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Action of the symmetric group on the free LAnKe:
a CataLAnKe Theorem

Tamar Friedmann∗1, Philip Hanlon2, Richard P. Stanley†3,4,
and Michelle L. Wachs‡4

1Department of Mathematics and Statistics, Smith College
2Department of Mathematics, Dartmouth College
3Department of Mathematics, MIT
4Department of Mathematics, University of Miami

Abstract. We initiate a study of the representation of the symmetric group on the mul-
tilinear component of an n-ary generalization of the free Lie algebra, which we call a
free LAnKe. Our central result is that the representation of the symmetric group S2n−1

on the multilinear component of the free LAnKe with 2n − 1 generators is given by
an irreducible representation whose dimension is the nth Catalan number. This leads
to a more general result on eigenspaces of a certain linear operator. A decomposition,
into irreducibles, of the representation of S3n−2 on the multilinear component the free
LAnKe with 3n − 2 generators is also presented. We also obtain a new presentation
of Specht modules of shape λ, where λ has strictly decreasing column lengths, as a
consequence of our eigenspace result.

Keywords: Free Lie algebra, Specht modules, Catalan numbers

1 Introduction

Lie algebras are defined as vector spaces equipped with an antisymmetric commutator
and a Jacobi identity. They are a cornerstone of mathematics and have applications
in a wide variety of areas of mathematics as well as physics. Also of fundamental
importance is the free Lie algebra, a natural mathematical construction central in the
field of algebraic combinatorics. The free Lie algebra has beautiful dimension formulas;
elegant bases in terms of binary trees; and connections to the shuffle algebra, Lyndon
words, necklaces, Witt vectors, the descent algebra of Sn, quasisymmetric functions,
noncommutative symmetric functions, and the lattice of set partitions.
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It was the search for a tool to solve a problem in string theory that led the first author
to define a generalization of Lie algebras, called a “LAnKe”, or Lie Algebra of the nth

Kind [8]1. Specifically, the LAnKe arose as the algebraic object that plays a central role
in generalizing a relation between codimension-4 singularities and ADE Lie algebras to
a relation between higher-codimension singularities and algebraic objects. The singular-
ities appear in the extra dimensions of string/M theory and affect the interactions seen
in the 4-dimensional physical world.

In this extended abstract of [9], we focus on generalizing the free Lie algebra to the
free LAnKe and studying the representation of the symmetric group on its multilin-
ear component. Our study generalizes the well-known representation Lie(k). The free
LAnKe is based on an n-ary generalization of the Lie bracket. We define ρn,k to be
the representation of the symmetric group Sm on the multilinear component of the free
LAnKe on m generators, where m := n(k− 1)− k + 2. Our central result is that ρn,3 is
isomorphic to the Specht module S2n−11, whose dimension is the nth Catalan number.
We also present the result, whose proof will appear in [10], that ρn,4 is isomorphic to a
sum of two Specht modules.

An explicit Sm-isomorphism from ρn,3 to S2n−11 can be obtained from presentations
of free LAnKes and Specht modules following from results in [1] and [11], respectively.
In this paper the relationship between ρn,3 and S2n−11 is placed in a more general setting.
The Sm-module ρn,k has a presentation of the form Vn,k/Rn,k, where Vn,k is generated by
n-bracketed permutations involving an n-bracket that is antisymmetric only, and Rn,k is
the submodule of Vn,k generated by the generalized Jacobi relations used in the defini-
tion of LAnKe. We consider a natural linear operator on Vn,3 whose 0th eigenspace is
isomorphic to ρn,k. We show that all the eigenspaces are irreducible of the form S2i12n−1−2i

.
Techniques from this proof also play a role in the proof of the above mentioned decom-
position for ρn,4 obtained in [10].

In Section 2 we introduce LAnKes and their relation to orbifold singularities (note
that the rest of this extended abstract can be read independently of this section except
for Definition 2.1). In Section 3 we introduce the free LAnKe and define the Sm-module
ρn,k which generalizes Lie(k). Our results for ρn,k where k = 3, 4, are also included in
Section 3. In Section 4 we present our result on eigenspaces of the above mentioned
linear operator on Vn,3, which yields the k = 3 result. In Section 5 we discuss the
presentations of LAnKes and Specht modules that yield the explicit isomorphism for
k = 3. We also discuss a new presentation of Specht modules of shape λ, where λ

has strictly decreasing column lengths. This is a consequence of a generalization of our
eigenspace result.

1The n = 3 case of LAnKe is called a LATKe in [8]
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2 The definition of the LAnKe

How was the definition of the LAnKe obtained, and what is the LAnKe? This section
provides a roadmap that begins with the relation between singularities of codimension
4 and Lie algebras, and culminates in the definition of the LAnKe.

2.1 Orbifold singularities and Lie algebras

Consider an orbifold singularity of codimension 4, of the form C2/Γ where Γ is a finite
subgroup of SU(2) acting naturally on the complex plane C2. For example, Γ = Zn is
generated by the diagonal 2× 2 complex matrix diag{e2πi/n, e−2πi/n}, and its action on
C2 is given by (x, y)→ (xe2πi/n, ye−2πi/n). The action fixes the origin (x, y) = (0, 0) while
acting freely on the rest of the plane. The resolution of the singularity at the origin is a
collection of intersecting 2-spheres known as the exceptional divisor of the singularity.
When viewed as a graph, the intersecting 2-spheres form the Dynkin diagram of the Lie
algebra sln(C), known as a Lie algebra of type A; further, the intersection matrix Iij of
the exceptional divisor is (the minus of) the Cartan matrix Cij of the corresponding Lie
algebra. Similarly, the other finite discrete subgroups of SU(2) lead to singularities at the
origin whose resolutions correspond to the Dynkin diagrams of Lie algebras of types D
and E, with the same relation between the intersection numbers and the Cartan matrix.
Due to their ADE classification, the codimension-4 orbifold singularities are known as
ADE singularities.

The physical picture that involves codimension-4 singularities is as follows: the ADE
singularities appear in the extra dimensions, and lead to a principal GADE-bundle over
space-time crossed with the locus of the singularity. The group GADE is the Lie group
of the corresponding ADE Lie algebra and it plays a central role in gauge theories, which
are essentially a family of symmetries together with a physical model that can describe
the interactions in the four-dimensional world.

What happens when the singularities have higher codimension? Can the relation
between singularities and Lie algebras be generalized to codimension-2n singularities?
That is, given an orbifold singularity Cn/Γ, where Γ is a finite, discrete subgroup of
SU(n), is there an algebraic object that can be associated with the singularity in a way
analogous to that in which ADE Lie algebras are associated with ADE singularities? This
question is illustrated in the following diagram.

C2/ΓADE ADE Lie algebra

Cn/Γ ?
(2.1)
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We discuss the answer in the next subsection. Here, we mention that just like the n = 2
case, the n = 3 case – with singularities of codimension 6 – has applications in string/M
theory; for further details, see [8].

2.2 The Commutator-Intersection-Relations and the LAnKe

To answer the question of the previous subsection, we look back at the traditional Lie
algebra case. Recall that for any Lie algebra, the entries of the Cartan matrix, Cij, play
a central role in the Chevalley–Serre relations that contain the commutation relations of
the generators of the Lie algebra. In our setting, said entries are equal to elements of
the intersection matrix of the associated singularity (with a minus sign). Replacing Cij
by −Iij in the Chevalley–Serre relations leads to a fundamental reinterpretation. The
relations become:

[Hi, Hj] = 0 [Xi, Yj] = δijHj ;

[Hi, Xj] = −IijXj [Hi, Yj] = IijYj ; (2.2)

ad(Xi)
1+Iij(Xj) = 0 ad(Yi)

1+Iij(Yj) = 0 .

Looking at these relations afresh reveals that actually, they provide all commutators of
the Lie algebra in terms of the intersection numbers of the exceptional divisor of the
corresponding singularity! These Commutator-Intersection Relations (CIRs) will now be
generalized to the codimension 6 case, and then to codimension 2n.

We begin by generalizing the intersection matrix. For codimension-6 orbifolds, the
intersection form of the exceptional divisor is no longer a matrix of size r× r, where r is
both the rank of the algebra and the number of irreducible components in the exceptional
divisor. Rather, it is a hyper-matrix of dimension r× r× r. This follows from the fact that
in order to obtain a zero-dimensional space from which we can define an intersection
number, it is required that we take triple intersections. For general n, we need n-fold
intersections.

Now consider equations (2.2), in particular [Hi, Xj] = −IijXj. The number of indices
in the intersection matrix (two: i and j) is the same as the number of entries in the com-
mutator (two: Hi and Xj). For codimension 6, the number of indices in the intersection
form is 3, and for codimension 2n this number is n. This leads to the concept of a com-
mutator of 3, or n, entries. All we need now is antisymmetry and a generalized Jacobi
identity, and we will have obtained a mathematical object generalizing Lie algebras and
replacing the question mark in diagram (2.1).

Definition 2.1. A Lie algebra L of the n-th kind (“LAnKe” ) is a vector space equipped with
an n-linear bracket

[·, ·, , ·] : ×nL → L
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that satisfies the following antisymmetry relation for all σ in the symmetric group Sn:

[x1, . . . , xn] = sgn(σ)[xσ(1), . . . , xσ(n)] (2.3)

and the following generalization of the Jacobi identity:

[[x1, x2, . . . , xn], xn+1, . . . , x2n−1] (2.4)

=
n

∑
i=1

[x1, x2, . . . , xi−1, [xi, xn+1, . . . , x2n−1], xi+1, . . . , xn],

for all x1, x2, . . . , x2n−1 ∈ L.

The definition of the LAnKe with the above-described motivation was given in [8].
The same algebraic structure arose before in other contexts as well; see [7, 21, 6, 15, 18, 2,
12]. A different generalization of Lie algebras that also involves n-ary brackets appeared
in the 1990’s in work of Hanlon and Wachs [14].

We now proceed to use this definition in our generalization of the free Lie algebra.

3 The free LAnKe

There are beautiful results on the free Lie algebra involving the representation of the
symmetric group Sk on the multilinear component of the free Lie algebra with k gener-
ators. This representation is known as Lie(k). The LAnKe provides an opportunity to
generalize both the free Lie algebra itself and the representation Lie(k). To set the stage,
we review the free Lie algebra and Lie(k) first (see [19]).

3.1 The free Lie algebra and Lie(k)

Let X := {x1, x2, . . . , xk} be a set of generators. Then the multilinear component of the
free Lie algebra on X is the subspace spanned by bracketed “words” where each gen-
erator in X appears exactly once. For example, [[x1, x3], [[x4, x5], x2]] is such a bracketed
word when k = 5, while [[x1, x3], [[x1, x5], x3]] is not. A certain type of bracketed word in
the multilinear component has the form

[· · · [[[xσ(1), xσ(2)], xσ(3)], xσ(4)], . . . , xσ(k)], σ ∈ Sk. (3.1)

Bracketed words that are not of this type, such as [[x1, x3], [[x4, x5], x2]], can be shown
to be linear combinations of the bracketed words of the form in (3.1) using iterations of
the Jacobi identity. Furthermore, if we restrict to the permutations that satisfy σ(1) = 1,
then the words of the form in (3.1) form a basis for the vector space. This vector space
admits a natural (k− 1)!-dimensional representation of Sk denoted Lie(k).

The decomposition of Lie(k) into irreducibles is given by the following result.
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Theorem 3.1 (Kraskiewicz and Weyman [17]). Let i ≥ 1 and k ≥ 2 be relatively prime. For
each λ ` k, the multiplicity of the Specht module Sλ in Lie(k) is equal to the number of standard
Young tableaux of shape λ and of major index congruent to i mod k.

Interestingly, Lie(k) appears in a variety of other contexts, such as the top homology
of the lattice of set partitions in work of Stanley [20], Hanlon [13], Barcelo [3], and Wachs
[22], in the homology of configuration spaces of k-tuples of distinct points in Euclidean
space in work of Cohen [5], and in scattering amplitudes in gauge theories in work of
Kol and Shir [16].

3.2 The free LAnKe and ρn,k

The following generalizes the standard definition of a free Lie algebra.

Definition 3.2. Given a set X, the free LAnKe on X is a LAnKe L together with a mapping
i : X → L with the following universal property: for each LAnKe K and each mapping f : X →
K, there is a unique LAnKe homomorphism F : L → K such that f = F ◦ i.

Similar to the free Lie algebra, a LAnKe is free on X if it is generated by all possible
n-bracketings of elements of X, and if the only possible relations existing among these
bracketings are consequences of n-linearity of the bracketing, the antisymmetry of the
bracketing (2.3), and the generalized Jacobi identity (2.4).

The multilinear component of the free LAnKe on m generators is spanned by brack-
eted permutations; that is, bracketed words where each generator appears exactly once.
We consider two variables: n, the number of entries in a given bracket (so n = 2 for
Lie algebras), and k, the number of brackets plus 1. The number of generators for the
multilinear component is then kn− n− k + 2, an expression symmetric in n and k. For
example, an element of the form [· · [· · · ]] has n = 3, k = 3, and 3 · 3− 3− 3 + 2 = 5
generators; [· · [· · [· · · ]]] has n = 3, k = 4, and 4 · 3− 4− 3 + 2 = 7 generators.

The object we study here is the representation of Sm on the multilinear component
of the free LAnKe on m := kn− n− k + 2 generators. We denote this representation by
ρn,k, and view (ρn,k) as an array of representations, with n, k ≥ 2.

Table 1 summarizes what we know about the decomposition of ρn,k into irreducibles.
The Young diagrams in the table stand for Specht modules of the indicated shape. The
first row ρ2,k, k ≥ 2, is the Lie representation Lie(k). The sign representations that appear
in the first column, k = 2, trivially follow from the antisymmetry of the bracket. The
second column ρn,3, n ≥ 2, follows from Theorem 3.3 below and the third column ρn,4,
n ≥ 2, follows from Theorem 3.4 below. The first three columns suggest that ρn,k can
be obtained from ρn−1,k by adding a row of length k − 1 to each irreducible of ρn−1,k.
However the entry ρ3,5, whose expansion follows from general results of the authors in
[10], shows that this does not hold when k = 5. Relationships between ρn,k and ρn−1,k
are explored in [10].
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Table 1: What is known about the representations ρn,k

n
k

2 3 4 5 k

S2 S3 S4 S5 Sk
[..] [.[..]] [.[.[..]]] [.[.[.[..]]]]

2 ⊕ 32⊕ 41
⊕213 ⊕ 312 ⊕ 221

Lie(k)

1 2 6 24 (k− 1)!
S3 S5 S7 S9 S2k−1
[...] [..[...]] [..[..[...]]] [..[..[..[...]]]]

3 ⊕
432⊕ 421

⊕4213 ⊕ 4312 ⊕ 3213

⊕4221⊕ 323
ρ3,k

1 5 56 1077
S4 S7 S10 S13 S3k−2
[....] [...[....]] [...[...[....]]] [...[...[...[....]]]]

4 ⊕ ρ4,5 ρ4,k

1 14 660
Sn S2n−1 S3n−2 S4n−3 Snk−n−k+2

n 1n 2n−11 3n−2212 ⊕ 3n−11 ρn,5 ρn,k

1 1
n+1 (

2n
n )

4
∏3

i=1(n+i)
( 3n

n,n,n)

Theorem 3.3. For all n ≥ 2, the representation ρn,3 is given by the Specht module S2n−11, whose
dimension is the nth Catalan number 1

n+1(
2n
n ).

An explicit S2n−1-module isomorphism between the CataLAnKe representation ρn,3

and the Specht module S2n−11 can be obtained from an alternative generalized Jacobi
relation in [1] and a presentation for any Specht module Sλ in [11]; see Section 5. In the
next section we show that Theorem 3.3 can be viewed as a special case of a result on
eigenspaces of a certain operator.

The following result is obtained by the authors in [10]. Techniques discussed in the
next section play a role in the proof.

Theorem 3.4. For all n ≥ 2, the following S3n−2-module isomorphism holds,

ρn,4
∼= S3n−2212 ⊕ S3n−11.
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4 The CataLAnKe representation and a linear operator

In this section we consider an operator whose null space is isomorphic to the CataLAnKe
representation ρn,3. We show that all the eigenspaces of this operator are irreducible and
use this to recover Theorem 3.3.

Let Vn,3 be the multilinear component of the vector space generated by all possible n-
bracketed words on [2n− 1], subject only to antisymmetry of the brackets given in (2.3)
(but not to the generalized Jacobi identity (2.4)). That is, Vn,3 is the subspace generated
by

uτ := [[τ1, . . . , τn], τn+1, . . . , τ2n−1],

where τ ∈ S2n−1, τi = τ(i) for each i, and [·, . . . , ·] is the antisymmetric n-linear bracket
(that does not satisfy the generalized Jacobi relation).

The symmetric group S2n−1 acts on generators of Vn,3 by the following action: for
σ, τ ∈ S2n−1,

σuτ = uστ.

This induces a representation of S2n−1 on Vn,3 since the action respects the antisymmetry
relation.

For each n-element subset S := {a1, . . . , an} of [2n− 1], let

vS = [[a1, . . . , an], b1, . . . , bn−1],

where {b1, · · · , bn−1} = [2n− 1] \ S, and the ai’s and bi’s are in increasing order. Clearly,{
vS : S ∈

(
[2n− 1]

n

)}
(4.1)

is a basis for Vn,3. Thus Vn,3 has dimension (2n−1
n ).

For each S ∈ ([2n−1]
n ), use the generalized Jacobi identity (2.4) to define the relation

RS = vS −
n

∑
i=1

[a1, . . . , ai−1, [ai, b1, . . . , bn−1], ai+1, . . . , an], (4.2)

where a1 < · · · < an and b1 < · · · < bn−1 are as in the previous paragraph. Let Rn,3 be
the subspace of Vn,3 generated by the RS. Then as S2n−1-modules

Vn,3/Rn,3
∼= ρn,3. (4.3)

We consider the linear operator ϕ : Vn,3 → Vn,3 defined on basis elements by

ϕ(vS) = RS.

It is not difficult to see that this is an S2n−1-module isomorphism. We show that as
S2n−1-modules,

null ϕ ∼= ρn,3. (4.4)
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Hence Theorem 3.3 says that the null space is isomorphic to the Specht module S2n−11.
The next result generalizes this to all the eigenspaces of ϕ.

Theorem 4.1. There are n distinct eigenvalues of ϕ, which are given by

wi := 1 + (n− i)(−1)n−i,

for i = 0, 1, . . . , n − 1. Moreover, if Ei is the eigenspace corresponding to wi then as S2n−1-
modules

Ei
∼= S2i1(2n−1)−2i

,

for each i = 0, 1, . . . , n− 1.

Note that we can recover Theorem 3.3 as a consequence of Theorem 4.1 and (4.4)
since wi = 0 when i = n− 1.

Proof idea. 2 We use Young’s rule to show

Vn,3
∼=

n−1⊕
i=0

S2i12n−1−2i
.

Since there are no multiplicities, it follows from Schur’s lemma that ϕ acts as a scalar
on each irreducible submodule. It remains to determine said scalar for each irreducible
S2i12n−1−2i

.
To compute the scalar, we start by letting t be the Young tableau of shape 2i12n−1−2i

whose first column is 1, 2, . . . , n, n + i + 1, n + i + 2, · · · 2n− 1 and whose second column
is n + 1, n + 2, . . . , n + i. Let Ct be the column stabilizer of t and let Rt be the row
stabilizer. Recall that the Young symmetrizer associated with t is defined by

et := ∑
α∈Rt

α ∑
β∈Ct

sgn(β)β

and that the Specht module S2i12n−1−2i
is the submodule of the regular representation

CS2n−1 spanned by {τet : τ ∈ S2n−1}.
Now set T := [n]. We show that etvT 6= 0. Let ψ : CS2n−1 → Vn,3 be the S2n−1-module

homomorphism defined by ψ(σ) = σvT. Now consider the restriction of ψ to the Specht
module S2i12n−1−2i

. By the irreducibility of the Specht module and the fact that etvT 6= 0,
this restriction is an isomorphism from S2i12n−1−2i

to the subspace of Vn,3 spanned by
{τetvT : τ ∈ S2n−1}. This subspace is therefore the unique subspace of Vn,3 isomorphic
to S2i1(2n−1)−2i

. Thus ϕ(etvT) = cetvT for some scalar c. By computing the coefficient of vT
in ϕ(etvT) and in etvT we show that c = wi.

2See [9] for a full-length manuscript with the complete proof of Theorem 4.1.
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5 Alternative presentations

For each partition λ = (λ1 ≥ · · · ≥ λl) of m, let Tλ be the set of Young tableaux of shape
λ. Let Mλ be the vector space generated by Tλ subject only to column relations, which
are of the form t + s, where s is obtained from t by switching two entries in the same
column. Given t ∈ Tλ, let t̄ denote the coset of t in Mλ. These cosets, which are called
column tabloids, generate Mλ. The symmetric group Sm acts on Tλ by replacing each entry
of a tableaux by its image under the permutation in Sm. This induces a representation of
Sm on Mλ.

There are various different presentations of Sλ in the literature, which involve the
column relations and Garnir relations. Here we are interested in a presentation of Sλ

discussed in Fulton [11, Section 7.4]. The Garnir relations are of the form t̄−∑ s̄, where
the sum is over all s ∈ Tλ obtained from t ∈ Tλ by exchanging any k entries of any
column with the top k entries of the next column, while maintaining the vertical order of
each of the exchanged sets. There is a Garnir relation gt

c,k for every t ∈ Tλ, every column
c ∈ [λ1− 1], and every k from 1 to the length of the column c+ 1. Let Gλ be the subspace
of Mλ generated by these Garnir relations. Clearly Gλ is invariant under the action of
Sm. The presentation of Sλ obtained in Section 7.4 of [11] is given by

Mλ/Gλ ∼= Sλ. (5.1)

On page 102 (after Ex. 15) of [11], a presentation of Sλ with fewer relations is given.
The presentation is

Mλ/Gλ,1 ∼= Sλ, (5.2)

where Gλ,1 is the subspace of Gλ generated by

{gt
c,1 : c ∈ [λ1 − 1], t ∈ Tλ}.

In Appendix 1 of [1], a proof that the generalized Jacobi relations (2.4) are equivalent
to the relations

[[x1, x2, . . . , xn], y1, . . . , yn−1] =
n

∑
i=1

[[x1, x2, . . . , xi−1, y1, xi+1, . . . , xn], xi, y2, . . . , yn−1] (5.3)

is given.3 This gives an alternative presentation of ρn,k for all n, k.
Using the natural correspondence between generators [[a1, . . . , an], b1, . . . , bn−1] of Vn,3

and column tabloids t̄, where t is the tableau whose first column is a1, . . . , an and whose
second column is b1, . . . , bn−1, we see that the alternative Jacobi relations (5.3) correspond
to the Garnir relation gt

1,1 for λ = 2n−11. Thus the natural correspondence between

generators yields an isomorphism from ρn,3 to the realization of S2n−11 given in (5.2).

3This equivalence can also be obtained as a consequence of Theorem 4.1 and (5.2).



Action of the symmetric group on the free LAnKe: a CataLAnKe Theorem 11

The natural correspondence between generators of Vn,3 and generators of M2n−11 also
takes the generalized Jacobi relations (2.4) to the Garnir relations gt

1,n−1. This enables us

to give another presentation of S2n−11 with fewer relations than that of (5.1). In fact, we
can extend this to a wider class of Specht modules. Indeed, the natural correspondence
between generators of Vn,3 and generators of M2n−11 can be used to transfer the operator
ϕ on Vn,3 of Theorem 4.1 to M2n−11. For d ∈ [n], a generalization ϕn,d of ϕ can be defined
on M2d1n−d

. We obtain a generalization of Theorem 4.1 for ϕn,d and use it to prove the
following result, which gives a new presentation with fewer relations than that of (5.1)
for Specht modules Sλ whose conjugate shape λ′ has strictly decreasing parts.4

Theorem 5.1. For λ ` m, let T ∗λ be the set of Young tableaux of shape λ in which each element
of [m] appears once and the columns increase, and let G̃λ be the subspace of Mλ generated by

{gt
c,λ′c+1

: c ∈ [λ1 − 1], t ∈ T ∗λ }.

If λ′ has strictly decreasing parts then Sλ ∼= Mλ/G̃λ.

In [4], Brauner and Friedmann obtain a result analogous to the generalization of The-
orem 4.1 discussed above and use it to obtain an interesting new presentation of Specht
modules of all shapes, in which the number of relations has been similarly reduced. The
new presentation implies the presentation (5.2). Another proof of Theorem 3.3 is also
discussed in [4].
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