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LOOSE LEGENDRIAN AND PSEUDO-LEGENDRIAN KNOTS IN

3-MANIFOLDS

PATRICIA CAHN AND VLADIMIR CHERNOV

Abstract. We prove a complete classification theorem for loose Legendrian
knots in an oriented 3-manifold, generalizing results of Dymara and Ding-

Geiges. Our approach is to classify knots in a 3-manifold M that are transverse

to a nowhere-zero vector field V up to the corresponding isotopy relation. Such
knots are called V -transverse. A framed isotopy class is simple if any two

V -transverse knots in that class which are homotopic through V -transverse

immersions are V -transverse isotopic. We show that all knot types in M
are simple if any one of the following three conditions hold: 1. M is closed,

irreducible and atoroidal; or 2. the Euler class of the 2-bundle V ⊥ orthogonal
to V is a torsion class, or 3. if V is a coorienting vector field of a tight contact

structure. Finally, we construct examples of pairs of homotopic knot types

such that one is simple and one is not. As a consequence of the h-principle for
Legendrian immersions, we also construct knot types which are not Legendrian

simple.

1. Introduction

We work in the smooth category. Throughout this paper M is an oriented, con-
nected 3-manifold, which is not necessarily compact. We fix an auxillary Riemann-
ian metric on M .

Let ξ be a cooriented contact structure on M . For Legendrain knots in (M, ξ)
with well-defined rotation and Thurston-Bennequin numbers, one classical problem
is: Given an ordered pair (t, r) ∈ Z × Z, and a smooth knot type K, classify the
Legendrian knots K ∈ K such that t = tb(K) and r = rot(K). This is sometimes
referred to as the botany problem [15]. The Thurston-Bennequin number tb(L) of
a Legendrian knot L is defined when L is zero-homologous in M . The rotation
number rot(L) is defined either when L is zero-homologous in M , or when ξ is a
trivializable 2-plane bundle.

We study the following generalized botany problem, which applies to all knot types
in any contact manifold M with a cooriented contact structure ξ: Given a connected
component FK of the space of framed knots, and a connected component of the
space of Legendrian immersed curves LC, classify the Legendrian knot types in
FK∩LC. (The framing of a Legendrian knot L is given by orthogonally projecting
a coorienting vector field for the contact structure to the normal bundle of L.) This
generalizes the botany problem because two smoothly isotopic Legendrain knots
L and L′ with well-defined Thurston-Bennequin numbers are isotopic as framed
knots if and only if tb(L) = tb(L′), and similarly, two Legendrian knots with well-
defined rotation numbers which are homotopic as immersed curves are homotopic
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2 P. CAHN AND V. CHERNOV

as Legendrian immersed curves if and only if rot(L) = rot(L′). We study this
generalized botany problem by classifying knots transverse to a nowhere-zero vector
field V on M ; we call these V -transverse knots.

Throughout the article, we use the following notation and terminology. All spaces
of knots and curves are equipped with the C∞-topology. Connected components of
a space of knots or immersed curves are referred to as isotopy or homotopy classes,
respectively. A smooth isotopy class is denoted K. An isotopy class of framed,
Legendrian, or V -transverse knots is denoted FK, LK, or VK, respectively. A
homotopy class of framed, Legendrian, or V -transverse immersed curves is denoted
FC, LC, or VC, respectively.

A Legendrian knot L in an overtwisted contact manifold (M, ξ) is loose if it is
contained in the complement of some overtwisted disk D ⊂ M . Otherwise, L is
non-loose.

We give a complete solution to the generalized botany problem for loose Legendrian
knots.

Prior results of Dymara and Ding-Geiges suggest that, in the case of loose knots,
classical invariants, and their generalizations discussed above, completely determine
the Legendrian knot type. Dymara [10, 11] proved that if the 2-plane bundle ξ is
trivializable, and the smooth knot type K has infinitely many framings, then two
loose Legendrian knots L and L′ in K are isotopic as framed knots and homotopic
through Legendrian immersions if and only if they are Legendrian isotopic. The
number of framings |K| of a smooth knot type K is the number of distinct isotopy
classes of framed knots with underlying smooth knot type K. Ding and Geiges [8]
generalized Dymara’s theorem. They proved that if K has infinitely many framings,
and the connected component of the space of framed curves FC containing L and L′

contains infinitely many distinct connected components of the space of Legendrian
immersions (this is true, e.g., when ξ is trivializable), then L and L′ are isotopic
as framed knots and homotopic through Legendrian immersions if and only if they
are Legendrian isotopic.

We first prove a best-possible generalization of the results of Dymara and Ding-
Geiges. Our generalization does not make any assumption on the number of fram-
ings of K or about the number of components of the space of Legendrian immersions
in FC. Our proof uses an h-principle of Cieliebak and Eliashberg [7].

1. Theorem (cf. Theorems 11.2 and 11.3 in the text). Let M be a 3-manifold with
a cooriented contact structure ξ, and let D be an overtwisted disk in M . Let L and
L′ be two smoothly isotopic Legendrian knots in M \D. Assume that the following
three conditions hold:

(1) L and L′ are isotopic as framed knots,

(2) L and L′ are homotopic as Legendrian immersions,

(3) Im īV = Im h̄V , where V is a coorienting vector field of ξ.

Then L and L′ are isotopic as Legendrian knots.
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In item (3), īV and h̄V are homomorphisms from the fundamental groups of the
spaces of framed knots and immersed curves in M , respectively, to Z; these ho-
momorphisms are defined in Section 4, and we compute them explicitly in many
examples.

Conversely, we construct examples of Legendrian knots which are not Legendrian
isotopic, but are isotopic as framed knots and homotopic through Legendrian im-
mersions. These examples arise when Im īV 6= Im h̄V , and the knots in these
examples can be chosen to be loose.

Our approach is to study a version of the botany problem for a more general class
of knots, which we call V –transverse knots. We say that a knot or immersed

curve K : S1 → M is V -transverse if the velocity vector ~K ′(t) and the vector
VK(t) ∈ TK(t)M span a 2-plane for all t ∈ S1. In the special case where V is
a coorienting vector field for a contact structure ξ on M , K is called pseudo-
Legendrian; this notion was introduced by Benedetti and Petronio [2, 3].

We begin by proving Theorem 2, a general classification theorem for V -transverse
knots in oriented 3-manifolds, which is the primary tool used in the proof of The-
orem 1. To state Theorem 2, we introduce a local operation on V -transverse im-
mersed curves. Let K be a V -transverse immersed curve in M . Consider a coor-
dinate chart φ : U → R3 such that U ⊂ M contains an unknotted arc of K and
V = φ−1

∗
(
∂
∂z

)
. Let Ki denote the V -transverse knot obtained from K by adding i

of the kink-pairs shown on the top in Figure 1 along this arc of K, if i > 0, and |i|
of the kink-pairs on the bottom, if i < 0. In Lemma 3.6, we prove that i 7→ Ki is a
transitive Z-action on the set of V -transverse homotopy classes in a given connected
component of the space of framed curves in M , and also on the set of V -transverse
isotopy classes in a given connected component of the space of framed knots in M .

Ki

K-i

Figure 1. The V -transverse knots Ki and K−i. In this figure, ∂
∂z

is pointing out of the page.

This kinking operation is related to, but not the same as, the usual stabilization
operation on Legendrian knots. The usual stabilization operation occurs in a chart
on (M, ξ) which is contactomorphic to (R3, ξstd) where ξstd = ker(dz − ydx); such
a chart exists at every point of M by the Darboux Theorem. Given a Legendrian
knot L in (M, ξ) and positive integer i, let Li (respectively, L−i) be the Legendrian
knot obtained by performing i positive (respectively, negative) stabilizations on L,
as shown in Figure 2. Working in the Lagrangian projection, and using the isotopy
in Figure 5, it is straightforward to check that (L−i)

i and Li are isotopic as V -
transverse knots, where again V = φ−1

∗
(
∂
∂z

)
. Since ∂

∂z is a coorienting vector field
for ξstd, this V -transverse isotopy is a pseudo-Legendrian isotopy.
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L

Li L-i

Figure 2. The Legendrian knots Li and L−i in the front and La-
grangian projections. In the Lagrangian projection, ∂

∂z is pointing
out of the page.

The above Z-action appears in Theorem 2, a classification theorem for V -transverse
knots in a 3-manifold. This theorem answers the V -transverse version of the botany
problem: Classify the V -transverse knot types in a given framed isotopy class and
a given connected component of the space of V -transverse immersed curves. (The
framing of a V -transverse knot is given by orthogonally projecting V to the normal
bundle of K).

2. Theorem (cf. Theorem 4.6 in the text). Let M be an oriented 3-manifold and
let V be a non-vanishing vector field on M . Let K be a V -transverse knot in M ,
contained in the framed isotopy class FK, the framed homotopy class FC, and the
V -transverse homotopy class VC. Let h̄V : π1(FC,K)→ Z and īV : π1(FK,K)→
Z be the homotopy and isotopy kink-cancelling homomorphisms discussed in detail
in Section 4.

• The set of V -transverse homotopy classes in FC is a (Z/ Im h̄V )-torsor.

• The set of V -transverse isotopy classes in FK is a (Z/ Im īV )-torsor.

• The set of V -transverse isotopy classes in FK ∩ VC is a (Im h̄V / Im īV )-
torsor.

The maps īV and h̄V are defined as half the values of the Euler class of V ⊥ on the
class of H2(M) realized by fundamental class of S1 × S1 pushed forward by the
adjoint map S1 × S1 →M of the loops in FC and FK respectively.

The intuition behind Theorem 2 is as follows. For a fixed V -transverse knot K,
the knots Ki defined by the kinking operation are always isotopic as framed knots.
Suppose K is a V -transverse knot in R3 with V = ∂

∂z . In this case, the knots Ki

are all distinct as V -transverse immersed curves (and hence also as V -transverse
knots), due to the fact that their projections to the xy-plane have different rotation
numbers. However, in an arbitrary oriented 3-manifold with nowhere-zero vector
field V , it may happen that K and Ki are homotopic as V -transverse curves. We
prove this happens precisely when there is a framed self-homotopy α of K along
which the Euler class of the 2-plane bundle V ⊥ takes the value 2i (in this case
h̄V (α) = i). Moreover, it may happen that K and Ki are distinct as V -transverse
knots; we prove this happens precisely when there is no framed self-isotopy α of
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K on which the Euler class of the 2-plane bundle V ⊥ takes the value 2i (in this
case i is not in the image of īV ). In particular, we get the following Corollary to
Theorem 2.

3. Corollary (cf. Corollary 4.7 in the text). The number of V -transverse knot
types in a given framed isotopy class which are homotopic through V -transverse
immersions is the index of Im īV in Im h̄V .

In R3 this index is 1. In the examples in this paper, the index is either 1 or infinite.
We do not know whether other values are possible.

We call a framed isotopy class FK simple if any two V -transverse knots K and
K ′ in FK which are homotopic through V -transverse immersions are isotopic as
V -transverse knots. Theorem 2 allows us to determine exactly when a framed knot
type is simple; see Corollary 4.

4. Corollary (cf. Corollary 4.8 in the text). The framed isotopy class FK is simple
if and only if Im h̄V = Im īV . In particular, this is the case when Im h̄V = 0.

Next we describe three types of examples. First, we describe manifolds M and
vector fields V such that every framed knot type in M is simple.

5. Theorem (cf. Theorem 6.1 in the text). Let V be a nowhere-zero vector field
on an oriented 3-manifold M satisfying one of the following three conditions:

(1) The Euler class eV ⊥ ∈ H2(M ;Z) is a torsion element, or in particular, if
eV ⊥ = 0.

(2) The manifold M is closed, irreducible and atoroidal.

(3) V is a coorienting vector field of a contact structure ξ such that (M, ξ) is
tight, or more generally, such that (M, ξ) is a covering of a tight contact
manifold.

Then every framed isotopy class in M is simple.

Second, we give examples of nonsimple classes. In our first set of examples, for an
infinite family of vector fields Vk with distinct Euler classes, we describe a framed
homotopy class of immersed curves such that every framed knot type in this class
is nonsimple.

6. Theorem (cf. Theorem 9.5 in the text). Let M be an S1-bundle over a non-
orientable surface of genus g ≥ 1 with oriented total space, and ν be the solid curve
pictured in Figure 9. Let FC be any homotopy class (connected component of the
space) of framed immersions in M that contains a curve projecting to ν. Then for
any nonzero k ∈ Z there exists a nowhere-zero vector field Vk on M such that
no framed knot type in FC is simple. In particular, for any Vk-transverse knot
K in FC, the Vk-transverse knots K and Kk are homotopic through Vk-transverse
immersions, isotopic as framed knots, and not isotopic through Vk-transverse knots.

As a corollary to Theorem 6, we construct knot types which are not Legendrian
simple. Eliashberg [12] proved that every 2-plane field is homotopic to an over-
twisted contact structure. Hence the vector field Vk above can be chosen to be a
coorienting vector field of an overtwisted contact structure ξk on M .
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7. Corollary (cf. Corollary 9.6 in the text). Let (M, ξk) be an oriented 3-manifold
as in Theorem 9.5 with a cooriented contact structure ξk homotopic to the 2-plane
field V ⊥k . For each framed knot type FK ⊂ FC containing a Legendrian represen-
tative L, the stabilized Legendrian knots Lk and L−k are isotopic as framed knots,
and homotopic as Legendrian immersions, but not isotopic as Legendrian knots;
these Legendrian knots can be chosen to be loose.

Third, we describe a framed homotopy class of immersed curves which contains
both simple and nonsimple framed knot types, again for an infinite family of vector
fields Vk with distinct Euler classes. The proof of this theorem uses an invariant
of properly immersed annuli in 4-manifolds with boundary defined by Schneider-
man [20].

8. Theorem (cf. Theorem 10.5 in the text). Let M be an S1-bundle over an
orientable surface of genus g ≥ 2. Let FK1 be the framed isotopy class of the S1

fiber with any framing, and let FK2 be the framed isotopy class obtained from FK1

by a finger move around a curve projecting to the loop l on F ; see Figures 10 and
11. Then for any nonzero k ∈ Z there exists a nowhere-zero vector field Vk such
that the framed knot type of FK1 is simple in (M,Vk) while the knot type FK2

is not. In particular, there are Vk-transverse knots K2 and Kk
2 in FK2 which are

homotopic through Vk-transverse immersions, isotopic as framed knots, and not
isotopic through Vk-transverse knots.

Again, by choosing a contact structure ξk on M with coorienting vector field Vk,
we construct examples of knot types which are not Legendrian simple.

9. Corollary (cf. Corollary 10.6 in the text). Let (M, ξk) be an oriented 3-manifold
as in Theorem 10.5, with a cooriented contact structure ξk homotopic to the 2-plane
field V ⊥k . Let L be a Legendrian knot which is smoothly isotopic to the knot K2

in Theorem 10.5. Then the stabilized Legendrian knots Lk and L−k are isotopic
as framed knots, and homotopic as Legendrian immersions, but not isotopic as
Legendrian knots; these Legendrian knots can be chosen to be loose.

The structure of the paper is as follows. In Section 2, we review Trace’s theorem for
knots in R3 and explain why our classification theorem generalizes it. In Section 3,
we review basic facts of framed and V -transverse isotopy, and introduce the actions
which appear in the main classification theorem. In Section 4, we introduce the
homomorphisms hV and iV and prove the classification theorem. In Section 6, we
prove Theorem 6.1. In Section 7, we discuss facts about the fundamental groups
of the spaces of framed knots and immersions in M , which we use to construct the
examples in the next two theorems. Section 8 is a brief expository section which
is helpful for visualizing the examples in the next two theorems. Sections 9, 10,
and 11 contain proofs of Theorems 6, 8, and 1, respectively. The last section is an
appendix on h-principles.

2. Classical Invariants of V -Transverse Knots

Consider a knot K in R3 transverse to the vertical vector field V = ∂
∂z . Consider

the following two “classical” invariants of K: The rotation number of the projection
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of K to the xy-plane, and the self-linking number of KV , where KV is the knot K
framed by V |K . Trace [23] proved that such V -transverse knots are determined by
their classical invariants. We restate his theorem using our terminology.

2.1. Theorem (Trace). Let V = ∂
∂z . Two V -transverse knots K and L in R3 are

isotopic as V -transverse knots if and only if

(1) K and L are isotopic as smooth knots,

(2) KV and LV have the same self-linking number, and

(3) the projections of K and L to the xy-plane have the same rotation number.

The second and third hypothesis above do not make sense in arbitrary (M,V ). A
rotation number of a V -transverse knot can only be defined given a trivialization of
the 2-plane bundle V ⊥, as the degree of the map which sends a point t ∈ S1 to the
normalized projection of the velocity vector K ′(t) to V ⊥. The self-linking number
is only defined for zero-homologous K. When K is not zero-homologous, one can
instead use the affine self-linking invariant constructed by the second author [5]
which generalizes the ordinary self-linking number for zero-homologous knots and
makes sense much more generally.

An even more general approach is to replace the first two hypotheses with the
hypothesis that KV and LV be isotopic as framed knots, and replace the third
hypothesis with the hypothesis that K and L are homotopic through V -transverse
immersions. These hypotheses make sense in any (M,V ) and are equivalent to
Trace’s hypothesis in (R3, V = ∂/∂z).

Thus a generalization of Trace’s theorem should characterize when two V -transverse
knots, which are homotopic through V -transverse immersions and isotopic as framed
knots with framing given by V , are isotopic through V -transverse knots.

3. Basic Properties of Framed and V -Transverse Isotopy

Let M be a 3-manifold. A framed curve or framed immersion in M is an immersion
C : S1 →M together with a nonvanishing section of the normal bundle to C(t) for
each t ∈ S1. A framed knot is a framed curve which is also an embedding. The space
of framed curves in M always has two connected components corresponding to each
connected component of the space of immersions of S1 into M . The space of framed
knots may have finitely or infinitely many connected components corresponding to
a given connected component of the space of knots in M (a given framed isotopy
class). Both spaces are equipped with the C∞ topology.

3.1. Proposition (Cf. [4]). Let M be any 3-manifold. There are two components of
the space of framed curves corresponding to each component of the space of unframed
curves in M .

Proof. Consider the Stiefel bundle of orthonormal 2-frames ξ over M . The fiber is
V2R3 = SO(3) = RP 3. Let C : S1 →M be a framed curve in M . Lift C to a curve

C̃ in ξ using the frame given by {C ′(t), v(t)} where v(t) is the framing vector of C
at time t. Since each fiber of ξ is an RP 3 there is a canonical line bundle E over



8 P. CAHN AND V. CHERNOV

ξ. The first Stiefel-Whitney class of this bundle w1 is an element of H1(ξ;Z2). Its
value on the lift of C and the lift of C with one extra twist of its framing differ by
1. Thus the number of connected components corresponding to each component of
the space of unframed curves in M is at least two.

Since there is an obvious homotopy between the curve with two extra twists of the
framing and the original framed curve, the number of the connected components
of the space of framed curves is at most two and hence actually equals two. �

Let V be a nowhere-zero vector field on M . A V -transverse curve or V -transverse
immersion in M is an immersion C : S1 → M such that C ′(t) and VC(t) span

a 2-plane for all t ∈ S1. A V -transverse knot is a V -transverse curve which is
also an embedding. Every V -transverse curve has a natural framing given by the
orthogonal projection of VC(t) to the normal bundle of the curve at C(t).

Recall from the introduction that, given a V -transverse knot K, there is a sim-
ple way to create a family Ki of V -transverse knots via the kinking operation in
Figure 1.

3.2. Proposition. The V -transverse knots Ki are all isotopic as framed knots.

Proof. See Figure 3. �

Figure 3. The V -transverse knots K and K1 are framed isotopic.

3.3. Proposition. Every framed isotopy class contains a V -transverse representa-
tive.

Proof. Take an underlying unframed knot and make it transverse to a vector field
V so that V gives some framing of the knot. Then add single kinks (see Figure 4)
until the corresponding framed knot has the desired framed knot type. �

Note that by Trace’s theorem, the Ki are all distinct as V -transverse knots, and
even as V -transverse immersions, in (R3, ∂/∂z). We will see that in other (M,V )
this need not be true.

3.4. Lemma. Every framed isotopy can be C0-approximated by a V -transverse iso-
topy. In particular, if the V -transverse knots K and L are framed isotopic, then L
is V -transverse isotopic to Ki for some integer i.

Proof. We can choose a set of coordinate charts {(Ui, φi)}ni=1 for M such that
V = φ−1

i∗ (∂/∂z) in each chart. We will imitate the framed isotopy Kt from K = K0

to L = K1 by a V -transverse isotopy KV
t in such a way that the knot KV

1 agrees
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(1,1)

Figure 4. Four different types of kinks with local contributions
(r, w) to the rotation number and writhe of the diagram.

with L outside some coordinate chart (Ui, φi), and inside that chart L and KV
1

differ by a collection of small kinks of four different types; see Figure 4. We will
then argue that these kinks cancel via an isotopy in such a way that KV

1 = Li.

In each chart we may assume that the projection of the framed isotopy Kt to the
xy-plane is a sequence of first, second, and third Reidemeister moves, in addition
to ambient isotopy.

The second and third Reidemeister moves may appear in the projection of a V -
transverse isotopy, but the first move does not appear, because the projection of a
V -transverse isotopy to the xy-plane will always be an immersed curve.

There are four different kinds of kinks that may appear in a type 1 Reidemeister
move, and these kinks are pictured in Figure 4. Each kink is labeled by an ordered
pair, where the first number is the contribution of the kink to the rotation number
of the projection to the xy-plane, and the second is the local writhe number.

Figure 5. Creation and cancelation of a pair of opposite kinks

Pairs of kinks with opposite rotation number and opposite local writhe number can
be created or cancelled by a V -transverse isotopy, see Figure 5.

Therefore if a type 1 move creates a kink of type (ε1, ε2) during Kt, we instead
create a pair of kinks (ε1, ε2) and (−ε1,−ε2) in KV

t . Then we make the extra kink
of type (−ε1,−ε2) very small and carry it along during the V -transverse isotopy.
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If there is a type 1 move in Kt which deletes a kink, we do not delete that kink in
KV
t and instead make it small and carry it along during the V -transverse isotopy.

At the end of the isotopy Kt we see L with many extra kinks. We may slide these
kinks along L using a V -transverse isotopy so that they all appear in the same
chart, and in an unknotted portion of L in that chart.

Let a be the number of (1, 1) kinks, b the number of (−1,−1) kinks, c the number
of (−1, 1) kinks, and d the number of (1,−1) kinks. Possibly by sliding kinks past
one another, we cancel all pairs of kinks that have both opposite rotation number
and opposite writhe.

Hence we may assume that either a or b is equal to zero, and either c or d is equal
to zero. For all t, the knots Kt and KV

t are contained and isotopic in a thin solid
torus Tt, whose core is Kt, which we can identify with the standard solid torus in
R3. Since both Kt and KV

t are framed isotopies, we can compare their self-linking
numbers at each time t after identifying Tt with the standard solid torus in R3.
The difference between their self-linking numbers does not depend on the choice of
identification of Tt with the standard solid torus. We call this number s(t). Since
s(0) = 0, we must have s(1) = 0. On the other hand each kink of type (ε1, ε2) in
KV

1 contributes ε2 to the value of s(1). Hence a+ c = b+ d.

In the case where a and c are equal to 0, we have b+ d = 0. But both b and d are
nonnegative, so a = b = c = d = 0. In this case KV

1 = L. This also occurs in the
case where b and d are equal to 0.

In the case where a and d equal 0, we have b = c. In this case KV
1 = L−b. In the

case where b and c equal 0, we have a = d and KV
1 = La. �

3.5. Lemma. Every framed homotopy can be C0-approximated by a V -transverse
homotopy. In particular, if the V -transverse curves K and L are framed homotopic
then L is V -transverse homotopic to Ki for some integer i.

Proof. Again, we coverM with charts (Ui, φi) such that in each chart V = φ−1
i∗ (∂/∂z).

Second and third Reidemeister moves, and crossing changes are V -transverse. We
adjust the first Reidemeister move as in the proof of Lemma 3.4. At the end of
our V -transverse homotopy, we are left with a copy of L with extra kinks. One
can pass through a double point of a kink using a V -transverse homotopy, so we
may cancel all pairs of kinks with opposite contributions to the rotation number,
i.e., pairs of types (ε1, ε2) and (−ε1,±ε2). We are left with kinks which all have the
same local rotation number. Because K and L are in the same component of the
space of framed curves the number of kinks remaining must be even. Now, we can
pass through double points at vertices of the kinks to obtain Li for some i ∈ Z. �

Let V (FK) denote the set of V -transverse knot types in the framed isotopy class
FK. Let V (FC) denote the set of V -transverse homotopy classes of V -transverse
immersions in the framed homotopy class FC. We have now proven the following.

3.6. Lemma. The maps Z× V (FC)→ V (FC) and Z× V (FK)→ V (FK) defined
by

i · C 7→ Ci

i ·K 7→ Ki
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define transitive actions on V (FC) and V (FK).

The classification of V -transverse knots reduces to computing the stabilizers of
these actions.

4. The Kink-Cancelling Homomorphisms and the Classification
Theorem

Our goal is to measure the extent to which framed isotopic V -transverse knots can
be homotopic as V -transverse immersions but not isotopic as V -transverse knots.
One can measure this using the Euler class of the 2-plane bundle V ⊥.

In the following discussion we fix a framed isotopy class, or connected component
FK of the space of framed knots and K the corresponding unframed isotopy class.
Let FC be the homotopy class of framed immersions (connected component of the
space of framed curves), containing FK, and C the corresponding homotopy class
of unframed curves.

Suppose a : S1 → C is a loop in the space of curves; that is, a self-homotopy of
some curve C. We regard α = [a] as an element of π1(C, C). Because a(s) is a
map S1 → M , the map a : S1 → C gives rise to a map of a torus, also called
a : S1 × S1 →M , defined by a(s, t) = a(s)(t).

Now we define a homomorphism hV : π1(C, C) → Z, which we call the homotopy
kink-cancelling homomorphism by

hV (α) =
1

2
eV ⊥

(
a∗[S

1 × S1]
)
.

4.1. Proposition. The map hV : π1(C, C)→ Z is a well-defined homomorphism.

Proof. If α = [a1] = [a2] in π1(C, C) then a1∗[S
1 × S1] = a2∗[S

1 × S1], so hV is
well-defined and it clearly is a homomorphism. It is integer-valued because the
value of eV ⊥ is an even class, i.e. it is 2β, for some β ∈ H2(M). �

Similarly, we define a homomorphism iV : π1(K,K) → Z, called the isotopy kink
cancelling-homomorphism, by

iV (α) =
1

2
eV ⊥

(
a∗[S

1 × S1]
)
.

As before we have

4.2. Proposition. The map iV : π1(K,K)→ Z is a well-defined homomorphism.

Note that in general, the map inc∗ : π1(K,K)→ π1(C,K) induced by the inclusion
K ⊂ C is neither one-to-one nor onto. It is helpful to note that a loop in π1(C,K)
—i.e., a homotopy from K to itself— is in the image of inc∗ if it can be homotoped
to an isotopy from K to itself in the space of immersions of S1 → M . We will see
an explicit example where inc∗ is not onto in Section 10.

The proof of the following proposition is straightforward.
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4.3. Proposition. Let hV and iV be the homotopy and isotopy kink-cancelling
homomorphisms for the components C and K of the spaces of knots and curves,
with basepoint K. Then Im iV ⊆ ImhV .

Now we give geometric interpretations of the homomorphisms above, and explain
why we call them the kink-cancelling homomorphisms. The proofs of the two lem-
mas below are similar, so we prove only the second.

First we define two related homomorphisms, h̄V and īV . Given a loop a ∈ π1(FC, C),
that is, a loop in space of framed curves, we can regard a as an element of π1(C, C),
a loop in the space of unframed curves, by forgetting the framing on a. Then define
h̄V (a) = hV (a). The definition of īV is analogous. Note that the two lemmas below
both involve the images of h̄V and īV . Also note that Im īV ⊆ Im h̄V by the same
argument as in Proposition 4.3.

4.4. Lemma. Let K be a V -transverse knot in M , and let FC be the homotopy
class of framed curves containing K. Let h̄V be the corresponding kink-cancelling
homomorphism defined on π1(FC,K). Then K and Kk are homotopic as V -
transverse immersions if and only if there is a framed self-homotopy α of K such
that h̄V (α) = k.

4.5. Lemma. Let K be a V -transverse knot in M , and let FK be the framed isotopy
class of K. Let īV be the corresponding kink-cancelling homomorphism defined on
π1(FK,K). Then K and Kk are isotopic as V -transverse knots if and only if there
is a framed self-isotopy α of K such that īV (α) = k.

Proof. First we assume that K(t) and Kk(t) are isotopic as V -transverse knots,
and show k ∈ Im īV . Let KV

u , with u ∈ [0, 1], be a V -transverse isotopy from K to
Kk, with KV

0 = K and KV
1 = Kk. Let Kfr

v , with v ∈ [0, 1], be the usual framed
isotopy from Kk to K consisting of k simultaneous applications of the move in
Figure 3, with Kfr

0 = Kk and Kfr
1 = K. We also assume that Kfr

v (t) agrees with
K(t) for t ∈ [0, 1/2], so that the isotopy moves only an arc of K as shown in Figure
6. Let a : S1 × S1 → M be the self-isotopy of K obtained by concatenating the
two isotopies above:

a(s, t) =

{
KV

2s(t) for s ∈ [0, 1/2]
Kfr

2s−1(t) for s ∈ [1/2, 1]

There is a nowhere-zero section σ of the 2-plane bundle V ⊥ defined along the
isotopy KV

u , given by projecting the tangent vectors (KV
u )′(t) to V ⊥. Consider the

pullback a∗(V ⊥) of the 2-plane bundle to the torus S1 × S1. We will show

ea∗(V ⊥)([S
1 × S1]) = eV ⊥(a∗[S

1 × S1]) = 2k

by finding the obstruction to extending our section over the whole torus. Choose
a chart with V = ∂/∂z, containing the part of the framed isotopy in which the 2k
kinks are removed. In this chart {∂/∂x, ∂/∂y} determine a trivialization of V ⊥,
which is just a distribution of horizontal 2-planes. Pull the bundle V ⊥ back to the
immersed disk φ : D2 = [1/2, 1]× [1/2, 1]→ R3 formed by the framed isotopy from
K to Kr, and equal to the image of α|[1/2,1]×[1/2,1] under the chart, shown in Figure
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6. The degree of the map φ(∂D2) 7→ σ, computed with respect to the trivialization
{∂/∂x, ∂/∂y}, is 2k. Hence

ea∗(V ⊥)([S
1 × S1]) = eV ⊥(a∗[S

1 × S1]) = 2k

and k ∈ Im iV as claimed.

Figure 6. An immersed disk in R3 formed by a framed isotopy
from K to Kr.

Now assume k ∈ Im īV . We must construct a V -transverse isotopy from K to Kk.
By assumption there is an element α = [a] ∈ π1(FK,K) such that eV ⊥(a∗[S

1 ×
S1]) = 2k. View a(s × t) as a framed self-isotopy of K. By Lemma 3.4 there is
a C0-approximation of a by a V -transverse isotopy KV

u , such that KV
0 = K and

KV
1 = Ki for some i ∈ Z. Concatenate this isotopy with the usual framed isotopy

Kfr
u from Ki = Kfr

0 to K = Kfr
1 given by i applications of the move in Figure 3, to

get a map of the torus

b(s, t) =

{
KV

2s(t) for s ∈ [0, 1/2]
Kfr

2s−1(t) for s ∈ [1/2, 1]

The maps a and b : S1 × S1 → M are C0-close, so a∗[S
1 × S1] = b∗[S

1 × S1] ∈
H2(M,Z). Thus eV ⊥(b∗[S

1 × S1]) = 2i, so i = k, and we have a V -transverse
isotopy from K to Ki. �

The following theorem gives a complete classification of V -transverse knots.

Recall that V (FK) is the set of V -transverse knot types in the framed isotopy
class FK, and V (FC) is the set of V -transverse homotopy classes in the framed
homotopy class FC. Let V (FK ∩ VC) denote the set of V -transverse knot types in
FK ∩ VC.

Theorem 4.6 below is Theorem 2 from the Introduction.

4.6. Theorem. Let K be a V -transverse knot in M , contained in the framed isotopy
class FK, the framed homotopy class FC, and the homotopy class of V -transverse
immersed curves VC. Let h̄V : π1(FC,K) → Z and īV : π1(FK,K) → Z be the
homotopy and isotopy kink-cancelling homomorphisms for framed curves and knots
respectively. Then

• V (FC) is a (Z/ Im h̄V )-torsor;

• V (FK) is a (Z/ Im īV )-torsor;
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• V (FK ∩ VC) is a (Im h̄V / Im īV )-torsor.

Of particular interest are the following corollaries, which illustrate how the classi-
fication may differ from the familiar example of (R3, ∂/∂z). They are Corollaries 3
and 4 from the Introduction.

4.7. Corollary. The number |V (FK ∩ VC)| of V -transverse knot types in a given
framed isotopy class which are homotopic through V -transverse immersions is the
index of Im īV in Im h̄V .

In (R3, ∂/∂z) this index is 1. In the examples in this paper, the index is either 1
or infinite. We do not know whether other values are possible.

4.8. Corollary. The framed isotopy class FK is simple if and only if Im h̄V =
Im īV . In particular, this is the case when Im h̄V = 0.

5. Some very basic examples

Let F be an oriented surface and M = F × R. Let V = ∂/∂z where z is the R
coordinate. As in the case F = R2 (the setting of Trace’s theorem), V -transverse
knots are described by regular knot diagrams on F up to the second and third
Reidemeister moves, and ambient isotopy. The framing is the blackboard framing
given by the R factor. We consider closed surfaces in these examples, since in those
cases, V ⊥ (which can be identified with TF × {0}) is not necessarily trivializable,
so our theory is more interesting.

Example 1. F = S2. There are two framed isotopy classes of framed knots
corresponding to each isotopy class of unframed knots. Let K be a small circle
embedded in S2 with framing given by V . We will show that the framed knot type
K is simple. There is a framed isotopy taking K to K2, pictured in Figure 7. Note
that it is important to keep in mind K2 means K with two extra pairs of kinks,
as defined by our action, not K with two extra twists of its framing. The first
step takes a small loop and isotopes it around the back of the sphere to reverse
its orientation. The next steps are a Reidemeister 2 move, followed by an ambient
isotopy. The torus swept out by this isotopy followed by the usual framed isotopy
from K2 back to K is homologous to the fundamental class [S2]. Furthermore
TM = TS2 × R and V ⊥ can be identified with the bundle TS2 × {0}. We see
that there is a self-isotopy α of K such that eV ⊥(α∗[S

1 × S1]) = χ(S2) = 2. Thus
īV is onto, and Im īV = Z = Im h̄V . By Corollary 4.8 two knots in the framed
isotopy class of K are isotopic through V -transverse knots if and only if they are
homotopic through V -transverse immersions. The same can be said for the framed
isotopy corresponding to K with an extra twist of its framing.

Figure 7. An isotopy fro K to K2 on S2.
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Example 2. F = T 2. In this case all classes are simple because V ⊥ is trivial. Note
that there are still interesting self-isotopies of knots on the torus (i.e., self-isotopies
such that the corresponding torus is not zero-homologous). For example, if K is
the meridian, there is a self-isotopy of K which sweeps out the whole torus.

Example 3. F is a closed surface of genus g ≥ 2. So F is a K(π1). The
only abelian subrgoups of π1(F ) are infinte cylic by the Preissman’s Theorem [9],
and π1(S1 × S1) = Z ⊕ Z is abelian. Hence a map S1 × S1 → F factors through
S1 and for a map S1 × S1 → F × R the image of the fundamental class of the
torus is 0 ∈ H2(F × R) = H2(F ). Thus the homomorphisms īV and h̄V are zero
homomorphisms.

6. Simple Knot Types

In this section we point out interesting properties of M and V which cause all
framed isotopy classes of knots in M to be simple automatically.

A 3-manifold M is irreducible if every 2-sphere embedded in M bounds a ball. M
is atoroidal if there are no maps f : S1 × S1 →M which are π1-injective.

6.1. Theorem. Assume that the pair (M,V ) satisfies any one of the following
conditions:

(1) The Euler class eV ⊥ ∈ H2(M ;Z) is a torsion element, or in particular, if
eV ⊥ = 0;

(2) The manifold M is closed, irreducible and atoroidal, which includes the
case where M is equipped with a Riemannian metric of negative sectional
curvature;

(3) V is a coorienting vector field of a contact structure ξ such that (M, ξ) is
tight, or more generally, such that (M, ξ) is a covering of a tight contact
manifold.

Then every framed isotopy class in M is simple.

Proof. It suffices to show that if any one of these three conditions holds, then for
every α : S1 × S1 → M we have eV ⊥(α∗[S

1 × S1]) = 0 (implying both kink-
cancelling homomorphisms are zero). If condition (1) holds this is certainly true.
If condition (2) holds this is true because α∗[S

1 × S1] = 0; see for example [6, p.
2784]. If condition (3) holds then eV ⊥ = eξ and the desired statement was proven
in [6, Corollary 3.10]. (Note that if α : S1 × S1 → M is an embedding, then
eξ(α∗[S

1 × S1]) = 0 by a Bennequin type inequality of Eliashberg [13, Theorem
2.2.1]. �

7. Some special loops in the space of framed immersions of S1 →M3

In this section we recall three important elements of π1(FC,K) and π1(C,K) from
[5]. These loops will be used to construct examples of V -transverse knots which are
framed isotopic, homotopic through immersions, and not V -transverse isotopic.
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7.1. The number of framings of a knot. First we recall a result about framed
knots. It follows from the existence of the self-linking number that the number |K|
of framed knots in S3 with given underlying zero-homologous knot K is infinite.
The second author previously defined affine self-linking invariants and used them [5,
Theorem 2.4] to show that |K| is infinite for every knot in an orientable manifold
unless the manifold contains a connected sum factor of S1 × S2. The knot K need
not be zero-homologous and the manifold is not required to be compact. In our
work with Sadykov [4] we used the results of McCullough [19] and strengthened the
above result. We showed that

7.1. Lemma. Let M be a not necessarily compact orientable 3-manifold. Given a
knot K in M we have |K| = ∞ unless K intersects a nonseparating 2-sphere at
exactly one point in which case |K| = 2.

Note that if K intersects a nonseparating sphere at exactly one point then M
contains S1 × S2 as a connected sum factor.

7.2. The framing loop γfr. Let γfr be the element of π1(C,K) pictured in Figure
8. We call it the framing loop because it locally changes the framing of a framed
knot by adding two full twists. We say locally because Lemma 7.1 implies that in
some cases the resulting knot is actually framed isotopic to K. The loop γfr is not
an element of π1(FC,K); rather, it is a path from K to K2, the framed knot K
with two extra twists added to its framing. K and K2, as stated above, may or
may not be isotopic as framed knots, but nevertheless they are still always distinct
points in FC.

Figure 8. The loop γfr.

7.3. The rotation loop γrot. Let γrot be the element of π1(FC,K) induced by
one full rotation of the parameterizing circle of K.

7.4. The fiber loop γfib. This loop is defined in the special case where p : M3 →
F is an S1-bundle over a (not necessarily orientable) surface F and p(K) is an
orientation-preserving loop on F. Since M is oriented and p(K) is orientation-
preserving, we can orient the S1-fibers containing the points of K so that this
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orientation continuously depends on the point of K. Note that if a double point of
p(K) separates p(K) into two orientation reversing loops then the corresponding
two points of K give different orientations of the S1-fiber.

Let γfib be the homotopy of K that slides every point K(t) of K around the fiber
that contains K(t) with unit velocity, in the direction specified by the orientation
of the fiber. The homotopy γfib is an element of π1(FC,K), but may or may not
be an element of π1(K,K).

7.5. The loops γρ. This loop is defined only in the special case where p : M → F is
an S1-bundle over a (not necessarily orientable) surface, ρ = [r] ∈ π1(F ) is the class
of an orientation-preserving loop r on F based at p(K(1)), and K is an oriented
S1-fiber. We consider the framed isotopy γρ such that at each time moment t the
underlying loop γρ(t) is the S1-fiber over p(r(t)). There are many choices for such
an isotopy, with two such differing by a power of γfib. For our purposes this is not a
problem. The isotopy γρ may be regarded as an element of π1(C,K), or π1(K,K).

8. Visualizing vector fields with a given Euler class of V ⊥

This section is a review of the Pontryagin-Thom construction and is expository, but
useful for explicitly constructing and visualizing the vector fields which appear in
the examples throughout the rest of the paper. We follow Geiges [16, Section 4.2].

Our goal will be to construct and visualize a vector field for which the Euler class
eV ⊥ is 2k[d̃] for some link d̃ in M .

It is easier to begin with the reverse direction, and explain how to construct
and visualize the Poincaré dual of the Euler class of V ⊥. Fix a trivialization of
TM 'M × R3. Let V be a nowhere-zero vector field on M . Then using our fixed
trivialization, V corresponds to a map fV : M → S2. Choose a basis for R3 such
that the north pole N is a regular value for fV . Let d̃ = f−1

V (N), which is a link in

M . Then the Euler class eV ⊥ is Poincaré dual to 2[d̃]. To see why, recall that the
Euler class of V ⊥ is Poincaré dual to the zero set of a generic section of V ⊥. To
get a generic section of V ⊥, project V to the xy-plane (possibly after a homotopy
of V to ensure it is generic, and to ensure that the south pole S is also a regular
value of fV ), according to our trivialization. The resulting section is zero along
f−1(N) ∪ f−1(S), the preimages of the poles. The preimage of the north pole is

d̃, and one can check that the preimage of the south pole is homologous to the
preimage of N . Thus 2[d̃] is Poincaré dual to eV ⊥ .

Now we consider the question we are interested in: how to construct a vector field
such that eV ⊥ is Poincaré dual to 2k[d̃]. We start with the case k = 1. Again fix

a trivialization of TM . Define V to be N along d̃. Fix a tubular neighborhood
T = d̃(t)×D2 of d̃. Define V to be S along M − T̊ . Now define V along the rest of

T by mapping each cross-section d̃(t)× D̊2 to the open disk S2−{S} such that the
center of the disk maps to N (as already noted). Perturb this vector field slightly
so that S is a regular value of fV (for example, take V to be a point close to S in

M − T̊ ). Now f−1
V (S) runs parallel to d̃ in T , and the Euler class eV ⊥ is 2[d̃].

To construct Vk dual to 2k[d̃], repeat the above process with k parallel copies of d̃.
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9. Examples of nonsimple Knot Types

Given k ∈ Z, in every S1-bundle M over a non-orientable surface F of genus at
least 1 with an oriented total space, we can construct a nowhere-zero vector field
V = Vk on M , and a V -transverse knot K, such that K and Kk are framed isotopic,
homotopic as V -transverse immersions, and not isotopic as Vk-transverse knots.

For such a knot K, since K is isotopic to Kk through V -transverse knots, it must
be the case that k ∈ Im h̄V . And, since K and L are not homotopic through
V -transverse immersions, we must have that k /∈ Im īV .

In particular, we seek a knot K and a vector field V , such that there exists a
framed homotopy from K to itself, such that the pullback of the bundle V ⊥ to the
corresponding torus has Euler number 2k, but for every framed isotopy from K to
itself, the pullback of the bundle V ⊥ to the corresponding torus has Euler number
0.

Figure 9. V is the vector field on M such that the Euler class of
the 2-plane bundle V ⊥ is Poincaré dual to a lift d̃ of the dotted
curve d to M . The knot K is a lift of the solid curve ν.

For any fixed k ∈ Z, let V = Vk be any vector field on M such that the Euler class
of the 2-plane bundle V ⊥ is Poincaré dual to 2k[d̃], where d̃ is a curve in M that
projects to the dotted curve d in Figure 9. Let K be any knot in M that projects
to the solid curve ν in Figure 9. We assume that K is perturbed slightly so it is
V -transverse. This does not determine a unique V -transverse isotopy class, but
that is not a problem. Let FC be the connected component of the space of framed
immersions containing K. Let K ′ be any other V -transverse knot in FC.

9.1. Lemma ([5] proof of Lemma 6.11). Let α ∈ π1(C,K). Then α contains a

representative of the form γifibγ
j
rotγ

k
fr.

Proof. Pick a representative a ∈ α. Since a is a loop in the space of immersions,
we can lift a to a loop also called a ∈ π1(STM, K̄) where K̄ is the lift of K
to the spherical tangent bundle STM . Now we regard a as a map S1 × S1 →
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STM and consider the possible values of τ(α), the trace of the basepoint of a
in π1(M,K(1)). For the precise definition of τ see Section 12. The image of
τ : π1(ΩSTM, K̄)→ π1(STM, K̄(1)) = π1(M,K(1)) is the centralizer of K. From
the long exact sequence of the bundle S1 ↪→ M → F , and from the fact that the
centralizer of ν ∈ π1(F ) is the cyclic subgroup generated by ν, we conclude that
any element of the centralizer of K in π1(M,K(1)) is of the form f iKj where f is
the class of the S1-fiber. On the other hand, τ(γfib) = f and τ(γrot) = K, so by

Proposition 12.2, a is homotopic to a representative of the form γifibγ
j
rotγ

k
fr. �

For the next Lemma, we introduce an invariant δ of knots in C. Let Ks be a
singular knot with one double point at s ∈ M and view Ks as a pair of maps
(Ks,1,Ks,2) ∈ π1(M, s) × π1(M, s). Let σ(Ks) = 1 if both Ks,i are noncontratible
and let σ(Ks) = 0 otherwise. We say a loop or path γ : [0, 1] → C is generic if,
whenever γ(t) is a singular knot, γ(t) has exactly one transverse double point and
no other multiple points, and the set of times such that γ(t) is singular is a discrete
set {t1, . . . , tn}. In particular any loop in π1(C,K) has a generic representative.

A transverse double point s of a singular knot can be resolved in two different ways.
We say that a resolution of a double point is positive (resp. negative) if the tangent
vector to the first strand, the tangent vector to the second strand, and the vector
from the second strand to the first form a positive 3-frame. This does not depend
on the order of the strands.

We assign a sign to each singular knot γ(ti) as follows: if, for ti < t+ < ti+1, γ(t+)
is obtained from the singular knot γ(ti) by a positive resolution of its double point,
put ε(ti) = 1. Otherwise ε(ti) = −1.

For any generic γ : [0, 1]→ C define δ(γ) =
∑n
i=1 ε(ti)σ(γ(ti)).

The set of singular knots forms the discriminant D in C. The codimension two
(with respect to D) stratum of the discriminant consists of singular knots with
two distinct transverse double points. It is easy to see that δ(α′) = 0, for every
small generic loop α′ going around the codimension two stratum. This implies (cf.
Arnold [1]) that if γ is a generic loop in C that starts at a nonsingular knot K, then
δ(α) depends only on the element of π1(C,K) realized by a generic loop α.

9.2. Lemma. The value of the invariant δ on γfib is 2. In particular, no element
of the homotopy class [γfib] ∈ π1(C,K) is represented by a self-isotopy of K, that
is, an element of π1(K,K).

Proof. Clearly δ(γ) = 0 for any γ which is homotopic to a loop in K. However
δ(γfib) = 2. The knot K = γfib(0) crosses the fiber over the self-intersection point
p of ν twice. During the homotopy γfib(t), these two points move along the fiber at
unit speed in opposite directions because the two loops in F one gets by smoothing
ν at p are orientation reversing. Therefore γfib(t) is singular at two times t1 and t2,
and δ(γfib) = 2 because ε(t1) and ε(t2) are equal and σ(γfib(t1)) = σ(γfib(t2)) = 1.
The last identity holds because the two loops adjacent to a double point of singular
knots γfib(ti), i = 1, 2, project to orientation reversing loops on F and hence are
not contractible in M. Hence γfib is not homotopic to a loop in K. �

9.3. Lemma. Let K ′ be any knot homotopic to K through immersed curves, where
K is a knot projecting to ν. Let β ∈ π1(C,K ′). If β is represented by a self-isotopy
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of K ′, that is, an element of π1(K,K ′), then β contains a representative of the form

γjrotγ
s
fr for some integers j and s.

9.4. Remark. Note that one can show that s = 0, but we will not need this stronger
version of the lemma.

Proof. Choose a homotopy φ from K ′ to K in C, and write β = φαφ−1 with
α ∈ π1(C,K). Thus δ(β) = δ(φ) + δ(α) − δ(φ) = δ(α). By Lemma 9.1, we may

write α = [γifibγ
j
rotγ

k
fr]. Now δ(α) = iδ(γfib) + jδ(γrot) + kδ(γfr). By Lemma 9.2,

δ(γfib) = 2. Since γrot is homotopic to an isotopy, δ(γrot) = 0. Lastly, δ(γfr) = 0
since the singular knot which appears during γfr can be viewed as an ordered pair
of two loops, at least one of which is contractible. For β to be homotopic to an
isotopy we must have δ(β) = δ(α) = 0. Thus 0 = 2i + 0j + 0k, so i = 0 while

thus far j and k can be any integer. Now α = [γjrotγ
k
fr] and β = φ[γjrotγ

k
fr]φ
−1. But

φ[γjrotγ
k
fr]φ
−1 is homotopic to [γjrotγ

k
fr] ∈ π1(FC,K ′), where γrot is now viewed as a

rotation of the parametrizing circle of K ′ rather than K and γfr is the homotopy
which passes through a small kink of K ′ rather than K. Note that the loop γrot is
a framed isotopy, while the loop γfr is not even an isotopy.

�

9.5. Theorem. Let M be the oriented total space of an S1-bundle over a non-
orientable surface of genus g ≥ 1 and let ν be the solid curve pictured in Figure 9.
Let FC be any homotopy class of framed immersions containing a framed knot K
that projects to ν. For each k ∈ Z there exists a nowhere-zero vector field Vk on M
such that no knot type in FC is simple. In particular, for any Vk-transverse knot
K ′ in FC, the Vk-transverse knots K ′ and K ′k are homotopic through Vk-transverse
immersions, isotopic as framed knots, and not isotopic through Vk-transverse knots.

Proof. Let Vk be a vector field on M such that the Euler class eV ⊥k ∈ H
2(M ;Z) of

the 2-plane bundle V ⊥k on M is Poincaré dual to the class 2k[d̃] ∈ H1(M ;Z) where

d̃ is some curve in M projecting to the dotted curve in Figure 9. The fact that such
a vector field exists follows, for example, from the Pontryagin-Thom Construction,
see for example Section 8. Furthermore, choose d̃ so that it intersects the fiber over
p = Im ν ∩ Im d transversely in one point, and is disjoint from K.

To simplify notation in the remainder of the proof, we write V rather than Vk.

We begin by showing that the knot type of K is simple.

We claim that k ∈ Im h̄V . To show this, we must find a framed self-homotopy
α ∈ π1(FC,K) such that eV ⊥(α∗[S

1 × S1]]) = 2k. Let α = γfib. The lift d̃ of d

intersects Im γfib transversely in one point. Since eV ⊥ is Poincaré dual to 2k[d̃], we
have eV ⊥(α∗[S

1 × S1]]) = 2k.

Now we must show that k /∈ Im īV . It suffices to show k /∈ Im iV . Suppose
α ∈ π1(K,K) and iV (α) = k. We may apply Lemma 9, and use the lemma in the

case where K ′ = K. We conclude that α is represented by the loop γjrotγ
s
fr for some

integers j and s. But eV ⊥([γjrotγ
s
fr]) = 0 since the corresponding torus is disjoint

from d̃, contradicting our assumption.
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Now we will show that any knot type in FC is simple. Let K ′ be any knot homotopic
to K through framed immersions. We first check that k ∈ Im h̄V . (Now the
homomorphisms are viewed as maps using basepoint K ′, and the homomorphism
īV is a map from π1(FK′,K ′)→ Z, where FK′ is the connected component of the
space of framed knots containing K ′.) Again let α = γfib,K′ , where now γfib,K′ is
the framed self-homotopy of K ′ given by sliding K ′ around the fiber. Let φ be any
path from K ′ to K in FC. We can write α = φγrot,Kφ

−1, where γrot,K is the self-
homotopy of K given by sliding K around the fiber. Now eV ⊥(φγrot,Kφ

−1) = 2k
as desired.

Last we show k /∈ Im īV , and as before it suffices to show that k /∈ Im iV . Suppose
β ∈ π1(K′,K ′), where K′ is the isotopy class of K ′, and iV (β) = k. We may apply

Lemma 9, and conclude that β contains a representative of the from γjrot,K′γ
s
fr.

Again this is disjoint from d̃ so eV ⊥(β) = 0, contradicting our assumpton. �

The knots in Theorem 9.5 can be chosen to be Legendrian with an overtwisted
complement. This is because the result of Eliashberg [12] says that every 2-plane
distribution in TM is homotopic to an overtwisted contact structure. We make this
precise in the following corollary.

9.6. Corollary. Let (M, ξk) be an oriented 3-manifold as in Theorem 9.5 with a
cooriented contact structure ξk homotopic to the 2-plane field V ⊥k . For each framed
knot type FK ⊂ FC containing a Legendrian representative L, the stabilized Legen-
drian knots Lk and L−k are isotopic as framed knots, and homotopic as Legendrian
immersions, but not isotopic as Legendrian knots; these Legendrian knots can be
chosen to be loose.

Proof. Let L be a Legendrian curve which projects to the knot ν in 9.5. It is
straightforward to check that Lk and L−k are isotopic as framed knots. Recall
from the introduction that Lk is isotopic to (L−k)k through Vk-transverse (in this
case, pseudo-Legendrian) knots. By Theorem 9.5, L−k and (L−k)k are homotopic
through Vk-transverse immersions, but not isotopic through Vk-transverse knots.
Hence the same is true of L−k and Lk. By the h-principle for Legendrian immer-
sions [17] (see Theorem 12.3), L−k and Lk are homotopic as Legendrian immersed
curves. The corollary follows. �

10. Homotopy classes containing Simple and Nonsimple Knot Types

In this section we construct framed knot types FK1 and FK2 with homotopic
representatives (FKi ⊂ FC for some component FC of the space of framed curves),
such that FK1 is simple while FK2 is not. This is in contrast to the example in
the last section, where we described a homotopy class in which all knot types were
nonsimple.

Let M be an S1-bundle over an oriented surface of genus g ≥ 2. Let d̃ be any curve
in M projecting to the solid loop d pictured in Figure 10 to M and let Vk be a
vector field on M such that eV ⊥k is Poincaré dual to 2k[d̃] ∈ H1(M ;Z). Let K1 be

a vertical fiber with some framing.
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p=pr(K1)

pr(K2)

l

r

d

Figure 10. M is an S1-bundle over F with vector field Vk such
that eV ⊥k is Poincaré dual to 2k[d̃] ∈ H1(M ;Z).

Let K2 be a framed knot obtained from K1 by pulling a small arc of K1 around a
loop in M which projects to a loop freely homotopic to l−1 on F and then passing
through a double point, see Figure 11. The loop l is pictured in Figures 10. Let C

Figure 11. K2 is obtained from K1 by pulling a small arc of K1

around a loop in M which projects to a loop freely homotopic to
l−1 on F .

denote the component of the space of immersions containing K1 and K2. Now we
characterize all possible self-homotopies of K1. Recall that the definition of γρ can
be found in Subsection 7.5.

10.1. Lemma ([5] proof of Lemma 6.11). Let α ∈ π1(C,K1). Then α contains a

representative of the form γργ
j
rotγ

k
fr for some choice of γρ, where ρ ∈ π1(F, p).

Proof. The proof is similar to that of Lemma 9.1. Again the trace of the basepoint
under a self homotopy commutes with the curve K1. In this case, the trace of the

basepoint of α must commute with the class of the fiber [f ] ∈ π1(STM, ~K(1)) =
π1(M,K(1)). But [f ] is in the center of π1(M,K(1)), so τ(α) can be any element
of π1(M,K(1)). In particular we may write τ(α) = ρ̃ · [f ]j for some loop ρ̃ which

projects to ρ ∈ π1(F, p). But for some choice of loop γρ, the loop [γργ
j
rot] has trace

ρ̃ · [f ]j as well. Now the lemma follows from Proposition 12.2. �

10.2. Proposition. Let φ : [0, 1]→ C be a path from K2 to K1 which unclasps K2

and is an isotopy at all other times. Every loop in π1(C,K2) has a representative

of the form φγργ
j
rotγ

k
frφ
−1 for some ρ ∈ π1(F, p).
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Proof. This follows directly from Lemma 10.1. �

10.3. Definition (Schneiderman’s invariant). Now we recall an invariant due to
Schneiderman [20] which we use in the proof of the next lemma. Let X be a 4-
manifold and let A : S1 × [0, 1], S1 × {0, 1} → (X, ∂X) be a properly immersed
annulus. Let x be a basepoint of X and let a be a basepoint of ImA. A whisker for
A is a choice of path from x to a; fix some whisker ω. For each self-intersection point
p of A, the sheets at p are the two transversely intersecting immersed 2-disks in a
small neighborhood of p in A. For each self-intersection p define a loop gp ∈ π1(X,x)
as follows: go along ω to a, go along a path in A to p, switch sheets, return to a
without passing through any other double points of A, and then return to x along
ω−1. The loop gp is well defined up to powers the loop κ = ωA∗(S

1× ta)ω−1 where
a ∈ A(S1× ta). Define a sign ε(p) by comparing the orientation of X at p with the
orientation given by the two sheets of A at p. Now

µ(A) =
∑

p∈A∩A
ε(p)[gp].

Let Λκ = Z[π1(X,x)]/{g − κng±1κm} where Z[π1(X,x)] denotes the free abelian
group generated by the elements of π1(X,x). Note that if one wants an invariant
of homotopy rather than just regular homotopy one should add Z[1] to the denom-
inator of the quotient; for our purposes a regular homotopy invariant is enough.

Following Wall [24], Schneiderman [20, Proposition 4.1.2] proves that µ(A), when
viewed as an element of the quotient Λκ, is an invariant of regular homotopy, and
whenever µ vanishes on A, the double points of A can be paired off with Whitney
disks. In higher dimensions, because of the Whitney trick, µ vanishes if and only
if A is regularly homotopic to an embedding; in dimension 4, µ vanishing is just a
necessary condition for A to be regularly homotopic to an embedding.

10.4. Lemma. The class [φγργ
j
rotγ

k
frφ
−1] ∈ π1(C,K2) is not represented by an ele-

ment of π1(K2,K2) if ρ 6= [l]s for some s ∈ Z.

Proof. Let x1 and x2 be the preimages of the double point of the singular knot
which appears during the homotopy φ at time s0; that is, φs0(x1) = φs0(x2) for
some s0 ∈ [0, 1]. We assume that this unclasping homotopy has the properties that
pr(φs(x1) ≡ p), and pr(φs(x2)) = l(s) for s ∈ [s0, 1]. The loop l is pictured in
Figure 10.

By modifying our choice of loop γρ, we may assume j = 0. Also, γfr commutes with
γρ and φ, so we begin by considering φγρφ

−1.

We consider the track of the homotopy φγρφ
−1 in [0, 1] ×M . By this we mean,

consider the following map A : [0, 1]× S1 → [0, 1]×M :

A(s, t) =


s× φ3s(t) for s ∈ [0, 1/3]
s× (γρ)3s−1(t) for s ∈ [1/3, 2/3]
s× φ−1

3s−2(t) for s ∈ [2/3, 1]

If the loop φγρφ
−1 is homotopic to a loop in π1(K2,K2), then the immersed annulus

A : [0, 1]× S1 → [0, 1]×M is homotopic to an embedded one, through maps fixing
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d

0 x x1 

s1 x x1 

0 x x2

s1 x x2 

s2 x x2 

s2 x x1 

z

y1

y2

y3

y4

Figure 12. The track of the homotopy φγρφ
−1 in [0, 1]×M .

A(0 x x1)

A(0 x x2)

A(s1 x  x1) = A(s1 x x2)  

Figure 13. The term gp×t1 projects to β−1 on F .

the boundary. We compute µ(A) and conclude that if ρ does not commute with [l]
in π1(F, p), then A is not homotopic to an embedded annulus.

Now we compute the two terms of µ(A) corresponding to the times s1 and s2 at
which the self-homotopy φγρφ

−1 of K2 is singular. For our purposes it will actually
be enough to compute the projections of the terms of µ(A) to F .

The projection to F of the term of µ(A) corresponding to the first singular time s1

is

pr∗(A(y1)A(y−1
3 z−1)) = [l].

A picture of this loop in [0, 1]×M can be found in Figure 13. Now we consider the
projection to F of the term of µ(A) corresponding to the second singular time s2.
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The projection to F of the term of µ(A) corresponding to the second singular time
s2 is

pr∗(A(y1y2)A(y−1
4 y−1

3 z−1)).

Since pr(φs(x1) ≡ p), and pr(φs(x2)) = l(s) for s ∈ [s0, 1], we have

pr∗(A(y2)) = ρ

and

pr∗(A(y4)) = [l]ρ[l−1].

Thus

pr∗(A(y1y2)A(y−1
4 y−1

3 z−1)) = ρ[l]ρ−1[l]−1[l].

Now we check whether the two terms [l] and ρ[l]ρ−1[l]−1[l] are equal in the quotient
pr∗Λκ, where κ = A∗(0 × S1) = K2. Since K2 is homotopic to the fiber, pr∗Λκ =
Z[π1(F, p)]/{g − g±1}. It follows that these two terms of pr∗(µ(A)) do not cancel
unless [l] and ρ commute in π1(F, p). Since centralizers in the fundamental group
are infinite cyclic, and since [l] is not a nontrival power of another loop, [l] and ρ
commute if and only if ρ = [l]i for some i ∈ Z. �

10.5. Theorem. Let M be an S1-bundle over an orientable surface of genus g ≥ 2.
Let FC be the framed homotopy class of the S1 fiber with any framing. Then for
any k ∈ Z there exists a nowhere-zero vector field Vk such that the knot type of K1

is simple in (M,Vk) while the knot type of K2 is not. In particular, the knots K2

and Kk
2 are homotopic through Vk-transverse immersions, isotopic as framed knots,

and not isotopic through Vk-transverse knots.

Proof. In this proof, we write V rather than Vk to simplify notation.

First we consider the knot type of K1. The loop γ[r] is a framed self-homotopy and a

framed self-isotopy of K1. The corresponding torus intersects [d̃] once transversely.
Therefore eV ⊥(γ[r]∗[S

1 × S1]) = 2k, so k ∈ Im h̄V and k ∈ Im īV . Furthermore k

is the smallest positive integer in Im h̄V or Im īV , since any such torus intersects
[d̃] at least once or not at all. This Im h̄V = Im īV = kZ and the knot type K1 is
simple by Corollary 4.8.

Now we consider the knot type of K2. In this case the loop φγ[r]φ
−1 is a framed

self-homotopy of K2 so as before Im h̄V = kZ. Let α be an arbitrary framed self-
isotopy of K2. By Proposition 10.2 we know α is represented by a loop of the
form φγργ

j
rotγ

k
frφ
−1 for some ρ ∈ π1(F, p). By Lemma 10.4, since α is a framed

self-isotopy, ρ = [l]i for some i ∈ Z. But φγ[l]iγ
j
rotγ

k
frφ
−1 is disjoint from [d̃], so

eV ⊥(α∗[S
1 × S1]) = 0. Hence Im iV = 0, and the knot type of K2 is not simple.

In particular Lemmas 4.4 and 4.5 imply K2 and Kk
2 are homotopic through V -

transverse immersions and not isotopic as V -transverse knots. �

As in Theorem 9.5, the knots in Theorem 10.5 can be chosen to be Legendrian with
an overtwisted complement. The proof of Corollary 10.6 is similar to the proof of
Corollary 9.6.
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10.6. Corollary. Let (M, ξk) be an oriented 3-manifold as in Theorem 10.5, with
a cooriented contact structure ξk homotopic to the 2-plane field V ⊥k . Let L be
a Legendrian knot which is smoothly isotopic to the knot K2 in Theorem 10.5.
Then the stabilized Legendrian knots Lk and L−k are isotopic as framed knots, and
homotopic as Legendrian immersions, but not isotopic as Legendrian knots; these
Legendrian knots can be chosen to be loose.

11. Applications to Legendrian Knot Theory

A Legendrian knot L in an overtwisted contact 3-manifold (M, ξ) is called loose if
L ⊂ M \D where D is an overtwisted disk. In many situations, loose Legendrian
knots are completely determined by classical invariants. Dymara [10, Theorem 4.1]
showed this is true, for example, when ξ is trivializable and |L| = ∞. Ding and
Geiges [8] generalized Dymara’s result to the case where the connected component
of the space of immersions containing L contains infinitely many components of the
space of Legendrian knots, and again |L| =∞.

Our theory leads to a classification of loose Legendrian knots in terms of generalized
classical invariants which generalizes the results of Dymara and Ding-Geiges. We
use an h-principle stated by Cieliebak and Eliashberg, and attributed to Dymara
[10] and Eliashberg-Fraser [14].

h-principles for Legendrian knots. We recall some terminology from Cieliebak
and Eliashberg [7], using their notation. If M and N are manifolds, a monomor-
phism is a bundle map F : TM → TN which is injective on each fiber. For example,
given an immersion f : S1 → N , the differential df is a monomorphism TS1 → TN .

Now let (M, ξ) be a contact 2n+1-manifold and Λ a manifold of dimension ≤ n. In
our case n = 1 and Λ = S1. A formal Legendrian embedding is a pair (f, F s) con-
sisting of a smooth embedding f : Λ→M and a homotopy of monomorphisms F s

over f starting at F 0 = df and ending at an isotropic or Legendrian monomorphism,
meaning F 1 lies in ξ.

Two formal Legendrian embeddings are called formally isotopic if they are isotopic
as (connected by a path of) formal Legendrian embeddings.

11.1. Theorem ([7]Theorem 7.19 b). Let (M, ξ) be a closed connected overtwisted
contact 3-manifold and D ⊂M an overtwisted disk.

Let (Lt, F
s
t ), s, t ∈ [0, 1] be a formal Legendrian isotopy in M connecting two gen-

uine Legendrian embeddings L0, L1 : S1 →M \D. Then there exists a Legendrian

isotopy L̃t : S1 →M \D connecting L̃0 = L0 and L̃1 = L1, which is homotopic to
(Lt, F

s
t ) through formal Legendrian isotopies with fixed endpoints.

We use Theorem 11.1 to obtain the following result.

11.2. Theorem. Let (M, ξ) be a closed overtwisted contact manifold with over-
twisted disk D, and let V be the coorienting vector field of ξ. Let L1 and L2 be
Legendrian knots in M \ D that are V -transverse isotopic. Then they are Legen-
drian isotopic in M \D.
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Proof. Fix an auxiliary Riemannian metric with the property that V is everywhere
orthogonal to ξ. Let LVt denote the V -transverse isotopy from L1 to L2. That is, for
all t ∈ [0, 1], LVt is a V -transverse knot, and LV0 = L1 and LV1 = L2 are Legendrian.
We use the V -transverse isotopy LVt from L1 to L2 to construct a formal Legendrian
isotopy from L1 to L2. Let Pu = projξ(L

V
t )′(u) denote the normalized orthogonal

projection of the tangent vector (LVt )′(u) to the contact plane ξLV
t (u). Let Vu denote

the vector in V at the point LVt (u). Let αu denote the angle between (LVt )′(u) and
its projection Pu. Let

V s,t(u) = cos((1− s)α− u)Pu + sin((1− s)αu)Vu,

which is a unit vector in TLV
t (u)M . Then V 0,t(u) is equal to (LVt )′(u) and V 1,t is

tangent to ξLV
t (u). Hence for each t, the pair (LVt (u), V s,t(u)) is a formal Legendrian

embedding. Now the theorem follows from Theorem 11.1. �

As an application of the above theorem we get the following:

11.3. Theorem. Let (M, ξ) be a closed connected overtwisted contact manifold with
overtwisted disk D. Let L1, L2 ⊂M \D be two loose Legendrian knots in the smooth
isotopy class K. Assume the following conditions hold:

(1) L1 and L2 are isotopic as framed knots (and hence lie in some framed
isotopy class FK)

(2) L1 and L2 are homotopic as Legendrian immersions

(3) Im h̄V = Im īV , where V is a coorienting vector field for ξ, and h̄V and īV
are the kink-cancelling homomorphisms associated to FK.

Then L1 and L2 are isotopic as Legendrian knots.

Proof. Because L1 and L2 are Legendrian homotopic they must be V -transverse
homotopy. Since L1 and L2 are also in the same framed isotopy class, Corollary
4.8 implies L1 and L2 are V -transverse isotopic. Finally, Theorem 11.2 implies L1

and L2 are Legendrian isotopic. �

Below we state theorems of Dymara [10] and Ding-Geiges [8] which we will show
follow from Theorem 11.3.

11.4. Theorem ([10], Theorem 4.1). Let (M, ξ) be a contact manifold with an
overtwisted disk D and a trivializable contact bundle. Let L1, L2 ⊂ M \ D be
two loose Legendrian knots in the smooth isotopy class K. Assume the following
conditions hold:

(1) |K| =∞

(2) L1 and L2 are isotopic as framed knots

(3) the rotation numbers of L1 and L2 with respect to some trivialization of ξ
are equal.

Then L1 and L2 are isotopic as Legendrian knots.
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This theorem of Dymara in the case of closed M can be viewed as a special case
of Theorem 11.3. This is because when ξ is trivializable, h̄V = īV = 0 for every
framed isotopy class. Note that for trivializable ξ the V -transverse homotopy classes
of curves in a fixed component of the space of framed curves FC are enumerated
by a Z-valued rotation number, which is obtained by projecting the velocity vector
of a V -transverse curve to the planes of ξ.

Ding and Geiges [8, Theorem 6] generalized Dymara’s theorem to the case where ξ
is not necessarily trivializable:

11.5. Theorem ([8], Theorem 6). Let (M, ξ) be a closed connected contact manifold
with an overtwisted disk D. Let L1, L2 ⊂ M \D be two loose Legendrian knots in
the smooth isotopy class K. Assume the following conditions hold:

(1) |K| =∞

(2) L1 and L2 are isotopic as framed knots

(3) L1 and L2 are homotopic as Legendrian immersions

(4) the connected component of the space of framed immersions containing L1

and L2 contains infinitely many components of the space of Legendrian
immersions.

Then L1 and L2 are isotopic as Legendrian knots.

As shown in [22, Proposition 3.1.4], the assumption that the connected compo-
nent of the space of framed immersions CF contains infinitely many components
of the space of Legendrian immersions is equivalent to the following: For any
α ∈ H2(M ;Z) which is realizable by a mapping µ : S1 × S1 → M with merid-
ian freely homotopic to a loop in FC, we have eξ(α) = 0. Therefore assumption (4)
of Ding and Geiges implies that h̄V = īV = 0. Thus their theorem is also a special
case of Theorem 11.3.

Ding and Geiges [8, Remark, p. 121] remark that conditions (1) and (4) of their
theorem are necessary unless one makes certain ad-hoc assumptions about L1 and
L2.

It is possible to coarsely classify zero-homologous loose knots even when two such
knots do not have the same overtwisted disk in their complement. The follow-
ing classification of loose knots up to contactomorphism was given in the work of
Etnyre [15, Theorem 1.4]. (According to [15] different proofs of this result were
independently obtained by Geiges and Klukas.) Zero-homologous framed knots
corresponding to a given unframed knot K are enumerated by the self-linking num-
ber, which is the Thurston-Bennequin invariant tb of a Legendrian knot with the
natural framing; and the sum of the tb and rot of a Legendrian knot is always odd.

11.6. Theorem ([15], Theorem 1.4). Let (M, ξ) be an overtwisted contact manifold.
For each zero-homologous knot type K and a pair of integers (t, s) such that t + s
is odd, there is a unique, up to contactomorphism, loose Legendrian knot in K
satsifying tb(K) = t and rot(K) = r.
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12. Appendix: h-principles

h-principle for immersed curves. We will use an h-principle in order to un-
derstand the topology of a component C of the space of framed immersions of the
circle into M . Let p : STM →M be the unit two-sphere tangent bundle over M .

12.1. Theorem (Hirsch-Smale h-principle, [17]; see also Theorem 7.1 of [7]). Let M
be a 3-manifold. The space of immersed curves in M is weak homotopy equivalent to
the space ΩSTM of continuous free loops in STM . The weak homotopy equivalence

is given by mapping the immersed curve C : S1 →M to the loop ~C ∈ ΩSTM , where
~C : t 7→ C ′(t), t ∈ S1.

Let a : S1 → ΩSTM , with a(1)(t) = ω(t) : S1 → STM . Then a can also be viewed
as a map a : S1 × S1 → STM defined by a(s × t) = a(s)(t). Identify S1 with the
unit circle in C. Let τ(a) = a(1 × t) be the loop in STM traced by the basepoint
ω(1) during the homotopy a.

The map τ is in fact a homomorphism τ : π1(ΩSTM,ω) → π1(STM,ω(1)). The
image of τ is precisely the centralizer Z(ω) < π1(STM,ω(1)). Now we consider its
kernel. Suppose that τ([a1]) = τ([a2]). Then the 1-skeleta a1∗(1×S1)∪a1∗(S

1×1)
and a2∗(1 × S1) ∪ a2∗(S

1 × 1) are homotopic in STM ; in fact, they agree on
ω = ai∗(1 × S1). The obstruction to a1 and a2 being homotopic is therefore the
element of π2(STM) formed by gluing the two 2-cells in the images of a1 and a2

together along their common 1-skeleta. Note that TM is trivial, so we choose an
identification STM ' S2×M , which gives an isomorphism π2(STM) ' Z×π2(M).
In addition, we can identify π1(STM,ω(1)) with π1(M,p(ω(1))) and view τ as a
map into π1(M,p(ω(1))) when convenient.

In our case, M will be an S1-bundle over a surface of genus at least 2, so π2(M) = 0.

12.2. Proposition ([5]). Let M be an oriented 3-manifold with π2(M) = 0, let C
be a connected component of the space of immersed curves in M , and let K ∈ C
be a knot. Let α1, α2 ∈ π1(C,K) such that τ(α1) = τ(α2) ∈ π1(M,K(1)). Then
α1γ

m
fr = α2 where m ∈ Z is the first coordinate in π2(STM) ' Z× π2(M).

h-principle for Legendrian immersions.

12.3. Theorem (Gromov [17]). Let (M, ξ) be an oriented 3-manifold with coori-
ented contact structure ξ, and let SξM denote the corresponding sphere bundle. The
space of Legendrian immersions of S1 into (M, ξ) is weak homotopy equivalent to
the space ΩSξM of continuous free loops in SξM . The weak homotopy equivalence

is given by mapping the Legendrian immersion L : S1 →M to the loop ~L ∈ ΩSξM ,

where ~L : t 7→ L′(t), t ∈ S1.
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