
Smith ScholarWorks Smith ScholarWorks 

Geosciences: Faculty Publications Geosciences 

9-30-2020 

Coral Gardens Reef, Belize: A Refugium in the Face of Caribbean-Coral Gardens Reef, Belize: A Refugium in the Face of Caribbean-

Wide Wide AcroporaAcropora  Spp. Coral Decline Spp. Coral Decline 

Lisa Greer 
Washington and Lee University 

Tara Clark 
University of Wollongong 

Tanner Waggoner 
Washington and Lee University 

James Busch 
Washington and Lee University 

Thomas P. Guilderson 
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.smith.edu/geo_facpubs 

 Part of the Geology Commons 

Recommended Citation Recommended Citation 
Greer, Lisa; Clark, Tara; Waggoner, Tanner; Busch, James; Guilderson, Thomas P.; Wirth, Karl; Zhao, Jian-
xin; and Curran, H. Allen, "Coral Gardens Reef, Belize: A Refugium in the Face of Caribbean-Wide Acropora 
Spp. Coral Decline" (2020). Geosciences: Faculty Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/geo_facpubs/85 

This Honors Project has been accepted for inclusion in Geosciences: Faculty Publications by an authorized 
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/geo_facpubs
https://scholarworks.smith.edu/geo
https://scholarworks.smith.edu/geo_facpubs?utm_source=scholarworks.smith.edu%2Fgeo_facpubs%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=scholarworks.smith.edu%2Fgeo_facpubs%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/geo_facpubs/85?utm_source=scholarworks.smith.edu%2Fgeo_facpubs%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Authors Authors 
Lisa Greer, Tara Clark, Tanner Waggoner, James Busch, Thomas P. Guilderson, Karl Wirth, Jian-xin Zhao, 
and H. Allen Curran 

This honors project is available at Smith ScholarWorks: https://scholarworks.smith.edu/geo_facpubs/85 

https://scholarworks.smith.edu/geo_facpubs/85


RESEARCH ARTICLE
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Abstract

Caribbean Acropora spp. corals have undergone a decline in cover since the second half of

the twentieth century. Loss of these architecturally complex and fast-growing corals has

resulted in significant, cascading changes to the character, diversity, and available eco-

spaces of Caribbean reefs. Few thriving Acropora spp. populations exist today in the Carib-

bean and western North Atlantic seas, and our limited ability to access data from reefs

assessed via long-term monitoring efforts means that reef scientists are challenged to deter-

mine resilience and longevity of existing Acropora spp. reefs. Here we used multiple dating

methods to measure reef longevity and determine whether Coral Gardens Reef, Belize, is a

refuge for Acropora cervicornis against the backdrop of wider Caribbean decline. We used a

new genetic-aging technique to identify sample sites, and radiocarbon and high-precision

uranium-thorium (U-Th) dating techniques to test whether one of the largest populations of

extant A. cervicornis in the western Caribbean is newly established after the 1980s, or repre-

sents a longer-lived, stable population. We did so with respect for ethical sampling of a

threatened species. Our data show corals ranging in age from 1910 (14C) or 1915 (230Th) to

at least November 2019. While we cannot exclude the possibility of short gaps in the resi-

dence of A. cervicornis earlier in the record, the data show consistent and sustained living

coral throughout the 1980s and up to at least 2019. We suggest that Coral Gardens has

served as a refuge for A. cervicornis and that identifying other, similar sites may be critical to

efforts to grow, preserve, conserve, and seed besieged Caribbean reefs.

Introduction and background

Once prolific, Acropora coral species (A. cervicornis and A. palmata) are now increasingly rare

and threatened across the tropical Western North Atlantic/Caribbean region. These fast-
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growing, branching scleractinian corals have been key in sustaining diverse ecological habitats

in shallow marine environments and have long provided the architectural framework for

expansive coral reef structures. Robust Acropora-dominant reefs were consistently present

throughout the Pleistocene and Holocene epochs in the Caribbean province [1–5]. However,

since the 1950s and 1960s, the structurally and functionally important A. palmata and A. cervi-
cornis have suffered massive mortality and population declines of up to 98% across this region

[3, 4, 6–11], although some studies suggest mortality may even predate this time [11–13].

Declines have been linked to multiple and sometimes synergistic drivers that include: tempera-

ture stress, overfishing, eutrophication from terrestrial sources, hurricanes, significant loss of

sea urchins, and specifically for Acropora spp., white band disease, a coral disease that causes

tissue death [6, 14–19]. Widespread recognition of their demise led A. palmata and A. cervicor-
nis to be the first corals listed as threatened on the USA Endangered Species list [9]. Unabated

loss of the fast-growing and architecturally complex Acropora spp. will have major impacts on

structural integrity, rugosity, biodiversity, and live coral cover on future reefs in the face of cli-

mate and environmental change [13, 20–25]. How to preserve or promote Acropora spp.

growth is an active topic of concern and identifying ‘successful’ or long-lived reefs may be

essential to efforts to preserve or grow these corals in environments increasingly hostile to

their success.

Much of the post-1980s coral literature initially focused on documenting reef decline, with

many studies addressing global coral mortality, loss at key sites where acroporids once domi-

nated, and/or the particular reasons for coral demise [6, 21, 26–35]. However, an increasingly

robust literature on nurseries, reintroduction, conservation, and even assisted evolution of cor-

als is emerging [36–52]. As the field expands from understanding why corals die to how we

can promote restoration of these important ecological niches in a changing world, studies

increasingly look to successful reefs to understand robustness, resilience, and temporal persis-

tence [10, 33, 49, 53–67]. If we can identify the ‘reefs that work’ in spite of recent anthropo-

genic and environmental change we may be able to better characterize their features and

facilitate reef expansion, cultivate nurseries, re-seed reefs, and conserve a dwindling ecological

resource [63, 68, 69]; providing hope for the future of Caribbean coral reefs [70] and possibly

beyond.

Identifying resilient reefs is not trivial. There are arguably only a few examples of extant

‘successful’ A. cervicornis reefs in the Caribbean region at present [40, 61, 71–75] and many of

the reefs that have been subject to long-term monitoring are now in decline [30, 76–80]. Most

examples of extant ‘healthy’ reefs have only recently been identified or monitored and of these,

few have been monitored using quantitatively robust methodologies. Even when we identify

what seems to be a thriving reef, there are few ways to assess temporal persistence, which is key

to assessing resilience. There is also the complication of ‘shifting baselines’ where optimal

‘health’ has been arbitrarily determined by convenience or happenstance [81, 82]. In short, we

have limited observational data on truly resilient acroporid reefs in the Caribbean region.

For the acroporid reefs recognized as thriving today, we are challenged to assess their lon-

gevity. Has a given reef persisted despite environmental or climate change, or is it rather a

‘new recruit’ that has taken over a formerly occupied habitat after a die-off? Is it an ephemeral

short-lived reef that may not be establishing the kind of sturdy and complex framework on

which long-lived reefs are built? While new recruits and ephemeral reefs may hold keys to nat-

ural seeding of reefs downstream, they may also operate differently than the well-documented,

long-lived, and architecturally robust reefs of the recent geologic past [2, 4, 83–86]. Assessing

acroporid persistence in modern reefs is also challenging with respect to sampling methodol-

ogy and ethical concerns for the health and preservation of extant reefs, especially with respect

to endangered species. In the not-too-distant past, scientists have cored through living reefs to
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sample older, underlying corals for dating purposes. Present awareness of the growing threats

to reefs now gives us pause in potentially compromising the structural integrity of living reefs

with heavy hydraulic coring equipment and tripods. Alternate methods of plucking dead coral

rubble from within living canopy and carefully digging pits in areas devoid of living coral

should be employed when possible.

Another fundamental challenge to determining persistence in modern reef growth lies in

the temporal resolution offered by available dating methods. Complications with defining a

precise (<10 years) calibrated age using radiocarbon exist because of the preformed age of sur-

face ocean waters, the reservoir effect [87], and post-bomb values, essentially post-1957, which

can yield non-unique solutions on either side of the post-bomb surface ocean peak values [e.g.

88]. Historically, very young samples have been challenging to date with U-Th because of the

extremely low 230Th that is produced as well as potential biases caused by detrital 230Th. How-

ever, traditional methods such as radiocarbon and U-Th dating can complement each other

[89–92]. Conventional 230Th can typically yield ages with two-sigma age errors of around +/-

20 years for mid Holocene [93] and +/- 1,000 years for late Pleistocene corals [94] using U-Th

methods. The inability to account for initial 230Th sources of U-Th dated material can still lead

to inaccurate age estimates with these methods [95–97]. Fortunately, increasingly improved

U-Th dating techniques offer vastly refined precision in age ranges and avoid the issues that

changing atmospheric radiocarbon concentration pitfalls pose [e.g., 98]. Clark et al. [97, 99]

developed a U-Th dating method for Great Barrier Reef corals that returns a precision of less

than a year for modern corals using rigorous cleaning techniques and by constraining local ini-

tial 230Th/232Th values. One new method for assessing the ‘age’ of clonal corals is to quantify

the amount of somatic mutations found in very small portions of living coral tissue sampled

for genetic analysis [100, 101]. This method yields a range of possible ages, but using only the

conservative minimum genetic age estimate can still help to identify reefs that have veteran

(long-lived) populations versus new recruits.

This project aims to contribute to a growing body of research on thriving reefs and to docu-

ment a refugium for Caribbean acroporid corals. Here we determined the temporal persistence

of a living acroporid reef in Belize dominated by Acropora cervicornis to investigate whether

the Acropora spp. corals at Coral Gardens Reef are ephemeral, in recovery, or remnant popula-

tions that survived the Caribbean-wide collapse of recent decades. We used genetic data from

Irwin et al. [101] to identify areas of the reef that may have long-lived (veteran) A. cervicornis
corals. The temporal persistence of this population was confirmed by dating dead skeletons

found both in situ and amongst the coral death assemblage using radiocarbon and precise

U-Th dating methods. We did so with respect for ethical concerns regarding sampling meth-

ods and impacts on living coral. Our data suggest that the Coral Gardens Reef has served as a

long-term refugium for Acropora spp. corals.

Study area

Coral Gardens Reef [17˚ 49’ 54.7644”, 87˚ 59’ 29.9743”], located approximately six kilometers

southeast of the southern tip of Ambergris Caye, Belize, is situated inshore of the Mesoameri-

can Barrier Reef between Ambergris Caye and Caye Caulker (Fig 1A and 1B). Massive thickets

of A. cervicornis cover approximately 7.5 hectares of this shallow back reef area, where water

depth varies little and reaches a maximum depth of ~7 m. Coral Gardens contains one of the

largest recorded extant acroporid populations in the Caribbean (Fig 1C; [61]). All three Carib-

bean Acropora species (A. cervicornis, A. palmata, and A. prolifera) are found here in patches

interspersed with a variety of mixed massive and finger corals (primarily Porites, Orbicella,

Millepora, and Agaricia spp.) and sandy areas. The outer perimeter of the area is commonly
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dominated by seagrass beds. The relatively monospecific thickets of branching corals (acropor-

ids) vary in size but can reach diameters of up to 35 m.

This site has experienced the passage of over a dozen major tropical storms or hurricanes

since c.1930. Recent major events include Category 4 Hurricane Keith in 2000 (landfall near

Caye Caulker), Category 5 Hurricane Dean in 2007 (landfall just north of the Belize/Mexico

border), Tropical Storm Karl in 2010 (landfall just north of Chetemal, Mexico), and Category

1 Hurricane Earl in 2016 (landfall on Ambergris Caye). Coral Gardens is not located proximal

to any major rivers so flooding and/or sediment stress associated with these storms likely has

not been a major issue. However, Coral Gardens is situated near a break in the reef crest, so it

is potentially vulnerable to physical wave damage associated with high storm winds. Rainfall

and sea surface temperature variability at this site is presumed similar to other sites in Belize

where acroporids are rare. No mass-bleaching event has been observed on site from 2011 to

summer 2019, although a mass bleaching event began in the fall of 2019. The effects of this

event have not yet been evaluated.

Materials and methods

Site selection

In the summer of 2013 and 2014, small samples of living Acropora cervicornis coral from Coral

Gardens were collected for determination of genetic composition. These data were used to age

corals via a newly developed genetic analysis technique [100]. Results suggest Coral Gardens is

composed of both veteran (long-lived) corals (clones spread via asexual fragmentation) and

Fig 1. Location of sampling sites. A) Location map of the Coral Gardens Reef study area; B) Inset map of Coral Gardens located between Ambergris Caye (San Pedro)

and Caye Caulker islands. C) Pits A, B, and C were excavated in areas of non-living reef framework. T1-T5 represent transect locations across patches of living Acropora
cervicornis. Images used in A and B are modified from Landsat-8 imagery courtesy of the United States Geological Survey.

https://doi.org/10.1371/journal.pone.0239267.g001
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new recruits (reproduced via sexual reproduction; [101]). We used these data to establish tar-

get areas in the reef for sampling in 2015 and 2016 of pre-modern and recently dead coral skel-

etal material for radiometric dating. The three target areas were positioned within ~5 m of

living reef framework (Fig 1C) and capped by Acropora coral that appeared to be ‘recently

dead.’ The criteria for choosing these sampling locations were that they included no living

Acropora spp. coral tissue but in situ growth positions of branches, encrustation by fleshy and

calcareous algae, low taphonomic grade, and no other large coral species of over ~5 cm in

diameter present in the immediate vicinity (Fig 2A).

Fieldwork

In summer 2015 and 2016, divers carefully excavated three underwater pits measuring ~1 m in

diameter using hammers, chisels, and buckets on SCUBA (Fig 2B). The sites were not suitable

for traditional coring since some of the material was loosely consolidated, with sand or pore

space in places that might cause collapse or stratigraphic mixing under high power hydraulic

coring. This excavation method was also employed to minimize disruption to these shallow

sites with any heavy or cumbersome equipment. In addition, our method allowed careful col-

lection of more material for greater dating resolution. In situ samples totaling 191 fragments

were collected in stratigraphic order in each pit at approximately 5 cm intervals (Table 1).

However, the branching nature of Acropora cervicornis corals meant that the sampled coral

fragments often had inclined orientations, so samples were not assumed to represent a per-

fectly linear timeline representing sequential growth. Pits A, B, and C were excavated to depths

of ~1, ~1.2, and ~2 m, respectively, with each pit underlain by additional dead A. cervicornis
rubble. All samples were cleaned of organic matter (mostly fleshy algae) using a chemical solu-

tion of 50% bleach by volume and dried.

Fig 2. Sampling location and character. A) Non-living substrate at T5 prior to excavation (Photo: Lisa Greer); B)

Excavation Pit C with vertical metric scale bar. Each black or white bar on the scale represents 10 cm; maximum depth

of this pit was 2 m (Photo: Lisa Greer); C) Typical area for dead coral sampling and canopy structure at T5 (Photo: Lisa

Greer); D) Open coral canopy facilitated non-destructive sampling of coral rubble within living coral patches (Photo:

Lisa Greer).

https://doi.org/10.1371/journal.pone.0239267.g002
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In 2016, 41 additional samples of dead A. cervicornis rubble were collected from underneath

or within the living reef framework at site T5 using a 1.5 m extendable grip and grab (rubbish

picker) tool (Table 1; Fig 2C), rather than coring through live reef. Samples were collected

based on accessibility to avoid any harm to living coral. This was possible because of the rela-

tively large and open A. cervicornis canopy (Fig 2D). One small sample (~2 cm in length) of liv-

ing A. cervicornis was collected and used for U-Th age calibration purposes. All necessary

permits (CITES and Belize Fisheries Management Unit) were obtained for the collection of all

samples in this study, which complied with all relevant regulations. Permits obtained for field

collection include Permit # 0000033–15 from the Belize Fisheries Department Ministry of For-

estry, Fisheries & Sustainable Development (and renewals), CITES International Trade in

Endangered Species of Wild Fauna and Flora Permit/Certificate No. 5673, and CITES Interna-

tional Trade in Endangered Species of Wild Fauna and Flora Post Entry number: 2016075

after compliance interview (Dec Control Num: 2016876077).

Sample preparation

In the lab, the outer encrusted and bored surfaces of corals were removed using a lapidary saw

to expose unaltered aragonite skeletal carbonate (Fig 3A). Sample quality was assessed for a

subset of samples using a Diano 2100E X-ray diffractometer (XRD), a Zeiss EVO MA15 scan-

ning electron microscope (SEM) with electron backscatter diffraction capabilities (EBSD), and

an Olympus IX51/Nixon DS-U2 binocular microscope at Washington and Lee University

(Table 1; Fig 3B and 3C). Only pure aragonite samples, free of any visible anomalies, impuri-

ties, borings, encrustations, or discoloration were selected for dating (Fig 3B and 3C).

Radiocarbon dating

In preparation for radiocarbon analyses, 62 aragonite samples of approximately 1 cm3 volume

were crushed using mortar and pestle and sieved to approximately <2 mm-sized fragments.

Ten mg of the cleanest fragments from these larger samples were lightly leached in weak

hydrochloric acid, rinsed, and dried prior to being placed in individual vacutainers and evacu-

ated to<1x10-3 Torr at the Lawrence Livermore National Laboratory Center for Accelerator

Mass Spectrometry. Calcium carbonate was hydrolyzed using 85% orthophosphoric acid at

90˚C. Resultant CO2 was purified cryogenically and reduced to graphite at 570˚C in the pres-

ence of an iron catalyst and a stoichiometric excess of hydrogen. Carbon-14 content was deter-

mined using accelerator mass spectrometry. Data were reported as fraction modern and

conventional radiocarbon age (years before present (BP) defined as 1950 AD) according to the

convention of Stuiver and Polach [102], including a background correction based on 14C-free

calcite, and measured δ13C values for each sample. Data were calibrated to calendar years

using Oxcal Version 4.2 against the Marine 13 calibration curve [103, 104]. A code for Oxcal

v4.2 that accounts for the post-bomb local/regional offset in radiogenic carbon at Coral Gar-

dens Reef [88] was created using data from nearby Glovers Reef (16˚ 50’ N, 87˚ 50’ W).

Table 1. Number of samples collected, analyzed using XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), stable isotope, radiocarbon and U-Th analy-

ses, and results of radiocarbon and U-Th dating. Twenty- six samples were cross-dated with radiocarbon and U-Th methods.

Field

Site

Samples

(n)

XRD

(n)

SEM

(n)

Stable Isotope

(n)

14C Dated

(n)

14C Age

Max

14C Age

Min

Avg 14C Error

(2σ)

U-Th Dated

(n)

U-Th Age

Max

U-Th Age

Min

Avg STD

Error

Pit 191 35 10 24 39 1973 1910 45.1 10 1996.8 1915.3 1.6

Canopy 41 4 4 25 23 1973 1970 6 25 2015 1982.7 1.1

https://doi.org/10.1371/journal.pone.0239267.t001
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U-Th dating

Thirty-five approximately 1 cm3 coral fragments were prepared for high-precision U-Th dat-

ing following rigorous cleaning procedures after Clark et al. [97] designed to eliminate detrital

contaminants with high concentrations of 232Th within the aragonite skeletal material. Each

sample was crushed using an agate mortar and pestle, and ~1 mm-sized fragments were

soaked overnight in 10% H2O2 and Milli-Q water. Samples were then rinsed with Milli-Q

Fig 3. Sample quality. A) Acropora cervicornis rubble sample with outer surface removed prior to screening (Photo:

Tanner Waggoner); B) Scanning electron microscope image of a coral surface with no visible signs of alteration

(Photo: Tanner Waggoner); C) Crushed aragonite coral skeleton free from contaminants viewed from under a

binocular microscope (Photo: Tanner Waggoner).

https://doi.org/10.1371/journal.pone.0239267.g003
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water and centrifuged for 15 min at 4000 rpm in 10% H2O2 solution, and residual hydrogen

peroxide solution was extracted. Remaining fragments were rinsed with Milli-Q water and

sonicated multiple times until the solution was clear. Samples were then dried on a hotplate at

40˚C overnight. Each sample was examined and photographed using the Olympus IX51/

Nixon binocular microscope. From each sample, ~150 mg of clean, unaltered aragonite frag-

ments was selected for U-Th dating.

Uranium and thorium were separated and purified using ion-exchange column chemistry

procedures modified from Edwards et al. [105], and samples were dated at The University of

Queensland Radiogenic Isotope Facility following methods described by Clark et al. [97, 99].

All Th-separate solutions and representative U-separate solutions were screened on a Thermo

X-Series II Quadrupole ICP-MS to determine the concentration of U prior to measurement

on a Nu Plasma Multi-Collector Inductively Coupled Plasma Mass Spectrometer

(MC-ICP-MS). The pre-screening allows mixing of the entire Th-separate solution with a por-

tion of the U-separate solution to achieve the optimal signal intensities for high-precision

MC-ICP-MS measurements of U and Th isotope ratios at high throughput. The MC-ICP-MS

instrument has deceleration lenses behind each of the two active secondary electron multipli-

ers (named IC0 and IC2) to substantially increase abundance sensitivity to allow measurement

of these young (<100 yrs old) samples. U and Th isotopes were measured in two sequences of

one mass difference to allow 230Th and 229Th determined on IC2 and 234U and 233U on IC0,

respectively, as described in detail by Clark et al. [97, 99]. The U-Th age data were corrected

for two isotopically distinct sources of non-radiogenic 230Th; soluble (only absorbed into the

coral skeleton during growth) and insoluble (incorporated into the skeletal matrix of the coral

either during the growth or post-mortem), using a two-component mixing model, also

described by Clark et al. [97]. Site specific 230Th0 values for the hydrogenous and detrital com-

ponents obtained from Coral Gardens Reef are listed in S2 Table. The suitability of these values

was confirmed by U-Th dating one modern coral of known age (collected in 2015). Twenty-

seven coral samples were cross-dated using both radiocarbon and U-Th methods.

Results

A total of 191 non-living Acropora cervicornis samples were collected from pit excavations,

with 110 of these samples collected from Pit C. Forty-one additional non-living samples were

retrieved from within or beneath the reef framework at T5, as well as one small (~2 cm length)

living sample for calibration purposes, giving a total of 232 samples from Coral Gardens. X-ray

diffraction and visual inspection of a representative sampling of 35 excavated and four samples

retrieved from beneath the living canopy revealed pure aragonite composition, with no signs

of diagenetic alteration or contamination of any sample by non-aragonite material. Ten exca-

vated and four samples retrieved from beneath the living coral canopy were randomly chosen

as representative of the sample population and were screened for diagenetic fingerprints (e.g.

rhombic crystal shape, dissolution pitting, or presence of non-aragonite material contami-

nants) using SEM/EBSD to further confirm the purity of these samples and suitability for

radiometric dating. No secondary aragonite was observed in samples.

Calibrated radiocarbon ages of 62 coral samples range between 1910 to 1973 AD with 2σ
age error ranges between 6 and 45 years (Table 1). U-Th ages of 34 samples range between

1915.3 ±1.6 to 1996.8 ±1.2 AD for excavated samples and 1982.7 ±1.3 to 2011.4 ±0.9 AD for

samples retrieved from beneath the living canopy, as well as a living coral from 2015 (Table 1,

Fig 4). Additional information on radiocarbon and U-Th results can be found in S1 and S2

Tables. The δ 238U and U(ppm) values of all samples are similar to that of modern seawater

and modern coral samples [13, 99], respectively, which also suggests little to no alteration. One
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additional sample from within the coral canopy dated to 1931.6 ±2.6 AD (sample

F6a_BZ-CG-TW15). While we did not exclude this data point, we consider the possibility of

contamination or reworking for this sample, noting the low Δ14C value for modern canopy

corals (S1 Table) and the slightly high 232Th value compared to the other samples (S2 Table). A

comparison of twenty-seven samples analyzed by both U-Th and 14C methods plotted against

a radiocarbon calibration from Belize [88] enabled an extension of the radiocarbon calibration

curve for this area (Fig 4). U-Th dating of one modern coral of known age (collected in 2015)

revealed an age of 2015.1 ±0.9 AD following correction for initial 230Th/232Th using the two-

component correction scheme applied to Great Barrier Reef coral samples [97].

Discussion

A crucial step in transitioning from documenting coral decline to identifying areas of reef

resilience is determining temporal persistence of reefs with robust resolution. Our data suggest

Coral Gardens has served as a refugium for Acropora spp. corals during recent widespread

decline of Caribbean reefs. A. cervicornis corals have persisted and grown for more than 100

years at the sampling locations of Pit C and T5 at Coral Gardens Reef from 1910 14C or 1915
230Th to 2015 (Figs 4 and 5), and were still thriving as of November 2019 (Fig 6). Since

Fig 4. Radiocarbon and U-Th data. All 230Th and radiocarbon dates from Pits A, B, C and the modern canopy at

Coral Gardens, color-coded by sample population and with standard error plotted on the radiocarbon calibration

curve from Glovers Reef, Belize [88]. Circles represent radiocarbon dates and diamonds represent 230Th ages. 230Th

ages are used in place of all radiocarbon ages for cross-dated samples. Unfilled diamonds represent samples with 230Th

ages that were not radiocarbon dated and therefore do not have a F14C value. The ages of these samples are indicated

below the radiocarbon calibration curve for Glovers Reef [88] for ease of visualization.

https://doi.org/10.1371/journal.pone.0239267.g004

Fig 5. Continuity of Acropora cervicornis growth at Coral Gardens. All U-Th and radiocarbon ages of samples from

Pit C and from within the modern living canopy. Note the substantial chronological overlap between corals from

within living coral canopy and beneath the death assemblage (boxed) during the time of Caribbean-wide demise of

acroporids. Abundant living corals were observed at least annually from 2011 to 2019.

https://doi.org/10.1371/journal.pone.0239267.g005
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additional A. cervicornis rubble existed at the bottom of each pit (we were limited in time and

scope to sample further), it is possible and seems highly likely that these corals were established

for a significantly longer period of time. While we cannot guarantee that there were no tempo-

rary die-offs earlier in the record (with less age control and fewer dated samples deeper in the

excavation pits), we have no geological evidence to support a hiatus in reef growth. The

branching morphology of the corals also does not permit a strict linear interpretation, how-

ever, there were no apparent breaks or any observable hiatus in the pit stratigraphy. Addition-

ally, no distinct layers of sediment, hardgrounds, high taphonomic-grade corals, or calcareous

cement layers were encountered that would suggest discontinuous growth of corals at Coral

Gardens. The radiometric ages obtained from the excavated corals are in stratigraphic order

and overlap with the ages of the corals retrieved from within the living coral canopy, suggest-

ing continuous A. cervicornis growth before, during, and after formation of the death assem-

blage capping Pit C. Corals of similar age are also found between the interstices of the modern

living reef and beneath the mid-1990s death assemblage. The continuity of coral growth in the

Fig 6. Living coral canopy. Typical view of flourishing live coral at location T5 in November 2019 (Photo: Lisa Greer).

https://doi.org/10.1371/journal.pone.0239267.g006
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1950s through 1980s suggests that no coral die-off event occurred at Coral Gardens in contrast

to reefs elsewhere, with ages obtained from the death assemblage (such as in Pit C) postdating

the onset of mortality at most other Caribbean locations (~1980s or earlier). We also see no

evidence of a peak in mortality associated with the 1998 El Niño year that resulted in bleaching

events elsewhere in Belize [106]. This does not mean that an El Niño, hurricane, and/or other

stress events did not result in coral death, only that there is no evidence of a massive die-off or

collapse in the record retrieved from Coral Gardens Reef.

Many definitions of the term refugia refer to persistence of a species for millennia, and

through major climate changes [107]. The best measure of longevity in reefs comes from the

fossil record. Many studies have shown that acroporids can be long established and resilient in

the face of natural climate and environmental change. Age data from well-exposed reef crests

provide a wealth of information about the general persistence of Acropora cervicornis through

the Holocene and Pleistocene [1, 2, 4, 13, 84, 108]. At numerous sites in the Caribbean, includ-

ing Florida [109], Mexico [84], the Bahamas [110], Barbados [4, 83], Jamaica [3, 111], the Gulf

of Mexico [112, 113], US Virgin Islands [86, 114], and the Dominican Republic [5], fossilized

reefs from the earlier Holocene offer impressive examples of the reef-building capacity of A.

cervicornis [1, 83, 84, 108, 115].

Pre-modern acroporid corals have been well documented in Belize. Using core data

from shallow-water reefs in southern Belize, Aronson and Precht [6] suggested that prior

to the 1980s A. cervicornis was a primary architectural component of Belizean reefs for the

past three millennia. While most of these studies can address the overall timespan of reef

occupation at a given site, the paucity of undisturbed core sequences including datable

reef materials does prevent high-resolution temporal analysis and the ability to answer

more complex ecological questions such as the timing of ecological shifts, disturbance and

recovery, and the ability to link them with associated drivers [116–118]. The lack of easily

accessible continuous sequences of fossil corals, field and analytical costs, and sample

quality often prohibit such analyses.

The question of why Coral Gardens Reef is a refugium is not addressed in this study.

Detailed annual monitoring of Coral Gardens from 2011–2019 has yet to precisely reveal why

this site has escaped the devastating demise that acroporids at so many other sites in the Carib-

bean have experienced. Coral Gardens has been subject to the impacts of tropical storm and

hurricane force wind and wave action. It has experienced the escalating temperatures and El

Niño events seen globally in recent years. The genetic diversity of Acropora spp. corals at this

site is not unusually high [101].

However, Coral Gardens did not experience any significant bleaching events from

2011 to June 2019, the site sees very little recreational traffic (situated between heavily vis-

ited marine protected areas), and the abundant and very shallow acroporid thickets dis-

courage heavy fishing pressure. While Diadema urchins are still rare, overall urchin

abundance (primarily Echinometra viridis) is high at this site and it seems that herbivores

are keeping algae in check at Coral Gardens [119]. It is possible that location next to a

break in the reef crest (potentially flushing excess or delivering valuable nutrients) (Fig 7)

and distance from the impacts of riverine terrestrial influx may contribute to the good

health of Coral Gardens. Regardless, the temporal persistence of endangered acroporid

corals at Coral Gardens from at least 1915 to 2019 AD suggests that this site is an area that

warrants sound and thoughtful conservation choices. As reef restoration science moves

beyond studying the demise of Acropora spp. corals toward ever more serious restoration

and conservation efforts, Coral Gardens may be an important site to consider for serious

efforts aimed at preservation of this critical acroporid coral habitat.
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Conclusions

Our data show a temporal persistence in Acropora cervicornis growth at Coral Gardens Reef

for over 100 years. Regardless of whether or not there were small gaps in the growth record in

the early-mid 1900’s, A. cervicornis persisted at this site through the devastating die-off that

plagued most of the Caribbean from the 1960s through the 1980s. This suggests that Coral

Gardens served as a refugium for A. cervicornis, potentially one of very few areas where this

species has escaped collapse. This study is one of a very few to date which examines the persis-

tence of modern acroporid corals at fine-scale resolution, and it demonstrates how this

approach can be valuable in assessing where corals have survived naturally–which should be

useful to conservation, preservation, and nursery initiatives globally.

Hope remains that enough natural coral refugia exist to withstand collapse long enough for

local, regional, or global intervention and/or stabilization to occur [45, 63, 67, 69, 70]. Coral

Gardens Reef, Belize, is one candidate for persistence of endangered Acropora spp. corals, but

for how long, we do not know. It is critical to understand natural working systems if we hope

to promote persistence in coral communities, recruits for transplantation, best practices in

management, and an understanding of human/environment interactions as the oceans ven-

ture into a climate-stressed future.

Fig 7. Coral Gardens in relation to reef crest. Red indicates the line of shallow reef crest off Ambergris Caye. Yellow

indicates outline of Ambergris Caye (north) and Caye Caulker (south). Landsat-8 imagery is courtesy of the United

States Geological Survey.

https://doi.org/10.1371/journal.pone.0239267.g007
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30. Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean

corals. Science. 2003; 301(5635):958–60. https://doi.org/10.1126/science.1086050

PLOS ONE A refugium in the face of Caribbean-wide coral decline

PLOS ONE | https://doi.org/10.1371/journal.pone.0239267 September 30, 2020 14 / 18

https://doi.org/10.1023/A:1013103928980
http://dx.doi.org/10.1093/jhered/esl057
http://dx.doi.org/10.1093/jhered/esl057
https://doi.org/10.1111/j.1461-0248.2012.01768
https://doi.org/10.1038/srep00007
https://doi.org/10.1038/nclimate2530
http://dx.doi.org/10.1371/journal.pone.0010835
http://dx.doi.org/10.1371/journal.pone.0010835
http://dx.doi.org/10.1007/s00338-011-0847-y
http://dx.doi.org/10.1007/s00338-011-0847-y
https://doi.org/10.1126/science.1086050
https://doi.org/10.1371/journal.pone.0239267


31. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG et al. Global trajectories of the

long-term decline of coral reef ecosystems. Science, 2003; 301:955–8.
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