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ABSTRACT OF DISSERTATIO~ 

TURBULENCE SPECTRA IN THE BUOYANCY SUBRANGE 
OF THERMALLY STRATIFIED SHEAR FLOWS 

A generalized eddy-viscosity approximation is used to study 

the turbulence spectra of thermally stratified shear flows. For a 

st ationary process in the wave number range investigated--the buoyancy 

subrange--under the assumption of local homogeneity of the flow, t wo 

governing spectral equations wi th six unknowns are derived from the 

equations of motion and energy. 

In order to reduce the number of unknowns to two so that the 

spectral equations can be solved, a generalized eddy-viscosity is 

used for expressing the integrated forms of the inertial transfers 

of energy and temperature inhomogeneity, the shear stress and vertical 

heat flux in terms of velocity spectrum ¢ (k) and temperature spec-

Asymptotic solutions are obtained in the buoyancy subrange 

where the local production and local dissipation of turbulent energy 

is negligible as compared to t he inertial transfer and vertical heat 

flux terms when the flow con<litions satisfy the criterion 

ldTI g 
E: - << N -

dz -
T 

or N (!) 2 

E: T 

In the buoyancy subrange of stab ly stratified turbulent flow, 

the power law for the velocity and temperature spectra is not univer-

sal but varies with the flow conditions i n the way ¢Ck) ~ kn and 

¢TT(k) ~ km where 11 
-3 and -1 

7 According to - - > n > > m > - s 5 -

t he measurements of velocity spectra in the atmosphere (Pinus and 
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Schcherbakova, 1966; Myrup, 1968), the dependence of the pm,·e r l aw on 

t he flow conditions was confirmed. The solutions of Bolgiano (1959) 

and Luialey-Shur (1964) are onl y two part icular cases of th e nresent 

results under cert ain flow conditions. 

In the case of the unstably s trat ified turbulent flow, the 

velocity spectrum exhibits ah r;1p in the buoyancy subrange as a res ult 

of the energy input from the t emperature f ield to the velocity field. 

Jn the left side of this hump the velocity spectrum approaches a +l 

slope and the temperature spectrum shows a -3 slope. The measurement s 

of the velocity spectra in th e atmosphere (Ivanov and Ordanovich, 1967) 

confirms this tendency. 
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Chapter I 

INTRODUCTION 

Recent studies of locally isotropic turbulence of homogeneous 

fluids in the inertial subrange have been helpful in providing solu

tions to several engineering prob lems which are related to air pollu

tion, th e long distance propagation of ultra-high frequency radio 

waves by scattering in the ionosphere, and the safe structural design 

of high speed aircraft. 

When smoke or radio-active material is dispersed by turbulent 

diffusion, Tchen (1959) has shown that the dispersion from a point 

source can be related to a function of some power of time for non

stratified fluids. Especia lly, when the -5/3 law holds in the iner

tial subrange of locally isotropic turbulence, the dispersion of 

particles is proportional to t 3 where t indicates time. 

In the second problem, if it is assumed that scattering wave 

numbers fall in the inertial subrange of locally isotropic turbulence, 

the scattering cross section exhibits a \ ll/ 3 dependence where \ 

is the wave length of the radio wave (Bo l giano, 1959). 

As to the last problem, the vibration of aircraft due to the 

atmospheric turbulence can cause fatigue of aircraft material and may 

even cause the aircraft to crash if the critical frequency of vibration 

with respect to the aircraft is induced. Of course, a better under

standing of the energy spectrum of atmospheric turbulence can give 

criteria for safe design of high speed aircraft. 

However, in addition to the comp l exity of turbulence, the 

atmosphere itself presents complications, i.e., the atmosphere is 
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usually thermally stratified and in a state of shear. The turbulence 

changes its spectrum of energy in the magnitude or scale since the 

conversion of potential energy into or from the kinetic energy of the 

flow can increase or decrease the kinetic energy of turbulence depend

ing upon whether the stratification is unstable or stable. Moreover , 

the spectrum of energy will change its shape and form because the 

stratification can cause some anisotropic effects on the turbulence. 

Thus, the turbulence will have directional properties and local iso

tropy can never exist in the wave number range where buoya cy is an 

influencing factor. 

Based on the assumption that the energy spectrum depends only on 

the total dissipation of density fluctuation by molecular effects in 

the buoyancy subrange of the equilibrium range of turbulence, Bolgiano 

(1959) reached a solution of the energy spectrum being proportional 

to k-ll/S where k is the wave number. 

However, according to another hypothesis, Lumley (1964) obtained 

a different spectral form in this buoyancy subrange, since he postu

lated that the energy spectrum ~(k) and the buoyancy flux spectrum 

~wT(k) are functions of the local energy transfer flux E(k) and the 

local wave number k and that the spectrum of the buoyancy flux in a 

stably stratified flow is proportional to the mean temperature gra

dient. In this way, Lumley obtained a -3 power law of the wave number 

in the buoyancy subrange if Kolmogorov's hypothesis can be extended 

to this subrange, i.e., energy spectrum is determined by k and E(k) 

alone. 

It is clear that from the above statements, Bolgiano's and 

Lumley's results seem to be mutually exclusive at first sight. Hence, 
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the author's motivation will be not only to determine the discrepancy 

in their basic assumptions but to search for the basic mechanism of 

turbulence in a thermally stratified turbulent shear flow. 
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Chapter II 

LITERATURE REVIEW 

In this chapter, previous studies of turbulence spectra in the 

inertial subrange are briefly reviewed. Two hypotheses given by 

Bolgiano and Lumley-Shur to study the turbulence spectra of a stably 

stratified flow are described. Recent works of Manin, Gis in a , and 

Pao are stated, and some measurements of turbulence spectra are 

reviewed. 

2.1 Locally Isotropic Turbulence--Kolmogorov Hypotheses 

From the definition, turbulence is characterized as an 

irregular condition of fluid flow in which fluid properties such as 

vorticity components are distributed randomly in space and time. 

Beyond its irregularity, turbulence as a result of nonlinear inter

action shows turbulent energy transfer through motion of the eddies. 

This idea of turbulent energy transfer is characterized by L. F. 

Richardson's rhyme: "Big whirls have little whirls, that feed on 

their velocity, and little whirls have lesser whirls, and so on to 

viscosity." This idea may be stated in a clearer form -- the turbu

lent flow contains eddies of various sizes characterized by the non

linear interactions between eddies. In other words, the turbulent 

energy is transferred from large eddies to smaller eddies until it is 

dissipated into heat because of vi scosi ty. 

In the case of a flow of high Reynolds number , Kolmogorov (1941) 

postulated that small eddies of turbulence are statistically steady, 

locally isotropic, and independent of the structure of large eddies of 
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t urbulence from which the small eddies are generated. He further 

postulated that the statistical characteristics of small eddies of 

locally isotropic turbulence can uniquely be described by parameters 

v the kinematic viscosity and E the total dissipation of turbulent 

energy by viscosity. 

In his second hypothesis, Kolmogorov postulated that in the 

universal equilibrium range where small eidies lie, there exists a 

subrange in which the viscosity effects are negligible and only the 

parameter E determines the turbulence s t ructure . Thus, based on 

dimensional arguments, the ve locity struct ure function, i.e., the 

averaged square of the difference of velocities at two points sepa-

➔ 

rated by a distance r , is 

luc; + ;, t) - uc;, t) 12 

(2.1) 

and equivalently, the three dimensional energy spectrum has the form 

in terms of wave number k 

2 5 

~(k,t) 
3 k 3 -1 k << k -1 

(2.2) = a E £ = << i d e e 

in which a and a£ are universal constants, £ = d 
(v3/E)l/4 is 

the Kolmogorov length scale that characterizes a cut-off length scale 

below which viscosity affects the turbul ence structure essentially, 

and £ is the l ength scale of energy-containing eddies. Histori
e 

cally, the above stated universal function was reached independently 

by Onsager (1945, 1949) and von Weizsacker (1948). 
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Based on Kolmogorov's hypotheses, the turbulent motion of 

small scale in the inertial subrange can be predicted. Recent measure

ments of the turbulent energy spectrum of flow with high Reynolds num

ber show that the one-dimensional energy spectra are proportional to 

-5/3 k1 in the inertial subrange. The experimentally evaluated a 1 

for one-dimensional spectra lies in the range 0.48 ± 0.055, (Pond 

~~-, 1966) where k1 is an orthogonal component of k in the 

streamwise direction and derived from the assumption of 

isotropy. Examples of those measurements are listed chronologically, 

Gurvich (1960) measured in a wind over land, Grant and his colleagues 

(1962a, 1962b) in a tidal channel, Pond and his co-workers (1963, 

1966) in wind over water waves, Gibson (1963) in a round jet, and Payne 

and Lumley (1966) in an atmospheric surface layer by an airborne hot-

wire anemometer. 

In case the temperature field is considered, Obukhoff (1949) 

and Corrsin (1951) extended the Kolmogorov's hypotheses to the tempera

ture spectrum, i.e., in the inertial convective subrange the tempera

ture spectrum also follows the -5/3 law and has the form 

1 5 

Ck ) N - 3 k- 3 
¢TT ,t = aT E (2. 3) 

where is a universal constant, N is the total dissipation of 

temperature fluctuation by molecular transport. Experimentally, 

Gibson and Schwarz (1963) showed the existence of the -5/3 law in the 

inertial convective subrange of the temperature and concentration 

spectra measured behind grids in a water tunnel. Tsvang (1960) also 

found the -5/3 law of temperature spectra in the atmospheric surface 

layer. 
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Although Eqs. 2.2 and 2.3 give good prediction of spectra in 

the inertial subrange of the equilibrium range, a detai led study of 

the spectra covering the whole equilibrium range must take v into 

consideration as k approaches to and beyond kd To r each this 

point, an additi onal assumption on the me hanism of the turbulent 

energy transfer must be proposed. 

Historically , Obukhoff (1941) first gave the assumption that 

th e energy transfer acros s the wave numb er k is analogous to the 

process of the production of turbulent e~ergy due to the work of 

Reynolds stress against the mean motion. From the other point of 

view, Heisenberg (1948) considered that the eddies with wave numbers 

larger than k act as turbulent eddy vi s cosity on the eddies with 

wave numbers less than k From the eddies of wave number less 

than k energy is transferred to the smaller eddies with wave number 

greater than k Assuming t he local property of the energy transfer 

function, i.e., the energy transfer is only a function of wave number 

k and the energy spectrum at this local wave number k , Kovasznay 

(1948) obtained some solution also. Using a different approach-

cascade process approximation, Pao (1965) obtained some solution for 

the locally isotropic turbulence at high wave numbers. 

For the purpose of generalizing the problem, Stewart and 

Townsend (1951) gave the assumption of generalized eddy-viscosity 

which is actually expressed in the form of a series. Due to the 

difficulties involved in arriving at a closed form for the energy 

spectrum when a series form of generalized eddy-viscosi ty approxima

tion is used, Panchev (1967) used only one term of this series and 

obtained some results for locally isotropic turbulent flow. In 
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particular, one thing must be not ed that Heisenberg 's and Kovasznay's 

approximations can be deduced from Panchev's approach, and moreover, 

Pao's method can als o be r eached if some special nondimensional param

eter is introduced. Panchev's book (1967) must be referred to for 

the details of thes e r e l ationships. 

Stimulated by Panchev's work, the author tried to extend the 

generalized eddy-viscos ity approximation to the thennally stratified 

turbulent shear flow which will be investigated intensively in the 

next chapter. 

Before we study the eddy-viscosity approximation, some 

limitation of this approximation must be described. Batchelor (1953) 

objected that introduction of the eddy viscosity implies that the 

smaller eddies must be statistically independent of the larger eddies. 

But as k approaches to kd this statistical independence does 

not exist (Hinze, 1959). Thus, at high wave numbers the eddy-viscosity 

approximation cannot e valid as, on the other hand, indicated by the 

fact that -7 law at high wave numbers implied by the eddy-viscosity 

approximation is unrealistic because -7 law will mean the discontinuity 

of velocity derivatives. However, according to Kolmogorov's hypothe

sis, this statistical independence may be assumed in the inertial 

subrange and thus the validity of the eddy-viscosity 

approximation will be assumed. 

2.2 Bolgiano's and Lumley-Shur's Hypotheses on Stably Stratified 
Turbulent Flow 

As described above, the Kolmogorov's hypotheses shed some light 

on turbulent structure of flow without any thermal effects. In the 

atmosphere the flow i s not only compressible but thermally stratified. 
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In case free convection occurs, the atmospheric turbulence is excited. 

Even when the atmosphere is stably stratified, i.e., the lapse rate of 

temperature is less than the adiabatic one, there is convincing evi

dence, excepting when very strong stable s tratification occurs, that 

there exists a random, irregular motion--turbulent motion in the atmos

phere (Kellogg, 1956). Due to the existence of thermal stratification, 

the gravitational force must be introduced into the equations of 

motion, and the potential energy of the flow, as an evidence of the 

gravitational force, will affect the energy balance of the flow. 

Hence, it can be expected that any variat ion of the turbulent kinetic 

energy must be a function of atmospheric thermal stratification. 

2.2.1 Mechanism of turbulence in thermally stratified flow -

As a result of the introduction of gravitational effects due to the 

thermal stratification, the turbulent field becomes anisotropic since 

the vertical velocity fluctuation is suppressed if the flow is stably 

stratified and is excited if the flow is unstably stratified. It can 

be expected that in the absence of shear, the turbulent field as a 

first approximation tends to be axisyrnrnetric with respect to the verti

cal axis to which the gravitational force is oppositely parallel. 

Incidentally, the anisotropic effect will appear in the turbulent 

energy spectrum since, in the range of wave numbers where damping or 

excitation of turbulence by buoyancy force occurs, a part of turbulent 

energy is abstracted from or into the turbulent velocity field and is 

converted into or from potential energy depending on whether the flow 

is stably or unstably stratified. 
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For a stab l y stratified flow, energy drained out of th e 

turbul ent velocity f i e ld may propagate away in the form of interna l 

gravi t y wave disturbances of Long-Hines t ype (Long, 1953 , 1955; 

Hines, 1960) or may cause the production of density or temperature 

inhomogeneity which i s transferred inertially to smaller eddies and 

fin a lly smeared out by the QOlecular effect s . Thus, in the wave num

ber range where the buoyancy fo rce effects predominat e , the turbulent 

energy tran s f er decreases with wave numb er, but the transfer of den-

' sity or temperature i nhomogenei ti es increases. Hereafter, the t otal 

turbulent energy dissipation by viscosity E is reduced and the 

K 1 b ( E/ v3)l/4 d d" 1 I h o mogorov wave num er ecreases accor 1ng y. not er 

words , the turbulent scale at which the viscous cut-off occurs will 

indirectl y increase through the effect s of stable stratification. 

On th e other hand, in th e case of unst ably stratified 

turbulent flow, the potential energy of th e temperature or dens ity 

field is convert ed to th e turbulent ve locity field and the velocity 

spe ctrum may exhibit a hump in th e buoyancy subrange where the gravi

tational force affects essentiai l y . Of course, the temperature or 

densit y ~pE:ctrL.m i n th i s buoyancy subrange may have a steeper slope 

as a result of energy export. It can also be expected that the total 

dissipation of energy increases and the wave number at whi ch cut-off 

of the molecular effect s occurs is increased. 

Keeping the above described mechan i sm of s tratifi ed turb lent 

flow in mind, Bolgiano's and Lumley-Shur's hypotheses on the stab ly 

stratified flow are now introduced. 
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2.2.2 Bolgiano ' s hypothesis - If the Reynolds numb er of a 

stab ly stratified flow is sufficiently large, Bolgiano (1959 ) postu

lated that the equilibrium r ange of the turbulent energy soectrum can 

be divided into three distinct s ubranges: 

( 1) the buoyancy subrange in which the l arger, anisotropic 

eddies are direct l y influenced by the density stratifi-

cation, 

(2) th e inertial s brange in which the anisotropic effect s 

due to buoyancy force decrease rapidly and the class ical 

hypothesis of locally isotropic turbulence is applicabl e , 

and 

(3) th e dissipation subrange at high wave numb ers where the 

mol ecul ar effects dominat e . 

It is obvious that th e last two subranges fall into the cate

gory of the locally isotropic turbulence. But, the buoyancy subrange 

needs special analysis and great attention. As a lower limit of 

scale cut -off for the buoyancy subrange, Bolgiano introduced the 

Obukhoff l ength scale 

.Q. = N 
0 

3 
4 

S 3 
4 - 2 

E: s 

whe r e N is the total dissipation of t e~perature fluctuation by 

molecul ar t ransport, E: is th e total turbulent energy dissipation 

by viscosity , and S = g/T in which g is the accelerat ion of 

gravity and T the mean temperature . 

Thus, Bolgiano further postulated that there exists a wi de 

range of wave number between the scale of energy-containing eddies 

.Q. and the Obukhoff length £ , or equivalent l y, there exi sts a e o 
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buoyancy subrange. He also assumed that in this wave number range € 

is comparatively much smaller than €(k) the local rate of the i ner

tial transfer of turbulent energy (energy transfer flux) and that the 

local dissipation in this subrange is so small that the s tatisti ca l 

properties of turbu l ence such as velocity and temperature spectra are 

only a function of N , B and wave number k 

gives readily 

Dimensional argument 

k 
e 

-1 
<< k << £ 

0 
(2 .4) 

In the inertial subrange, energy transfer flux €(k) approaches to 

a constant € ; the classical -5/3 law holds 

( 2 .5) 

Similarly the temperature spectrum can be worked out dimensionally as 

a form 

and 1 5 

~TT(k) ~ N €- 3 k- 3 

k 
e 

-1 
<< k << £ 

0 

-1 1 £ << k << £ -
o d 

(2.6) 

(2. 7) 

2.2.3 Lumley-Shur's hypothesis - In contrast to Bolgiano's 

hypothesis, Lumley (1964, 1965) developed a new hypothesis for the 

turbulence spectrum of a stably stratified flow. These two theories 

are mutually exclusive since they are based on entirely different 

physical backgrounds and, of course, lead to different predictions 
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for th e spectral forms of turbul ent energy and temperature fluctuations 

in the "buoyancy" or "locally inertialn subrange. 

In his paper, Lumley first extended the original Kolmogorov 

hypotheses in the inertial subrange into the "locally inertial" sub 

range. From Ko lmogorov ' s hypothesis, the statistical properties of 

turbulence in the inertial subrange, if the inertial subrange exists, 

are characterized uniquely by E and k as stated in section 2.1. 

In the inertial subrange, E , the turbulent energy dissipation by 

viscosity, is in fact th e energy transfer flux through wave numbers. 

Thus, Lumley postulated that the statistical properties of turbulence 

of a stably stratified flow in the inertial-buoyancy subrange , such 

as energy spectrum ¢ (k) and heat flux spectrum ¢wT(k) , are deter

mined by th e wave number k and the local energy transfer flux E(k) 

at this wave number k 

In addition to the above hypothesis as an extension of 

Ko lmogorov' s hypothesis, Lumley postulated further that the tempera

ture fluctuation field is determined solely by the velocity field. 

From the temperature fluctuation equation of flow with high Reynolds 

and Peclet number 

ae 
-+ at = 0 L ; ar « 1 

E axi 
( 2 . 8) 

in which xi are the Cartesian coordinates, x1 is in the streamwise 

direction, x2 lateral and x3 vertical; 0 is the fluctuating 

temperature; U. are the instantaneous velocities; T is the mean 
1 

temperature; the repeated index denotes summation and LE is the 

Eu leri an space integral scale, Lumley derived that 
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+ af + 
8(x, t) = - [x. - a. (x, t)] ( 2.9) 

ax. J J 
J 

+ + 
where a(x, t) is the position at t=O of a particle which wil 

+ 
reach X at time t Thus, 

+ + af + 
e (x, t)U . (x, t) = - ax. (x . -a.)U. (x, t) 

l. J J l. 
J 

af 
A .. (2.10) = ax. l. J 

J 

where A .. is a second rank tensor characterized by the velocity field 
l. J 

completely. 

Now, for simplicity, assume the mean temperature gradient 

exists only in the vertical direction, i.e., 3T/ax
1 

= af;ax
2 

= 0 

Then the heat flux has only the form eu
3 

If the spectrum 

of the vertical heat flux eu
3 

is integrated spherically, the direc

tional information can be missed for simplifying derivations. Thus, 

dT 
- dz 

in which is the spectrum form of A
33

,dcr is the surface 

element of a sphere with radius k = !kl and dT/dz = dT/dx
3 

Finally, based on the above derivation, Lumley postulated 

that the spherically averaged spectrum of the vertical heat flux 

~wT(k) is proportional to the mean temperature gradient i n vertical 

direction dT/dz for a stably stratified flow. So, from the dimen-

sional reasoning, 



dT 
- - a dz 

in which a is constant. 

1 

E
3 

(k) k 

15 

7 
3 

(2. 11 ) 

Now , if th e production of turbul ence is very weak in the wave 

number range considered , we have 

dE (k ) 
= cpwT(k) 

_g_ 
el k 

T 
1 7 

dT _g_ E 3 
(k) k 

- 3 
= - a -dz T 

which results in 

2 4 

= 
3 _g_ dT ~k 3 E + dz T 2 

2 
4 
3 

3 a cJs...) ] E [ 1 + -
2 kb 

where 

- E = ( ; dT dz 

Aft er inserting E(k) i nto the generalized Ko lmogorov' s 

spe ctrum 

¢Ck) 

we have thus 

<P(k) 

2 
3 

= CtE (k)k 

5 
3 

4 
2 
3 k 

3 
= etE [l + ~

2 
(---) 
kb 

It is c l ear that in case k << kb 

5 
-· 3 

] k 

(2 . 12) 

( 2. 13) 

(2. 14) 

(2.15) 

(2.16) 
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Based on the same argument described above, Lumley-Shur's 

theory gives th e temperature spectrum in a form 

[ N + 

- df { ll k +½}l 4 
T- - 3 

cj>TT(k) 
dz a 

= + 2 (-) E: 
g kb 

4 1 
5 

I 1 c i) 31 2 
3 a k + 2 

L kb .I 
( 2 . 17) 

for k << k -1 
<< Q, d e 

Defining 
5 

k* 1 ( ; dfr = 
b /_r_ N) 1/2 

dz 

\ r2 

thus, in case kb » k >> k* cj>TT(k) 
-1 

b 
~ k In order to make the 

approximation meaningful, it must be kb >> kb or equivalently 

<< 1 (2.18) 

Now, the discrepancies between Bolgiano's and Lumley-Shur's 

hypotheses are apparent when Eqs. 2.4, 2.6, 2.16 and 2.17 are reviewed. 

Their differences in physical background can readily be seen from 

their hypothes es . The det ails will be discussed and compared after 

the general ized eddy-viscosity approximation is introduced in 

Chapter I I I. 

2.3 Monin's, Gisina's, and Pao's Works 

Besides the above stated Bolgiano's and Lumley-Shur's hypotheses, 

Monin (1962) and Gisina (1966) used Heisenb erg' s eddy-viscosity 
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approximation to study the turbulence spectrum in a stably stratified 

flow. Manin obtained Bolgiano's solution in the buoyancy subrange 

for the stably stratified flow, and found some humps in the spectra 

in the case of unstable stratification. Gisina considered more com

p licated conditions of stably stratified f low: 

(1) weak interaction of velocity and temperature fields, 

(2) strong interaction of velocity fields and temperature 

fields, 

(3) strong interaction of temper~ture fields and weak inter

action of velocity fields. 

The results for Gisina's first tw~ conditions are trivial 

since Tchen's arguments (1953) on the shear flow can be applied to 

the thermally stratified shear flow, and as can be expected, the 

spectra of velocity and temperature are proportional to k- 5/ 3 for 

the first flow condition, and a -1 law is obtained for both spectra 

of velocity and temperature in case of the second flow condition. As 

to the last flow condition, Gis ina obtained Bolgiano's solut i on in 

case the relationship between parameters 

N _g_ 

T 

dT 
» b E: dz (2.19) 

in which b is a numerical constant corresponding to the ratio of 

kinematic eddy viscosity of momentum to ~inematic eddy conductivity 

of heat flux, can be fulfilled. As we can see later, Monin's and 

Gisina's solutions are only some special conditions of the generalized 

eddy-viscosity approximation considered ~n this present study, thus, 

their works wi ll not be reviewed in deta: l. 
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In Pao's paper (1967) the cascade process is applied to solve 

a thermally stratified shear flow, however, he did not obtain any 

power law in the buoyancy subrange. Now, the situation is very clear, 

different approaches used by different people to study a problem--a 

thermally stratified turbulent shear flow problem result in different 

solutions. If they do not contradict one another, there must exist 

some way to solve this problem and to explain the discrepancies among 

them. In the fo llowing, the author investigates this problem by means 

of the generalized eddy-viscosity approximation. Before reaching this 

point, some turbul ence spectral measurements in the atmosphere and in 

a wind tunnel wi ll be reviewed. 

2.4 Measurements of Turbulence Spectra in the Atmospher~ 

Turbulence spectra have been measured in the surface layer 

and in the free atmosphere by several authors. Different stratifica

tions of flows were involved in these measurements. In case of neu

tral stratification, the - 5/3 law holds for a wide range of wave 

numbers as can be expected from Kolmogorov's hypotheses for locally 

isotropic turbulent flow of neutrally stratified fluids. 

Figure la displays a spectral density curve of longitudinal 

velocity component taken at 500 m above the ground when the lapse 

rate of temperature from ground to 1000 mis 1°C per 100 m, i.e., the 

adiabatic lapse rate, and the mean velocity gradient is 0.36 m per sec 

per 100 m (Pinus and Shcherbakova, 1966). 

In the surface layer the - 5/3 law was also observed for the 

energy spectrum, but the lower limit of the inertial subrange is 

relat ed to stratification or Richardson number. Generally speaking, 

, 
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the stable stratification shrinks the inertial subrange and the 

unstable stratification extends it (Zubkovskii, 1962, Gurvich, 1960). 

In the free atmosphere the spectra has a more complicated 

form because of buoyancy effects. In the following, two categories 

of flows are described--stable and unstable stratifications--but the 

details of the discussion will be in Chapter IV where the numerical 

solutions of the present study are given. 

2.4 .1 Stable stratification - As described in section 2.2.1, 

some energy will be abstracted from the ve locity field and fed into the 

temperature or density field. It can be expected that the velocity 

spectrum in the buoyancy subrange will present a steeper slope than 

- 5/3 . Shur (1962) first showed the existence of the buoyancy sub

range from his measurements. Later, Pinus and Shcherbakova (1966) 

measured the velocity spectrum in the atmospheric layer from 400 to 

4500 m. In case of stable stratification, the slope of measured 

vel ocity spectra in the buoyancy subrange increased with height for 

roughly the same mean temperature gradient. The exponent n of the 

velocity spectrum k-n in the buoyancy subrange varies from 2.0 to 

3.5. For the sake of interest, the following Table 1 digested from 

Pinus and Shcherbakova (1966) is listed. For better understanding, 

three typical energy spectra of stably stratified flows from their 

measurements are demonstrated in Figs. le, ld and le. 

In 1963, Pinus measured the spectral density of the horizontal 

vel ocity component at heights of 6-12 km. Fig. 2b displays one plot 

of hi s results which appears steeper slope than - 5/3 in a certain 

wave number range of spectrum. Another measurement by Vinnichenko 

(1966) as displayed in Fig. 2a indicates the existence of the buoyancy 
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subrange. Recently, Myr p (1968) found the buoyancy subrange in his 

measurements due to the fact that the steepened slope is close to -3 

for the longitudinal velocity fluctuations and between - 11 /S and -3 

for the vertical velocity fluctuation. 

TABLE 1 

Vertical Vertical Gradient 
Temperature of the Mean Wind Number Range of 

Height, Gradient, Velocity, of Variation 

deg/100 m m sec- 1 /100 m Spectra of n n m 

400-700 0.6S 1. 84 9 2.0-2.9 2.43 
700-1200 0.61 0. 78 17 2.0-2.9 2.50 

1200-1700 0.76 0.86 6 2.2-3.S 2.83 
1700-2S00 0.46 0.4S 6 2.3-3.3 2.70 
2500-3500 1 2.8 
3S00-4S00 0. 72 1.13 9 2.7-3.5 3.10 

2.4.2 Unstable stratification - In this case, the velocity 

field absorbs energy from the temperature field as potential energy 

is converted into kinetic energy; some hump in the velocity spectrum 

can be expected. Fig. lb shows a spectral density curve of longitudi

nal velocity component. (Pinus and Shcherbakova, 1966). In 1967, 

Ivanov and Ordanovich made a more detailed investigation of velocity 

spectra for unstable stratification in the low frequency range. In 

Fig. 3, some typical examples of the measured velocity spectra are 

presented. (Ivanov and Ordanovich, 1967). 

As to the temperature spectrum, lesser information is avai lable. 

Tsvang (1963) measured some spectral density curves of temperature 

for both stable and unstable stratifications. From his measurements, 

deviations from - S/3 can be seen as the wave number is less than 
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about 10-4 cm-l for either stratification, however, no det ail ed 

discussion on thes e deviations from the t heoretica l point of view has 

been given in his pap er. 

2.5 Measurements of Turbulence Spectra in Wind Tunnel 

Although th e inertial subrange f e r loca lly isotropic turbulence 

has been confirmed as des crib ed in secticn 2.1, the buoyancy subrange 

has not been ob t ained in the laboratory s ince it is still difficult 

to generate turbul ence of l aboratory scal e with buoyancy effects. 

Cermak and Chuang (1965) measured some vertical velocity spectra in 

thermally s t ratified shear flows, however, no buoyancy subrange was 

observed since the "buoyancy subrange" mentioned in their paper lies in 

the vi scous dissipation subrange evident l y. Also, Arya (1968) did not 

find any buoyancy subrange; however, the vertical velocity and tempera

ture spectra , measured at c lose wall reg i ons where both velocity and 

temperature gradi ents are great, present -1 slope at lower wave number 

range as predicted by Gisina (1966). 
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Chapter I II 

THEORETICAL STUDY 

Most of the previous studies reviewed were made to find some 

asymptotic solutions for which some specific restrictions are assigned 

to the flow conditions. Thus, it would be helpful to retain ever y 

factor in the energy balance equation and to find some continuous 

spectra if the whole view of turbulence structure is to be obtained. 

In this chapter, the spectral equations of the turbulent energy and 

the temperature fluctuation are derived; the generalized eddy-viscosity 

approximation is introduced; and some analytical and asymptotic solu

tions will be given. 

3.1 Derivation of the Spectral Equations of Turbulence Energy and 
Temperature Fluctuation 

In an incompressible turbulent flow, the Navier-Stokes 

equation is assumed to be the equation governing the variation of the 

spatial distribution of the velocity with time. For simplifying the 

derivation, dynamic viscosity is assumed to be constant and Boussinesq's 

approximation is used. Thus, we have, 

( 
au. au. ) aP a 

p __ 1 + u. __ 1 = - -- - pg1. + µ --
0 at J ax. ax. ax. 

J 1 J 

and the incompressibility of the flow gives 

au . 
1 

ax. 
1 

= 0 

( 
aui ) 
ax. 

J 

where U. 
1 

is the velocity vector, p is the density, 

(3 .1) 

(3.2) 

is the 

mean density of the flow field, P is the pressure, and ' µ is t he 
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dynamic viscosity. The assumption for the incompressibility of the 

turbulent flow is unnecessary since the density can be replaced by the 

potential density if a compressible fluid like at□osphere is concerned. 

In that case, we need only assume the flow speed is small compared to 

the speed of sound, or equivalently to say that the Mach number is 

much less than l. The detailed study can be referred to the papers 

by Long (1953b), Batchelor (1953b), Bolgi ano (1962), Lumley and 

Panofsky (1964). However, for the sake of simplicity in our deriva

tion, incompressibility is assumed for the turbulent flow. 

In addition to the governing equations for the velocity field, 

an equation for the temperature field which causes the density fluc

tuation is required, i.e., 

p
0 

c / aT + U. ~) = 
p \ 3t 1 3xi ( ::i ) (3. 3) 

where c is the specific he at capacity at constant pressure, T is 
p 

and C the temperature and µT is the thermal conductivity. 

are assumed to be constant. 

p 

For a turbulent flow, the fluid properties can be split into 

two parts: 

u. = u. + u. 
1 1 1 

T = T + 8 

where the bar denotes the time averag e or ensemble average, and 

pl , p
1 

, and 8 are the fluctuations about their corresponding 

averages. 

Inserting those quant i ties into Eqs. 3.1, 3.2 and 3.3, we 

have then 

u. 
1 
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(Ji au. au . au . au. aui ) 1 u. 1 1 
+ u . 1 p -- + --+ --+ u . ax. --+ u . 

o at at J ax. J J ax. J ax . 
J J J J 

a (P + P1) 
a2- a2u . u. 

(p pl)gi + µ 
1 1 

= - + + µ 
ax . ax . ax. ax. ax. 

1 J J J J 

(3.4) 

au. au . 
1 1 

0 (3.5) ax. + = ax. 
1 1 

and 

( af ae u . aT aT u. ae ae ) C - + -+ --+ u. --+ --+ u. Pop at at 1 ax. 1 ax . 1 ax. 1 axi 
1 1 1 

= µT dx. ax. + (3.6) 
J J 

Assuming the mean flow is stationary and taking the average 

(either ensemble or time average) of Eqs. 3.4, 3.5, and 3.6, we have 

thus 

( 
au. aui ) aP 

P u. --1 
+ u . ~ = - -- - Pg. + 

0 J ax . J ax. ax. 1 
J J 1 

au. 
1 = 0 

ax. 
1 

a2u . 
1 

ax. ax. 
J J 

(3.7) 

(3. 8) 

(3 . 9) 

Subtracting Eqs. 3.7, 3.8 and 3.9 from Eqs. 3.4, 3.5 and 3.6, respec

tively, the turbulent equations for velocity and temperature fields 

become 

. 
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au. au . 
1 U. 1 

-- + --+ 
ax. J ax. 

J J 

apl 
- pl gi + µ 

ax. 
1 

= µT ax. dx. 
J J 

au . au. 
1 1 u . V. - u. 
~ J J 

J J 

a2u. 
1 

ax . ax. (3.10) 
J J 

(3.11) 

(3.12) 

Taking th e advantage of incompressibility, Eqs . 3.10, 3.11, 

and 3.12 are rewritten as 

au. au. au. au.u. au . u. 
1 1 1 1 J 1 J --+ u. --+ u. + 

at J ax. J ax. ax . ax. 
J J J J 

1 apl s a2u. 
1 

= - ---+ r gi + V p ax. ax. ax . 
0 1 0 J J 

and 

as aT as asu. asu. 
u. J _J_ -+ u. -- + --+ ~-at J ax . J ax. ax . 

J J J J 

a2s 
= VT ax. ax. 

J J 

in which V = µ / p 
0 

is the kinematic vis cos i ty, 

(3.13) 

(3.14) 

is 

the thermal diffusivity, and S/T
0 

= - p1/ p
0 

comes from t he assump-

tions that the flow is incompressible and the gas law P = (c -c ) pT 
p V 

holds, where c is specific heat capaci ty at const ant volume. 
V 
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Multiplying Eqs. 3.13 and 3.14 by u' 
k 

and 8 ' r espective ly, 

where the prime denotes t hat the quantities are measured at 

yield 

au . 
u' --

1 
+ u' u . k at k J 

au. 
1 

-- + ax. 
J 

au . 
u'k UJ. __ 1 + 

ax. 
J 

ap u' 0 
1 1 k 

u' 
k 

au .u. 
1 J 

ax . 
J 

- u' 

-- u' -- + -T- g
1
. + v u' 

p k ax . k ax . ax. 
1 J 0 1 0 

a0 af a0 8 ' - + 8 'u . -- + 8 'U . -- + 8 ' 
at J ax. J ax. 

J J 

= V 8 1 

T ax . ax . 
J J 

a0 u . 
__ .._J - 8 ' 

ax. 
J 

a0u . 
___l_ 

ax. 
J 

-+ 

k 

aU:-U.-
1 J 

ax . 
J 

-+ -+ -+ 
x'=x+r 

(3. 15) 

(3. 16) 

Similarly, th e turbulent equations at x' are taken and 

multiplied by u . 
1 

au' k u. --+ 
1 at 

au' u' 

and 8 at 

au' 
u.u'. k --+ 

1 J ax'. 
J 

1 
ap' 

-+ 
X 

1 

then we have 

au' 
u .U' . k --+ u. 

1 J ax'. 1 
J 

u. 8 ' 

au\u' j 

ax'. 
J 

a2u' 
k k j 1 I v 'u . u. = -,-u . --+ I°' g k + 

ax' . ax' 1 p 1 1 ax• . ax'. 
J 0 k 0 J J 

and 

a0 ' af 1 a0 1 a0 'u ' . 
8 --+ 8u' . 

~ 
+ 00 1

• --+ 8 at J J ax'. ax' . 
J J J 

a0 'u'. a20 , 
8 J v ' 8 - = ax I . T ax'. ax I . 

J J J 

(3. 17) 

(3.18) 

Adding Eqs. 3.1 5 and 3.17, and Eqs. 3. 16 and 3.1 8 respect ively 

and using the fact that the turbulent quantiti es at x are indepen

dent of the coordinates x' and vice versa result in 
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au ' kui au . u .u'k 
+ U' . --- + __ 1--=-J __ + 

J ax'. ax. 
J J 

au 1 ku' .u . 
___ ::...J_l - -

ax' . 
J 

'I I I au ku .u . 
J 1 

ax'. 
J 

au.u. u ' k 
1 J , 

ax. 
J 

u . 8 ' ( a2 a2 ) 
+ ~ 1

0 
g\ + V ax. ax. + v ' ax' . ax' . U\Ui 

J J J J 

8 'u . 
aT 

8u'. 
af' U. a0

1
0 U' a0 ' 0 

-- + --+ --+ 
~ J ax. J ax '. J ax. j 

J J J J 

a 8U. 8 I a00 'u' . a0 u. 8 ' a~ 0 
J + J J 

ax. ax' . ax. ax'. 
J J J J 

a2 a2 ) 
--- + v ' ---- 8 1 8 ax. ax. T ax' . ax'. 

J J J J 

From the transformat ions, 

results 

r. 
J 

x" . 
J 

in 

a 
ax . 

J 

= x'. 
J 

1 = 2 

X . 
J 

(XI . X.) + 
J J 

1 a 
2 ~ -

J 

a 
ar. 

J 

(3. 19 ) 

(3.20) 

(3.21) 

(3.22) 

(3. 23) 
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a 1 a a 
~ 

= ax". + --
2 ar. 

J J J 
(3 .24) 

a2 1 ( a
2 

) 
a2 a a 

= 4 ax". ax". + - ax". ar. ax. ax . ar. ar. 
J J J J J J J J 

( 3.25) 

and 
a2 

1 ( a 2 ) 
a2 a a 

ax'. ax I. = 4 ax"j ax"j 
+ +--ar . ar. ax". ax. 

J J J J J J 

(3.26) 

Using the above transformations 3.21--3.26 and taking average 

of Eqs. 3.19 and 3.20, we obtain 

a 
+ -" - (u'ku' .u. or . J 1 

J 

au. 
1 

--+ u .u'. ax. 1 J 
J 

u'Ei" 
I )- k u .u.u k - -T-- g. 

1 J O 1 

u.8' 
1 

+--T' 
0 

g' 
k 

+ [¼ ( v+v') ax/:x". + (v+v') a/:r . - vax~ . a! .+ v' ax'~ . a! . ] 
J J JJ J J J J 

(3. 27) 

and 
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cT' 
+ 

dX1
• 

; CU' . +IT. ) a!". 0'8 
J J J J 

+ (U' . -IT .) a 0'8 
J J ~ 

J 

1 a 
+ 2 ~ ( 6u. 6 ' 

J J 

a 
+ -- ( 66 'u' . 

ar. J 
J 

+ 66 1U I. ) 
J 

a 
+ ( v + v ') 

ax". ax". T T 
J J 

__ a_ a a , a a 10'8 
ar. ar. - vT ~ ar. + ·vT ~ ar. 

J J J J J J . 

(3.28) 

In order to make Eqs. 3.27 and 3.28 simpler, the local 

homogeneity is assumed for the turbulent fields, i.e., the spatial 

variation of the ave raged turbulent quantities is negligible over a 

distance r << Q, 
e 

eddies. Thus, 

a 
~ 

J 

= 0 

where Q, is the scale of energy-containing 
e 

and a 
ax11 . ax". 0 (3.29) 

J J 

make Eqs. 3.27 and 3.28 become 

and 

+ u' u 
k j 

au. 
1 

ax. 
J 

+ u.u'. 
1 J 

au' 
k 

--+ ax I. 
J 

(U' .-IT.) ~ u'ku. 
J J or. 1 

J 

1 a-) --- p u' 
p ar. 1 k 

0 1 

+ ( v+v ') 
u'8 u.8' 

I k + __ 1_ g ' 
u ku1. + g ar. ar. -T- i T' k 

J J O 0 

(3.30) 
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~ 8'8 6 'u. 
ar eui-:- ar• cu•. IT.) _a_8'8 + cl r. + --+ -

clt J J clx'. J J cl r. 
J J J 

a 32 
+ 
~ 

(66 I U 1 . - 6u. 6 ') = (vT + V I) 8'8 (3.31) 
J J T cl r .cl r. 

J J J 

in which the averaged turbulent quantities are functions of r and t . 

For further simplifying Eqs. 3. 30 and 3. 31 without loss of 

generality in a locally homogeneous turbulent shear flow of thermally 

stratified fluid, the following are assumed 

V = V 1 

u2 = constant u3 = constant p = p' 
0 0 

where is in the streamwise direction, is in the lateral 

direction, and x3 is in the vertical direction. 

Thus, 

a 
+ -" - (u'ku' .-u. - u .u .u'k) = or. J 1 1 J 

J 

(3.32) 

and 
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~8'8 (e'tl eu') dT 
(U' 1-Ul) + + -- + cl t 3 3 d.x3 

cl a2 
(88 1 U I . 8u. 8 ' ) 2vT + -- - = cl r. J J cl r. cl r. 

J 

where 6 .. is Kronecker's 
lJ 

if i 
"" j 

Expanding U' 
1 

J 

delta, 6 . . = 
lJ 

into a Taylor 

dx 2 
3 

J 

1 

cl 
cl r 

1 

8'8 

if 

series 

if we assume that r 3 << (dU
1
/dx3) / (d2U

1
/dx2

3
) 

8'8 

i=j 6 . . = 0 
lJ 

at x3 gives 

+ .•••• 

Hence , substituting Eq. 3.34 into Eqs. 3.32 and 3.33 and 

contracting Eq . 3.32 gives 

and 

cl (u'. u' .u . u. u.u' . ) ...£. (ti':e + -- - = cl r. 1 J 1 1 J 1 T 1 
J 0 

a2 
2v u .u'. + cl r. cl r . 1 1 

J J 

~ 8'8 (G'u eu') dT _a_ 8'8 + + -- + r3 cl t 3 3 dx3 ar 1 

+ _ a_ ( 88 'u' . - 8u. 8 ') = 
cl r. J J 

J 

a2 
ZvT cl r. cl r. 

J J 

u. 8 ') 6 .
3 

+ 
1 1 

du 
dx

3 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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in which the pressure velocity correlation terms are eliminated in 

the contracted tensor form because of the incompressibili y of flow, 

i.e.' 

a P' -.., - lu. or. l 
l 

= a P , -.., - lu. or. l 
l 

= 0 

In order to transform Eqs. 3.35 and 3.36 into wave number k 

space, the following definitions are given 

-+ ikiri-+ 
f E. k (k,t)e dk 
➔ l' k space 

(3.37) 

-+ ik Q,r Q, ➔ 
= f F. k(k,t)e dk 

➔ 1, k space 
(3. 38) 

(u 1

30 + u
3

0 1
) (3.39) 

88 1 f➔ 
➔ 

ik Q, r Q, 
dk = ET(k,t)e 

k space 
(3.40) 

a ➔ 
ikQ,rQ, 

dk - ar. (88 'u'. - 0u. 0 ') = f➔ FT(k,t)e 
J 

J J k space 
(3.41) 

Thus, Eqs. 3.35 and 3.36 yield 

aE. aE . du
1 1,i 

(2El,3 - k 1,i 
) F. + J_ E + -- = at 1 ak3 dx3 1,i T 

u30 

(3.42) 

and 
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ai\ 
-- = F - 2v k2 ET ax3 T T 

where k = lkl = -V k2 + k2 + k2 
1 2 3 

and the assumptions 

lim E . . 
k ~ i,1. 

3 

= lim E . . = 0 and l i m ET 
k ➔- 00 1.,1. k ~ 

3 3 

= lim ET= 0 
k ➔-oo 

3 

are used. 

(3. 43) 

It is 

realized that and are the cospectra of the Reynolds 

stress and vertical heat flux. Since the above two equations are 

➔ 

expressed in k space, the di rectional information of the spectra is 

retained in both equations; needless to say, it is difficult to solve 

Eqs . 3.42 and 3 . 43. Now, if Eqs. 3.42 and 3.43 are averaged over a 

spherical shell then we have the equations which are only function 

➔ 

of k , the magnitude of k , and the directional information is 

lost. Thus, 

cl¢ (k,t) + ¢ (k,t) dU 
at uw dz -

k 1.,1. 
( 

cl E. . ) 
1 ak

3 sp.av. 

dU 
dz 

= F(k,t) + 8¢wT(k,t) - 2v k2 ¢ (k,t ) 

and 

in whi ch 

) 
dU 
dz 

sp.av. 

(3 . 44) 

( 3. 45) 
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cj>(k, t) 
1 + 

= -
2 

~ E . . ( k , t) do ( k) 
1,1 

aE. . l 
(k 1, l ) - ,! k 

1 ak
3 

sp. av . - 2 ::I' 1 

+ 
aE . . (k,t) 
-

1
-''-

1
--- do(k) ak
3 

l 1 + 
~wT(k,t) = 2 :p Eu

3
e (k,t)do (k) 

F(k,t) _21 ,! + = :p F . . (k,t)do (k) 
1, 1 

B = _g_ 

T 

av. 

dU dUl 
dz - dx

3 

dT 2 dT = 2 dT 
dz* = dx3 dz (3 .46) 

and do(k) is the surface element on the spherical shell with radius 

k • 

At this stage , it would be worth describing the physical 

sense of each term in the spectral Eqs. 3.44 and 3.45 before attempting 

to solve them. The first terms of Eqs. 3.44 and 3.45 are the rate of 

change of turbulent energy and temperature inhomogeneity in their 

corresponding spectral forms. In case of steady turbulent flow, both 

terms vanish. The second terms of Eqs. 3.44 and 3.45 represent the 

production of turbulent energy due to the work of the Reynolds stress 

against the mean shear and the production of temperature inhomogeneity 
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transferred by the vertical heat flux against the mean temperature 

gradient. The integration of ¢uw and ¢wT with respect to k over 

the internal (0, 00 ) will give the Reynolds shear stress and the 

vertical heat flux respectively. 

The third terms of Eqs. 3.44 and 3.45 are the turbulent energy 

transfer and the temperature i nhomogeneity transfer respectively due 

to distortion by mean shear. Unlike the second terms of Eqs. 3.44 and 

3.45, these terms do not contribute the total energy and temperature 

inhomogeneity balances but redistribute energy and temperature inhomo

geneity by transfer through wave numbers. The same situation happens 

to the fourth terms of Eqs. 3.44 and 3.45, i.e., these are also the 

transfer terms, however, these transfer terms are due to distortion by 

the fluctuation gradients, or say, due to inertial processes. These 

i nertial transfers from low wave numbers to high wave numbers are cer

tainly the characteristics of turbulent flow. 

As to the last terms of Eqs. 3.44 and 3.45, they are energy 

dissipation by viscosity and temperature inhomogeneity smeared out by 

thermal conductivity. Now, here comes the most important term 

8¢wT (k,t) in Eq. 3.44 which reflects the effects on the turbulent 

spectra by buoyancy force due to stratifications. In the case of 

stable stratification, this term becomes a sink with respect to the 

turbulent energy, and on the other hand, it becomes an energy source 

in case of unstably stratified flow. 

In the following, the turbulent flow is assumed to be steady 

state in the wave number range investigated. And also the third terms 

in Eqs. 3.44 and 3.45 are asswned to be negligible as compared to the 

fourth ones because it is believed that these shear transfer terms 
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mainly affect the spectra in the lower wave number range than buoyancy 

subrange. Thus, the spectral equations for velocity and t emperature 

fields are respectively the following: 

F(k) - ¢uw(k) :~ + 8¢wT(k) - 2vk2¢(k) = 0 (3.47) 

and 

(3.48) 

whose integrated forms are 

k dU 
00 00 

E: = 2v f k2 ¢(k)dk - dz J ¢ (k) dk + f F(k)dk 
k 

uw k 0 

00 

+ 8 f ¢wr(k)dk 
k 

(3.49) 

and 
k df 

00 00 

N* = 2vT f k2¢TT(k)dk - dz* J ¢ T(k)dk + f FTT(k)dk 
0 k w k 

(3.50) 

In Eqs. 3.49 and 3.50, i:: the total dissipation of turbulent 

energy by viscosity and N* twice of the total dissipation of tem

perature fluctuation by thermal conductivity are defined by 

00 

E: = 2v f k2¢(k)dk (3. 51) 
0 

and 
00 

N* = 2vT f k2¢rr(k)dk = 2N (3.52) 
0 

In the sections following the generalized eddy-viscosity 

approximation is introduced and closed forms of solutions of Eqs. 3.49 

and 3.50 are analytica lly derived for different situations. 
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3.2 Generalized Eddy-Viscosity Approximat ion 

As a cons equence of the nonlinearity of the Navier-Stokes 

equations, the correlation equations like Eqs. 3.32 and 3.33 always 

contain one more unknown than the number of equations; in other words , 

a closure problem is involved. Thus, if the problem must be solved 

from the correlation equations or its corresponding spectral equations, 

additional assumptions have to be assigned to the turbulent energy 

transfer function if only the locally isotropic turbulence is con

sidered. In case the temperature field and shear flow are introduced, 

other assumptions should be added. Thus, the six unknowns in 

Eqs. 3.49 and 3.50 are reduced to two unknowns and , of course, these 

equations are solvable. 

In the following, the generalized eddy-viscosity of the form 

suggested by Panchev (1967), 

s s 

n (k) = y [ /° ¢ 
2 (k) k - 2 

s s k 

- 1 
s > 0 (3.53) 

will be introduced. 

The physical sense of the generalized eddy-viscosity 

expressed by Eq . 3.53 is not difficult to be realized if Heisenberg's 

idea (1948) will be reviewed. His form to express the turbulent 

energy transfer function is l i sted as 

oo k 
f F(k)dk = n1(k) f 2k 26 (k)dk 
k o 

( 3. 54) 

and n l (k) cal l ed the kinemat ic eddy-viscosity is expressed as 

1 3 
00 

¢2 - 2 dk n1 (k) = yl J (k) k (3.55) 
k 

where is a numerical constant. 
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The i dea implied i n th e Eq. 3.54 is that the energy transfer 

from the wave number less than k to the wave number larger than k 

can be considered as eddy-viscosity working on the turbulent vortici t y 

formed in the wave number interval (O,k). This eddy-viscosity can 

be viewed as the i ntegral effect of eddies with wave numbers larger 

than k on the eddies with wave numbers less than k Thus, 

according to the dimensional arguments , n
1

(k) is expressed in a 

form expressed by Eq . 3.55 . Now, we can see that the expression of 

the generalized eddy-viscosity n (k) 
s 

has certain ly the dimension of 

the eddy-viscosity, moreover, the parameter s introduced in Eq. 3.53 

can be interpreted as degrees of interaction between the motions of 

eddies, i.e., how the motions of eddies are interrelated to one 

another. Generally speaking, the introduction of s will not affect 

the spectral form but its magnitude as can be seen later. 

As will be seen later, in case s + 00 , the expression of 

Eq. 3.53 becomes only a function of the local wave number k and the 

associated energy spectrum. Of course, Heisenberg's expression for 

the eddy viscosity is only a special case of Eq. 3.53 when s = 1 . 

Based on the same argument and for the purpose of further generaliza

tion, the turbulent energy transfer function is expressed as: 

which can evidently be derived from 

1 

2<1>r (k) k3r-ldk]r 

. [ ( d d 
<P 4(k)k 5 

( 3. 56) 

( 3. 5 7) 
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given by Golds tein (1951), where the exponents are related from 

dimensional arguments as 

and 

5 
= 2 

These two relations can reduce six parameters d . 
1 

in 

Eq. 3.57 into four arbitrary parameters; for further simplification, 

Eq. 3.56 is eventually derived. It can readily be seen that the 

first factor in Eq. 3.56 has t he dimension of kinematic turbulent 

eddy viscosity and the second one has a dimension of turbulent vor

ticity. It is clear that the expression of Heisenberg's form of 

turbulent energy transfer Eq. 3.54 is a particular form of Eq. 3.56 

in case s = 1 and r = 1 . 

00 

l 
Similarly, the transfer of turbulent temperature inhomogeneity 

FTT(k)dk can also be in a form of generalized 

00 

f FTT(k)dk = bys r 
k ' 

. [ ( 

1 

[ 
s s -

{k)k- }" - \kr 00 -

f c/> 2 
k 

1 

2cj>r (k)k3r-l dklr 
TT j 

eddy-viscosity, i.e., 

(3.58) 

where b is a numerical constant of order 1 and is equivalent to the 

ratio of eddy thermal diffusivity to eddy kinematic viscosity. 

Before expressing c/> wT(k) and c/> (k) in terms of the uw 

generalized eddy-viscosity, the validity and generality of Eq. 3.56 

will be seen as follows. 
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Since 
s s 1 1 1 

lim [ (.2 (k)k- 2 - \k] 5 cp2 (k)k 
- 2 

= 
s~ 

(3.59) 

and 

k 1 

[ ! cp r(k)k3r-l dk]r cp( k)k3 lim = 
r~ 

Eq. 3 . 56, in case s ➔ 00 and r ➔ oo , becomes 

3 5 
00 

cp2 J F (k)dk = y 00 00 (k)k 2 
00 00 

k , , (3.60) 

It is obvious that Eq. 3.60 is nothing but Kovasznay's 

approximation, which is exactly the local limit of the nonlocal and 

generalized approximation of the form of Eq. 3.56. From the example 

illustrated above to indicate the usage of Eq. 3.56, we can say that 

by varying the values s and r , solutions corresponding to the 

different degrees of turbulent nonlinear interactions between eddies 

can be obtained. Obviously, the Kovasznay's approximation is a limit 

form since it means that the eddies interact themselves only. For the 

case O < s < 00 and O < r < oo it may be interpreted that the 

eddies of wave number k interact with the other eddies with wave 

number k ± L'lk of course, L'lk is a function of the values of s 

and r and L'lk decreases with increasing s and r 

Keeping these ideas in mind, the generalized eddy-viscosity 

approximation can be extended to the spectra cpuw(k) and cpwT(k) 

without any trouble. In t he following, r = 1 will be assigned 

since gives a clear physical sense--the spherically 

averaged square of the root-mean-square vorticity of turbulence in 
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the range O to k The exact local approximation when s ➔ 00 and 

r ➔ 00 will also be used. 

In case cj>uw(k) and ¢,wT(k) are concerned, we need consider 

ot only the turbulent field but the interactions between the mean 

velocity and temperature fields and the turbulent field. 
00 00 

Thus, J 
k 

<I> (k) dk uw and J 
k 

following general forms 

00 

f <I> (k) dk = 
k uw 

where the upper 

lower sign for 

00 

J cj>wT(k)dk = 
k 

sign indicates the case when 

dU/dz < 0 , and 

1 s s 1 df +by [ tl>2(k)k_2_ 
s,r k 

[( 
c4 

2cj> r (k)k3r-l dkl 2r 
TT 

are expressed as the 

(3 . 61) 

dU/dz > 0 , and the 

c3 
ldT I 
dz* 

(3.62) 

where the upper sign denotes the stable stratification dT/dz* > 0 

and the lower sign denotes the unstable one dT/dz* < 0 because the 

vertical heat flux is negative in case of stable stratification and 

is positive for the unstably stratified flow. 

The parameters c. 
1. 

in Eqs. 3.61 and 3.62 are related from 

dimensional argument as c 1 + c 2 = 1 , and c 3 + c4 = 1 c 1 and 

c
2 

characterize the degrees of interaction between the mean velocity 

gradient and the turbulent vorticity; c 3 and c 4 denote the degrees 

of interaction between the mean temperature gradient and the turbulent 
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temperature gradient. In case c1 = 0 , c2 = 1 , and c1 = 1 , c2 = 0, 

Eq. 3.61 expresses the conditions of strong interaction and weak inter

action of velocity field considered by Tchen (1953). Hence~ increasing 

c2 would mean that the interaction between the vorticity of main 

motion and turbulent vorticity becomes stronger, and according to 

Tchen (1953), the resonance between two motions is intensified. Thus, 

in case resonance is intensified, the inertial transfer pr ocess through 

eddies is interfered by the mean motion and energy is supplied to the 

eddies by means of the Reynolds stress working against the mean motion. 

In other words, the - 5/3 law is invalid and the energy spectrum has 

less steep slope. In the extreme case when c2 = 1 , the slope of 

the energy spectrum becomes -1. 

As far as stratification is concerned, c3 = 0 , c4 = 1 , and 

c3 = 1 , c4 = 0 are equivalent to the case of strong and weak inter

actions investigated by Gi sina (1966). In the following sections, 

the significance of c4 wil l be seen. Thus, it is clear that Eqs. 3.61 

and 3.62 can give more general information on the structure of the ther-

mally stratified turbulent shear flow since different values of 

can be assigned to characterize different flow conditions. 

c. 
1 

In addition to the relationship between C. 
1 

described pre-

viously it seems to be helpful to let c1 > 0 and c3 > 0 Since 

ldT/dz*I ➔ 0 would mean that the flow becomes lesser stratification, 

the flow will be nonstratified when ldT/dz* I = 0 , thus, it implies 

that there exists no vertical heat flux. But if c3 = 0 , this 

implication cannot be seen when ldT/dz*I = 0 in other words, if 

c3 = 0 is assigned to Eq. 3.62, we always have the vertical heat 

flux even when ldT/dz*I = 0 However, once ldT/dz*I '\= 0 , from 
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the <limensional arguments c3 can be less than or equal to 0 

according to the relation c3 + C = 4 1 Thus, it may conclude that 

c3 is a function of ldT/dz*I , i.e ., in case ldT/dz*I ➔ 0 it 

believed that c3 must be greater than Oas stated. Similar argu

ment can be applied to c 1 if Eq. 3.61 is considered. 

3 . 3 Solutions of the Spectral Equations of Thermally Stratified 
Turbulent Shear Flows 

In this section, the analytical derivations of s olutions 

based on the generalized eddy-viscosity approximation are described 

in detail. Nondimensionalized spectral equations are derived not 

only because they can give neat and concise forms but because some 

similarity theory of spectra can be made if suitable dimensionless 

variables are used. 

is 

3.3.1 Solutions of flows with molecular effects - The 

introduction of molecular effects does not mean that the spectra at 

high wave numbers can be studied by the present method as seen from 

the discussion in section 2.1. Thus, only the spectra in the buoyancy 

and inertial subrange are of interest. 

Based on the generalized eddy viscosity approximation 

described in section 3.2, Eqs. 3.49 and 3.50 together with Eqs. 3.56, 

3.58, 3.61 and 3.62 become 

E: = 
k 

2v f k2 cp (k)dk 
0 

c2 

[ / 2k2 <1>(k)dk] 
2

+ ( 2k 2 1(k)dk + b I 

0 
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and 1 
c3 k 

+ Y
5
,l [ ( .½(k)k- ½-\kt{± b ldT I N* = 2vT f k2 ¢TT(k)dk 

0 
dz* 

[( 
C4 

k 
2k 2 <i>TT(k) dkJ 

dT 
2k 2 ¢TT(k) dk]

2 
dz* 

+ b J 
0 

in which r = 1 is assigned to Eqs. 3.56, 3.61 and 3.62. 

Using the nondimensional parameters 

k 
<!l _<I>_ 

¢TT 
cj>TT 

X =- = =a kd ' <P d ' 
cj>TT 

c2 
c3 

c4 

du _ cl ( rT bB ldT I (:Jz !dU! ~ Bl 
\I m = - = -dz dz s dz* E: 

c3 c4 
- -1 

c4 
-- +l 

ldT I dT N 2 2 and Pr b _v_ 
~ = vT dz* ' 

= 
dz* * vT 

in which 

1 1 3 1 

kd 
2 

( v
0

3 J4 <P d 
- 2 

( €\/ 5) 4 and = Ys 1 = Ys 1 
' ' 

3 3 

<Pd = 
- 2 N 

( __v; f' * 
Ys 1 TT 

' vT 

Eqs. 3.63 and 3.64 are reduced to the dimensionless forms 

1 c2 

[ ( .½cxJx- ½ -\s]5 {1ml [ (2x2•CxJdxr 
X 

1 = J 2x2 <!l (x)dx + 
0 

X 

+ J 2x2 <ll (x)dx + B1 
0 

[( 
c4 

2x2•TT (x) dx] T} 

(3.64) 

(3.65) 

(3.66) 
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and 

s 

1 a !x2x2 •TT(x)dx + [ {~•T(x)x-

Now let 

X 

Y 2 = J 2x 2¢ (x)dx 
s 

0 

X 

and zs 2 = J 2x2¢TT(x)dx 
0 

thus, Eqs. 3.66 and 3.67 are simplified to 

and 

1 = y 2 
s 

1 = Z 2 
s 

Zcs4} + y 2 + 8 
s 1 

( 3. 6 7) 

(3.68) 

(3.69) 

where Y' = dY /dx ; the upper sign of the last term in Eq. 3.68 s s 

denotes the stable stratification, while the lower sign indicates the 

unstable stratification. 

and 

Thus, from Eqs. 3.68 and 3.69 and from 

X 

Y 2(x) = J 2x2¢ (x)dx 
s 

0 

X 

Zs 2 (x) = J 2x2¢TT(x)dx 
0 

energy and temperature spectra can be evaluated by 

(3.70) 

(3. 71) 
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dY 2 (x) Y (x)Y'(x) 
s s s 

qi (x) = ---=-----
2x2 x 2 

Z (x) Z ' (x) 
s s 

qi TT (x) = -----
x2 

(3. 72) 

(3.73) 

As to the turbul ent shear stress spectrum and the vertical 

heat flux spectrum, Eqs. 3.61 and 3 . 62 are transformed into non

dimensional forms. Using · he dimensionless variables 

qi 
uw 

1 
- 2 

= b y 1 s , 
E 

1 
- 2 

= Ys,l E 

du 0 - > 
dz 

as wel l as t he variables in Eq. 3 . 65, we have therefore 

00 

J qi (x)dx uw 
X 

and 

s 
2 

qi (x) X 

1 
s s s 

( • wT(x)dx = + [ ( •2 (x)x-
2 -ldx] [ 2 

which can be s imp li fi ed as 

00 1 - y2 c2 
f qi (x)dx s - -

+ B Z C4 
y 

uw 
Im I Y y 2 s 

X + 
s s 1 s 

and 

(3.74) 

(3. 75) 

(3.76) 

• 
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00 

J <t>wT(x)dx = + 
X 

1 - y 2 
s 

lmlY + Y 2 + B Z C4 
s s 1 s 

Thus, 

<t> (x) = uw 

4 C2-l 
CimlY +Y 2 + s1z ) [C 2Y -s s s s 

c4 
ClmlY +Y 2 + B Z ) 2 

s s 1 s 

(1-Y 2 )(imlY' + 2Y Y' s s s s 

ClmlY + y 2 + B Z 4)2 
s s 1 s 

C +l 
(2+C2)Y/ ] Y~ 

z') 
s 

C C -1 } Z 4 (1-Y 2)( jmjY'+2Y Y' + s1c4z 4 Z') s s s s s s s 
C 

ClmlY + y 2 + B Z 4) 2 
s s 1 s 

(3. 77) 

(3. 78) 

From Eqs. 3.68 and 3.69 for both stable and unstable strati

fications , the spectral equations differ only in the turbulent energy 

spectral equation as indicated in Eq. 3. 68. Thus the turbulent energy 

spectrum is exp l icitly influenced by thermal stratification while the 

temperature spectrum is implicitly affected due to the introduction 

of energy spectrum in a form of eddy viscosity as shown in Eq. 3.69. 

Using Eqs. 3.68 and 3 .69, a relationship between 

can be deduced from 

1 - y 2 
s 

C C 
lmjY 2 + y 2 + B Z 4 

s s 1 s 

y 
s 

and z 
s 

(3.79) 
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Thus, Eq. 3.79 together with either Eq. 3.68 or Eq. 3.69, y 
s 

and Z 
s 

can be solved explicitly or implicitly as functions of x, and con-

sequently, <I> (x) <l>TT(x) <l>wT(x) can be evaluated 

nwnerically by using Eqs. 3 . 72, 3. 7 3, 3. 77 and 3. 78. However, in 

case c 2=1 , c1=0 , some analytical closed forms can be obtained. 

For the sake of interest, the following analytical solution is derived. 

First, from Eq. 3.79 and 

then, 

Now let 

A(Z) s 

B(Z) s 

C(Z) s 

y 
s 

= 

= 

= 

= 

C 
+ l]Y 2 + lml (l-Z 2 )Y + 8 Z 

4 
(1-Z 2 ) s s s 1 s s 

(Pr-l)Z 2 + 
c4 

l~IPrZs + 1 
s 

1ml (1-Z 2 ) s 

C 
+ 8 Z 4 

1 s (1- Z 2 ) - Pr(Z 2 + s s 

-B + "V B2 -4AC 
2A 

C 
l~ lz/) 

(3.80) 

(3.81) 

(3. 82) 

(3.83) 

(3.84) 

the other root y 
s 

-B 
= 

- V B2 -4AC 
2A is omitted since IY I must be 

s 

less than or equal to 1 and y ➔ 0 
s 

Squaring Eq. 3.84 yields 

y 2 = 
s 

2B 2 -4AC-2B 'I/ B2 -4AC 

4A2 

Z -+ 0 as x -+ 0 
s 

(3.85) 

,., 
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Differentiating Eq. 3.85 with resp ect to x gives 

dY 2 
1 s \Y; = 2 cix 

B 

-Ys2 -4AC 

4A ~Z' 
dZ s 

s 

(2B~ Z ' -4A~Z' 
dZ s dZ s 

s s 

4C dA Z' -2 ~ Z' -VS2 -4AC 
dZ s dZ s 

s s 

4C dA z I)} 
dZ s 

s 

- 2 ( 2s 2 -4AC - 2B ✓ B2 -4AC ) A ~~s z~] 

( 2s ~~s - 4A ~~s - 4C ~~s 1] -2 ( 2B
2

-4AC - 2B,/B
2

-4AC) A ~~s } 

(3.86) 

in which 

and 

dA 
ciz = 

s 

dB 
dZ = 

s 

C -1 
2(Pr-l)Zs + lmrl .Pr c4 Zs 

4 
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Also from differentiating Eq. 3.69 with respect x , we have 

C C -1 
(Z 2+ lm.....lZ 

4
)(-2Z )- (l-Z2)(2Z +C4lmrlz 

4 
) 

s T s s s s s Z' 

s 

(Y y,) 2 
s s 

Thus, from Eq. 3.86 

X 

3s 
- --1 

2 

s 

= (Z')Ir_l )2{A2[4(s d~ -
s 8A4 dLS 

( 
dB dC dA 1] · 2B - -4A - - 4C - -dZ dZ dZ , s s s 

c4 2 s 
Pr(Z 2+1mrlz ) s s 

(3.87) 

(3.88) 
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( 8:4 ) 
s 

2-s 

• ( 28 ~~s -4A ~~s -4C ~~s] ]- z[zs2
-4AC - zs,/ B

2
-4AC] A ~~l=s 

(3.89) 

In case s=2 , the abridged equation can be obtained from 

Eq. 3 .88, 

x4 = 
C +l C -1 

16A4 (1-Zs 2
) [lmrl(2-C4)zs

4 
+ 2Zs + c4 1mrlzs

4 
] 

-;:::=B = ( 2B ~~s - 4A ~~s - 4C ~~s )) - 2 [2B 2 -4AC-2B 'V B2 -4AC -V B2 -4AC 

(3.90) 

and in case 2 < s < 00 , a closed integral form can be derived from 

Eq. 3 . 89, 
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C 2s+2 

( Z 2 + I I Z 4) s-2 
s ~ s 

s 

(
_l )~ 

8A4 

+ 2Z 
s 

s 

• ( 2B :~. - 4A :~. - 4C ~J] -2[2B2 -4AC-2B'\/s2-4ACN~.t
2 

dZ5 +D1 

(3.91) 

where the constant o1 can be evaluated from the boundary condition 

x = 0 , Z = 0 , or x = 00 Z = 1 ; ,.,the integral is an indefinite s , s 

one. Therefore from Eqs. 3.72, 3.73, 3.77, and 3.78, spectra can be 

obtained as functions of s , Pr,~, c4 , m, and 81 

3.3.2 Solutions of flows with negligible molecular effects -

In the previous statement, molecular effects as represented by the 

kinemati c viscosity and the thennal diffusivity are involved. How

ever, in case the spectra at waves numbers far away from the 

Kolmogorov's wave number is considered, i.e., when - 1 
k « i d , the 

local dissipation of turbulent energy and the local dissipation of 

temperature inhomogeneity in the range Oto k are negligible as 

compared to £ and N , respectively. This will be the case when 

we consider the buoyancy subrange where the molecular effects are 

negligib l e. Thus, Eqs. 3.49 and 3.50 are reduced to 



53 

dU 
00 00 00 

E = - dz f <P (k) dk + J F(k)dk + 8 f <P T(k)dk (3.92) 
k uw k k w 

and 

dT 
00 00 

N* = - ciz'; f <P T(k)dk + J FTT(k)dk (3.93) 
k w k 

Again, the generalized eddy-viscosity approximation is applied; 

t hus, we have 

E = 

s 

y [ Joo <P2(k)k 
s,r x 

1 
s -~ l+C - 2 - \k s I dU I 1 

dz 

(3. 94) 

(3.95) 
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Now, with the nondimensional variables 

k 
X = k 

0 

cj>TT 

- Cl -1 
c2 

-1 
c2 c2 

dU +- +2 1-- -2+C 
ldU I 2 2 B 2 r = dz dz b N* E: 

-l+C l-C4 -1 c4 
ldT I 

c3 

rl = N 4 E: B and * dz* 

-2+C 2-C -2+C - C3 -
N 4 ~ 4 0 4 ldT I dT 

rT = * ~ µ dz* dz* 

in which 

1 3 3 5 3 3 5 5 

k 2 b4 N4 - 4 82 cj>o 
- 2 

b 
- 4 N- 4 

= Ys,r E: = Ys r * * 0 
' 

and 
3 9 1 7 5 

0 - 2 
b 
- 4 N- 4 4 

B 
- 2 

cj>TT = Ys,r e: 
* 

Eqs. 3.94 and 3. 95 yield the dimensionless forms 

and 

(3.96) 

11 5 
T 

B 
- 2 

E: 

( 3. 97) 

(3.98) 
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<I> uw 

0 

<PwT 
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Also letting 

<Puw 
= --

1 

= y 2 b 
s,r 

1 
- 2 

= Ys,r 

cI>wT = 
<PwT 

0 

<PwT 

7 c2 7 c2 13 
--+- --+---

4 2 4 2 4 
N * £ 

3 7 ll _c - 4 - - +C 
b N 4 4 4 4 

£ 
* 

s 

we have the dimensionless forms 

1 
s s -

00 l ( •2(x)x- 2 -\x]5 J <I> (x) dx - -
uw 

X 

and 
1 

[ (Jcx)x-
s -

00 

2 -\x]s J -
<I>wT(x) dx = + 

X 

(3.99) 

7 
- - + 

2 

l +c - c3 
2 4 ldT I (3.100) 

dz* 

c2 
2r 

[ ( 2•r (x)x3r-ldx.] (3.101) 

c4 

[ X 3 1 r l 2<I>;Tcx)x r- dx 

(3.102) 

Thus, from Eqs. 3.98, 3.99, 3.101, and 3.102, <I>(x) , <I>TT(x) , 

<I>uw(x) , and <I>wT(x) can be evaluated ntnnerically. However, for 

simplifying the analytical derivation of solutions, two sets of values 

of s and r are assigned. 
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(A) 2 < s < co r = 1 

By letting 

X Y (x) Y' (x) 
y 2 (x) f 2x 2<t> (x)dx 4> (x) s s (3. 103) = , or = s x2 0 

and 

X Z (x) Z' (x) 
Z 2 (x) f 2x2<i>TT(x)dx <t>TT (x) 

s s (3.104) = , or = s x2 0 

Eqs. 3.98 and 3.99 become 

1 

[( 
s 3s - C 

+ r /4] 1 (Y y•/ - 2 -1 r [vs' +lr lY 2 (3 .105) = x dx s s s 1 s 

and 

~ -1 J¼ [ 2 dx Z 2 
s 

(3.106) 

Also from Eqs . 3 . 101 and 3.102, we have 

c2 c4 c2-1 
(Y 2 +l rl Y + r 1z ) c2 Y Y' s s s s s 

4> (x) = --------------uw C C 
(~ 2 + l r lY 2 + r 1z4) 2 

s s s 

C C -1 C -1 
Y 2 (2Y Y' + Ir I c2Y 2 Y' + r c4z 4 z ' ) s s s s s 1 s s 

C C 
(Y 2 + lrJ Y 2 + r z 4) 2 

s s 1 s 

(3. 107) 

and 

... 
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C C -1 C 
(Z 2+\r \z 4)C Z 4 Z'-Z 4c2z Z' s T s 4 s s s s s 

(3.108) 

Now, from Eqs. 3.105 and 3.106, we have 

C C 
Y 2 + \r\Y 2 + r z 4 

= z 2 
s s 1 s s 

(3.109) 

and thus, c!> (x) , c!>TT (x) , c!> (x) , and c!> T (x) uw w can numerically be 

calculated for a given set of parameters r , rT , r1 , c2 and c4 
since, by differentiating Eq. 3.105 with respect to x , x can be 

in terms of y , Y' , z and Z' and Eq. 3 .109 can offer the s s s s 

relationship among y Y' '7 and Z' However, if some analyti-, , I.., , 
s s s s 

cally closed form is needed to be obtained, c2 = l, and Cl = 0 , 

can be assumed. Hence, Eq. 3.109 becomes 

C 
0 y 2 + \r\Y - z 2 - (\ rT\ r ) z 4 = ± 

s s s 1 s 
(3 .110) 

and so 

+Vr2 
C 

-\ r\ + 4Z 2 + 4(\rT\ ± r ) z 4 
s 1 s y = s 2 

Squaring Eq. 3.111 results in 

y 2 = 
s 4 

(3.111) 

(3.112) 

Inserting Eq. 3.112 into Eq. 3.106 and differentiating the 

resultant equation with respect to x, we have thus 
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2 

s-2 s (2Z 
s 
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s 

(Z,) 2 
s 

C -1 
± r ) z 4 

1 s 

3s 
-- -1 

2 
X 

C -1 .2.- C 2s+2 
+ c Ir lz 4 )s-2 (Z 2 + Ir 1z 4) 2-s 

4 T s s T s 

(3.113) 

3s+2 
~ 

X 

Consequently, we have then 

s-2 
4s 

2 
2-s 

s 

2 
Z ( C -1 -f s 2Z +C Ir 1z 4 )2-s 

s 4 T s 
0 

C 2s+2 
• (z2 +lr lz 4)-2+s 

s T s 

C -1 s 

_2_z_s_+_c_4_c_lr_T_l_±r_l_)_z_s_
4 
__ ]s-2 

- Ir I 

-Jr 2+4Z~+4(1rrl ±r 1)z~4 

dZ 
s 

which can numerically be integrated for 00 > s > 2 

an abridged form can be seen from Eq. 3.113, i.e., 

(3.114) 

(3. 115) 

In case s = 2, 



4x4 

59 

C C -1 
= cz 2 + \r \z 

4
) 3 c2z + c4 \rT\ zs

4 
s T s s 

-1 
) 

(B) s ➔ 00 

Ir! -~-=--=------=---] 

'rr2 +4Z 2+4(\r l±r )Zc4 
V s T 1 s 

(3. 116) 

In this case, an exact local limit of the generalized eddy

viscosity approximation can be formed and Eqs. 3.98 and 3.99 become 

1 3C 2 1 c2 5 3 
--+- -+- 2 2 

Ir I 
2 2 <1> 2 2 (x) 1 = X + X <I> (x) 

1 3C4 1 c4 
--+-

<1>2 (x) <l>T/ (x) + r X 
2 2 

1 
(3.117) 

and 
1 3C4 1 c4 5 1 

--+- - T 2 2 1 = I rT Ix 
2 2 <1> 2 (x) <!>TT (x) + X <I> (x) <l>TT(x) (3.118) 

which are the simultaneous nonlinear equations of <t> (x) and <t>TT(x) 

at a given dimensionless wave number x Clearly the numerical solu-

tions can be obtained as a function of x and the parameters \r! , 

Si ce both parameters c 2 and c
4 

are 

retained in Eqs. 3.117 and 3.118, and the spectral equations are pre

sented in a clear and simpler form, Eqs. 3.117 and 3.118 will be 

investigated intensively. As to evaluating <I> (x) uw 

Eqs. 3.101 and 3.102 will be used. Thus, 
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3

~21 
3 3C

2 1 c 2 

( -
--+- - +-

<l> (x) 
1 2 2 4>2 2 (x) = - + X uw 2 

1 3C2 1 c2 (1 c2) -2•-2- -- +-
<l> 2 2 (x) <l> ' (x) + - + - X 2 2 

(3,119) 

and 3C4 c4 

[(-
3

~41 
1 1 
--+- -+-

<l>wT(x) ± 
1 2 2 

<l>TT 
2 2 (x) = -+ X 

2 

+ 

1 3C4 

( 
1 c4] -2 +-2-
- + - X 2 2 

(3.120) 

where <l> ' (x) d<t> (x) 
= dx , and 

3.4 Asymptotic Solutions 

In the previous sections, details have been given to solving 

the spectral equations of thermally stratified turbulent shear fl ows; 

of course, numerical solutions are available now. However, if we 

need examine the significances of all the parameters such as s , c1 , 

c 2 , c 3 , and c4 introduced in our generalized eddy-viscosity 

approximation, it would be helpful to investigate the asymptotic 

solutions under certain conditions. In order to avoid the tremendous 

complexity introduced by the consideration of molecular effects, we 

still prefer to consider the case when the molecular effects are 

negligible. Evidently in the buoyancy subrange of wave numbers this 

is the case . 
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3.4.1 Asymptotic solutions of stably stratified flow - First, 

consider the dimensionless wave numb er rang e x >> 1 or equiva lent l y, 

1/2 k >> y 
s,r b3/4 N 3/4 - 5/4 

l 1* E S3/ 2 = k 
0 

In this wave number range, 

th e buoyancy effect on th e motions of eddies is negligibl e as com

pared to th e inertial interaction among e:ldies as we can prove 

apos teriori in th e nex t section. Thus, it wi ll not be surprising that 

the c l assical -5/3 law holds in the dimensionless wave numb er r ange 

x » 1 . From Eq. 3. 115, asymptotic solutions are available by 
C 

assuming \ r l ~ 0 , and Zs 2 >> \rTlzs
4 

as follows: 

z 2 = 
s 

2 4 
3s 3 

S X 2 < s < 00 X >> 1 , 

simi l arly , for th e velocity fi e ld we have from Eq. 3.109 

y 2 = 
s 

s-2 
335 

4- s 

2 
3s 

2 
3s 

s 

4 
3 

X 2 < s < 00 X >> 1 

Thus , equivalently, the corresponding velocity and temperature 

spec t ra are 

s-2 4-4s 2 5 

<ll ( x) 335 2 3s 3s 3 
= s X 

and 

s-2 4-4s 2 5 

(3.121) 

(3.122) 

(3. 123) 

¢TT (x) 3 3s 2 3s 3s 3 
= s X 2 < S < 00 , X >> 1 . (3,124) 

As to s = 2 , Eq . 3.116 or the limit form of Eqs. 3.123 and 

3 . 124 as s ➔ 2 can be used, and we have then 

<!J (x) = 

1 

2 3 X 

5 
3 

(3.125) 
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X s = 2 X >> 1 (3.126) 

In case x « 1 , the situation is somehow more complicated 

since the buoyancy effects will distort the inertial interaction among 

eddies. Two cases will be considered in the dimensionless wave number 

range x < < 1 In both cases, we still assume that the local pro-

duction of turbulent energy in the wave number range considered is 

negligible. From the computational point of view, we can let 

Ir I :: 0 in Eq. 3.115. Thus, with the further assumption 
C 

lrrlz/ >> z 2 , Eq. s 

1 s-2 
c4 23 ( ¾)Ts z = s 

and from Eq. 3.109, 

y2 = 
s 

Thus, the 

cI> (x) = 

and 

velocity and 

s-2 2 -
-3 3) 3s 

2 ( 4 

2-3C 

3.115 gives: 

2 1 2 

lrr l 
3 

clrrl+ r 1) 
-3 3s s 

temperature 

2 1 
3s 

1rr13 s 

2s-4 

s 

2 
3s 

4 
3 

X 

spectra become 

1 

ci rri r )3 + 
1 

-4 2 4 

( ¾(c4 3C4 3C: 3C 
cI>TT(x) = 2 l r r l 

4 
cl r rl+ r 1) 

4 

for x << 1 , c4 > 0 , and 2 < s < 00 

4 
3 2 X .s. s < CJ() 

2 < s < 00 . (3.127) 

in this case 

5 
- 3 

X (3. 128) 

4 8-9C 4 
3sC4 3C

4 s X 

(3.129) 
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These asymptotic solutions can be considered as the spectra in the 

inertial and convective subrange where the inertial transfer process 

predominates the velocity field and the interaction between the main 

and turbulent temperature fields plays the principal role in develop

ment of temperature fluctuations. 

Next, some asymptotic solutions in the buoyancy subrange will 

be investigated. In the buoyancy subrange, the local production of 

turbulent energy and turbulent temperature inhomogeneity is so small 

that the inert ial transfer processes predominate turbulent motions. 

However, the buoyancy subrange differs from the inertial subrange in 

the fact that in the buoyancy subrange the buoyancy effects due to 

the vertical heat flux affect the 
C 

energy balance. Thus, with the 

assumptions 

and 

lrl ::: o r z 4 » 1 s 

>> 2Z 
s 

C 
z! » lrrlz/ 

/ 

Eq. 3.115 gives the asymptotic solution as follows: 

4+C 
z 4 

s r
4+c4 )s; 2 

; 
= -4- s 

s+2 

2 s [C4(\rT\ + rl) ]-1 x4 

c
4 

4C
4 

4+C
4 

X for X << X << 
e 

and 00 > s > 2 

(3.130) 

1 

(3. 131) 
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or equivalently we have the asymptotic temperature and velocity 

spectra 

and 

<P (x) = 

2s-4 

4+C ls ( 4+C 4) 

= ½(-f 

c4(s-2) 

(4+C4 r4•C4l 1 
2 r 1 4 

c4 
-4+C

4 
[c4 cl rrl+r 1) ] 

4 

2C4 
s(4+C4) 

s 

C -12 4 
4+C

4 
X 

and 00 > s > 2 

c4(s+2) 

2 
s(4+C

4
) 

for X << X << 1 
e 

(3.132) 

(3.133) 

Now the significance of c
4 

can be seen clearly from Eqs. 

3.132 and 3.133. In case c 4 ➔ 0 and c3 ➔ 1 4>(x) ~ x - 3 and 

for x << x << 1 
e 

and this is exactly the solution 

predicted by Lumley (1964). If the expression (3.62) for the vertical 

heat flux spectrum is reviewed, c4 ➔ 0 and c3 ➔ 1 would mean that 

the vertical heat flux spectrum is determined by the velocity field 
00 

implied by the eddy-viscosity ys,r[[ <Ps/ 2(k)k- s/2-ldk]l/s in 

Eq. 3.62 and is proportional to ldT/dz*I Thus, after reviewing 

Lumley-Shur's hypothesis in section 2.2.3, the generalized eddy

viscosity approximation considered at c 4 ➔ 0 

and r 1 > > lrrl is equivalent to Lumley-Shur's hypothesis. However, 

as we can see l ater, because of the generality of the generalized 

eddy-viscosity approximation implied by varying c 1 , c2 , c3 , c4 , 

lrTI , lrl and r 1 , the present results are more fruitful. And 
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if C 
4 

= 1 

3.133 , then 

c3 = 0 and s = 2 are assigned for Eqs. 3.132 and 

<ll (x) 
- 11/5 ~ X and - 7/5 

<PTT (x) - x are obtained. 

This is actually the case considered by Monin (1962) and Gisina (1966). 

3.4.2 Asymptotic solutions of unstably stratified flow - In 

case the unstable stratification is concerned, it is better to study 

Eqs. 3.117 and 3.118 instead of Eq. 3.113. For the same reason des

cribed above, let Ir I ::: 0 and r 1 » Ir TI in the buoyancy subrange. 

Thus, we have 

3 3 1 3C4 1 c4 
2 <P2(x) 

-- +--
<P2(x) T 1 2 2 = X + r 1x 1TT (x) (3.126) 

and 

5 1 

1 
2 2 

= X <P (x) <i>TT (x) (3.127) 

In the wave number range x >> 1 , the inertial transfer pro

cess dominates the turbulent structure, it can be expected that the 

- 5/3 law holds for both velocity and temperature spectra. However, 

where x < < 1 and is still far away from the range X 
e 

in which the 

production of the turbulent energy and temperature inhomogeneity pre

dominates, we have the buoyancy subrange for an unstably stratified 

turbulent flow, and the asymptotic solutions would be 

and 

<P (X) ~ X 

-3 
~ X for X << X << 1 

e 
(3.128) 

This shows that, in an unstably stratified turbulent flow, the velocity 

field absorbs energy converted from the temperature field in the 
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buoyancy subrange, and presents a hump in the velocity spectrum. This 

is actually what we expected in our search for the basic mechanism of 

unstably stratified turbulent flow in section 2.2.1. 

3.5 On Bolgiano's and Lumley-Shur's Hypotheses and the Modified 
Hypotheses 

After introducing asymptotic solutions by the generalized 

eddy-viscosity approximation as presented in section 3.4, it would 

be worth comparing Bolgiano's and Lurnley-Shur ' s hypotheses for stably 

stratified flow. Phillips (1965) made comparisons between these two 

hypotheses. In his paper, Phillips classified these hypotheses as 

follows : 

Lumley-Shur's hypotheses---

1. "The statistical properties of the components of the turbu

lence with wave number k in the inertia-buoyancy subrange, including 

the energy spectrum and the buoyancy flux spectrum, are determined by 

the spectral kinetic energy flux E(k) at this wave number and not 

at distant wave number in either direction," 

2. "The spectrum of the buoyancy flux in physical space of 

stably stratified environment is proportional to the mean buoyancy 

gradient." 

Bolgiano's hypothesis---

1. In the buoyancy subrange, the statistical properties of the 

motion are determined by N g/T and wave number k alone. 

Phillips agreed wi th Lumley on Lumley-Shur's second hypothesis, 

but did not agree with the first since it is still doubtful if the 

Kolmogorov's hypothesis can be extended to the buoyancy subrange. As 
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to Bolgiano 's hypothesis, Phil lips stated t hat the quantity N is 

certainly a property of the turbulence; it is a local property of the 

inertial subrange and an integrated property of the buoyancy and energy

containing ranges, but it is not a local property of the buoyancy sub

range itself as can be seen from the equation 

E: (k) + 

( 

dT 

1
_1 

dz 
_[_ 

T 

N(k) = (3.134) 

which is derived according to the assumption that the production of 

turbulent energy is less important in the buoyancy and inertial sub

ranges. (Phillips, 1965) . 
, 

Certainly Phillips argument is right for a general stratified 

flow. However, as stated in sections 2.2 and 2.3, Lumley's solution 

would be meaningful only when 

( 

- dT )l. E:T - 2 dz 
gN 

<< 1 (2.19) 

Gisina obtained the same restriction for the existence of Bolgiano's 

solution as expressed in Eq . 2.20. Also : n the present study, asymp

t otic solutions for the buoyancy subrange are obtained with the 

assumption Jr j ~ 0 and r1 >> JrTJ as described in section 3.4. 

After we review the definitions of r1 and rT as expressed in 

Eq. 3.96, r1 >> Jrrl is certainly equivalent to 

E: I dT I 
2 dz* 

__L ldTI N (-!--) << 1 or < '- (3. 135) 
N ..L f dz E: . T 

* -
T 

for N* 2N 
dT 

2 
dT 

= dz*= dz 
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which means that the internal frequency 1/ 2 -(N/E) g/T of turbulence 

of stably stratified flow must be greater than Brunt-Vai s ala frequency 

of the external flow (g / T) 112 (dT/dz) 112 and which is exactly the 

same expression as Eq. 2.19 derived by Lumley and Eq. 2.20 obtained 

by Gisina. 

By combining Eqs. 3.134 and 3.135, we will see what Eq. 3.135 

will really imply in the buoyancy subrange. Thus, rewriting Eq. 3.134 

as 
dT dT 

E - dk) N (k) _ E -dz dz 
1 (3.13,6) + + Ng E -N-- Ng 

f T 

and assuming E(k)/E to be finite, Eqs. 3.135 and 3.136 will imply 

N(k) ~ N in the buoyancy subrange. In other words, the objection 

from Phillips to Bolgiano's hypothesis can be released if the in

equality of Eq. 2.19 or Eq. 3.135 can be accepted as the basic 

requirement for the existence of buoyancy subrange. As we can see 

later, in case Eq. 3.135 does not exist for a certain flow condition, 

or equivalently, the condition r 1 >> lrTI cannot be fulfilled, there 

exists no buoyancy subrange. Thus, one word can be added that if 

there exists any buoyancy subrange, N(k) ~ N is still a local prop

erty. Of course, in the energy-containing range, this argument breaks 

down without any doubt. 

Before the author elaborates on the modified hypothesis 

proposed for the stably stratified turbulent flow, it is worthwhile 

to review Lumley's i dea concerning the production of turbulent energy. 

In his paper, Lumley (1965) considered the effect of the turbulent 

energy production on the turbulence spectra by expressing the shear 

stress spectrum as 
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q>uw(k) 
dU 

= a -dz (3 .137) 

Thus, it results in 

1 7 

a~~k) = a ( ffez t (1-Rf) E3(k) k -3 (3. 138) 

where Rf 1.s the spectral flux Richardson number. 

As stated by Lumley, in Eq. 3.138, both production and 

buoyancy spectra have the same form; thus, there is no range of wave 

number in which production is unimportant. However, if Eqs. 3.61 and 

3 . 62 are used and if the corresponding values c1 , c2 , c3 , and c
4 

are known for a given flow condition such as stratification, mean 

velocity gradient, etc., the difficulties induced by Lumley's model 

can be removed. That is, by varying C. , there may exist a range of 1. 

wave number in which production is unimportant and the buoyancy force 

certainly dominates the flow. Now, if Eqs. 3.137 and 3.61 are com

pared, the former corresponds to the latter when c1 ➔ 1 , c
2 
➔ 0 

i . e. , when the shear stress spectrum is proportional to dU/dz the 

mean strain rate. This condit i on can only be fulfilled when the mean 

strain rate is small compared to the eddy strain rate (Tchen, 1953). 

Thus , the validity and the generality of Eqs. 3.61 and 3.62 certainly 

offer a better opportunity for the study of buoyancy subrange of a 

thermal ly stratified flow. 

Consequently, th e modi fied hypotheses for a stably stratified 

urbulent flow are given as: 

(1) The buoyancy subrange of a stably stratified turbulent 

flow exists when the local production and local dissipation of 
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turbulent energy is not important in this wave nwnber range and when 

the flow conditions satisfy the criterion 

<< 1 , or _g_ 11~1 « 
T 

N 
E 

2 

(f-) (3.139) 

(2) In the buoyancy subrange, the spectra of turbulent energy 

and temperature fluctuation are determined by N , E , g/T , dT/dz , 

k , and c4 completely and are expressed in forms 

q,(k) 

where 

2+2C
4 

4+C 
= N 4 

-l+C 
r = N 

4 
1 * 

-2+C 
r = N 

4 
T * 

E 

-4+4C
4 

4+C
4 

E 

2- 2C 
4 

00 > s > 2 

-4+2C
4 

( ; l 4+C4 

C -12 
4 

-3C4-4 

4+C
4 

f2(s,rT,rl,C4)k 

1-C 
- 4 

ldT I 
dz* 

1-C 
- 4 

ldT I 
dz* 

dT 
dz* 

and fl and f2 are numerical variables as function of 

rl and c4 

In case C = 1 , thus rl = 1 , then Eqs. 3.133 and 4 

become the Bolgiano's solutions as expressed in Eqs . 2.4 and 

(3.140) 

(3.141) 

s , rT , 

3.134 

2.7. 
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Now, from Eq. 3.140, we can see that the reason why the parameter E 

i s dropped from the Bolgiano's hypothesis is not because E << E(k) 

as interpreted by Bolgiano (1959) but because C = 1 
4 

makes zero 

exponents for E in Eqs. 3.140 and 3.141. Accordingly, the parameter 

E must be retained in the hypothesis as described in the hypothesis 

(2). As to the physical backgr ound on which the modified hypotheses 

are based, the section 4.4 in the next ch apter must be reviewed. 

Furthermore, if the upper limits of the buoyancy subrange for 

the velocity and temperature spectra are interested, the wave numbers 

k* and k* 
T 

obtained by equating Eqs. 2.2 and 3.140 as well as Eqs. 2.3 

and 3.141 respectively are expr essed as 

k* ~ a 

and 

k* ~ a T T 

Certainly, 

Eq. 3.97. 

3(4+C
4

) 3(4+C
4

) 
3 3 

5 -8(2-C4) 8(2-C4) 
N4 

£ -4 ( ~ r fl 

3(4+C4) 3(4+C4) 
3 5 3 

8-4C4 
f2 

8-4C4 N4 -4 ( ~ r E 

k* and k* 
T 

are linearly proportional to 

Hence, it has been proved aposteriori that 

k 
0 

k 
0 

(3.142) 

(3,143) 

defined in 

is a 

characteristic wave number to distinguish the buoyancy subrange from 

the inertial subrange in case k << k · of course, if k z k e o ' e o or 

k >> k , there exists no buoyancy subrange. Equations 3.142 and e o 

3,143 also reveal another interesting thing, i.e., the upper limit of 

buoyancy subrange are a function of flow conditions such as dT/dz, 

etc. 



72 

Chapter IV 

RESULTS AND ANALYSIS 

In this chapter, numerical solutions of turbulence spectra of 

a thermally stratified flow investigated in the last chapter will be 

given. The solutions studied in the previous chapter are mainly 

divided into two categories: one is for the solution of a flow wi th 

molecular effects, the other is for those of a flow with negligib l e 

molecular effects. The consideration of molecular effects in the 

flow of the first category does not mean that the spectra at high 

wave numbers beyond the molecular cut-off wave number can be studi ed 

by the present method--the generalized eddy-viscosity approximation, 

but is used to generate nondimensionalized spectra expressed with 

dimensionless variables containing the molecular parameters v and 

VT 

Thus, for studying spectra in the buoyancy subrange, we need 

only consider the case when the molecular effects are negligible i n 

the wave number range of i nterest. In other words, the solution 

given in section 3.3.1 will not be investigated extensively and only 

some typical spectral curves of a certain flow condition are displayed 

as Figs. 28, 29, and 30. However, for a better understanding of the 

spectral forms in the buoyancy subrange, the solutions developed i n 

section 3.3.2 must be ascr ibed to; in particular the solution 

obtained in case s ➔ 00 and r ➔ 00 as presented in part B of 

section 3.3.2 will be studied extensively because of the clearer and 

simpler forms given by Eqs. 3.117 and 3.118. 
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4.1 Determination of Parameters r , r 1_,_rT_,_c 2 and c4 

In order to solve the nondimensionalized spectra such as ¢ (x) 

and ¢TT(x), etc. as functions of th e dimensionless wave number x by 

using Eqs. 3.117, 3.118, 3.119 and 3.120, the parameters r , r 1 rT 

c2 and c4 must be known. From Eq. 3.96, r 
' r l ' 

and rT can be 

related to only two parameters c2 and c4 if dU/dz dT/dz 

b ' N ' 
E and 8 are known. Experiment ally, c2 and c4 can be 

evaluated from the measured spectra at given flow conditions charac-

terized by dU/dz dT/dz , b , N , E and 8 . Thus, the way to 

evaluate c 2 and c4 would be equivalent to that of evaluating 

Kolmogorov's constant a in Eq. 2 . 2 for locally isotropic turbulent 

flow. For simplicity, the asymptotic forms of Eqs. 3.132 and 3.133 

can be used for evaluating c4 if there exists a wide buoyancy sub

range and if the flow conditions upon which c 4 depends are known. 

However, for the present study, these parameters can only be 

ass umed before the numerical solutions are obtained. Generally 

speaking, dU/dz dT/d z , and 8 can be found from the measure-

ment s of velocity and temperature profiles of the atmosphere, and b 

N, and E can be estimated from the measurements of heat flux and 

shear stress or from the energy balance budget equation or from the 

measured spectra. Thus, we can evaluate the maximal and minimal 

values of those flow characteristics, but how they are related to 

one another for given mean velocity and temperature gradients is 

unknown. Nevertheless, to the best knowledge of the author , there 

are no measurements of N and E corresponding to the respective 

measurements of spectra in th e free atmosphere . Therefore, in the 

present study, the values of r , r 1 , and rT are asswned to 
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facilitate the nwnerical solutions, and the significance of these three 

parameters can only be studied by varying their relative values. On 

the other hand, and c4 are varied according to 0 < C 
2 

and 

0 < c
4 

in order to test how the spectral forms will be changed under 

a given set of values for r , r 1 , and rT Henceforth, we can 

obt ain a general idea that th e introduction of c2 and c4 gives 

more degrees of freedom to test the spectral forms, a lthough more 

fre edom means more complicat ions are involved in the analysis . In 

the following, results and analysis are presented and classified 

according to the flow s t ratification . 

4.2 Buoyancy Subrange of Stably Stratified Flow 

4.2.1 As ymptotic solutions of stably stratified flow in the 

buoyancy Subrange by Varying c4 - As studied in section 3.4, in the 

buoyancy subrange where the productions of energy and temperature 

inhomogeneity are neg ligib le, that is equivalent to say that Ir! ~ 0 

and r >> Ir I 1 T 
i n Eqs . 3.117 and 3.118 from the nwnerical point of 

view, there exist some asymptotic solutions of velocity and tempera-

ture spectra as functions of c4 Thus, it is proposed to solve 

Eqs. 3.117 and 3.118 nwnerically by letting Ir! = 0 , Irr! = 0 , and 

!r 1 ! be finite . Figure 4 displays how the spectral forms vary as the 

paramet er c4 changes for stable stratification . In the derivation 

of Eqs. 3.132 and 3 .133, c4 is restricted to be O < c4 , however, 

if Eqs. 3.117 and 3.118 are concerned, c4 needs only satisfy the 

condition c4 < 1 when ldT/dzl is very small as discussed in 

section 3. 2, and no lower limit should be assigned to c4 from the 

numerical point of view. Thus, for the sake of interest, in Fig . 4, 
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some curves evaluated by Eqs. 3.117 and 3.118 in case C < 0 
4 

are also 

presented. Of course, the power law derived in Eqs. 3.132 and 3.133 

cannot be true in this case. 

As displayed in Fig. 4, the spectral slopes in the buoyancy 

subrange show agreement with these derived in Eqs. 3 .132 and 3. 133, 

i.e., for c4 = 0.001 , ¢ (x) - - 11.999/4 .001 -3 
X - X and 

- 4.003/4.001 -1 
¢TI (x) - x - x , and c

4 
= 0.9 ¢ (x) - X 

- 11.1/4.9 

and ¢TT (x) 
- 6. 7/4 .9 ~ X It is clear that with c4 = 0.001 the 

asymptotic solution becomes very close to the prediction of Lumley

Shur, and with c4 = 0.9 the s lope approaches the predicted slope 

given by Bolgiano. For better understanding the behavior of the 

spectra, Fig. 5 is plotted by varying r1 at given c
4 

= 0.001. 

Thus, we can see that as r1 increases the buoyancy effects penetrate 

gradually into higher wave numbers and the deviations from the - 5/3 

law of locally isotropic flow are more apparent as the spectra become 

more anisotropic due to the buoyancy effects characterized by r1 . 

Figure 31 displays the asymptotic power law varied as c4 for velocity 

and temperature spectra in the buoyancy subrange of stab ly stratified 

flow. m and n contained in <P(k) - kn and <l>TT(k) - km are 

-3(4-4 C -12 
defined as 

4 
m = n = 4+C

4 
4+C

4 

4.2.2 The production effects of turbulence energy and 

temperature inhomogeneity on the spectra of stably stratified flow 

in the buoyancy subrange - In section 4.2.1, it was assumed that the 

production of turbulence energy and temperature inhomogeneity is 

negligible in the buoyancy subrange. Without any doubt, in this 

buoyancy subrange, only the inertial transfer process and the buoyancy 
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effects exist and the spectral forms must characterize the buoyancy 

effects. However, if \ r\ and \rT \ are large enough as compared 

to r 1 so th at the production effects can penetrate i nto the buoyancy 

subrange, th e spectral forms will be disturbed. Figure 6 shows t wo 

sets of spectral curves at different r T , r , and r 1 with fixed 

c2 and c4 . The first s et of curves is calculated with rT = 0.01 

r = 0.1 , r 1 = 0.1 , c2 = 1.0 , and c4 = 0.3 and the second with 

rT = 0.001 , r = 0.001, r 1 = 0.01 , c2 = 1. 0 , and c4 = 0.3. From 

the plotted curves , t he temperature spectra present maximal points 

which show th at some energy is converted from the velocity field into 

the temperature fie ld. Near the wave number range in which the maxi 

mum of temperature spectra occurs, there appears a steeper s lop e than 

- 5/3 for the energy spectrum as a consequence of kinetic energy being 

transferred and converted into potential energy. It is clear that 

this wave number range is associated with the so-called buoyancy sub 

range in our previous investigation of asymptotic solutions. 

According to the asymptot ic solutions presented in section 

3 . 4.1, the energy spectrum and th e temperature spectrum must show the 

power law - 11.7/4.3 and -4 .9/4. 3 respectively if only the buoyancy 

effects are predominant in the buoyancy subrange, however, the power 

law of velocity spectrum of the first s et of curves appearing in 

Fig. 6 is -2.4. This is not surprising after Fig . 7 is reviewed. 

Figure 7 displ ays the distributions of energy production, transfer and 

drainage by buoyancy force as represented by F
1 

, F2 , and F
3 

respectively, and defined by 

1 3c2 1 C2 
-- +- -+-

F = Ir Ix 2 2 <1> 2 2 (x) 
1 

( 4. 1) 
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(4.2) 

and 
1 3C 4 1 C 4 

-- +-- -

F3 = - rlx 2 2 ¢2(x) ◊riCx) (4.3) 

The functions F4 and F5 are the production and inertial transfer 

of temperature inhomogeneity. Figure 7 shows that in the wave number 

range the - 5/3 law holds the inertial transfer presented as F2 

predominates the turbulent structure and tends to be a constant. In 

case the energy drainage by vertical heat flux becomes gradually im

portant, F2 increases as wave number decreases and consequently the 

buoyancy subrange is formed. As the wave number decreases down to 

the region where the energy production becomes important, F2 

decreases. Now, in the wave number range, say in the interval 

0.03 < x < 0.15 , the energy drainage by buoyancy becomes important 

and the energy production becomes less negligible as well. In other 

words, the introduction of the energy production in this wave number 

range compensates the energy drainage by buoyancy and modifies the 

power law from - 11.7/4.3 to -2.4 . A similar situation can be 

seen from the second set of spectral curves which shows that the 

reduction in energy production can cause a wider buoyancy subrange 

and steeper power law. For a better understanding, Fig. 8 must be 

examined. In the interval 0.004 < x < 0.02 , the turbulent energy 

is mainly distributed by energy transfer F2 and drained by buoyancy 

F
3 

but the contribution from energy production F1 on the energy 

distribution is less important. Hence, it will not be a surprise to 
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have the maximum power law -2.5 for the energy spectrum curve Bin 

the wave number range 0.004 < x < 0.02 

Another interesting phenomenon also caused by the compensation 

of energy production F1 on F2 and F3 can be observed in the wave 

number range x < 0.001 where the -1 law exists for the curve A and 

the -5/3 law for the curves Bin Fig. 6. Now referring to Fig. 7, 

F1 completely predominates the energy distribution in wave number 

range x < 0.001 , the -1 slope for curve A can be predicted from 

Eq. 4.1 by inserting c2 = 1 . As to curve B, -5/3 slope in the wave 

number x < 0.001 result s from the compensation among F1 , F2 , 

and F3 such that F2 tends to be constant over a wide range as can 

be seen from Fig. 8. Here one word must be added, the -5/3 slope in 

the wave number range x < 0.001 is obviously not a result of local 

isotropy. Thus, to the experimenters, the prediction for the local 

isotropy from the measured velocity spectra must be carefully worked 

out in case buoyancy effects exist. For example, if in the buoyancy 

subrange there exists any experimental error which causes data 

scattering, the -5/3 slope may be extended to low wave number without 

realizing the existence of the buoyancy subrange. In other words, 

the -5/3 slope appeared in low wave number x < 0,001 for curve B 

in Fig. 6 may incorrectedly be predicted as a result of local isotropy. 

The experimental data of Fig. 2a shows this situation very clearly 

since a -5/3 slope appears on the left side of the buoyancy subrange. 

In order to test the local isotropy of the stably stratified 

turbulent shear flow, Fig. 9 is plotted with x513 ~(x) and 

5/3 
X ~TT(x) VS X It is clear that the plot of Fig. 9 can present 

the tendency to local isotropy in a better way than the plots ~(x) 
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and ~TT(x) vs x , since the deviation from local isotropy can be 

detected easily without any ambiguity as s tated in the last paragraph. 

4 . 2.3 Validity of the generalize eddy-viscosity approximation

Up to this stage, the generalized eddy-viscosity approximation has been 

used to study turbulent energy and temperature spectra under the 

effects of buoyancy. Of course, the validity of the present study 

can be justified from the ~easured energy and temperature spectra, 

however, there is another way to test its validity by comparing the 

shear stress and vertical heat flux spectra predicted by the present 

study with respect to the measured ones. Since the present method-

generalized eddy-viscosity appr oximation--rests on the assumptions 

for the integrated forms of energy transfer, temperature inhomogeneity 

transfer, shear stress, and vertical heat flux spectra presented as 

Eqs. 3.56, 3.58, 3.61, and 3.62, the validity of the present study 

must logically be checked by comparing those spectra with the measured 

ones although the measurements of these spectra are not easily 

performed. 

Thus, for the above reasons, some spectra of shear stress and 

vertical heat flux predicted by the present study for given flow con

diti ons are displayed in Figs. 10 and 11. In Fig. 11, the heat flux 

spectrum ~wT(x) of curve A shows a change in sign at wave number 

x = 0.00315. The same phenomenon also occurs in Fig. 12 which shows 

the Bolgiano's solution in case c4 = 1 . From these results the 

changing sign of ~wT(x) seems to be related to c4 

For further understanding turbulence spectra of stably 

stratified flow, Figs. 13-18 are displayed systematically by varying 

one of the parameters rT , r , r 1 , c2 , c
4 

when the others are 



80 

fixed. In the spectra the buoyancy subrange certainly exists since 

for most the condition r 1 >> rT is satisfied. For example, in 

Fig. 13, when rT is increased from 0.001 for curve A to 0.01 for 

curve B with the corresponding r 1 = 0.5 , the buoyancy subrange is 

narrowed as expected. 

In Fig. 14, the effects of energy production on the spectra 

are examined by varying r and keeping the other parameters fixed. 

Increasing r not only narrows the buoyancy subrange but even shrinks 

the inertial subrange. This situation can be seen from the curve A 

of velocity spectra. Near the region x = 1 , the slope of velocity 

spectrum is -5/3 , but in the interval 0.1 < x < 1 , the slope is 

less than -5/3 , because the effects of energy production penetrate 

deeply into the region of high wave numbers such that the energy 

transfer decreases with decreasing wave number in this interval. 

While in the buoyancy subrange of stably stratified flow the energy 

transfer increases with decreasing wave number and the slope of the 

velocity spectrum is greater than the slope -5/3 . This situation 

reflects the case when the flow has great shear gradient. 

Figure 15 displays a case when r 1 varies. From the plot, 

increasing r 1 would mean that the effects of buoyancy force inten

sify as indicated by a wider buoyancy subrange shown as curve C. 

Also as r 1 increases, the power law in the buoyancy subrange 

approaches to the asymptotic power law (C
4

-12)/(4+C
4

) . Another 

interesting thing should be noted from the plots in Fig. 16. For these 

spectra, c2 is varied and we can see that when c2 < c4 , the 

buoyancy subrange for the velocity spectrum ~(x) disappears as c
2 
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decreases to 0.1 for curve A. Whether this phenomenon is realistic 

or not can only be determined by experiment. 

In Fig. 17, c4 is varied. As we can see that as c4 varies 

f rom 0.5 for curve A to 1.0 for curve B, the hump in <t>TT(x) dis-

appears. Also since r is no t negligibl e as compared to r l and 

~ the power law in the buoyancy subrange deviates greatly from -r , 

asymptotic power law which requires that r is negligible. In 

Fig. 18, c4 is forced to be negative and a steeper slope of the 

velocity spectra in the buoyancy subrange is observed. In case 

th e 

c4 = - 0.1 the slope is close to the power law for <t> (x) given by 

(C
4

-12)/(4+C
4

) , but for c4 = - 0 . 5 the plotted curve has a steeper 

slope than (C4-12)/(4+C4). This is not unexpected since the power 

law derived in Eq. 3.125 is valid only for c4 > 0 . 

4. 3 Buoyancy Subrange of Unst able Stratification 

As described in Eqs. 3.127 and 3.128, the buoyancy subrange 

of unstably stratified turbule t flow exists when the production of 

turbulent energy is less important and r 1 >> l rrl , and the velocity 

spectrum exhibits a hump and the temperature spectrum has a steeper 

slope than -5/3 in the buoyancy subrange. Figure 19 displays spectral 

curves for unstably stratified flow. Curves A, Band C show that 

buoyancy effects very clearly since r » Ir I 1 T 
is certainly ful-

filled, however, curves D appear in a different way from curves A, B 

and C just because of the fact that r 1 = rT = 0.001 

In Fig . 20, the effects of the production of turbulent energy 

due to Reynolds stress on the spectra are displayed by varying r 

when the other parameters are fixed. As can be seen from Fig. 20, 
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the variation of r does not affect the spectra significantly, 

however, if c2 is varied, i.e., the degrees of interaction between 

mean strain rate and the eddy strain rate are varied, the spectra 

appear differently as presented by Fig . 21 . A p lot of cu ves 

F. (i 
1. 

1, ... ,5) VS X is shown in Fig. 22 when F . 
1. 

represents the 

terms on the right sides of Eqs . 3.117 and 3 . 118 respective l y . F2 

decreases with decreasing wave number as a characteristic of buoy-

ancy subrange of an unstably stratified flow. Note that i n the buoy

ancy subrange of a stably stratified flow, F2 the energy transfer 

flux increases with decreasing wave number as a consequence of com

pensating the energy drainage by vertical heat flux. For a better 

understanding of how the shear stress spectrum is distributed with 

respect to wave number in these cases of unstably strat ified flow, 

Fig. 23 is displayed by plotting x<t> (x) VS X on semilogrithmic uw 

paper. The interesting thing is the changing sign of <ll (x) , of uw 

course, the validity of the curves of x<t> (x) plotted in Fig . 23 uw 

must be checked from experiments although it is certain that <t> (x) uw 

need not necessarily be always positive or negative throughout all 

wave numbers. In addition, Fig . 24 is presented for the heat flux 

spectrum which does not show any change in sign. 

The curves discuss ed above mainly correspond to t he flow 

In Fig. 25, the case j rTj >> r 1 is given by 

varying c2 and is used for comparison with Fig. 21. Up to now , 

the plotted curves of temperature spectrum seem always to have 

steeper slope than -5 /3 , however, Fig . 26 shows that this may not 

always be the case when some special values of the parameters are 

considered; of course, whether the curves shown in Fig. 26 are 
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realistic or not, or say , whether th e assigned values of parameters 

arc reasonabl e or not must be de termined ty experiment . 

In sections 4 .2 and 4.3, great att ention has been paid to th e 

characteris t ics of the buoyancy s ubrange of both s t able and unstable 

stratifications. However , very often ther e exists no buoyancy sub

r ange at a ll because of the fact th at the criterion r1 >> lrrl for 

buoyancy s ubrange is not sat isfied and th at th e effects of the pro

duction of turb ul ent ene rgy penetrate greatly into high wave number 

r ange . For exampl e, i n case c2 = 1, c
4 

= 1, the -1 law exi sts for 

both ve l oci t y an<l t emperature spectra as th e product ions of energy 

an<l temperature inhomogeneity are very l arge . rigure 30 shows this 

situation for both .s tratificat ions . Also in Fig. 27, the curves A 

show th e exis t ence of - 1/3 s l ope region ~or t emperature spectrum 

when the velocity spectrum has extensiv~r - 5/3 slope in thi s region. 

This region may be called th e i nert ia l and convective region as 

stated in Gi sina's paper (1966) and as indi cat ed by Eq . 3.129 when 

C = 1 
4 

Now in order to examine systematically how the parameters r , 

r1 , rT, c2 , c4 , s , and r vary for these figures, a brief table 

is listed as follows: 
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TABLE 2 

Fig. Stratifi-
r rl r T c2 c4 No. Curve cation 

s r 

4 & 11 A stable o. 0.01 o. 1. 0.9 
B 0.001 00 00 

C -0.5 
5 A stable 0. 0 . 001 0. 1. 0.001 

B 0 .01 00 00 

C 0.1 
6 & 10 A stable 0.1 0.1 0 .01 1. 0.3 00 00 

B 0.001 0.01 0 .001 
12 stab le 0.01 0.1 0 .001 1. 1. 00 00 

13 A stahle 0.1 0.5 0.001 1. 1. 00 00 

B 0.01 
14 A stable 1.0 0.1 0.01 1. 0.3 

B 0 .5 00 00 

C 0.1 
15 A stable 0.5 0 .1 0.01 1. 0.3 

B 0.5 00 00 

C 1.0 
16 A stable 0.1 0.1 0. 1 0.3 

B 0.01 0.5 00 00 

C 1.0 
17 A stable 0.1 0.1 0.01 1. 0.5 00 00 

B 1. 0 
18 A stab le 0.1 0.5 0. 001 1. -0. 5 00 00 

B -0.1 
19 A unstable 0.0001 0.5 -0.001 1. 0.5 

B 0.1 00 00 

C 0.01 
D 0.001 

20 A unstable 1.0 0.5 -0.1 1. 0. 5 
B 0.5 00 00 

C 0.01 
21 A unstable 0.5 1.0 -1.0 0.1 1. 0 

B 0.5 00 00 

C 0.8 
25 A unstable 2. 0 .1 -1. 0.1 1. 5 

B 0.5 00 00 

C 0.8 
26 A unstable 2. 0.5 -0.5 2 . 0.1 00 00 

B 3. 
27 A stab le 0.01 1.0 0.75 1.0 1.0 00 1 

B 0 .1 
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Now, the general characteristics of turbulence spectra of 

thermally stratified flows has been investigated very extensively for 

th e buoyancy subrange by means of the generalized eddy -viscosity 

approximation, it would be worthwhile to make comparisons with mea

surements in the atmosphere and to test the validity of the general

ized eddy-viscosity approximation. 

4 . 4 Quali tat ive Comparison Between the Measurement s of Spectra in 
the Atmosphere and the Results Ob t ained by the Generalized Eddy
Viscosity Approximation 

Basically speaking, it is hard to make this comparison because 

of the fact th at th e experimental data normally relate to one

dimensional spectra whereas the theoretical consideration in the 

present study is concerned with three-dimensional spectra. As noted 

in the paper of Alkseev and Yaglom (1967) , the one-dimensional spec

trum always varies noticeab l y more smoothly than the three

dimensional spectrum. The wave number range in which a power law 

occurs in a one-dimensional spectrum will not be the same range in 

which the same power law occurs in a three-dimensional spectrum even 

if the local isotropy of the turbulence holds. Moreover, the turbu

lence spectra of a thermally stratified f:ow are certainly charac

terized by the anisotropy due to the buoyancy effects, and thus in 

our problem, the basic advantage of local isotropy to relate one

dimensional spectra to three-dimensional spectra is lost. 

However, if only the approximate comparison is made to see 

how the parameters .i1entioned in the theoretical consideration are 

related to the experimental da a, the dif=iculties as stated above 

can be relaxed. In particular, it is assumed that in the buoyancy 
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subrange the deviation from the local isotropy may not be too great . 

In section 2 . 4, it is ~entioned that the exponent n of the velocity 

spectrum k-n in the buoyancy subrange of a stably strat i fied flow 

varies from 2.0 to 3 . 5. As we review Fig . 4, the values of n are 

associated with the parameter c
4 

in the theoretical consideration, 

i.e., by varying c4 , some specific slope in the buoyancy subrange 

can be made. For example, to n = 11/5 there corresponds c4 = 1 , 

for n = 3 we have c4 ➔ 0 , and for higher values of n a negative 

value can be assigned to c
4 

as presented in Figs. 4 and 18. And in 

fact, the introduction of c4 into the theoretical consideration is 

a great improvement i n interpreting the spectra of a stably stratified 

flow. 

At this stage, it would be worth mentioning the process by 

whi ch the parameter c4 was introduced into the theoretical considera

tion. In the inertial subrange of velocity spectrum, only E the 

dissipation of turbulent energy is the parameter to characterize tur

bulence. Thus, the - 5/3 law is implied from the dimensional argument 

and this subrange is of universal equilibrium since the flow is inde

pendent of the parameters such as mean velocity and temperature gra

dients which in turn characterize th e external flow conditions. As 

to the energy containing range, the flow is determined by the mean 

quantities and is influenced by the geometry which contains the flow 

or around wh ich the flow passes. Of course, this range cannot be 

universally determined, and moreover, there exists no equilibrium 

state for turbulent flow in this range. Now, i f we assume that there 

exists a certain subrange between the inertial subrange and the energy

containing range, then we can expect that the turbulence spectra are 
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in a state of equilibrium but not of universa l form. Consequently , 

it can be expected that in this subrange t ~e turbul ence is determined 

by the mean quantities and the turbul ence paramet ers. 

First, consider a subrange which is caused by the velocity 

field alone such as mean ve locity . Certainly dU/dz and E are 

the only parameters to determi e the turbu l ence as can be seen from 

Tchen's solution (1953). Second, if thi s subrange is induced by the 

existence of thermal stratification, then based on the previous argu

ments, the turbul ence in this "buoyancy subrange" must be determined 

by the mean quantit ies dT/dz , g/f, and the turbulent parameters 

E and N . Note in the pres ent argument s the significance of the 

second and higher orde r derivatives of U and T with respect to z 

are negl igible as compared to dU/dz and dT/dz respectively. The 

f ollowing paragraph gives the reason why the parameter c
4 

must be 

introduced. 

In the buoyancy subrange the turbulence may be in equilibrium 

but not universal in character. Thus, for a given set of parameters, 

dT/dz , g/f, E and N of a certain turbulent flow, there exists 

a definite spectral form because of the equilibrium of the turbulence. 

However, the spectral form will vary from one turbulent flow to the 

other because the turbulence is not universal. Hence, we can see the 

necessity to introduce a new dimensionless parameter c
4 

in order 

to characterize the spectral forms for varied flow conditions as 

r e lated to the degree of interaction between th e mean temperature 

field and t emperature fluctuation fi e ld as described in Eq. 3 .62. Of 

course, the same argument can be applied to c
2 

introduced in Eq. 3.61. 

In fact, Tchen 's solutions (1953) are only t wo particular cases implied 

by Eq. 3.61. 
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If c
4 

is known for a given set of flow conditions, is it 

possible to find a similarity theory such that some characteristi 

variables can form a set of dimensionless variables and the turbu

lence becomes quasi-universal in this subrange? Here the term 11 quasi

univers al " means that for different flow conditions which can build 

up the same values of di~ensionless parameters there is a unique 

spectral form corresponding to the associated c4 . Certainly, the 

characteristics to be quasi-universal in the buoyancy subrange of a 

stably stratified flow was ignored and undetected by Bolgiano and 

Lumley since both of them devoted themselves to an effort to reach a 

univers al solution for the buoyancy subrange. Thus, the reason why 

some dimensionless parameters are presented in Eqs. 3.65, 3.74, 3.96, 

3.97 and 3.100 can be seen clearly. With these ideas in ind, it 

should not be surprising to get the hypothesis (2) for the modified 

hypothes es stated in section 3.5. 

Now, it is time to clarify why the parameter dU/dz does not 

appear in the hypothesis (2). In Monin's paper (1965) it was noted 

that in the buoyru1cy subrange the dependence of spectra upon dT/dz 

only and not upon dU/dz seems unnatural. However, if dU/dz is 

introduced into hypothesis (2) in order to make this hypothesis com

plete, the simple solution as expressed in Eqs. 3.132 and 3.133 

cannot be obtained. However, the situation will not be so pessimis

tic since the dependence of the spectra upon dU/dz can be investi

gated numerically, although not analytically. And in fact, the 

numerical investigation of the dependence of spectra upon dU/dz is 

certainly an improvement upon either Bolgiano's or Lumley-Shur's 

hypothesis. Curve A in Fig. 6 shows the effect of dU/dz on the 
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spectra clearly. If Fig. 2b is reviewed, the less steep part of the 

curve on the left side of the buoyancy subrange reflects the effects 

of the production of turbulent energy due to Reyno lds stress or flux 

divergence. 

In cas e the unstable stratification is concerned, th e velocity 

spectra shown in Fig. 3 show a hump at the frequency corresponding 

to the motion of Benard cell in the thermal convection (Ivanov and 

Ordanovich, 1967). In the present study, this kind of hump due to 

unstable stratification can also be detected from Fig. 19, and it 

seems to the author that the left side of the hump of the spectra in 

Fig. 3 approaches to the +l slope as shown in Fig. 19 from the theoret

· cal consideration. Unfortunately, Ivanov and Ordanovich did not 

mention any measurements of the temperature spectra corresponding to 

the flow conditions under which the veloci ty spectra were taken. 
M 

Hence, generally speaking, when compared to the above stated measure

ments of spectra in th e atmosphere , the theoretical study by the 

present method--genera li zed eddy-viscosity approximation--can give 

better features of turbulence s tructure of thermally stratified flows 

than any of the previ ous hypotheses of Bolgiano and Lumley in the 

case of stable stratification and than Monin's results (1962) on the 

spectra of unstably stratified flow. 
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Chapter V 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

In this theoretical investigation, it was shown that the 

proposed generalized eddy-viscosi t y approximation can predict features 

of turbulence spectra of thermally stratified turbulent shear flows 

better than any previous hypotheses. The present method gives a 

general solution in the buoyancy subrange, and the effects of the 

turbulent energy production in the buoyancy subrange are investigated 

numeric a lly. As a consequence of the application of the generalized 

eddy-viscosity approximation, modified hypotheses are established for 

the buoyancy subrange of a stably stratified flow as follows: 

(1) The buoyancy subrange of a stably stratified turbulent 

flow exists when the local production and local dissipation of turbu

lent energy are not important and when the flow conditions satisfy 

the criterion 

<< 1 or _g ldTI « ~ (__[__)2 
T dz E T 

which means that the internal frequency (N/E) 112 g/T is much greater 
- 1/2 

than the Brunt-Vaisala frequency (; 1! l 
(2) In the buoyancy subrange, the spectra of turbulent energy 

and temperature fluctuation are determined by N, E , g/T, dT/dz , 

k , and c
4 

completely, and are expressed in forms 

<P(k) E 

8-4C 
4 C -12 

4 
4+C 

fl(s, rT, r l, C4)k 
4 
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and -4+ 2C
4 

E 

2-2C 
4 ( ; l c+C

4 

-3C4-4 

4+C
4 

f2(s, rT, r l, C4)k 

respectively. In t hese expres s ions, 

-2+C 
f = N 

4 

T * 
dT 
dz * 

-l+C 
f = N 

4 

1 * 

1-C 
- 4 

l dT I 
dz* 

00 > s >2 , 

dT 
2 

dT 
dz * - dz 

and f 1 and f 2 are numerical variables. Clearly, both the solution 

of Bolgiano and the solution of Lumley-Shur are contained in these 

forms when C = 1 
4 

and C ➔ 0 
4 

respectively. 

As to the unstably stratified flm.- , the velocity spectrum 

exhibits hump in the buoyancy subrange. On the left side of this 

hump the velocity spectrum approaches a +l slope and the temperature 

spectrum shows a -3 slope. 

Before the generalized eddy-viscos ity approximation is 

introduced, the basic assumption used to derive a simpler set of 

spectral equations is that the flow is locally homogeneous. In other 

words, in the derivation of the spectral equations the terms due to 

inhomogeneity of the flow fi e ld have been discarded. Thus, for better 

understanding of the effects due to the inhomogeneity it would be 

constructive to include thes e terms in the spectral equations. This 
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may be important in the case of free convection and inversion layer 

flows because the divergences of energy flux and temperature inhomo

geneity play an important role in the balance of the thermal turbu

lence energy budget equation. Thus, for further research on turbulence 

spectra of thermally stratified flows, these effects must be considered 

so that the spectral forms in the subrange where the production and 

diffusion of turbulent energy play the principal role in determining 

the turbulent structure can be investigated. 

On the other hand, the fruitful results obtained up to now 

may induce some further advanced research in applied engineering 

problems such as turbulent diffusion related to air pollution, 

wave propagation in the atmosphere, and high speed aircraft design. 

For example, in his paper, Tchen (1959) did not consider the effects 

of stratification on the dispersion of smoke from a point source 

although the role of the Reynolds stresses in the momentum equations 

was studied extensively in order to clarify the internal interaction 

of the diffusing particles. In the classical theory of the scattering 

of sound waves (Tatarski, 1961), the vertical heat flux spectrum is 

assumed to be zero in order to simplify the problem; certainly the 

vertical heat flux spectrum is not zero in the case of stratified 

flows. As to the high speed aircraft design, the airplane frequency

response function can predict the associated response spectrum of 

airplane vibration caused by turbulence (Steiner and Pratt, 1967). 
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