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Schwinger pair creation of Kaluza-Klein particles: Pair creation without tunneling

Tamar Friedmann* and Herman Verlinde†

Physics Department, Princeton University, Princeton, New Jersey 08544, USA
(Received 12 August 2004; published 18 March 2005)

We study Schwinger pair creation of charged Kaluza-Klein (KK) particles from a static KK electric
field. We find that the gravitational backreaction of the electric field on the geometry—which is
incorporated via the electric KK-Melvin solution—prevents the electrostatic potential from overcoming
the rest mass of the KK particles, thus impeding the tunneling mechanism which is often thought of as
responsible for the pair creation. However, we find that pair creation still occurs with a finite rate formally
similar to the classic Schwinger result, but via an apparently different mechanism, involving a combi-
nation of the Unruh effect and vacuum polarization due to the E-field.

DOI: 10.1103/PhysRevD.71.064018 PACS numbers: 04.50.+h

I. INTRODUCTION AND SUMMARY

The classic study of the rate of creation of electron-
positron pairs in a uniform, constant electric field was
done more than 50 years ago in the seminal paper by
Schwinger [1]. The concepts and methodology introduced
in this work have had a lasting impact on the formal
development of quantum field theory, and by now several
alternative derivations of the effect have been invented
(see, e.g., [2–5]).

Schwinger’s predicted rate per unit time and volume is
given by [1,5]

W �E� � qE
Z d2ki

�2��2
X1
n�1

1

n
exp

�
�
�n�m2

e � k2i �
jqEj

�
(1.1)

for a spin 1=2 particle in 4 flat space-time dimensions, with
me and q the electron mass and charge, ki the transverse
momenta, and E the electric field.1

In an earlier set of equally classic papers [9,10], Kaluza
and Klein (KK) introduced their unified description of
general relativity and electromagnetism, in which charged
particles appear as quanta with nonzero quantized momen-
tum around a compact extra dimension. It has of course
always been clear that the charged Kaluza-Klein particles
do not have the correct properties to represent electrons;
most notably, the mass of the fundamental KK particles is
equal to (or bounded below by) their charge, while for the
electron the ratio me=q is about 10�21. So in comparison

with electrons, KK particles are either very heavy or have
(in a large extra dimension scenario) an exceedingly small
KK electric charge. Nonetheless, or rather, because of this
fact, it is an interesting theoretical question whether it is at
all possible, via an idealized gedanken experiment, to pair
produce KK particles by means of the Schwinger mecha-
nism. As far as we know, this question has not been
addressed so far in the literature, and probably for a good
reason: it turns out to be a subtle problem. We will show
that unlike the standard Schwinger pair creation effect, pair
production of KK particles cannot be given the simple and
rather intuitive interpretation of a tunneling mechanism.

Imagine setting up our gedanken experiment as in Fig. 1,
with two charged plates with a nonzero KK electric field in
between. As seen from Eq. (1.1), to turn on the effect by
any appreciable amount will require an enormous KK

E = 0

a = 0

ρ = ρ2

Plate 2

ρ = ρ1
ρ

Plate 1

FIG. 1. The gedanken experiment we will imagine in this
paper, with two charged plates at � � �1 and � � �2, producing
a nonzero E-field in the intermediate region. The backreaction
and the finite mass density of the plates results in a nonzero
gravitational acceleration a.

*Electronic address: tamarf@feynman.princeton.edu
Currently at tamarf@lns.mit.edu

†Electronic address: verlinde@feynman.princeton.edu
1The rate (1.1) is still very small for experimentally accessible

electric fields. For the rate to be appreciable, the field must be
very large, around Ecrit � 1016 eV=cm. A static field of this
magnitude is difficult to obtain in laboratories, largely because
it is several orders of magnitude above the electric field that can
be sustained by an atom, namely 108 eV=cm. See [6] for a recent
experiment that has obtained pair creation from oscillating
electric fields, which were studied theoretically in [7], and see
[8] for an upcoming experiment studying pair production from
the low-frequency, Schwinger limit of such fields.
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electric field, and since Kaluza-Klein theory automatically
includes gravity, the backreaction of the E-field on space-
time will need to be taken into account. The best analog of
a constant electric field in this setting is the electric version
of the Kaluza-Klein Melvin (KKM) background; the mag-
netic version was studied recently in [11–13]2, and in [13]
the electric version also appeared. We will study some of
the features of the electric KKM background in Sec. II. For
our problem, the relevant properties of this background are
that

(i) the background geometry depends on a longitudi-
nal coordinate, which we will call �;

(ii) a gravitational acceleration a���, directed along the
E-field, is included;

(iii) the total gravitational and electrostatic potential
energy remains positive everywhere.

The first two properties are expected backreaction ef-
fects. The last property, however, implies that the negative
electrostatic potential can never be made large enough to
compensate for the positive contribution coming from the
rest mass of the particles. The physical reason for this
obstruction is that before one reaches the critical electro-
static potential, backreaction effects will cause space-time
itself to break down: if one would formally continue the
solution beyond this point, the space-time develops closed
timelike curves, which are known to be unphysical. In this
way, gravity puts an upper limit on the potential difference
one can achieve between the two plates in Fig. 1.

This result may look like an insurmountable obstacle for
pair creation, which is usually [4,5] thought of as a tunnel-
ing effect by which particle pairs can materialize by using
their electrostatic energy to overcome their rest mass. The
modern instanton method [3,4] of computing the pair
creation rate, for example, crucially depends on this intu-
ition. However, as mentioned in point (ii) above, it turns
out that the backreaction necessarily implies that the vac-
uum state of the KK particles needs to be defined in the
presence of a nonzero gravitational acceleration. As we
will explain in Appendix A, the necessary presence of this
acceleration can be thought of as due to the non-zero-mass
of the parallel plates that produce the KK electric field.
Consequently, the Schwinger effect needs to be studied in
conjunction with its direct gravitational analog, the equally
famous Hawking-Unruh effect [15–17].

It has been recognized for some time that the Hawking-
Unruh effect and Schwinger pair creation are rather closely
related (see, for example, [5]); both can be understood via a
distortion of the vacuum, which may be parametrized by
means of some appropriate Bogolyubov transformation
that relates the standard energy eigenmodes to the new
energy eigenmodes in the nontrivial background field.

Also, like the Schwinger effect, the Hawking-Unruh effect
has been thought of as a tunneling mechanism and was
derived as such recently [18]; see also [19] for a related
study of de Sitter radiation.

By combining both the Schwinger and the Unruh effects
we will obtain the following result for the pair creation rate
of the Kaluza-Klein particles (which we will assume to be
scalar particles) as a function of the electric field E and
gravitational acceleration a

W �E; a� �
a3=2

2�2

Z Qd�2
dki

�2��d�2
X
q

�q2 ��k2i �
1=4

� exp	�2�!�a; q; ki�
; (1.2)

where

!�a; q; ki� �
q2 � k2i

j 12qE� a
��������������������
q2 ��k2i

q
j
;

� � 1�
E2

4a2
:

(1.3)

Here the summation is over the full KK tower of all
possible charges q � n=R with n integer and R the radius
of the extra dimension, and a is the ‘‘bare’’ acceleration,
that the particles would experience with the E-field turned
off. While E in this formula is a constant, a in fact depends
on the longitudinal coordinate via 1=a � �� const: The
potential energy in (1.3) is the manifestly positive quantity
we referred to in property (iii) above. A more detailed
explanation of the result (1.2) will be given in Sec. V.

Since in our case mass equals charge the result (1.2)
looks like a reasonable generalization of the classic result
(1.1) of Schwinger and of Unruh [5,16]. In particular, if we
turn off the E-field, our expression (1.2) reduces to the
Boltzmann factor with Hawking-Unruh temperature � �
2�=a. Moreover, if we would allow ourselves to drop all
terms containing the acceleration a, the result is indeed
very similar to the dominant n � 1 term in Schwinger’s
formula (1.1). However, it turns out that in our case, the
gravitational backreaction dictates that the acceleration a
cannot be turned off; rather, it is bounded from below by
the electric field via

a > jE=2j: (1.4)

Our formula (1.2) indeed breaks down when a gets below
this value. So, in particular, there is no continuous weak
field limit in which our result reduces to Schwinger’s
answer. We will further discuss the physical interpretation
of our result in the concluding section, where we will make
a more complete comparison with the known rate [20] for
Schwinger production in an accelerating frame.

This paper is organized as follows. In Sec. II we describe
some properties of the electric Kaluza-Klein Melvin space-
time. In Secs. III and IV we study classical particle me-

2In [11], pair production of Kaluza-Klein monopoles from the
magnetic Kaluza-Klein Melvin solution was studied. See also
[14] for a study of other aspects of the magnetic solutions.
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chanics and wave mechanics in this background. Finally in
Sec. V, we set out to calculate the pair creation rate, using
(and comparing) several methods of computation. Sec. VI
contains some concluding remarks. We discuss our experi-
mental setup in Appendix A, and in Appendix B we
summarize the known result for Schwinger pair production
in an accelerating frame.

II. THE ELECTRIC KALUZA-KLEIN-MELVIN
SPACE-TIME

We start with describing the classical background of d�
1-dimensional Kaluza-Klein theory, representing a maxi-
mally uniform KK electric field.

A. Definition of the electric KKM space-time

Consider a flat d� 1 dimensional flat Minkowski space-
time, with the metric

ds2 � �dt2 � dx2 � dyidy
i � dx2d�1; (2.1)

with i � 2; . . . ; d� 1. From this we obtain the electric
Kaluza-Klein-Melvin space-time by making the identifica-
tion 0BBB@

t
x
yi
xd�1

1CCCA !

0BBB@
t0

x0

y0i
x0d�1

1CCCA �

0BBB@
��t� �x�
��x� �t�

yi
xd�1 � 2�R

1CCCA (2.2)

with �2�1� �2� � 1. This geometry can be viewed as a
nontrivial Kaluza-Klein background in d dimensions, in
which the standard periodic identification xd�1  xd�1 �
2�R of the extra dimension is accompanied by a Lorentz
boost in the x-direction. Since the d� 1 dimensional
space-time is flat everywhere, and the identification map
(2.2) is an isometry, it is evident that the electric Melvin
background solves the equation of motion of the Kaluza-
Klein theory. As we will describe momentarily, from the
d-dimensional point of view, it looks like a nontrivial
background with a constant nonzero electric field E and
with, as a result of its nonzero stress-energy, a curved
space-time geometry. Here the electric field E is related
to the boost parameters � and � by

� � tanh��RE�; � � cosh��RE�: (2.3)

The map (2.2) represents a proper spacelike identifica-
tion, for which

��t0 � t�2 � �x0 � x�2 � �x0d�1 � xd�1�2

� �2�R�2 � �2�� 2��x2 � t2�> 0 (2.4)

provided we restrict to the region

� <
�R

sinh�ER2
; �2  x2 � t2; (2.5)

where we used (2.3). Outside of this regime, the electric

Melvin space-time contains closed timelike curves. We
will exclude this pathological region from our actual physi-
cal setup.3

B. Classical trajectories

As a first motivation for the identification of E with the
KK electric field, it is instructive to consider classical
trajectories in this space-time. This is particularly easy,
since in flat d� 1 Minkowski space, freely moving parti-
cles move in straight lines:

x � x0 � p1s; x� � t0 � p0s; yi � kis;

xd�1 � qs:
(2.6)

Assuming the particle is massless in d� 1-dimensions, we
have

p0 �
����������������������������
p21 � k2i � q2

q
; (2.7)

which is the mass-shell relation of a d-dimensional particle
with mass equal to q. Let us introduce coordinates � and �
via

x � � cosh
�
��

1

2
Exd�1

�
;

t � � sinh
�
��

1

2
Exd�1

�
;

(2.8)

and coordinates X and T by

X � � cosh�; T � � sinh�: (2.9)

The identification (2.2) in the new coordinates becomes

0BBB@
T
X
yi
xd�1

1CCCA !

0BBB@
T
X
yi

xd�1 � 2�R

1CCCA; (2.10)

which is the standard Kaluza-Klein identification. The
trajectory in terms of these is

3There is also a different notion of the electric version of the
KK-Melvin space-time, which is obtained by applying an elec-
tromagnetic duality transformation F ! e2

��
3

p
� � F, � ! �� to

the magnetic KK-Melvin space-time [21]. This background
looks like an electric flux-tube in a U�1� gauge theory with an
electric coupling constant e that diverges at large transverse
distance from the flux-tube (due to the fact that the size of the
extra dimension shrinks at large distance). Putting a reasonable
physical upper bound on the size of e restricts the maximal
allowed length of the flux-tube, suggesting that the obstruction
against creating an arbitrarily large electrostatic potential may be
more general than only for the type of backgrounds studied in
this paper.
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X � �x0 � p1s� cosh
�
1

2
Eqs

�
� �t0 � p0s� sinh

�
1

2
Eqs

�
;

T � �t0 � p0s� cosh
�
1

2
Eqs

�
� �x0 � p1s� sinh

�
1

2
Eqs

�
:

(2.11)

Considering a particle at rest at the origin x0 � 0 and t0 �
0, we find

d2X

dT2
�

qE
p0

: (2.12)

This is the expected acceleration of a particle with charge
and rest-mass q.

C. Kaluza-Klein reduction

Let us now perform the dimensional reduction to d
dimensions. Using the coordinates � and � defined in
(2.8) the d� 1 dimensional metric becomes

ds2 � ��2
�
d��

1

2
Edxd�1

�
2
� d�2 � dyidy

i � Sdx2d�1;

(2.13)

while the identification (2.2) simplifies to a direct period-
icity in xd�1 with period 2�R, leaving ��; �; yi� unchanged.
We may rewrite the metric (2.13) as

ds2 � �
�2

�
d�2 � d�2 � dyidy

i ��
�
dxd�1 �

E�2

2�
d�

�
2

(2.14)

with

�  1�
1

4
E2�2: (2.15)

In this form, we can readily perform the dimensional
reduction.

The d dimensional low energy effective theory is de-
scribed by the Einstein-Maxwell theory coupled to the
Kaluza-Klein scalar V via

S �
Z ����������

�gd
p

�
V1=2Rd �

1

4
V3=2F#$F#$

�
: (2.16)

Here the d-dimensional fields are obtained from the d� 1
metric via the decomposition

ds2d�1 � ds2d � V�dxd�1 � A#dx#�2: (2.17)

Comparing (2.14) and (2.17) gives the dimensionally re-
duced form of the electric Melvin background

ds2d � �
�2

�
d�2 � d�2 � dyidy

i (2.18)

A0 �
E�2

2�
; V � �  1�

1

4
�2E2: (2.19)

It describes a curved space-time, together with an electric

field in the �-direction given by

E� 
�������
g00

q
@�A0 �

E

�3=2
: (2.20)

This electric field is equal to E at � � 0, but diverges at
� � 2=E; this singular behavior is related to the mentioned
fact that outside the region (2.5), the identification map
(2.2) becomes timelike and produces closed timelike
curves. Note, however, that the location of the divergence
in E� slightly differs from the critical value noted in (2.5),
but coincides with it in the limit of small ER.

The d dimensional metric in (2.18) reduces for E � 0 to
the standard Rindler space-time metric. For finite E there is
a nonzero gravitational acceleration

a����  g00@�g00 �
1

��
; (2.21)

which includes the gravitational backreaction due to the
stress-energy contained in the electric field. Notice that
a��� diverges at � � 2=E.

The above static Rindler type coordinate system will be
most useful for the purpose of providing a background with
a static KK electric field. To obtain a more global perspec-
tive of the full electric KK-Melvin space-time, we can use
the coordinates X and T defined in Eq. (2.9). In this
coordinate system, the solution looks like

ds2 � �dT2 � dX2 �
E2

4�
�XdT � TdX�2 � dyidyi;

A0 �
EX
2�

; A1 � �
ET
2�

; V � �;

�  1�
1

4
E2�X2 � T2�: (2.22)

In this coordinate system we can distinguish four different
regions:

Region I : X > jTj; Region II: X <�jTj;

Region III: T > jXj; Region IV: T <�jXj:

Regions I and II are static regions (that is, they admit a
timelike Killing vector) and are analogous to the left and
right wedges of Rindler space. They are separated by a
‘‘horizon’’ (as seen only by static observers at � � const:)
at X2 � T2 from two time-dependent regions III and IV
(see Fig. 2). We will mostly dealing with the physics of
region I. For a discussion of the physics in region III, see
[13].

D. Physical boundary conditions

In order to have in mind a physical picture of the part of
this space-time that we will be studying, we recall the
gedanken experiment as shown in Fig. 1, in which two
charged plates produces a static KKM electric field be-
tween them. As explained in detail in Appendix A, the
space-time between the two plates will correspond to a
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finite interval within region I:

�1 < �< �2; with 0<�1 < �2 < j2=Ej: (2.23)

By concentrating on the physics within this region, our
physical setup will automatically exclude the unphysical
regime with the closed timelike curves, as well as the
horizon at � � 0. The details of this setup are given in
Appendix A.

III. PARTICLE MECHANICS

In this section we consider the classical mechanics of
charged particles in the electric KK-Melvin space-time,
deriving the expression for the total gravitational and
electrostatic potential energy. This discussion will be use-
ful later on when we consider the quantum mechanical pair
production.

A. Classical action

The classical action for a massless particle in d� 1
dimensions is

Sd�1 �
Z
ds	pM _xM � (�GMNpMpN�
; (3.1)

where M;N � 0; . . . ; d and ( denotes the Lagrange multi-
plier imposing the zero-mass-shell condition GMNpMpN �
0. Upon reduction to d dimensions, using the general
Kaluza-Klein ansatz (2.17), for which

GMN �

�
g#$ �A$

�A# V�1 � A#A#

�
; (3.2)

where #; $ � 0; . . . ; d� 1, the action (3.1) attains the
form (here we drop the xd�1-dependence)

Sd �
Z
ds
�
p# _x

# � (
�

g#$�p# � qA#��p$ � qA$�

�
q2

V

��
: (3.3)

Here we identified q � pd�1. The ( equation of motion
gives

g#$�p# � qA#��p$ � qA$� �
q2

V
� 0: (3.4)

This is the constraint equation of motion of a particle with
charge q and a (space-time-dependent) mass m � q=

����
V

p
.

For the electric KK-Melvin background (2.18), the con-
straint (3.4) takes the form

�
�

�2

�
p� �

qE�2

2�

�
2
� p2� � p2i �

q2

�
� 0; (3.5)

or

�
p2�
�2

�

�
q�

1

2
Ep�

�
2
� p2� � p2i � 0: (3.6)

Since the background is independent of all coordinates
except �, all momenta are conserved except p�. Let us
denote these conserved quantities by

p� � !; pi � ki: (3.7)

The constraint (3.6) allows us to solve for p� in terms of the
conserved quantities as

p� � �
������������������������������
�!2=�2� �#2

q
; #2  k2i �

�
q�

1

2
E!

�
2
:

(3.8)

Using this expression for p�, we can write the total action
of a given classical trajectory purely in terms of its begin-
ning and end points as

S��x2; x1� � !�21 � kiy
i
21 �

Z �2

�1
d�

������������������������������
�!2=�2� �#2

q
:

(3.9)

Performing the integral gives

S��x2; x1� � S��x2� � S��x1�; (3.10)

with

S��f�; �; yg� � kiy
i �!��� �0��; ki; !��; (3.11)

where

�0��; ki; !� �

������������������������
1�

�
#�
!

�
2

s

� log
�
!
#�

�
1�

������������������������
1�

�
#�
!

�
2

s ��
: (3.12)

This result will become useful in the following.

ρ = 0

ρ = 

Horizon

2/E

ΙΙΙ

Ι

IV

ΙΙρ = −2/E
Singularity Singularity

FIG. 2. The electric KK-Melvin space-time divides up into
four regions. Regions I and II are static regions, while regions
III and IV are time-dependent.
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Notice that, for given radial location �, the classical
trajectory only crosses this location provided the energy
! satisfies ! � #� with # as defined in (3.8). The physi-
cal meaning of the quantity �0 in (3.12) is that it specifies
the (time difference between the) instances � � ��0 at
which the trajectory passes through this radial location.
Notice that indeed �0 � 0when ! � #�, indicating that at
this energy, � is the turning point of the trajectory.

B. Potential energy

We can use the mass-shell constraint (3.5) to solve for
the total energy

H  p� �
�
�

������������������������������������
��p2� � k2i � � q2

q
�
qE�2

2�
: (3.13)

The corresponding Hamilton equations

@�� �
@H
@p�

; @�p� � �
@H
@�

; (3.14)

determine the classical trajectory ����. An important quan-
tity in the following will be the potential energy !��; q; ki�,
defined via

!��; q; ki�  H�p� � 0� �
�
�

��������������������
q2 ��k2i

q
�
qE�2

2�
:

(3.15)

That is, !��; q; ki� is the energy of particles, with pd�1 � q
and transverse momentum pi � ki, that have their turning
point at �.

As expected, the potential energy !��� contains two
contributions: the first term is the gravitational energy
due to the rest mass and momentum of the particle, and
the second term represents the electrostatic potential. If qE
is positive, this last term makes the particle effectively
lighter than its gravitational energy. The total energy for
any qE, however, never becomes negative. For qE nega-
tive, the expression (3.15) is manifestly positive. For qE
either positive or negative, it can be rewritten as

!��; q; ki� �
q2 � k2i

j 12qE� ��1
��������������������
q2 ��k2i

q
j
; (3.16)

which is again manifestly positive. We have plotted this
function for k2i � 0 in Fig. 3.

This behavior of the potential energy !��; q; ki� should
be contrasted with the classical electrostatic case, where
V��; q� � m� qE� with m the rest mass, in which case
the particle can get a negative total energy. When going to
single particle wave mechanics, this negative energy leads
to the famous Klein paradox, and upon second quantiza-
tion, to the Schwinger pair creation effect. Since in our
case the potential remains positive, there is no Klein para-
dox and no immediate reason to expect a vacuum insta-
bility. Nonetheless, as we will see shortly, pair creation will
take place.

Finally, we note that in the concrete setup of situation I
of our gedanken apparatus in Appendix A, the particles are
in fact restricted to move within the region �1 < �< �2
between the two plates. To complete the dynamical rules of
the model, we need to specify what happens when the
particle reaches the plates; we will simply assume reflect-
ing boundary conditions.

IV. WAVE MECHANICS

In this section we write the solutions to the wave equa-
tions in the electric KK-Melvin background, and illustrate
the semiclassical correspondence with the classical
mechanics.

4.1 Wave equations

The d� 1-dimensional wave equation in the back-
ground (2.13) is

1��������
�G

p @M�
��������
�G

p
GMN@N�� �

�
1

�
@���@�� �

1

�2
@2� � @2i

�

�
@d�1 �

1

2
E@�

�
2
�
�

� 0; (4.1)

subject to the perioding boundary condition in the xd�1
direction with period 2�R. For a given eigenmode with
q  pd�1 �

n
R , we can reduce the wave equation to d

dimensions, where it can be written in the form
�

����
�

p

�
@�

�
�����
�

p @�

�
�
�

�2

�
@� �

iqE�2

2�

�
2
� @2i �

q2

�

�

� � 0:

(4.2)

Here we recognize the conventional wave equation

1�������
�g

p D#�
�������
�g

p
g#$D$�� �M2� � 0 (4.3)
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FIG. 3. The effective potential !��� defined in Eq. (3.15) (for
ki � 0, and multiplied by E) as a function of x � 1

2 qE�, with
q � �1.
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of a d dimensional charged particle with charge q in the
background (2.18) and with a position dependent mass
equal to M2 � q2=�. Note the direct correspondence of
the above wave equations with the classical equations (3.5)
and (3.6). They need to be solved subject to the boundary
conditions imposed by our physical setup. In the case of
situation I, see Fig. 5 in Appendix A, we will choose to
impose Dirichlet boundary conditions at the two plates

�j���1 � �j���2 � 0: (4.4)

B. Mode solutions

The d� 1-dimensional wave equation is solved by

�qk! � eixd�1�q��1=2�E!��ikiyi�i!�K�!;#��; (4.5)

with # as defined in (3.8), and where K�!;#�� solves the
differential equation

� ��@��2 �!2 �#2�2�K�!;#�� � 0: (4.6)

The solution K has the integral representation

K�!;#�� �
Z 1

�1
d.ei!.�i#� sinh.; (4.7)

and can be expressed in terms of standard Bessel and
Hankel functions [22,23]. The functions K�!;#�� are
defined for arbitrary real !. However, upon imposing the
boundary conditions that K�!;#�i� � 0 at the location of
the two plates, we are left with only a discrete set of
allowed frequencies !‘. Since the corresponding mode
functions (4.7) form a complete basis of solutions to
(4.6), they satisfy an orthogonality relation of the formZ �2

�1
d��K��!‘;#‘��K�!j;#j�� � f�!‘�2‘;j; (4.8)

where f�!� some given function that depends on �1 and
�2.

For large ! and #�, we can approximate the integral in
(4.7) using the stationary phase approximation. The sta-
tionary phase condition ! � #� cosh. has two solutions

.� � � log
�
!
#�

�
1�

������������������������
1�

�
#�
!

�
2

s ��
(4.9)

provided j!j>#�, leading to

K�!;#�� ’

�������
2�

p
cos	!�0��� �

�
4
����

w
p ��������������������

1� �#�! �24
q ; j!j>#�;

(4.10)

with �0 as given in Eq. (3.12). This formula is accurate for
energies ! larger than the potential energy !���. For
smaller energies there is no saddle point and the function
K�!;#�� is exponentially small

K�!;#�� ’

��������
�
#�

s
e�#�; j!j<<#�; (4.11)

reflecting the fact that the corresponding classical trajec-
tory has its turning point before reaching �.

Notice that, upon inserting (4.10), the full mode function
�qk! in (4.5) can be written as a sum of two semiclassical
contributions

�qk!�x� �
X
�

eixd�1�q��1=2�E!��ikiyi�i!����0��;k;!��

�
X
�

eiS��y;�;��; (4.12)

corresponding to the left- and right-moving part of the
trajectory, respectively.

V. PAIR CREATION

In this section we will compute the pair creation rate of
the Kaluza-Klein particles, following three different
(though related) methods. We will start with the simplest
method, by looking for Euclidean ‘‘bounce’’ solutions. We
then proceed with a more refined method of computation,
more along the lines of Schwinger’s original calculation,
producing the nontrivial result quoted in the introductory
section. Finally, we show that the obtained result can
naturally be interpreted by considering the Hawking-
Unruh effect, and we use the method of Bogolyubov trans-
formations to compute the expectation value of the charge
current.

A. Classical Euclidean trajectories

Assuming that, in spite of the fact that the effective
potential (3.15) seems to suggest otherwise, the nucleation
of the charged particle pairs can be viewed as the result of a
quantum mechanical tunneling process, we compute the
rate by considering the corresponding Euclidean classical
trajectory. The analytic continuation of the electric KK-
Melvin space-time to Euclidean space is

ds2E �
�2

�E
d42 � d�2 � dyidyi ��E

�
dxd�1 �

E�2

2�E
d4

�
2
;

A4 �
E�2

2�E
; V � �E; (5.1)

with 4 a periodic variable with period 2�, and

�E  1� E2�2=4: (5.2)

This Euclidean geometry is obtained from the Lorentzian
electric KK-Melvin solution via the replacement

E ! iE; t ! �i4; (5.3)

and coincides with the spacelike section of the magnetic
KK-Melvin space-time. Unlike the Lorentzian version, this
Euclidean space-time extends over the whole range of

SCHWINGER PAIR CREATION OF KALUZA-KLEIN . . . PHYSICAL REVIEW D 71, 064018 (2005)

064018-7



positive � values and ends smoothly at � � 0, by virtue of
the periodicity in 4. This is standard for Euclidean cousins
of space-times with event horizons, and a first indication
that quantum field theory in the space-time naturally in-
volves physics at a specific finite temperature.

The Euclidean action of a point-particle, with charge
(momentum in the d� 1-direction) equal to pd�1 � q and
mass M � jqj=

�������
�E

p
moving in this background reads

SE �
Z
dsLE;

LE �
jqj�������
�E

p
���������������������������������
�2 _42

�E
� _�2 � _y2i

s
�
qE�2

2�E

_4:

(5.4)

As a first step, let us look for closed circular classical
trajectories at constant � and yi. The above point-particle
action then reduces to

SE��� �
�
�E

�2jqj�� qE�2�: (5.5)

The first term is the energy of a static particle times the
length of the orbit, and the second term is the interaction
with the background field times the area of the loop.
Looking for an extremum yields one real and positive
solution

jEj� � 2
���
2

p
� 2 � sign�qE� (5.6)

with total action

SE �
2�jqj
jEj

�
���
2

p
� sign�qE��: (5.7)

The existence of these solutions with finite Euclidean
action is a first encouraging sign that pair creation may
take place after all. The answer (5.5) for the Euclidean
action also looks like a rather direct generalization of the
standard semiclassical action for the Schwinger effect, and
it is therefore tempting to conclude at this point that the
total pair creation rate is proportional to

e�SE � e�2�jqj�
��
2

p
�sign�qE��=jEj; (5.8)

which looks only like a numerical modification of the
classic result (1.1). This conclusion is somewhat prema-
ture, however, since, in particular, the pair creation rate
should depend on �. We would like to determine this
�-dependence.

For this, we take a second step and consider closed
Euclidean trajectories that are not necessarily circular. As
in Sec. III, we now go to a Hamiltonian formulation. To
transform the formulas in Sec. III to the Euclidean setup,
we need to make, in addition to (5.3), the following re-
placements

s ! �is; p� ! ip�; pi ! ipi; q ! iq:

(5.9)

In this way we obtain from (3.13) a Euclidean Hamiltonian

HE  p4 �
�
�E

�����������������������������������������
jqj2 ��E�p

2
� � k2i �

q
�
qE�2

2�E
; (5.10)

that generates the motion of particle as a function of the
Euclidean time 4, and a corresponding potential energy

!E��; ki; q�  �HE�p� � 0�

� �
�
�E

�������������������������
jqj2 ��Ek

2
i

q
�
qE�2

2�E
: (5.11)

In addition to a change in sign, which is the standard way in
which a potential changes when going to Euclidean space,
this Euclidean potential differs from (3.15) via the replace-
ment �! �E. We have drawn !E for ki � 0 in Fig. 4.
Note that !E for ki � 0 is proportional to the reduced
effective action (5.5) for circular trajectories, and the criti-
cal radii (5.6) reside at the two minima in Fig. 4.

Our goal is to obtain semiclassical estimate for the pair
creation rate at some given �. How should we use this
Euclidean potential for this purpose? As seen from Fig. 4,
there is a range of Euclidean energies HE around the two
minima (5.6) for which there exist stable, compact orbits.
These orbits have a maximal and minimal radius, �� and
��, at which HE � !E����. The idea now is to associate to
a given � the corresponding Euclidean trajectory for which
� equals one of these extrema ��, and then use the total
action SE��� for this trajectory to get a semiclassical
estimate of the pair creation rate via

W ��� ’ e�SE���: (5.12)

Here it is understood that in SE��� we undo the rotation
E ! iE, so that �E ! �. Equation (5.12) is then a clear
and unambiguous formula, provided the classical orbit is
closed.

In general, however, the orbits need not be closed: the
period of oscillation does not need to be 2� or even a

-4 -2 2 4

-1

-0.5

0.5

FIG. 4. The Euclidean effective potential !E��� defined in
Eq. (5.11) (for ki � 0, and multiplied by E) as a function of x �
1
2 qE�, with q � �1.
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fraction or multiple thereof. How should we define the total
classical action, to be used in (5.12) for such a trajectory?

Our proposal, that perhaps may look ad hoc at this point
but will be confirmed and justified in the subsequent sub-
sections, is to take for SE the total action averaged over one
full rotation period of 2�. Concretely, suppose that the
compact trajectory has an ‘‘oscillation period’’ 40, in
which it goes through a full oscillation starting and return-
ing to its maximal radial position � � ��. We then define
SE��� as

SE���  lim
4!1

2�
4

Z 4

0
d4LE�4; �� �

2�
40

Z 40

0
d4LE�4; ��:

(5.13)

With this definition, and using the results in Sec. III A, we
can now easily evaluate SE���. From (the Euclidean analog
of) Eq. (3.11), while noting that �0��� � 0 since � is the
turnaround point, we obtain

SE��� � 2�!��; q; ki�; (5.14)

with ! as given in (3.15). Here we made the replacement
E ! iE, as prescribed.

The result (5.14) together with (5.12) gives our proposed
semiclassical estimate of the pair creation rate as a function
of �. Clearly, the derivation as presented thus far needs
some independent justification. It also leaves several open
questions. In particular, it is not clear how we should
interpret the Euclidean bounce solutions, given the fact
that the real effective potential (3.15) does not seem to lead
to any tunneling. A better understanding of the physics that
leads to the pair creation seems needed. In the next two
subsections we will present two slightly more refined
derivations of the rate, which will help answer some of
these questions.

B. Sum over Euclidean trajectories

We will now evaluate the pair creation rate, per unit time
and volume, by means of the path-integral. Since we expect
that this rate will be a function of longitudinal position �,
we would like to express the final result as an integral over
�. We start from the sum over all Euclidean trajectories

W �
Z

DpDx exp
�
�
1

�h
S	p; x


�
(5.15)

defined on flat d� 1-dimensional space with metric and
periodicity condition

ds2E � dx�dx� dyidyi � dx2d�1; (5.16)

�x; x�; yi; xd�1�  �ei�ERx; e�i�ERx�; yi; xd�1 � 2�R�:

(5.17)

In the end we intend to rotate back to Lorentzian signature,
replacing E ! iE.

We can read the expression (5.15) as a trace over the
quantum mechanical Hilbert space of the single particle
described by the action (3.1) or (3.3). The idea of the
computation is to write this as a sum over winding sectors
around the 11th direction. For each winding number w, the
closed path is such that the end points are related via a
rotation in the �x; x��-plane over an angle w�ER. Using
this insight, we can write (5.15) as

Z
ddxW �x� � R

Z 1

0

dT
T

�������
2�
T

s X
w

e��1=2T��2�Rw�2

� Tr	e�iwERJe��T=2��p�p�p2i �
; (5.18)

where T denotes the Schwinger proper time variable, and
where J denotes the rotation generator in the �x; x�� plane.
The exponent in front of the trace is the d� 1-dimensional
part of the classical action of the trajectory with winding
number w. To compute the trace, we write it as an integral
over mixed position and momentum eigenstates

TrA �
Z
d2x

Z Qd�2
dki

�2��d�2
hx; kijAjx; kii: (5.19)

Next we evaluate

hxje�iwERJe��T=2�p�pjxi �
1

�T
e��xx�=2T��e�iERw�1��e��iERw�1�;

(5.20)

where we used the standard formula for the heat kernel in
two dimensions. Inserting this into (5.18), we can write the
production rate as an integral over � of

W ��� � R
Z 1

0

dT
T

�������
2�
T

s Z Qd�2
dki

�2��d�2

�
e��T=2�k2i

�T

X
w

e��1=2T���2�Rw�2�4�2sin2��ERw=2��;

(5.21)

which we will interpret as the pair production rate at the
location �.

Equation (5.21) is an exact evaluation of the Euclidean
functional determinant. To put it in a more useful form, we
will assume that we are in the regime �2 � T (an assump-
tion that we will be able to justify momentarily), so that we
can simplify the expression by means of the Villain ap-
proximationX

w

e��1=2T���2�Rw�2�4�2sin2��ERw=2��

’
X
w;n

e��1=2T���2�Rw�2��2��ERw�2�n�2�: (5.22)

This replacement essentially amounts to a semiclassical
approximation. The right-hand side can be reexpressed via
the Poisson resummation formula (note here that the
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left-hand side below is just a trivial rewriting of the right-hand side above)

X
w

e��1=2T�	�E�2�Rw���E�2n2=�E��
2���4�2�2n2�=�E�
 �

������������������
T

2��ER
2

s X
m

e��1=�E�	�T=2��m2=R2���2�2�2n2=T���i�Emn�2=R�
: (5.23)

As the final step, we may now evaluate the integral over the
Schwinger parameter T via the saddle-point approxima-
tion. The saddle points are at4

T0 �
2��jnj����������������������
m2

R2 ��Ek
2
i

q ; n � �1;�2; . . . : (5.24)

Before plugging this back in to obtain our final result, let us
first briefly check our assumption that �2 � T: setting
ki � 0, we find �2=T0 � m�=2�jnjR. So as long as the
spatial distance scale � is much larger than the KK com-
pactification radius R, we are safe to use (5.22).

With this reassurance, we proceed and find our final
answer for the pair creation rate per unit time and volume
where we made the replacement E ! iE.5

W ��� �
1

2�2�3=2

Z Qd�2
dki

�2��d�2
X
m

�
m2

R2
��k2i

�
1=4 X1

n�1

1

n3=2

� exp	�2�n!��; q; ki�
; (5.25)

where !��; q; ki� is the potential energy introduced in
Eq. (3.15). The summation over n in (5.25) can be seen
to correspond to the ‘‘winding number’’ of the Euclidean
trajectory around the periodic Euclidean time direction.
The n � 1 term dominates, and is the result announced
in the Introduction. Before discussing it further, we will
now proceed with a second method of derivation.

C. The Hawking-Unruh effect

The result (5.25) looks like a thermal partition function,
indicating that it can be understood as produced via the
Hawking-Unruh effect. We will now make this relation
more explicit.

The functional integral (5.15) over all Euclidean paths
represent the one-loop partition function of a scalar field �
in the d� 1-dimensional electric KK-Melvin space-time.
We can compute this determinant also directly via canoni-
cal quantization of this field. The full expansion of � into
modes starts with a decomposition over wave numbers
along the extra dimension (in this section we restrict q to
be positive)

� � �0 �
X1
q�1

�eiqxd�1�q � e�iqxd�1��
q�; (5.26)

where �0 is massless and real, and �q are complex and
have mass m � q. Let us define #� and #� via

#2
� �

�
q�

1

2
!E

�
2
� k2i ;

#2
� �

�
�q�

1

2
!E

�
2
� k2i ;

(5.27)

so that now #� are quantities related to positively or
negatively charged particles.

To proceed, we now need to expand the field �q in
creation and annihilation modes, allowing only modes
that satisfy the boundary conditions (4.4) that �q��i� � 0
at the location of the two charged plates.

�q �
X
!>0

Z Qd�2
dki

�2��d�2
e�i!��ikiyi��������������
!f�!�

p �K�!;#���aq�ki; !�

� K��!;#���a
y
�q�ki; !��; (5.28)

with K�!;#�� and f�!� as defined in (4.7) and (4.8). The
creation and annihilation modes then satisfy the usual
commutation relations.

	a�q�k1; !1�; a
y
�q�k2; !2�
 � 2�k1 � k2�2!1!2

: (5.29)

Our goal is to determine what the natural vacuum state
of the � field looks like, as determined by the initial
conditions. In the far past, we imagine that the KK electric
field was completely turned off. The electric KK-Melvin
background then reduced to Rindler or Minkowski
space—depending on which coordinate system one intro-
duces. The most reasonable initial condition is that the
quantum state of all � quanta starts out in the vacuum as
defined in the Minkowski coordinate system. Let us denote
this Minkowski vacuum by j!i.

To determine the expression for j!i in terms of our
mode basis, we can follow the standard procedure
[16,17]. We will not go into the details of this calculation
here, except to mention one key ingredient: the mode
functions, when extended over the full range of � values,
have a branch-cut at the horizon at � � 0, such that

K�!;�#�� � e�2�!K��!;#��; (5.30)

depending on whether the branch-cut lies in the upper or
lower-half plane. This behavior of K�!;#�� near � � 0 is
sufficient to deduce the form of the Bogolyubov trans-
formation relating the modes a�!; k� to the Minkowski

4We drop the term with n � 0, since it corresponds to the
vacuum contribution.

5Note that the same result can be obtained by replacing the
sum in (5.21) by (5.23), integrating over T exactly, and then
using Eq. (4.11) to approximate the resulting Bessel function.
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creation and annihilation modes (see, e.g., [17]). As a
result, one finds that the Minkowski vacuum, j!i, behaves
like a thermal density matrix for the observable creation
and annihilation modes in (5.28). In particular, the number
operator for each mode has the expectation value

h!jayq �k;!�aq�k;!�j!i �
1

e2�! � 1
; (5.31)

while the overlap of j!i with the empty vacuum state,
defined via aq�k;!�j0i � 0, becomes

jh0j!ij2 � exp

"Z Qd�2
dki

�2��d�2
X
q;!

j log�1� e�2�!�j

#
(5.32)

� exp

"
�
Z Qd�2

dki
�2��d�2

X
q;!;n

1

n
e�2n�!

#
: (5.33)

This expression represents the probability that the state !
does not contain any particles—and its dominant n � 1
term looks indeed closely related to the result (5.25) ob-
tained in the previous subsection.

The difference between the two equations is that (5.25)
is defined at a particular location �, while (5.32) contains a
summation over all frequencies. To make the relation more
explicit, imagine placing some measuring device at a
location �. As mentioned before, only modes with a suffi-
ciently large frequency will reach this location with any
appreciable probability, and the probability attains a maxi-
mum for frequencies equal to the potential energy at �,
since for those frequencies, � is the turning point. Via this
observation, we can view the position � as a parametriza-
tion of the space of frequencies, via the insertion of

1 �
Z
d�2�!� !����j@�!���j; (5.34)

with !��� as given in Eq. (3.15), thus replacing the sum-
mation over ! in (5.32) by an integral over �. The inte-
grand at given � is then naturally interpreted as the
production rate (5.25) at the corresponding location. This
procedure is a good approximation provided the distance
d � �2 � �1 between the plates is large enough, so that
many frequencies contribute in the sum.

This same condition is also important for a second
reason [5]. Since we would like to imagine that the pair
production takes place at a constant rate per unit time, we
would like to see that the overlap (5.32) in fact decays
exponentially with time. This comes about as follows [5].
Suppose we restrict the field modes to be supported over a
finite time interval 0< �< T. This translates into a dis-
creteness of the frequencies. Ignoring at first the other
discreteness due to the reflecting boundary condition at
the two parallel plates, it is clear that the density of
frequencies allowed by the time restriction grows linearly
with T. The sum over the frequencies thus produces an

overall factor of T. In this way, we recover the expected
exponential decay of the overlap (5.32).

This exponential behavior breaks down, however, as
soon as the time interval T becomes of the same order as
the distance d between the plates, or more precisely, when
1=T approaches the distance between the discrete energy
levels allowed by the reflecting boundary conditions at the
plates. At this time scale, the situation gradually enters into
a steady state, in which the pair creation rate gets balanced
by an equally large annihilation rate. The system then
reaches a thermal equilibrium, specified by the thermal
expectation value (5.31). The physical temperature of the
final state depends on the location � via

� � 2�
�������
g00

p
�
2������
�

p : (5.35)

Note that this temperature diverges at � � 0 and � �
j2=Ej; neither location is within our physical region,
however.

D. Charge current

It is edifying to consider the vacuum expectation value
of the charge current, since this is a clear physical,
observer-independent quantity and a sensitive measure of
the local profile of the pair creation rate. For given q, the
charge current is given by

j# � iq���
q���@#�q��� ��q���@#��

q����: (5.36)

Using the result (5.31) for the expectation value of the
number operator, one finds that the time component of
the current, the charge density, is nonzero and equal to6

h!jj����j!i � J���� � J���� (5.37)

with

J���� � q
X
!>0

Z Qd�2
dki

�2��d�2
jK�!;#���j2

f�!��e2�! � 1�
(5.38)

the positive and negative charge contributions, respec-
tively. Given the thermal nature of the state j!i, the
physical origin of this charge density is clear: the presence
of the electric field reduces the potential energy of one of
the two charge sectors, thereby reducing its Boltzmann
suppression, relative to the oppositely charged.

To obtain a rough estimate for the behavior of J����, it is
useful to divide the frequency sum into three regions: (i) !
comparable to the potential energy (3.15), (ii) ! much
larger, or (iii) ! much smaller. By comparing the respec-
tive suppression factors, we find that the leading semiclas-

6Instead of the expectation value (5.37), one could also con-
sider the mixed in-out expectation value h0jJ����j!i, which is
related to the derivative of the in-out matrix element h0j!i with
respect to E. This relation was in fact used by Schwinger in his
original derivation of the pair creation rate [1].
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sical contribution comes from regime (i); this is also rea-
sonable from a physical perspective, since these are the
particles that spend most time near �. Regime (ii) is
strongly Boltzmann suppressed and clearly negligible
compared to contribution (i), while regime (iii) is sup-
pressed because the corresponding mode functions
K�!;#�� are exponentially small at the location �, via
(4.11). The leading contribution of region (i) is of order
e�2�!��;q;ki�, in accordance with the result (5.25) for the
pair creation rate W ���.

Since the mode functions K�!;#�� are real (they are the
sum of an incoming and reflected wave), the current in the
� direction appears to vanish. The result (5.38) for the
charge density indeed looks static. This static answer,
however, cannot describe the time-dependent pair creation
process. Recalling our discussion above, however, we can
recover this time-dependence by restricting the sum over
only those frequencies necessary to cover the finite time
interval 0< �< T. This is a T dependent subset, thus
leading to a T dependent (initially linearly growing) charge
density. However, when 1=T becomes much smaller than
the step-size in the allowed frequency spectrum, the steady
state sets in and the charge density indeed becomes a static
thermal distribution given by (5.37) and (5.38).

VI. DISCUSSION

In this paper we have tried to make a systematic study of
the Schwinger pair production of charged Kaluza-Klein
particles. Because of their characteristic property that their
mass is of the same order as their charge q, the pair creation
requires such strong KK electric fields that gravitational
backreaction cannot be ignored. We have included this
backreaction by means of the electric KK-Melvin solution,
and shown that, in spite of the fact that the electrostatic
potential cannot be made to exceed the rest mass of the
KK particles, pair production takes place at a rate given
by (1.2).

What is the physical mechanism that is responsible for
the pair creation? Our final answer (1.2) includes both the
KK electric field and a gravitational acceleration a. It is
instructive to compare this result with the known rate [20]
for Schwinger pair production in an accelerated frame, as
quoted in Eq. (B4) in the appendix. Since in our case a is
bounded below by E=2, we can only directly compare the
two answers in the limit of small electric field. In that limit,
if we expand the log in Eq. (B4) and take the dominant n �
1 term there, both answers become

W �E;a� ’
X

q��jqj

Z Qd�2
dki

�2��d
exp

�

�2�
�
1

a

���������������
q2�k2i

q
�
qE

2a2

��
:

(6.1)

In this regime, however, one cannot honestly separate the
Schwinger pair creation effect from the pair creation effect

due to the acceleration. Electric charge is being produced,
but it is just a simple consequence of the fact that the
electrostatic potential reduces the Boltzmann factor for
one type of charge, while increasing it for the other.
Rather than producing the charge ‘‘on its own,’’ the electric
field just polarizes the thermal atmosphere produced by the
Unruh effect.

In fact, if we write the potential !��; q; ki� as in (3.15)
instead of (3.16), our final answer (1.2) appears to be just a
small modification of (6.1) and the physics that leads to it
indeed seems quite identical. So depending on taste, one
can either interpret our result (1.2) as pair creation due to a
combination of the Schwinger and Unruh effect, or as the
result of the Unruh effect only. There is no definite way to
decide between the two, since the gravitational accelera-
tion cannot be turned off independently. Either way, what is
clear is that the mechanism for pair creation cannot be
given a tunneling interpretation.
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APPENDIX A: GEDANKEN APPARATUS

For a good understanding of the situation we wish to
study, it will be useful to investigate how, via a concrete
gedanken experiment, one may in fact attempt to create a
large static Kaluza-Klein electric field. Without taking into
account gravitational backreaction, we imagine taking two
parallel plates with opposite KK charge density per unit
area . and perpendicular distance d, thus creating an
electric field E � 4�. in the region between the plates.
It turns out, however, that when we include the gravita-
tional backreaction of both the plates and the electric field,
there are some restrictions on how symmetric, or static, we
can choose our experimental setup.

Consider two charged, infinitesimally thin, parallel
plates at positions �1 and �2, separated by a distance

d � �2 � �1: (A1)

The two plates divide space into three regions: Region A
left of the first plate, given by � < �1, region B in between
the two plates, �1 <�< �2, and region C right of the
second plate � > �2.

Let the mass densities of the plates be given by #1 and
#2, so that

T00 � #12��� �1� �#22��� �2�: (A2)
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In addition, the two plates have charge densities .1 and .2�������
g00

p
T0d�1 � .12��� �1� � .22��� �2�: (A3)

We will assume that the charge densities are opposite,
.1 � �.2, and tuned so that there is a Kaluza-Klein
electric field in region B between the plates, but none in
regions A or C outside the plates. The region between the
plates therefore takes the form of a static slice �1 < �< �2
of the electric KK-Melvin space-time. The two regions
outside the plates, on the other hand, are just flat. More
precisely, since the parallel plates in effect produce an
attractive gravitational force on freely falling particles in
the two outside regions, the regions A and C should cor-
respond to static subregions in Rindler space.

Both Rindler space and the electric KK-Melvin solution
differ from Minkowski space only via the g00 component.
Imposing continuity at � � �i, this leads us to the follow-
ing ansatz for the g00 component of the metric in the three
regions

gA00��� � �1� a1��� �1��
2gB00��1�;

gB00��� �
�2

1� E2�2=4
;

gC00��� � �1� a2��� �2��2gB00��2�:

(A4)

Here a1 and a2 are both positive, and represent the respec-
tive free fall accelerations of freely moving particles just
outside of the two plates. In other words, via the equiva-
lence principle, a1 and a2 are the accelerations (to the left
and right, respectively) of the two plates as viewed from
the outside Minkowski observers. The quantities �1 and �2
play a similar role, and can be both positive and negative. A
physical restriction, however, is that the denominator in the
expression (A4) for gB00 remains positive.

In addition there is a nontrivial electric potential gB0;d�1
in the region between the plates, while gA;C0;d�1 are constants
determined by continuity:

gA0;d�1��� � gB0;d�1��1�; gB0;d�1��� �
�2E=2

1� E2�2=4
;

gC0;d�1��� � gB0;d�1��2�: (A5)

The d� 1-dimensional Einstein equations of motion result
in the following jump conditions for the normal variations
of g00 and g0;d�1 at the location of the plates7

4�#i � g00�@��
g00 � @��

g00�j���i ; (A6)

4�.i � �g00�1=2�@��
g0;d�1 � @��

g0;d�1�j���i : (A7)

The first of these equations is known as the Israel equation,
while the second is equivalent to Gauss’s law in electro-
magnetism. Inserting our ansatz, the Israel jump conditions
become

2�#1 � a1 �
1

�1�1

�i � 1�
1

4
E2�2i

2�#2 � a2 �
1

�2�2

(A8)

while Gauss’s law takes to the form

4�.1 � E=�3=2
1 ; 4�.2 � �E=�3=2

2 : (A9)

Equation (A8) relates the mass density of the two plates to
the jump in the surface acceleration when moving from one
to the other side, while (A9) relates the charge density to
the jump in the KK electric field.

Let us briefly check these formulas by considering some
special cases. If E � 0, then we can choose the symmetric
situation #1 � #2 and a1 � a2. Via (A8) this implies that
we should take the limit �i ! 1 keeping the distance (A1)
fixed. The intermediate region B then simply reduces to flat
Minkowski space. This is as expected, since the two plates
lead to an equal and opposite gravitational force, which
exactly cancels in the intermediate region. For nonzero E,
yet small electrostatic potential V12 � Ed between the
plates, we can choose parameters such that E�i � 1 and
�i � d. Equation (A9) then reduces to the standard Gauss
law of Maxwell theory.

Let us now consider the general case. There are four
equations, and (for given interplate distance d, and den-
sities #i and .i) four unknowns: a1, a2, �1 and E. The
second equation in (A9), however, is not really indepen-
dent from the first, since we should rather read it as a fine-
tuning condition on .2 (relative to .1) ensuring that the
E-field vanishes outside the two plates. Discarding this
equation, we are thus left with one overall freedom,
namely, the overall acceleration of the center of mass of
our apparatus.

For practical purposes, we would have preferred to
restrict ourselves to the simplest and most symmetric
case in which the two plates have equal mass density #1 �
#2 and equal surface acceleration a1 � a2. This would, in
particular, ensure that our apparatus is at rest. As seen from
Eq. (A8), this symmetric situation could be reached if we
could take the limit �i ! 1. However, for nonzero E, this
limit is forbidden via the restriction 1� 1

4E
2�2 > 0. Thus

we are basically forced to consider the general situation
with #i and ai arbitrary, and �i both positive. We call this:

Situation I : 0<�1 < �2 < 2=E; #i arbitrary:

(A10)

7Note that while the expressions g0;d�1 are not gauge invariant,
the Gauss equation is, as long as ( in A#dx

# ! A#dx
# � d( is

smooth across �1 and �2, i.e., �@��
� @��

�(j���i � 0.
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In this case, the region of interest, region B, represents a
static slice in the right wedge of the electric KK-Melvin
solution. This situation I is the natural generalization of a
constant, static electric field, and is our starting point for
studying the possible Schwinger pair creation of charged
KK particles. We sketch it in Fig. 5.

There is, however, another situation we could consider,
which does allow for a symmetric solution. Namely we can
choose:

Situation II: #1 � #2; a1 � a2; �1 � ��2:

(A11)

In this case the region B includes the special position � �
0 at which g00 � 0, the location of the event horizon of the
electric KK-Melvin geometry (see Fig. 6).

To better understand the experimental conditions lead-
ing to situation II, consider the special case #1 � #2 � 0,
and .1 � .2 � 0. This describes two plates with zero-
mass and charge, accelerating away from each other with
equal but opposite acceleration ai � 1=�i. It is now easy to
imagine that one can gradually add mass and charge to the
plates, and reach the general situation II. It must be noted
that this experimental setup does not lead to a static back-
ground, since the geometry now includes the time-
dependent regions III and IV enclosed by the Rindler
horizon (see Fig. 1). This setup is therefore not a direct
analog of the static electric field considered by Schwinger.
For a discussion of situation II see [13]; our main focus is
situation I.

APPENDIX B: SCHWINGER MEETS RINDLER

In this appendix we summarize the known result for the
Schwinger pair creation rate in an accelerating frame [20]
of charged particles with mass q and mass m with m � q.
In this regime, pair creation starts to occur while the
gravitational backreaction of the electric field is still
negligible.

The closest analog of a constant, uniform gravitation
field is Rindler space

ds2 � ��2d�2 � d�2 � dy2i : (B1)

Particles, or detectors, located at a given � undergo a
uniform acceleration a � 1=�. Consider a charged field
propagating in this space in the presence of a uniform
electric field, described by

A� �
1

2
E�2: (B2)

The resulting scalar wave equation reads
�

1

�
@���@�� �

1

�2
�@� �

i
2
qE�2�2 � @2i �m2

�

� � 0:

(B3)

The above three equations are connected to the ones in
Sec. IV by setting� � 1 (which indeed amounts to turning
off the backreaction) and by setting m � q above.

Equation (B3) has known mode solutions with given
Rindler frequency, in terms of Whittaker functions
[20,22]. These functions have a relatively intricate, but
known (Eq. 9.233 in [22]), branch-cut structure at � � 0,
from which one can straightforwardly extract the linear
combination of (left and right wedge) Rindler creation

III

IV

III

Plate 1 Plate 2

ρ = ρ1 ρ = ρ2

ρ = 0

FIG. 6. Situation II describes the time-dependent situation
with two accelerating charged plates at � � �1 < 0 and � �
�2 > 0. The region of interest, in between the two plates,
includes the time-dependent regions III and IV of the electric
KK-Melvin solution.

E = 0ρ = ρ

Plate 2

1
ρ = ρ2

Plate 1

ρ = 0

FIG. 5. Situation I describes the static situation with two
charged plates at � � �1 and � � �2, with 0< �1 < �2 <
2=E. The region of interest, in between the two plates, is a static
slice of region I of the electric KK-Melvin solution.
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and annihilation modes that annihilate the Minkowski vacuum j!i. One obtains the following result for the total pair
creation rate per unit time and (transverse) volume [20]

W ’
X

q��jqj

Z
d!

Z Qd�2
dki

�2��d
log

�
�1� e�2�!��1� e�

��m2�k2
i
�

jqEj �

1� e�2��!�
m2�k2

i
2jqEj �

�
: (B4)

As explained in Sec. V C, we can extract from this result
the pair creation rate at a given radial location �, or
equivalently, given acceleration a � 1=�, by equating the
frequency ! with the classical potential energy at this
location

!�q; ki� �
1

a

����������������
q2 � k2i

q
�

qE

2a2
: (B5)

As discussed in Sec. VI, in the limit where the electric field
is small, the expression (B4) reduces to our result.
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