
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

August 2020

VLSI Architecture for Polar Codes Using Fast Fourier Transform-VLSI Architecture for Polar Codes Using Fast Fourier Transform-

Like Design Like Design

Weihang Tan
Clemson University, tanweihangjerry@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Tan, Weihang, "VLSI Architecture for Polar Codes Using Fast Fourier Transform-Like Design" (2020). All
Theses. 3369.
https://tigerprints.clemson.edu/all_theses/3369

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/354492767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3369?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3369&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

VLSI Architecture for Polar Codes Using Fast Fourier
Transform-Like Design

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Weihang Tan

August 2020

Accepted by:

Dr. Yingjie Lao, Committee Chair

Dr. Jon C. Calhoun

Dr. Shuhong Gao

Abstract

Polar code is a novel and high-performance communication algorithm with the ability to

theoretically achieving the Shannon limit, which has attracted increasing attention recently due to

its low encoding and decoding complexity. Hardware optimization further reduces the cost and

achieves better timing performance enabling real-time applications on resource-constrained devices.

This thesis presents an area-efficient architecture for a successive cancellation (SC) polar decoder.

Our design applies high-level transformations to reduce the number of Processing Elements (PEs),

i.e., only log2N pre-computed PEs are required in our architecture for an N -bit code. We also

propose a customized loop-based shifting register to reduce the consumption of the delay elements

further. Our experimental results demonstrate that our architecture reduces 98.90% and 93.38% in

the area and area-time product, respectively, compared to prior works.

ii

Dedication

This work is dedicated to my parents, friends, and my advisor, who always encourage and

support me throughout my study.

iii

Acknowledgments

First, I would like to sincerely thank my advisor, Dr. Yingjie Lao, for his unending support

and help in my research. I am lucky to have had the opportunity to work and learn from Dr. Lao.

I am grateful to my thesis committee members Dr. Jon C. Calhoun and Dr. Shuhong Gao,

who spend their valuable time reading and improve my thesis.

I want to thank my past and current group members: Joseph Clements, Azadeh Gholamrezazadeh-

Famili, Urmil Joshi, Ling Qiu, Ankur Sharma, Jianchi Sun, Antian Wang, Xiaojia Wang, Yuejiang

Wen, Yunhao Xu (Southeast University, China), and Bingyin Zhao, for their assistance and feed-

back to my research and study. I also extend the thanks to my collaborators: Dr. Benjamin Case,

Dr. Gengran Hu (Hangzhou Dianzi University, China), for their discussion on the theoretical and

mathematical background.

Last but not least, I want to thank my parents and friends for their help and love.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Polar Codes in 5G Communication Systems . 1
1.2 Contribution and Outline of the Thesis . 3

2 Mathematical Background of Polar Codes . 4
2.1 Channel Polarization . 4
2.2 Polar Encoding . 8
2.3 Polar Decoding . 13

3 Pipelined Architectures for Fast Fourier Transform (FFT) 18
3.1 Introduction of FFT . 18
3.2 Hardware Design of FFT . 25

4 Area-Efficient Pipelined VLSI Architecture for Polar Code 30
4.1 Hardware Optimization of Prior Work . 30
4.2 Pipelined Polar Encoder Architecture . 32
4.3 Proposed Architecture for Polar Decoder . 32
4.4 Hardware Analysis and Experimental Result . 41
4.5 Conclusion . 43

5 Conclusions and Future Works . 44
5.1 Conclusions . 44
5.2 Future Works . 44

Appendices . 46

Bibliography . 47

v

List of Tables

4.1 Schedule of 8-bit MDC-based pre-computed polar decoder 40
4.2 Comparisons of the proposed architecture with prior works 41
4.3 Hardware analysis of (1024,512) SC implementation results with pre-computed PE . 42

vi

List of Figures

1.1 Model of modern communication system . 2

2.1 Channel combining and splitting [4]. 6
2.2 Channel polarization in BEC of N = 2 [2]. 7
2.3 High-level diagram for channel polarization in BEC of N = 256 [2]. 9
2.4 Butterfly unit: (a) polar encoder; (b) FFT . 10
2.5 Compact level of 8-bit example of encoder tree . 11
2.6 8-bit example of polar encoder . 12
2.7 8-bit example of SC polar decoder . 16
2.8 Partial sum of an 8-bit polar decoder. 17

3.1 Twiddle factor of DFT for N = 8. 19
3.2 Butterfly unit of DIT-based FFT algorithm. 21
3.3 DFG DIT-based FFT algorithm. 22
3.4 Butterfly unit of DIF-based FFT algorithm. 23
3.5 DFG of DIF-based FFT algorithm. 24
3.6 Butterfly unit of radix-4 DIT-based FFT algorithm. 25
3.7 N -point SDC FFT architecture. 26
3.8 N -point SDF FFT architecture. 27
3.9 N -point MDC FFT architecture. 28
3.10 N -point MDF FFT architecture. 28

4.1 A tree-based polar decoder [16] . 31
4.2 A line-based polar decoder [16] . 31
4.3 An 8-bit MDC Polar Encoder Architecture. 32
4.4 A high-level Area-Efficient MDC-Based Polar Decoder Architecture. 32
4.5 Schematic diagram of pre-computed PE . 33
4.6 PE of MDC-Based Polar Decoder: (a) Element of Min-Sum Algorithm Architecture

of f Node. (b) Element of Parallel Branch and Delayed Decision Approach of g Node. 34
4.7 Loop-based Shifting Register: (a) Rl(j) in Odd Stage. (b) Rl(j) in Even Stage. . . . 36
4.8 (a) Commutator in Even Stage and Feedback Path. (b) Commutator in Odd Stage. 36
4.9 Scheduling of 8-bit example for SC polar decoder . 39
4.10 Scheduling of 8-bit example for feedback encoder . 40
4.11 Algorithmic Performance of MDC-Based Polar Decoder. 43

vii

Chapter 1

Introduction

During the rapid development of modern communication, fast and reliable communication

systems are in high demand for low-latency applications such as cloud computing, eHealth, and

smart manufacturing. A general requirement for modern communication is that it should be able to

transmit and exchange the information over a long distance, while still maintaining high information

quality.

Fig. 1.1 shows a high-level model of a modern communication system that mainly consists of

five parts: source encoder, channel encoder, channel, channel decoder, and source decoder. Specifi-

cally, when transmitting a message in the channel, unavoidable environmental noise interferes with

the message, which may distort the information. To solve this problem, channel encoding and decod-

ing can apply an error correction code (ECC)-based algorithms that is used for error control of the

data by adding redundant information to the message in the transmitter, which allows the receivers

to detect and correct the errors without retransmission, to ensure efficiency and reliability [1]. Re-

cently, polar codes have been considered as a significant breakthrough in the ECC-based algorithm

because it can achieve the capability of Binary-input Discrete Memoryless Channel (B-DMC) [2].

1.1 Polar Codes in 5G Communication Systems

Polar code is not a theoretically sound but is recently standardized as a control channel

code for the 5th generation (5G) communication systems by 3GPP (3rd Generation Partnership

Project) [3]. The original scheme of the polar code was proposed in 2008 [4], which is theoretically

1

Source
Decoder

Source
Encoder

Channel

Channel
Encoder

Channel
Decoder

Noise

Figure 1.1: Model of modern communication system

proven to achieve the Shannon limit in a given B-DMC. Specifically, the core of the polar codes is the

channel polarization, which can make the capacity of the channels become one of two extreme cases:

(1) a part of channels have the channel capacity close to 1 (i.e., noiseless channels); (2) channels

will be close to 0 (i.e., noisy channels) at the end. Based on this channel polarization construction,

the information is transmitted in the noiseless channels, and the noisy channels will be assigned

as binary 0. Meanwhile, the successive cancellation (SC) decoding process is originated from this

scheme with a low computational complexity of O(N log2N), where N is the total code length.

Considering the performance of the SC decoding process, the SC polar decoding shows a superior

accuracy performance that the block error rate (BLER) of the results are exponentially decreased

when the code length is long [5].

Thanks to the subsequent and continuous development of polar code, 5G communication

has enabled many advances in numerous applications. However, for application scenarios such

as mobile Health (mHealth) systems, and the Internet of Things (IoT), hardware resources and

power consumption are usually constrained [6]. Thus, low-cost architecture designs of polar codes,

especially for the decoders that are more computationally-intensive than encoders, are of great

interest.

In the literature, many designs for polar decoder have been proposed [7–24], most of which

are implemented by SC decoding [4] with a low complexity, belief propagation (BP) [25] or successive

cancellation list (SCL) [26]. Most of the designs primarily focus on reducing the latency, which

usually requires a large number of processing elements (PEs) as well as registers in SC, SCL and

BP polar decoder [17,19,27].

Due to its structural and computational similarity with Fast Fourier Transform (FFT),

2

many design and optimization approaches for FFT architectures have been adapted to polar code

implementations [16, 18–20, 28]. In the original design [16], the latency, throughput, and hardware

efficiency are relatively low. A pre-computed design was proposed [20] to improve the latency and

throughput.

As opposed to these prior works, this thesis investigates area-efficient designs of the polar

decoder. By further exploiting the high-level transformation techniques from FFT designs, we

propose a novel Multi-path Delay Commutator (MDC)-based polar decoder architecture. We focus

on the SC-based decoder due to its lower complexity. BP and SCL algorithms require a large number

of logic cells and registers for parallel processing, which is not suitable for the area-constrained

applications.

The proposed architecture uses parallel branches and a delayed decision as an efficient

scheduling approach [29]. Furthermore, a folding technique is employed to reduce the hardware

cost of the decoder, which will be extremely suitable for resource-constrained applications. Besides,

increasing the parallelism of the SC polar decoder, it will have relatively low utilization of the

hardware resources since the SC polar decoding is computed in series, where the decision of each

the estimated bit is heavily dependant on the previous steps.

1.2 Contribution and Outline of the Thesis

We summarize the main contributions of this thesis below:

• The proposed design extends the polar encoder design in [28] to implement a more efficient

MDC-based polar decoder.

• Our design yields better hardware utilization of PEs without increasing the number of delay

elements compared to [16,18,19].

• The proposed design achieves the smallest area consumption among all the existing SC-based

decoder architectures.

The rest of this thesis is organized as follows: the mathematical background of SC polar

code from [5] and pipelining FFT architecture are reviewed in Chapter 2 and Chpater 3, respectively.

Then, our proposed area-efficient pipelined architecture and its performance are discussed in Chapter

4. Finally, Chapter 5 concludes the thesis and discusses future works.

3

Chapter 2

Mathematical Background of Polar

Codes

This chapter reviews the mathematical background of polar codes from [4,5], which are used

in the hardware implementation. Section 2.1 reviews channel polarization. Then, the polar encoder

and original polar decoder algorithms are discussed in Section 2.2 and Section 2.3, respectively, to

illustrate the construction of the polar codes.

2.1 Channel Polarization

The name of “polar” relies on the channel polarization characteristic of the polar code.

In general, channels are classified as either reliable channels or unreliable channels. The reliable

channels have a more powerful capacity to transmit the data, while the unreliable channels are

used to transmit the redundancy. In order to investigate the channel polarization phenomenon, the

channel capacity will first be studied.

A basic Binary-input Discrete Memoryless Channel (B-DMC) W : X → Y is defined as

follows. Given the input alphabet X = {0, 1} and the output alphabet Y, the transition probability

W (y|x) represents the transmission of x ∈ X to y ∈ Y. Based on the definition of the B-DMC

4

channel, the corresponding symmetric capacity I(W) ∈ [0, 1] is expressed as:

I(W) ,
∑
y∈Y

∑
x∈X

1

2
W (y|x) log

W (y|x)
1
2W (y|0) + 1

2W (y|1)
. (2.1)

When W (y|0) = W (y|1) = 0.5, the channel W has the symmetric property, which means I(W)

achieves Shannon capacity [30].

The channels applied in the polar codes require a recursively polarization transform to split

the channels to two extreme cases: the capacity of good channels is closer to 1 while the capacity

of bad channels is closer to 0. In general, the process of polarization transform is illustrated as: N

uniform and independent B-DMC being combined as a compound channel WN that is split as N

polarized B-DMC W i
N with i ∈ [1, N]. Specifically, the channel combining is defined as a relationship

between the synthesized channel WN and the underlying raw channels WN based on the mapping

from binary source vector (uN1) to input vector (xN1) is :

WN

(
yN1 |uN1

)
= WN

(
yN1 |xN1

)
. (2.2)

Then, WN is split as size N W i
N : X → YN ×X i−1 by applying

W
(i)
N

(
yN1 , u

i−1
1 |ui

)
=

∑
uNi+1∈XN−i

1

2N−1
WN

(
yN1 |uN1

)
(2.3)

where (yN1 , u
i−1
1 |ui) is the output of the channel W

(i)
N with yN1 as received data and ui−11 as the first

(i − 1) estimated bits. However, as the code-length increases, the computational complexity will

be exponentially increased. Therefore, the Equation (2.3) is further represented as split channels in

odd indices and even indices by leveraging ideas from FFT:

(W i
N ,W

i
N)→ (W 2i−1

2N ,W 2i
2N), (2.4)

where

W
(2i−1)
2N

(
y2N1 , u2i−21 |u2i−1

)
=
∑
u2i

1

2
W

(i)
N

(
yN1 , u

2i−2
1,o ⊕ u

2i−2
1,e |u2i−1 ⊕ u2i

)
·W (i)

N

(
y2NN+1, u

2i−2
1,e |u2i

)
,

(2.5)

5

and

W
(2i)
2N

(
y2N1 , u2i−21 |u2i−1

)
=

1

2
W

(i)
N

(
yN1 , u

2i−2
1,o ⊕ u

2i−2
1,e |u2i−1 ⊕ u2i

)
·W (i)

N

(
y2NN+1, u

2i−2
1,e |u2i

) (2.6)

with the odd indices elements u2i−21,o = {u1, u3, ..., u2i−1} and even indices elements u2i−21,e = {u2, u4, ..., u2i}

in uN1 .

The diagram of the polarization transform is shown Fig. 2.1. After the polarized B-DMC

is achieved, the good channel and bad channel are further denoted as W+ and W−, respectively.

Besides, the capacity of these two kinds of channels is illustrated as:

I(W−) ≤ I(W) ≤ I(W+). (2.7)

Figure 2.1: Channel combining and splitting [4].

An example of a communication channel model of binary erases channel (BEC), whose

receiver receives either the binary information or a message that the information is erased, will be

used to further explain the channel polarization in Equation (2.7).

As shown in Fig. 2.2, two independent BECs are combined as W 2, and then the channels

will be split as a good channel (W+) and a bad channel (W−) that are highlighted in purple and

6

green in Fig. 2.2, respectively.

Figure 2.2: Channel polarization in BEC of N = 2 [2].

For any ui, i ∈ [1, 2], is uniformly distributed on {0, 1}, the x1 and x2 are

x1 = u1 ⊕ u2

x2 = u2

(2.8)

so the mutual information of the inputs x1 as well as x2, and the their corresponding output y1 and

y2 are defined by using the chain rule

2I(W) = I(x1x2; y1y2)

= I(u1u2; y1y2)

= I(u1; y1y2) + I(u2; y1y2|u1)

= I(u1; y1y2) + I(u2; y1y2u1)

= I(W+) + I(W−),

(2.9)

since

W+ : u1 → (y1, y2)

W− : u2 → (y1, y2, u1).

(2.10)

7

Thus, the mutual information of channel W+ and W− are:

I(W+) = 2I(W)− I(W)2

I(W−) = I(W)2.

(2.11)

In other words, the good channel W+ has a larger channel capacity but the bad channel W− has

smaller channel capacity after the polarization transform.

By recursively applying the polarization transform in a larger stage (i.e., n = log2N is

larger), each polarized channel is further polarized. For example, a good polarized channel W+

transforms to two new polarized channels W++ and W+− while the similar pair W−+ and W−− are

constructed from bad channel W−. If the code length becomes larger, the I(W+) will be closer to 1,

but I(W−) is reduced and close to 0. Note that, if the code length N = ∞, the channel capacities

will polarized to be the two extreme conditions as I(W) = 1 or 0.

An example is also shown in Fig. 2.2. Assume the BEC has erasure probability ε = 0.5,

the channel capacity I(W) = 1 − ε = 0.5 for a single channel condition while if more channels

involve, the polarization will happen. For N = 2, the channel capacity of polarized channels are

I(W+) = 2× 0.5− 0.52 = 0.75 and I(W−) = 0.52 = 0.25.

Furthermore, a high-level diagram of polarization transform from n = 0 to 8 is introduced

in Fig. 2.3. It can be seen that each channel transforms into a good channel (in purple line) and a

bad channel (in blue line), which shows the polarization phenomenon is finally indicated based on

the location. Specifically, the channels located at the top are treated as the good channels while the

bad channels located at the bottom but only a few transitional channels located in the middle.

2.2 Polar Encoding

As the channel polarization properties illustrated, only the good channels will transmit the

data. Therefore, we refer to the inputs of the good channels as the information bits uA and the

inputs of a bad channel as frozen bits uAc , where A is a set of corresponding indices. The parameter

K is used to represent the number of information (free) bits that transmit in the good channel, and

the code rate is defined as R = K/N .

In the polar encoding process, a mapping from the binary source vector u = uN1 = (u1, u2, ..., uN)

8

Figure 2.3: High-level diagram for channel polarization in BEC of N = 256 [2].

to the input vector x = xN1 = (x1, x2, ..., xN): u→ x is obtained from:

x = uGN , (2.12)

where GN = BNF⊗n2 is a generator matrix of size N = 2n, BN is the bit-reversal (permutation)

matrix and F⊗n2 = F2 ⊗ Fn−12 is the n-th Kronecker power of F2, with the ⊗ is the operator of

tensor product for two vector space.

Specifically, the F2, so-called kernel matrix, is used for channel combining and is defined as

F2 ,

 1 0

1 1

 . (2.13)

The construction of the kernel matrix is represented by a butterfly unit that is similar to the FFT,

and the comparison is shown in Fig. 2.4. Based on this figure, it is obtained

[xa xb] = [ua ub]F2 = [ua ⊕ ub ub]. (2.14)

where ua and ub are two independent bits from the source vector u, and xa and xb input bits from

x.

9

(a) (b)

ua

ub

xa

xb

Figure 2.4: Butterfly unit: (a) polar encoder; (b) FFT

In order to construct the FFT-like structure, the polar encoder recursively employs the

butterfly units of the F2. Thus, this polarization transform is decomposed by n = log2N stages

with N/2 butterfly units in each stage and along with a bit-reverse operation of BN . Note that,

based on the commutation properties of GN :

GN = BNF⊗n2 = F⊗n2 BN , (2.15)

the indices of the source vector are either bit-reverse order or natural order so the bit-reversal

matrix BN is padded at the beginning of stage 1 or at the end of stage n, where BN is a bit-reversal

operation of the indices that are expressed as

ibn−1bn−2...b0 = i′b0b1...bn−1
(2.16)

with index i is in natural order and i′ is in bit-reverse order. To this end, the computational

complexity of the polar encoding process is the same as the FFT which is O(N log2N).

A case study is illustrated by an 8-bit example. The compact-level form and data flow

graph (DFG) of 8-bit polar encoder are shown in Fig. 2.5 and Fig. 2.6, respectively. It can be seen

in Fig. 2.5, the elements (ui, i ∈ [1, N]) in the source vector u is in F2 represented as a binary

number form, while elements in future stages vector uj , j ∈ [1, n] are in a binary matrix form. For

each element in non-zero stage, source vectors uji ∈ F2j

2 is a 2j × 2j binary matrix that is generated

by two last stage elements with their corresponding generator matrix. For example, the u1 and u2

are computed based on Equation (2.14) to get the next stage element u11 that is expressed as

u11 = [u1 ⊕ u2 u2]. (2.17)

10

u1

u3

u2

u4

u5

u6

u7

u8

u1
1

u3
1

u2
1

u4
1

u1
2

u2
2

u1
3

Figure 2.5: Compact level of 8-bit example of encoder tree

11

Similarly, the u12 is also expressed as

u12 = [u3 ⊕ u4 u4]. (2.18)

Then, these two elements are further computed the next stage element u21:

u21 = [u11 ⊕ u12 u12]

= [u1 ⊕ u2 ⊕ u3 ⊕ u4 u1 ⊕ u3 u2 ⊕ u4 u3].

(2.19)

The rest of the elements are computed in a similar fashion.

u0

u2

u1

u3

u4

u5

u6

u7

x0

x2

x1

x3

x4

x5

x6

x7

Figure 2.6: 8-bit example of polar encoder

Based on the compact-level encoder tree diagram, the DFG is constructed by the butterfly

units in Fig. 2.4 (a) accordingly, which is shown in Fig. 2.6. In general, the frozen bits have the

fixed bit-value to be 0, and the Ac is known by encoder and decoder.

12

2.3 Polar Decoding

The original polar decoding algorithm, so-called successive cancellation (SC) decoding, ob-

tains the a set of outputs from the channel yN1 = (y1, y2, ..., yN), and uAc to decode the information

in uN1 and identify the frozen bits. The estimated bits ûN1 = {û1, û2, ..., ûN} of uN1 , are generated

by series-decoding from the set of outputs. Specifically, decoding each estimated bit ûi, i ∈ [1, N]

requires the previous (i− 1) estimated bits ûi−11 , which is defined as

ûi =

0, if i ∈ Ac

0, if L
(i)
N

(
yN1 , û1

i−1) ≥ 1

1, otherwise,

(2.20)

where

L
(i)
N

(
yN1 , û

i−1
1

)
,
W

(i)
N

(
yN1 , û

i−1
1 |0

)
W

(i)
N

(
yN1 , û

i−1
1 |1

) (2.21)

is the likelihood ratio (LR) computed from yN1 and ûi−11 .

According to the odd and even expressions of W i
N in Equations (2.5) and (2.6), the corre-

sponding LR forms are represented as:

L
(2i−1)
N

(
yN1 , û

2i−2
1

)
=
L
(i)
N/2

(
y
N/2
1 , û2i−21,o ⊕ û

2i−2
1,e

)
L
(i)
N/2

(
yNN/2+1, û

2i−2
1,e

)
+ 1

L
(i)
N/2

(
y
N/2
1 , û2i−21,o ⊕ û

2i−2
1,e

)
+ L

(i)
N/2

(
yNN/2+1, û

2i−2
1,e

) (2.22)

for the odd indices elements u2i−21,o = {u1, u3, ..., u2i−1}, and

L
(2i)
N

(
yN1 , û

2i−1
1

)
=
[
L
(i)
N/2

(
y
N/2
1 , û2i−21,o ⊕ û

2i−2
1,e

)]1−2û2i−1

L
(i)
N/2

(
yNN/2+1, û

2i−2
1,e

) (2.23)

for even indices elements u2i−21,e = {u2, u4, ..., u2i} to reduce the computational complexity. Thus, the

polar decoding process has same the computational complexity as O(N log2N). However, actual

computation still has the bottleneck of large latency since the output of the estimated bit is generated

in series (i.e., N data are inputted in parallel but only one estimated bit is outputted in every step),

which is opposite to the polar encoding process and FFT algorithm with parallel input and output.

13

As a result, the decoding latency is

2×
log2N∑
i=1

2i−1 = 2× 2log2N − 1

2− 1
= 2(N − 1). (2.24)

To further optimized the polar decoding process, the Equation (2.21) is transformed to the

logarithm-domain as a implementation friendly perspective [31]. Therefore, the log-LR (LLR) form

is defined as

LL
(i)
N

(
yN1 , û

i−1
1

)
, lnL

(i)
N

(
yN1 , û

i−1
1

)
. (2.25)

Specifically, the Equations (2.22) and (2.23) are expressed as:

LL
(2i−1)
N

(
yN1 , û

2i−1
1

)
=2 tanh−1

tanh
LL

(i)
N/2

(
y
N/2
1 , û2i−21,o ⊕ û

2i−2
1,e

)
2

· tanh
LL

(i)
N/2

(
yNN/2+1, û

2i−2
1,e

)
2

 ,

(2.26)

and

LL
(2i)
N

(
yN1 , û

2i−1
1

)
=(−1)û2i−1LL

(i)
N/2

(
y
N/2
1 , û2i−21,0 ⊕ û2i−21,e

)
+ LL

(i)
N/2

(
yNN/2+1, û

2i−2
1,e

)
.

(2.27)

However, the Equation (2.26) is still computational expensive in both hardware and software

because the tanh−1 operation involves a large look-up table (LUT) to implement. To address this

problem, an approximation algorithm in the log-domain widely used in BP LDPC, which is Min-Sum

algorithm, is applied in the SC polar decoding [18, 32]. Specifically, the Min-Sum approximation of

Equation (2.26) is:

LL
(2i−1)
N

(
yN1 , û

2i−2
1

)
=

1

2
·
∣∣∣LL(i)

N/2

(
y
N/2
1 , û2i−21,o ⊕ û

2i−2
1,e

)
+ LL

(i)
N/2

(
yNN/2+1û

i−2
1,e

)∣∣∣−
1

2
·
∣∣∣LL(i)

N/2

(
y
N/2
1 , û2i−21,0 ⊕ û2i−21,e

)
− LL(i)

N/2

(
yNN/2+1û

2i−2
1,e

)∣∣∣
= sign

[
LL

(i)
N/2

(
y
N/2
1 , û2i−21,0 ⊕ û2i−21,e

)]
sign

[
LL

(i)
N/2

(
yNN/2+1, û

2i−2
1,e

)]
min

[∣∣∣LL(i)
N/2

(
y
N/2
1 , û2i−21,0 ⊕ û2i−21,e

)∣∣∣ , ∣∣∣LL(i)
N/2

(
yNN/2+1, û

2i−2
1,e

)∣∣∣] .

(2.28)

Considering the hardware implementation, the polar encoder is easily implemented by the

logic gates with low hardware consumption. However, the bottleneck of the polar codes hardware

14

implementation is the polar decoder that requires a large amount of hardware resource and clock cy-

cle. Therefore, the hardware implementation for the polar decoder is more critical in the architecture

design.

For simplification, we use the functions f , g and h to represent the Equations (2.28), (2.27)

and (2.20) in LLR-form, which are defined as:

f(a, b) ≈ sign(a) sign(b) min(|a|, |b|). (2.29)

g(a, b, ûsum) = a(−1)ûsum + b (2.30)

h(LL(i)(yN1 , û
i−1
1)) =

0, LL

(i)
N

(
yN1 , û

i−1
1

)
≥ 0

1, LL
(i)
N

(
yN1 , û

i−1
1

)
< 0,

(2.31)

and the corresponding FFT-like DFG for an 8-bit example is shown in Fig. 2.7.

Meanwhile, the partial sums of the previously decoded message (i.e., ûsum) are needed to

decode the subsequent message. Therefore, we need an (n− 1)-stage truncated polar encoder in the

decoding process as demonstrated in Fig. 2.8 for the 8-bit example.

15

L8

L2

L1

L3

L4

L5

L6

L7

La

Lb

La

Lb

f

f

g

g

f

f

g

g

f

f

f

f

f

f

g

g

f

f

g

gg

g

g

g

h

h

h

h

h

h

h

h

uSum
^

g f

u1
^

u2
^

u3
^

u4
^

u5
^

u6
^

u7
^

u8
^

Generated from partial
sum generator

Figure 2.7: 8-bit example of SC polar decoder

16

u2

u4

u6

u1

u5

u3

u1+u2

u2
u2+u4

u1+u2

+u3+u4

^ ^

^ ^

^ ^

^
^

^

^

^

^

^

u3+u4
^ ^

u5+u6
^ ^

u4
^

u6
^

^ ^

Figure 2.8: Partial sum of an 8-bit polar decoder.

17

Chapter 3

Pipelined Architectures for Fast

Fourier Transform (FFT)

In this chapter, the mathematical background and the hardware design for the FFT will be

studied.

3.1 Introduction of FFT

3.1.1 Definition

FFT is a fast implementation of the discrete Fourier transform (DFT) as well as its inverse

form (iDFT), which reduces the complexity from O(N2) to O(N logN), where N is the data point.

Specifically, the N -point DFT is mathematically defined from [33] as:

X[k] =

N−1∑
n=0

x[n]W kn
N , k = 0, 1, . . . , N − 1, (3.1)

where x[n] is k ∈ [0, N − 1] and W kn
N = e

−j2π
N nk, respectively.

In addition, the iDFT is also defined as:

x[n] =
1

N

N−1∑
k=0

X[k]W−knN , n = 0, 1, . . . , N − 1. (3.2)

18

Note that

W−knN = (W kn
N)∗ = e[(j2π/N)kn]. (3.3)

It is important to mention the W kn
N and W−knN are called twiddle factor and its physical

meaning is explained in Fig. 3.1. It can be seen that a unity cycle is equally divided by 8 red points

that represented 8 data points (N = 8) in this case, that is
∑8
k=0(W k

N) = 0. Therefore, the angle θ

between the data point k and the real positive axis are:

θ =
2π

N
k, (3.4)

so the complex number form of twiddle factor is calculated by e±jθ = cos θ ± j sin θ.

1-1

j

-j

θ
Re

Im

Figure 3.1: Twiddle factor of DFT for N = 8.

3.1.2 Properties of DFT

There are several main properties of the DFT that give the alternative ways to improve

the efficiency. The FFT applies these properties to reduce the number of computations needed,

optimizing the algorithm.

19

3.1.2.1 Linearity

Given X1[k] = DFT(x1[n]) and X2[k] = DFT(x2[n]), if

x[n] = ax1[n] + bx2[n], (3.5)

then

X[n] = aX1[k] + bX2[k], k = 0, 1, . . . , N − 1 (3.6)

where a and b are constants.

3.1.2.2 Periodicity

Given WN = e
−j2π
N as N -th root of unity, W

(k+mN mod N)
N = W k

N , therefore

X(k +mN) =

N−1∑
n=0

x[n]W
((k+mN) mod N)n
N =

N−1∑
n=0

x[n]W kn
N = X(k). (3.7)

3.1.2.3 Symmetry

Given W
(N/2)
N = e−jπ = −1, then

X(k +N/2) =

N−1∑
n=0

x[n]W
(K+N/2)n
N =

N−1∑
n=0

x[n](−W kn
N) = −X(k). (3.8)

3.1.3 Radix-2 FFT Algorithm

The radix-2 FFT algorithm is the most widely used one, which requires N = 2n where

n ∈ Z+. The original design is first proposed in [34], which is now well-known as a decimation in

time (DIT) FFT algorithm, and the algorithm is reviewed in Algorithm 1.

Fig. 3.2 shows the DIT-based butterfly unit that is the basic processing element of the FFT

algorithm. There are three inputs, as well as two outputs for each butterfly unit. Specifically, the

lower input b will firstly multiply the corresponding twiddle factor W k
N , which then do the addition

and subtraction with upper input a to generate the upper output A and lower output B, respectively.

The entire data flow graph (DFG) of DIT-based FFT algorithm consists of N
2 log2N but-

terfly units and an 8-point example is introduced in Fig. 3.3. For the N -point FFT algorithm, there

20

wk
N

a

b
-1

A = a + bwk
N

B = a - bwk
N

Figure 3.2: Butterfly unit of DIT-based FFT algorithm.

are total n stages that is defined as

n = log2N. (3.9)

In each stage, the intervals between the upper input and lower input for each butterfly are increased

by 2, i.e., a = x[i], b = x[i+2n−1]. In addition, the sequence of input data points is bit-reverse order

(the order x[i] is [b0b1...bn] where ib = [bnbn−1...b0] is the binary form of order i) while the output

is nature order.

Algorithm 1 Cooley-Turkey DIT FFT algorithm [34]

Input: x[i], i ∈ [0, N − 1]

Output: X[k], k ∈ [0, N − 1]

1: for l = 1 to n do

2: for i = 0 to 2l − 1 do

3: ω = W i2n−l−1

N

4: for j = 0 to 2n−l−1 − 1 do

5: X[j] = x[j] + x[j + 2l]× ω

6: X[j + 2l] = x[j]− x[j + 2l]× ω

7: end for

8: end for

9: end for

10: return X[k], k ∈ [0, N − 1]

Similarly, another algorithm, so-called decimation in frequency (DIF) FFT algorithm, has

the same computational complexity and cost as the DIT FFT algorithm [35]. Algorithm 2 and Fig. 3.5

shows the algorithm and the DFG of the DIF FFT algorithm. Compared with the DIT FFT algo-

rithm, this algorithm firstly partitions the input data in N/2, and the input sequence is in bit-reverse

order instead of the natural order. It is interesting to know that the butterfly unit of the DIF FFT

21

w0
N

w0
N

w0
N

w0
N

w0
N

w2
N

w0
N

w2
N

w0
N

w2
N

w1
N

w3
N

-1

-1

-1

-1

-1

-1

-1

-1 -1

-1

-1

-1

Stage: #1 #2 #3

x[0]

Bit-Reverse
Order

Nature
Order

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

Figure 3.3: DFG DIT-based FFT algorithm.

22

algorithm (shown in Fig. 3.4) is similar to the butterfly unit of the DIT FFT algorithm. It requires

the addition and subtraction of the upper and lower inputs, which will then do the multiplication

with the twiddle factor. Note that, since the input pair is different, the selections (computations) of

twiddle factors in each stage of the DIF FFT algorithm are different as well.

wk
N

a

b
-1

A = a + b

B = (a - b)wk
N

Figure 3.4: Butterfly unit of DIF-based FFT algorithm.

Algorithm 2 Gentleman-Sande DIF FFT algorithm [35]

Input: x[i], i ∈ [0, N − 1]

Output: X[k], k ∈ [0, N − 1]

1: for l = 1 to n do

2: for i = 0 to 2(l − 1) do

3: for j = 0 to 2n−l − 1 do

4: X[j] = (x[j] + x[j + 2n−l])

5: X[j + 2n−l] = (x[j]− x[j + 2n−l])×W i2n−j

N

6: end for

7: end for

8: end for

9: return X[k], k ∈ [0, N − 1]

3.1.4 Radix-r FFT Algorithm

The radix-2 FFT algorithm is the most popular used in many areas. However, if there is a

large number of input data point N , the radix-2 one is not ideally used in this case.

The radix-r requires the number of input data points as N = rn, so it reduces the flexibility

of the operation. An example of radix-4 DIT-based butterfly unit is proposed in Fig. 3.6. In this

butterfly unit, it consists of 4 radix-2 DIT based butterfly unit but the all twiddle factors are moved

23

w0
N

w0
N

w0
N

w0
N

w0
N

w2
N

w0
N

w2
N

w0
N

w2
N

w1
N

w3
N

-1

-1

-1

-1

-1

-1

-1

-1-1

-1

-1

-1

Stage: #1 #2 #3

Nature
Order

Bit-Reverse
Order

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

Figure 3.5: DFG of DIF-based FFT algorithm.

24

to the outputs [36].

XF
k =

N/4−1∑
n=0

x4nW
4nk
N +

N/4−1∑
n=0

x4n+1W
(4n+1)k
N +

N/4−1∑
n=0

x4n+2W
(4n+2)k
N +

N/4−1∑
n=0

x4n+3W
(4n+3)k
N

= AF
k +W k

NB
F
k +W 2k

N CF
k +W 3k

N DF
k , k = 0, 1, . . . , N − 1

(3.10)

w2n
N

-1

-1

-1

-1-j

wn
N

w3n
N

x[n]

x[n+N/4]

x[n+N/2]

x[n+3N/4]

X[4k]

X[4k+2]

X[4k+1]

X[4k+3]

Figure 3.6: Butterfly unit of radix-4 DIT-based FFT algorithm.

Further, the split-radix FFT algorithm that combines different radix algorithms (e.g., radix-

2 and radix-4) takes the advantages from both algorithms [37].

3.2 Hardware Design of FFT

There are a lot of VLSI architectures that have been used for the implementation of the

FFT algorithm [38–43]. Generally, it can be mainly classified as memory-based and pipelined archi-

tectures. The memory-based (cache-based) designs only require a few numbers of butterfly elements

so it can save a lot of hardware resources. As opposed to memory-based architectures, other widely-

used pipelined FFT architectures in digital signal processing (DSP) applications, such as single-path

delay commutator (SDC), single-path delay feedback (SDF), multi-path delay commutator (MDC),

multi-path delay feedback (MDF), are the ones with multiple butterfly processing elements that

could potentially improve the speed significantly.

25

3.2.1 SDC FFT Architecture

Fig. 3.7 shows a basic structure of the SDC FFT architecture, which only has a single

datapath of the input and two datapaths of the output. It has log2N butterfly units and the

commutators, that is, only one radix-2 butterfly unit is required for each stage [44]. As a result, the

utilization of the radix-2 butterfly units is 50%. Pipelining stages are inserted into the datapath,

and registers are used to store intermediate values. However, the register size grows quickly with the

size of the FFT, which would offset the benefit of using SDC architectures. Another disadvantage

of this architecture is that the control logic for each PE is usually very complicated, which may

consume a considerable amount of area and power for conventional FFT applications [45].

R
2

B
u

tt
er

fl
y

U
n

it

R
2

B
u

tt
er

fl
y

U
n

it

R
2

B
u

tt
er

fl
y

U
n

it

N/2

N/4 1

1

...

Figure 3.7: N -point SDC FFT architecture.

3.2.2 SDF FFT Architecture

The idea of SDF is firstly illustrated in [46] which is further then applied in a pipelined

processor in [47], and the architecture is presented in Fig. 3.8. Different from SDC, each PE in

SDF only takes one external input and output one sample at each clock cycle. The butterfly can be

skipped in the PE to pad the data into the registers that are used in a later clock cycle. Compared

to SDC, SDF usually yields less memory size and simpler control logic. The utilization of multipliers

for radix-4 SDF is 75%, while only 25% for the butterfly unit and a general SDF (radix-r).

Specifically, a key component called the shifter unit that consists of a different number of

registers is based on the data point. Meanwhile, the number of shifters is also determined by the

radix, since it should be the same as the input and output paths of the butterfly unit. Note that

if the radix r is higher than two, the newly arriving data are pad into another shifter at the next

clock cycle. After the r clock period, the new input signal will get into the first shifter again, and

then the previous data in this shifter will shift into the next register. Once all the registers in the

shifters are filled by the data, the data located at the first register in each shifter, are fed into the

26

butterfly unit again to do the basic butterfly operation, but the multiplication with twiddle factor

will share the same multiplier.

R
2

B
u

tt
er

fl
y

U
n

it

N/2

R
2

B
u

tt
er

fl
y

U
n

it

N/4

R
2

B
u

tt
er

fl
y

U
n

it

1

...

Figure 3.8: N -point SDF FFT architecture.

3.2.3 MDC FFT Architecture

The MDC FFT architecture which is shown in Fig. 3.9 can allow operate r samples in each

clock cycle to trade-off area for speed while simultaneously improving the hardware utilization to

achieve a superior overall performance compared with SDC architecture [48], where r is the radix. In

general, this design can have a better timing performance when the radix r and the input data N are

high, because the latency and stage are reduced [45]. However, since there are more datapaths need

to be controlled at the same time, the control unit, especially the commutators, will become more

complex in the entire architecture. In order to store the intermediate results, the delay elements in

each left hand side datapaths of the butterfly unit is determined by

The Number of Delay Elements =

(r − 1)rn−l, path 1

(r − 2)rn−l, path 2

...

rn−l, path r − 1

0, path r

(3.11)

where the n = logrN , and l is the sequence of stage. For the right hand side of the butterfly unit,

all the datapathes have the same delay elements as next stage in inverse path order of the equation

(3.11) except for the output datapathes.

27

...
R
r

B
u

tt
er

fl
y

U
n

it

(r-1)rn-1

(r-2)rn-1

rn-1

...
rn-2

...

(r-1)rn-2

(r-2)rn-2

R
r

C
o

m
m

u
ta

to
r

R
r

B
u

tt
er

fl
y

U
n

it

R
r

B
u

tt
er

fl
y

U
n

it 1

...

(r-1)

(r-2)

R
r

C
o

m
m

u
ta

to
r

(r-1)

(r-2)

1

...

Figure 3.9: N -point MDC FFT architecture.

3.2.4 MDF FFT Architecture

Another most recent pipelined FFT architecture is the MDF which is firstly proposed in [49].

It combines the feature of both MDC and SDF FFT architecture to achieve an area-efficient design.

The architecture consists of r M -point SDF FFT architectures and an extra radix-r butterfly unit.

Note that, for a N -point MDF architecture, the relationship of r, M and N is defined as:

N = r ×M. (3.12)

As shown in Fig. 3.10, the SDF FFT architectures are operated in parallel, and then the results pass

to the radix-r butterfly unit to generate the final result. This design can have a high throughput

of r in each clock count. Besides, the number of registers is reduced while the number of butterfly

unit is increased.

R
r

B
u

tt
er

fl
y

U
n

it

M-point SDF 0

M-point SDF 1

M-point SDF r-1

...

Figure 3.10: N -point MDF FFT architecture.

In this chapter, we review the FFT algorithm and its hardware implementation. Note that,

the designs with the respects among of area, efficiency, memory size, and control-complexity, are

widely adopted in different applications, for instance, convolutional neural network on Artificial

Intelligence [50], polynomial multiplication over the ring on post-quantum cryptography [51, 52],

FFT-like successive-cancellation (SC) polar decoder [16, 20] etc. Based on the variety and charac-

28

teristics of these applications, the customized and optimized FFT-based architectures are used.

29

Chapter 4

Area-Efficient Pipelined VLSI

Architecture for Polar Code

In this chapter, the prior works of polar codes hardware design and the Single-path Delay

Commutator (SDC)-based polar encoder from [28] are briefly reviewed. Then, our novel area-efficient

pipelined VLSI architecture for Fast Fourier Transform (FFT)-like polar decoder is introduced. The

proposed design includes the high-level transformation by customizing the Multi-path Delay Com-

mutator (MDC)-based FFT architecture in Section 3.2.3 to reduce the processing elements (PEs),

loop-based shifting register to reduce the number of registers, and a customized PE by leverag-

ing parallel branches and delayed decision scheduling approach to enable this efficient scheme [53].

Finally, the hardware analysis and the synthesized results are introduced.

4.1 Hardware Optimization of Prior Work

In the literature, a number of architectures for the SC polar decoder have been developed [14,

16,18–20,23,27,54–56]. Specifically, the first FFT-like based design is proposed in [16] which include

variants, i.e., tree-based and line-based. For the tree-based design (Fig. 4.1), it requires 2j PEs and

registers in each stage, where j is the sequence of the current stage. The line-based design (Fig. 4.2)

employs N/2 PEs and (N − 1) registers, which overall has fewer PEs compared to the tree-based

design. However, these two designs have a relatively large latency of 2(N − 1) clock cycles for an

30

N -bit code. Later, pre-computed PEs are employed to reduce the latency [19, 20, 27]. Besides,

Breadth-First Searching (BFS) based decoding algorithms (i.e., SC list decoding) allow decoding in

parallel to improve the latency [14, 54, 55]. On the other hand, Depth-First Searching (DFS) based

decoding algorithm (i.e., SC stack) has also been proposed [56].

Figure 4.1: A tree-based polar decoder [16]

Figure 4.2: A line-based polar decoder [16]

However, most of these existing works are targeting on the low-latency designs, which usually

incur large area/power consumption. In addition, another challenge of the SC decoding algorithm

is that the first stage outputs of g nodes (i.e., L(N/2,2) to L(N,2)) need to wait for a large number of

clock cycles for their partial sum inputs, which also lowers the hardware efficiency. In contrast, the

31

objective of our design is to reduce the hardware cost and improve the hardware utilization.

4.2 Pipelined Polar Encoder Architecture

A decimation-in-frequency (DIF) SDC polar encoder architecture was proposed in [28], with

a throughput of 1 bit per clock cycle. In order to increase the throughput, we propose an MDC-based

architecture which is further used in the feedback encoding path of the polar decoder. The 8-bit

example is illustrated in Fig. 4.3. In this architecture, each PE consists of PASS or XOR operation.

By properly placing the delay elements in the data-path, the utilization of each PE is also increased

to 50%. This architecture folds the number of PEs from N
2 log2N in fully parallel architecture to

log2N in this architecture.

2D

2D D

D

Figure 4.3: An 8-bit MDC Polar Encoder Architecture.

4.3 Proposed Architecture for Polar Decoder

4.3.1 MDC-based Polar Decoder Architecture

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

1st stage2nd stage3rd stage

f

g0

g1

 0

 1

jth stage

Pl(j) D

2j-2 D

Pl(j) D

2j-2 D

2j-3 D

4β+2,3 4β+0,1 2β+1 2β+02j-1β+{2i-2,…,2i-1-1} 2j-1β+{0,…,2i-2-1}

DD

D

: q-bit Register

: 1-bit Register

Feedback Encoder

Commutator
Ru(j-1) Ru(1)Ru(2)

Rl(2) Rl(1)

FD(1)
FU(1)

FD(2)
FU(j)FD(j)

PE3 PE2 PE1PEj

XOR1XOR2XORj

Figure 4.4: A high-level Area-Efficient MDC-Based Polar Decoder Architecture.

The proposed design adopts the concepts from MDC-based FFT architectures [57] for op-

timizing the original polar decoder architecture in [16]. In addition, by applying high-level trans-

32

formations, including folding, retiming, and pipelining [58], the number of PEs in the proposed

architecture is further reduced from (N − 1) to log2N .

In general, the proposed area-efficient MDC-based polar decoder, as shown in Fig. 4.4,

consists of three main components: PE, commutator, and switch and feedback encoder. For an

N -bit decoder, there are n (i.e., log2N) PEs along with delay elements (registers) to execute the

computations in parallel, since we employ a folding factor of N/2 in our design [58]. Besides, there

are two multiplexers (MUXs) after the last stage of PE, which acts as the h nodes to identify frozen

bits.

4.3.2 Pre-Computed PEs of MDC-based Polar Decoder

Fig. 4.5 shows the schematic diagram of the pre-computed PE in Fig. 4.4. The PE consists

of one f nodes, and one g nodes assembled by g0 and g1, which gives three output signals from two

inputs.

f

g1

f(a,b)≈sign(a)sign(b)(|a|,|b|) a

b g0

g1

g(a,b)=a+b

g(a,b)=b-a

Figure 4.5: Schematic diagram of pre-computed PE

Specifically, f nodes in the DFG of Fig. 4.9 perform the min-sum algorithm, whose archi-

tecture is shown in Fig. 4.6(a). Specifically, according to Equation 2.29, the sign bit of the output

f(a, b) is computed by XORing the sign bits of two inputs a and b, where a and b are both q-bit

quantized signals. The magnitudes of two inputs’ absolute value are fed into the comparator such

that the smaller one outputs as the remaining (q − 1) bits of f(a, b).

g nodes are the main computational bottleneck of the entire SC decoding process. It requires

an additional input ûsum that is encoded from the previously estimated bits. As opposed to the

parallel outputs in FFT, the original SC polar decoder produces results in series, which generally

leads to lower throughput and PE utilization. To overcome this issue, we employ a pre-computation

method [18] based on parallel branches and delayed decision approach [29]. The output of ûsum is

33

only 1 or 0, which represents addition or subtraction of two inputs, a and b, respectively. Therefore,

we also first simultaneously calculate these two operations and then select the corresponding result

once ûsum is generated. This method basically trades area off for speed. Fig. 4.6(b) shows the

structure of the g nodes (note that g is represented as g0 and g1 in Fig. 4.4) with the parallel branch

and delayed decision approach.

a

b

(a)

+

-

y0

y1

(b)

[q-2:0]

[q-2:0]

C2A

C2A
q-1

A2C

>

q-1

a

b

f(a,b)

>: Comparator
C2A: 2's complement to Absolute Value
A2C: Absolute Value to 2's Complement

Figure 4.6: PE of MDC-Based Polar Decoder: (a) Element of Min-Sum Algorithm Architecture of
f Node. (b) Element of Parallel Branch and Delayed Decision Approach of g Node.

34

4.3.3 Pipelining and Loop-based Shifting Register

The delay elements are used to store intermediate signals based on the properties of folding

and pipelining methods. It can be seen from the left-hand side of the green dashed line in Fig. 4.4.

There are three register sets in each stage. The register set in the upper path is named as Ru(j)

and the two identical register sets in the lower paths for each g node are denoted as Rl(j).

The number of registers in Ru(j) follows the same amount of delays element of the traditional

MDC FFT architecture, i.e., the number of registers are doubled for each subsequent stage, which

is defined for stage j (1 ≤ j ≤ n) as:

Pu(j) = 2j−1, j ∈ [1, n− 1]. (4.1)

Note that the upper path of stage n is the input path, so there is no need to include any register in

stage n.

For the lower paths, since the g nodes need to wait for the corresponding estimated bits

to make the decision, both of the addition and subtraction results are stored in the parallel paths.

We also apply to the pipeline by adding extra delay elements to ensure all the signals are properly

aligned. The required pipelining registers of the lower path in each stage are expressed as:

τl(j) = 2j−2(j − 1), j ∈ [2, n] (4.2)

In order to ensure the delay elements in each Rl(j) register set are fully used in each clock

cycle, we propose a loop-based shifting register design, as shown in Fig. 4.7. This technique not

only improves the hardware utilization but also the area efficiency, since the overall number of delay

elements is reduced. The scheme is also mathematically expressed by re-designing Equation (4.2)

as:

τl(j) =

bn2 c2

n−j + 2n−j−1, j is odd

(n2 − 1)2n−j , j is even.

(4.3)

In this case, the lower path register set Rl(j) only requires the number of delay elements as:

Pl(j) = 2j−1, j ∈ [2, n] (4.4)

35

0

1

2j-2 D

0

1
2j-1 D

S[j]

S[j]

(a)

(b)

2j-2 D

Figure 4.7: Loop-based Shifting Register: (a) Rl(j) in Odd Stage. (b) Rl(j) in Even Stage.

for both odd and even stage. Half of the intermediate signals for addition and subtraction results

in g need to be stored for decision in every stage. According to Equation (13), delay elements are

separated into two groups in odd stages, as shown in Fig. 4.7(a). For example, τl(9) is redesigned

as 1024 = 4 · 256, which means each data shifts within Pl(9) = 256 delay elements for 4 times, while

τl(10) is redesigned as 2304 = 4 · 512 + 256, such that each data shifts in a two-group loop for 4

and a half times, with 256 delay elements in each group. In this case, the number of delay elements

in each stage is the same as the original tree-based design [16]. A releasing signal s[j] is needed to

output the data from the delay elements, according to Equation (4.2). Note that there is no register

in the first stage Rl(1), as no pipelining register is required in the output path.

 1

 0

 0

 1μ[j]
=c[j]

 1

 0

 0

 1

μ[j]

s[j]

(a) (b)c[j] 0: Pass
1: Switch

c[j]

Figure 4.8: (a) Commutator in Even Stage and Feedback Path. (b) Commutator in Odd Stage.

36

4.3.4 Commutator

The dataflow is mainly controlled by the commutator, as shown in Fig. 4.8. The commutator

consists of two MUXs with a single-bit control signal c[j] to perform either pass or switch operation

in each stage j.

The switching rate of commutators is controlled by a (n − 1)-bit counter µ in the forward

path. The commutators in the feedback path require only a (n − 2)-bit counter µfb, since it has a

truncated (n−1)-stage DFG. The switching rate of the commutators is doubled for each subsequent

stage, as the interval of the two inputs of the PEs is reduced by half.

After employing the pipelining method as described above, the pass or switch operation

needs to be inverted in the odd stage, while the even stages and the feedback path remaining the

same as counter values. Thus, the control signal c[j] for commutator in the forward path at stage j

is given by:

c[j] =

µ[j]⊕ s[j], j is odd,

µ[j], j is even.

(4.5)

4.3.5 Feedback Encoder

The design of the feedback encoder for calculating partial sum ûsum is mainly built upon

the polar encoder in [28], which only requires (n − 1) encoder PEs (XOR or PASS) by simplifying

the feedback encoder to (n− 1) stages. The correct results of the g nodes are selected by the MUXs

based on ûsum.

As opposed to the design in [28], we convert the original DFG from decimation-in-frequency

(DIF)-based to the decimation-in-time (DIT)-based so that we cascade the feedback encoding path

directly after h nodes. Thus, bit-reverse operations are eliminated.

4.3.6 Scheduling Scheme for Proposed Polar Decoder Architecture

In our proposed design, since the number of PEs is tremendously reduced compared with

the previous works, the scheduling of the polar decoder design becomes more important. Specifically,

the intermediate results computed by the g nodes need to be outputted either the value in g0 or

g1 once the corresponding estimated bit is achieved. Thus, our scheduling scheme, introduced in

Algorithm 3, can control the intermediate results to the PEs in the specific clock cycle by adding

37

the delay elements on the data path. The scheduling scheme can also be represented in the DFGs,

which are shown in Fig. 4.9 and Fig. 4.10. It can be seen that each node will be computed in the

specific clock cycle is highlighted in red.

Algorithm 3 Scheduling scheme of proposed polar decoder architecture

Input: N , N ≥ 4

Output: schedule[i, j], i ∈ [1, N], j ∈ [1, log 2(N)− 1]

1: for i = 1 to N/2 do

2: schedule[i, log 2(N)] = i;

3: end for

4: for k = 1 to log2(N)− 1 do

5: j = log2(N)− k;

6: schedule[1 : 2j−1, j]=schedule[2j−1 + 1 : 2j , j + 1];

7: end for

8: schedule(2,1)=schedule(1,1);

9: if N > 4 then

10: for k = 1 to log2(N)− 2 do

11: schedule(2k + 1, k + 1)=schedule(2k,1);

12: diff=schedule(2k + 1, k + 1)-schedule(1, k + 1);

13: for i = 2k + 1 to 2k+1 do

14: for j = 1 to k + 1 do

15: schedule(i, j)=schedule(i− 2k, j)+diff ;

16: end for

17: end for

18: end for

19: end if

20: for i = N/2 + 1 to N do

21: for j = 1 to log2(N) do

22: schedule(i, j)=schedule(i−N/2, j)+schedule(N/2, 1)− 1;

23: end for

24: end for

38

L8

L2

L1

L3

L4

L5

L6

L7

3

4

3

4

1

2

1

2

4

5

8

9

7

8

7

8

3

4

3

49

8

5

4

h

h

h

h

h

h

h

h

u1
^

u2
^

u3
^

u4
^

u5
^

u6
^

u7
^

u8
^

Clock Count by
Scheduling

La

Lb

La

Lb

uSum
^

g f

Generated from partial
sum generator

Figure 4.9: Scheduling of 8-bit example for SC polar decoder

39

u2

u4

u6

u1

u5

u3

u1+u2

u2
u2+u4

u1+u2

+u3+u4

4

5

8

5

6

^ ^

^ ^

^ ^

^
^

^

^

^

^

^

u3+u4
^ ^

u5+u6
^ ^

u4
^

u6
^

^ ^

Figure 4.10: Scheduling of 8-bit example for feedback encoder

4.3.7 Case Study of an 8-Bit Example

In fact, the right-hand side of the green dashed line in Fig. 4.4 shows an 8-bit example of

the proposed architecture. The corresponding schedule for each PE is summarized in Table 4.1.

Table 4.1: Schedule of 8-bit MDC-based pre-computed polar decoder

Clock Cycle 1 2 3 4 5 6 7 8 9
PE3 1,5 2,6 3,7 4,8
PE2 1,3 2,4 5,7 6,8
PE1 1,2 3,4 5,6 7,8

XOR1 1,2 3,4 5,6
XOR2 1,2,3,4 2,4
Output û1,û2 û3,û4 û5,û6 û7,û8

Data L(1,1) to L(8,1) are fed into the circuit from clock cycle 1 to 4. In the third stage, the

intermediate results of f node L(1,2) and L(2,2) are passed to Ru(2) while the other two intermediate

results L(3,2) and L(4,2) are switched down by the commutator. Besides, the intermediate results of

g node (L(5,2) to L(8,2)) are registered in Rl(2). Note that since τ(3) = Pl(3), no loop is needed in

this stage.

Meanwhile, L(1,3) and L(2,3) are encoded as ûsum = û1 ⊕ û2 to make a decision for L(3,3)

which is stored in Rl(1) at clock cycle 3. The encoded value ûsum = û1 ⊕ û2 and û2 are stored in

FU(2) and FD(1), respectively. Then, L(3,3) and L(4,3) are immediately encoded as ûsum = û3 ⊕ û4

40

which are then switched by the commutator to the lower path into the second encoder PE along

with û1 ⊕ û2.

Consequently, this encoded value (ûsum = û1⊕ û2⊕ û3⊕ û4) outputs L(5,3), which is located

in the register of Rl(2). When L(5,3) and L(6,3) are released from Rl(2), the counter value c[3] = 0.

Using the control signal after the XOR operation with µ[3] = 1, the commutator switches up the

L(5,3) and L(6,3) to Ru(2), while L(7,3) and L(8,3) are passed in the lower path. The rest data follow

a similar pattern. The last bit is decoded at clock cycle 9.

Similar to FFT architectures, this design is easily extended to an N -bit architecture by

cascading stages at the beginning of the data-paths. The corresponding number of registers in each

path is calculated from Equations (4.1) and (4.4).

4.4 Hardware Analysis and Experimental Result

Table 4.2 presents a performance comparison of the proposed architecture against several

prior works [16, 19, 27, 59] and a base-line as fully parallel architecture design. It can be seen that

our work reduces the number of PEs from (N − 1) or (
√
N − 1) to log2N , while yielding a slightly

higher latency of (log2(N)− 1)N/2 clock cycles. Besides, our design uses the same amount of delay

elements as tree-based design in [16], which is 2qN less than other designs that involve pre-computed

PEs [18, 19]. Since the design of a partial sum generator (feedback encoder) is not considered in

some prior works whose complexity is also relatively low compared to the forward path, the hardware

performance of feedback encoder is omitted in Table 4.2.

Table 4.2: Comparisons of the proposed architecture with prior works

Designs Latency # of PEs ≈ # of Register Throughput [bit(s)/clock cycle]
Proposed1 (log2(N)− 1)N/2 log2N qN 2

[16]2 2(N − 1) N − 1 qN 1
[18]1, 2 N − 1 N − 1 3qN 2
[19]1, 2 0.75N − 1 N − 2 3qN 2

[59] 2N −
√
N

√
N − 1 Not Proposed 2

Fully Parallel Archi. 2(N − 1) N
2 log2N (N log2N +N)q 1

1 design involved pre-computed PEs

2 tree-based design

To demonstrate the efficiency of the proposed architecture, we also compare the hardware

41

performance with another application-specific integrated circuit (ASIC) design by implementing

our design by using Verilog HDL and mapping into a 32nm technology node. We follow the same

parameters as in [19]. q is set as 5 such that each LLR is represented by 5-bit fix point number as

a 3-bit integer and 2-bit fraction for quantization. The comparison of the synthesized results for

(N = 1024, K = 512) is presented in Table 4.3. It can be clearly observed that our proposed design

achieves significant reductions of 98.90% and 99.02% in the number of logic cells and pre-computed

PEs, respectively. Note that, to give a fair comparison for the designs under different technology

nodes, we only compare the logic cells instead of the actual area-consumption. Thus, our design

is extremely suitable for resource-constrained applications. Overall, the Area-Time Product (ATP,

i.e., # logic cell × latency) is reduced by 93.38% in our proposed architecture.

Table 4.3: Hardware analysis of (1024,512) SC implementation results with pre-computed PE

Designs Proposed [19]
Tech. Node 32nm 45nm

of Logic Cell 3729 338499
of PEs 10 1022

Latency [Clock Cycle] 4608 767
ATP ×107 1.72 25.96

Critical Path 0.6ns 2ns

In addition, the PEs and registers have higher utilization ratios. We compare the utilization

with another folded architecture [59] that has a utilization of

N log2N)

(
√
N − 1)(2N −

√
N)

. (4.6)

For example, according to [59], the utilization of the folded architecture is 16.35% when N = 1024,

while designs in [20,27] have a utilization ratio of

N log2N

(N − 1)2
(4.7)

which is only 0.98%. In contrast, the utilization of our proposed design is given by

2

log2N + 1
, (4.8)

which is increased by 10.07% from the folded design [59] and 94.61% from the architectures in [20,27].

42

Last, we verify the algorithmic performance of our design. We select code rate as 1/2 and

N = 1024, which is the maximum length of polar code for channel coding scheme for uplink (UL)

enhanced mobile broadband (eMBB) data with information block [3]. We present the simulation

results of the proposed MDC-based decoder in Fig. 4.11, whose shows a consistent bit error rate

(BER) performance as previous works in [60,61] based on the energy per bit to noise power spectral

density ratio (Eb/N0).

Eb/N0(dB)
0 0.5 1 1.5 2 2.5 3 3.5 4

B
it

 E
rr

o
r

R
at

e

10-5

10-4

10-3

10-2

10-1

Figure 4.11: Algorithmic Performance of MDC-Based Polar Decoder.

4.5 Conclusion

In this chapter, we presented an area-efficient architecture for poplar decoder by leveraging

its structural similarity to FFT. The pipelined MDC architecture for SC-based polar decoder utilizes

a parallel branch and delayed decision approach as well as folding and pipelining techniques to reduce

the number of PEs and improve the hardware utilization.

43

Chapter 5

Conclusions and Future Works

5.1 Conclusions

This thesis mainly introduces the polar codes architecture, especially a novel area-efficient

SC polar decoder, for the resource-constrained applications, which is motivated by the similarity

of the SC polar encoding/decoding and FFT algorithm. Compared with the previous works, our

proposed polar decoder design focuses on another direction that explores the trade-off of the better

area performance, which is well-balanced on the latency and the area as achieving the lower ATP

product.

5.2 Future Works

This proposed polar decoder design has shown the advantages of the area performance.

However, several aspects are further investigated.

5.2.1 Discontinuous Output of SC Polar Decoder

Amount the existing designs [16,19,27,32], the estimated bits are outputted discontinuously.

Meanwhile, these existing designs are only considered one input data set without examining mul-

tiple continuous input data sets, which makes the entire system imbalance, and the latency finally

increases tremendously.

44

To address this problem, the retiming and techniques are used to avoid the discontinuous

output on the estimated bits by exploring an efficient scheduling scheme.

5.2.2 Low-Complexity MDC-Based Polar Decoder Architecture

In our proposed polar decoder design, the control units are still complex to implement

because the high-level transformation and the pre-computed design are applied. Therefore, the

control units can be further optimized, which can simplify and reduce the cost of our design.

5.2.3 Low-Latency Polar Decoder Architecture

The pipelined FFT architecture candidates introduced in Chapter 3 can be further explored

in different high-level transformations on the polar decoder. For example, the MDF-based design

is customized as the low-latency polar decoder design since it easily increases the parallelism of the

data paths without significantly expanding the area-consumption. The designs of the pre-computed

look ahead PE and the loop-based shifting register can also be applied in this next design.

45

Appendices

46

The SC polar decoding process of 8-bit example in the proposed MDC-based polar decoder

is illustrated as follows:

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

4β+2,3 4β+0,1 2β+1 2β+0

Clock cycle 2

2

6

2 1

6 5

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

4β+2,3 4β+0,1 2β+1 2β+0

Clock cycle 3

2

7

3

3

1 1

37 6 5

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

4β+2,3 4β+0,1 2β+1 2β+0

Clock cycle 1

1

5

1

5

After computation, values will be
stored in the registers

47

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

4β+2,3 4β+0,1 2β+1 2β+0

Clock cycle 6

8 7
/

/

6 5

u4u3,u4

u2,u4

u3

u4

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

4β+2,3 4β+0,1 2β+1 2β+0

Clock cycle 5

48 7 6

4

3

u2

5

u1,u2,u3,u4

u4

u2

u3,u4

u1

u2

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

4β+2,3 4β+0,1 2β+1 2β+0

Clock cycle 4

8

4

4

2

8 7 6 5

2

1

u2

u1,u2

3

4 3

u1,u2

48

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

4β+2,3 4β+0,1 2β+1 2β+0

Clock cycle 9

u7

u88

7

u6

8

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

4β+2,3 4β+0,1 2β+1 2β+0

Clock cycle 8

6

8

7
u5

u66

5

u5,u6

u6

8

7

f

g0

g1

 0

 1D

D

f

g0

g1

 0

 14D

4D

2D f

g0

g1

D h

 0

 1
h

D

D

2D

4β+2,3 4β+0,1 2β+1 2β+0

Clock cycle 7

8
/

/

6

u4
u3,u4

5

7

5

7

49

Bibliography

[1] Richard W Hamming. Error detecting and error correcting codes. The Bell system technical
journal, 29(2):147–160, 1950.

[2] Kai Niu, Kai Chen, Jiaru Lin, and QT Zhang. Polar codes: Primary concepts and practical
decoding algorithms. IEEE Communications magazine, 52(7):192–203, 2014.

[3] 3GPP. Final report of 3gpp tsg ran wg1 #87 v1.0.0. https://www.3gpp.org/ftp/tsg_ran/W

G1_RL1/TSGR1_87/Report/, 2016. Accessed May 10, 2020.

[4] Erdal Arikan. Channel polarization: A method for constructing capacity-achieving codes. In
2008 IEEE International Symposium on Information Theory, pages 1173–1177. IEEE, 2008.

[5] Erdal Arikan. Channel polarization: A method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels. IEEE Transactions on information Theory,
55(7):3051–3073, 2009.

[6] D Blaauw, D Sylvester, P Dutta, Y Lee, I Lee, S Bang, Y Kim, G Kim, P Pannuto, Y-S
Kuo, et al. Iot design space challenges: Circuits and systems. In 2014 Symposium on VLSI
Technology (VLSI-Technology): Digest of Technical Papers, pages 1–2. IEEE, 2014.

[7] Onur Dizdar and Erdal Arıkan. A high-throughput energy-efficient implementation of successive
cancellation decoder for polar codes using combinational logic. IEEE Transactions on Circuits
and Systems I: Regular Papers, 63(3):436–447, 2016.

[8] Bin Li, Hui Shen, and David Tse. An adaptive successive cancellation list decoder for polar
codes with cyclic redundancy check. IEEE Communications Letters, 16(12):2044–2047, 2012.

[9] Chenrong Xiong, Jun Lin, and Zhiyuan Yan. A multimode area-efficient scl polar decoder.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(12):3499–3512, 2016.

[10] Seyyed Ali Hashemi, Carlo Condo, and Warren J Gross. Fast and flexible successive-cancellation
list decoders for polar codes. IEEE Transactions on Signal Processing, 65(21):5756–5769, 2017.

[11] Youn Sung Park, Yaoyu Tao, Shuanghong Sun, and Zhengya Zhang. A 4.68 gb/s belief propa-
gation polar decoder with bit-splitting register file. In 2014 Symposium on VLSI Circuits Digest
of Technical Papers, pages 1–2. IEEE, 2014.

[12] Pascal Giard, Gabi Sarkis, Claude Thibeault, and Warren J Gross. Multi-mode unrolled ar-
chitectures for polar decoders. IEEE Transactions on Circuits and Systems I: Regular Papers,
63(9):1443–1453, 2016.

[13] YouZhe Fan and Chi-ying Tsui. An efficient partial-sum network architecture for semi-parallel
polar codes decoder implementation. IEEE Transactions on Signal Processing, 62(12):3165–
3179, 2014.

50

https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Report/
https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Report/

[14] Alexios Balatsoukas-Stimming, Alexandre J Raymond, Warren J Gross, and Andreas Burg.
Hardware architecture for list successive cancellation decoding of polar codes. IEEE Transac-
tions on Circuits and Systems II: Express Briefs, 61(8):609–613, 2014.

[15] Alexios Balatsoukas-Stimming, Mani Bastani Parizi, and Andreas Burg. Llr-based successive
cancellation list decoding of polar codes. IEEE transactions on signal processing, 63(19):5165–
5179, 2015.

[16] Camille Leroux, Ido Tal, Alexander Vardy, and Warren J Gross. Hardware architectures for
successive cancellation decoding of polar codes. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1665–1668. IEEE, 2011.

[17] Bo Yuan and Keshab K Parhi. Early stopping criteria for energy-efficient low-latency belief-
propagation polar code decoders. IEEE transactions on signal processing, 62(24):6496–6506,
2014.

[18] Chuan Zhang and Keshab K Parhi. Low-latency sequential and overlapped architectures for
successive cancellation polar decoder. IEEE Transactions on Signal Processing, 61(10):2429–
2441, 2013.

[19] Bo Yuan and Keshab K Parhi. Low-latency successive-cancellation polar decoder architectures
using 2-bit decoding. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(4):1241–
1254, 2013.

[20] Chuan Zhang, Bo Yuan, and Keshab K Parhi. Reduced-latency sc polar decoder architectures.
In 2012 IEEE International Conference on Communications (ICC), pages 3471–3475. IEEE,
2012.

[21] Bo Yuan and Keshab K Parhi. Architecture optimizations for bp polar decoders. In 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 2654–2658. IEEE,
2013.

[22] Pascal Giard, Alexios Balatsoukas-Stimming, Gabi Sarkis, Claude Thibeault, and Warren J
Gross. Fast low-complexity decoders for low-rate polar codes. Journal of Signal Processing
Systems, 90(5):675–685, 2018.

[23] Yangcan Zhou, Zhiyu Chen, Jun Lin, and Zhongfeng Wang. A high-speed successive-
cancellation decoder for polar codes using approximate computing. IEEE Transactions on
Circuits and Systems II: Express Briefs, 66(2):227–231, 2018.

[24] Jin Sha, Jingbo Liu, Jun Lin, and Zhongfeng Wang. A stage-combined belief propagation
decoder for polar codes. Journal of Signal Processing Systems, 90(5):687–694, 2018.

[25] Nadine Hussami, Satish Babu Korada, and Rudiger Urbanke. Performance of polar codes for
channel and source coding. In 2009 IEEE International Symposium on Information Theory,
pages 1488–1492. IEEE, 2009.

[26] Ido Tal and Alexander Vardy. List decoding of polar codes. IEEE Transactions on Information
Theory, 61(5):2213–2226, 2015.

[27] Chuan Zhang and Keshab K Parhi. Latency analysis and architecture design of simplified sc
polar decoders. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(2):115–119,
2014.

[28] Chuan Zhang, Junmei Yang, Xiaohu You, and Shugong Xu. Pipelined implementations of polar
encoder and feed-back part for sc polar decoder. In 2015 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 3032–3035. IEEE, 2015.

51

[29] Keshab K Parhi. Pipelining in algorithms with quantizer loops. IEEE transactions on circuits
and systems, 38(7):745–754, 1991.

[30] Claude E Shannon. A mathematical theory of communication. Bell system technical journal,
27(3):379–423, 1948.

[31] Patrick Robertson, Emmanuelle Villebrun, and Peter Hoeher. A comparison of optimal and
sub-optimal map decoding algorithms operating in the log domain. In Proceedings IEEE Inter-
national Conference on Communications ICC’95, volume 2, pages 1009–1013. IEEE, 1995.

[32] Camille Leroux, Alexandre J Raymond, Gabi Sarkis, and Warren J Gross. A semi-parallel
successive-cancellation decoder for polar codes. IEEE Transactions on Signal Processing,
61(2):289–299, 2012.

[33] Kamisetty Ramamohan Rao, Do Nyeon Kim, and Jae Jeong Hwang. Fast Fourier transform-
algorithms and applications. Springer Science & Business Media, 2011.

[34] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

[35] W Morven Gentleman and Gordon Sande. Fast fourier transforms: for fun and profit. In
Proceedings of the November 7-10, 1966, fall joint computer conference, pages 563–578. ACM,
1966.

[36] Fred J. Taylor, George Papadourakis, Alexander Skavantzos, and A Stouraitis. A radix-4 fft
using complex rns arithmetic. IEEE Transactions on Computers, 100(6):573–576, 1985.

[37] Pierre Duhamel. Implementation of” split-radix” fft algorithms for complex, real, and real-
symmetric data. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(2):285–
295, 1986.

[38] Zhuo Qian and Martin Margala. Low-power split-radix fft processors using radix-2 butterfly
units. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(9):3008–3012,
2016.

[39] Manohar Ayinala, Yingjie Lao, and Keshab K Parhi. An in-place fft architecture for real-valued
signals. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(10):652–656, 2013.

[40] Yingjie Lao and Keshab K Parhi. Canonic composite length real-valued fft. Journal of Signal
Processing Systems, 90(10):1401–1414, 2018.

[41] Stephen Richardson, Dejan Marković, Andrew Danowitz, John Brunhaver, and Mark Horowitz.
Building conflict-free fft schedules. IEEE Transactions on Circuits and Systems I: Regular
Papers, 62(4):1146–1155, 2015.

[42] Xin-Yu Shih, Yue-Qu Liu, and Hong-Ru Chou. 48-mode reconfigurable design of sdf fft hardware
architecture using radix-3 2 and radix-2 3 design approaches. IEEE Transactions on Circuits
and Systems I: Regular Papers, 64(6):1456–1467, 2017.

[43] Jian Wang, Chunlin Xiong, Kangli Zhang, and Jibo Wei. A mixed-decimation mdf architecture
for radix-2 ⊕ {k} parallel fft. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 24(1):67–78, 2015.

[44] Guan Bi and EV Jones. A pipelined fft processor for word-sequential data. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 37(12):1982–1985, 1989.

52

[45] Shousheng He and Mats Torkelson. Design and implementation of a 1024-point pipeline fft
processor. In Custom Integrated Circuits Conference, 1998. Proceedings of the IEEE 1998,
pages 131–134. IEEE, 1998.

[46] Alvin M Despain. Fourier transform computers using cordic iterations. IEEE transactions on
computers, 100(10):993–1001, 1974.

[47] Erling H Wold and Alvin M. Despain. Pipeline and parallel-pipeline fft processors for vlsi
implementations. IEEE Transactions on Computers, (5):414–426, 1984.

[48] Chao Cheng and Keshab K Parhi. High-throughput vlsi architecture for fft computation. IEEE
Transactions on Circuits and Systems II: Express Briefs, 54(10):863–867, 2007.

[49] Yu-Wei Lin, Hsuan-Yu Liu, and Chen-Yi Lee. A 1-gs/s fft/ifft processor for uwb applications.
IEEE Journal of solid-state circuits, 40(8):1726–1735, 2005.

[50] Tahmid Abtahi, Colin Shea, Amey Kulkarni, and Tinoosh Mohsenin. Accelerating convolu-
tional neural network with fft on embedded hardware. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 26(9):1737–1749, 2018.

[51] Weihang Tan, Gengran Hu, Benjamin Case, Shuhong Gao, and Yingjie Lao. An efficient
polynomial multiplier architecture for the bootstrapping algorithm in a fully homomorphic
encryption scheme. In 2019 IEEE International Workshop on Signal Processing Systems (SiPS),
pages 85–90. IEEE, 2019.

[52] Sujoy Sinha Roy, Frederik Vercauteren, Jo Vliegen, and Ingrid Verbauwhede. Hardware assisted
fully homomorphic function evaluation and encrypted search. IEEE Transactions on Computers,
66(9):1562–1572, 2017.

[53] Weihang Tan, Antian Wang, Yunhao Xu, and Yingjie Lao. Area-efficient pipelined vlsi architec-
ture for polar decoder. In 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE, 2020.

[54] Jun Lin, Chenrong Xiong, and Zhiyuan Yan. A high throughput list decoder architecture for
polar codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(6):2378–
2391, 2015.

[55] Chenrong Xiong, Jun Lin, and Zhiyuan Yan. Symbol-decision successive cancellation list de-
coder for polar codes. IEEE Transactions on Signal Processing, 64(3):675–687, 2015.

[56] Wenqing Song, Huayi Zhou, Kai Niu, Zaichen Zhang, Li Li, Xiaohu You, and Chuan Zhang.
Efficient successive cancellation stack decoder for polar codes. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2019.

[57] Manohar Ayinala, Michael Brown, and Keshab K Parhi. Pipelined parallel fft architectures via
folding transformation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
20(6):1068–1081, 2012.

[58] Keshab K Parhi. VLSI digital signal processing systems: design and implementation. John
Wiley & Sons, 2007.

[59] Xiao Liang, Junmei Yang, Chuan Zhang, Wenqing Song, and Xiaohu You. Hardware efficient
and low-latency ca-scl decoder based on distributed sorting. In 2016 IEEE Global Communi-
cations Conference (GLOBECOM), pages 1–6. IEEE, 2016.

53

[60] Bo Yuan and Keshab K Parhi. Algorithm and architecture for hybrid decoding of polar codes.
In 2014 48th Asilomar Conference on Signals, Systems and Computers, pages 2050–2053. IEEE,
2014.

[61] Xing Liu, Jin Sha, Chuan Zhang, and Zhongfeng Wang. A stage-reduced low-latency successive
cancellation decoder for polar codes. In 2015 IEEE International Conference on Digital Signal
Processing (DSP), pages 258–262. IEEE, 2015.

54

	VLSI Architecture for Polar Codes Using Fast Fourier Transform-Like Design
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Polar Codes in 5G Communication Systems
	Contribution and Outline of the Thesis

	Mathematical Background of Polar Codes
	Channel Polarization
	Polar Encoding
	Polar Decoding

	Pipelined Architectures for Fast Fourier Transform (FFT)
	Introduction of FFT
	Hardware Design of FFT

	Area-Efficient Pipelined VLSI Architecture for Polar Code
	Hardware Optimization of Prior Work
	Pipelined Polar Encoder Architecture
	Proposed Architecture for Polar Decoder
	Hardware Analysis and Experimental Result
	Conclusion

	Conclusions and Future Works
	Conclusions
	Future Works

	Appendices
	Bibliography

