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A demonstration of phonons that implements the linear theory
Dietrich Lüerßen,a) Nalini Easwar, Ayesha Malhotra, Libby Hutchins, Kim Schulze,
and Brandi Wilcox
Department of Physics, Smith College, Northampton, Massachusetts 01063
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Beads on a vibrating wire are used to simulate the discrete structure of a solid-state material. The
novel idea of the experiment is to use very small oscillation amplitudes of the wire to avoid
nonlinearities in the interaction. We achieve a good signal-to-noise ratio using a lock-in technique.
We find quantitative agreement between theory and experiment for not only a mono- and a diatomic
chain, but also for the bare wire. The latter agreement is the crucial aspect that distinguishes our
experiment from previous ones. This agreement assures that the fundamental assumption of the
theory~Hooke’s law! is satisfied. We show that the properties of phonon dispersion curves are not
special, and that the same band structures occur when the wavelength of any wave becomes
comparable to the length scale of a discrete periodicity. ©2004 American Association of Physics Teachers.

@DOI: 10.1119/1.1625923#

I. INTRODUCTION

Lattice vibrations are covered to some extent in every text-
book on solid state physics.1–3 They are important for under-
standing phenomena as diverse as the specific heat and the
inelastic scattering of neutrons. Because the underlying phe-
nomena and calculations are entirely mechanical in nature,
the treatment of lattice vibrations also provides a relatively
simple means of introducing the concepts of energy bands
and forbidden gaps.

The theoretical tool of a linear chain calculation4 is cov-
ered in classical mechanics textbooks because students have
a good background in mechanics at this point, and the cal-
culations that lead to the solution are familiar. More impor-
tant, this tool is invaluable for many applications, for ex-
ample, the calculation of phonon dispersion curves in
crystals. For more advanced students, the theoretical tools
provided by quantum mechanics can be successfully used to
describe the behavior of waves in macroscopic, periodic me-
dia, and detailed band structures can be calculated.5

It is helpful for students to not only see the theoretical
derivation of, for example, phonon dispersion curves in the
classroom, but also to do some associated experiments. In
the past, there have been several efforts to visualize lattice
vibrations in large-scale demonstrations.6–9 However, there
is one aspect that has not been addressed satisfactorily in
Refs. 6–9. Although the theory relies on the assumption that
the interaction between adjacent beads/atoms is linear, earlier
demonstrations either do not check the linearity of the inter-
action or show explicitly that the interaction is not linear. In
the following, we propose a demonstration that shows ex-
plicitly that the interaction is linear and in accordance with
the fundamental assumption of the theory.

If the subject of lattice vibrations is introduced properly,
students can obtain additional insight into complex phenom-
ena such as the behavior of a single electron in a periodic
potential as well as photonic band gaps10 and acoustic
crystals.11 The underlying idea of all these phenomena is that
the wavelength of the excitation is comparable to the length
scale of the periodicity of the medium in which the wave
travels. We can start from a familiar experiment~for ex-
ample, standing waves on a string!, and then impose a peri-
odicity comparable to the wavelength on the system. The
transition from the familiar dispersion relation to one that
shows the bending of the dispersion relation and band gaps

present in lattice vibrations can help students realize the fun-
damental concept that leads to these features: a spatial peri-
odicity that is comparable to the wavelength of the excita-
tion. In addition, other interesting phenomena such as
disorder-induced localization of wave packets~Anderson lo-
calization! can be realized.9,12,13

The demonstration we propose specifically addresses the
transition from the linear dispersion relation to a more com-
plicated one. The expected proportionality between fre-
quency and wave number for a simple stretched wire is
found in our experiment. This agreement ensures that the
foundation for both the theory and the demonstration is the
same, and that we can therefore expect reasonable consis-
tency between theory and experiment for the complex cases
that can be studied, of which only a few are explored in this
paper.

Some of the pedagogical uses of the experiment are that it
can be used to show the difference between a linear and
nonlinear dispersion relation, the cut-off frequency of a lin-
ear chain, and the forbidden gap for a diatomic lattice. It is
best used in an advanced undergraduate laboratory setting. In
addition, the experimental setup is of potential interest in
undergraduate research projects.

II. THEORY

The properties of phonons are usually introduced using a
model that is based on two assumptions:~1! The interaction
between neighboring atoms is based on Hooke’s law: the
force is proportional to the displacement of the atoms.~2!
Only the interaction between adjacent atoms is taken into
account. In addition, the ‘‘springs’’ that connect the atoms
are assumed to be massless.

The benefits of this theoretical approach for lattice vibra-
tions are easy to see. First of all, these assumptions lead to
simple solutions for the phonon dispersion relationv(k)
which are in qualitative agreement with phonon dispersion
curves measured in real crystals. For the purpose of the dem-
onstration proposed in this paper, there is a second and often
overlooked benefit: students are already familiar with the
continuous case~vibrations of a stretched string!, and they
will be able to verify that the first assumption is satisfied in
the demonstration.

We will consider only one polarization of the transverse
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waves. Hence, the number of modes is reduced by a factor of
3 in comparison with a solid, where there are one longitudi-
nal and two transverse modes.

The resonance frequenciesv of the system are extracted
from the measured data. They are then paired with the cor-
responding wave vectork to obtain the dispersion relation
v(k). The wave vectors are calculated knowing the geom-
etry of the experimental setup. For a stretched string~con-
tinuum! of length L, they can be found easily. The allowed
wave vectors are given by

kn5
p

L
3n, n51,2,3,..., ~1!

where the integern does not have an upper limit.
If the bare string is loaded with beads made of split shot~a

special kind of fishing lead! with a well-checked periodicity,
we call this arrangement a ‘‘uniformly loaded string.’’ This
uniformly loaded string can be used to simulate vibrations
of, for example, a crystalline lattice. For such an arrange-
ment, we want to look at vibrations that can be distinguished
from each other by looking only at the amplitudes of the
individual beads in contrast to looking at the string.14 Con-
sequently, the number of beads gives the number of vibra-
tional patterns that can be distinguished, and the wave vector
has an upper limit. ForN identical beads with spacing~lattice
constant! a, the wave vectorsk can be expressed as

kn5
p

L
n5

p

~N11!a
n, n51,2,3,...,N. ~2!

If there is more than one bead per unit cell, some of these
wave vectors are degenerate. If the number of beads in the
unit cell is p, and if N is an integer multiple ofp, the wave
vectors within the first Brillouin zone are still given as in Eq.
~2!. The only change is thatn has the upper limitN/p. For
each wave vector there arep corresponding resonance fre-
quencies.

The restriction of a uniformly loaded string is important in
order to calculate the wave vectors. If disorder were present,
there would be localized vibrational modes~Anderson
localization!.9,12,13These localized modes cannot be modeled
using simple normal modes. The wave profile is then a linear
superposition of more than one normal mode, and the con-
cept of one single wave vector per resonance frequency
breaks down.

The three examples we will consider are the bare string, a
monatomic lattice, and a diatomic lattice. For the bare string,
the dispersion relation is given by

v~k!5AT

m
k, ~3!

wherem is the mass per unit length of the string andT is the
tension in the string.

For a string loaded uniformly with one type of beads
~monatomic lattice!, the dispersion relation is given by

v~k!5A4T

maUsinS 1

2
kaD U, ~4!

wherem is the mass of the~identical! beads. In the limit of
long wavelengths, the dispersion relation reduces to that of
the simple string:

lim
k→0

dv~k!

dk
5A4T

ma

1

2
a5A T

m/a
. ~5!

If we assumes that the string is massless, and if the mass
densitym is identified withm/a, then the group speeds are
identical for the bare string and the monoatomic lattice.

For the ‘‘diatomic lattice’’ ~two different bead masses,
string loaded uniformly!, there are two solutions for the dis-
persion relation corresponding to the acoustic and the optical
branch of the dispersion relation:

v2~k!5
2T

a S 1

m
1

1

M D F16A12
4mM

~M1m!2
sin2~ka!G .

~6!

In Eq. ~6!, M andm are the masses of the two beads~atoms!.
The two branches are separated by a gap, the size of which is
determined by the square root of the ratio of the two masses.

There are two important properties that need to be dis-
cussed with students:

~1! The word ‘‘linear’’ is used in two different contexts. The
interaction is always linear, meaning that the displace-
ment is proportional to the force. Thedispersion relation
can be linear~bare string! or nonlinear~loaded string!.

~2! The only reason for the change of the dispersion relation
from linear to nonlinear is that the wavelength of the
excitation becomes comparable to the periodicity of the
experiment.

The dispersion relation of a simple string is linear, and the
frequency is proportional to the wave vector. But as soon as
the medium is discrete~for example, if beads are added! and
the wavelength of the excitations is comparable to its peri-
odicity, the dispersion relation becomes nonlinear and shows
features such as band gaps or localization. However, the in-
teraction between the beads is still linear. Band gaps and
nonlinear dispersion relations are not only present for vibra-
tional waves in crystals and on wires, but also for electrons
in metals and semiconductors, electromagnetic waves in
photonic crystals, and acoustic waves in sonic crystals. On
the other hand, if the wavelength is much larger than the
periodicity, the dispersion relation of the systems with and
without beads is identical@see Eq.~5!#.

There may be circumstances that require a more sophisti-
cated theory, for example, when the string tension changes
because of large oscillation amplitudes.9 The force is then no
longer linearly dependent on the displacement. This nonlin-
earity of the response has nothing to do with the nonlinearity
of the dispersion relation which occurs even for a linear in-
teraction. An excellent overview of different ways to account
for nonlinear interactions can be found in Ref. 9.

III. EXPERIMENTAL SETUP

There are many experiments that demonstrate the phonon
properties of solids. Most demonstrations focus on one
dimension,6,8,9 but there also are experiments for two-
dimensional systems.7 In these experiments, either the as-
sumption of a linear interaction between adjacent ‘‘atoms’’
cannot be demonstrated, or the assumed linear dispersion
relation shows nonlinear behavior.9 When using such a dem-
onstration as a teaching tool, the discussion becomes difficult
if students ask questions such as: ‘‘If there already is a dis-
crepancy between the theory and the demonstration for the
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simple case, how can we be certain that the experimental
results for the more complex case are meaningful?’’

Our experimental approach displays quantitative agree-
ment between theory and experiment for both the simple and
the complex cases. This agreement makes it easier to under-
stand the results of the demonstration and allows one to fo-
cus on the challenge of understanding why the lattice vibra-
tions have their specific properties.

To study the vibrations of a wire, we stretch the wire over
two knife-edges using a hanging mass~Fig. 1!. The distance
between the two knife-edges is the effective length of the
wire L and determines the possible vibrational normal modes
of the wire through the boundary conditions. This wire can
be loaded with additional masses, for which we use split
shots. The spot beads are fishing accessories that can be
bought in different sizes from a sporting good, store.

To excite and detect the vibrations of the wire, we use a
pair of magnetic transducers~PASCO, WA-9613 driver and
detector!. A lock-in amplifier ~Stanford Research SR-830! is
not only used to obtain a reliable signal with very little noise,
but also to provide the time varying voltage for the excitation
via the internal oscillator output. The use of the lock-in am-
plifier for the signal detection allows the use of small ampli-
tude oscillations to minimize nonlinearities.

The use of the magnetic transducers requires additional
thought about the excitation and the detection of the vibra-
tions of the wire. If the driver is supplied with a sinusoidal
voltage, it attracts the wire for positive as well as for nega-
tive voltages. Hence, the wire is not excited at the frequency
f 1 of the driving voltage, but at 2f 1 . Accordingly, the detec-
tion frequency of the lock-in amplifier needs to be set to the
second harmonic of the frequency of the internal oscillator.

The setup can be operated at several levels of automation.
The easiest use of the setup involves nothing else but manu-
ally changing the frequency and adjusting the sensitivity of
the lock-in amplifier, and reading and writing down the reso-
nance frequencies based on the observed amplitudes. In this
way, students can see the dramatic effect of a resonance and
can obtain a good feeling for the signal-to-noise ratio. This
procedure is most useful for studying the eigenfrequencies of
the individual modes.

In a more sophisticated setup, we use a computer to con-
trol the lock-in amplifier via a serial interface, allowing us to

automate the entire experiment. We are able to scan a speci-
fiable frequency range and record the amplitude and phase of
the oscillation while averaging several measurements. This
procedure also allows us to obtain their respective uncertain-
ties. Also the line shape of the resonance curves can be stud-
ied, and the phase shift at the resonance can be analyzed.

For the automation, we use the software package DDDA
from Stanford Research. The data collection program was
written in the programming language provided by this soft-
ware. The source code and programming tips are available
on the authors’ website.15

IV. SAMPLE RESULTS AND ANALYSIS

As mentioned, the crucial point we want to show is that
the results for the bare string are in agreement with theoret-
ical predictions, that is, the vibrational frequencyvk and the
wave numberk are proportional. This relation can be ex-
pressed in terms of the mode numbern:

vn5
p

L
AT

m
n. ~7!

The tension was chosen to beT558.8 N, the length of the
wire was measured to beL52.486 m, and the mass per unit
length,m, was determined by a fit to the data~Fig. 2!. We
found m5(5.757360.0014)31024 kg/m. For the steel wire
that we used in the setup~diameter 0.3060.01 mm! this
value corresponds to a densityr5~81006500! kg/m3, which
agrees quantitatively with tabulated values16 ~between
r57700 kg/m3 for chromium steel andr58130 kg/m3 for
nickel steel!.

From Fig. 2 it is clear that the proportionality betweenv
and k is strictly maintained up to an angular frequencyv
'1.83104 rad/s, the largest frequency we measured. The
mode number is as high asn553, which corresponds to a
wavelengthl,10 cm. This wavelength is less than half of
the distance between two adjacent beads in the other experi-
ments we will show. It is therefore sufficient to show that the
interaction is linear for all wavelengths that will be used
later.

The uncertainty of the linear fit parameterA(T/m)
5(319.5860.08) rad/s is a mere 0.025%. This result is very

Fig. 1. Schematic of the experimental setup. A wire is stretched over two
knife-edges with a well-defined tension. This force is achieved through a
mass that is attached to the wire via a pulley. At the core of the experiment
is a lock-in amplifier that provides both the frequency for the magnetic
driver and the signal detection with a low noise level. Computer control of
the experiment is possible but not necessary.

Fig. 2. Plot of the dispersion relation for a simple stretched wire. The pro-
portionality between the wave number and the angular frequency agrees
with theory. This linear relation might hold for frequencies higher than what
are shown, but no measurements were taken for higher frequencies.
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different from the one reported in Ref. 9, where a significant
curvature of the dispersion relation of the bare string was
found because of a change in the tensionT. This change in
the tension is due to the large amplitudes at which the string
had to be driven to obtain reliable results. Here, using a
lock-in amplifier, we were able to avoid this effect because
the detection technique permits us to use very small vibra-
tional amplitudes and still obtain a good signal-to-noise ratio.

We next loaded the string with the split shot beads. We
studied both mono- and diatomic lattices~Figs. 3 and 4, re-
spectively!. From these graphs it is obvious that the data can
no longer be fit by a linear function. It should be pointed out
to students that this difference is due only to the periodicity
that is imposed by the beads: nothing else about the experi-
ment has changed.

For the monoatomic and diatomic lattices, the cut-off
wave numberka5p/a of the first Brillouin zone is finite.
Here, the lattice constants area522.6 and 45.2 cm, respec-
tively. They are the smallest lengths over which a spatial
periodicity is observed. For the bare string,ka is virtually
infinite in comparison with the monoatomic and diatomic
lattices because the lattice constant of the atoms in the wire

is about seven orders of magnitude smaller. The curvature of
the dispersion relation toward a horizontal slope due to
Bragg reflection occurs at the edges of the Brillouin zone.
That is, the deviation from linear dispersion is noticeable
only when the wavelength is comparable to the lattice con-
stant. Because the measured wavelengths are much larger
than the interatomic distance, we could not observe any evi-
dence of this curvature in our data for the bare string; how-
ever, we could observe this curvature for the loaded string.

To demonstrate a monoatomic chain, we used 10 beads
with an average massm̄5(1.86060.003) g, lattice constant
a522.6 cm, and tensionT558.8 N. We fit the measured dis-
persion relations using the function

v5A sinS p

2

n

11D , n51,2,...,10. ~8!

We found thatA5(744.662.5) rad/s, which is in reasonable
agreement with the expected valueA(4T/ma)5(748.0
60.5) rad/s. The slight difference between the two values
can be explained by taking into account that the wire is not
massless. The quality of the fit to the experimental data can
be confirmed in Fig. 3. There is no notable discrepancy be-
tween theory and experiment.

For the diatomic chain, the beads had average massesM̄
5(2.5360.02) g andm̄5(0.55360.002) g. Five beads of
each kind were used to obtain a lattice constant ofa
545.2 cm, which was chosen to maintain the same bead
positions as in the monoatomic setup. The tension also was
kept constant.

As fitting functions for the optical and acoustic branch of
the dispersion relation, we used

va/o5AAF16A12B sin2S p

2

n

5.5D G , n51,2,...,5,

~9!

which corresponds to Eq.~6!. We fitted the optical and
acoustic branches simultaneously because the fit parameters
A and B are identical for both branches. We foundA
5(5.17560.023)3105 rad2 s22 and B5(0.62660.007).
The error for bothA and B is 1% or less. The quantitative
agreement between the data and the fit is very good, and we
conclude that Eq.~4! represents the measured data well~see
also Fig. 4!. In the inset of Fig. 4 we show a sample mea-
surement of the amplitudes versus the angular frequency.
The meaning of the term ‘‘forbidden gap’’ is clear here be-
cause the amplitude trace is flat between about400 and900
rad/s.

Even though the shape of the fit function allows one to
model the data with great precision, there is a slight discrep-
ancy between the fitted parametersA andB, and their equiva-
lents that can be calculated from known parameters~tension,
bead masses, and lattice constant!. This discrepancy is sum-
marized in Table I. However, the discrepancy can be lifted if
the assumption of a massless string is not made. The masses
of the beads in Eq.~6! can be replaced by effective bead
masses. These effective masses can be calculated from the fit
parametersA and B and can be compared with a corrected
bead mass. The lower limit for the corrected bead mass is its
measured mass, and the upper limit is the sum of the bead
mass and the mass of the string between two adjacent beads
~here,ma/250.13 g). The results of this analysis are summa-
rized in Table I and show that there is quantitative agreement

Fig. 3. Measured data for the resonance frequencies vs the calculated wave
vectors of the normal modes for a monoatomic chain with 10 beads. The
continuous line is the result of a fit using Eq.~9!.

Fig. 4. Left: Measured data for the resonance frequencies vs the calculated
wave vectors of the normal modes for a diatomic chain with 5 bead pairs.
The continuous curve is the result of a fit using Eq.~10!. The fitted curve
represents the data well. To find the fit, only two parameters were varied,
and the fitting was done for both branches of the dispersion relation simul-
taneously. Right: The measured amplitude of the oscillation at one detector
location as a function of the angular frequency. The band gap can be ob-
served between 400 and 900 rad/s, where the oscillation amplitude is zero.
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between the effective bead masses and the corrected ones.
This agreement is important because the same assumption
~linear interaction! was used in the theory and the experiment
and leads to quantitative agreement. This agreement confirms
that also the second assumption of the theory~next-neighbor
interaction! is valid.

One point still needs to be addressed: the comparison of
the vibrational patterns of the atoms between theory and ex-
periment. Because the amplitudes of the vibrations are inten-
tionally very small, we cannot observe the oscillations visu-
ally. But the lock-in amplifier can record thephaseof the
signal in addition to the amplitude. The phase can be used to
determine the vibrational profile of the string if the detector
is placed close to each of the beads along the string.

To illustrate how we can find the vibrational pattern of the
beads from a measurement of the phase of the oscillation
relative to the driving frequency, we use the simple example
of just two beads on the string. The expected vibrational
patterns are easy to sketch~see Fig. 5!. The two beads will
either vibrate in phase~low frequency and longer wave-
length! or out of phase~higher frequency and shorter wave-
length!.

Figure 6 shows the measured response of the phase and
amplitude versus frequency for both beads. At the lower fre-
quency,v1 , it can be clearly seen that both beads oscillate in
phase and behave identically. They also oscillate in the way
that is expected for any mechanical system close to a reso-
nance: at the resonance frequency, there is a phase shift of
180°.

Near the frequencyv2 , the two beads have a phase dif-
ference of 180°, which means that the beads are always on
opposite sides of the equilibrium position. From Fig. 5 we
can see that for higher frequencies~shorter wavelengths!,
this change in the relative phase could have been expected.

With more beads, the phase shift for all the beads can still
be predicted easily from the sketches of the vibrational pat-
tern of the string for all eigenfrequencies of the string. As
preparation before using this demonstration, students could
be asked to draw these sketches and predict the phase shifts
for all beads relative to one reference bead~which in the
experiment would be the one closest to the excitation and
therefore always in phase!. If in the experiment the phase

shifts are in agreement with the sketches, we can be certain
that we have observed the normal modes of a perfectly or-
dered system. If, however, there were a slight disorder in the
bead positions, the normal modes can be distinguished from
localized ones because the amplitude and phase characteris-
tics of the waveform are different, and sketches like Fig. 5
~using sinusoidal waveforms! are representations of the nor-
mal modes only.

Fig. 5. Sketches of the modes on a string with 2 beads. With the positions of
the beads marked on the profile of the string, it can be easily seen for
different wavelengths if the beads are oscillating in or out of phase.

Fig. 6. Data corresponding to the loaded string shown in Fig. 5.~a! The
detector is placed at the position of bead 1;~b! the results of the detector at
position 2. It can be seen that for the lower frequency the oscillation is in
phase and is out of phase for the higher frequency.

Table I. From the masses of the beads on the string~second and third
columns!, the characteristic parameters of the dispersion relation~last two
columns! can be calculated and vice versa@the conversion isA5(2T/a)
3(1/M11/m) andB5(2T/a)(1/M11/m)], with the experimentally given
parametersT558.8 N anda545.2 cm. The measured/fitted parameters are
in italic, while the calculated ones are not italic. This comparison provides
an important diagnostic tool for the comparison of experiment and theory:
although the fitted curve can represent the data well, there still does not have
to be quantitative agreement between the measured bead masses and the
ones calculated from the fit parameters. Only if we consider that the string
has a mass of0.13 g between two adjacent beads and allow for this addi-
tional mass in the calculation is there quantitative agreement between the fit
parameters and the theoretical prediction~compare the lower two rows!.

M (g) m (g)
A ~from the fit!
(105 rad2 s22) B ~from the fit!

Measured
bead masses

2.5360.02 0.55360.002 5.73360.025 0.58960.002

Fit 2.5960.03 0.62460.005 5.17560.023 0.62660.007
Bead and
wire mass

2.6060.09 0.6260.07 5.260.4 0.6260.05
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V. CONCLUSION

We have discussed an experiment that is useful for teach-
ing undergraduate students the concepts of band gaps and
nonlinear dispersion relations. The novel feature of our dem-
onstration is that the assumption of Hooke’s law can be ex-
perimentally validated. The demonstration can be set up with
relative ease because of its simplicity. The experiment can be
used to emphasize that band structures with nonlinear disper-
sion relations and band gaps are not unique features of vi-
brations in crystals, but can occur whenever the wavelength
of an excitation becomes comparable to the length scale of a
discrete periodicity in the medium in which the wave travels.

It has not been discussed here, but the setup also can be
used to show Anderson localization in weakly disordered
media, the influence of stacking faults in an otherwise per-
fect crystal, and the phenomenon known from superlattices
and quantum wells that ‘‘confined’’ optical phonons are not
really confined in their respective layer, but penetrate into the
barriers.
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