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Force-velocity correlations in a dense, collisional, granular flow

Emily Gardel, Ellen Keene, Sonia Dragulin, and Nalini Easwar
Department of Physics, Smith College, Northampton, U.S.A.

Narayanan Menon
Department of Physics, University of Massachusetts, Amherst,U.S.A.
(Dated: December 15, 2005)

We report measurements in a 2-dimensional, gravity-driven, collisional, granular flow of the normal
force delivered to the wall and of particle velocity at several points in the flow. The wall force and
the flow velocity are negatively correlated. This correlation falls off only slowly when the wall force
is correlated against the flow velocity at various locations across the channel, but dies away on the
scale of a few particle diameters upstream or downstream. The data support a picture of short-lived
chains of frequently colliding particles that extend transverse to the flow direction, making transient
load-bearing bridges that cause bulk fluctuations in the flow velocity. The time-dependence of these
spatial correlation functions indicate that while the force-bearing structures are local in space, their
influence extends far upstream in the flow, albeit with a time-lag. This leads to correlated velocity
fluctuations, whose spatial range increases as the jamming threshold is approached.

PACS numbers: 61.43.Gt,45.70.-n

Sand flowing down a long, vertical, pipe does not ac-
celerate in the direction of gravity because the walls of
the pipe support the weight of the sand. When the outlet
of the pipe is constricted, the flow slows down, but also
becomes increasingly variable, with large regions of ma-
terial appearing to move in unison. Momentum balance
dictates that if the flow speed fluctuates in time, then
the forces supplied by the walls must also vary in time.
The average force borne by the walls of the pipe does
not significantly change with the average flow velocity,
therefore all dynamical information regarding the state
of the flow must be contained in these force fluctuations.

In this article, we characterize the spatial and tempo-
ral correlations of fluctuations in the flow velocity and
in the wall forces as the flow gets slower. We find that
short-lived, local fluctuations in the wall force produce
fluctuations in flow velocity at hydrodynamic time scales
and over large length scales, which increase as jamming
is approached. We also address the closely related is-
sue of the spatial organization of these forces. When the
flow is permanently arrested, the weight of the grains is
communicated to the walls by a spatially heterogeneous
web of forces called force chains [1-3]. The force-velocity
correlations we measure are consistent with a picture in
which close to jamming, the instantaneous stress config-
uration is similar to that seen in the static case, except
with short-lived force chains that temporarily hold up
the flow, then disintegrate and allow the flow to accel-
erate again. Remarkably, we observe these signatures of
dynamic force chains in a flow where stresses are com-
municated chiefly by collisions, with grains remaining in
contact for only a small fraction of the time that they are
in flight between collisions.

Most previous experimental investigations [4] of force
chains in granular flows have been in the quasi-static
regime, where grains are essentially in continuous con-
tact. However, some simulations of collisional flows show

evidence of large-scale stress-bearing structures. Simu-
lations of pipe flows have observed long-range decay of
stress in specific directions [5] as well as of linear struc-
tures made up of frequently colliding particles that trans-
port stress efficiently [6]. In studying the initiation of flow
by opening the bottom of a container, it was found [7]
that the flow started with chunks of material falling out
of the container; structures labelled ”dynamic arches”
held up the rest of the material temporarily, until they
broke under the remaining load. A broader understand-
ing of such intermediate-scale stress-bearing structures
would help identify the microscopic origins of the non-
local rheology reported in a variety of flows [8-10].

We study the flow of smooth, spherical steel balls of
diameter d = 3.125mm contained in a 2-dimensional
hopper. The flow velocity is controlled by varying the
width, a, of the outlet from 3d to 8d, with the sides held
at a fixed angle of 10° to the vertical. The flow field in-
side the hopper is measured by imaging at a rate of 500
frames/second (fps) the region shown inside the white
box in Fig 1A. In Fig 1B, we show the variation of the
time-averaged flow velocity, Vi, as a function of posi-
tion in the hopper. In the vertical direction, Vj, varies
inversely as the width of the hopper; in the horizontal
direction (Fig 1C) the velocity profile shows only a weak
spatial dependence with a large slip at the wall, and a
maximum at the centre of the channel. The strain rate at
the transducer, OV (X)/0Z ~ 1.5sec™!, is nearly inde-
pendent of the flow rate. Fluctuations about the average
velocity profile have been measured [11, 12] at the walls of
3-dimensional dense flows; in agreement with those mea-
surements, we find that the fluctuations are anisotropic,
with bigger fluctuations along the flow. As the flow ve-
locity is reduced, these fluctuations increase as shown in
Fig 1D, where we plot the normalized standard devia-
tion of the flow velocity, oy, /VL, against the local flow
velocity, Vi, for three different locations in the cell. At
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FIG. 1: (A) Image of the lower part of the hopper. The flow
rate is controlled by varying the outlet a. The force trans-
ducer is marked "T”.The white box indicates the field of view
(=~ 10d x 20d) used to visualize the flow field at 500 fps. We
measure fast fluctuations in the flow velocity Vi at a higher
rate of 4000 fps in a field of view whose size is shown by the
small square (2.5d x 2.5d). (B) Vi vs. position Z going up
the wall from the transducer, for a = 4d. The solid line is
the Z-dependence expected from the continuity equation for
an incompressible flow. (C) V¢ normalized to the velocity
at the transducer vs. position going horizontally across from
the transducer, for several flow rates. The dashed line is the
midpoint of the flow. (D) The normalized standard devia-
tion in flow speed, ov, /VL, as a function of Vz, measured at
three locations: at the transducer, 6d across from it, and 10d
up along the wall. (E) Time-dependence of the transducer
voltage (proportional to force) and Vi for a = 4d.

all three locations, fluctuations grow strongly relative to
the mean as jamming is approached.

As argued previously, the dynamical origin of these ve-
locity fluctuations must lie in fluctuations in the forces
exerted by the walls. We measure this force by means
of a normal force transducer embedded in the side wall;
the active surface of the transducer is large enough to
accommodate exactly one ball. The voltage output of
the transducer (Fig. 1E), sampled at 100kHz is con-
verted into a force by calibration with impacts and static
loads of known magnitude. Over the entire range of the
flow velocities explored in this article, the forces exerted
against the wall are primarily collisional, with balls mak-
ing repeated but isolated impacts against the transducer.
The collisional nature of the forces is not evident from in-
spection of the video images at these high packing frac-
tions. Indeed, simulations [13] show that small changes
in packing fraction can drive a change in the microscopic
mechanism of momentum transfer from collisions to fric-
tion. We have previously studied [14] the statistics of
the impulsive forces as a function of the flow rate, find-
ing that the distribution of forces remained broad at all
flow rates, with an exponential tail, just as in static gran-
ular media. In order to study the correlation of the flow
and the forces, we make measurements of the velocity at
4000 fps, synchronized carefully with the force measure-
ment(Fig. 1D). To achieve these higher imaging speeds
without sacrificing spatial resolution, we are obliged to
make the velocity measurement in a smaller window as
indicated in 1A; measurements are made for several po-
sitions of this window: along the wall upstream (+Z7 di-
rection) and downstream (—2) of the transducer, as well
as normal to the wall (+X).

The temporal characteristics of the fluctuations in flow
velocity V,, are quantified in Fig. 2A, where we show the
autocorrelation function Cy, (0,t) [15] of the velocity at
the transducer for several flow speeds. Unlike the magni-
tude of the fluctuations in V,, the decay time is not sensi-
tive to the distance from the jamming threshold: within
statistics it is unchanged over a velocity range of 8 to
34 c¢m/s. (This unlike the observations in Ref. [11] where
several measures of particle displacement scale with the
distance the particle is advected; presumably the differ-
ence is that we are in an inertial regime whereas they are
in a quasistatic regime where geometry is the dominant
consideration). The fluctuations in forces decay faster
than the fluctuations in flow velocity, as can be seen in
Fig. 2B, where we compare the autocorrelation of V7, of
force, F', and of the collision frequency, f.

Even though the collision frequency f and velocity, Vr,
fluctuate on different time scales, their equal-time cross-
correlation, Cyy, (0,0), shown in Fig.3, establishes that
these quantities are anti-correlated: higher-than-average
collision frequencies are accompanied by downward fluc-
tuations in velocity. The same is true of the correlation
between velocity and average force: large forces accom-
pany negative velocity fluctuations. This is implied by
the strong positive correlation shown in Fig. 3 of f and
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FIG. 2: (A) Autocorrelation function, Cy, (0,t) of the flow
velocity, Vi at the transducer (Z = 0, X = 0) as a function of
time, t(msec) for openings a/d = 3.04,3.28,4,6,8. We also
include data for a/d = 3.04 at Z = 10d. The decay time of
the autocorrelation does not change as V1, changes by a factor
4.25.(B) The autocorrelation functions of collision frequency,
f, and average force, I, decay faster than that of Vi. The
error bars are standard deviations between 5 data sets, each
consisting of 40,000 video frames acquired at 4000 fps.
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FIG. 3: Equal-time cross correlations Cyr(0,0) and

Cyv, (0,0) at the transducer (X=0, Z=0) as a function of
average flow velocity Vrz, showing the high positive correla-
tion of F" and f, and the negative correlation between f and
V1, at all flow velocities.

F at all flow velocities. This is not a surprising corre-
lation, after all, frequent collisions against the wall gen-
erally would indicate greater momentum transfer to the
wall, however, the degree of the correlation is very strong.
Thus most of the information in force fluctuations is car-
ried by the frequency of collisions, and very little by fluc-
tuations in the magnitude of the impulses.

Is the force at the wall anticorrelated only with the ve-
locity exactly at that point? We investigate this question
by plotting in Fig. 4, the equal-time cross-correlation
between the collision frequency f at the transducer, and
velocity fluctuations at several locations along the wall
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FIG. 4: Equal-time cross-correlation between the collision fre-
quency f at the transducer, and velocity fluctuations at dif-
ferent locations along the wall Cyv, (2,0), and normal to the
wall Cyy, (z,0) (this trace is vertically offset for clarity).

Cyv,.(Z,0), and at other locations normal to the wall
Ctv, (X,0). The greatest anticorrelation is at X = Z =
0, that is, between forces measured at the transducer and
Vi, at that location. These correlations decay anisotrop-
ically from this point. Along the wall, the correlation
dies off rapidly as a function of Z, with a decay length
of 2 to 3d. Into the flow, though, the correlation decays
approximately linearly in X, going to zero only at the far
wall. Thus the equal-time correlation is consistent with
a high-collision-rate structure that is only a few beads
wide in the flow direction, but can span the entire chan-
nel transverse to the flow. This can be identified with
the collision chains seen in the simulations of [6]. Similar
structures have also been visualized in the slow flow of
soft photoelastic discs in a 2D hopper similar to ours [16].

Even though the equal-time correlations shown in Fig.
4 die off quickly in the upstream direction, the high-
collision rate events can have an effect far upstream. This
is most clearly revealed in the time-dependent cross cor-
relation Cyv, (Z,t) shown in Fig. 5. We first focus on
the data (e) for Z = 0 . It is apparent that the great-
est anticorrelation is at negative times and not at t=0.
Thus, the collision rate builds up and is maximum at
a time tjq4 before the flow slows down. There is also
a broad peak for positive times, indicating that a pe-
riod of acceleration is likely to follow, and that there is a
suppressed probability for the formation of another colli-
sional ”arch” immediately after. The other curves shown
in Fig. 4 represent Cyy, (Z,t) for increasing values of
Z, i.e. for positions along the wall, upstream from the
transducer. The anticorrelation at the minimum of the
curve (t = tjqq) is larger, and diminishes much slower
with distance, than does the anticorrelation at ¢ = 0.
Thus even though the equal-time correlation indicates a
thin, local structure, the effect on the flow is extremely
long-range. t;,4(Z), the time required for the information
propagate a distance Z upstream, is shown in the inset.
The slope represents the velocity at which the force infor-
mation propagates upstream; this velocity is more than
an order of magnitude greater than the flow speed, and is
comparable to d(f), the particle diameter multiplied by



5_ 10 15
. Distance/d |
40

FIG. 5: The time-dependent cross correlation Cjyy, (Z,t)
against delay time, ¢ for different Z along the wall. The max-
imum of the negative correlation occurs at a negative delay
time tiq4. Inset: t1q4 versus distance, Z/d (e) and X/d (o).
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FIG. 6: (A) Equal-time spatial cross correlations Cv;, (Z,0)
between velocities Vi, at different Z along the wall. (B) The
distance, A1z, at which the spatial correlation decays to 1/2,
as a function of flow velocity, Vr.

the mean collision frequency. Thus, the communication
is very coherent, akin to a longitudinal sound mode.

This long-range effect of clogging by transient arches
leads to a flow with pronounced spatial correlations: the
extreme version of this occurs when a stable arch forms
across the channel - the flow comes to a halt everywhere
in the hopper. However, there is a continuous approach
to this limit as the flow velocity is slowed down towards
jamming. This is shown in Fig. 6A where we plot for
several flow speeds, the spatial correlation of the velocity
field, Cy, (Z,0), as a function of position along the wall.
The correlation decays slower in space as the flow slows
down. This is demonstrated in Fig. 6B where we show
the distance, A; /2, at which the correlation falls to 1 /2.

Thus the approach to jamming is characterized by both
an increasing correlation length scale in the velocity fluc-
tuations (Fig. 6) as well as an increasing amplitude (Fig.
1D) for the fluctuations. We have also previously ob-
served in this geometry [14] that a time-scale diverges:
the collision time distribution goes to a power-law with
an exponent of —3/2. The driving force for the slow-
down and arrest of the flow appears to be collisionally
stabilized structures reminiscent of the force chains ob-
served in static granular packings. In our experiments,
these collision chains are not directly observed but are
identified via their anticorrelation with the velocity field:
a high collision rate immediately precedes the slowing
down of the flow. At any instant, the correlations indi-
cate that these transient structures are thin in the flow
direction and long-ranged transverse to the flow. The ef-
fect of these localized structures is propagated rapidly to
upstream parts of the flow, signalling a temporary clog-
ging of the flow downstream. We are currently exploring
similar phenomena in 3D flows [17], where we are able to
study both collisional and frictional regimes.
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