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ABSTRACT

PARAMETER ESTIMATION FROM COMPRESSED AND SPARSE MEASUREMENTS

In this dissertation, the problem of parameter estimation from compressed and sparse

noisy measurements is studied. First, fundamental estimation limits of the problem are

analyzed. For that purpose, the effect of compressed sensing with random matrices on

Fisher information, the Cramér-Rao Bound (CRB) and the Kullback-Leibler divergence are

considered. The unknown parameters for the measurements are in the mean value function

of a multivariate normal distribution. The class of random compression matrices considered

in this work are those whose distribution is right-unitary invariant. The compression matrix

whose elements are i.i.d. standard normal random variables is one such matrix. We show

that for all such compression matrices, the Fisher information matrix has a complex matrix

beta distribution. We also derive the distribution of CRB. These distributions can be used

to quantify the loss in CRB as a function of the Fisher information of the non-compressed

data. In our numerical examples, we consider a direction of arrival estimation problem and

discuss the use of these distributions as guidelines for deciding whether compression should

be considered, based on the resulting loss in performance.

Then, the effect of compression on performance breakdown regions of parameter esti-

mation methods is studied. Performance breakdown may happen when either the sample

size or signal-to-noise ratio (SNR) falls below a certain threshold. The main reason for this

threshold effect is that in low SNR or sample size regimes, many high resolution parameter

estimation methods, including subspace methods as well as maximum likelihood estimation

lose their capability to resolve signal and noise subspaces. This leads to a large error in

parameter estimation. This phenomenon is called a subspace swap. The probability of a

subspace swap for parameter estimation from compressed data is studied. A lower bound
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has been derived on the probability of a subspace swap in parameter estimation from com-

pressed noisy data. This lower bound can be used as a tool to predict breakdown for different

compression schemes at different SNRs.

In the last part of this work, we look at the problem of parameter estimation for p

damped complex exponentials, from the observation of their weighted and damped sum.

This problem arises in spectrum estimation, vibration analysis, speech processing, system

identification, and direction of arrival estimation. Our results differ from standard results

of modal analysis to the extent that we consider sparse and co-prime samplings in space, or

equivalently sparse and co-prime samplings in time. Our main result is a characterization

of the orthogonal subspace. This is the subspace that is orthogonal to the signal subspace

spanned by the columns of the generalized Vandermonde matrix of modes in sparse or co-

prime arrays. This characterization is derived in a form that allows us to adapt modern

methods of linear prediction and approximate least squares for estimating mode parameters.

Several numerical examples are presented to demonstrate the performance of the proposed

modal estimation methods. Our calculations of Fisher information allow us to analyze the

loss in performance sustained by sparse and co-prime arrays that are compressions of uniform

linear arrays.
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CHAPTER 1

INTRODUCTION

There are many engineering applications in which the goal is to invert an image for the

underlying parameters. Some examples are the identification of multipath components in

wireless communications, radiating sources in radar and sonar, and light sources in optical

imaging. Classical methods for inversion are mainly based on two principles. The first

principle is matched filtering, where a sequence of test images is matched to the measured

image. The test images are obtained from scanning prototype images (e.g., steering vectors)

through frequency, wavenumber, doppler, or delay. The second principle for image inversion

is parameter estimation in a separable linear model, wherein a sparse modal representation

is considered for the image. Estimates of underlying linear parameters (complex amplitudes

of modes) and nonlinear mode parameters (frequency, wavenumber, delay, and/or doppler)

are extracted, usually based on maximum likelihood, or some variation on linear prediction,

using `2 minimization (see, e.g., [1]). However, the ultimate limitation for image inversion is

that any subsampling of the measured image has consequences for resolution (or bias) and

for variability (or variance) [2].

Compressed sensing [3]–[5] is a relatively new theory which exploits sparse representa-

tions and sparse recovery for inversion. In compressed sensing, typically random compression

matrices are used to compress the image. The elements of the compression matrices are nor-

mally drawn from specific distributions such as Gaussian or Bernoulli. Using concentration

inequalities, the so-called restricted isometry constants are derived for different distribu-

tions of the random compression matrices [6]. Based on these restricted isometry constants,

there are guarantees for the reconstruction of sparse images after compressed sensing, us-

ing greedy or `1-norm-based reconstruction methods (See e.g. [7]–[11]). Compressed sensing
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demonstrates that for images that have sparse representations in an apriori known basis,

subsampling has manageable consequences [3]–[5].

In [2]–[14], the sensitivity of sparse inversion algorithms to basis mismatch and frame

mismatch are studied. It is shown in [2] that mismatch between the actual basis in which

a signal has a sparse representation and the basis (or frame) which is used for sparsity in a

sparse reconstruction algorithm, such as basis pursuit, has performance consequences on the

estimated parameter vector. [13,14] contain numerical results that characterize the increase

in CRB after random compression for the case where the parameters nonlinearly modulate

the mean in a multivariate normal measurement model.

As a deterministic compression scheme, co-prime sensor array processing was introduced

recently by Vaidyanathan and Pal [15]- [16] as a sparse alternative to uniform line arrays.

The concept was extended to sampling in multiple dimensions in subsequent papers by the

same authors. In one dimension, the idea is to employ two uniform line arrays with spacings

of M and N in units of half-wavelength, where M and N are co-prime. We will also look

into the effect of co-prime subsampling on parameter estimation in Chapters 3 and 4.

Chapter 2 of this dissertation addresses a fundamental question: How much information

for nonlinear parameter estimation is retained (or lost) when compressing noisy measure-

ments? To answer this question, we analyze the effect of compressed sensing on the Fisher

information matrix and the Cramér-Rao bound (CRB). The inverse of the Fisher information

matrix gives a lower bound on the mean squared error (MSE) of any unbiased estimator of

the parameters. Therefore, it quantifies the amount of information we lose due to compres-

sion, and the increase we expect in the MSE of the estimation of parameters after compressed

sensing. The class of random compression matrices we consider are those whose distributions

are invariant under right-unitary transformations. These include i.i.d draws of spherically in-

variant matrix rows, including, for example, i.i.d. draws of standard normal matrix elements.

We consider a measurement model in which the unknown parameters for the measurements
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are in the mean value function of a multivariate normal distribution. Then, we consider com-

pression using random matrices whose distribution is right-unitary invariant. As a simple

case, we analyze the distribution of the Fisher information matrix and the CRB for the case

that the elements of the compression matrix are i.i.d. standard normal random variables.

We show that the normalized Fisher information matrix after compressed sensing has a mul-

tivariate beta distribution. Then, we show that the same distribution result applies to all

compressed sensing matrices of the aforementioned class. We also derive the distribution of

the CRB in estimation of the individual parameters. Importantly, the distribution of the ra-

tio of CRBs before and after compression depends only on the number of parameters and the

number of measurements. The distribution is invariant to the underlying signal-plus-noise

model, in the sense that it is invariant to the underlying Fisher information matrix, before

compression. The analytical distributions obtained in Chapter 2 can be used to quantify

the amount of loss due to compression. Also, they can be used as guidelines for choosing a

suitable compression ratio based on a tolerable loss in the CRB.

In Chapter 3, we study threshold effects associated with the estimation of parameters from

compressed noisy measurements. The term threshold effect refers to a catastrophic increase

in mean-squared error when the signal-to-noise ratio falls below a threshold SNR. In many

cases, the threshold effect is caused by a subspace swap event, when the measured data (or

its sample covariance) is better approximated by a subset of components of an orthogonal

subspace than by the components of a signal subspace. We consider measurement models

in which the parameters to be estimated are either in the mean or in the covariance of a

complex multivariate normal set of measurements. For these models, we derive analytical

lower bounds on the probability of a subspace swap in compressively measured noisy data.

These bounds guide our understanding of threshold effects and performance breakdown for

parameter estimation using compression. As a case study, we investigate threshold effects in

the maximum likelihood estimation of direction of arrivals of two closely-spaced sources, using

co-prime subsampling of a uniform line array. Our results show the impact of compression
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on threshold SNR, and can be used as a tool to predict the threshold SNR for different

compression regimes. Other authors have addressed the performance breakdown regions of

high resolution parameter estimation methods. In [17], approximation of the probability of

a subspace swap in the Singular Value Decomposition (SVD) is investigated. In [18] lower

bounds on the probability of a subspace swap are derived for the problem of modal analysis.

In [19] the performance breakdown regions have been studied in the DOA estimation problem

using asymptotic assumptions on the number of antennas and number of samples. It is shown

that while a subspace swap is the main reason for the performance breakdown of maximum

likelihood, earlier breakdown of MUSIC is due to the loss of resolution in separating closely

spaced sources.

In chapter 4, we consider the problem of parameter estimation for p damped complex

exponentials, from the observation of their weighted and damped sum. This problem has

many applications such as spectrum estimation, vibration analysis, speech processing, system

identification, and direction of arrival estimation. There is a vast literature on different modal

estimation methods from uniformly sampled time or space series data, starting with the work

of Prony [20]. Other methods include approximate least squares or maximum likelihood

estimation [21], [22], reduced rank linear prediction [23], [24], MUSIC [25], and ESPRIT [26].

While there are extensions of MUSIC and ESPRIT for direction of arrival estimation from

non-uniformly sampled data [27]–[31], Prony-like methods have mainly been developed for

uniformly sampled data, and extending such methods to non-uniformly sampled data has

not received much attention (exceptions being [32] and [33]).

We consider sparse and co-prime samplings in space, or equivalently sparse and co-prime

samplings in time. Our main result is a characterization of the orthogonal subspace. This

is the subspace that is orthogonal to the signal subspace spanned by the columns of the

generalized Vandermonde matrix of modes in sparse or co-prime arrays. This characteri-

zation is derived in a form that allows us to adapt modern methods of linear prediction

and approximate least squares for estimating mode parameters. Several numerical examples
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are presented to demonstrate the performance of the proposed modal estimation methods.

Although we present our numerical results in the context of sensor array processing, all of

our results apply to the estimation of complex exponential modes from time series data. Our

calculations of Fisher information allow us to analyze the loss in performance sustained by

sparse and co-prime arrays that are compressions of uniform linear arrays.

The results of this thesis have been reported in [34]– [36].
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CHAPTER 2

ANALYSIS OF FISHER INFORMATION AND THE

CRAMÉR-RAO BOUND FOR NONLINEAR

PARAMETER ESTIMATION AFTER

COMPRESSED SENSING

2.1 Introduction

As mentioned in chapter 1, compressed sensing [3]–[5] is a relatively new theory which

exploits sparse representations and sparse recovery for inversion. In this chapter, we ana-

lyze the impact of compressed sensing on Fisher information and the Cramér-Rao Bound

for nonlinear parameter estimation from noisy measurements. We consider a case where the

parameters nonlinearly modulate the mean value of a complex multivariate normal distri-

bution. We derive the distribution of the Fisher information matrix and the CRB for the

class of random matrices whose distributions are invariant under right-unitary transforma-

tions. These include i.i.d draws of spherically invariant matrix rows, including, for example,

i.i.d. draws of standard normal matrix elements. The results in this chapter quantify the

amount of information we lose due to compression, and the increase we expect in the MSE

of parameter estimators after compressed sensing.

Other studies on the effect of compressed sensing on the CRB and the Fisher information

matrix include [37]– [39]. Babadi et al. [37] proposed a “Joint Typicality Estimator” to show

the existence of an estimator that asymptotically achieves the CRB of sparse parameter

estimation for random Gaussian compression matrices. Niazadeh el al. [38] generalize the

results of [37] to a class of random compression matrices which satisfy the concentration of

6



measures inequality. Nielsen et al. [40] derive the mean of the Fisher information matrix for

the same class of random compression matrices that we are considering. Ramasamy et al. [39]

derive bounds on the Fisher information matrix, but not for the model we are considering.

We will clarify the important distinction between our work and [39] after establishing our

notation in Section 2.2.

2.2 Problem Statement

Let y ∈ Cn be a complex random vector whose probability density function f(y;θ) is

parameterized by an unknown but deterministic parameter vector θ ∈ Rp. The derivative of

the log-likelihood function with respect to θ = [θ1, θ2, · · · , θp] is called the Fisher score, and

the covariance matrix of the Fisher score is the Fisher information matrix which we denote

by J(θ):

J(θ) = E[(
∂ log f(y;θ)

∂θ
)(
∂ log f(y;θ)

∂θ
)H ] ∈ Cp×p. (2.1)

The inverse J−1(θ) of the Fisher information matrix lower bounds the error covariance matrix

for any unbiased estimator θ̂(y) of θ, that is

E[(θ̂(y)− θ)(θ̂(y)− θ)H ] � J−1(θ), (2.2)

where A � B for matrices A,B ∈ Cn×n means aHAa ≥ aHBa for all a ∈ Cn. The ith

diagonal element of J−1(θ) is the CRB for estimating θi and it gives a lower bound on the

MSE of any unbiased estimator of θi from y (see, e.g., [41]).

For y ∈ Cn a proper complex normal random vector distributed as CN (x(θ),C) with

unknown mean vector x(θ) parameterized by θ, and known covariance C = σ2I, the Fisher

information matrix is the Grammian

J(θ) = GHC−1G =
1

σ2
GHG. (2.3)

The ith column gi of G = [g1,g2, · · · ,gp] is the partial derivative gi = ∂
∂θi

x(θ), which

characterizes the sensitivity of the mean vector x(θ) to variation of the ith parameter θi.
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The CRB for estimating θi is given by

(J−1(θ))ii = σ2(gHi (I−PGi
)gi)

−1, (2.4)

where Gi consists of all columns of G except gi, and PGi
is the orthogonal projection onto

the column space of Gi [42]. This CRB can also be written as

(J−1(θ))ii =
σ2

‖gi‖2
2 sin2(ψi)

, (2.5)

where ψi is the principal angle between subspaces 〈gi〉 and 〈Gi〉. These representations

illuminate the geometry of the CRB, which is discussed in detail in [42].

If y is compressed by a compression matrix Φ ∈ Cm×n to produce ŷ = Φy, then the

probability density function of the compressed data ŷ is CN [Φx(θ), σ2ΦΦH ]. The Fisher

information matrix Ĵ(θ) is given by

Ĵ(θ) =
1

σ2
ĜHĜ, (2.6)

where Ĝ = PΦHG. The CRB for estimating the ith parameter is

(Ĵ−1(θ))ii = σ2(ĝHi (I−PĜi
)ĝi)

−1, (2.7)

where Ĝi = PΦHGi, and PΦH = ΦH(ΦΦH)−1Φ is the orthogonal projection onto the row

span of Φ.

Our aim is to study the effect of random compression on the Fisher information matrix

and the CRB. In Section 2.3 we investigate this problem by deriving the distributions of the

Fisher information matrix and the CRB for the case in which the elements of the compression

matrix Φ are distributed as i.i.d. standard normal random variables. Then we demonstrate

that the same analysis holds for a wider range of random compression matrices.

Remark 1: In parallel to our work, Ramasamy et al. [39] have also looked at the impact

of compression on Fisher information. However, they have considered a different parameter

model. Specifically, their compressed data has density CN [Φx(θ), σ2I], in contrast to ours

which is distributed as CN [Φx(θ), σ2ΦΦH ]. Our model is a signal-plus-noise model, wherein
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the noisy signal x(θ)+n, n ∼ CN (0, σ2I), is compressed to produce Φx(θ)+Φn. In contrast,

their model corresponds to compressing a noiseless signal x(θ) to produce Φx(θ)+w, where

w ∼ CN (0, σ2I) represents post-compression noise. Note that the Fisher information, CRB

and corresponding bounds of these two models are different, as in our model noise enters at

the input of the compressor, whereas in [39] noise enters at the output of the compressor.

This is an important distinction.

2.3 Distribution of the Fisher Information Matrix after

Compression

Let W be the normalized Fisher Information Matrix after compression, defined as

W = J−1/2ĴJ−H/2 ∈ Cp×p, (2.8)

where J and Ĵ are the Fisher information matrix before compression and the Fisher informa-

tion matrix after compression, defined in (2.3) and (2.6), respectively. Our aim is to derive

the distribution of the random matrix W for the case that the elements of the compression

matrix Φij are i.i.d. random variables distributed as CN (0, 1). We assume n−p ≥ m, which

is typical in almost all compression scenarios of interest.

Using (2.3) and (2.6), W may be written as

W = HHPΦHH, (2.9)

where H = G(GHG)−H/2 is a left-unitary matrix, i.e., HHH = Ip. Define H̃ ∈ Cn×(n−p)

such that Λ = [H|H̃] is an orthonormal basis for Cn, i.e., ΛΛH = ΛHΛ = In. Then we have:

W =

[
Ip 0

]
ΛHPΦHΛ

 Ip

0

 , (2.10)

where

ΛHPΦHΛ = ΛHΦH(ΦΦH)−1ΦΛ

= ΛHΦH(ΦΛΛHΦH)−1ΦΛ

= PΛHΦH . (2.11)
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Because the distribution of Φ is right-unitary invariant, the distribution of ΛHPΦHΛ is

the same as the distribution of PΦH . Therefore, the distribution of W is the same as the

distribution of V = ΦH
1 (ΦΦH)−1Φ1, where Φ = [Φ1|Φ2], Φ1 ∈ Cm×p and Φ2 ∈ Cm×(n−p).

Now, write V as V = YYH , with Y = ΦH
1 Z−1/2 and Z = ΦΦH . Since Z = Φ1Φ

H
1 + Φ2Φ

H
2 ,

and Φ2Φ
H
2 is distributed as complex Wishart Wc(Im,m, n− p) for n− p ≥ m, given Φ1 the

pdf of Z is

f(Z|Φ1) = c1e
−tr(Z−Φ1ΦH

1 )|Z−Φ1Φ
H
1 |n−p−m. (2.12)

The pdf of Φ1 can be written as c2e
−tr(Φ1ΦH

1 ). Therefore, the joint pdf of Z and Φ1 is

f(Z,Φ1) = c3e
−tr(Z)|Z−Φ1Φ

H
1 |n−p−m (2.13)

where c1, c2, and c3 = c1c2 are normalization factors. Since Y = ΦH
1 Z−1/2, from (2.13) the

joint pdf of Y and Z is

f(Y,Z) = c3e
−tr(Z)|Z− Z1/2YHYZH/2|n−p−m|Z|p

= c3e
−tr(Z)|Im −YHY|n−p−m|Z|n−m. (2.14)

This shows that Y and Z are independent and the pdf of Y is

f(Y) = c4|Im −YHY|n−p−m

= c4|Ip −YYH |n−p−m, (2.15)

where c4 is a normalization factor.

Let g(YYH) = f(Y). To derive the distribution of V = YYH we use the following

theorem.

Theorem 1: [43] If the density of Y ∈ Cp×m is g(YYH), then the density of V = YYH

is

|V|m−pg(V)πmp

Γ̃p(m)
, (2.16)

where Γ̃m(.) is the complex multivariate Gamma function. The tilde notation is standard in

the literature.

10



Using Theorem 1 and (2.15), the pdf of V is

c5|V|m−p|Ip −V|n−p−m for 0 � V � Ip, (2.17)

which is the Type I complex multivariate beta distribution CBI
p(m,n − m) for c5 =

Γ̃p(n)

Γ̃p(m)Γ̃p(n−m)
. Recall that the distribution of the normalized Fisher information matrix after

compression W = J−1/2ĴJ−H/2 is identical to that of V. Therefore, W is also distributed

as CBI
p(m,n−m), with the pdf of (2.17).

Remark 2: It is important to note that the distribution of W = J−1/2ĴJ−H/2 is invariant

to J, and it depends on only on the parameters (n− p)−m and m− p. In this sense, this

result for the distribution of J−1/2ĴJ−H/2 is universal, and reminiscent of the classical result

of Reed, Mallat, and Brennan [44] for normalized SNR in adaptive filtering.

Lemma 1: [45] Assume A ∈ Cp×p is a positive definite Hermitian random matrix with

a pdf h(A). Then, the joint pdf of eigenvalues Λ = diag(λ1, λ2, . . . , λp) of A is

πp(p−1)

Γ̃p(p)

p∏
i<j

(λi − λj)2

∫
U(p)

h(UΛUH)dU, (2.18)

where dU is the invariant Haar measure on the unitary group U(p).

Using Lemma 1, we can derive the joint distribution of the eigenvalues of W. Replacing

h in (2.18) by the pdf of W ∼ CBI
p(m,n−m), the joint pdf of the eigenvalues λ1, λ2, . . . , λp

of W = J−1/2ĴJ−H/2 is given by

πp(p−1)Γ̃p(n)

Γ̃p(p)Γ̃p(m)Γ̃p(n−m)

p∏
i<j

(λi − λj)2

p∏
i=1

λm−pi (1− λi)n−m−p. (2.19)

Now, from (2.17) and using the transformation Ĵ = J1/2WJH/2, the Fisher information

matrix after compression Ĵ is distributed as

c5|J|p−n|Ĵ|m−p|J− Ĵ|n−m−p for 0 � Ĵ � J (2.20)
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and the inverse of the Fisher information matrix after compression K̂ = Ĵ−1 is distributed

as

c5|J|p−n|K̂|−n|JK̂− Ip|n−m−p for K̂ � J−1. (2.21)

Remark 3: For the class of random compression matrices that have density functions

of the form g(ΦΦH), that is, the distribution of Φ is right-unitary invariant, ΦH(ΦΦH)−1/2

is uniformly distributed on the Stiefel manifold Vm(Cn) [46]. Therefore, the distribution of

the normalized Fisher information matrix for this class of compression matrices is the same

as the one given in (2.17).

Remark 4: Using the properties of a complex multivariate beta distribution [47], we

have

E[Ĵ] =
m

n
J, (2.22)

and

E[Ĵ−1] =
n− p
m− p

J−1. (2.23)

This shows that, on average, compression results in a factor n−m
n

loss in the Fisher informa-

tion and a factor n−p
m−p increase in the CRB J−1.

The distribution of the CRB after compression can be derived using the following Lemma.

Lemma 2: [47] Assume X ∼ CBI
p(a1, a2). Let z be a complex vector independent of

X. Then, x = zHz
zHX−1z

is distributed as BI
p(a1 − p+ 1, a2), which is a Type I univariate beta

distribution with the pdf

Γp(a1 + a2)

Γp(a1)Γp(a2)
xa1−1(1− x)a2−1 for 0 < x < 1. (2.24)

Now consider the CRB on an unbiased estimator of parameter θi, after compression,

normalized by the CRB before compression:

(Ĵ−1)ii
(J−1)ii

=
eHi Ĵ−1ei
eHi J−1ei

=
zHW−1z

zHz
, (2.25)

where z = J−1/2ei, and ei ∈ Cp is a standard unit vector with 1 as its ith element and

zeros as its other elements. By Lemma 1, the above ratio is distributed as the inverse of a

univariate beta random variable BI(m− p+ 1, n−m).
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Remark 5: From the distribution of the CRB after compression, we have

E[(Ĵ−1)ii] = (
n− p
m− p

)(J−1)ii, (2.26)

var[(Ĵ−1)ii] =
(n−m)(n− p)

(m− p− 1)(m− p)2
((J−1)ii)

2. (2.27)

Remark 6: We can also look at the effect of compressed sensing on the Kullback Leibler

(KL) divergence of two normal probability distributions, for the class of random compressors

already discussed in Remark 3. The KL divergence between CN (x(θ),C) and CN (x(θ′),C)

is:

D(θ,θ′) = (x(θ)− x(θ′))HC−1(x(θ)− x(θ′)). (2.28)

After compression with Φ we have

D̂(θ,θ′) =(x(θ)− x(θ′))HΦH(ΦCΦH)−1Φ

(x(θ)− x(θ′)). (2.29)

For the case C = σ2I, the normalized KL divergence is

D̂(θ,θ′)

D(θ,θ′)
=

(x(θ)− x(θ′))HPΦH (x(θ)− x(θ′))

(x(θ)− x(θ′))H(x(θ)− x(θ′))
. (2.30)

Therefore, the normalized KL divergence, for random compression matrices Φ whose distri-

butions are invariant to right-unitary transformations, is distributed as BI(m,n−m).

2.4 Numerical Results

As a special example, we consider the effect of compression on DOA estimation using

a uniform line array with n elements. In our simulations, we consider two sources whose

electrical angles θ1 and θ2 are unknown. The mean vector x(θ) is x(θ) = x(θ1) + x(θ2),

where

x(θi) = Aie
jφi [1 ejθi ej2θi · · · ej(n−1)θi ]T . (2.31)

Here Ai and φi are the amplitude and phase of the ith source, which we assume known.

We set φ1 = φ2 = 0 and A1 = A2 = 1. We wish to estimate θ1, whose true value in this
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example is zero, in the presence of the interfering source at electrical angle θ2 = π/n (half

the Rayleigh limit of the array). For our simulations, we use Gaussian compression matrices

Φm×n whose elements are i.i.d. CN (0, 1/m). The Fisher information matrix and the CRB

on the estimation of θ1 are calculated for different realizations of Φ. Fig. 2.1 shows the

CRB on the estimation of θ1 before compression divided by its corresponding value after

compression, i.e. (J−1)11
(Ĵ−1)11

for m = 64, n = 128. A histogram of actual values of (J−1)11
(Ĵ−1)11

for 105

independent realizations of random Φ is shown in blue. The red curve represents the pdf of

a BI(m− p + 1, n−m) distributed random variable for p = 2. This figure simply provides

an illustration of the result (2.25).
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Figure 2.1: Histogram data and analytical distributions for (J−1)11
(Ĵ−1)11

using 105 realizations of

i.i.d. Gaussian compression matrices with n = 128 and m = 64.

Recall that the inverse Fisher Information Matrix J−1 lower bounds the error covariance

matrix Σ = E[eeH ] for unbiased errors e = θ̂ − θ. So the concentration ellipse eHΣ−1e ≤

eHJe for all e ∈ Cp. The ellipses eHJe = r2 and eH Ĵe, with r2 = J11, are illustrated in

Fig. 2.2, demonstrating the effect that compression inflates the concentration ellipse. The
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blue curve is the locus of all points e ∈ Cp, for which eHJe = r2. The red curves are the

loci of all points e ∈ Cp, for which eH Ĵe = r2 for 100 realizations of the Fisher information

matrix after compression. As can be seen, the concentration ellipse for the Fisher information

matrix before compression has the smallest volume in comparison with all the realizations

of the concentration ellipses after compression. Also, for each realization of the Gaussian

compression, the orientation of the concentration ellipse is nearly aligned with that of the

uncompressed ellipse.
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Figure 2.2: Concentration ellipses for the Fisher information matrices before and after com-
pression.

Figure 2.3 shows the compression ratio m/n needed so that the CRB after compres-

sion (Ĵ−1)11 does not exceed κ times the CRB before compression (J−1)11, at two levels

of confidence and for n = 128. These curves are plotted using the tail probabilities of a

univariate beta random variables. They can be used as guidelines for deriving a satisfactory

compression ratio based on a tolerable level of loss in the CRB. Alternatively, we can plot

the confidence level curves versus m for fixed values of κ . In that case, the plots may be

useful to find a number of measurements that would guarantee that after compression CRB
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does not go above a desired bound (corresponding to a particular κ) with a certain level of

confidence.
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Figure 2.3: Compression ratios needed so that (Ĵ−1)11 < κ(J−1)11 for different confidence
levels.
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CHAPTER 3

THRESHOLD EFFECTS IN PARAMETER

ESTIMATION FROM COMPRESSED DATA

3.1 Introduction

Many high resolution parameter estimation methods suffer from performance breakdown,

where the mean squared error (MSE) increases dramatically at low SNR. Performance break-

down may happen when either the sample size or signal-to-noise ratio (SNR) falls below a

certain threshold [17]. Typically, a subspace swap is known to be the main source of this

performance breakdown, where one or more components in the orthogonal (noise) subspace

better approximate the data than at least one component of the signal subspace, which in

turn leads to a large error in parameter estimation [17]- [19].

In this chapter, we study the effect of compression on the probability of a subspace swap.

Specifically, we want to see what effects compression has on the threshold SNR at which

performance breaks down. To answer this question, we derive lower bounds on the proba-

bility of a subspace swap in parameter estimation from compressed noisy data in complex

multivariate normal measurement models. These lower bound can be used as a tool to pre-

dict breakdown for different compression schemes at different SNRs, and therefore to predict

whether specific compression or subsampling schemes are viable in a specific application. For

our numerical results, we consider DOA estimation of two closely spaced sources and inves-

tigate the effect of compression with co-prime arrays [15,16] on the probability of a subspace

swap. Our simulation results indicate that compression brings a cost of about 10 log10C dB

in threshold SNR, where C is the compression ratio.
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3.2 Measurement Model

In the following subsections, we consider two models for the random measurement vector

y ∈ Cn. In the first-order model, the parameters to be estimated nonlinearly modulate the

mean of a complex multivariate normal vector, and in the second-order model the parameters

nonlinearly modulate the covariance of a multivariate normal vector.

3.2.1 Parameterized Mean Case

Let y ∈ Cn be a complex measurement vector in a signal plus noise model y = x(θ) + n.

Here, we assume that n is a proper complex white Gaussian noise with covariance σ2I and

x(θ) is parameterized by θ ∈ Cp, p ≤ n. We assume that the parameters are nonlinearly

embedded in x(θ) as x(θ) = K(θ)α, where the columns of K(θ) = [k(θ1) k(θ2) · · · k(θp)]

define the signal subspace, and α ∈ Cp is a deterministic vector associated with the mode

weights. Therefore, y is distributed as CN n(K(θ)α, σ2I), and the parameters θ ∈ Cp

to be estimated nonlinearly modulate the mean of a complex multivariate normal vec-

tor. Assume we compress the measurement vector y by a unitary compression matrix

Ψ = (ΦΦH)−1/2Φ, where Φ ∈ Cm×n, p ≤ m < n. Then, we obtain w = Ψy

which is distributed as CNm(z(θ), σ2I), where z(θ) = Ψx(θ). We form the data ma-

trix W = [w1 w2 · · · wM ], where wi’s are independent realizations of w. To specify

a basis for the signal subspace and the orthogonal subspace in our problem, we define

H(θ) = ΨK(θ) = [h(θ1) h(θ2) · · · h(θp)], with h(θi) = Ψk(θi). The singular value

decomposition of Hm×p (p ≤ m) is

H = UΣVH (3.1)
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where

U ∈ Cm×m : UUH = UHU = I

V ∈ Cp×p : VVH = VHV = I

Σ ∈ Cm×p : Σ =

Σp

0


Σp = diag(σ1, σ2, ..., σp), σ1 ≥ σ2 ≥ ... ≥ σp. (3.2)

Now we can define the basis vectors from U = [u1,u2, ...,up|up+1, ...,um] = [Up|U0], where

〈Up〉 and 〈U0〉 represent signal and orthogonal subspaces, respectively. The columns of

Up and U0 can be considered as basis vectors for the signal and orthogonal subspaces,

respectively.

3.2.2 Parameterized Covariance Case

Assume in the signal plus noise model y = x + n, the signal component x is of the

form x = K(θ)α, where the columns of K(θ) = [k(θ1) k(θ2) · · · k(θp)] are the modes

and α ∈ Cp is the vector associated with the random mode weights. We assume α is

distributed as CN p(0,Rαα). Therefore, Rxx(θ) = K(θ)RααKH(θ) is parameterized by

θ ∈ Cp. We assume n is a proper complex white Gaussian noise with covariance σ2I, and

x and n are independent. Therefore, y is distributed as CN n(0,Ryy(θ)), where Ryy(θ) =

K(θ)RααKH(θ) + σ2I. Such a data model arises in many applications such as direction of

arrival and spectrum estimation.

Assume we compress the measurement vector y by a unitary compression matrix Ψ =

(ΦΦH)−1/2Φ, where Φ ∈ Cm×n(m < n). Then, we obtain w = Ψy which is distributed as

w ∼ CNm(0,Rww) (3.3)

where Rww = ΨK(θ)RααKH(θ)ΨH + σ2I. We form the data matrix W =

[w1 w2 · · · wM ], where wi’s are independent realizations of w. Each of these i.i.d. re-

alizations consists of an i.i.d. realization of yi, compressed by a common compressor Ψ for
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all i = 1, 2, . . . ,M . We may define the signal covariance matrix after compression as

Rzz = ΨK(θ)RααKH(θ)ΨH

= H(θ)RααHH(θ), (3.4)

where H(θ) = [h(θ1) h(θ2) · · · h(θp)], and h(θi) = Ψk(θi). Now, we can write the

singular value decomposition of Rzz and Rww as

Rzz = UΛUH

Rww = U(Λ + σ2I)UH (3.5)

where U and Λ are defined as

U ∈ Cm×m : UUH = UHU = I

Λ ∈ Cm×m : Λ =

Λp 0

0 0


Λp = diag(λ1, λ2, ..., λp), λ1 ≥ λ2 ≥ ... ≥ λp. (3.6)

Assuming Rzz has rank p, the unitary matrix U can be written as U =

[u1,u2, ...,up|up+1, ...,um] = [Up|U0]. Here 〈Up〉 represents the signal subspace and 〈U0〉

represents the orthogonal subspace which completes Cm×m, assuming p ≤ m < n. Figure

3.1 gives a geometrical representation of (3.6).

3.3 Bound on the Probability of a Subspace Swap after

Compression

To bound the probability of a subspace swap for the compressed measurements W, we

define the following events:

• E is the event that one or more modes of the orthogonal subspace resolve more energy

in W than one or more modes of the noise-free signal subspace. Therefore, E may be

written as
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Figure 3.1: Signal and noise subspaces.

E = ∪pq=1E(q), (3.7)

where E(q) is the following subset of the subspace swap event E,

min
A∈Ip,q

tr(WHPHAW) < max
B∈C(n−p)×q

tr(WHPU0BW), (3.8)

and Ip,q is the set of all p× q slices of the identity matrix Ip. Here, the columns of H

are the modes defined in Section 3.2, and A selects q of the columns of H.

• F is the event that the average energy resolved in the orthogonal subspace 〈U0〉 is

greater than the average energy resolved in the noise-free signal subspace 〈Up〉 (or

equivalently 〈H〉). Then, the following bounds establish that F is a subset of E(1),

which is in turn a subset of the swap event E:

min
1≤i≤p

tr(WHPhi
W) ≤ 1

p
tr(WHPUpW)

<
1

m− p
tr(WHPU0w)

≤ max
p+1≤i≤m

tr(WHPui
W)

≤ max
b∈C(n−p)×1

tr(WHPU0bW). (3.9)
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• G is the event that the energy resolved in the apriori minimum mode hmin of the

noise-free signal subspace 〈H〉 (or equivalently 〈Up〉) is smaller than the average energy

resolved in the orthogonal subspace 〈U0〉. For the parameterized mean measurement

model, we define hmin as

hmin = arg min
h∈{h(θ1),h(θ2),...,h(θp)}

|hHz(θ)|2, (3.10)

and for the parameterized covariance measurement model as

hmin = arg min
h∈{h(θ1),h(θ2),...,h(θp)}

|hHRzz(θ)h|2. (3.11)

Then, the following bounds establish that G is a subset of E(1), which is in turn a

subset of the swap event E:

min
1≤i≤p

tr(WHPhi
W) ≤ tr(WHPhmin

W)

<
1

m− p
tr(WHPU0w)

≤ max
p+1≤i≤m

tr(WHPui
W)

≤ max
b∈C(n−p)×1

tr(WHPU0bW). (3.12)

Since events F and G are subsets of event E, their probabilities of occurrence give lower

bounds on the probability of a subspace swap, Pss , P (E). We use these events to derive

lower bounds on the probability of a subspace swap for the two data models given in Section

3.2.

3.3.1 Parameterized Mean Case

For the parameterized mean measurement model discussed in Section 3.2.1, we start with

event F and define

TF =
1

m− p
PU0 −

1

p
PUp (3.13)
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where PUp = UpU
H
p is the orthogonal projection onto the signal subspace and PU0 = U0U

H
0

is the orthogonal projection onto the orthogonal (noise) subspace. According to the definition

of event F we can lower bound the probability of a subspace swap Pss as

Pss ≥ P (tr
[
WHTFW

]
> 0) (3.14)

Therefore, we have

Pss ≥ P (tr
[
WHTFW

]
> 0)

= P (
tr
[
WHUpU

H
p W

]
/2p

tr
[
WHU0UH

0 W
]
/2(m− p)

< 1)

= P (

∑M
i=1 ‖UH

p wi‖2
2/2p∑M

i=1 ‖UH
0 wi‖2

2/2(m− p)
< 1). (3.15)

Here, the UH
p wi are independent and identically distributed as

UH
p wi ∼ CN p(U

H
p z(θ), σ2I) ∀1 ≤ i ≤M. (3.16)

Therefore, ‖UH
p wi‖2

2/σ
2 ∼ χ2

2p(‖z(θ)‖2
2/σ

2), which is the distribution of a complex noncen-

tral chi-squared random variable with 2p degrees of freedom and noncentrality parameter

‖z(θ)‖2
2/σ

2. Also, since 〈Up〉 and 〈U0〉 are orthogonal, we can conclude that in (3.15), each

‖UH
0 wi‖2

2/σ
2 is independent of ‖UH

p wi‖2
2/σ

2 and is distributed as χ2
2(m−p). Hence, the term

‖UH
p w‖22/2p

‖UH
0 w‖22/2(m−p) is the ratio of two independent normalized chi-squared random variables and

is distributed as F2pM,2(m−p)M(‖z(θ)‖2
2/σ

2), which is a noncentral F distribution with 2pM

and 2(m − p)M degrees of freedom and noncentrality parameter ‖z(θ)‖2
2/σ

2. Thus, the

probability of a subspace swap after compression is lower bounded by the probability that

a F2pM,2(m−p)M(‖z(θ)‖2
2/σ

2) distributed random variable is less than 1. When there is no

compression, this lower bound turns into the probability that a F2pM,2(n−p)M(‖x(θ)‖2
2/σ

2)

random variable is less than 1.

For event G, we define

TG =
1

m− p
PU0 −Phmin

. (3.17)
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Here, we define ρmin = hmin

‖hmin‖2 . Therefore Phmin
= ρminρ

H
min, and we have

Pss ≥ P (tr
[
WHTGW

]
> 0)

= P (
tr
[
WHρminρ

H
minW

]
/2

tr
[
WHU0UH

0 W
]
/2(m− p)

< 1)

= P (

∑M
i=1 ‖ρHminwi‖2

2/2∑M
i=1 ‖UH

0 wi‖2
2/2(m− p)

< 1). (3.18)

Here, we have

ρHminwi ∼ CN (ρHminz(θ), σ2I) ∀1 ≤ i ≤M. (3.19)

Therefore, ‖ρHminwi‖2
2/σ

2 ∼ χ2
2(|ρHminz(θ)|2/σ2) which is the distribution of a complex non-

central chi-squared random variable with 2 degrees of freedom and noncentrality parameter

|ρHminz(θ)|2/σ2. Thus, with the same type of arguments as for event F , we can conclude

that the term
∑M

i=1 ‖ρH
minwi‖22/2∑M

i=1 ‖UH
0 wi‖22/2(m−p) is distributed as F2M,2(m−p)M(|ρHminz(θ)|2/σ2), which is a

noncentral F distribution with 2M and 2(m − p)M degrees of freedom and noncentrality

parameter |ρHminz(θ)|2/σ2. When there is no compression, this turns into the probability

that a F2M,2(n−p)M(|κHminx(θ)|2/σ2) random variable is less than 1. Here, κmin = kmin

‖kmin‖2 ,

and kmin is the apriori minimum mode of the signal subspace before compression.

3.3.2 Parameterized Covariance Case

For the parameterized covariance measurement model discussed in Section 3.2.2, we start

with event F . In this case, the columns of the measurement matrix W are i.i.d. random

vectors distributed as CN (0,Rww), and similar to the mean case we have

Pss ≥ P (tr
[
WHTFW

]
> 0)

= P (
tr
[
WHUpU

H
p W

]
/2p

tr
[
WHU0UH

0 W
]
/2(m− p)

< 1)

= P (

∑M
i=1 ‖UH

p wi‖2
2/2p∑M

i=1 ‖UH
0 wi‖2

2/2(m− p)
< 1). (3.20)

Here, the UH
p wi are i.i.d. and distributed as

UH
p wi ∼ CN p(0,Λp + σ2Ip) ∀1 ≤ i ≤M. (3.21)
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Therefore we can write

‖UH
p wi‖2

2 =

p∑
i=1

(λi + σ2)ρi, (3.22)

where ρi’s are i.i.d. random variables, each distributed as χ2
2. Therefore,

M∑
i=1

‖UH
p wi‖2

2 =

p∑
i=1

(λi + σ2)ξi, (3.23)

where ξi’s are i.i.d. random variables, each distributed as χ2
2M . Also, we can write∑M

i=1 ‖UH
0 wi‖2

2 = σ2ν, where ν is distributed as χ2
2M(m−p) and is independent of the ξi’s.

Therefore, we have

Pss ≥ P (

∑M
i=1 ‖UH

p wi‖2
2/2p∑M

i=1 ‖UH
0 wi‖2

2/2(m− p)
< 1)

= P (

∑p
i=1(1 + λi/σ

2)ξi/2Mp

ν/2M(m− p)
< 1). (3.24)

Here, the term
∑p

i=1(1+λi/σ
2)ξi/2Mp

ν/2M(m−p) is distributed as GF
[
(1 + λ1

σ2 ), . . . , (1 + λp
σ2 ); 2Mp; 2M(m−

p)
]
, which is the distribution of a generalized F random variable [48]. Thus, the probability of

a subspace swap in this case is lower bounded by the probability that a GF
[
(1+ λ1

σ2 ), . . . , (1+

λp
σ2 ); 2M ; 2M(m − p)

]
random variable is less than 1. Without compression, this turns into

the probability that a GF
[
(1 + λ̃1

σ2 ), . . . , (1 + λ̃p
σ2 ); 2Mp; 2M(m − p)

]
random variable is less

than 1. Here λ̃i’s are the eigenvalues of the signal covariance matrix Rxx before compression.

We can also derive the probability of the event G for the parameterized covariance mea-

surement model. In this case we have

Pss ≥ P (tr
[
WHTGW

]
> 0)

= P (

∑M
i=1 ‖ρHminwi‖2

2/2∑M
i=1 ‖UH

0 wi‖2
2/2(m− p)

< 1), (3.25)

where ρmin = hmin

‖hmin‖2 , and hmin is the apriori minimum mode of the signal subspace given

by (3.11). Here, ρHminwi is distributed as

ρHminwi ∼ CN (0, τ) ∀1 ≤ i ≤M, (3.26)
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where τ = ρHminRwwρmin. Therefore,

M∑
i=1

‖ρHminwi‖2
2/τ ∼ χ2

2M , (3.27)

and we have

Pss ≥ P (

∑M
i=1 ‖ρHminwi‖2

2/2∑M
i=1 ‖UH

0 wi‖2
2/2(m− p)

< 1)

= P (ϑ <
σ2

τ
), (3.28)

where ϑ is distributed as F2M,2M(m−p), which is a central F random variable with 2M and

2M(m− p) degrees of freedom. Without compression, this turns into the probability that a

F2M,2M(n−p) random variable is less than σ2

τ̃
, where τ̃ = κHminRyyκmin, κmin = kmin

‖kmin‖2 , and

kmin is the apriori minimum mode of the signal subspace before compression.

Remark 1: In Sections 3.3.1 and 3.3.2, we have derived lower bounds on the probability

of a subspace swap for the case that Ψ = (ΦΦH)−1/2Φ is deterministic, as in standard or

co-prime subsamplings. In the case that Ψ is random, these probability bounds would have

to be integrated over the distribution of Ψ to give lower bounds on marginal probabilities of

a subspace swap. For example, for random Ψ and for the subevent F we have

Pss =

∫
P (E|Ψ)P (Ψ)dΨ ≥

∫
P (F |Ψ)P (Ψ)dΨ (3.29)

where P (F |Ψ) is given in Sections 3.3.1 and 3.3.2 for the parameterized mean and param-

eterized covariance measurement models, respectively. For the class of random compression

matrices that have density functions of the form g(ΦΦH), that is, the distribution of Φ is

right orthogonally invariant, Ψ is uniformly distributed on the Stiefel manifold Vm(Cn) [46].

The compression matrix Φ whose elements are i.i.d. standard normal random variables is

one such matrix.

3.4 Simulation Results

In this Section, we present numerical examples to show the impact of compression on

threshold effects for estimating directions of arrival using a sensor array. We consider a
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dense uniform line array with n elements at half-wavelength inter-element spacings. We

compress this array to m dimensions using co-prime subsampling. In co-prime compression,

we uniformly subsample the dense array once by a factor m1 and once by a factor m2, where

m1 and m2 are co-prime. We then interleave these two subarrays to form the co-prime array

of m1 + 2m2 − 1 elements. We note that although we are compressing the array by a factor

n/m for the co-prime array, the dense and the compressed arrays still have the same total

aperture. The geometry of the dense and co-prime arrays are shown in Figure 3.2. We

consider two point sources at far field at electrical angles θ1 = 0 and θ2 = π/n. We set

the amplitudes of these sources α1 = α2 = 1. The Rayleigh limit of the dense array in

electrical angle is 2π/n. Therefore, in our examples the two sources are separated by half

the Rayleigh limit of the dense array. We present the results for the parameterized mean

and parameterized covariance cases.

(a)

(b)

(c)

Figure 3.2: Geometry of the dense array (a), and co-prime subarrays (b), (c). At m1 = 11
and m2 = 9, (2m2 − 1)m1λ/2 = 187λ/2.
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3.4.1 Parameterized Mean Case

In this case, the Monte Carlo simulation consists of 200 independent realizations of the

measurement vector y for a dense array of 188 elements, each for a single snapshot (M = 1).

Then we compress these measurements to simulate the data for the co-prime compressed

array of 28 elements with m1 = 11 and m2 = 9. The compression ratio is n
m
≈ 6.7. Figure

3.3 shows the MSE for the maximum likelihood estimator of the source at θ1 in the presence

of the interfering source at θ2. The CRB corresponding to the 188-element dense array is

also shown in this figure as a reference for performance analysis. Figure 3.3 also shows

approximations to the MSE (in starred solid lines) obtained using the method of intervals

(introduced in [49] and used in [18]). At each SNR, the approximate MSE σ2
T is computed

as

σ2
T = Pssσ

2
0 + (1− Pss)σ2

CR. (3.30)

Here, Pss is the probability of the subspace swap as a function of SNR, which we approximate

using the lower bound in (3.14); σ2
CR is the value of the CRB as a function of SNR, and

σ2
0 is the variance of the error given the occurrence of a subspace swap. The justification

for using this formula is that when a subspace swap does not occur, MSE almost follows

the CRB . However, given the occurrence of the subspace swap (and in the absence of any

prior knowledge) the error in estimating the electrical angle θ1 may be taken to be uniformly

distributed between (−π/2, π/2) and the error variance is σ2
0 = π2/12.

Figure 3.3 shows that performance loss, measured by onset of threshold effect is approx-

imately 10log10n/m. Our approximations on MSE also predict the same SNR difference in

the onset of the performance breakdown. Figure 3.4 shows our bounds on the probability

of a subspace swap for the dense and co-prime arrays which are obtained using event F in

Section 3.3. The ML curves of Figure 3.3 would approach the CRB at high SNR were it not

for the quantization of our ML simulation code.
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Figure 3.3: Parameterized mean case. Dense 188 element array and 28 element co-prime
array. MSE bounds and MSE for ML estimation of θ1 = 0 in the presence of an interfering
source at θ2 = π/188; 200 trials.
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Figure 3.4: Parameterized mean case. Analytical lower bounds (event F ) for the probability
of subspace swap for estimation of the angle of a source at θ1 = 0 in the presence of an
interfering source at θ2 = π/188 using 188 element dense array and 28 element co-prime
array.
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3.4.2 Parameterized Covariance Case

We conduct the same set of Monte Carlo simulations for the stochastic data model.

Here we draw M = 200 independent snapshots for a dense array of 36 elements over 200

independent realizations, and compress them to simulate the data for the co-prime array

of 12 elements with m1 = 5 and m2 = 4. The compression ratio is n
m

= 3. Figure 3.5

shows the results for the MSE of the maximum likelihood estimator of the source at θ1 = 0

in the presence of the interfering source at θ2 = π/36. Our approximations for the MSE

using the method of intervals in (3.30) and the Cramér-Rao bound are also shown for each

array. Figure 3.5 shows that performance loss, measured by onset of threshold effect is

approximately 10log10n/m. Our bounds on the probability of a subspace swap using event

G in Section 3.3 are shown in Figure 3.6 for the dense and co-prime arrays.
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Figure 3.5: Parameterized covariance case. Dense 36 element array and 12 element co-prime
array. MSE bounds and MSE for ML estimation of θ1 = 0 in the presence of an interfering
source at θ2 = π/36; 200 snapshots and 200 trials.
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Figure 3.6: Parameterized covariance case. Analytical lower bounds (event G) for the prob-
ability of a subspace swap using co-prime compression for the estimation of the angle of a
source at θ1 = 0 in the presence of an interfering source at θ2 = π/36 using 36 element dense
array and 12 element co-prime array.

31



CHAPTER 4

MODAL ANALYSIS USING SPARSE AND

CO-PRIME ARRAYS

4.1 Motivation

Non-uniform sensor array geometries, without aliasing ambiguities, have a long history in

sensor array processing, dating back to minimum-redundancy arrays [50]. The introduction

of co-prime arrays in [15,16] has created renewed interest in such geometries. In this chapter,

we consider two specific cases of non-uniform sensor arrays. These are sparse arrays and co-

prime arrays. Both of these geometries can be viewed as subsampled (or compressed) versions

of a dense uniform line array, whose consecutive elements are separated by a half wavelength

in space.1 Specifically, the sparse array can be thought of as a subsampled version of a

dense uniform line array, plus an extra sensor that is positioned at a location on the array

that allows us to resolve aliasing ambiguities. The co-prime array consists of two uniform

subarrays, each obtained by uniformly subsampling a dense uniform line array with co-prime

subsampling factors. The co-prime property allows for resolving aliasing ambiguities.

Naturally, any subsampling in space results in a reduction in signal-to-noise ratio (SNR),

by the compression factor, and leads to a loss in estimation performance. Our studies in [51]

and [52] address the effect of compression on Fisher information, the Cramer-Rao lower

bound, and the probability of a swap between signal and noise subspaces. Assuming that

the loss in SNR due to compression has tolerable effect on estimation or detection, or can be

compensated by collecting more temporal snapshots (requiring a scene to remain stationary

1If we were sampling in time, then the dense sequence of uniform samples would have had spacings equal
to the Nyquist interval.
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for a longer period), the question is how can methods of linear prediction and approximate

least squares be adapted to the estimation of mode parameters in sparse and co-prime arrays?

In this chapter, we address this question.

We determine a parameterization of the orthogonal subspace. This is the subspace that

is orthogonal to the signal subspace spanned by the columns of a generalized Vandermonde

matrix of the modes in sparse and co-prime arrays. This parameterization is of a form that

is particularly suitable for utilizing approximate least squares, such as iterative quadratic

maximum likelihood (IQML) (see [21] and [22]), for estimating the modes. Although we

present our numerical results in the context of sensor array processing, all of our results

apply to the estimation of complex exponential modes from time series data. Our numerical

results here, and in [51], [52], show that there is a loss in performance sustained by sparse

and co-prime arrays that are compressions of uniform linear arrays. A rough rule of thumb is

that effective SNR is reduced by 10 log10C, where C is the compression ratio. For example,

in our experiments a 50-element array is subsampled to a 14-element co-prime array, for a

compression ratio of 50/14. The loss in SNR is roughly 5.5 dB.

Remark 1: A small number of other authors have also considered estimating the pa-

rameters of complex exponentials from non-uniformly sampled data. In [32], the authors

approach the modal estimation problem by fitting a polynomial to the non-uniform samples

and estimating the parameters of the exponentials using linear regression. For the case that

the modes are on the unit circle, in [33] a truncated window function is fitted to the non-

uniform measurements in the least squares sense, and then an approximate Prony method

is proposed to estimate the frequencies of the exponentials. These approaches are different

from ours and do not involve characterization of orthogonal subspaces for utilizing modern

methods of linear prediction.
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4.2 Problem Statement

Consider a non-uniform line array of m sensors at locations I = {i0, i1, . . . , im−1} in units

of half wavelength in space. We assume, without loss of generality, that i0 = 0. Suppose

the array is observing a weighted superposition of p damped complex exponentials (modes).

These modes are determined by the mode parameters zk = ρke
jθk , k = 1, 2, . . . , p, where the

kth mode has a damping factor ρk and an electrical angle θk ∈ (−π, π]. Suppose the array

collects N temporal snapshots. Then, the measurement equation for the lth sensor (located

at il) can be written as

yl[n] =

p∑
k=1

xk[n]zilk + el[n], n = 0, 1, . . . , N − 1, (4.1)

where n is the snapshot index, xk[n] denotes the amplitude (or weight) of the kth mode at

index n, and el[n] is the measurement noise at sensor l. In vector form, we have y[n] ∈ Cm,

y[n] = V(z, I)x[n] + e[n], n = 0, 1, . . . , N − 1, (4.2)

where y[n] = [y0[n], y1[n], . . . , ym−1[n]]T is the array measurement vector, x[n] = [x1[n], x2[n],

. . . , xp[n]]T is the vector of mode amplitudes at index n, e[n] = [e0[n], e1[n], . . . , em−1[n]]T is

the noise vector at index n, and V(z, I) ∈ Cm×p is a generalized Vandermonde matrix of the

modes z = [z1, z2, . . . , zp]
T , given by

V(z, I) =



zi01 zi02 · · · zi0p

zi11 zi12 · · · zi1p
...

...
. . .

...

z
im−1

1 z
im−1

2 · · · zim−1
p


. (4.3)

We consider the case where x[n] is free to change with n, and assume that the el[n]’s, are

i.i.d. complex normal with mean zero and variance σ2. This means that the measurement

vectors y[n], n = 0, 1, . . . , N − 1 are i.i.d proper complex normal with mean V(z, I)x[n] and

covariance σ2I. Under this measurement model, the least squares estimation and the maxi-

mum likelihood estimation of the modes {zk}pk=1 and mode weights {x[n]}N−1
n=0 are equivalent
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and can be posed as

min
z,x[0],...,x[N−1]

N−1∑
n=0

‖y[n]−V(z, I)x[n]‖2
2. (4.4)

The least squares estimate of x[n] is

x̂[n] = V+(z, I)y[n], (4.5)

where V+(z, I) = (VH(z, I)V(z, I))−1VH(z, I) is the Moore-Penrose pseudoinverse of V(z, I).

The least squares estimate of the modes is obtained as

ẑ = arg min
z

N−1∑
n=0

yH [n](I−PV(z,I))y[n]

= arg min
z

N−1∑
n=0

yH [n]PA(z,I)y[n], (4.6)

where A(z, I) is a full column rank matrix that satisfies

AH(z, I)V(z, I) = 0(m−p)×p, (4.7)

and PV(z,I) and PA(z,I) = I−PV(z,I) are the orthogonal projections onto the column spans of

V(z, I) and A(z, I), respectively. We denote these column spans by the subspaces 〈V(z, I)〉

and 〈A(z, I)〉. We call 〈V(z, I)〉 the signal subspace and 〈A(z, I)〉 the orthogonal subspace.

Note that 〈A(z, I)〉 = 〈V(z, I)〉⊥. See Figure 4.1.

For a given array geometry, the basis matrix V(z, I) given in (4.3), and the subspace

〈V(z, I)〉, are fully characterized by the p modes z = [z1, z2, . . . , zp]
T . This subspace, param-

eterized by z, is an element of a Grassmanian manifold of dimension p. Now, let us rewrite

V(z, I), using elementary operations, and with some abuse of notation, as

V(z, I) =

V1(z, I)

V2(z, I)

 , (4.8)

where V1(z, I) ∈ Cp×p is invertible and V2(z, I) ∈ C(m−p)×p. Then the basis matrix A(z, I)

for the orthogonal subspace is the Hermitian transpose of

AH(z, I) = [−V2(z, I)V−1
1 (z, I) | Im−p]. (4.9)
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Figure 4.1: The signal subspace 〈V(z, I)〉 and the orthogonal subspace 〈A(z, I)〉 =
〈V(z, I)〉⊥. In the figure, we have dropped (z, , I) and have simply used A, V, 〈A〉, and
〈V〉.

Although these p-dimensional characterizations of the signal and orthogonal subspaces have

minimum parameterization z ∈ Cp, it is not easy to solve the least squares problem (4.6)

using these characterizations.

For an m-element uniform line array, a particular p-parameter characterization of A(z, I)

exists that makes solving (4.6) relatively simple [20]. We will review this characterization

in Section 4.3. Then, we derive such suitable parameterizations of A(z, I) for two specific

non-uniform arrays: sparse and co-prime.

• Sparse array: In this case, the location set I is given by Is = {0, d, 2d, . . . , (m−2)d,M},

where M and d are co-prime integers, that is, (M,d) = 1, and d > 1. This array may

be thought of as two subarrays. The first is a downsampled version, by a factor d,

of an (m − 1)d-element uniform line array (ULA) with half wavelength interelement

spacings. The second is a single sensor at location M in the line array such that M

and d are co-prime. We call this the sparse array because of the single element that

sits apart from the origin of the first subarray. We note that M need not be greater

than (m− 2)d.

• Co-prime array: In this case, I = I1 ∪ I2, where I1 = {0,m2, 2m2, . . . , (m1 − 1)m2},
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I2 = {m1, 2m1, . . . , (2m2 − 1)m1}, and (m1,m2) = 1. Again the array is composed of

two subarrays. The first is an m1-element ULA with interelement spacings of m2 and

sensor locations I1. The second is a (2m2−1)-element ULA with interelement spacings

of m1 and sensor locations I2. This co-prime geometry was recently introduced in [15]

and [16].

Remark 2: In both cases, the co-prime constraint guarantees that aliasing ambiguities

due to undersampling can be resolved. Although a sparse array can be viewed as a special

case of a co-prime array, we consider them separately, because it is easier to first derive

a suitable characterization of the orthogonal subspace 〈A〉 for a sparse array, and then

generalize it to a co-prime array. Our parameterizations are not minimal. They involve 2p

parameters, instead of p, but as we will show in Section 4.4, they are specifically designed to

utilize modern methods of linear prediction and approximate least squares, such as IQML.

Remark 3: By now it should be clear that A(z, I), and therefore its parameterization,

depend on both the mode vector z and the array geometry I. Therefore, from here on, we

may drop (z, I) and simply use A, V, 〈A〉, and 〈V〉.

4.3 Characterization of the Orthogonal Subspace for

Uniform Line Arrays

Consider a uniform line array of m equidistant sensors located at Iu = {0, 1, 2, . . . ,m−1},

taking measurements from the superposition of p modes as in (4.2). The signal subspace in

this case is characterized by the Vandermonde matrix V in (4.3) with I = Iu. To characterize

the orthogonal subspace 〈A〉, consider the polynomial A(z):

A(z) =

p∏
k=1

(1− zkz−1)

=

p∑
i=0

aiz
−i; a0 = 1 (4.10)
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which has (z1, z2, . . . , zp) as its p complex roots. The (m−p) dimensional orthogonal subspace

〈A〉 is spanned by the m− p linearly independent columns of A:

A =



ap ap−1 · · · a1 1 0 · · · 0

0 ap
. . . . . .

...

...
. . . . . . . . .

...

0 · · · 0 ap · · · · · · a1 1



H

. (4.11)

Since AHV = 0, and the columns of A are linearly independent, V and A span orthogonal

subspaces 〈V〉 and 〈A〉 in Cm. The above parameterization is at the heart of methods of

linear prediction, approximate least squares, and IQML (see, e.g., [21]– [24]).

Using the p-parameter representation for 〈A〉 in (4.11) we may re-write the least squares

problem of (4.6) as

â = argmin
a=[a1,...,ap]T∈Cp

N−1∑
n=0

yH [n]PAy[n]. (4.12)

There are many algorithms to approximately solve the nonlinear least squares problem

in (4.12). One approach is to ignore the (AHA)−1 term in the projection matrix PA =

A(AHA)−1AH and solve the following modified least squares or linear prediction problem:

â = argmin
a∈Cp

N−1∑
n=0

yH [n]AAHy[n]. (4.13)

The iterative quadratic maximum likelihood (IQML) algorithm (see [21], [22], and [53]) is

another method to approximately solve (4.12). In the lth iteration of IQML, the parameters

al are estimated by iteratively minimizing the quadratic form

âl = argmin
al∈Cp

aHl

[
N−1∑
n=0

YH [n](AH
l−1Al−1)−1Y[n]

]
al, (4.14)

where Al−1 is formed as in (4.11) using the estimated parameters âl−1 from iteration (l− 1)

and y[n] is the following (m− p)× p Hankel data matrix for snapshot n:

Y[n] =



y0[n] · · · yp−1[n] yp[n]

y1[n] · · · yp[n] yp+1[n]

...
...

...

ym−1−p[n] · · · ym−2[n] ym−1[n]


. (4.15)
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After a number of these iterations the sequence {âl} converges to an estimate â =

[â1, . . . , âp]
T . The polynomial Â(z) =

∑p
i=0 âiz

−i is then formed from this estimate and

its roots are taken as the mode estimates (ẑ1, ẑ2, . . . , ẑp).

4.4 Characterization of the Orthogonal Subspaces for

Sparse and Co-prime Arrays

In this Section, we present simple characterizations of the orthogonal subspace 〈A〉 for

the sparse and co-prime arrays discussed in Section 4.2. Based on our characterizations, we

adopt IQML for approximate least squares estimation of complex exponential modes in such

arrays.

4.4.1 Sparse Array

Consider the sparse array described in Section 4.2. The set of sensor locations for this

array is Is = {0, d, 2d, . . . , (m − 2)d,M}. The generalized Vandermonde matrix V in this

case is

V(z, Is) =



1 1 · · · 1

zd1 zd2 · · · zdp
...

...
. . .

...

z
(m−2)d
1 z

(m−2)d
2 · · · z

(m−2)d
p

zM1 zM2 · · · zMp


. (4.16)

For d > 1 it is clear that without the use of the last sensor at location M , we cannot

unambiguously estimate the modes, because any two modes zk and zke
j2πq/d, q = 1, 2, · · · , d−

1 produce the same measurement. This is the aliasing problem for subsampled arrays.

To characterize the (m − p)-dimensional orthogonal subspace 〈A〉, determined by the

modes {zk}pk=1, we first form the polynomial A(z) from the dth powers of zk, namely the

wk = zdk , k = 1, 2, . . . , p:

A(z) =

p∏
k=1

(1− wkz−1) =

p∑
i=0

aiz
−i; a0 = 1. (4.17)
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Since {wk}pk=1 are the roots of A(z), the first m− p− 1 columns A0 of A ∈ Cm×(m−p), which

is to satisfy AHV = 0, can be written as

AH
0 =



ap ap−1 · · · a1 1 0 · · · 0

0 ap
. . . . . .

...

...
. . . . . . . . .

...

0 · · · 0 ap · · · · · · a1 1 0


. (4.18)

But of course any mode of the form zke
j2πq/d, q = 1, . . . , d− 1, would produce the same wk

and therefore the same A0. This is the ambiguity caused by aliasing.

Now, consider the polynomial

B(z) = zM +

p∑
i=1

biz
(p−i)d. (4.19)

Suppose the coefficient vector b = [b1, b2, · · · , bp]T is such that the actual modes {zk}pk=1 are

the roots of B(z). That is, B(zk) = 0 for k = 1, 2, . . . , p. Then, since M and d are co-prime,

for 1 ≤ q ≤ d− 1 and 1 ≤ k ≤ p we have

B(zke
j2πq/d) = zMk e

j2πMq/d +

p∑
i=1

biz
(p−i)d
k

= zMk (ej2πMq/d − 1)

6= 0 for q = 1, 2, . . . , d− 1. (4.20)

Therefore, the only common roots of B(z), and the dth roots of {wk}pk=1, are {zk}pk=1, which

are the actual modes to be estimated. In this way, B(z) resolves the ambiguities.

Now suppose {wk}pk=1 are known (or estimated). Then from (4.19), b can be found by

solving the linear system of equations

(
bp bp−1 . . . b1

)


1 1 · · · 1

zd1 zd2 · · · zdp
...

...
. . .

...

z
(p−1)d
1 z

(p−1)d
2 · · · z

(p−1)d
p


= −

(
zM1 zM2 . . . zMp

)
, (4.21)
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which if zdi 6= zdj for i 6= j (as we assume) has a unique solution. Using the 2p coefficients

{ai}pi=1 and {bi}pi=1, we can characterize 〈A〉 by writing A ∈ Cm×(m−p) as

A =



ap ap−1 · · · a1 1 0 · · · 0

0 ap
. . . . . .

...

...
. . . . . . . . .

...

0 · · · 0 ap · · · a1 1 0

bp bp−1 · · · b1 0 · · · 0 1



H

. (4.22)

To estimate a = [a1, · · · , ap]T and b = [b1, · · · , bp]T , we need to solve the following

problem:

min
a,b

N−1∑
n=0

yH [n]PAy[n], (4.23)

We approximate the solution to this problem in two steps. First, we ignore the last column

of A and estimate a as

â = argmin
a

N−1∑
n=0

yH [n]PA0y[n]. (4.24)

In the noiseless case, where the y[n], n = 0, 1, . . . , N − 1, lie in 〈V〉, it can be shown that if

m ≥ 2p+ 1 then the solution to (4.24) is unique and yields the coefficients of the polynomial

A(z) with roots (w1, w2, . . . , wp). See Appendix A.

The minimization problem in (4.24) can be solved using IQML. Now, given â, we form

the polynomial

Â(z) = 1 +

p∑
i=1

âiz
−i

=

p∏
k=1

(1− ŵkz−1) (4.25)

and derive its roots as {ŵk}pk=1. We know from the structure of the problem that ŵk = ẑdk ,

and any of the d-th roots of ẑdk is a candidate solution. Therefore, we construct the candidate

set R, which contains all modes and their aliased versions, as

R = {(ẑ1e
j2πq1/d, ẑ2e

j2πq2/d, · · · , ẑpej2πqp/d)|0 ≤ q1, q2, . . . , qp ≤ d− 1}. (4.26)
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In the second step, to find the p actual modes and resolve aliasing ambiguities, we solve

the following constrained linear prediction problem:

b̂ = argmin
ζ

N−1∑
n=0

|ym−1[n] + ζTu[n]|2

s.t. Bζ(ẑ) = 0, ẑ ∈ R, (4.27)

where u[n] = [y0[n], y1[n], . . . , yp−1[n]]T , and the polynomial Bζ(z) is obtained from replacing

b by ζ in (4.19).

In the noiseless case, where y[n], n = 0, 1, . . . , N − 1 lie in 〈V〉, the solution b̂ to (4.27)

satisfies (4.21) and yields the actual modes. See Appendix B.

Our algorithm for estimating modes in a sparse array may be summarized in the following

steps:

1. Estimate â = [â1, â2, . . . , âp]
T from (4.24) using IQML;

2. Root Â(z) to return roots {ŵk}pk=1. Then, recognizing that the dth roots of ŵk are

ẑke
j2πq/d for some q ∈ {0, 1, 2, . . . , d − 1}, form the set of candidate modes R as in

(4.26);

3. Solve (4.27) for b̂;

4. Intersect the roots of B̂(z) with R.

4.4.2 Co-prime Array

Consider an m = m1 + 2m2 − 1 element co-prime array, consisting of two uniform sub-

arrays: one with m1 elements at locations I1 = {0,m2, 2m2, . . . , (m1 − 1)m2} and the other

with 2m2 − 1 elements at locations I2 = {m1, 2m1, . . . , (2m2 − 1)m1}, where (m1,m2) = 1

and m1 > m2. In this case, the generalized Vandermonde matrix V ∈ Cm×p of modes may

be partitioned as

V =

V(z, I1)

V(z, I2)

 , (4.28)
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where

V(z, I1) =



1 1 · · · 1

zm2
1 zm2

2 · · · zm2
p

z2m2
1 z2m2

2 · · · z2m2
p

...
...

. . .
...

z
(m1−1)m2

1 z
(m1−1)m2

2 · · · z
(m1−1)m2
p


(4.29)

and

V(z, I2) =



zm1
1 zm1

2 · · · zm1
p

z2m1
1 z2m1

2 · · · z2m1
p

...
...

. . .
...

z
(2m2−1)m1

1 z
(2m2−1)m1

2 · · · z
(2m2−1)m1
p


(4.30)

are the Vandermonde matrices for the two individual subarrays of the co-prime array.

Let A1 ∈ Cm1×(m1−p) and B1 ∈ C(2m2−1)×(2m2−1−p) be matrices that are orthogonal to

V(z, I1) and V(z, I2), respectively. That is, AH
1 V(z, I1) = 0 and BH

1 V(z, I2) = 0. Following

our results in the sparse case, we may parameterize A1 ∈ Cm1×(m1−p) as

AH
1 =



ap ap−1 · · · a1 1 · · · 0

0 ap · · · · · · 0

...
. . . . . . · · · ...

0 · · · 0 ap · · · a1 1


, (4.31)

where {ai}pi=1 are the coefficients of a polynomial A(z), whose roots are wk = zm2
k , k =

1, 2, . . . , p. That is,

A(z) =

p∏
k=1

(1− wkz−1)

=

p∑
i=0

aiz
−i, a0 = 1. (4.32)
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Similarly, we parameterize B1 ∈ C(2m2−1)×(2m2−1−p) as

BH
1 =



bp bp−1 · · · b1 1 · · · 0

0 bp · · · · · · 0

...
. . . . . . · · · ...

0 · · · 0 bp · · · b1 1


, (4.33)

where {bi}pi=1 are the coefficients of a polynomial B(z), whose roots are sk = zm1
k , k =

1, 2, . . . , p. That is,

B(z) =

p∏
k=1

(1− skz−1)

=

p∑
i=0

biz
−i, b0 = 1. (4.34)

Note that we still need p more independent columns to fully characterize the basis matrix

A for the orthogonal subspace 〈A〉. However, using our partial characterization, we can

estimate the modes (with no aliasing ambiguities) in the following steps:

1. Separate the measurements of the two subarrays as u[n] = {yi[n]|i ∈ I1} and v[n] =

{yi[n]|i ∈ I2};

2. Estimate â = [â1, â2, . . . , âp]
T using IQML on u[n];

3. Root Â(z) to return the roots {ŵk}pk=1. Then, recognizing that the m2th roots of ŵk

are ẑke
j2πq/m2 for some q ∈ {0, 1, . . . ,m2 − 1}, form the set of candidate modes R1 as

R1 = {(ẑ1e
j2πk1/m2 , ẑ2e

j2πk2/m2 , · · · , ẑpej2πkp/m2) | 0 ≤ k1, k2, . . . , kp ≤ m2−1}; (4.35)

4. Estimate b̂ = [b̂1, b̂2, . . . , b̂p]
T using IQML on v[n];

5. Root B̂(z) to return the roots {ŝk}pk=1. Then, recognizing that the m1th roots of ŝk

are ẑke
j2πq/m1 for some q ∈ {0, 1, . . . ,m1 − 1}, form the set of candidate modes R2 as

R2 = {(ẑ1e
j2πk1/m1 , ẑ2e

j2πk2/m1 , · · · , ẑpej2πkp/m1) | 0 ≤ k1, k2, . . . , kp ≤ m1−1}; (4.36)
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6. IntersectR1 andR2, in other words look for the closest (based on the Euclidean metric)

p members of the set R1 to the set R2.

Remark 4: To complete the 2p−parameterization of the basis matrix A for the or-

thogonal subspace 〈A〉, consider the standard representation of A given in (4.9). De-

fine V1 = V(z, Ip1) and V2 = V(z, Ip2) where Ip1 = {0,m2, . . . , (p − 1)m2} and Ip2 =

{m1, 2m1, . . . , pm1}. Then, from (4.9) the p remaining columns of A may be represented in

C1 ∈ Cn×p as:

CH
1 = [CH

0 | 0p×(m1−p) | Ip | 0p×(2m2−1−p)] (4.37)

where 0k×l denotes a k × l matrix with zero entries, Ip is the p× p identity matrix, and

CH
0 = −V(z, Ip2)V−1(z, Ip1) ∈ Cp×p. (4.38)

From (4.37) and (4.38) we can see that C1 only depends on {zm1
k }

p
k=1 and {zm2

k }
p
k=1 which

are obtained from a and b by rooting Aa(z) and Bb(z) in (4.32) and (4.34), respectively.

Therefore, the full, and minimally parameterized, characterization of the orthogonal subspace

for the co-prime array may be written as

A =

 A1 0

C1

0 B1

 . (4.39)

We note that we do not need this full characterization for estimating the modes. The partial

characterization using A1 and B1 suffices, at the expense of p fitting equations.

4.5 Numerical Results

In this Section we present numerical results for the estimation of damped complex ex-

ponential modes in co-prime, sparse and uniform line arrays. We consider a ULA of 50

elements. We form our co-prime and sparse arrays with 14 elements by subsampling this

ULA. For the sparse array, we subsample the measurements of the ULA by a factor of d = 4

and place a sensor at M = 3. For the co-prime array, the first subarray includes m1 = 7
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Figure 4.2: Beampatterns for ULAs with 14 and 50 elements, a sparse array with 14 elements,
d = 4, and M = 3, and a co-prime array with 14 elements, m1 = 7, and m2 = 4.

elements with interelement spacing of m2 = 4, and the second subarray includes 2m2−1 = 7

elements with interelement spacing of m1 = 7.

It is insightful to first look at the beampatterns of sparse, co-prime, and uniform line

arrays for the problem of estimating undamped modes. In this case, the beam pattern B(θ)

is

B(θ) =
m−1∑
l=0

ejilθ. (4.40)

Figure 4.2 shows the beam patterns for different array geometries. Although the co-prime

and sparse arrays of 14 elements have the same aperture and the same main lobe width as

the ULA with 50 elements, we see that they suffer from higher sidelobes, suggesting that

there will be performance losses in resolving closely spaced modes using these arrays, relative

to the ULA.

Let us also look at numerical results for the Cramér-Rao bound (CRB) associated with

the co-prime, sparse and uniform line arrays (See Appendix C). Figure 4.3 shows the CRB

in the estimation of the mode z1 = 1 in the presence of an interfering mode z2. The per
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sensor SNR is 10 dB. As the interfering mode z2 gets closer to z1, the CRB in the estimation

of the z1 increases. The CRB for the sparse and co-prime arrays are similar, but they are

higher than the CRB for the ULA. Since the aperture of the three arrays are equal, the fewer

number of sensors in the sparse and co-prime arrays can be considered the only reason for

this difference in the CRB.

We now consider the performance of the approximate least squares estimation methods,

shown in Figs. 4.4-4.6. The two modes to be estimated here are z1 = ej0.52 and z2 = 0.95ej0.69.

We choose the per sensor SNR values for the sparse and co-prime arrays to be 5 dB higher

than the SNR for the ULA, based on our insight in [52] about the threshold SNR for ULA

and co-prime arrays. When SNR is decreased, there comes a point where some of the

components of the orthogonal subspace better approximate the measurements than some

of the components of the signal subspace. This leads to a performance breakdown in the

estimation of the modes. The SNR at which this catastrophic breakdown occurs is called the

threshold SNR (see [18] and [52]). For the compression ratio of 50/14, the threshold SNR

for the co-prime and sparse arrays is almost 5 dB more than its value for the ULA, which

is a consequence of the subsamplings by these arrays. We emphasize that any compression

increases the SNR threshold. The use of a co-prime or sparse array instead of a dense

uniform line array is only justified in applications where SNR is high enough for the desired

estimation resolution, or when SNR can be built up from temporal snapshots using long

observation periods. The latter of course requires the scene to remain stationary over the

longer estimation period.

4.6 Acknowledgment

I would like to thank Prof. Chris Peterson for pointing out the minimal, p-dimensional,

characterization of the orthogonal subspace in (4.9).
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(a) ULA

(b) Sparse array

(c) Co-prime array

Figure 4.3: The CRB in dB for estimating z1 = 1 in the presence of an interfering mode z2:
(a) ULA with 50 elements. (b) sparse array with 14 elements d = 4 and M = 3. (c) co-prime
array with 23 elements m1 = 7 and m2 = 4. For all arrays per sensor SNR is 10 dB.
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(a) (b)

Figure 4.4: Estimating two closely spaced modes z1 = ej0.52 and z2 = 0.95ej0.69 using a ULA
with 50 elements: (a) Per sensor SNR = 0 dB. (b) Per sensor SNR = −5 dB.

(a) (b)

Figure 4.5: Estimating two closely spaced modes z1 = ej0.52 and z2 = 0.95ej0.69 using a
sparse array with 14 elements, d = 4 and M = 3: (a) Per sensor SNR = 5 dB (b) Per sensor
SNR = 0 dB.
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(a) (b)

Figure 4.6: Estimating two closely spaced modes z1 = ej0.52 and z2 = 0.95ej0.69 using a
co-prime array with 14 elements, m1 = 7 and m2 = 4: (a) Per sensor SNR = 5 dB (b) Per
sensor SNR = 0 dB.
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CHAPTER 5

SUMMARY

5.1 Conclusions

In this work, we have studied the problem of parameter estimation form sparse and com-

pressed measurements. In Chapter 2, we have studied the effect of random compression

of noisy measurements on the CRB for estimating parameters in a nonlinear model. We

have considered the class of random compression matrices whose distributions are right-

orthogonally invariant. A random compression matrix with i.i.d. standard normal elements

is one such compression matrix. The analytical distribution for the normalized Fisher Infor-

mation Matrix obtained in this chapter can be used to quantify the information loss due to

compression. Also, they can be used as guidelines for choosing a suitable compression ratio

based on a tolerable loss in the CRB. Importantly, the distribution of the ratios of CRBs

before and after compression depends only on the number of parameters and the number

of measurements. The distribution is invariant to the underlying signal-plus-noise model, in

the sense that it is invariant to the uncompressed Fisher Information Matrix.

In Chapter 3, we have addressed the effect of compression on the probability of a sub-

space swap. A subspace swap is known to be the main source of performance breakdown in

parameter estimation, wherein one or more modes of a noise subspace better approximate a

measurement than one or more modes of a signal subspace. We have derived an analytical

bound on this probability for two measurement models. In the first-order model, the param-

eters modulate the mean of a set of complex i.i.d. multivariate normal measurements. In the

second-order model, the parameters to be estimated modulate a rank-deficient covariance

matrix. Our lower bounds can be used to predict the threshold SNR. At a compression ratio

of 7 to 1, our numerical experiments show that the threshold SNR increases by about 8 dB
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when estimating a broadside source DOA in interference located at twice the Rayleigh limit

of the pre-compressed array.

In summary, our results in Chapter 2 and Chapter 3 show that compression, whether by

linear maps (e.g., Gaussian or Bernoulli) or by subsampling (e.g., co-prime) has performance

consequences. The CRB in estimation and the onset of threshold SNR increase. Using our

analysis in these two chapters, one can quantify the increases to determine if compressive

sampling is viable, and if so, at what cost in performance.

In Chapter 4, we have considered the problem of estimating the parameters of p damped

complex exponentials, from sparse or co-prime samples (in time or space) of their weighted

sum. We have derived a 2p-parameter characterization of the subspace that is orthogonal to

the generalized Vandermonde subspace of the complex exponential modes. We then used this

characterization to extend methods of linear prediction and approximate least squares for

estimating mode parameters for sparse and co-prime arrays. We have also presented numer-

ical examples demonstrating the performance of the proposed modal estimation approach.

Our methods stand in contrast to MUSIC-type algorithms, which would return angles of

mode parameters.

5.2 Future Work

An extension to our work in Chapter 2 is to study the distribution of the Fisher infor-

mation matrix and the CRB after random compression, for the case that the parameters

modulate the covariance of a complex multivariate normal model. The Fisher information

matrix in this case has a more complicated structure, and as a special simplifying case,

one may look at it in the asymptotic regime for large dimensions and fixed compression ra-

tio. Also, the effect of compressed sensing on Bayesian, Bhattacharyya and Weiss-Weinstein

bounds may be studied.

In Chapter 4, we derived a 2p-parameter characterization of the orthogonal subspaces

for the sparse and co-prime arrays. We later used these characterizations to apply modern
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methods of linear prediction for modal analysis in these arrays. The sensitivity of our

parameterization of the orthogonal subspace to sensor location errors is an open problem to

be studied. Another path for future work is to consider orthogonal subspace characterizations

for other nonuniform arrays such as nested arrays [16]. In the special case of DOA estimation,

one may look for the best nonuniform array geometries that minimize the CRB in a given

SNR region.
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APPENDIX A

Let m > 2p and zdi 6= zdj for i 6= j. Also, let a = (a1, a2, . . . , ap)
T be the solution to (4.24).

That is,

a = argmin
α

N−1∑
n=0

yH [n]PA0(α)y[n], (A.1)

where A0(α) denotes an A0 of the form (4.18), with αi’s replacing ai’s for i = 1, 2, . . . , p.
We wish to show that in the noiseless case the roots of the polynomial A(z) = 1+

∑p
i=1 aiz

−i

are wk = zdk for k = 1, 2, . . . , p (the dth power of the actual modes).
Without loss of generality we assume that N = 1. Let y = y[0]. In the noiseless case,

the minimum value of the objective function yHPA0(α)y is zero, and because AH
0 (α)A0(α)

is always full rank, for the solution vector a, we have AH
0 (a)y = 0. Now, in the noiseless

case, y = V(z, Is)x, where V(z, Is) is given by (4.16) and x = [x1, x2, . . . , xp]
T is the vector

of mode weights. Therefore, we have

AH
0 (a)V(z, Is)x = 0, (A.2)

which we can reorder to get
1 1 · · · 1
zd1 zd2 · · · zdp
...

...
. . .

...

z
(m−p−1)d
1 z

(m−p−1)d
2 · · · z

(m−p−1)d
p



x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xp



A(w1)
A(w2)

...
A(wp)

 = 0. (A.3)

Because the matrix on the left hand side of (A.3) is a full column rank Vandermonde matrix,
and the diagonal matrix in the middle is nonsingular (by the assumption of having p actual
modes), the above equality holds iff

A(wk) = 0 for k = 1, . . . , p. (A.4)
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APPENDIX B

Let m > 2p and zdi 6= zdj for i 6= j. Also, let β be the solution to (4.27) in the noiseless

case. Here we use β instead of b̂ for the solution to distinguish noiseless and noisy cases.
We show β solves (4.21) and therefore resolves aliasing.

Again, without loss of generality, we assume N = 1. Based on our argument in Appendix
A, in the noiseless case we have

R = {(z1e
j2πk1/d, z2e

j2πk2/d, · · · , zpej2πkp/d) | 0 ≤ k1, k2, . . . , kp ≤ d− 1}, (B.1)

where {zi}pi=1 are the actual modes. In this case (4.27) can be rewritten as:

β = arg min
ζ
|ym−1 + ζTu|2 s.t. VT

p (η)ζ = −η�M , η ∈ R, (B.2)

where η = (η1, η2, . . . , ηp), η
�M = [ηM1 , η

M
2 , . . . , η

M
p ]T and

Vp(η) =


1 1 · · · 1
ηd1 ηd2 · · · ηdp
...

...
. . .

...

η
(p−1)d
1 η

(p−1)d
2 · · · η

(p−1)d
p

 . (B.3)

In the noiseless case, u = Vp(z)x, ym−1 =
∑p

i=1 xiz
M
i and Vp(η) = Vp(z). Therefore, we

have

|ym−1 + βTu|2 = |
p∑
i=1

xiz
M
i + βTVp(z)x|

= |
p∑
i=1

xi(z
M
i − ηMi )| ≥ 0. (B.4)

Now, because β is the solution to (B.2), then in the noiseless case |ym−1 + βTu|2 = 0 and
from (B.4) we have η�M = z�M almost surely. Therefore,

β = −(VT
P (η))−1η�M

= −(VT
P (z))−1z�M

= b, (B.5)

where b is the solution to (4.21). �
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APPENDIX C

The Fisher information matrix for the measurement model in (4.2) may be written as

J(z) =
N∑
n=1

Jn(z), n = 0, 1, . . . , N − 1, (C.1)

where Jn(z) is the Fisher information matrix for the estimation of the modes z =
[z1, z2, · · · , zp]T from y[n] in (4.2). That is,

Jn(z) =
1

σ2
GH
n (z)Gn(z), (C.2)

where Gn(z) = [g1[n],g2[n], · · · ,gp[n]], and

gl[n] =


i0z

i0−1
l

i1z
i1−1
l
...

i(m−1)z
i(m−1)−1

l

xl[n] (C.3)

is the lth sensitivity vector, for 1 ≤ l ≤ p. The CRB for the estimation of the kth mode zk
is the kth diagonal element of J−1(z).
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