). As a result of the 

declining adult abundance, increased attention is being focused on ecological factors that 

may be contributing to these declines. A recently completed stock assessment indicated 

Alabama’s Southern Flounder stock is experiencing a decline in overall abundance most 

likely due to low recruitment, although overfishing may also play an important role by 

reducing spawning stock biomass (Powers et al. 2018). As production of new recruits to 

the adult spawning population is vital for the sustainability of any fishery, quantifying 
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habitat-specific contributions to the adult population would assist with identifying key 

habitats that are likely essential in rebuilding Southern Flounder stocks.  

While the use of oligohaline and mesohaline waters by flatfish (family 

Paralichthyidae) species is well documented (Rozas and Hackney 1984; Glass et al. 2008; 

Nañez-James et al. 2009; Smith and Scharf 2010), recent work indicates age-0 and 

juvenile flatfish species may use, or even prefer, tidal freshwater habitats (Zucchetta et al. 

2010; Lowe et al. 2011). In addition, Farmer et al. (2013) discovered Southern Flounder 

may migrate to low-salinity estuaries during the first two years of life, which was 

previously believed to occur only during the first year. Much of this increased 

understanding of Southern Flounder habitat use across salinity gradients was 

accomplished through the use of natural tracers, such as otolith chemistry (Lowe et al. 

2011; Farmer et al. 2013; Nims and Walther 2014).  

Analysis of otolith chemistry is a useful tool in quantifying fish migratory and 

residency patterns across salinity. Otoliths are acellular and not primarily influenced by 

metabolic turnover experienced by other tissues (Elsdon et al. 2008). This guarantees 

permanent encapsulation of trace elements into the otoliths’ chemical makeup, resulting 

in a unique chemical signature throughout the lifetime of each fish (Campana et al. 2000). 

Otoliths contain diel, geochemical accretions of trace elements which may be more 

representative of the ambient water chemistry than an individual’s diet or physiological 

condition (Campana 1999; Walther and Limburg 2012). Therefore, a relationship 

between otoliths and the ambient water chemistry must be developed to fully understand 

otolith chemistry. Water chemistry is the concentration of trace metals elements known 
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as endmembers, which occur at variable rates based on geochemical weathering of 

upstream geological materials within the watershed (Elsdon et al. 2008; Macdonald and 

Crook 2010; Walther and Limburg 2012). Previous studies have shown potential positive 

(e.g., magnesium, calcium, strontium) and negative (e.g., barium) relationships between 

water chemistry endmembers and salinity (Surge and Lohmann 2002; Walther and 

Limburg 2012). Seasonal fluctuations in freshwater discharge shifts the locality of 

estuary salinity classifications (i.e., oligohaline (0.5 – 5 psu), mesohaline (5 – 18 psu), 

polyhaline (18 – 30 psu)), so spatiotemporal variations in water chemistry may need to be 

addressed (Teichert et al. 2017). Additionally, elemental concentrations in water do not 

scale exactly with otolith elemental concentrations. Partition coefficients, which describe 

the proportional incorporation of water chemistry elements into otoliths, can be 

developed by analyzing elemental signatures along the edge of the otolith concurrently 

with ambient water chemistry (Nelson and Powers 2019). Elemental partition coefficients 

can then be used to interpret otolith elemental chronologies into migratory and residency 

patterns that shed light onto life-history and movement patterns across salinity gradients 

within an estuary (Macdonald and Crook 2010).  

While relationships between the environmental conditions and otolith chemistry are 

useful and hold considerable promise in interpreting migratory and residency patterns, 

many limitations exist. One potential limitation is that otolith signatures may be a result 

of fish migration across salinity gradients or salinity fluctuations over a relatively 

stationary fish. Estuaries have highly variable freshwater fluctuations in which salinity 

delineations may move several kilometers within a single year (Lowe and Peterson 
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2014). As these freshwater fluxes occur, estuaries may experience spatiotemporal 

variation in water endmember concentrations (Gillanders 2002; Tournois et al. 2013). 

Fortunately, select elemental endmembers within otolith chemistry scale with salinity 

(Nelson and Powers 2020). As a result, otolith chemistry can be used as an index of 

salinity residency and migratory patterns, but exact locality cannot be determined without 

high-resolution water quality (i.e., salinity) or telemetry for exact locations of interest. 

Another limitation is that otolith and water elemental concentrations cannot be used 

alone, but must be considered in a ratio with calcium (i.e., element:Ca). Ratios are 

necessary due to substitution rates of trace elements for calcium into the CaCO3 matrix of 

otoliths (Sturrock et al. 2012; Loewen et al. 2016). Calcium can be used as an internal 

standard for otolith analyses and external standard for water chemistry analyses to offset 

any elemental concentration issues (Craig et al. 2000; Nelson and Powers 2020).   

Our specific objectives to address the essential need for a better understanding of 

Southern Flounder estuarine habitat use were to 1) use otolith chemistry from fishery-

independent and fishery-dependent collections from 2004 – 2007 and 2018 – 2019 to 

quantify large-scale patterns of habitat use, 2) determine any sex-specific or age-specific 

differences in habitat-use patterns, and 3) examine which habitat-use patterns 

contributing to the commercial and recreational Southern Flounder fisheries in Alabama’s 

coastal waters. Ultimately, results from this study aim to inform management and 

conservation actions for a species currently experiencing population declines across its 

range. 
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METHODS 

Study system 

This study was conducted in the Mobile-Tensaw River Delta (hereafter referred to 

as the “Delta”) and Mobile Bay in Alabama (Figure 1). With an average daily discharge 

of 1850 m3/s, the Mobile-Tensaw River system is the fourth largest river system in the 

contiguous United States (Schroeder et al. 1990, Morisawa 1968). As the primary source 

of freshwater to Mobile Bay, this system influences the biochemical and hydrographical 

variations in this estuary (Dzwonkowski et al. 2011). There are three smaller freshwater 

sources including Dog River (watershed area 237 km2), Fowl River (watershed area 184 

km2), and Week’s Bay (watershed area 521 km2), which have regional influences on 

salinity and nutrients in Mobile Bay (Lehrter 2008; Mortazavi et al. 2012). Mobile Bay 

averages 3 m depth across an area 15-35 km wide and 45-50 km long with a drainage 

basin of 115,467 km2 (Dzwonkowski et al. 2011). Seasonal discharge fluctuations 

determine the spatiotemporal intrusion of salinity into the Delta, with northern reaches 

only experiencing high salinity during periods of low flow (Noble et al. 1996; Norris et 

al. 2010; Lee et al. 2019).  

Sample collections 

Fishery-independent collections 

During 2004 – 2007, Southern Flounder were collected by Auburn University 

from six sites in tidal freshwater to oligohaline habitats located in the northeastern corner 

of Mobile Bay and up to 32 river km into the Delta (Figure 1). Sampling was conducted 

monthly using pulsed DC boat electrofishing (Smith-Root, Inc.). Two 15-minute boom 
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mounted electrofishing transects and three 10-minute prod-pole electrofishing transects 

were conducted at each site. Complete descriptions of sampling efforts during 2004 – 

2007 can be found in Lowe et al. (2011) and Glover et al. (2013). While previous studies 

(Lowe et al. 2011; Farmer et al. 2013) reported Southern Flounder otolith chemistry 

results from these collections, we processed archived otolith samples that had not 

previously been analyzed for otolith chemistry. Results reported here for 2004 – 2007 

represent new data, not previously reported in the literature.  

During 2018 – 2019, juvenile and adult Southern Flounder were collected by 

Clemson University from ten sites located along a 60+ km seasonal salinity gradient of 

saltmarshes, bays, tidal creeks, and freshwater ecosystems. Sites at the lower end of the 

estuary were located on the landward side of barrier islands and within tributaries of 

Mobile Bay in meso- to polyhaline habitats (south of I-10, Figure 1). Sites at the upper 

end of the estuary were located 23 river km into the Delta in tidal freshwater to 

oligohaline habitats (Figure 1). Sites were sampled 1 – 2 times monthly during May – 

July of 2018 and March, May – July of 2019.  

Four sampling methods were used to collect Southern Flounder during the 2018 – 

2019 sampling period. These included beam trawls, gill nets, electrofishing, and hook-

and-line. A one-meter wide beam trawl with 2 mm mesh was used at all sampling 

locations to target small juveniles (≤ 100 mm total length (TL)). Beam trawl transects 

(eight at meso- to polyhaline sites and three at oligohaline sites) were hauled by boat in 2-

minute trawls during each site visit. Gillnets were used to target large juveniles and adults 

(≥100 mm TL). Four soaking hours (two 2-hour sets) of 30 m by 2.4 m gillnets with 127 
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mm stretch mesh were set at meso- to polyhaline sites. Nets were set parallel to shore 

with a hook towards shore at the downstream end. At freshwater sites, pulsed DC boat 

electrofishing (Midwest Lake Electrofishing Systems Infinity Box) was used along 

shorelines. Six 15-minute boom mounted electrofishing transects were conducted during 

each site visit. Hook-and-line sampling was conducted after all standardized sampling 

was completed or in areas not accessible by the previous methods. At each site we 

recorded date, time, GPS coordinates, and water depth at the beginning and end of each 

sampling transect or gillnet set. All Southern Flounder collections were conducted 

according to use guidelines outlined in IACUC protocol #AUP2018-001 at Clemson 

University.   

Additional flounder were collected by Alabama Marine Resources Division 

(MRD) during their Fisheries Monitoring and Assessment Program (FAMP). This survey 

program used a 4.88 m otter trawl with 4.76 mm mesh pulled for 10 minutes at 2 – 2.5 

knots. Surveys occur monthly at 24 locations across all of Alabama’s coastal waters south 

of I-10. Trawl samples were placed on ice and returned to MRD’s Dauphin Island 

laboratory for processing.  

Fishery-dependent collections 

Southern Flounder were collected from the commercial and recreational fisheries 

during both 2004 – 2007 and 2018 – 2019 sampling periods. MRD (2004 – 2007) 

collected from recreational anglers using protocols from NOAA Fisheries Marine 

Recreational Information Program (MRIP) and from commercial fish houses. MRD used 

Access Point Angler Intercept Survey (APAIS) to randomly select public access locations 
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across Mobile Bay and Alabama’s coast at selected times to creel recreational anglers 

fishing from shore and vessel. Clemson University (2018 – 2019) collections included 

commercial fish houses, opportunistic collections from boat access points, and two large 

annual fishing tournaments.   

Water quality and chemistry 

At each site visit during 2004 – 2007 and 2018 – 2019, a water column profile 

was completed using a YSI ProPlus handheld unit to record temperature (℃), dissolved 

oxygen (mg/L), and salinity (psu). Measurements were taken at one-meter depth 

increments starting at the surface. Additionally, daily time-series salinity data were 

collected from three Dauphin Island Sea Lab stations (Meaher State Park, Middle Bay, 

Dauphin Island, https://arcos.disl.org/). Water chemistry samples for quantifying 

elemental concentrations were collected in conjunction with water column profiles during 

July 2018 and March, May – July 2019. Water chemistry samples were collected at 1-

meter depth using a Van Dorn water sampler, filtered through 0.45 µm filters using a 

vacuum filtration system, fixed with 95% nitric acid (HNO3) at 2%, and stored in 200 mL 

acid washed bottles. 

Laboratory processing 

Measurements from Southern Flounder included total length (mm), weight (g), 

and macroscopic inspection of gonads. Additionally, sagittal otoliths were removed, 

cleaned of tissue in research-grade ultrapure water, and air dried. Otoliths were embedded 

in individual wells with Buehler EpoKwick epoxy and hardener (2004 – 2007 samples) 

or Struers EpoFix epoxy and hardener (2018 – 2019 samples). Otolith wells were 
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sectioned with a Buehler IsoMet low speed saw making two cuts perpendicular to the 

sulcal groove, one on each side of the otolith’s core, approximately 2 mm wide. 

Sectioned otoliths were polished using a Buehler circular polishing station with 600 and 

1000 grit paper until the core and annuli were exposed. Otoliths were fixed to a glass 

slide with Crystalbond 509, imaged with digital imaging analysis system, and aged by 

two readers before being processed for otolith chemistry.  

Otolith chemistry samples were processed at the Dauphin Island Sea Lab 

instrumentation lab using an Agilent 7700x quadrupole inductively coupled plasma mass 

spectrometer (ICPMS) coupled to a 213 nm Nd:YAG NWR laser. Mounted otoliths were 

rinsed with deionized water and cleaned using a low power cleaning pre-ablation (40 µm 

spot, 100 µm/sec, 20% laser power, 5 Hz) to remove contaminants on the otolith surface 

along the same transect as the chemistry analysis ablation (Gover et al. 2014). Prior to 

chemistry analysis, an argon gas carrier was analyzed for 60 seconds. Following methods 

from Lowe et al. (2011), otoliths were ablated (25 µm spot, 5 µm/sec, 30% laser power, 

10 Hz, energy around 5 J/cm2) from the core to the distal edge along a straight transect 

parallel to the sulcal groove. Otolith chemistry analysis targeted concentrations for a suite 

of elements (i.e., magnesium (24Mg), calcium (43Ca), manganese (55Mn), zinc (65Zn), 

strontium (88Sr), and barium (137Ba)) with each element being sampled every 0.6 seconds. 

Analytical precision was assessed using a reference standard (NIST-612) which was run 

at the beginning, end, and every hour between to assess instrumental drift. Trace Element 

IS data reduction scheme in Iolite v3 addressed limits of detection, background signals, 

and corrected for instrument drift. Raw elemental counts were converted to 
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concentrations (ppm) using Ca (37.69%) as an internal standard (Longerich et al. 1996), 

then elemental concentrations were converted to molar ratios with calcium (element:Ca). 

Individual values for each otolith were scaled to years by assuming the last reading along 

the otolith’s edge was laid on date of harvest and the core was a hatch date of January 1st 

(Fitzhugh et al. 1996; Glass et al. 2008). 

Water samples were processed for elemental concentrations of 24Mg, 43Ca, 55Mn, 

65Zn, 88Sr, 137Ba with the same ICPMS system in solution mode coupled with an Agilent 

autosampler. Samples were diluted based on salinity at 10x (0 – 5 psu), 20x (5 – 10 psu), 

50x (10 – 20 psu), or 100-fold (≥ 20 psu) with 2% nitric acid. Internal standards (IS) 

beryllium (9Be) and indium (115In) were added to each sample at 10 and 1 ppb 

concentrations, respectively. Following methods from Nelson and Powers (2020), an 

external 5-point calibration curve of elemental concentrations and IS was processed 

before running the water samples. Lab calibrated reference standards and 2% nitric acid 

blanks were run every hour to assess instrumental drift and background signals. Within 

the Agilent Masshunter software, the calibration curve was used to correct for 

instrumental drift, mass bias, and convert count data into elemental concentrations (ppb). 

Concentrations of each element were converted to molar ratios with calcium to compare 

with otolith chemistry.  

 Statistical analysis 

Water to otolith partition coefficient  
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Using best fitting nonlinear models from Nelson and Powers (2020), we 

quantified the relationships between water and otolith element:Ca with salinity. For Sr:Ca 

and Mg:Ca, the asymptotic equation  

element:Ca = asy[1 – e–k(Salinity – s0)]   Equation 1 

quantified the asymptote (asy), increase coefficient (k), and intercept (s0). For Ba:Ca the 

exponential equation  

element:Ca = s0 * e-k(Salinity)    Equation 2 

quantified the increase coefficient and intercept. Paired water and otolith chemistry 

samples were used to quantify partition coefficients, or the fractional incorporation of 

ambient water elemental concentrations into the otolith. Using the equation  

Delement:Ca = [(element:Ca)otolith] / [(element:Ca)water]   Equation 3 

(Morse and Bender 1990), partition coefficients (Delement:Ca) for each flounder were 

calculated by using the element:Ca (mmol:mol) from the last thirty days of otolith growth 

(element:Caotolith; which ranged from  25 – 92 µm, depending on fish age) and water 

chemistry (element:Cawater) from samples collected on the same day from March to July 

of 2019 (N = 43). Due to limited samples at higher salinities, individual flounder 

Delement:Ca were averaged by water salinity classification (i.e., freshwater (<1 psu), 

mesohaline (5 – 18 psu), and polyhaline (>18 psu)) to test if partition coefficients were 

consistent across the range of salinities. The grand mean partition coefficient used to 

determine residency status was calculated by averaging the partition coefficient from 

each salinity classification. All analyses were completed in R version 3.6.1 (R 

Development Core Team 2019).  
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Residency classification 

Our goal in analyzing otolith elemental data was to classify each Southern 

Flounder as a freshwater (salinity ≤ 1 psu) or estuarine (salinity > 1 psu) resident during 

each year of life. To accomplish this, we needed to quantify the relationship between 

otolith element:Ca ratios and salinity from our ambient water sampling. We fit non-linear 

models of water element:Ca (mmol:mol) versus ambient salinity at time of sample 

collection for all water samples collected during 2018 and 2019. From this relationship 

we quantified the expected water element:Ca value for 1 psu salinity (i.e., the threshold 

value for residency classification). Variance was estimated using bootstrapped 95% 

confidence intervals generated using 1000 iterations in the R package nlsBoot. The 

predicted water element:Ca value for 1 psu was then multiplied by the partition 

coefficient to develop the expected mean otolith element:Ca value at 1 psu salinity. To 

quantify the uncertainty in the otolith element:Ca threshold value at 1 psu salinity, we 

multiplied the 95% upper and lower confidence intervals of the predicted water 

element:Ca value by the partition coefficient.  

To summarize time series of otolith element:Ca values, we used a regime shift 

detection algorithm to detect significant shifts in otolith element:Ca values along the laser 

ablation transects (Rodionov 2004). Following methods from Turner and Limburg (2015) 

and Seeley and Walther (2018), algorithm parameters were set at a significance level of 

0.05, cut-off length of 10 cells (approximately 27 µm), and a Huber’s weight parameter 

of 1 for omitting outliers. The algorithm used these parameters to identify regime shifts, 
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or discontinuity, in element:Ca values along otolith transects and create a smoothed 

average between shifts.  

Using the otolith element:Ca freshwater threshold determined earlier, smoothed 

time series of otolith element:Ca values were classified as above or below this 1 psu 

salinity threshold value at each time step (i.e., fractional ages). An element:Ca value 

equal to or below the threshold value for 1 psu salinity was classified as a freshwater 

resident for a given time step, while an element:Ca value above the threshold value was 

classified as an estuarine resident for a given time step. The proportion of total values 

above or below this threshold value were then summarized in each year of life (i.e., 

between each annuli) and across the entire lifetime for each individual. If greater than 

90% of the values across each age or lifetime fell into one classification (i.e., freshwater 

or estuarine), residency patterns were assigned to that classification. If neither 

classification consisted of 90% of the transect, then a ‘transient’ classification was 

assigned to indicate a fish that either moved between freshwater and estuarine habitats or 

a fish that resided in an area that experienced seasonal changes in salinity.  

Fisher’s exact tests used 3 x 2 contingency tables to test the null hypothesis that 

lifetime and age-specific residency classifications (rows) were independent of location of 

collection, sex, and fishery-dependent method of collection (columns). Specifically, these 

tests evaluated if lifetime residency patterns differed by location of collection (i.e., Delta 

versus Mobile Bay) or by fishery-dependent method of harvest (i.e., commercial versus 

recreational). These tests also evaluated if age-specific residency patterns within location 

of collection differed by sex or by fishery-dependent method of collection. A separate 
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contingency table was used to test for differences between the four analyses listed above. 

A Bonferroni correction was applied to age-specific analyses to account for multiple 

comparisons and control familywise error rates.  

 

RESULTS 

Temporal trends in water salinity values were consistent across Mobile Bay and 

the Delta. Annual salinity patterns across all sites were lowest in the spring, increased 

throughout the summer and then decreased during the fall (Figure 2). Salinities in Mobile 

Bay (Middle Bay and Dauphin Island loggers; Figure 1) ranged from 2 – 30 psu, while 

salinity in the lower Delta (Meaher State Park logger; Figure 1) ranged from 0 – 14 psu 

during this study. Lower Delta summer and fall salinity values were above the 1 psu 

salinity threshold, but remained below 1 psu during winter and spring for most years of 

this study (Figure 2). On average, 62% of lower Delta annual salinity values were below 

1 psu.  

Elemental concentrations of dissolved Ca, Sr, and Mg from 55 water samples 

showed positive, linear relationships with salinity (R2 > 0.99, p < 0.001), while Ba 

showed no relationship (R2=0.004, p = 0.27) (Figure 3). In ratios with water Ca 

(element:Ca), Mg:Ca (asy = 4.52, k = 0.95, s0 = -0.02) and Sr:Ca (asy = 7.62, k = 0.99, s0 

= -0.31) showed positive, asymptotic relationships, while Ba:Ca (k = 0.29, s0 = 580.55) 

showed a negative, exponential relationship (Figure 4). Otolith element:Ca ratios each 

showed unique relationships with ambient salinity. Otolith Mg:Ca had no relationship, 

while Sr:Ca had a positive, asymptotic relationship (asy = 2.42, k = 0.72, s0 = -0.42), and 
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Ba:Ca had a negative, exponential relationship (k = 0.73, s0 = 25.19) with salinity (Figure 

5). Of the elements analyzed in this study, only dissolved concentrations of Sr and Sr:Ca 

showed relationships with salinities ranging from 0 – 25 psu.  

Mean partition coefficients (Delement:Ca) for each element showed unique trends 

across salinity regions (i.e., freshwater, mesohaline, polyhaline). DMg:Ca and DBa:Ca 

exhibited 3 – 5 times more variability between regions than DSr:Ca (Table 1). DMg:Ca 

decreased 0.135 mmol:mol from freshwater to polyhaline, while DBa:Ca increased 0.075 

mmol:mol from freshwater to polyhaline. DSr:Ca experienced a mid-salinity peak, but 

remained relatively constant with a range of 0.024 mmol:mol across all salinity regions. 

By averaging the mean partition coefficient for each salinity region, the grand mean 

partition coefficients were DMg:Ca  = 0.06, DBa:Ca = 0.07, and DSr:Ca = 0.31. Due to 

inconsistencies in Mg and Ba water and otolith relationships with salinity, only Sr:Ca 

ratios were used as a marker for salinity exposure and residency classifications.  

Using the nonlinear relationship determined for water Sr:Ca regressed against 

salinity (Figure 4), the predicted water Sr:Ca values for 1 psu was 5.53 mmol:mol (95% 

confidence interval = 5.25 – 5.89). When multiplied by the grand mean partition 

coefficient for Sr:Ca, the freshwater threshold for 1 psu salinity in Southern Flounder 

otoliths was 1.71 mmol:mol Sr:Ca (95% confidence interval = 1.62 – 1.82). Uncertainty 

surrounding the 1.71 mmol:mol Sr:Ca threshold was not incorporated into further 

analyses, as the bootstrapped 95% confidence interval was narrow relative to other 

studies that formally included the uncertainty of Sr:Ca thresholds into their analyses 

(Seeley and Walther 2018). The narrow 95% confidence interval presented here suggests 
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that including uncertainty in this threshold value would have little impact on final 

residency classifications.  

Transect otolith chemistry data from 417 Southern Flounder (263 fishery-

dependent, 154 fishery-independent) were used to examine proportional occurrence of 

residency classifications (i.e., freshwater, transient, estuarine). Across all years, more 

females were collected than males (342 females, 43 males, 32 unidentified) and females 

had larger mean lengths, weights, and older ages than males (Table 2). Of the three 

lifetime residency classifications, transient was the most common (n = 188, 45%), 

followed by estuarine residency (n = 139, 33%), then freshwater residency (n = 90, 22%). 

Lifetime transient flounder exhibited a wide diversity of patterns in their use of 

freshwater habitats, which ranged from 10% - 90% of their lifetime. The distribution of 

individuals across this gradient of lifetime transient habitat use was fairly uniform with 

15%, 11%, 9%, and 8% of transients with 10 – 30%, 30 – 50%, 50 – 70%, and 70 – 90% 

of lifetime freshwater habitat use, respectively. There was a declining trend in freshwater 

habitat use (freshwater residents and transients) with age (65% age-0, 41% age-1, 36% 

age-2, 25% age-3, and 0% age-4; Figure 7).  

Southern Flounder lifetime residency patterns differed significantly by area of 

collection (Fisher’s exact test: p < 0.001). Southern Flounder collected in the Delta were 

predominately freshwater lifetime residents (69%) or transient, while those collected in 

Mobile Bay were predominately estuarine lifetime residents (46%) or transient (Figure 

8). Only 3% of individuals collected in Mobile Bay were lifetime freshwater residents, 

while <1% of Delta collected individuals were lifetime estuarine residents.  
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Male and female Southern Flounder residency patterns were similar across 

younger ages. Within location of collection (i.e., Delta or Mobile Bay), no significant 

differences in the frequency of residency patterns occurred between age-0 males and age-

0 females (Delta Bonferroni corrected p = 1, Mobile Bay Bonferroni corrected p = 0.8) or 

age-1 males and age-1 females (Delta Bonferroni corrected p = 1, Mobile Bay Bonferroni 

corrected p = 0.8) (Figure 9). Females utilized freshwater habitats (i.e., freshwater or 

transient residency) up to age-3, while males utilized freshwater habitats up to age-1. 

Older males were collected less frequently than females, with only a single age-3 male, 

but several age-3 and age-4 females (n = 23) (Figure 9). 

Southern Flounder lifetime residency patterns between Alabama’s commercial 

and recreational fisheries did not differ (p = 0.3; Figure 10). Although lifetime freshwater 

residencies combined across all cohorts occurred in only 3% of fishery-dependent 

samples, at least one individual harvested by the commercial and recreational fisheries 

exhibited lifetime freshwater residency in 45% of the cohorts (i.e., 2001 – 2006 and 2014 

– 2018) analyzed in this study (Figure 10). On average, 62% of the individuals harvested 

from each cohort had a lifetime residency indicating at least some level of freshwater 

habitat utilization (i.e., freshwater residency or transient). Age-specific residencies for 

commercially and recreationally harvested Southern Flounder revealed no significant 

differences in the distributions of residency classifications for age-0 (Bonferroni 

corrected p = 1), age-1 (Bonferroni corrected p = 0.5), age-2 (Bonferroni corrected p = 1), 

and age-3 (Bonferroni corrected p = 1) (Figure 11). Combining across the recreational 

and commercial harvest, the percent of individuals utilizing freshwater habitats (annual 
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resident and transients) declined with age, with 57% of fish being classified as freshwater 

or transient during age-0 but 0% by age-4. 

 

DISCUSSION 

Trace metal relationships with water and otoliths 

This study effectively tested the ability to use three trace metals as salinity proxies by 

assessing their relationship with water salinity and Southern Flounder otoliths in 

Alabama’s coastal waters. Validating the use of a trace element as a salinity proxy 

requires addressing the assumption that elemental endmembers are distinguishable 

between freshwater and marine salinities in the ambient environment (Walther and 

Limburg 2012). From water samples collected in this study, Sr and Mg concentrations 

exhibited conservative, linear relationships with salinity, as well as positive, asymptotic 

relationships between water Sr:Ca and Mg:Ca with salinity. Sr:Ca and Mg:Ca ratios were 

similar to regional and global freshwater (< 0.5 psu) and polyhaline (> 18 psu) 

endmembers. Freshwater Sr:Ca ratios ranged from 2.08 – 3.66 mmol:mol (global median 

2.39 mmol:mol, Brown and Severin 2009), while Mg:Ca freshwater ratios ranged from 

0.35 – 1.39 mol:mol (global mean 0.45 mol:mol, Walther and Nims 2015). Polyhaline 

Sr:Ca ratios ranged from 7.68 – 7.96 (global mean 8.54 mmol:mol, de Villiers 1999), 

while Mg:Ca polyhaline ratios ranged from 4.6 – 4.9 (regional mean around 4.6, Mohan 

and Walther 2015). The distinct differences between freshwater and marine elemental 

endmembers indicated these elements could be used as a salinity proxy, if incorporated 

into otoliths in proportion to ambient environment concentrations. Ba concentrations 
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exhibited a slight decreasing trend with increasing salinity, however high variability at 

lower salinities and a mid salinity peak indicated a limited relationship with salinity. 

Although water Ba concentrations were not conservative with salinity, water Ba:Ca 

exhibited a strong, exponential decline with increasing salinity, indicating potential use as 

a salinity proxy for biogenic carbonates (Figure 4). Water chemistry results in this study 

were consistent with previous studies in this system (Nelson and Powers 2019, 2020).  

Otolith Sr:Ca ratios exhibited positive, asymptotic relationships with salinity, 

indicating Sr:Ca as a proxy for salinity exposure and habitat use for Southern Flounder in 

this estuarine system. Additionally, Sr:Ca had the lowest range in differences between 

mean partition coefficients across salinity classifications (Table 1). Otolith Mg:Ca ratios 

showed no relationship with salinity and exhibited large ranges in mean partition 

coefficients, distinguishing Mg as a poor salinity proxy for this species in Alabama. 

Similar to water Ba:Ca, otolith Ba:Ca showed a negative, exponential relationship with 

salinity; however, large increases in partition coefficients (DBa) were observed with 

increasing salinity. This trend is not unique to Southern Flounder and has been observed 

by several other species (detailed list in Nelson and Powers 2020). Since water Ba 

concentrations across salinity gradients were not highly distinguishable, the increased 

partition coefficient limited the ability to differentiate freshwater versus marine residency 

(Nelson and Powers 2020). As a result of water and otolith relationships with salinity, 

only Sr:Ca ratios were validated as a proxy for salinity exposure and habitat-use for 

Southern Flounder in this study.  
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Water and otolith Sr:Ca values were used to develop a freshwater threshold (≤ 1 psu) 

for Southern Flounder in Alabama’s coastal waters. The water Sr:Ca freshwater threshold 

of 5.53 ± 0.16 (mean ± standard deviation) was similar to the Sr:Ca oligohaline (< 5 psu) 

threshold of 5.23 ± 1.23 from Texas (Seeley and Walther 2018), with lower variability. 

The otolith freshwater (≤ 1 psu) threshold value calculated in this study (1.71 Sr:Ca) 

aligns with previous studies in this estuarine system, however the salinity threshold was 

empirically quantified to be 1 psu rather than assumed to approximate 2 psu (Lowe et al. 

2011; Farmer et al. 2013).  However, our results indicate that the previous threshold from 

these studies was generally indicative of residence in low salinity (tidal freshwater (≤ 5 

psu) to oligohaline (0.5 – 5 psu)) versus high salinity (mesohaline (5 – 18 psu) and 

polyhaline (18 – 30 psu)) habitats.  

Salinity exposure and residency patterns  

Southern Flounder otolith signatures revealed high utilization of low salinity 

habitats, which is consistent with the putative life history of the species (Stokes 1977; 

Fischer and Thompson 2004). 65% of all individuals used freshwater habitats during their 

first year of life (i.e., freshwater residency or transient patterns during first year of otolith 

growth). Additionally, 41% of all individuals were classified as transient or freshwater 

residents during their second year of life, indicating freshwater habitats may be serving as 

more than postsettlement nursery habitats for a large portion of Alabama’s Southern 

Flounder population. The results of this study demonstrated three important findings: 1) 

individuals collected in the Delta showed significantly higher lifetime freshwater 

residency percentages versus those collected in Mobile Bay, 2) the fishery-dependent 
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harvested flounder exhibited few lifetime freshwater residents, and 3) fishery-dependent 

harvested flounder exhibited a decreasing trend in freshwater utilization with increasing 

age.  

Lifetime transient and estuarine residents comprised 97% of fishery-dependent 

samples, yet more than half of all harvested individuals utilized freshwater in some 

capacity (i.e., at least one age specific transient or freshwater residency). The majority 

(57%) of harvested flounder experienced freshwater during age-0, but only 21% by age-

1. Additionally, age-specific analyses of fishery-dependent samples revealed significantly 

higher estuarine residency patterns for those collected in Mobile Bay versus the Delta. 

This suggests that Delta habitats are contributing less to the commercial and recreational 

fisheries than Mobile Bay habitats. It appears that the majority of Southern Flounder 

contributing to the commercial and recreational fisheries begin settlement in or near 

freshwater habitats, but reside in estuarine habitats after age-0.  

Southern Flounder are marine migrants, requiring offshore habitats to spawn, but 

inshore estuarine habitats for juvenile settlement and development (Elliott et al. 2007). 

Locality of settlement and habitat-use appears to be highly variable across salinity 

gradients, suggesting the existence of distinct migratory contingents (i.e., divergent 

migratory tactics within a stock (Secor 1999)). From previous studies, both freshwater 

and estuarine habitats played an important role in providing suitable habitat for growth 

and development within estuaries (Lowe et al. 2011; Farmer et al. 2013; Nims and 

Walther 2014). Specifically, Farmer et al. (2013) Southern Flounder samples collected in 

freshwater and oligohaline habitats (< 5 psu) exhibited lifetime residency classifications 
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(95% flounder assayed: 16% freshwater, 37% transient, 42% estuarine residencies) 

proportionally similar to the results of this study (22% freshwater, 45% transient, 33% 

estuarine residencies). Southern Flounder collected in Texas estuarine habitats (> 5 psu) 

showed much lower utilization of freshwater habitats (Nims and Walther 2014). Analysis 

of Nims and Walther (2014) residency data using the methods from this study (i.e., 

proportional freshwater residencies of 0 – 10% = estuarine, 10 – 90% = transient, and 90 

– 100% = freshwater residencies), revealed lifetime residency classifications of Texas 

Southern Flounder exhibiting 4% oligohaline (< 5 psu), 36% transient, 60% estuarine 

residencies (data acquired using GraphGrabber V2.0, Quintessa 2020). Additionally, 

Nims and Walther (2014) used a 5 psu oligohaline threshold rather than a 1 psu 

freshwater threshold, indicating potentially lower freshwater residency proportions than 

indicated above. Higher concentrations of Southern Flounder within Texas estuarine 

habitats versus freshwater habitats has also been recorded in other studies (Glass et al. 

2008; Nañez-James et al. 2009). Previous studies have indicated estuarine contingency 

patterns may be linked to individual genetic (Darden et al. 2014) or behavioral (Nims and 

Walther 2014) adaptations. For example, Texas flounder displayed greater proportional 

use of estuarine habitats, but Texas estuaries also have disproportionately more estuarine 

habitat than Alabama estuaries due to lower annual discharge (Bianchi et al. 1998). 

Additionally, Blandon et al. (2001) found distinct genetic structuring in Southern 

Flounder west of Galveston Bay, suggesting evolutionary adaptation in Texas migratory 

contingents due to habitat availability. Since the Mobile-Tensaw River System has higher 

discharge and greater proportional Southern Flounder freshwater residencies than Texas, 
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similar mechanisms may be underlying the observed patterns in this study. Future 

research is required to understand if these patterns are genetically based and maintained 

across generations, or if they simply represent a wide degree of plasticity in habitat use. 

To our knowledge, this is the first to study to use otolith chemistry from Southern 

Flounder collected across all available inshore habitats (i.e., freshwater and estuarine) 

within an estuary. Our findings suggest the importance of collecting individuals across 

the entire salinity gradient when evaluating residency to ensure all potential contingents 

are represented in the data. When quantifying residency characteristics of euryhaline 

species, future studies should consider collecting samples across all salinity regions 

within a study system to capture the full range of habitats used by the species.  

Several assumptions were necessary when classifying otolith chemistry data into 

residency patterns (Elsdon et al. 2008; Walther 2018). First, when developing the 1 psu 

freshwater threshold, we assumed flounder movements were minimal and water Sr:Ca 

values were stable (i.e., identical to those measured at the time of collection) over the 30 

days prior to collection. Conventional tagging of Southern Flounder in the mid-Atlantic 

showed limited movement (< 1 km) during summer estuarine residency (Craig et al. 

2015). Additionally, salinity in the Delta remained below 1 psu and estuarine signatures 

in Mobile Bay remained above 5 psu (i.e., the asymptotic threshold for water Sr:Ca 

ratios) during the 2019 sampling period. Consequently, the 1 psu threshold for water and 

Southern Flounder otoliths developed in this study should be accurate, although 

controlled experiments are required to validate this. Secondly, residency classifications 

may be a result of fish movement or seasonal fluctuations in water chemistry over a 



25 
 

relatively stationary fish. Alabama’s coastal waters have variable seasonal salinity 

regimes, with large proportions of Mobile Bay experiencing annual freshwater influxes 

(Dzwonkowski et al. 2017). If freshwater influxes were the primary influence on the 

occurrence of freshwater residency, there would be far fewer freshwater and transient 

residents during years of low freshwater discharge. Seasonal fluctuations in discharge 

could be impacting the proportion of transient individuals (sensu Farmer et al. 2013), so 

future analyses should evaluate the relative importance of freshwater habitats against 

metrics of freshwater habitat availability to evaluate if residency patterns change in 

proportion to fluctuations in habitat availability. Lastly, several factors may influence 

flounder residency patterns that are not recognizable with otolith chemistry alone. 

Internal factors, including diet and physiology, could impact the incorporation of trace 

elements into the otolith’s calcium carbonate matrix (Campana and Thorrold 2001; 

Sturrock et al. 2014). This is evident with Mg in this study, which was not incorporated 

into otoliths in proportion to the ambient concentrations. Additionally, external factors 

including food web dynamics and abiotic environmental variables impact habitat 

utilization, potentially driving fish residency and movements (Burke 1995; Zucchetta et 

al. 2010; Furey and Rooker 2013). Future evaluation of prey availability, diets, and 

growth rates across estuarine salinity gradients may provide further insights into the 

relative importance of freshwater versus estuarine habitats.   

Results of this study have several management implications as Southern Flounder 

are currently experiencing a population decline across their entire range. Following the 

nursery-role hypothesis from Beck et al. (2001) and Dahlgren et al. (2006), it appears that 
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freshwater nursery habitats are playing an important role in Southern Flounder settlement 

and contribution of recruits to the adult (age-1+) population. As Southern Flounder 

otoliths displayed variable distributions across freshwater and estuarine habitats at age-0, 

protecting low- and high-salinity habitats ensures connectively between all potential 

habitats exploited by flounder during ontogenetic growth and development. Protection of 

diverse habitats within estuaries would preserve the potentially distinct migratory 

contingents of this species (Schindler et al. 2010), potentially increasing resiliency 

against future environmental variables and harvest pressures.  
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TABLES AND FIGURES 1 

  2 

Water  Mg:Ca Otolith Mg:Ca D Mg Water Sr:Ca Otolith Sr:Ca D Sr Water Ba:Ca Otolith Ba:Ca D Ba 

Freshwater (<1) 29 0.680 (0.066) 0.082 (0.004) 0.149 (0.013) 2.824 (0.084) 0.824 (0.029) 0.295 (0.010) 527.916 (6.146) 18.980 (1.364) 0.036 (0.003)
Mesohaline (5-17) 13 4.443 (0.022) 0.076 (0.004) 0.017 (0.001) 7.557 (0.051) 2.418 (0.079) 0.319 (0.009) 61.669 (2.464) 3.101 (0.208) 0.053 (0.007)
Polyhaline (24-25) 2 4.738 (0.060) 0.068 (0.008) 0.014 (0.001) 7.799 (0.104) 2.462 (0.249) 0.316 (0.036) 24.018 (3.567) 2.635 (0.243) 0.111 (0.009)

Table 1. Means and standard errors (in parentheses) for water element to calcium (Ca), otolith element to calcium, and partition coefficient (mmol:mol) for magnesium (24Mg), strontium 
(88Sr), and barium (137Ba) for Southern Flounder from three salinity regions in the Mobile-Tensaw River Delta and Mobile Bay during May – July, 2019. Water and otoliths samples 
were collected on the same day.

Salinity (psu) n
24Mg 88Sr 137Ba
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 3 

  4 

n Length (mm) Weight (g) Age Year n Length (mm) Weight (g) Age Year n Length (mm) Weight (g) Age Year
Recreational Fishery 1 321 1 2005 124 242 - 586 250 - 2450 0 - 3 2004 - 2007, 2018 - 2019 14 351 - 529 800 - 1908 1 - 3 2007, 2018 - 2019
Commerical Fishery 10 300 - 391 313 - 618 1 - 3 2006, 2019 112 339 - 564 435 - 1880 1 - 4 2005 - 2007, 2019 3 1 2018
Clemson University 17 233 - 333 125 - 460 0 - 1 2018 - 2019 63 166 - 547 44 - 1913 0 - 2 2018 - 2019 16 53 - 191 1.29 - 69 0 2018 - 2019
Auburn University 13 174 - 339 48 - 390 0 - 1 2005, 2007 32 192 - 470 68 - 1312 0 - 3 2005 - 2007 0
AL Marine Resources Division 2 289 - 306 300 - 380 1 2018 11 191 - 463 80 - 1320 0 - 1 2018 - 2019 0

Unidentified

Table 2. Southern Flounder collected in the Mobile-Tensaw River Delta and Mobile Bay from 2004 – 2007 and 2018 – 2019 by different sources in descending order from largest to smallest sample sizes. 
Sample size (n) and ranges for total length, weight, age, and year of harvest or collection for all Southern Flounder otoliths used in this study.   

Males Females
Collector
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Figure 1. Map of the Mobile-Tensaw River Delta (north of I-10) and Mobile Bay (south 

of I-10) in Alabama showing the ten Clemson University (2018 – 2019) sampling 

locations for Southern Flounder and water chemistry collections (circles and stars), six 

Auburn University (2004 – 2007) sampling locations (squares and stars), Alabama 

Marine Resources Division’s Fisheries Assessment and Monitoring Program (MRD 

FAMP) sampling locations (triangles), and three Dauphin Island Sea Lab salinity loggers 

(from north to south: Meaher State Park, Middle Bay, Dauphin Island; cross). Black stars 
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indicate sampling locations by both Clemson University and Auburn University. Sites 

adjacent to and north of I-10 have an average annual oligohaline salinity, while sites 

south of I-10 have an average annual mesohaline to polyhaline salinity.  
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Figure 2. Fifteen-day mean values of salinity (psu) from three salinity loggers in Mobile 

Bay, Alabama. Logger locations span the entire bay from north to south (Figure 1). 

Located at the northern extent of Mobile Bay, Meaher State Park salinity values are 

representative of salinities in the lower Delta, while Middle Bay and Dauphin Island 

represent Mobile Bay salinities. Data were downloaded from Alabama’s Real-Time 

Coastal Observation System (ARCOS) for these three loggers which were installed and 

operated by Dauphin Island Sea Lab.  
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Figure 3. Water elemental concentrations of a) calcium (Ca), b) magnesium (Mg), c) 

strontium (Sr), and d) barium (Ba) with salinity for 55 water samples from the Mobile-

Tensaw River Delta and Mobile Bay. Samples were collected during July 2018 and 

March through July of 2019 at 1 m depth by Clemson University. 
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Figure 4. Water element to calcium ratios for a) magnesium (Mg), b) strontium (Sr), and 

c) barium (Ba) with salinity for 55 water samples from the Mobile-Tensaw River Delta 

and Mobile Bay. Samples were collected during July 2018 and March through July of 

2019 at 1 m depth by Clemson University. Lines represent modelled relationship of 

element:Ca ratios with salinity.  
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Figure 5. Otolith element to calcium ratios for a) magnesium (Mg), b) strontium (Sr), 

and c) barium (Ba) with salinity for mean otolith values from the last 30 days of otolith 

growth of 73 Southern Flounder from the Mobile-Tensaw River Delta and Mobile Bay. 

Samples were collected during 2018 and 2019 by Clemson University. Lines represent 

modelled relationship of element:Ca ratios with salinity. 
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Figure 6. Otolith Sr:Ca values from Southern Flounder collected in Alabama’s coastal 

waters. Raw values (grey lines) from laser ablation ICPMS output were smoothed using a 

regime shift detector (black lines) from Rodionov (2004). An otolith Sr:Ca value ≤ 1.71 

mmol:mol (horizontal, dotted line) was used to indicate residence in freshwater (salinity 

≤ 1 psu). Plots represent a) estuarine, b) transient, and c) freshwater classifications for 

Southern Flounder based on proportion of smoothed Sr:Ca values above or below the 

freshwater threshold (90% below = freshwater resident; 90% above = estuarine resident; 

all others = transient).  
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Figure 7. Frequency distributions of Southern Flounder grouped by proportion for a) 

age-0, b) age-1, c) age-2, d) age-3, and e) lifetime otolith transect ≤ 1.71 Sr:Ca 

(mmol:mol) which indicates the proportional lifetime or age-specific residence in 

freshwater (salinity ≤ 1 psu). Counts shown are for 417 Southern Flounder from the 

Mobile-Tensaw River Delta and Mobile Bay during 2004 – 2007 and 2018 – 2019 

collected from both fishery-dependent and fishery-independent collections. Southern 

Flounder with ≥ 90% of their otolith transect below 1.71 Sr:Ca were classified as 

freshwater residents, those with ≤ 10% of their otolith transect below 1.71 Sr:Ca were 

classified as estuarine residents, and those with 11 – 89% of their otolith transect below 
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1.71 Sr:Ca were classified as transients. Two age-4 individuals, not imaged above, 

consisted of estuarine residents only.  
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Figure 8. Proportions of lifetime residency classification for 417 Southern Flounder 

collected in the Mobile-Tensaw River Delta (top) and Mobile Bay (bottom) from 2004 – 

2007 and 2018 – 2019 by cohort. Fishery-dependent and fishery-independent samples are 

combined in all of the plots above. Total sample sizes by cohort are located above each 

bar.  
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Figure 9. Proportions of age-specific and sex-specific residency classifications for 

Southern Flounder males (left) and females (right) collected in the Mobile-Tensaw River 

Delta (top) and Mobile Bay (bottom) during 2004 – 2007 and 2018 – 2019. Delta samples 

consisted of only fishery independent, while Mobile Bay samples consisted of fishery-

dependent and fishery-independent samples. Total sample sizes by age-group are located 

above each bar. 
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Figure 10. Proportion of lifetime residency classifications of Southern Flounder 

harvested by commercial (top) and recreational (bottom) fisheries in Mobile Bay during 

2004 – 2007 and 2018 – 2019 by cohort. Total sample sizes by cohort are located above 

each bar.  
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Figure 11. Age-specific residency classifications of Southern Flounder harvested by 

commercial and recreational fisheries in Mobile Bay during 2004 – 2007 and 2018 – 

2019. Residencies of commercially harvested fish (top) and recreationally harvested fish 

(bottom) are labelled with total sample sizes by age-group above each bar.  
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CHAPTER TWO 

TROPHIC ECOLOGY AND FOOD WEB DYNAMICS OF SOUTHERN FLOUNDER 
IN ALABAMA’S COASTAL WATERS 

 
INTRODUCTION 

As fish grow and develop, their nutritional needs, prey availability, and habitat-use 

have a direct impact on survival. Consequently, understanding foraging ecology and 

habitat use, particularly for economically important species, are essential to support 

sustainable fisheries. For fish experiencing population declines, understanding the role 

food sources and habitat, or lack thereof, may play in survival is vital. One such species 

is Southern Flounder (Paralichthys lethostigma), an estuarine dependent species which 

exhibit the putative life history of fall to winter offshore spawning followed by larvae 

ingress into estuarine habitats (Stokes 1977; Fischer and Thompson 2004; Glass et al. 

2008). Southern Flounder are currently experiencing a population decline across the 

entire range of the species, which has increased the need for understanding life history 

characteristics (VanderKooy 2015; Powers et al. 2018; Flowers et al. 2019). For 

developing Southern Flounder, as with any species, to obtain the most benefit from a 

nursery, spatiotemporal alignment of ecosystem provisions must be met (Sheaves et al. 

2014). These provisions may include dietary needs, refuge from predators, or suitable 

abiotic conditions (i.e. temperature, oxygen, salinity) (Polis et al. 1997; Kennish 2002; 

Nagelkerken et al. 2015). Overall, a thorough understanding of fish movements and 

habitat use within estuaries in lacking (Beck et al. 2001; Able 2005), but natural tags, 

such as otolith chemistry and stable isotopes, can be used to better understand fish life 

history characteristics.  
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One method of examining habitat use across various salinity concentrations in 

estuarine environments is otolith chemistry analysis. Otoliths are metabolically inert and 

incorporate a matrix of trace elements, which are often more representative of the 

ambient water chemistry than a fish’s diet (Campana 1999; Walther and Limburg 2012; 

Sturrock et al. 2014). Elemental concentrations, also known as endmembers, within the 

ambient water chemistry are a result of upstream geochemical weathering and may 

exhibit conservative relationships with salinity (Elsdon et al. 2008; Nelson and Powers 

2020). Incorporation rates of elemental endmembers into an otolith is highly variable 

between species and estuary, so water to otolith partition coefficients are needed to assess 

the utility of otoliths as a marker for salinity exposure (Macdonald and Crook 2010; 

Nelson and Powers 2020). Overall, this method is useful for reconstructing migratory and 

residency patterns of fishes across salinity gradients, but gives little insight into how 

individuals are utilizing these habitats. For Southern Flounder specifically, these 

techniques have revealed highly variable habitat-use patterns throughout ontogenetic 

growth and development within and between estuaries across the Gulf of Mexico (Lowe 

et al. 2011; Farmer et al. 2013; Nims and Walther 2014). These studies have 

demonstrated distinct migratory contingents within the species, however little is known 

about the relative importance of these habitats and the ecological consequences of 

Southern Flounder residency patterns.  

Stable isotope analysis (SIA) is another useful tool to evaluate food web dynamics 

and trophic ecology. Similar to otolith chemistry, SIA works by testing biological 

material for different isotopic endmembers (e.g. nitrogen (δ15N) and carbon (δ13C)) 
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(Peterson and Howarth 1987). Instead of physical habitat, endmembers indicate 

differences in trophic position and the food web sources of nutrients due to reaction 

kinetics of heavy and light isotopes (Trueman et al. 2012). Nitrogen isotopes, for 

example, can be used as a trophic level indicator due to the excretion of lighter isotopes 

(δ14N and δ13N) and the incorporation of heavier isotopes (δ15N) retained in body tissues 

(Peterson 1999). Carbon isotopes represent terrestrial, benthic, and pelagic influences 

based on primary productivity at the base of the food web (McCutchan et al. 2003; 

Trueman et al. 2012). Ultimately, these isotopic endmember concentrations can be used 

to determine ontogenetic patterns and trophic position (Post 2002; Buchheister and 

Latour 2011), estuary connectivity and migratory characteristics (Herzka 2005; Trueman 

et al. 2012), and diet breadth (Scharf et al. 2000) of an individual fish.  

While SIA provides a better understanding of estuarine fish habitat-use and trophic 

positions, some limitations apply. For instance, stable isotopes represent the 

accumulation of prey isotopic signatures over an extended period of time. Thus, 

understanding the temporal window that endmember values represent involves a 

knowledge of trophic fractionation and tissue turnover rates that are not always available 

for every species or life stage (Thomas and Crowther 2015; Vander Zanden et al. 2015). 

Trophic fractionation is the partitioning and mixing of heavy and light isotopes from prey 

to predator and can be variable for some endmembers (Peterson and Fry 1987; Post 

2002). However, nitrogen isotopes have been particularly useful in food web studies as 

the averaged fractionation with each progression of trophic position has been well 

established in many species (3 – 4‰;  Vander Zanden and Rasmussen 2001; Post 2002; 
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Fry 2008). Turnover rate is the amount of time it takes isotopic signatures within an 

organism to reflect that of their prey after undergoing an isotopically distinct dietary shift, 

likely due to ontogenetic development or migration to different habitats (Trueman et al. 

2012; Busst and Britton 2018). The variability of turnover rates between species, 

biological material (i.e. liver, muscle, skeleton), and ontogenetic life stages can introduce 

greater error and uncertainty than fractionation because of greater variation from  

environmental variables and ontogenetic stages among organisms (Fry 2008; Vander 

Zanden et al. 2015). Buchheister and Latour (2010), for example, discovered half-life 

turnover of muscle tissue in adult summer flounder (Paralichthys dentatus) could take 69 

days and 96 days for δ13C and δ15N, respectively. Alternatively, Bosley et al. (2002) 

discovered half-life turnover of muscle tissue in juvenile winter flounder 

(Pseudopleuronectes americanus) took 4.1 days and 3.9 days for δ13C and δ15N, 

respectively.  

Since turnover rates can be highly variable, especially between ontogenetic stages, 

stomach content analysis can be useful to offset unknown species-specific turnover rates 

(Wells et al. 2008). Furthermore, if sample collections consist of different size classes of 

the same species along salinity gradients, ontogenetic development and habitat-specific 

contributions can be examined (Powell and Schwartz 1979; Winemiller et al. 2007). As 

with other habitat and food web methods, limitations do exist. High occurrence of slowly 

digestible material could overestimate consumption rates, while unidentifiable, highly 

digested prey may decrease the diet breadth of the species within different habitats 

(Hyslop 1980; Buckland et al. 2017). The limitation of each of these methods 
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demonstrates the difficulty in broadly understanding foraging ecology and habitat-use for 

any species when only a single technique is used. We therefore incorporated several 

natural tags (i.e., otolith chemistry and stable isotopes) and SCA to increase the 

resolution of habitat-specific residencies and food web dynamics of Southern Flounder 

within Alabama’s coastal waters. 

To better understand habitat-use and foraging ecology, and the roles these factors 

play in the current decline of the Southern Flounder population, our specific goals were  

to 1) investigate the ability to use bulk carbon and nitrogen isotopic ratios as a marker for 

habitat-use across a large seasonal salinity gradient, 2) use compound specific δ15N 

isotopes to determine trophic position, and 3) relate isotopic values to residency 

classifications determined from otolith chemistry analyses for Southern Flounder in 

Alabama’s coastal waters. While previous studies have assessed otoliths, stable isotopes, 

or a combined approach on other flatfish species (order Pleuronectiformes), to our 

knowledge this is the first study to use a multiple natural tag approach on Southern 

Flounder. Ultimately, results from this study aim to inform management and conservation 

actions about the habitat-use characteristics of a species currently experiencing 

population declines. 

 

METHODS 

Study system 

This study was conducted in the Mobile-Tensaw River Delta (hereafter referred to 

as the “Delta”) and Mobile Bay in Alabama (Figure 1). With an average daily discharge 
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of 1850 m3/s, the Mobile-Tensaw River system is the fourth largest river system in the 

contiguous United States (Schroeder et al. 1990, Morisawa 1968). As the primary source 

of freshwater to Mobile Bay, this system strongly influences the biochemical and 

hydrographical variations in the estuary (Dzwonkowski et al. 2011). There are multiple 

smaller freshwater sources including Dog River (watershed area 237 km2), Fowl River 

(watershed area 184 km2), and Week’s Bay (watershed area 521 km2), which have 

regional influences on salinity and nutrients in Mobile Bay (Lehrter 2008; Mortazavi et 

al. 2012). Additionally, Alabama has one small (surface area 9.3 km2) tidally influenced 

lagoon, Little Lagoon, which is not connected to the Mobile-Tensaw River System, but 

instead receives nutrients directly from the Gulf of Mexico. Mobile Bay averages 3m 

depth across an area 15-35 km wide and 45-50 km long with a drainage basin of 115,467 

km2 (Dzwonkowski et al. 2011).  

Sample collections 

Fishery-independent collections 

We collected juvenile and adult Southern Flounder from nine sites located along a 

60+ km seasonal salinity gradient of saltmarshes, bays, tidal creeks, and freshwater 

ecosystems. Sites at the lower end of the estuary were located on the landward side of 

barrier islands and within tributaries of Mobile Bay in meso- to polyhaline habitats (south 

of I-10; Figure 1). Sites at the upper end of the estuary were located at the confluence of 

the Delta and Mobile Bay and up to 23 river km into the Delta in tidal freshwater to 

oligohaline habitats (north of I-10; Figure 1). Sites were sampled 1 – 2 times monthly 

during May – July of 2018 and March, May – July of 2019.  
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Four sampling methods were used to collect Southern Flounder. These included 

beam trawls, gill nets, electrofishing, and hook-and-line. A one-meter wide beam trawl 

with 2 mm mesh was used at all sampling locations to target small juveniles (≤ 100 mm 

total length (TL)). Beam trawl transects (minimum of eight at meso- to polyhaline sites 

and three at oligohaline to freshwater sites) were hauled by boat in 2-minute trawls 

during each site visit. Gillnets were used to target large juveniles and adults (≥100 mm 

TL). Four soaking hours (two 2-hour sets) of 30 m by 2.4 m gillnets with 127 mm stretch 

mesh were set at meso- to polyhaline sites. Nets were set parallel to shore with a hook 

towards shore at the downstream end. At freshwater sites, pulsed DC boat electrofishing 

(Midwest Lake Electrofishing Systems Infinity Box) was used along shorelines. Six 

boom mounted electrofishing transects were conducted for 15 minutes during each site 

visit. Hook-and-line sampling was conducted after all standardized sampling was 

completed or in areas within our sampling sites that were not accessible by the previous 

methods. At each site we recorded date, time, GPS coordinates, and water depth at the 

beginning and end of each sampling transect or gillnet set. All Southern Flounder 

collections were conducted according to use guidelines outlined in IACUC protocol 

#AUP2018-001 at Clemson University.   

Additional flounder were provided from Alabama Marine Resources Division’s 

(MRD) Fisheries Monitoring and Assessment Program (FAMP). This survey program 

used a 4.88 m otter trawl with 4.76 mm mesh pulled for ten minutes at 2 – 2.5 knots. 

Surveys occur monthly at 24 locations across all of Alabama’s coastal waters below I-10. 
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Trawl samples were placed on ice and returned to MRD’s Dauphin Island laboratory for 

processing.  

Fishery-dependent collections 

Southern Flounder were collected from the commercial and recreational fisheries 

throughout Alabama’s coastal waters. Opportunistic collections of the recreational fishery 

came from boat access points at Little Lagoon and various locations in Mobile Bay 

(Figure 1). Commercial samples were purchased from two commercial fish houses along 

the eastern shore of Mobile Bay. Exact locality of harvest for commercially and 

recreationally harvested flounder were unknown.  

Laboratory processing 

Several measurements were taken from Southern Flounder including length (mm), 

weight (g), and macroscopic inspection of gonads. Additionally, we removed stomachs 

(preserved in 95% ethanol), sagittal otoliths, and a muscle tissue sample from the ocular 

(left) side of each individual. Tissue samples were freeze dried in a Labconco FreeZone 

2.5 at -50°C for ≤ 5 days and ground to a homogenous powder using a stainless steel 

mortar and pestle. Samples were processed for bulk carbon and nitrogen isotopic 

composition (hereafter δ13C and δ15N) and nitrogen compound specific amino acids (AA-

CSIA) at the University of Hawai´i at Mānoa’s Biogeochemical Stable Isotope Facility. 

Detailed descriptions of δ13C, δ15N, and AA-CSIA methodology and instrumentation 

used for this study can be found in Hannides et al. (2009), Dale et al. (2011), and Bradley 

et al. (2015). Briefly, δ13C and δ15N values of Southern Flounder muscle tissue were 

analyzed on a Costech ECS 4010 Elemental Combustion System coupled to an isotope 
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ratio mass spectrometer (Thermo Finnigan DELTAplus XP or DELTA V Advantage) via 

a Conflo IV interface. International glycine reference materials and in-house standards 

were analyzed in triplicate prior to, after, and between every 6-12 samples to assess 

instrumental drift. All bulk isotope data had an accuracy of ± 0.2‰. On a subset of 

samples (n = 16), AA-CSIA of derivatized samples was conducted with a Thermo 

Scientific DELTA V Plus or MAT 253 mass spectrometer interfaced to a Trace GC gas 

chromatograph via a GC-C III combustion furnace. Accuracy and precision were 

determined by co-injecting internal reference compounds (L-2 Aminoadipic acid (AAA) 

and L-(+)-Norleucine (Nor)) of known nitrogen isotopic composition with Southern 

Flounder tissue samples. The mean difference between known and measured values for 

AAA and Nor was 0.84‰ ± 0.77‰ standard deviation (SD). Samples were analyzed in 

triplicate and isotopic accuracy of amino acids analyzed in this study (glutamic acid, 

glycine, lysine, and phenylalanine) averaged 0.38‰ SD and ranged from 0.27‰ – 0.61‰ 

SD. Individuals selected for AA-CSIA encompassed the range of sizes across collections 

from the Delta and Mobile Bay by Clemson University. All isotope values were reported 

in δ-notation (as ‰) relative to Vienna PeeDee Belemnite (VPDB) and atmospheric N2 

for carbon and nitrogen, respectively.  

Residency patterns and contingent types of Southern Flounder were determined 

with otolith chemistry. Detailed descriptions of otolith chemistry methodology and 

instrumentation used in this study can be found in Chapter 1. Briefly, sectioned and 

polished otoliths were analyzed for strontium (88Sr) and calcium (43Ca) elemental 

signatures using an Agilent 7700z quadrupole inductively coupled plasma mass 
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spectrometer (ICPMS) coupled to a 213 nm Nd:YAG NWR laser at the Dauphin Island 

Sea Lab (DISL) instrumentation lab. Otoliths were ablated along a straight transect from 

the core to the distal edge parallel to the sulcal groove. Standard methods for otolith 

cleaning and instrumental precision analyses were conducted to assess limits of detection 

and correct for instrumental drift (Longerich et al. 1996; Gover et al. 2014). Significant 

shifts and smoothed means in time series otolith Sr:Ca ratios were analyzed using a 

regime shift detection algorithm across the entire laser ablation transect (i.e., lifetime of 

the individual flounder) (Rodionov 2004). Sr:Ca ratios were used as a marker for salinity 

exposure.  

Analysis of ambient water chemistry, salinity, and otolith edge chemistry showed 

that a threshold of 1.71 mmol:mol Sr:Ca could be used to indicate habitat-use above or 

below 1 psu salinity (see Chapter 1). Any Sr:Ca value above this threshold indicated 

estuarine habitat-use and anything below, tidal freshwater habitat-use. The proportion of 

values above and below the Sr:Ca threshold were quantified across the entire laser 

ablation transect, and flounder were classified into one of three lifetime contingency 

types. Freshwater contingents had ≥ 90% of lifetime Sr:Ca values below the threshold, 

while estuarine contingents had ≥ 90% of lifetime Sr:Ca values above the threshold. 

Individuals with less than 90% of lifetime Sr:Ca values in either habitat-use category 

were classified as transient.  

To assess the food web dynamics of Southern Flounder, stomachs were 

macroscopically inspected for prey. Prey items were identified to the lowest taxonomic 

level, counted, and measured to the nearest mm. Standard length, carapace width, and 
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rostrum and telson measurements were completed for fish, crabs, and shrimps, 

respectively. 

Statistical analysis 

Spatial patterns in isotopic signatures   

To test if tissue bulk isotopic ratios (δ13C and δ15N) in Clemson University (n = 

89) and MRD (n = 14) collected Southern Flounder differed across the seasonal salinity 

gradient in the Delta and Mobile Bay, samples were analyzed using permutational 

multivariate analysis of variance (PERMANOVA) with Euclidean distance dissimilarity 

matrices on two separate models. We compared the fit of two PERMANOVA models 

using Akaike information criterion (AICc) corrected for small sample size (Burnham and 

Anderson 2002), which varied in spatial resolution, to investigate the spatial scale at 

which tissue isotopic ratios differed. The broad scale PERMANOVA model included two 

groups, one for flounder collected in Mobile Bay and one for flounder collected in the 

Delta. The regional model included groups from four spatial regions (i.e., Delta, Upper 

Bay, Middle Bay, and Lower Bay; Figure 1). Additionally, principal coordinate analysis 

(PCoA) ordination plots were generated from a multivariate Levene’s homoscedasticity 

test from the package ‘vegan’ in R version 3.6.1 (R Development Core Team 2019). 

Ordination plots were used to visually assess distributions and overlap in δ13C and δ15N 

values around centroid grouping variables for each model above. All analyses were 

completed in R version 3.6.1 (R Development Core Team 2019). 

Bulk isotopic ratios from Southern Flounder with known collection locations were 

used to assign a location of harvest for commercially and recreationally harvested 
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flounder. Harvest locations were assigned to fishery-independent samples using quadratic 

discriminate analysis (QDA). Flounder were assigned into one of four regions (Delta, 

Upper Bay, Middle Bay, Lower Bay). QDA accuracy was assessed using leave-one-out 

cross validation with uninformative priors (0.25 for each region). Lastly, fishery-

dependent samples were graphical inspected for similarities with assignment location. 

Relating Isotopes Ratios to Lifetime Residency Patterns 

Otolith chemistry habitat-use delineation is limited to interpretations above or 

below 1 psu salinity. Additionally, laser ablation techniques provide limited insight into 

habitat-use of older flounder due to daily otolith accretions becoming concentrated along 

the edge of otoliths. To determine recent habitat-use and dietary influences, Southern 

Flounder bulk isotopic ratios were regressed with otolith derived contingent types 

(freshwater, transient, estuarine). A PERMANOVA model assessed bulk isotopic ratios 

by each contingent type for Southern Flounder collected by Clemson and MRD.  

Trophic position 

Inferring trophic position from bulk isotopic values requires knowing baseline 

isotopic values in the ambient environment. This includes all levels of the food web from 

primary producers to recently consumed prey. For highly migratory species, such as 

Southern Flounder, this would entail prey collections across several different ecosystems. 

Alternatively, trophic position can be derived from AA-CSIA, in which select amino 

acids can be used to interpret primary production (source) and trophic interactions. To 

calculate amino acid derived trophic position (TPCSIA), individuals analyzed for AA-

CSIA (n = 16) were assessed using a modified equation from Chikaraishi et al. (2009): 
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TPCSIA = ((δ15NGlu – δ15NPhe – β) / TEF) + 1   Equation 1 

where β is the difference in δ15N values from trophic (glutamic acid; δ15NGlu) and source 

(phenylalanine; δ15NPhe) amino acids between primary producers, and the trophic 

enrichment factor (TEF) is the relative change in trophic and source amino acids with 

each trophic transfer. We used constant values for β (3.6 ± 0.5‰) and TEF (5.7 ± 0.3‰) 

developed from Bradley et al. (2015), as the constants developed in their study are the 

most relevant to ours and cover a wide range of trophic levels and species. To test 

differences in trophic position across Alabama’s coastal waters, flounder were grouped to 

the smallest spatial resolution possible. Since replicate samples from Upper Bay were not 

represented in AA-CSIA samples, the smallest spatial scale consisted of regional 

groupings into Delta, Middle Bay, Lower Bay. To test for differences in TPCSIA between 

regions, values were regressed with flounder grouped by region using analysis of 

variance (ANOVA). 

 Bulk δ15N were used to assess trophic position for a larger set of individuals (n = 

128). To calculate trophic position from bulk δ15N, a spatial baseline correction factor 

was derived from the subset of AA-CSIA samples. Since β and TEF are unknown for 

bulk δ15N, a weighted mean δ15N value from three source amino acids (glycine, lysine, 

and phenylalanine) was calculated for each region using the following equation from 

Bradley et al. (2015):  

δ15Nsource= 
∑δ15N𝑥𝑥

σ𝑥𝑥
2

∑ 1
σx2

    Equation 2 
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where δ15Nx is the δ15N from each source amino acid and σx is the standard deviation of 

triplicate isotopic analysis for each source amino acid. A grand mean was calculated by 

averaging the weighted means from the three source amino acids. The grand mean was 

then subtracted from individual bulk δ15N samples to remove baseline δ15N values and 

create a proxy for trophic position (Δδ15N) for each individual Southern Flounder. Δδ15N 

values were regressed with sex, total length, weight, temporal stability (month to month 

consistency in Δδ15N values), and contingent types to assess physiological and ecological 

impacts on trophic position.  

Stomach content analysis 

Southern Flounder stomach content data were separated into individuals collected 

in Mobile Bay or the Delta. Frequency of occurrence was determined by summing the 

number of times a prey item occurred within non-empty stomachs divided by the total 

number of non-empty stomachs. Consumed fish prey were separated to the family level, 

while crustaceans were grouped into either shrimp or crab. To calculate differences in 

size of fish prey between locations, fish prey lengths were divided by flounder lengths to 

determine relative size of fish prey to flounder size 

 

RESULTS 

A total of 128 Southern Flounder were collected and processed for muscle tissue 

stable isotopes. Of those, 27 were collected by fishery-dependent sources and 101 by 

fishery-independent sources. Clemson University collections comprised the majority of 

flounder samples processed for bulk δ13C and δ15N (n = 89) and all samples processed for 
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AA-CSIA (n = 16). Within Clemson samples, the majority (n = 67) were collected in the 

Delta using boat electrofishing, while Mobile Bay sample sizes using gillnets (n = 19) 

and beams trawls (n = 3) were much smaller. MRD collections (n = 14) encompassed the 

majority of Alabama’s coastal waters south of I-10 (Figure 1). Fishery-dependent 

samples consisted primarily of purchases from commercial fish houses (n = 23), but also 

included a few fish harvested by the recreational fishery (n = 4). Collected flounder were 

primarily females (80%) and ranged in age from 0 – 2, and spanned a range of lengths 

(113 – 547 mm) and weights (12 – 1913 g).    

Bulk isotopes 

Analysis of fishery-dependent collected flounder revealed significant differences 

(p < 0.01) in bulk δ13C values between all collection regions (i.e., Delta, Upper Bay, 

Middle Bay, and Lower Bay). Bulk δ13C values gradually increased from north to south 

(Figure 2). Bulk δ15N values were significantly different (p < 0.01) between regions with 

no spatial trend (Figure 2). No significant differences were detected in δ13C or δ15N 

between years among regions with flounder collections in both years of this study (p > 

0.2), indicating annual site-specific stability for the duration of this study.  

Multivariate analysis of δ13C and δ15N ratios for each flounder allowed further 

spatial delineation. The best PERMANOVA model describing spatial variation in 

isotopic differences, determined by AICc, was the regional model (R2 = 0.85, Table 1). 

An ordination plot of this model revealed connectivity between Lower Bay and Middle 

Bay regions, but differences in isotopic ratios between these regions and the Delta and 

Upper Bay (Figure 3).  
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QDA analysis of bulk δ13C and δ15N ratios had an accuracy of 88%. Fishery-

dependent samples with unknown harvest locations were classified into one of three 

regions. Eleven (40%), four (14%), and 13 (46%) fishery-dependent samples were 

classified as Upper Bay, Middle Bay, and Lower Bay harvest location, respectively 

(Figure 4). No samples were classified as being harvested within the Delta. Visual 

inspection revealed a group of seven individuals (25%) exhibiting enriched δ13C (> -

20‰) and depleted δ15N (< 11‰) consistent with one fishery-dependent flounder with a 

known harvest location in Little Lagoon (Figure 4). Although QDA assigned Middle Bay 

and Lower Bay harvest locations for these individuals, their isotopic signatures are 

visually different from other flounder in those two regions. These flounder were likely 

harvested outside of the Middle Bay and Lower Bay regions, but within Alabama’s 

waters not surveyed by fishery-independent collections (such as Little Lagoon).  

Graphical inspection of bulk δ13C and δ15N ratios displayed differences between 

freshwater, estuarine, and transient lifetime contingents (Figure 5). PERMANOVA of 

bulk δ13C and δ15N ratios by contingent types revealed significant differences between 

contingent types (R2 = 0.71, p = 0.001). Similar to lifetime otolith residency patterns, 

transient contingents exhibited isotopic overlap with both estuarine and freshwater 

contingents. Additionally, transient flounder exhibited a much wider range of 

dissimilarity from one another and exhibited isotopic values outside the range of 

estuarine and freshwater contingents (Figure 5). 

Trophic position 
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The trophic position of Southern Flounder determined through AA-CSIA was 

2.80 ± 0.12 (mean ± standard error), 2.73 ± 0.10, and 3.36 ± 0.05 for the Delta, Middle 

Bay, and Lower Bay, respectively. Trophic position was similar between the Delta and 

Middle Bay sites (p = 0.98), but elevated at Lower Bay sites (p = 0.02). After combining 

lysine, glycine, and phenylalanine δ15Nsource values, the grand mean baseline correction 

factor by region was 8.64‰, 6.04‰, and 8.07‰ for the Delta, Middle Bay, and Lower 

Bay, respectively. Proxy trophic position values (Δδ15N), normalized with baseline 

correction factors, were highly correlated with trophic positions developed through AA-

CSIA (p = 0.003, R2 = 0.44; Figure 6).  

In agreeance with AA-CSIA values, Δδ15N showed higher trophic levels for 

flounder collected in Mobile Bay than those collected in the Delta (Figure 7). Estuarine 

contingents also exhibited higher trophic levels than freshwater contingents (p = 0.04), 

but statistically similar trophic levels with transient contingents (p = 0.86). Freshwater 

contingents also exhibited similar trophic levels with transient contingents (p = 0.12). As 

Δδ15N did not differ (p > 0.4) between months of harvest at sites where Southern 

Flounder were collected over several months (i.e., March, May, June, and July), we 

assumed consistent trophic dynamics across these time periods. Additionally, no 

significant differences in Δδ15N were exhibited between males and females (p = 0.36), 

fish length (p = 0.19), or fish weight (p = 0.29).  

Stomach contents 

Fish comprised the majority of Southern Flounder diets in this study. In Mobile 

Bay, flounder consumed mostly fish with some shrimp, while individuals collected in the 
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Delta consumed fish, shrimp, and crabs (Figure 8). Specifically, fish prey consumption 

by flounder in freshwater habitats consisted primarily of sunfish and largemouth bass 

(Centrarchidae), while fish prey in estuarine habitats consisted primarily of drum and 

seatrout (Sciaenidae) or anchovies (Engraulidae). On average, consumed fish prey in 

Mobile Bay were larger relative to flounder body size than fish prey in the Delta (Figure 

9).   

 

DISCUSSION 

This study effectively used two natural tags and stomach content analysis to 

determine food web dynamics and trophic ecology of Southern Flounder in Alabama’s 

coastal waters. Although samples consisted of proportionally more females than males, 

no difference was detected between male and female isotopic signatures, indicating 

results from this study are indicative of food web dynamics for both sexes. Demonstrated 

by both AA-CSIA and Δδ15N values, Southern Flounder collected in Lower Bay are 

consuming prey at higher trophic levels than those in Middle Bay and the Delta. It is 

important to note that fish in Mobile Bay were, on average, 90mm larger than those in the 

Delta. However, length and weight had no significant effect on trophic position. 

Additionally, stomach content analysis suggests flounder in Delta are consuming smaller 

prey relative to body size and a wider diversity of prey, including shrimp and crab which 

have lower trophic position signatures than fish prey (Akin and Winemiller 2008). 

Overall, region-specific analyses indicated variability in Southern Flounder food web 

dynamics across Alabama’s coastal waters.   
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Bulk δ13C and δ15N isotopic ratios allowed inferences of regional-scale 

differences across Alabama’s coastal waters. The regional model revealed significant 

differences in flounder isotopic values from north to south across Alabama’s coastal 

waters. As flounder isotopic values are indicative of the supply of δ13C and δ15N from 

prey field, these values indicate that isotopes are different within prey across regions 

(Ishikawa 2018). Bulk δ13C and δ15N spatial patterns demonstrated that a wide diversity 

of isotopically distinct environments across Alabama’s salinity gradient are contributing 

to the commercial and recreational flounder fisheries. Visual inspection of these 

collections revealed locally distinct isotopic values, such as those experienced in Little 

Lagoon. Distinct isotopic values are likely caused by locally influenced nutrient inputs 

(Fry 2008). For Little Lagoon specifically, depleted δ13C and enriched δ15N values were 

likely a result of groundwater sources and seagrasses rather than upstream fluvial 

processes, like signatures exhibited in the Delta and Mobile Bay (Su et al. 2012). Little 

Lagoon is a small portion of Alabama’s coastal waters that potentially contributes a 

disproportionate number of recruits to the commercial and recreational fisheries. To 

understand proportional contributions to fishery-dependent samples, additional samples 

would need to be collected across all of Alabama’s distinctly different isotopic habitats.  

Southern Flounder δ13C values were influenced by local carbon sources. Sources 

exhibit a gradual enrichment in δ13C from the Delta to Mobile Bay. These sources 

included C3 terrestrial plants (~ -30 to -20‰), marine algae and phytoplankton (~ -20 to -

15‰), and seagrass (~ -15 to 10‰) (Fry 2008). Flounder collected by MRD in the Upper 

Bay displayed δ13C values consistent with both Delta and Middle Bay signatures, 
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indicating Upper Bay as a likely transition point between depleted and enriched δ13C 

values. Several fishery-dependent flounder were classified as harvested within Upper 

Bay. While these flounder may have been harvested in the Upper Bay, Mobile Bay has 

multiple freshwater tributaries with highly forested watersheds (Lehrter 2008; Mortazavi 

et al. 2012). The depleted δ13C in flounder tissues may be a result of residency within 

Upper Bay, or δ13C values could have been influenced by prey contributions from 

productive tributaries along the southern portion of Mobile Bay. Samples would need to 

be collected and compared within all of Mobile Bay’s major tributaries to gain a better 

understanding of watershed-specific effects on Southern Flounder δ13C values in 

Alabama. 

One challenge in interpreting stable isotopes is understanding if fish isotopic 

values represent the local trophic ecology or if isotopes are representative of distinctly 

different food webs from a recently immigrated individual. As Southern Flounder in this 

study ranged in size from 113 to 547 mm, the time required to reach equilibrium to local 

isotopic conditions could range from days or months (Bosley et al. 2002; Buchheister and 

Latour 2010). Additionally, turnover and fractionation rates can be highly variable at 

different trophic levels (Bosley et al. 2002; Witting et al. 2005). Based on our distinct 

region-specific isotopic results, flounder appeared to be in equilibrium with site of 

collection and exhibit high site fidelity (did not migrate across isotopically distinct 

habitats) prior to collection. Quantifying isotopic breaths of region-specific prey and 

controlled experiments quantify turnover and fractionation rates of Southern Flounder 
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would allow for greater ability to infer short-term movement patterns from tissue isotopic 

signatures. 

Southern Flounder were classified into one of three contingency types based on 

otolith chemistry signatures (see Chapter 1). Otolith chemistry displayed broad scale 

patterns in habitat use across salinity gradients, but lacked the resolution of short-term 

movements. By combining two natural tags, we gained a much greater understanding of 

seasonal movement dynamics of these contingents. Estuarine and freshwater contingents 

exhibited isotopic signatures consistent with Middle to Lower Bay and the Delta, 

respectively. For these two contingency types, isotopes confirmed short-term isotopic 

signatures were reflective of lifetime residency patterns. Transient contingents had 

isotopic signatures aligning with estuarine and freshwater residents, but also had values 

not observed by these two contingency types. This indicates transient flounder may have 

recently moved into collection locations or consumed recently immigrated prey from 

locations outside the area of this study (i.e., offshore or nearby estuaries).  

This study builds on previous research supporting the concept of distinct 

migratory contingents in Southern Flounder (Farmer et al. 2013; Nims and Walther 

2014). To fully understand the resilience of a population and implications of distinct 

migratory contingents on spawning stock biomass, future studies would need to quantify 

annual variability in contributions by each contingency type (Kraus and Secor 2004). 

Additionally, understanding harvest dynamics and Southern Flounder life history could 

lead to improvements in future stock assessments. Flounder spawning occurs in offshore 

habitats in fall to winter months, resulting in a rapid spawning migration out of estuarine 
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habitats in the fall (Stokes 1977; Fischer and Thompson 2004). Assuming larger flounder 

captured at the mouth of estuaries to Gulf of Mexico during fall are migrating to 

spawning grounds, otolith chemistry and isotopic analysis of these individuals could 

determine location of residency prior to the migration. This could provide insight into 

habitat-specific contributions to the spawning stock biomass by various contingency 

types. This greater understanding provided by natural tags could aid managers in 

selecting priority areas of ongoing habitat conservation efforts across Alabama’s coastal 

regions (e.g., Forever Wild Land Trust, Alabama Coastal Management Program). 

Overall, maintaining the diversity of migratory patterns and the habitats in which they 

occupy, could lead to the sustainability and resilience of fish populations to natural and 

anthropogenic stressors (Schindler et al. 2010).  
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TABLES AND FIGURES 

Table 1. Model selection results from PERMANOVA and sum of squares AICc 

explaining dissimilarities in Southern Flounder (n = 103) bulk carbon (δ13C) and nitrogen 

(δ15N) isotopic values in Alabama’s coastal waters. Models represent groupings by 

location of collection for fishery-independent flounder during the summers of 2018 and 

2019 (Figure 1).  

 
K = number of parameters; RSS = residual sum of squares; AICc, Akaike Information 
Criterion; AICcWt = model weights; R2 = R2 from PERMANOVA 
 

Model Name K RSS AICc Delta_AICc AICcWt R 2

Regional (Delta, Upper, Middle, Lower) 4 265.62 105.85 0 0.999 0.85
Broad-scale (Delta, Mobile Bay) 2 389.09 161.65 55.8 0.001 0.78
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Figure 1. Map of the Mobile-Tensaw River Delta (north of I-10) and Mobile Bay (south 

of I-10) in Alabama showing the collection locations of Southern Flounder during 2018 

and 2019. Nine Clemson University sampling locations (circles; two-letter site code) 

were classified into one of three regions (Delta, Middle Bay, Lower Bay) based on 

habitat and salinity similarities. Additional fishery-independent samples (squares) were 

provided by Alabama Marine Resource Division’s Fishery Assessment and Monitoring 
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Program (MRD FAMP). MRD samples were classified into Upper Bay, Middle Bay, and 

Lower Bay.    
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Figure 2. Bulk carbon (δ13C) and nitrogen (δ15N) by site of collection from Southern 

Flounder (n = 103) collected in Alabama’s coastal waters by Clemson University and 

MRD from 2018 to 2019. δ13C values were significantly different between all regions and 

gradually increased in a north to south direction. δ15N values exhibited no trend across 

Alabama.   
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Figure 3. Principal coordinate analysis (PCoA) ordination plot of Southern Flounder bulk 

δ13C and δ15N ratios from a multivariate Levene’s homoscedasticity test from the package 

‘vegan’ in R version 3.6.1. Centroid points are flounder collection locations for fishery-

dependent sample the Delta and Mobile Bay in 2018 and 2019 (Figure 1). Overlapping 

convex hulls indicated similarity in isotopic values.  
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Figure 4. Southern Flounder (n = 128) bulk carbon (δ13C) and nitrogen (δ15N) ratios by 

location of collection for fishery-dependent (triangles) and fishery-independent (circles) 

collections during 2018 and 2019. Fishery-independent flounder were collected in four 

regions of Alabama’s coastal waters including the Delta (red), Upper Bay (green), Middle 

Bay (blue), or Lower Bay (purple; Figure 1). Fishery-dependent collections were 

assigned location of collection using quadratic discriminate analysis. Flounder exhibiting 

enriched δ13C (> -20‰) and depleted δ15N (< 11‰) were outside the isotopic range of 

fishery-independent samples in Middle Bay and Lower Bay, but were consistent with one 

fishery-dependent flounder with a known harvest location in Little Lagoon (blue triangle 

with 10.4‰ δ15N and 17.5‰ δ13C).    
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Figure 5. Ordination plot from the PERMANOVA output of Southern Flounder (N = 

128) bulk carbon (δ13C) and nitrogen (δ15N) isotopic values by lifetime residency 

classification determined from otolith chemistry. Freshwater Southern Flounder 

contingents (FW) had significantly different isotope values from estuarine contingents 

(E). Convex hull of isotope values from transient contingents (TF) overlapped both 

estuarine and freshwater contingent, as well as consisted of unique values.   
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Figure 6. Bulk δ15N values compared to a) the source amino acid phenylalanine and b) 

trophic position based on AA-CSIA values (using constants from Bradley et al. (2015)) 

for Southern Flounder (n = 16) from Alabama’s coastal waters. Trophic position was also 

compared with c) a proxy for trophic position (Δδ15N) in which δ15N values were 

corrected for baseline values by region of collection. 

  



92 
 

 

Figure 7. Trophic position of Southern Flounder (n = 16) calculated from AA-CSIA 

(left) and a proxy for trophic position (Δδ15) (right). Southern Flounder were collected in 

the Delta and Mobile Bay in Alabama by Clemson University during 2018 and 2019.   
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Figure 8. Prey item frequency of occurrence in Southern Flounder stomachs from 

Alabama’s coastal waters during 2018 and 2019. Southern Flounder collected in the 

Delta (top, n = 39) consumed fish, shrimp, and crabs, while individuals collected in 

Mobile Bay (bottom, n = 28) consumed fish and shrimp. Plot inserts represent prey 

groupings, while plots separate fish prey by family.   
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Figure 9. Stomach content analysis of Southern Flounder collected in the Delta and 

Mobile Bay during 2018 and 2019. Relative predator to prey length for Southern 

Flounder and fish prey items calculated by dividing flounder length by prey length. 

Flounder in Mobile Bay were consuming significantly larger prey, relative to body size, 

than fish in the Delta.  
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