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Abstract

This research investigates the effects of using origami folding techniques to develop a nonlin-

ear jumping mechanism with optimized dynamic performance. A previous theoretical investigation

has shown the benefits of using a nonlinear spring element compared to a linear spring for improving

the dynamic performance of a jumper. This study sets out to experimentally verify the effective-

ness of utilizing nonlinear stiffness to achieve optimized jumping performance. The Tachi-Miura

Polyhedron (TMP) origami structure is used as the nonlinear energy-storage element connecting

two end-point masses. The TMP bellow exhibits a “strain-softening” nonlinear force-displacement

behavior resulting in an increased energy storage compared to a linear spring. The geometric pa-

rameters of the structure are optimized to improve air-time and maximum jumping height. An

additional TMP structure was designed to exhibit a close-to-linear force-displacement response to

serve as the representative linear spring element. A critical challenge in this study is to minimize

the hysteresis and energy loss of TMP during its compression stage before jumping. To this end,

plastically annealed lamina emergent origami (PALEO) concept is used to modify the creases of the

structure in order to reduce hysteresis during the compression cycle. PALEO works by increasing

the folding limit before plastic deformation occurs, thus improving the energy retention of the struc-

ture. Steel shim stock are secured to the facets of the TMP structure to serve as end-point masses,

and the air-time and jumping height of both structures are measured and compared. The nonlinear

TMP structure achieves roughly 9% improvement in air-time and a 12% improvement in jumping

height when compared to the linear TMP structure. These results validate the theoretical benefits of

utilizing nonlinear spring elements in jumping mechanisms and can lead to improved performance in

dynamic systems which rely on springs as a method of energy storage and can lead to emergence of

a new generation of more efficient jumping mechanisms with optimized performance in the future.
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Chapter 1

Introduction

The advent of robotics technology has allowed for exponential growth in terms of appli-

cations in a multitude of industries. Robots have been critical to the development of large-scale

manufacturing [1], as well as the energy, food, and agriculture industries [2–5], education [6, 7],

and medical care [8, 9]. Additionally, the ability to send robots into hazardous environments in

place of humans has seen tremendous use in military applications [10, 11] and search and rescue

operations [12, 13]. Robots sent into the field often encounter difficult terrain, such as volcano

exploration or coal extraction, opening opportunities for research into various modes of locomotion

to navigate unpredictable landscapes [14]. Ground-contact-based locomotion can be separated into

five main categories of movement: wheeled robots, tracked robots, snake robots, legged robots, and

wheel-legged robots [14]. While each category has distinct advantages in certain applications, legged

robots are of particular interest in rough terrain due to their ability to gain discrete footholds on a

variety of surfaces and can traverse steep inclines [14–16].

The drawback of working with legged robots arises in the complexity of the control schemes,

especially when working with multi-leg mechanisms requiring coordination between the limbs [17].

Therefore, a large number of researchers have been focusing on single-legged jumping systems in an

effort to simplify the control strategies [16, 18–20]. The energy storage mechanism used in a jumping

robot is of particular interest due to the direct correlation between the amount of energy stored in

the mechanism and the jumping performance of the robot [19, 21]. To this end, researchers have

investigated various methods for storing and releasing energy in a jumping robot. In addition to the

traditional spring devices [22–24], studies have been conducted on the efficacy of pneumatic devices
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[25] as well as custom elastic elements in which unique mechanisms act as nonlinear energy storage

devices to generate desirable nonlinear jumping dynamics [26, 27].

Various aspects of nonlinear jumping mechanisms have been studied for their potential

benefits to the overall jumping performance of a single-legged jumper. Yamada et. al. exploited

the snap-through buckling effect of a closed elastica to store greater amounts of energy, leading to

increased height and distance achieved by their robot [27, 28]. Fiorini et. al. were able to design a

jumping mechanism with a nonlinear force response curve through the use of a 6-bar linkage coupled

with gears at the joints [29]. Additionally, Sadeghi et. al. showed that through the use of ”strain-

softening” techniques, a jumping mechanism composed of a generic nonlinear elastic element can

increase the initial stored energy and consequently create higher jumps in terms of center of gravity

and ground clearance with a negligible penalty to efficiency [21]. The results from [21] are based

on non-dimensional numerical and analytical results, indicating that different types of nonlinear

jumping mechanisms can be used to improve dynamic performance. The objective of this study

is to determine to what extent origami can be used as the nonlinear elastic element in a jumping

mechanism.

Researchers are increasingly finding creative uses for origami in engineering applications.

Origami has been used in kinetic architectures [30] and self-folding robots [31], as well as in surgical

devices [32] and DNA devices [33]. Origami has also been investigated due to its unique mechanical

properties deriving from specific folding patterns, such as tunable nonlinear stiffness resulting in

negative and quasi-zero stiffness [34, 35] and multi-stability [36, 37]. In this paper, we investigate

the feasibility of using origami as the energy storage mechanism in an attempt to generate the

desired ”strain-softening” effect for improved dynamic performance. We use a modified version of

the Tachi-Miura polyhedron (TMP) [38] origami structure as the basis for the energy storage device.

A theoretical model for the force-displacement curve [38] is used to generate a dynamic model in

which two end-point masses are secured to either end of the origami bellow, simulating a jumping

mechanism. The dynamic performance of the TMP jumping mechanism is analyzed based on the

air-time and clearance of the structure, and the geometric parameters of the TMP are optimized to

improve the dynamics of the jumper. We also use a creasing technique known as plastically annealed

lamina emergent origami (PALEO) [39] to shrink the hysteresis loop observed during a compression

cycle in order to increase the efficiency of the TMP structure. In addition to the optimized TMP

jumper, another jumper exhibiting a linear force-displacement curve is fabricated in order to serve
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as a jumper with a representative linear spring, and the dynamic performance of both designs are

compared to one another.
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Chapter 2

Using Origami Folding to Generate

the Desired Strain-Softening

Behavior

2.1 Deriving Force-Displacement Relationship of TMP Bel-

low with Stiffness Modifications

In this study, a modified Tachi-Miura Polyhedron (TMP) origami folding technique is used

to achieve a force-displacement curve with the desired strain-softening effect. The TMP is a type of

rigid-foldable origami structure consisting of main-folds, which are parallel to the ground, and sub-

folds, which are creased at an angle to the main folds. The term rigid foldable is used to describe a

type of origami in which the facets are rigid and do not undergo deformation during folding process

[38], [40]. This assumption implies that the folding behavior of the structure can be described

entirely by the rotation of the main-folds and the sub-folds. These folds are treated as torsional

springs with an assigned stiffness [40]. Using the rigid-foldable assumption in conjunction with the

virtual work principle, the force-displacement relation of the TMP can be described in terms of the
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crease angles as shown below [38].

F =
−32

d cos θM

[
kM

N − 1

N
(θM − θM0) + kS

cos3 θG2 sin θM

cosα sin θS
(θS − θS0)

]
(2.1)

In Equation (2.1) , N refers to the number of unit cells in the TMP structure, d is the unit

cell height, kM and kS are the torsional stiffness of the main-folds and the sub-folds, respectively,

and α is the angle of the sub-folds relative to the main-folds. θM is half the dihedral angle of the

main-fold, θS is half the dihedral angle between the facets of the sub-folds, and θG is the angle

between the x-axis and the main fold. θM0
and θS0

are the resting main-fold and sub-fold angles,

respectively. These parameters are shown in Figure 2.1, and the kinematic relations between the

folding angles are presented below. The relationship between the displacement of the structure and

the crease angles is shown in Equations (2.2)-(2.6), where u is the displacement of the TMP from

its resting height. The stiffness of the main-folds and the sub-folds were measured experimentally

on a per-unit-length basis – this procedure is outlined in Section 3.1.2. The per-unit-length stiffness

is multiplied by the length of the crease within the unit cell. The equations used to calculate the

total stiffness for each crease are show below, where k̂M and k̂S are the per-unit-length stiffness of

the main-folds and the sub-folds, respectively. The amount that the TMP is compressed during a

compression cycle is defined by the folding ratio FR shown in Equation (2.7), which determines the

final displacement of the structure through the final main-fold angle θMf
.

Figure 2.1: TMP bellow with shaded unit cell detailing the geometric parameters as well as folding
angles between the facets.
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θM = sin−1
(

sin θM0
− u

Nd

)
(2.2)

θG = 2 tan−1 (tanα cos θM ) (2.3)

θS = cos−1

(
sin θG

2

sinα

)
(2.4)

kM = k̂M (l +m+ c) (2.5)

kS = k̂S
d

sinα
(2.6)

FR =
90°− θMf

90°
(2.7)

However, the derived reaction force-displacement relationship presented in Equation (2.1)

does not consider the deformation limits due to rigid folding. As the creases are compressed toward

θM = θS = 0°, the facets of the TMP will come into contact with one another, resulting in an increase

in the force response. A similar effect occurs when the TMP is extended toward the upper limit of

θM = θS = 90° which results in an increased force response when the structure is in tension due

to in-plane deformation of the facets. In order to more accurately represent the force-displacement

behavior of the TMP, we adopt a method developed by Liu and Paulino [40] to impose a stiffness

increase within the main-folds and the sub-folds when these angles exceed pre-defined upper and

lower bounds. Through comparison with experimental data, a lower bound of θ1 = 38° and an upper

bound of θ2 = 70° were selected as the pre-defined folding limits. The increase in stiffness is defined

in the following equations, where kM0
and kS0

are the unmodified main-fold and sub-fold stiffness.

kM =


kM0 sec2

(
π(θM−θ1)

3.5θ1

)
, 0 < θM < θ1

kM0 , θ1 ≤ θM ≤ θ2

kM0
sec2

(
π(θM−θ2)
2π−3.5θ2

)
, θ2 < θM < π

 (2.8)

kS =


kS0 sec2

(
π(θS−θ1)

3.5θ1

)
, 0 < θS < θ1

kS0
, θ1 ≤ θS ≤ θ2

kS0
sec2

(
π(θS−θ2)
2π−3.5θ2

)
, θ2 < θS < π

 (2.9)

Figure 2.2 shows the reaction force-displacement curve of a TMP structure with c = d =

l = m = 30mm , N = 8, α = 40°, and k̂M = k̂S = 0.005 N
rad . The effect of the imposed stiffness

increase is shown with respect to the main-folds and sub-folds, as well as the total force response.
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Figure 2.2: Force-displacement response of TMP with and without the stiffness increase at the angle
limits

The contributions of the main-folds and sub-folds are separated in order to better under-

stand the reaction force-displacement response of the TMP structure. Although the per-unit-length

stiffness of the main-fold and sub-folds are both 0.005 N
rad , the main-fold length with these parame-

ters is 90 mm whereas the sub-fold length is 46.6 mm. The greater main-fold crease length results

in a larger force response when compared to the sub-folds, indicating that a larger portion of the

force response of the TMP structure arises naturally from the main-folds when the stiffness of the

main-folds and sub-folds are equal.

However, it is also evident from Figure 2.2 that the response of the sub-folds exhibits a

stronger non-linearity than the main-folds. This is a result of the sub-folds resting at an angle to

the horizontal axis at the beginning of compression, which stiffens the structure during the early

stages of compression. As the TMP moves through compression, the sub-folds become increasingly

parallel with the horizontal main-folds, offering less resistance to folding. Conversely, the main-fold

response is more linear, which can be explained by the fact that the main-folds remain parallel to

the horizontal axis throughout the folding process. Therefore, if greater non-linearity is desired, the

per-unit-length stiffness of the sub-folds should be relatively greater than that of the main-folds.

On the other hand, if a linear response is desired, the main-folds should have a relatively greater
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stiffness than the sub-folds.

2.2 Dynamics of TMP Jumper

The TMP jumping mechanism is shown in Figure 2.3a. Two equivalent masses are secured

to either end of the TMP bellow which acts as a nonlinear spring. Additionally, the TMP will

impart a damping effect during the jump, which results in a gradual decrease in the amplitude

of the oscillations between the endpoint masses. The effect of this energy dissipation is discussed

in-depth in Section 3.4. In order to only focus on the effects of nonlinear stiffness on the jumping

performance of the origami structure and the optimization of the TMP parameters, we assume that

damping is zero.

The jumper is actuated by an external force which compresses the TMP, storing energy for

the jump. The jumping process is divided into two separate phases: the pre-jump and post-jump

phase. During the pre-jump phase, the external force is suddenly released, allowing the upper mass

m2 to accelerate upward. This phase is complete once the lower mass m1 leaves the ground. The

equation of motion during the pre-jump phase is as follows:

m2ÿ2 = F (y2 − y1)−m2g (2.10)

In Equation (2.10) , F is the restorative force provided by the TMP bellow as a function

of displacement (y2 − y1). The post-jump phase begins as soon as the lower mass m1 leaves the

ground and continues until the jumper returns to the ground. In order for the lower mass to leave

the ground, the tensile force within the TMP bellow must exceed the weight of the lower mass

(F > m1g). The position of each mass is tracked during this phase, resulting in the development of

two equations of motion which are shown below:

m1ÿ1 = −F (y2 − y1)−m1g (2.11)

m2ÿ2 = F (y2 − y1)−m2g (2.12)

Results from the pre-jump phase are used as the initial conditions for the equations of motion
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during the post-jump phase. These equations are converted into a system of first order ODEs and

solved using ode45 in MATLAB. Figure 2.3b shows the theoretical time response of a jump where

the upper and lower masses are tracked through both the pre-jump and post-jump phase.

(a) Representative spring-damper model of TMP
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Dynamic Performance of TMP Jumper
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(b) Jumping performance metrics of dynamic model

Figure 2.3: Dynamic Model of TMP jumper visualizing the clearance and air-time performance
metrics

2.3 Parametric Study of TMP Design Variables

Before an optimization study was conducted on the TMP geometry to optimize the jumping

performance of the structure, a parametric study was carried out in order to gain insight into the

effect that each design variable has on the force-displacement response, and consequently the dynamic

response, of the TMP jumper. To this end, each design variable discussed in Section 2.1 was varied

between two pre-defined bounds while all other parameters were held constant. For example, the

number of unit cells N was incremented from 6 to 10 while all other parameters were held constant

at the mid-point of their bounds.

The lower bound on the number of unit cells ensures that the structure will exhibit proper

folding and reduces the impact of undesirable boundary effects due to friction. The upper bound

was selected to minimize the possibility of buckling during compression. The bounds on the length

parameters d, l, m, and c were chosen to place an upper limit on the geometry of the TMP, and the

lower limit ensures that the unit cell has sufficient space between creases for proper folding. The

lower bound on the sub-fold angle α was chosen to minimize the possibility of buckling during a

9



Table 2.1: TMP geometry values and bounds used during the parametric study

Constraint Parameters Bounds During Parameter Sweep

N = 8 6 < N < 10

d = 30mm 20mm < d < 40mm

1 = 30mm 20mm < 1 < 40mm

m = 30mm 20mm < m < 40mm

c = 30mm 20mm < c < 40mm

α = 50° 30° < α < 70°

compression cycle due to a narrow footprint, and the upper bound was chosen to ensure that the

TMP is still capable of folding properly.

The resulting force-displacement response was observed for each parameter sweep, where

the structure was compressed to a folding ratio of 0.75 for each trial. Table 2.1 lists the upper and

lower bounds for each design variable, as well as the constant value of each parameter during the

sweep, and Figure 2.4 shows the theoretical force-displacement response as each parameter moves

through its respective range.

When examining the effect of each parameter on the force-displacement response of the TMP

structure, it is important to note that in each trial, the final displacement was defined by a folding

ratio of 0.75. In anticipation of experimental study, the folding ratio was used to determine the final

displacement of the structure in an attempt to keep the crease deformation within the elastic range.

In other words, if the final displacement was directly defined and held constant for each trial, the

creases would undergo plastic deformation when the parameters that affect the structure height (N

and d) are small because the TMP would undergo the same displacement while having a shorter

height.

From Figure 2.4 it is immediately evident that some parameters have a far more drastic

influence on the force-displacement response of the structure than others. The main-fold lengths

l, m, and c have very little impact on the shape of the force-displacement curve, which is a result

of the linear contribution of the main-folds in the overall stiffness of the structure as discussed in

Section 2.1. As the length of the main-folds increase, the contribution to the total force response

also increases due to the relationship between the crease stiffness kM and the main-fold lengths as

shown in Equation (2.5).
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Figure 2.4: Parametric study of TMP design variables
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The number of unit cells N has only a very slight effect on the final magnitude of the force

response, but a smaller number of unit cells seems to increase the stiffness of the structure in the

early stages of folding. Alternatively, a larger number of unit cells allows the structure to undergo

greater displacement before reaching the folding ratio limit (and subsequent plastic deformation).

Therefore, a larger number of unit cells would allow the structure to store more energy through

compression.

Similar to the number of unit cells, the unit cell height is also used to define the total height

of the TMP structure. Therefore, as the unit cell height decreases, the final displacement of the

structure will decrease as well to prevent the creases from undergoing plastic deformation. Unlike

N, however, we notice a dramatic increase in the force response for smaller values of d. It is more

difficult to predict what the optimal value of this parameter would be – a larger unit cell height

would allow for a greater displacement of the overall structure before plastic deformation of the

creases, but a smaller value would result in a stronger force-displacement response. It is reasonable

to expect the unit cell height to trend as low as possible while still allowing the creases to remain in

the elastic deformation range to maximize energy retention during extension.

The angle of the sub-folds α has a clear preference toward lower values when considering the

amount of energy stored, which is a result of the increased non-linear contribution of the sub-folds

as discussed in Section 2.1. Additionally, this parameter is not affected by the folding ratio, which

is dependent only on the main fold angle θM .

2.4 Multi-Objective Optimization to Improve Dynamic Per-

formance

The TMP bellow was optimized to enhance the dynamic performance of the jumper using

a non-dominated sorting genetic algorithm (NSGA-II), which is a multi-objective evolutionary al-

gorithm (MOEA). The NSGA-II generational algorithm was selected due to it’s ability to quickly

converge to a solution while preserving diversity in the population [41]. The non-dominated sorting

is achieved using a domination count np which represents the number of solutions that dominate

the solution p, as well as a set of solutions Sp which are dominated by the solution p. Preservation

of diversity is achieved through the use of a density function which measures the distance between

individuals in a population and through the use of a crowd-comparison operator which guides the
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selection of individuals toward a more uniformly distributed Pareto front [41]. These traits are desir-

able in an MOEA because a diversified Pareto front ensures that a wide variety of possible solutions

have been considered, leading to the best possible solution. A population of 100 random individuals

was used as the initial parameter set, and the NSGA-II algorithm moved through a total of 2500

individuals during the optimization.

Table 2.2: Parameter bounds imposed during optimization

Parameter Bounds

6 < N < 10 30° < α < 70°

20mm < d < 40mm 20mm < 1 < 40mm

20mm < m < 40mm 20mm < c < 40mm

Table 2.3: Additional variables required for dynamic simulation

Additional Optimization Variables

End Masses: m1 = m2 = 0.02 kg

Resting Main-Fold Angle: θM0
= 60°

Folding Ratio: FR =
90°−θMf

90° = 0.75

Main-Fold Stiffness: k̂M = 0.0186 N
rad

Sub-Fold Stiffness: k̂S = 0.0946 N
rad

2l − d cotα+ 2m cosα ≥ 0 (2.13)

d

2 tanα
− l ≤ −0.01 m (2.14)

The optimization software ModeFRONTIER was coupled with MATLAB, where the ODE

solver ode45 was used to solve equations (2.10), (2.11), and (2.12). The two objectives used in

the NSGA-II algorithm were the air-time and clearance achieved by the jumper. Air-time is the

difference between the landing and take-off time, and clearance is the maximum height achieved by

the lower mass m1. In the multi-objective optimization problem, both the air-time and clearance

were maximized in an effort to optimize the dynamic performance of the jumper.
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The upper and lower bounds on each parameter are listed in Table 2.2 and were identical

to the bounds used in the parametric study. Two constraints are imposed for the optimization

problem. The first constraint ensures that there are not conflicting crease lines in the design of

the TMP geometry, shown in Equation (2.13). The second constraint defines a minimum main-fold

length to ensure ease of fabrication and folding, shown in Equation (2.14). Table 2.3 lists additional

design specifications for the optimization of the TMP. These specifications are required for use in the

dynamic simulation and include the masses at each end of the TMP jumper, the resting main-fold

angle, the folding ratio, and the main- and sub-fold stiffness on a per-unit-length basis. The crease

stiffness values were found experimentally, the procedure for which is outlined in Section 3.1.2.
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Figure 2.5: Evolution of design parameters during NSGA-II optimization

The results of the optimization are shown in Figure 2.5, where the convergence of each

parameter is shown over the course of the 2500 function evaluations. Although difficult to observe

given the large number of individuals on the plot, the number of unit cells N trends toward the upper
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bound of 10. The convergence of this parameter is not as strong as the other design parameters, but it

is still evident when examining the density of the individuals at each parameter value (6 ≤ N ≤ 10).

This convergence trend agrees with the preliminary results of the parametric study discussed in the

previous section – as the number of unit cells increases, the TMP bellow is able to move through a

greater displacement before experiencing plastic deformation at the creases, thus allowing for greater

energy storage. The sub-fold angle α converges very rapidly to its lower bound of 30°, which also

agrees with the parametric study. As this angle is decreased, the contribution of the sub-folds to

the overall force response is increased and we achieve the desired strain-softening effect required to

store more of energy.

The length parameters (c, d, l,m) define the size of the TMP unit cell, and therefore have

a direct effect on the overall mass of the structure. This is an important relationship to consider

when examining the trade-offs between increasing the crease length (and subsequent force-response)

at the cost of decreasing the dynamic performance of the TMP jumper due to the increased mass.

The main-fold lengths c and m both converge to small values near the lower bound of 0.02 m, while

the third main-fold length l converged to the upper bound of 0.04 m. From the parametric study in

Section 2.3, the effect of the unit cell height d was difficult to predict due to the unique trade-offs

corresponding to this design parameter. A larger unit cell height allows for greater displacement

and subsequent energy storage, but a smaller unit cell height resulted in an increased force-response.

It should also be noted that the dynamic performance of the jumper was not considered in Section

2.3 – only the force-displacement response was examined. Therefore, it is understandable that the

optimal value of this design parameter is somewhere in the middle of its bounds.

Table 2.4: Parameter sets corresponding to the optimal dynamic solution

Maximum Objective
Value TMP Parameters

N [-] α [°] c [mm] d [mm] l [mm] m [mm]

Air-time 0.519 s 10 30 21.1 34.2 39.9 23.2

Clearance 359.7 mm 10 30 21.1 34.2 39.9 23.2

The results of the optimization are detailed in Table 2.4. Although a multi-objective op-

timization was conducted and a Pareto front exists, the difference between the parameters that

maximize each objective was negligible, so a single optimal solution set is used to design the opti-
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mized nonlinear TMP which maximizes both air-time and clearance.

2.5 Design of Linear TMP

Sadeghi et. al. [21] demonstrated the theoretical benefits of a nonlinear elastic element when

compared to a linear element for use in a jumping mechanism. In an effort to experimentally validate

these results, a TMP with a set of design variables different than the optimized nonlinear TMP was

designed such that it exhibited a linear force-displacement response. TMP origami was chosen for

the linear spring in order to preserve consistency between the nonlinear and linear jumpers.

The design parameters of the linear TMP were determined through the use of the Simplex

and Powell single objective optimization algorithms in ModeFRONTIER. Two different algorithms

were used as a way to cross-validate the results of the optimization across both methods. The upper

and lower bounds placed on the design variables were consistent with those used in the nonlinear

optimization shown in Table 2.2. The final displacement of the linear structure was constrained to be

equal to the final displacement of the nonlinear structure, allowing for a more direct comparison of

the force-displacement responses between both structures. In order to design a linear TMP structure,

a penalty was imposed for deviation from a linear response. An ideal linear force-displacement curve

is defined as a perfectly linear response with the same final force and displacement values as the

non-linear TMP, and the total error between the linear TMP and the ideal linear curve is minimized.

This is summarized in the objective function shown in Equation (2.15). The error between the two

curves was sampled at each point within the discretized displacement (roughly 2,000 sample points),

and the sum of these errors was used as the objective function to fit the TMP response to the ideal

linear curve.

Minimize: Error =
∑
| FTMP − Fideal | (2.15)

Table 2.5: Linear TMP parameter sets resulting from single objective optimization

Design Variables

N [-] α [°] c [mm] d [mm] l [mm] m [mm] Error [N]

Powell 8 70 34.0 21.6 31.7 39.1 205.1

Simplex 8 70 39.6 21.1 20.0 40.0 206.5
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Table 2.5 shows the linear parameters sets resulting from the optimization using both Powell

and Simplex algorithms. Both methods yield similar magnitudes of error, but the Powell algorithm

converged to a parameter set that offers slightly better agreement between the TMP and ideal linear

spring. In addition to the TMP parameters, the linear design included adjustment of the main-fold

and the sub-fold stiffness. From Section 2.1, the nonlinearity of the force-displacement response

arises from the contributions of the sub-folds. This characteristic is exploited in the nonlinear TMP

design by intentionally stiffening the sub-folds and weakening the main-folds as shown by the crease

stiffness in Table 2.3. Conversely, the linear TMP was designed with weak sub-folds (k̂S = 0.0186 N
rad )

and stiff main-folds (k̂M = 0.0946 N
rad ).
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Chapter 3

Experimental Study

3.1 Energy Loss and Hysteresis Problem

The primary challenge in utilizing origami as a mechanism for energy storage is minimizing

energy loss during a compression cycle. Specifically, maintaining energy storage during the extension

phase is critical for jumping applications in order to maximize the dynamic performance of the

mechanism. We define the energy efficiency of the TMP structure as the ratio of the energy released

during extension to the energy stored during compression as shown in Equation (3.1). This metric

is used to quantify the amount of hysteresis observed in the TMP during a compression cycle.

η =
Eexpansion
Ecompression

(3.1)

Compression cycles were conducted using an ADMET MTESTQuattro tensile tester to

collect force-displacement data for the TMP bellow. The MTESTQuattro uses powder-coated steel

plates to compress the sample while a 25 lb load cell collects force data. Friction between the end-

points of the TMP and the steel plates of the tensile tester was identified as a potential source of

hysteresis. Additionally, plastic deformation at the creases of the TMP was also investigated as

a source of energy loss. The following sections outline the steps taken to address both sources of

hysteresis.
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3.1.1 Hysteresis Due to Friction

Energy loss due to friction was reduced through the use of low-friction polytetrafluoroethy-

lene (PTFE) sheets, known commercially as Teflon. PTFE is well known for its use in low-friction

applications with a coefficient of kinetic friction of roughly 0.3. A sample TMP bellow fabricated

from polypropylene was compressed to a folding ratio of 0.75 at varying deformation rates.

Table 3.1: Effect of PTFE sheets on efficiency during a TMP compression cycle

Deformation Rate [mm
s ] Efficiency [-] Average Efficiency [-] Standard Deviation [-]

Bare
Steel

4 0.690

0.699 0.0086
6 0.696

8 0.700

10 0.708

PTFE
Sheets

4 0.704

0.713 0.0084
6 0.709

8 0.719

10 0.722

A comparison between the efficiencies with and without the PTFE sheets is detailed in Table

3.1, which reveals an increase in average efficiency of roughly 1.5% with the introduction of the low-

friction PTFE. Although marginal, this reduction in hysteresis was still considered beneficial for

the purposes of the jumping mechanism application, and PTFE sheets were used in all subsequent

quasi-static and dynamic experiments. Compression cycles were conducted at different deformation

rates in order to understand the impact of this testing parameter on the efficiency of the TMP

structure to inform future trials. However, the standard deviation in efficiencies across the range of

deformation rates was 0.86% and 0.84% for the bare steel and PTFE trials, respectively, indicating

the deformation rate has a relatively low impact on the hysteresis of the structure.

3.1.2 Hysteresis Due to Plastic Deformation at the Creases

In classic origami, creases are created by concentrating the deformation of the material along

a line, which then holds its shape – this methodology inherently exhibits plastic deformation and is

not conducive to a “springy” response. A type of creasing technique known as plastically annealed

lamina emergent origami (PALEO) was examined for its use in energy retention to further reduce

hysteresis. PALEO works by folding the material into its desired state – often plastically deforming
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Figure 3.1: Sample cut pattern for PALEO crease detailing PALEO crease parameters

the material – at which point the polymer is annealed well above the glass transition temperature

to relax the internal stresses [39]. This leaves the creases in a tension-free state and increases the

elastic folding range of the crease, thus minimizing hysteresis due to plastic deformation. In addition

to the annealing process, PALEO creases are designed with a series of cuts parallel to the crease.

An example cut configuration is shown in Figure 3.1. The number of columns is denoted as N ,

the number of ‘hinges’ (material between cuts) is denoted as M , the spacing between the cuts is

denoted as b, and the spacing between the columns is denoted as L. From 2.1, the nonlinearity of

the force-displacement profile exhibited by the TMP arises from contributions from the sub-folds.

Therefore, the objective of the PALEO crease study is to determine how the cut configuration

influences the stiffness of the crease, allowing for the design of a TMP bellow with stiff sub-folds

and weak main-folds to maximize the strain-softening effects for increased energy storage.

A series of PALEO cut configuration samples were cut on an Epilog Fusion M2 laser cutter,

folded to their fully-folded state, and annealed at 170°C for 60 minutes. This procedure was used

based on results from Sargent et. al. [42], as 170°C was the mid-point of the temperature range which

showed the best performance in terms of the force response of the PET crease. Results from [42] also

indicate that rapid cooling of 15°C/min from annealing temperature to glass transition temperature,

followed by slow cooling of 0.5°C/min from glass transition temperature to room temperature should

be used to achieve the best results in terms of energy retention of the crease.

In order to investigate how these cut parameters effect the stiffness of the PALEO crease,

a series of sixteen different crease configurations were fabricated using an Epilog Fusion M2 laser

cutter. The designs are shown in Figure 3.2. The samples were folded completely such that the facets
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were in contact, then placed into a frame at a 90° fold angle for annealing. After annealing, the facets

on either side of the crease were reinforced with a 1.5 mm thick section of polypropylene in order

to prevent deformation of the facets during testing. The stiffness of each crease was measured by

applying a load to the endpoint of the rigid facet and observing the angular deflection of the crease.

A visual representation of the experimental setup is shown in Figure 3.3. Each PALEO sample

was clamped in a vice before being subjected to a load applied at the endpoint of the free facet.

Four measurements were taken at increasing loads in order to understand how the stiffness changes

through the folding angle from 90° to roughly 30°. Torsional stiffness was calculated using Equation

(3.2), where F⊥ is the perpendicular component of the applied load, d⊥ is the perpendicular distance

from the hinge to the applied load, and θ0 and θl and the resting and loaded angle, respectively.

The results of the stiffness study are plotted in Figure 3.4.

kθ =
F⊥d⊥
θ0 − θl

(3.2)

Figure 3.2: PALEO cut configurations used in crease stiffness study

From Figure 3.4, the torsional stiffness is relatively small near the resting angle θdisp = 0°

but quickly increases as the angular displacement increases. These results support the assumption
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Figure 3.3: Testing schematic for PALEO creases illustrating loading methodology

Table 3.2: Selection of PALEO crease configurations

M [-] N[-] L [mm] b [mm]
Torsional stiffness of

sample (kθ) [Nm
rad ]

Torsional stiffness
per-unit-length (k̂θ)

[ N
rad ]

Weak fold
configuration 5 5 1 5 0.0011 0.0186

Stiff fold
configuration 15 3 2 2 0.0057 0.0946

that the crease stiffness should be inflated as the facets become closer together with increasing

angular displacement as shown in Equations (2.8) and (2.9). The crease configurations selected for

the stiff and weak creases are summarized in Table 3.2, along with the corresponding per-unit-length

torsional stiffness which is calculated by dividing the stiffness of the sample by the crease length of

the sample. The weak PALEO configuration was integrated into the main-folds of the optimized

nonlinear TMP design, and the stiff PALEO configuration was integrated into the sub-folds of the

nonlinear TMP design.

Two TMP structures with identical geometric design parameters were fabricated from PET

sheets using different creasing methods. PET was selected based on its performance in conjunction

with PALEO techniques from Klett [39], who used 125 µm thick sheets. The control TMP structure

was fabricated using a Graphtec FCX4000 cutting table. The creases were scored into the PET

sheets at a depth of 60 µm, or just under half the sheet thickness. The creases of the control TMP

will hereby be referred to as standard cut creases. The second TMP utilized the results of the

PALEO crease study listed in Table 3.2 to incorporate the stiff PALEO crease into the sub-folds
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Figure 3.4: Stiffness of PALEO crease configurations, categorized by the hinge length M . Additional
crease parameters are denoted in the legend of each plot.
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and the weak PALEO crease into the main-folds to exaggerate the strain-softening behavior of the

TMP. The crease designs are shown in Figure 3.5. Both structures were annealed in-shape and

compressed to 110 mm, 130 mm, and 150 mm in a progressive manner to determine if hysteresis

became more prevalent as the final displacement was increased. Each displacement trial was repeated

five times to ensure consistent results. The force-displacement response is shown in Figure 3.6 and

the performance metrics are listed in Table 3.3.

Figure 3.5: TMP crease designs using standard cut and PALEO creases

Table 3.3: Hysteresis results of standard cut creases vs PALEO creases

Displacement from Resting
Height (d) [mm]

Energy Efficiency
(η) [-]

Nonlinear to
Linear Ratio [-]

Standard Cut
Creases

110 0.649 0.828

130 0.687 0.888

150 0.639 0.808

PALEO
Creases

110 0.878 1.108

130 0.787 1.029

150 0.784 0.910

Table 3.3 lists the amount of hysteresis observed during the compression cycles in the form of

energy efficiency. Using this metric, it becomes evident that the PALEO creases are far more efficient

than the standard cut creases, with the PALEO creases outperforming the standard cut creases by

as much as 22% efficiency in the 110 mm displacement test. These results are to be expected due to

the greater amount of plastic deformation occurring within the standard cut creases. Both crease

types exhibit a reduction in efficiency as the maximum displacement is increased, which is a result

of an increase in the plastic deformation experienced at the creases as the structure is compressed

further.

Another metric used to quantify the performance of the TMP bellow is a ratio between
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energy released from the TMP structure during expansion to the energy released from an ideal linear

spring, which is labeled as the nonlinear-to-linear ratio in Table 3.3. The ratios of the standard cut

creases are significant due to the fact that the TMP geometry has already been optimized for greater

energy storage than a linear spring – despite the optimized TMP geometry, the structure will fail

to outperform a normal linear spring if the hysteresis problem is not addressed. Here, the plastic

deformation at the creases result in enough energy loss that the TMP structure releases less energy

than a linear spring at all tested displacements.

Conversely, the cuts incorporated into the PALEO creases result in an increase in the bend

radius which reduce the amount of energy loss due to plastic deformation. The greater efficiency

of the PALEO creases enables the optimized TMP geometry to outperform the linear spring when

releasing energy during expansion. However, these benefits become less evident as the displacement

is increased, as shown by the ratio of 0.91 at 150 mm displacement Therefore, a displacement of 110

mm was selected for subsequent dynamic experiments in an effort to maximize the benefits of the

nonlinearity of the TMP structure.

3.2 Quasi-Static Force-Displacement Response

Both the nonlinear and linear TMP structures designed in Sections 2.4 and 2.5, respectively

were fabricated and tested using the methods discussed in Sections 3.1.1 and 3.1.2. The creases were

designed using the PALEO methodology with the stiff and weak crease configurations applied to the

appropriate folds: stiff sub-folds and weak main-folds for the nonlinear TMP, stiff main-folds and

weak sub-folds for the linear TMP. However, the nonlinear and linear optimized TMP parameters

resulted in difficulties during experimental testing.

In the nonlinear TMP, the low sub-fold angle α = 30° resulted in a very thin footprint for

the TMP structure when the front and back sheets were assembled. This small footprint coupled

with a large number of unit cells (N = 10) resulted in significant buckling during initial compression

tests. After trial and error, a solution was found by reducing the number of unit cells to N = 8,

thus reducing the structure height and allowing for reliable compression cycles without buckling.

In the linear TMP design, the large sub-fold angle α = 70° also produced difficulties in

acquiring quality compression cycle data. This large angle resulted in undesirable compression

behavior in which the structure buckled rapidly cell-by-cell, generating an inconsistent force response.
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Through trial and error, the sub-fold angle was lowered until smooth compression cycles could be

consistently achieved. The sub-fold angle for the linear TMP was modified to α = 50°. Additionally,

the number of unit cells was also lowered to N = 8 for the linear TMP due to the same buckling

issues experienced with the nonlinear TMP. A summary of the revised TMP design parameters is

shown in Table 3.4 below.

Both structures were placed in the MTESTQuattro tensile tester and subjected to five com-

pression cycles with a final displacement of 110 mm. The extension phase of the compression cycle

for both TMP structures is plotted below as an average of the five trials. Additionally, the theoret-

ical response is plotted for both structures in order to examine the agreement between theoretical

and experimental results.

Table 3.4: Revised TMP parameters and crease stiffness for nonlinear and linear configurations

TMP Parameters Crease Stiffness

N [-] α [°] c [mm] d [mm] l [mm] m [mm] k̂M [N/rad] k̂S [N/rad]

Nonlinear 8 30 21.1 34.2 39.9 23.2 0.0186 0.0946

Linear 8 50 34.0 21.6 31.7 39.1 0.0946 0.0186

Table 3.5: Performance metrics for nonlinear and linear TMP structures

Experimental
Energy [Nm]

Energy Ratio to Ideal
Linear Spring [-]

% Error in
Energy

Actuation Ratio
[-]

Nonlinear 3.63e-4 1.12 2.77% 35.2

Linear 3.34e-4 1.02 11.34% 50.9

When examining the performance of both TMP structures, the most important metric is

the amount of energy released by the structure during the extension phase of the compression cycle.

This quantity directly relates to the ability of the structure to generate an explosive jump when

used as a jumping mechanism. The table below lists performance metrics surrounding the energy

capabilities of both structures.

The energy ratio to an ideal linear spring represents a comparison between the TMP struc-

ture and a perfect linear spring. For the nonlinear TMP, a ratio greater than one is desirable as this

indicates greater energy storage than a standard linear spring. For the linear TMP, this ratio should
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Figure 3.7: Theoretical and experimental force-displacement plots of nonlinear and linear TMP
compared to an ideal linear spring

be as close to one as possible, indicating the linear TMP is a good representation of an ideal linear

spring. The percent error between the theoretical and experimental results indicates the quality

of agreement between the force-displacement model described in Section 2.1 and the experimental

results. The model has very good agreement with the nonlinear TMP at 2.77% error, while the

linear TMP shows acceptable agreement at 11.34% error. The effect of the error in the approxima-

tion of energy storage will be discussed when examining agreement between dynamic experiment

and the dynamic model in Section 3.4. From Table 3.5, we see greater experimental energy storage

in the nonlinear TMP than in the linear TMP, as well as a greater energy ratio to an ideal linear

spring. The linear TMP exhibits a ratio to an ideal linear spring of 1.02, indicating an acceptable

representation of a linear spring for use in dynamic tests.

The final column of Table 3.5 lists a ratio comparing the value of the actuating force at the

structural limit of the TMP and the weight of the PET sheets used to fabricate the TMP. This is

mathematically expressed as follows: Fratio = fmax

WTMP
. The purpose of this metric is to demonstrate

the relative strength of these structures. The configuration of the TMP parameters in conjunction

with the annealed strength of PALEO creases allows PET sheets – which have a relatively small
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weight – to exhibit a large amount of force at the structural limit. The linear TMP has a weight of

0.12 N, whereas the nonlinear TMP weighs 0.17 N. Therefore, because both structures have a very

similar maximum force response (fmax), the actuation ratio is far greater for the linear TMP due

to its lower weight.

3.3 Dynamic performance of the TMP Jumpers

Table 3.6: End-point masses attached to nonlin-
ear and linear TMP jumpers during dynamic ex-
periments

m1 [kg] m2 [kg]

Nonlinear 0.0177 0.0176

Linear 0.0179 0.0179

In order to accurately simulate end-

point masses on the TMP structure for dynamic

testing, steel shim stock was cut to size and ad-

hered to the facets of the top and bottom unit

cells of the structure using double-sided tape.

This methodology was chosen because the thin

shim stock did not interfere with the folding mo-

tion of the TMP. However, the amount of mass

applied at each end-point was limited by the available facet area on the unit cell. An additional chal-

lenge involved equating the masses on both the nonlinear and linear jumpers. Equal masses across

both structures allows for direct comparison between the jumping performance of the nonlinear and

linear jumpers, but differences in geometry between the structures prevented the exact same sets of

masses to be used for both jumpers. A water jet was used to cut the mass designs from the steel

shim stock, and the masses applied at each end-point are shown in Table 3.6.

Dynamic data was collected by capturing video footage of each jump at 240 frames per

second and moving frame-by-frame to extract take-off time, landing time, and maximum clearance

of the lower mass. The jumpers were placed in front of 1-inch square grid paper, providing a height

reference for clearance data. Actuation was performed using two segments of thread secured to

the jumping platform just behind the TMP. These segments were draped over the TMP and pulled

down, compressing the TMP to a displacement of 0.110 m. The threads were then simultaneously cut,

allowing the jumper to instantly extend and jump from the platform. This process was repeated ten

times for both the nonlinear and linear TMP jumpers, and air-time and clearance data was averaged

across the ten trials. Still frames taken from a jump are shown in Figure 3.8 for the nonlinear and

linear TMP jumpers. The air-time was measured as the difference between the time stamp on the
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landing frame (Figure 3.8g) and the take-off frame (Figure 3.8c), and the clearance was measured

using the reference grid as shown in Figure 3.8e.

Table 3.7: Air-time and clearance averages across ten jump trials for both jumper configurations

Nonlinear Linear

Average Standard Deviation Average Standard Deviation

Air-time [s] 0.461 s 0.014 s 0.0423 s 0.011 s

Clearance [mm] 259.7 mm 14.3 mm 230.6 mm 14.0 mm

Table 3.8: Comparison between optimized nonlinear TMP and linear TMP jumpers

Nonlinear Linear Percent Improvement

Air-time [s] 0.461 s 0.423 s 8.98%

Clearance [mm] 259.7 mm 230.6 mm 12.62%

Table 3.7 shows the dynamic data averaged across ten jump trials for both TMP configura-

tions, and the standard deviation was also calculated to observe the extent of variation across the

trials. Both TMP configurations show consistent performance throughout the dynamic experiments,

with the air-time metric showing standard deviations of 0.014 s and 0.011 s for the nonlinear and

linear jumpers, respectively and the clearance metric showing standard deviations of 14.3 mm and

14 mm for the nonlinear and linear jumpers, respectively.

A comparison between the average air-time and clearance achieved by the nonlinear and lin-

ear jumper is shown in Table 3.8. The performance of the nonlinear jumper is compared to the linear

jumper as a percent improvement, with air-time increasing by roughly 9% and clearance increasing

by nearly 13%. Therefore, the hypothesis of this study has been experimentally supported from

these dynamic results. We show that a TMP origami bellow can be optimized to exploit the “strain-

softening” behavior in an effort to store more energy, thus improving the dynamic performance when

compared to a linear elastic element.

3.4 Use of Equivalent Damping Ratio to Correct Dynamic

Model

When comparing the experimental dynamic results to the theoretical results predicted from

the dynamic model, there exists a large discrepancy between the two sets of data. While the air-
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(a) Jump experiment with optimized nonlinear TMP

(b) Jump experiment with linear TMP

Figure 3.8: Jumping experiments with nonlinear and linear TMP structures with air-time and
clearance measurements labeled.

time predicted by the dynamic model is far more accurate than the predicted clearance (the percent

error for air-time is less than half that of the clearance for both nonlinear and linear jumpers), both

metrics are greatly over-estimated by the model.

Table 3.9: Comparison between theoretical and experimental dynamic performance for the nonlinear
jumper

Nonlinear Jumper

Theoretical Experimental Percent Error

Air-time [s] 0.531 s 0.461 s 15.22%

Clearance [mm] 359.9 mm 259.7 mm 38.58%

One possible explanation deals with the way in which the mass of the TMP structure is

used in the dynamic model. The total mass of the PET sheets is treated as a point mass at either

end of the structure, resulting in an increase in the amplitude of oscillations in the model during the

jump. Because the maximum clearance is dependent on the height of the lower mass, oscillations of

greater amplitude will result in greater predicted clearance values. The air-time, however, depends

only on the amount of energy stored in the structure and the overall mass of the structure – the
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Table 3.10: Comparison between theoretical and experimental dynamic performance for the linear
jumper

Linear Jumper

Theoretical Experimental Percent Error

Air-time [s] 0.518 s 0.423 s 22.48%

Clearance [mm] 366.8 mm 230.6 mm 59.04%

oscillations of the jumper do not affect this metric, therefore leading to better agreement with the

experimental results.

However, the error between the dynamic model and the experimental results is still signif-

icant for both performance metrics and both jumper configurations. One theory that explains the

discrepancy is the structural damping that exists within the TMP structure during take-off and

subsequent oscillations while airborne. Table 3.3 in Section 3.1.2 shows that even with the use of

the PALEO creases, the TMP bellow is still not perfectly efficient and exhibits structural damping

during a compression cycle. Due to the complexity in approximating the magnitude of structural

damping and integrating this quantity into an equation of motion, the presence of damping was

instead approximated using a viscous damping term in the equation of motion. The equations of

motion (3.3), (3.4), and (3.5) were revised to include a damping constant C, as shown below.

m2ÿ2 = F −m2g − Cẏ2 (3.3)

m1ÿ1 = −F −m1g + C (ẏ2 − ẏ1) (3.4)

m2ÿ2 = F −m2g − C (ẏ2 − ẏ1) (3.5)

In order to relate the amount of damping observed in the quasi-static compression cycle tests, a

technique from Blandon et. al. [43] was used to relate the amount of dissipated energy to an

equivalent damping ratio ζeq. This damping ratio was then used in conjunction with the natural

frequency of the structure to estimate the magnitude of the damping constant C, as shown in

Equation (3.8). In Equation (3.7), the spring stiffness k was treated as a constant stiffness equal to
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that of the ideal linear spring plotted in Figure 3.7.

ζeq =
Edissipated
4πEstored

(3.6)

ωn =

√
k(m1 +m2)

m1m2
(3.7)

C = 2(m1 +m2)ζeqωn (3.8)

Table 3.11: Updated comparison between theoretical and experimental dynamic performance for
the nonlinear jumper

Nonlinear Jumper (C = 0.0657 [N/s])

Theoretical Experimental Percent Error

Air-time [s] 0.495 s 0.461 s 7.44%

Clearance [mm] 314.8 mm 259.7 mm 21.21%

Table 3.12: Updated comparison between theoretical and experimental dynamic performance for
the linear jumper

Linear Jumper (C = 0.0907 [N/s])

Theoretical Experimental Percent Error

Air-time [s] 0.484 s 0.423 s 14.39%

Clearance [mm] 293.7 mm 230.6 mm 27.36%

Tables 3.11 and 3.12 show the revised dynamic performance metrics with the introduction

of the calculated damping constant for the nonlinear and linear jumpers, respectively. The dynamic

model still overestimates the airtime and clearance of the jumper for both the nonlinear and linear

configurations, but the error has been significantly reduced. We still see relatively large error in

the clearance approximation due to the TMP mass being applied at the end-points as previously

discussed, but the air-time approximation is acceptable at under 10% for the nonlinear jumper and

under 15% for the linear jumper. The greater error observed in the dynamic data for the linear

jumper may also be due in-part to the amount of error observed in the theoretical quasi-static

model. Table 3.5 shows an discrepancy of 11.34% in the energy storage for the linear TMP, whereas
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the nonlinear TMP exibits an error of only 2.77%. This may further explain the greater amount of

error in the dynamic results for the linear TMP relative to the nonlinear TMP.
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Chapter 4

Conclusions

In this study, we demonstrate the effectiveness of utilizing origami to design and fabricate

an optimized jumping mechanism which outperforms a generic linear elastic element in dynamic

experiments. The force-displacement equation developed in [38] is used in conjunction with crease

stiffness modifications proposed in [40] to derive a theoretical force-displacement curve that more

accurately models the behavior of the TMP structure. We simulate the dynamic response of a

TMP jumping mechanism consisting of the TMP bellow with two end-point masses and identify

two performance metrics: air-time and clearance. These metrics are then used as objectives to be

maximized during a multi-objective optimization procedure, where the NSGA-II algorithm is used

to identify the geometric parameters of the TMP that result in improved dynamic performance. In

addition to the optimized TMP design, an additional TMP is fabricated to act as a representative

linear spring.

We identify two main sources of hysteresis observed during the compression cycle of a TMP

structure. The hysteresis due to friction is minimized through the use of PTFE (Teflon) sheets at

both ends of the structure. The hysteresis due to plastic deformation at the creases of the structure

is minimized through the use of the PALEO technique, in which the PET sheets are perforated and

annealed to relax the internal stresses of the structure. We measure the torsional stiffness of various

perforation configurations in order to change the stiffness of the main-folds and sub-folds in the TMP

structure. The crease stiffness data is used to stiffen the sub-folds and weaken the main-folds in the

optimized TMP, and also to weaken the sub-folds and stiffen the main-folds in the linear TMP.

We further validate the force-displacement model in Equation (2.1) by computing the per-
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cent error in energy storage when compared to the optimized and linear TMP structures. The

end-point masses are secured to the facets of the upper and lower unit cells of both structures,

and the dynamic performance of both configurations is experimentally measured over ten trials.

Upon observation of significant damping effects in the experimental study, we update the dynamic

model to include a damping constant that is directly related to the magnitude of the hysteresis

loop observed for each structure. The updated dynamic model shows better agreement with the

dynamic performance measured in the experiments. Furthermore, we show that the optimized TMP

structure is capable of providing significant improvement in the air-time and clearance of a jumping

mechanism when compared to a standard linear elastic element.

Future work may consist of further reduction in the hysteresis loop during a compression

cycle in an attempt to obtain experimental results that more closely align with the idealized case

considered in the dynamic model. The PALEO crease configurations considered in this study were

not exhaustive, so there may be cut patterns that enable greater efficiencies in the form of a smaller

hysteresis loop. This study is intended to provide the foundation for an energy storage mechanism

to be used in a jumping robot. Therefore, implementation into a robotic system is still required.

One of the benefits of using TMP origami as the jumping mechanism is that the structure is scalable

and can therefore be sequenced in parallel to fabricate a “leg” for use in hopping. We present these

results in an effort to expand the tools available to robotics engineers and to give rise to a new

generation of exploratory robots.
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Appendix A Force-Displacement Function

1 function [F,theta M,theta G,theta S] =

2 ForceDisplacement TMP(u tot,l,m,c,d,alpha,N,km PUL,...

3 ks PUL,theta M0,theta S1,theta S2,theta M1,theta M2)

4

5 format long

6

7 %Initial angle states

8 theta G0 = 2*atand(tand(alpha)*cosd(theta M0)); %[deg]

9 theta S0 = acosd(sind(0.5*theta G0)/sind(alpha)); %[deg]

10

11 %Define angles thru bending

12 theta M = asind(sind(theta M0) - (u tot/(N*d))); %[deg]

13 theta G = 2*atand(tand(alpha)*cosd(theta M)); %[deg]

14 theta S = acosd(sind(0.5*theta G)/sind(alpha)); %[deg]

15

16 %Compute total main- and sub-fold stiffnesses

17 km = km PUL*(l+m+c); %[N*m/rad]

18 ks = ks PUL*(d/sind(alpha)); %[N*m/rad]

19

20 % Calculate Reaction Forces (Sub-Folds)

21 if (theta S < theta S1)

22 theta Sr = theta S*(pi/180);

23 theta S0r = theta S0*(pi/180);

24 theta S1r = theta S1*(pi/180);

25 theta Mr = theta M*(pi/180);

26 theta Gr = theta G*(pi/180);

27

28 Ls = (-32*((cos(0.5*theta Gr))ˆ3)*sin(theta Mr))/...

29 (d*cos(theta Mr)*cosd(alpha)*sin(theta Sr));

30 % Increase in rotational stiffness

31 ks inflated = ks*(sec((pi*(theta Sr-theta S1r))/...

32 (3.5*theta S1r)))ˆ2;

33 % Force calculation

34 Fs = Ls*ks inflated*(theta Sr-theta S0r);

35
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36 elseif (theta S > theta S2)

37 theta Sr = theta S*(pi/180);

38 theta S0r = theta S0*(pi/180);

39 theta S2r = theta S2*(pi/180);

40 theta Mr = theta M*(pi/180);

41 theta Gr = theta G*(pi/180);

42

43 Ls = (-32*((cos(0.5*theta Gr))ˆ3)*sin(theta Mr))/...

44 (d*cos(theta Mr)*cosd(alpha)*sin(theta Sr));

45 % Increase in rotational stiffness

46 ks inflated = ks*(sec((pi*(theta Sr-theta S2r))/...

47 (2*pi-3.5*theta S2r)))ˆ2;

48 % Force calculation

49 Fs = Ls*ks inflated*(theta Sr-theta S0r);

50 else

51 theta Sr = theta S*(pi/180);

52 theta S0r = theta S0*(pi/180);

53 theta Mr = theta M*(pi/180);

54 theta Gr = theta G*(pi/180);

55

56 Ls = (-32*(cos(0.5*theta Gr))ˆ3*sin(theta Mr))/...

57 (d*cos(theta Mr)*cosd(alpha)*sin(theta Sr));

58 Fs = Ls*ks*(theta Sr-theta S0r);

59

60 end

61

62 % Calculate Reaction Forces (Main-Folds)

63 if (theta M < theta M1)

64 theta Mr = theta M*(pi/180);

65 theta M0r = theta M0*(pi/180);

66 theta M1r = theta M1*(pi/180);

67

68 Lm = (-32*(N-1)*.4)/(N*d*cosd(theta M));

69 % Increase in rotational stiffness

70 km inflated = km*sec((pi*(theta Mr-theta M1r))/...

71 (3.5*theta M1r))ˆ2;

72 % Force calculation

73 Fm = Lm*km inflated*(theta Mr-theta M0r);

74 elseif (theta M > theta M2)
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75

76 theta Mr = theta M*(pi/180);

77 theta M0r = theta M0*(pi/180);

78 theta M2r = theta M2*(pi/180);

79

80 Lm = (-32*(N-1)*.4)/(N*d*cosd(theta M));

81 % Increase in rotational stiffness

82 km inflated = km*(sec((pi*(theta Mr-theta M2r))/...

83 (2*pi-3.5*theta M2r)))ˆ2;

84 % Force calculation

85 Fm = Lm*km inflated*(theta Mr-theta M0r);

86 else

87 theta Mr = theta M*(pi/180);

88 theta M0r = theta M0*(pi/180);

89

90 Lm = (-32*(N-1)*.4)/(N*d*cos(theta Mr));

91 Fm = Lm*km*(theta Mr-theta M0r);

92 end

93

94 F = [Fm,Fs];

95 end
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Appendix B Equations of Motion

1 %% Pre-Jump EoM

2 function [dydt] = EoM prejump(t,y,l,m,c,d,alpha,N,km,ks,...

3 theta M0,theta S1,theta S2,theta M1,theta M2,l 0,m2,g,C)

4 [F] = ForceDisplacement TMP(-(y(1)-l 0),l,m,c,d,alpha,N,...

5 km,ks,theta M0,theta S1,theta S2,theta M1,theta M2);

6 dydt = zeros(2,1);

7 dydt(1) = y(2);

8 dydt(2) = (1/m2)*F - g - (1/m2)*C*y(2);

1 %% Post-Jump EoM

2 function dydt = EoM postjump(t,y,l,m,c,d,alpha,N,km,ks,...

3 theta M0,theta S1,theta S2,theta M1,theta M2,l 0,...

4 m1,m2,g,C)

5 [F] = ForceDisplacement TMP(-(y(1)-y(3)-l 0),l,m,c,d,...

6 alpha,N,km,ks,theta M0,theta S1,theta S2,...

7 theta M1,theta M2);

8 dydt = zeros(4,1);

9 dydt(1) = y(2);

10 dydt(2) = 1/m2*F - g - (1/m2)*C*(y(2)-y(4));

11 dydt(3) = y(4);

12 dydt(4) = -1/m1*F - g + (1/m1)*C*(y(2)-y(4));

41



Appendix C Solving Equations of Motion

1 function [F] = DynamicBehavior(x)

2

3 clc

4

5 % Initialize Parameters for ForceDisplacement TMP function

6 N = x(1); %number of unit cells [-]

7 c = x(2); %[m]

8 d = x(3); %[m]

9 l = x(4); %[m]

10 m = x(5); %[m]

11 alpha = x(6); %[deg]

12

13 % Masses

14 % mass 1 [kg] first number is attached mass

15 m1 = 0.017713 + 0.000127*(c+l+m)*2*d*N*1383.9952;

16 % mass 2 [kg] first number is attached mass

17 m2 = 0.017615 + 0.000127*(c+l+m)*2*d*N*1383.9952;

18

19 % Crease Stiffness

20 % main-fold stiffness [N*m/rad]

21 km = (0.001113232392549 / 0.06);

22 % sub-fold stiffness [N*m/rad]

23 ks = (0.005678477536300 / 0.06);

24

25 g = 9.81; %gravitational acceleration [m/sˆ2]

26

27 theta M0 = 60; %resting main fold angle [deg]

28 FR = 0.75; %folding ratio [-]

29

30 %Angle limits for crease stiffness inflation

31 theta S1 = 38; %[deg]

32 theta S2 = 70; %[deg]

33 theta M1 = 38; %[deg]

34 theta M2 = 70; %[deg]

35
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36 % % Resting height and initial compression height

37 l 0 = N*d*sind(theta M0); %total resting height [m]

38 l max = N*d; %max extension length

39 y 0 = N*d*sind(90*(1-FR)); %initial compression height [m]

40 u 0 = (y 0-l 0); %inital displacement [m]

41

42

43 %% Pre-Jump Phase

44 % Define damping constant

45 C = 0;

46

47 % Solve first ode

48 [t1,y pre] = ode45(@(t2,y2) EoM prejump(t2,y2,l,m,c,d,...

49 alpha,N,km,ks,theta M0,theta S1,theta S2,theta M1,theta M2,...

50 l 0,m2,g,C),[0,0.5],[y 0,0],odeset('Refine',10));

51

52 y pre(:,1) = real(y pre(:,1));

53

54 % Read out tension force during extension

55 position = linspace(l 0,l max,1000);

56 for i = 1:length(position)

57 F count(i,1) = ForceDisplacement TMP...

58 (-(position(i)-l 0),l,m,c,d,alpha,N,km,ks,theta M0,...

59 theta S1,theta S2,theta M1,theta M2);

60 end

61 F count = F count(1:end-1,:);

62 position = position(:,1:end-1);

63

64 % Locate the displacement at which jumping occurs

65 u jump = interp1(F count,-(position-l 0),-m1*g); %[m]

66

67 % Find Y2 coordinate at which jumping occurs

68 y2 jump = -u jump+l 0; %[m]

69

70 % Locate the element position of the jump

71 loc count = 1;

72 while y pre(loc count,1) < y2 jump

73 loc count = loc count+1;

74 end
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75

76 % Time of jump averaged ("at" or "just after" the jump)

77 t jump = mean([t1(loc count),t1(loc count-1)]);

78

79 %% Post-Jump Phase

80

81 % Define initial conditions for post-jump phase

82 ic pos = y2 jump;

83 ic vel = mean([y pre(loc count,2),y pre(loc count+1,2)]);

84 ic time = t jump;

85 ic = real([ic pos; ic vel; 0; 0]);

86

87 % Solve post-jump system

88 [t2,y post] = ode45(@(t2,y2) EoM postjump(t2,y2,l,m,c,d,...

89 alpha,N,km,ks,theta M0,theta S1,theta S2,theta M1,theta M2,...

90 l 0,m1,m2,g,C),[ic time 4],ic);

91

92 % Convert complex values to real values

93 y post(:,1) = real(y post(:,1));

94 y post(:,3) = real(y post(:,3));

95

96 % Find the time of landing

97 land count = find(y post(:,3) == max(y post(:,3)));

98 while y post(land count,3)≥0

99 land count = land count+1;

100 end

101

102 t land = mean([t2(land count),t2(land count+1)]);

103

104 y1 tot = [zeros(loc count,1);y post(1:land count+1,3)];

105 y2 tot = [y pre(1:loc count,1);y post(1:land count+1,1)];

106 t tot = [t1(1:loc count);t2(1:land count+1)];

107

108 F(1) = (t land - t jump);

109 AirTime = F(1)

110

111 maxCoM = (max(0.5*(y1 tot+y2 tot)))

112 F(2) = max(y1 tot);

113 Clearance = F(2)
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114

115 figure

116 hold on

117 plot(t tot,y1 tot,'r-')

118 plot(t tot,y2 tot,'b-')

119 plot(t tot,0.5*(y1 tot+y2 tot),'k-')

120 plot(linspace(0,t land,100),l 0*ones(1,100),'k--')

121 legend('M1','M2','Center of Mass','Resting Height',...

122 'Location','eastoutside')

123 xlabel('Time (t) [s]')

124 ylabel('Y-coordinate (Y 1, Y 2) [m]')

125 title('Dynamic Performance of TMP Jumper')

126 end
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