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ABSTRACT 
 
 
 

TEMPORAL DEMOGRAPHY OF LESSER SCAUP: A SPECIES IN DECLINE 
 
 
 

 A central goal of wildlife management and conservation is to determine which 

demographic parameters have the greatest influence on population growth rate to focus 

management actions for species of concern. Understanding how environmental conditions 

influence intra- and interannual variation in demographic parameters, and in turn population 

growth rates, requires long-term studies. This allows researchers to account for temporal 

covariation in demographic parameters that may have a greater influence on population 

dynamics than direct variation in the demographic parameter. One such species that could benefit 

from a better understanding of temporal variation and covariation in demographic parameters is 

lesser scaup (Aythya affinis, hereafter scaup), which has declined continentally since the early 

1980’s.  

I contributed to and utilized a long-term study of scaup demography at Red Rock Lakes 

National Wildlife Refuge in southwestern Montana, USA to 1) explore how environmental 

conditions influenced intra- and inter- annual variation in clutch size and nest survival, and 2) 

incorporate temporal (co)variation in demographic parameters into population models to 

decouple the influence of parameter variation, versus covariation, on population growth rate. To 

address my first objective, I considered an array of environmental covariates that were 

hypothesized to influence inter-annual variation in clutch size and nest survival such as water 

levels, water level phenology, and water temperature. In addition, I considered intra-annual 

covariates that could influence these vital rates, such as nest initiation date and day of the 

breeding season, which could serve as proxies for seasonal changes in resources, predators, or 
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both. Clutch size varied much more within years across nest initiation dates (3.18-10.05), than it 

did across years (7.51 – 8.38). Given the constrained range of clutch sizes across years, none of 

the environmental covariates exhibited significant relationships with clutch size. In contrast, nest 

survival varied little intra-annually (e.g. 2018 nest survival 0.38 ± 0.03), but greatly interannually 

(0.27 – 0.58). Water level phenology did influence nest survival, such that years when maximum 

lake levels were reached late in the breeding season relative to mean nest initiation date, had the 

highest nest survival rates. 

To address my second objective, I incorporated results from my first chapter along with 

annual estimates of female breeding propensity, duckling survival, first-winter survival of 

females, adult female seasonal survival, process variance of each vital rate, and correlation 

between each pair of vital rates into a time-variant population model and conducted a prospective 

and retrospective perturbation analysis of population growth rates. The population model 

revealed that the study population is declining by approximately 6% each year. Results from the 

prospective perturbation analysis indicated that breeding season and non-breeding season adult 

survival had the highest stochastic elasticities (0.84 and 0.82 respectively), and thus had the 

greatest potential to influence the stochastic population growth rate. Whereas, retrospective 

analyses indicated that fluctuations in duckling survival made the largest contribution to realized 

population growth rates in the past (64%). Additionally, covariation in demographic rates 

explained 37% of variation in realized growth rates compared to 63% being attributable to direct 

temporal variation in the vital rates.  

These findings collectively suggest efforts to manage water phenology at Red Rock Lakes 

National Wildlife Refuge could positively influence nest survival and efforts should focus on 

finding ways to increase duckling survival to have the greatest impact on population growth rate. 
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More broadly, covariation in demographic rates can explain a large proportion of variation in 

population growth rate and should be incorporated into population models of declining species to 

more accurately determine points in the life cycle that truly drive population dynamics, and 

therefore provide sound information to managers aiming to conserve the species.  
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CHAPTER ONE 

 LESSER SCAUP NESTING ECOLOGY: ANNUAL VARIATION IN CLUTCH SIZE AND 
NEST SURVIVAL 

 
 
 

Introduction 

A goal in wildlife management and conservation is to determine which demographic 

parameters drive population dynamics to identify where to focus management actions. For long- 

and medium-lived species, adult survival probabilities are often found to have the greatest 

potential to affect population growth rates (Gaillard et al. 1998, Sæther and Bakke 2000). 

However, adult survival is often buffered against environmental variation, and because it does 

not change as much among years compared to other demographic parameters, it often has little 

influence on realized population growth rates (Pfister 1998, Morris and Doak 2004, Koons et al. 

2009). The vital rates which comprise reproductive success, however, often fluctuate greatly 

among years and in turn may have a greater impact on realized growth rates (Chapter 2, Koons et 

al. 2017). Although some components of reproductive success may vary little inter-annually, 

they may vary greatly across individuals and reproductive attempts within a breeding season. 

Determining the factors governing within- and among-year variation in reproduction could 

therefore provide insights into how to increase vital rates and positively impact populations in a 

feasible and efficient manner. 

Nesting ecology is the most broadly researched topic in avian ecology and encompasses 

several important demographic parameters that are components of fertility estimates, such as 

clutch size and nest survival. Clutch size, which is the number of eggs laid in a single brood, is 

one of the most studied animal life-history traits (Stearns 1992, Jetz et al. 2008). Nest survival, 

the probability of at least one egg hatching in a clutch, is also of great attention because it tends 
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to be one of strongest determinants of population dynamics in ground-nesting birds (Johnson et 

al. 1992a, Hoekman et al. 2002, Clark et al. 2008, Taylor et al. 2012). Together, clutch size and 

nest success are major contributors to reproductive success, individual fitness, and variation in 

population growth rates (Cowardin and Blohm 1992, Johnson et al. 1992a, Martin 1995, Sæther 

and Bakke 2000, Thackeray et al. 2010).   

Variation in clutch size at a given locale and time of year is driven by resource 

availability and energetic constraints (Lack 1947), as well as individual heterogeneity in the 

ability to acquire resources and allocate energy to the clutch (Van Noordwijk and De Jong 1986). 

For example, seasonal declines in food resources can result in seasonal declines in maternal body 

condition and consequently clutch size, whereby individuals nesting earlier tend to lay larger 

clutches than those nesting later in the season (Perrins and McCleery 1989, Aparicio 1994, Rowe 

et al. 1994, Decker et al. 2012). Older, more experienced individuals tend to be best at timing 

their energy acquisition and nesting phenology to avoid seasonal shortfalls in resources, which in 

part contributes to the common positive relationship between age/experience and clutch size 

(Klomp 1970, Hamann and Cooke 1986). Nest predation can also force females to re-nest after 

they have already expended resources on an initial clutch, leading to lower clutch sizes of re-

nests that in part contribute to seasonal declines (Bengston 1972, Milnoff 1991). Inter-annual 

variation in environmental conditions may also influence food availability, specifically 

invertebrate resources which provide protein and minerals that are vital for clutch formation 

(Drobney 1991, Robertson 1995).  

Like clutch size, nest survival in waterfowl can vary greatly within and across years, and 

across habitats (Klett and Johnson 1982, Wilson et al. 2007). Predation is the leading 

determinant of nest survival that often dictates observed patterns in nest survival across space 
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and time, but research has focused primarily on spatial variation across habitats (Clark and 

Shutler 1999, Stephens et al. 2005). A female’s ability to choose an adequate nesting site affects 

the chance of a predator detecting and preying upon her nest. Previous studies have found that 

nest-site selection and nest concealment influence nest survival in many upland nesting dabbling 

ducks (Hines and Mitchell 1983, Guyn and Clark 1997, Clark and Shutler 1999). However, 

studies of diving ducks have found no relationship between nest-site selection and nest survival  

(Krasowski and Nudds 1986, Maxson and Riggs 1996, Brua 1999, O’Neil et al. 2014).  

Apart from spatial variation in nest predation, or lack thereof, predation intensity can also 

change over time within a breeding season (Fields et al. 2001, Wilson et al. 2007, Colwell et al. 

2011). In wetland systems, e.g., high water levels early in the breeding season can prevent 

mammalian predators from accessing nests (Maxson and Riggs 1996, Albrecht et al. 2006) or 

ample availability of alternative prey may result in prey-switching among predators and hence 

lower levels of nest predation (Brook et al. 2005, 2008). In precocial birds such as waterfowl, 

nest developmental age is also positively related to the daily chances of a nest surviving. This 

occurs primarily because female hormones lead to increased incubation constancy closer to 

hatch, which tends to decrease chances of nest predation (Grand et al. 2006).  

Finally, nest survival may be driven by inter-annual variation in environmental 

conditions. For example, weather can influence resource availability and affect average female 

body condition, resulting in adjustments of incubation constancy that impact nest survival 

(Skutch 1962, Gloutney and Clark 1991, Bromley and Jarvis 1993, Blums et al. 1997, Newton 

2006, Devries et al. 2008). Additionally, warmer Spring temperatures have resulted in higher 

nest survival, due to higher availability of alternative prey resources to predators (Drever and 

Clark 2007). Fluctuations in wet and dry periods, wetland density and current-year primary 
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productivity were also found to influence nest survival in the Prairie Pothole Region (Walker et 

al. 2013). Thus, when studying nesting ecology, it is important to consider many drivers of 

clutch size and nest survival to better understand what is driving reproductive success and 

population dynamics, especially for informing the management of declining populations.    

Lesser Scaup (Aythya affinis) are a medium-sized diving duck that could benefit from a 

deeper understanding of the processes driving temporal variation in clutch size and nest survival 

because their population has declined while other North American waterfowl are thriving. Scaup 

populations have declined since the late 1970s and the current population estimate (3.6 ± 0.2 

million) remains below objectives of the North American Waterfowl Management Plan of 4.9 

million (Figure 1.1; note that estimates of scaup abundance represent a combination of Greater 

Scaup (Aythya marila) and Lesser Scaup because these two species cannot be differentiated in 

aerial surveys, but is comprised of ~90% lesser scaup, Anteau et al. 2014, U.S. Fish and Wildlife 

Service 2019). The extensive range of Lesser Scaup (hereafter scaup) exposes them to a wide 

variety of threats that may be contributing to the marked population decline. Previous analyses of 

long-term wing collections suggested that recruitment and female survival may have both 

declined since the 1970s (Allen et al. 1999, Afton and Anderson 2001). However, recent 

analyses of banding data and an integration of monitoring data have found no long-term declines 

in survival and concluded that recruitment has been the likely driver of decline across the 

traditional survey area of the Waterfowl Breeding Population and Habitat Survey (Arnold et al. 

2016, 2017, Koons et al. 2017).  

While nesting ecology has been widely studied in scaup, few studies have been 

conducted consecutively over long periods of time at one location (Afton 1984, Koons and 

Rotella 2003a, Walker et al. 2005, Koons et al. 2006, Corcoran et al. 2007). One uninterrupted 
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long-term study focused on the effects of hatch date and egg size on growth, recruitment, and 

survival of scaup, but not the effects of environmental variation on demographic performance 

(Dawson and Clark 1996, 2000). We studied a population of scaup at Red Rock Lakes National 

Wildlife Refuge, Montana from 2006-2015 and 2017-2018. Our primary objective here is to 

identify environmental variables related to temporal variation in scaup clutch size and nest 

survival at our study area. We focus primarily on inter-annual drivers of these two vital rates, 

while accounting for intra-annual variation, because spatial variation in habitat conditions at the 

nest site has been previously explored and found to have little influence (O’Neil et al. 2014). We 

hypothesized that annual water levels, water temperatures and the phenology of peak water 

levels relative to the mean nest initiation date each year would influence clutch size and nest 

success at our study site. These environmental conditions were of interest because they are 

closely related to the hypotheses of scaup decline. In relation to the Climate Change-Habitat 

Hypothesis (Box 1), we predicted that years with lower water levels would serve as a proxy for 

decreased aquatic invertebrate abundances, and simultaneously reduced protection of nests from 

predators, thereby resulting in lower clutch size (because of limited resource availability) and 

nest survival. As predicted by the Climate Change-Phenological Mismatch Hypothesis (Box 1) 

we hypothesized that increased water temperatures early in the breeding season and water level 

phenology relative to nest initiation could influence temporal pulses in primary productivity and 

invertebrate populations relative to scaups’ nutritional needs that would be negatively related to 

clutch size and nest survival.  
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Box 1) Several environmental mechanisms for the decline in scaup abundance have been 

hypothesized, two of which highlight possible changes in the quality of habitat on the breeding 

grounds. The Global Change-Habitat Hypothesis states that poor wetland conditions on breeding 

grounds and at stopover locations has reduced food availability and nesting habitat which could result 

in lower reproductive success (Austin et al. 2014). Changes in wetland conditions are largely due to 

changes in agricultural practices and climate change. Wetland consolidation in the Prairie Pothole 

region, which drains multiple smaller wetlands into larger permanent wetlands, can support fish 

populations throughout the year (smaller wetlands typically freeze over and kill fish populations), 

resulting in decreased abundances of aquatic invertebrates available to duck populations (McCauley et 

al. 2015, McLean et al. 2016b). Climate change may also drive changes in precipitation regimes 

across the scaup breeding range and may have opposing effects in different regions. For example, the 

Canadian western boreal forest is experiencing warming at faster rates than other terrestrial biomes 

and is particularly vulnerable to increased drought (Drever et al. 2012, Price et al. 2013). Given the 

western Boreal Forest encompasses the core scaup breeding range, poor wetland conditions due to 

drought could decrease nesting habitat and food abundances. The opposite effect on precipitation 

regimes are predicted in the Prairie Pothole Region, where precipitation is expected to increase. 

Subsequently leading to deeper permeant wetlands, increased fish abundance, and decreased aquatic 

invertebrate abundance (McLean et al. 2016b, 2016a, Janke et al. 2019). Once again this could result 

in decreased food availability to scaup and drive declines in nesting or duckling productivity. 

Additionally, the Climate Change-Phenology Mismatch Hypothesis suggests earlier spring phenology 

has led to invertebrate pulses that no longer align with the phenology of scaup dietary needs 

throughout the breeding season, resulting in lower scaup productivity (Austin et al. 2014). Both 

hypotheses predict that changes in environmental conditions could be influencing scaup nesting 
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Methods 

Study Site  

Our study was conducted on Lower Red Rock Lake (LRRL) at Red Rock Lakes National 

Wildlife Refuge (RRL) in Southwest Montana (Figure 1.2). Lower Red Rock Lake is a 2,330-

hectare, high elevation (2,014 m above mean sea level) montane wetland complex within the 

Centennial Valley that supports a high density of breeding lesser scaup (>7.7 breeding pairs/km2, 

J. Warren pers obs).   

This wetland system is characterized by large areas of open water with hardstem bulrush 

(Schoenoplectus acutus) islands and surrounded by vast stands of seasonally flooded Northwest 

Territory sedge (Carex utriculata). Interspersed in the sedge stands are small (< 2 ha) open water 

ponds, which offer additional nesting habitat (e.g., to nest near open water and escape from 

predators). Water levels in LRRL do not exceed 1.5 m during the nesting season. Average annual 

precipitation and temperatures are 49.5 cm and 1.7°C, respectively. This site is one of the most 

constrained breeding environments for lesser scaup, measured by growing season length, making 

it similar to the northwest boreal forest core of the scaup breeding range in Canada (Gurney et al. 

2011). The wetland complex at RRL has many similarities to wetland systems in the northern 

boreal forest including shallow waters, fluvial hydrology and large expanses of flooded 

northwest territory sedge (Carex utriculata, U.S. Fish and Wildlife Service 2009, Wells et al. 

2010, Gurney et al. 2017). These attributes contrast prairie wetlands that are fed by snow runoff 

and ground water (Hayashi et al. 2016), and the Prairie Pothole Region where many previous 

studies of lesser scaup have been conducted (Rogers 1964, Hammell 1973, Afton 1984, Austin 

and Fredrickson 1986, Koons and Rotella 2003b, 2003a, Rotella et al. 2003, Anteau and Afton 

2006). In addition, water levels at our study site can be manipulated by a water control structure 
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at the out flow of LRRL, which parallels boreal systems which are often regulated by large 

hydroelectric dams.  

Data Collection  

To study determinants of inter-annual variation in scaup clutch size and nest success at our 

study area, we initiated nest searching in June of 2006 and continued nest searching efforts each 

summer through 2018, except for 2016 due to lack of funding. The study area was divided into 

16 survey blocks each containing one to four 750 X 750-meter cells (blocks with predominately 

open water had one cell whereas blocks that were predominately vegetation had four cells). 

These survey blocks were systematically searched on foot, with a focus on upland and nearshore 

habitats for lesser scaup nests. Investigators flushed hens from nests by walking through nesting 

habitat and disturbing vegetation with willow switches or a trained dog. When a nest was 

located, we determined clutch size, incubation stage and estimated nest initiation date via 

candling eggs (Weller 1956). A suite of habitat characteristics was recorded including water 

depth adjacent to the nest, distance from open water, vegetation type and height, and shore type. 

Nest locations were recorded in Universal Transverse Mercator coordinates (UTMs) using a 

GPS, and a willow switch with flagging tape was placed 4 meters to the north of the nest to assist 

in locating for future visits. We continued to visit nests every 7 – 10 days until fate was 

determined (i.e., successful, destroyed, abandoned).  

 We quantified wetland conditions at our study site using a capacitance probe water level 

and temperature data logger (model WT-HR 1500; TruTrac, Christchurch, New Zealand). In 

April of each year, we deployed the probe at the outflow of LRRL, which recorded hourly water 

levels and temperature throughout the breeding season. We also made visual observations of a 

staff gauge at the same location in case of capacitance probe malfunctions. All field protocols 
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were approved by Colorado State University Institutional Animal Care and Use Committee 

(IACUC) 18-7736A.  

Clutch Size  

 To estimate within- and among-year variation in clutch size, we used generalized linear 

mixed-effect models (GLMMs) with Poisson error and a log-link in the R (R Development Core 

Team 2018) lme4 package that uses maximum likelihood estimation (Bates et al. 2012).  The 

nest initiation date (INIT) of each nest was included as a fixed effect because previous studies 

have found nests initiated earlier in the breeding season have larger clutch sizes in scaup and 

other waterfowl species compared to nests initiated later in the season, largely because of the 

mechanisms presented in the Introduction (Reynolds 1972, Krapu 1981, Batt et al. 1992, 

Alisauskas and Ankney 1994, Esler et al. 2001), and because this effect had previously been 

detected for scaup at our study site (Warren et al. 2013). We also considered fixed effects for 

both the mean pre-breeding season water level (PRELVL, May 1st – June 16th) and water 

temperature (PRETEMP) because both variables can influence primary productivity and 

available invertebrate food resources (Vannote and Sweeney 1980, Cayrou and Céréghnio 2005, 

Devries et al. 2008), which scaup are known to acquire once arriving on the breeding grounds 

before clutch formation (Cutting et al. 2011). As an alternative, we also considered mean 

breeding season water level (LVL, May 1st – August 30th) because females must continue to 

forage throughout the egg laying period to continue to supply nutrients for egg production 

(Arnold and Rohwer 1991). We also considered an index of nesting phenology (PHENIND) 

relative to water level by subtracting the annual mean nest initiation date from the ordinal date of 

maximum water level each year. A large PHENIND indicates water levels peaked late in the 

nesting season relative to mean nest initiation date, whereas a small PHENIND indicates that 
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water levels peaked early in the breeding season. We included this index because phenology of 

peak water levels may influence invertebrate resource pulses that align or misalign (Winder and 

Schindler 2004, Thackeray et al. 2010) with scaup nutrient needs during egg production. All 

explanatory water variables were standardized (mean 0 and s.d. of 1). We similarly standardized 

nest initiation dates within each year relative to the respective annual mean in order to account 

for intra-annual variation among nests that could be attributable to unmeasured individual 

heterogeneity in female reproductive investment (Aubry et al. 2009).   

Our suite of considered models included univariate fixed effects of each covariate, 

bivariate additive effects between nest initiation date and each inter-annual water covariate (LVL 

and INIT, PRELVL and INIT, PRETEMP and INIT, and PHENIND and INIT) and relevant 

interactions. We also included a random intercept for nest year (YEAR) to estimate inter-annual 

variation not explained by the fixed effects. Conditional Akaike’s Information Criterion (cAIC) 

was used for model selection because it appropriately accounts for the dimension of the random 

effect in the penalty term (Saefken et al. 2014). We considered parameters imprecise and 

uninformative if their 95% confidence intervals overlapped zero and if addition of such 

parameters to a nested simplification increased the cAIC value of a model, as opposed to 

decreasing it. Whereas the addition of parameters with explanatory power should decrease the 

cAIC value of a model (Arnold 2010).  

Nest Survival  

 We estimated daily survival rates (DSR) of nests using the ‘nest survival model’ in the 

RMark package for R (Laake 2013, R Development Core Team 2018) that calls program MARK 

(White and Burnham 1999). This model allowed us to examine environmental covariates for 

temporal variation in DSR of nests on the logit scale (Dinsmore et al. 2002, Rotella et al. 2004, 
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Rotella 2007). The influence of nest-site habitat characteristics at our study site was previously 

considered, and generally induced little selective force on choice of nesting sites (O’Neil et al. 

2014). Our focus here was therefore on variables hypothesized to influence temporal variation in 

nest survival at our study site.  

To test if DSR varied over time within breeding seasons, we included models with a 

linear (TIME) and quadratic (TIME + TIME2) seasonal time trend. Previous work with nesting 

birds has found that DSR can increase as the nesting season progresses due to decreased rates of 

nest predation as alternative prey become available to predators (Wilson et al. 2007, Colwell et 

al. 2011). DSR may also decrease throughout the breeding season due to declines in female body 

condition (Fields et al. 2001, Brook et al. 2005, Devries et al. 2008). We also considered a 

univariate model for the effect of nest age (NAGE) because DSR is known to increase with nest 

age as females increase incubation constancy (Forbes et al. 1994, Flint 2003).  

We next considered the same covariates for inter-annual variation in wetland conditions 

that we used in the clutch size analysis, which allowed us to explore how they might 

simultaneously influence nest survival. For example, water levels during the pre-breeding period 

(PRELVL) could influence food availability for females. In turn we may expect nest survival to 

decrease in years of lower pre-breeding water levels because females tend to be in poorer body 

condition (Warren et al. 2013), which may require females to take more frequent incubation 

breaks that can attract attention from predators (Blums et al. 1997). Pre-breeding season water 

temperatures (PRETEMP) could also affect nest survival because water temperatures could 

influence invertebrate hatches when females are acquiring nutrients for incubation and affect nest 

survival via the same mechanisms as pre-breeding water levels. Breeding season water levels 

(LVL) could also influence nest survival by restricting predator access to nests. Nest predators 
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such as coyotes and skunks are less likely to wade or swim through large expanses of flooded 

sedge during high water years, whereas during low water years predators may easily walk to 

nests (Jobin and Picman 1997). The phenological index (PHENIND: mean nest initiation date – 

ordinal date of maximum water level) may reveal a match or mismatch between nesting females’ 

nutritional needs and food resources, which may influence female body condition, incubation 

constancy, and therefore nest survival (Winder and Schindler 2004, Thackeray et al. 2010).  

 We took a tiered approach to model selection, as we were interested in inter-annual 

drivers of nest survival while accounting for intra-annual variation in nest DSRs, and wanted to 

avoid data dredging by considering all possible combinations of covariates (Franklin et al. 2000). 

First, we built a set of models with explanatory variables describing inter-annual variation in 

wetland conditions that included univariate effects of PRELVL, LVL, PRETEMP, PHENIND, 

and a null model with CONSTANT DSR. Bivariate additive effects of PRELVL + PRETEMP, 

LVL + PRETEMP, PRELVL + PHENIND, LVL + PHENIND were also considered (though 

bivariate additive effects of PRETEMP and PHENIND were not considered due to 

multicollinearity). As with the clutch size analysis, if additional parameters did not decrease 

AICc values, we considered the effects uninformative (Arnold 2010). We then took the top 

model(s) from the first step and considered additional effects of covariates serving as proxies for 

biological mechanisms that could affect intra-annual variation in nest mortality, including TIME, 

TIME + TIME2, and NAGE. We used Akaike’s information criterion adjusted for sample sizes 

(AICc) for model selection in both steps (Akaike 1998, Burnham and Anderson 2002). After 

determining the top model with fixed-effect covariates describing inter- and intra-annual 

variation in nest survival, we aimed to add a random effect for nest year to estimate inter-annual 

variation that could not be explained by the covariates. However, we could not implement this in 
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RMark due to the complexity of our model and limitations of implementing mixed-effect models 

in RMark. As an alternative, we added year (YEAR) as a fixed effect. To determine the 

explanatory power of focal covariates in our top models we conducted an analysis of deviance 

(ANODEV), which indicates the proportion of deviance (𝑅𝐷𝐸𝑉2 ) explained by covariates in a 

model compared to full inter-annual variability in DSR (Equation 1, Skalski 1996). 

 𝑅𝐷𝑒𝑣2 = 𝐷𝑒𝑣𝑇𝐼𝑀𝐸+𝑇𝐼𝑀𝐸2 − 𝐷𝑒𝑣𝑃𝐻𝐸𝑁𝐼𝑁𝐷+𝑇𝐼𝑀𝐸+𝑇𝐼𝑀𝐸2𝐷𝑒𝑣𝑇𝐼𝑀𝐸+𝑇𝐼𝑀𝐸2 − 𝐷𝑒𝑣𝑌𝐸𝐴𝑅+𝑇𝐼𝑀𝐸+𝑇𝐼𝑀𝐸2                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

Finally, we used the fitted DSR estimates from the top model and the delta method (Powell 

2007) to estimate a nest survival probability for each year (using a 34-day period of laying and 

incubation).  

Results  

Environmental Conditions 

Pre-breeding water levels at LRRL averaged 2013.87 (± 0.17) msl with the highest mean 

pre-breeding water levels in 2008 (2014.13 ± 0.10 msl) and the lowest in 2007 (2013.61 ± 0.05 

msl). During the years of 2015, 2017, and 2018 the capacitance probe malfunctioned, and we 

were unable to obtain average water temperature readings. For the purposes of modeling we 

included the average water temperature over the entirety of the project during pre-breeding for 

these years with missing data (which should lead to conservative estimated effects, if any). Pre-

breeding water temps averaged 13.12 (±2.30) °C and ranged from 0.43 – 28.49 °C. Water 

temperatures were lowest in April of 2008 and highest in July of 2016. Breeding season water 

levels averaged 2013.87 (± 0.19) meters above sea level (msl) and ranged between 2013.14 – 

2014.33 msl. The highest mean water levels occurred in 2011 (2014.13 ± 0.08 msl) and the 
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lowest mean water levels occurred in 2013 (2013.67 ± 0.05 msl). The ordinal date of the 

maximum water level throughout the breeding season averaged day 169 (± 41 days) with the 

earliest date being 121 (2009 and 2010) and the latest being 243 (2015). Our phenology index 

demonstrated that maximum water levels rarely ‘matched’ with mean initiation dates ranging 

from an index of -53 (ordinal date of maximum water level was earlier than mean nest initiation 

for that year) to 71 (ordinal date of maximum water level was later than mean nest initiation date 

for that year) with a median of -9 (Appendix Figure A1.1). 

Clutch Size Estimates  

 Over 12 years we monitored a total of 825 nests. For the clutch size analyses, we 

removed any nest with a clutch size < 4 because these were not considered full clutches (e.g., the 

likely result of partial egg predation, accidental ejection of eggs by the female or are likely renest 

as waterfowl clutch are smaller in renesting attempts (Batt and Prince 1979, Esler and Grand 

1994, Anteau et al. 2014)), which left 711 nests for analysis. Across years the mean clutch size 

was 7.93 (±1.67) eggs (Figure 1.3), and annual means across nests ranged from 7.07 (year 2006) 

to 8.96 (year 2012) eggs (Figure 1.4). Mean nest initiation date for the study period was day 

172.21 (± 9.42), with the earliest mean nest initiation date occurring in 2007 (day 166) and the 

latest in 2011 (day 187) (Appendix Figure A1.2).   

The univariate model with nest-specific initiation date within a year (INIT) was the top 

model among our candidate set designed to explain inter- and intra-annual variation in lesser 

scaup clutch size at our study area (Table 1.1). Several other models were within two cAIC 

points of our top model; however, these were all additive or interaction models that included the 

top model as a nested simplification deeming these more complex models as uninformative and 

they were also imprecise, (i.e., 95% CI highly overlapped 0). In our top-ranking model, nests 
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initiated later in the season had significantly smaller clutch sizes (log-scale Intercept: 𝛽̂ = 2.06 ± 

0.02, 95% CI: 2.02 to 2.10, INIT: 𝛽̂ = -0.11 ± 0.01, 95% CI: -0.14 to -0.09, Figure 1.5). After 

controlling for relative nest initiation dates within each year, the variance for the YEAR random 

effect (0.002 ± 0.047 on the log scale) indicated that clutch size varied little between years.  

Daily Survival Rate and Nest Survival Estimates  

 We monitored a total of 783 nests until fate was determined, of which 537 were 

successful (68.6% apparent nest survival). In our first tier of model selection only three models 

outperformed a null model, and the top included a univariate effect of PHENIND that carried 

51% of the model weight (logit-scale Intercept: 𝛽̂ = 3.87 ± 0.07, 95% CI: 3.74 to 4.00, 

PHENIND: 𝛽̂ = 0.18 ± 0.07, 95% CI: 0.05 to 0.30, see Table 1.2 for model selection table). The 

second and third models included the addition of LVL (LVL + PHENIND) and PRELVL 

(PRELVL + PHENIND), which resulted in the maximum penalty of +2 AICc points, deeming 

the LVL and PRELVL variables as uninformative. Therefore, we retained only PHENIND in the 

second tier of model selection in which we added explanatory variables for intra-annual variation 

in DSR.   

In this next tier of model comparison, the data indicated greatest support for additive 

effects of PHENIND and the quadratic model of TIME + TIME2, which carried nearly 100% of 

the model weight (logit-scale Intercept: 𝛽̂ = -0.45 ± 0.62 95% CI: -1.66 to 0.76, PHENID: 𝛽̂ = 

0.19 ± 0.67, 95% CI: 0.06 to 0.32, TIME: 𝛽̂ = 0.15 ± 0.03, 95% CI: 0.10 to 0.20, TIME2: -

1.20*10-3 ± 2.91*10-4, 95% CI: -1.75*10-3 to 6.12*10-4, see Table 1.3 for model selection table).  

Within a single year, DSR was lower at the beginning of nesting season, increased and peaked in 

the middle of the season, and generally plateaued after the peak (Figure 1.6). The positive effect 
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of PHENIND indicated that DSR was generally higher in years when the ordinal date of 

maximum water level was much later than the mean nest initiation date (Figure 1.7). For 

example, 2014 had the highest PHENIND, where the date of maximum water level was on day 

243 (August 31st), the mean nest initiation date was on day 171 (June 20th), and reached a 

maximum DSR within the season of 0.990 ± 0.002 (95% CI: 0.986 – 0.993). The years with the 

lowest PHENIND were 2009 and 2010, with a date of maximum water level of 121 (May 1st) 

and a mean nest initiation date of 174 (June 23rd). The maximum DSR throughout the season was 

0.983 ± 0.003 (95% CI: 0.978 to 0.987) and 0.982 ± 0.003 (95% CI: 0.784 to 0.984) for 2009 

and 2010 respectively. Results from the ANODEV indicated that PHENIND explained 42% of 

the inter-annual variation in DSR compared to the YEAR + TIME + TIME2 model. 

Because the PHENIND + TIME + TIME2 was our top-ranked model according to AICc, 

we used predicted DSRs from this model to calculate an annual estimate of nest survival using 

the delta method. Nest survival at LRRL averaged 0.43 (± 0.02, 95% CI: 0.38 to 0.48) among all 

years. Annual nest survival was highest in 2011 (0.58 ± 0.03, 95% CI: 0.52– 0.64, Figure 1.8) 

and lowest in 2007 (0.28 ± 0.04, 95% CI: 0.21 to 0.35).  

Discussion 

Determining the environmental variables that drive variation in reproductive success can 

provide information to managers to help the enact positive influences on population growth rates 

(Rushing et al. 2016, 2017). We examined the influence of seasonal water levels and temperature 

on both clutch size and nest survival because these easily measured abiotic variables can affect 

aquatic invertebrate abundances and accessibility of nests to predators, thereby serving as 

potential proxies for these more difficult to measure biotic drivers of scaup reproductive 

performance. As is common in waterfowl, clutch size declined seasonally (Krapu et al. 1983, 
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Duncan 1987, Flint et al. 2006), but exhibited little variation across years and did not respond to 

inter-annual fluctuations in the water variables we considered. Nest survival, however, varied 

substantially across years and was positively correlated with the index of water level phenology, 

indicating that nest survival was highest in years when water reached peak levels well after nest 

initiation at the LRRL study area. Contrary to being consistent with the concept of a resource-

consumer phenology mismatch, this result more so suggests that rising wetland levels to a late-

season peak provided protection against mammalian predators and nest flooding.   

Clutch Size  

The small inter-annual variability of clutch size at our study site (process variance = 

0.0022 ) was similar to that at other sites in the northern boreal, prairie-parklands, and prairie 

pothole region (Corcoran et al. 2007, Gurney et al. 2011). It is hypothesized that observed 

variation in clutch sizes intra-annually is likely due to individual heterogeneity in specific 

females such as age and ablility to improve body condition just prior to breeding (Lindberg et al. 

2013, Warren et al. 2013). Re-nesting attempts could have also influenced the observed variation 

in clutch size given females are known to lay fewer eggs in re-nesting attempts (Batt and Prince 

1979, Eldridge and Krapu 1988), however we were unable to accurately estimate re-nesting 

probability at our study site. Furthermore, mean clutch sizes at our study site were slightly lower 

than at other nesting locations for scaup, likely due to the high elevation which, similar to high 

latitude, generally leads to lower clutch sizes in most species (Krementz and Handord 1984, 

Johnson et al. 2006, Boyle et al. 2016). For example, Koons et al. (2006), reported clutch size 

estimates for SY and ASY female lesser scaup as 7.88 and 9.74 respectively in the boreal forest 

region, and 8.82 and 10.68 respectively in the prairie-parkland region.   
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 The seasonal decline in clutch size at LRRL is well documented at other locations for 

scaup and other waterfowl species (Perrins and McCleery 1989, Aparicio 1994, Rowe et al. 

1994, Decker et al. 2012). Gurney et al. (2011) found a seasonal decline in clutch size across the 

entire breeding range of scaup. However, scaup did not respond to seasonal environmental 

constraints by increasing the rate of clutch size declines at locations with shorter growing season 

lengths, resulting in low levels of inter-annual variation in clutch size. Furthermore, studies have 

found that scaup rely heavily on endogenous nutrients obtained at stopover locations prior 

arriving on the breeding grounds (Afton and Ankney 1991, Esler et al. 2001), which could 

explain why environmental variables at out study site explained little of the inter-annual 

variation in clutch size. Yet, Cutting et al. (2011) found that scaup at LRRL rely heavily on 

endogenous nutrients when local conditions are poor and exogenous nutrients when local 

resources are readily available, suggesting scaup might readily adapt their energetic acquisition 

and allocation strategy for clutch formation. The small process variance in clutch size, and lack 

of response to local environmental variables further suggests that these plastic energetic 

strategies help scaup buffer their clutch size against inter-annual fluctuations in environmental 

conditions.   

Nest Survival 

We additionally found that water level phenology had a greater influence on nest survival 

than mean water levels. Specifically, nest survival was highest when water reached peak levels 

late in the breeding season, which maintains protective flooded sedge habitats during the 

relatively late nesting phenology of scaup compared to other species. Maintaining flooded sedge 

habitats likely protected nesting females from mammalian predators such as coyotes, foxes, and 

skunks, which are not inclined to wade through flooded sedge habitats to search for overwater 
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nests (Jobin and Picman 1997). However, nests were still susceptible to mink and to predation 

from avian predators such as ravens and gulls. Also beneficial during periods of high water 

levels, females can discretely swim off their nests to take incubation breaks. Whereas low water 

periods force females to fly off the nest, revealing the nest location to predators and resulting in 

increased rates of nest failure. More conspicuous incubation behavior resulted in higher rates of 

predation in shorebirds which is also likely the case in waterfowl since they are exposed to 

similar nest predators (Smith et al. 2012). Finally, maximizing water levels extremely late in the 

breeding season compared to mean nest initiation date may have also led to decreased rates of 

nest flooding, since many nests would have already hatched. Nest flooding is a known cause of 

nest failure at LRRL (Navarre, pers obs), was the second leading cause of nest failure in the 

boreal (Walker et al. 2005), and is often a cause of nest failure in other diving duck species 

(Bouffard et al. 1987, McAuley and Longcore 1989).  

Historically (1950s – 1990s), nest survival of scaup varied among years and locations 

with average rates in the prairie grasslands, prairie parklands, and northern boreal of 37.3%, 

29.5%, and 57.2% respectively (Anteau et al. 2014). More recent studies in these locations found 

nest survival rates of 32% in the northern boreal and 33% in the prairie-parklands (Koons et al. 

2006), with rates ranging from 11-27% in the Alaskan boreal forest (Walker et al. 2005, 

Corcoran et al. 2007, Martin et al. 2009). With a mean rate of 43% at LRRL, nest survival is 

slightly higher than many of the recent estimates in other locations, but lower than historic 

estimates in the northern boreal. These elevated nest survival rates at LRRL, compared to other 

sites is likely due to relatively high and maintained water levels (due to historic water control 

structures), which can act as a buffer against drought cycles. 

 



20 

Management Implications 

 Given the lack of response to inter-annual environmental variation, management actions 

have little potential to influence clutch size in lesser scaup. Manipulations of water levels are 

likely to have no effect on clutch size. However, our results demonstrate that water levels could 

be managed to remain high, or slowly increase throughout the breeding season to positively 

influence nest survival. In years with ample snowpack and runoff, water levels could be 

manipulated via a water control structure on LRRL. Managers historically increased water levels 

early in the breeding season to provide ample nesting habitat for the trumpeter swan (Cygnus 

buccinator), then let them decrease throughout the breeding season, and finally increased water 

levels again to maximize recreational opportunities such as waterfowl hunting in the autumn. 

Altering wetland management practices to maintain or slightly increase water levels throughout 

the breeding season at RRL may benefit scaup populations, however, one would need to consider 

the management of scaup, trumpeter swans, arctic grayling (a species of conservation concern, 

Thymallus arcticus), as well as downstream water users. Co-optimizing all the needs and 

concerns among species and stakeholders would best be considered through a Structured 

Decision Making framework (Gregory et al. 2012). Structured Decision Making could also help 

develop collaborative projects with industry, First Nations, and governments in the boreal, where 

many systems have large hydro-electric dams that could manage water levels to benefit scaup 

nest survival and other species while generating ample power. 
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Table 1.1) Comparison of models with variables hypothesized to affect lesser scaup (Aythya 

affinis) clutch size between 2006 to 2018 (excluding 2016) at the Lower Red Rock Lake study 

area in southwestern Montana, USA. Shown are the modeled variables (Model), conditional log 

likelihood (CLL), degrees of freedom (df), and conditional Akaike Information Criterion (cAIC). 

INIT = nest-specific initiation date within a year,  PRELVL = pre-breeding season water level, 

LVL = breeding season water level, PHENIND = phenological index, PRETEMP = pre-breeding 

season water temperature. All models included a random effect for nest year (YEARRAN).  

Model CLL df cAIC 

INIT + YEARRAN -1474.30 8.57 2965.75 

PRELVL + INIT + YEARRAN -1474.34 8.54 2965.75 

LVL + INIT + YEARRAN -1475.40 7.59 2965.97 

PHENIND + INIT + YEARRAN -1474.30 9.03 2966.67 

PRETEMP + INIT + YEARRAN -1474.30 9.09 2966.79 

PRELVL * INIT +YEARRAN -1473.95 9.52 2966.94 

PHENIND * INIT + YEARRAN -1473.82 10.04 2967.72 

LVL * INIT + YEARRAN -1475.37 8.55 2967.84 

PRETEMP * INIT + YEARRAN -1473.88 10.09 2967.94 

INTERCEPT + YEARRAN -1508.70 7.58 3032.56 

PRELVL + YEARRAN -1508.74 7.54 3032.56 

LVL + YEARRAN -1509.80 6.58 3032.75 

PHENIND + YEARRAN -1508.71 8.03 3033.47 

PRETEMP + YEARRAN -1508.70 8.10 3033.60 
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Table 1.2) Comparison of models for first step in model selection for nest daily survival rates 

with inter-annual covariates for lesser scaup (Aythya affinis) at the Lower Red Rock Lake study 

site in Montana, USA between 2006 to 2018 (excluding 2016). Shown are the modeled variables 

(Model), deviance, number of parameters (K), Akaike Information Criterion adjusted for sample 

size (AICc), difference in AICc relative to the top model (ΔAICc), and model weight (wi) . 

PRELVL = pre-breeding season water level, LVL = breeding season water level, PHENIND = 

phenological index, PRETEMP = pre-breeding season water temperature, CONSTANT = a null 

model with constant DSR.   

 

 

Table 1.3) Comparison of models for second step of model selection for lesser scaup (Aythya 

affinis) nest daily survival rates (DSR) at the Lower Red Rock Lake study site, Montana, USA 

between 2006 to 2018 (excluding 2016), where intra-annual covariates were added to the inter-

annual covariate(s) supported in the first step of model selection. Shown are the modeled 

variables (Model), deviance, number of parameters (K), Akaike Information Criterion adjusted 

for sample size (AICc), the difference in AICc relative to the top model (ΔAICc), and model 

weight (wi) . PHENIND = phenological index, TIME = linear time trend in DSRs across the 

breeding season, TIME2 = additional term for a quadratic time trend, and NAGE = nest 

developmental age. 

Model Deviance K AICc ΔAICc wi 

PHENIND + TIME + TIME2 1360.21 4 1368.21 0.00 1 

PHENIND + TIME 1374.31 3 1380.31 12.10 0 

PHENIND + NAGE 1377.46 3 1383.46 15.25 0 

PHENIND 1423.62 2 1427.62 59.41 0 

 

 

Model Deviance K AICc ΔAICc wi 

PHENIND 1423.62 2 1427.62 0.00 0.51 

PRELVL + PHENIND 1423.59 3 1429.59 1.97 0.19 

LVL + PHENIND 1423.62 3 1429.62 2.00 0.19 

CONSTANT 1430.90 1 1432.90 5.28 0.04 

PRELVL 1429.78 2 1433.78 6.16 0.02 

PRETEMP 1430.42 2 1434.42 6.80 0.02 

LVL 1430.47 2 1434.48 6.85 0.02 

PRELVL + PRETEMP 1429.71 3 1435.71 8.09 0.01 

LVL + PRETEMP 1429.97 3 1435.928 8.36 0.01 
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Figure 1.1) Breeding population estimates (solid line) of combined lesser scaup (Aythya 

affinis) and greater scaup (Aythya marila) abundance (the two species cannot be 
differentiated during aerial surveys) and standard errors (grey area). The dashed line 
indicates the North American Waterfowl Management Plan population goal. Estimates 
are from the Waterfowl Breeding Population and Habitat Survey traditional survey area 
which comprises coastal, boreal, prairie-parklands, and prairie pothole habitats in parts of 
North-Central United States, Canada, and Alaska (U.S. Fish and Wildlife Service 2019). 
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Figure 1.2) Map of Lower Red Rock Lake study site and location of Red Rock Lakes National 

Wildlife Refuge in southwestern Montana, USA. 
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Figure 1.3) Distribution of lesser scaup (Aythya affinis) clutch sizes from 2006-2018 (excluding 

2016) at the Lower Red Rock Lake study area in Montana, USA.  
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Figure 1.4) Predicted annual mean clutch sizes for lesser scaup (Aythya affinis) at the Lower Red 

Rock Lake study site in southwestern Montana, USA during 2006-2018 (excluding 2016) based 

on the top model (INIT + YEARRAN), and associated 95% confidence intervals (error bars). 
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Figure 1.5) Predicted clutch sizes for lesser scaup (Aythya affinis) at the Lower Red Rock Lake 

study site in southwestern Montana, USA from the earliest (ordinal day 143) to the latest (ordinal 

day 202) nest initiation dates (x-axis) within each year (colored lines). The black dashed line 

represents the mean among all years with gray 95% confidence interval.  
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Figure 1.6) Daily survival rate (DSR) for lesser scaup (Aythya affinis) nests at the Lower Red 

Rock Lake study site, Montana, USA across the entire nesting period, demonstrating the 

variation in DSRs intra-annually (x-axis, and across years (colored lines). Day 0 is the earliest 

known nest initiation date for the entire study period (ordinal day 143) from the PHENIND + 

TIME + TIME2 model. PHENIND = annual phenological index, TIME = linear time trend in 

DSRs across days within a breeding season, TIME2 = additional term for a quadratic time trend.  
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Figure 1.7) Relationship between daily survival rate (DSR) of lesser scaup (Aythya affinis) nests 

at the Lower Red Rock Lake study site, Montana, USA and the annual phenological index 

(PHENIND) and the associated 95% confidence interval (grey region). 
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Figure 1.8) Predicted annual nest survival rates for lesser scaup (Aythya affinis) at the Lower Red 

Rock Lake study site, Montana, USA with associated 95% confidence intervals (error bars), 

which were calculated by taking the product of daily survival rates from the PHENIND + TIME 

+ TIME2 model from the mean nest initiation date until day 34 of incubation for each year.  

PHENIND = phenological index, TIME = linear time trend in DSRs across the breeding season, 

TIME2 = additional term for a quadratic time trend.  
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CHAPTER TWO 

IMPLICATIONS OF VITAL RATE COVARIANCE ON LESSER SCAUP POPULATION 
DYNAMICS 

 
 
 

Introduction 

 Population abundance, a component of biodiversity, is foundational to ecology and 

understanding how populations respond to environmental conditions enables informed 

conservation actions. For decades, researchers have used population models to determine how 

variation in vital rates influences population growth rates (Caswell 2001). However, many 

studies combine vital-rate estimates from various locations (Koons et al. 2006, Schamber et al. 

2009), which confounds spatial and temporal variation and does not allow for explicit treatment 

of temporal covariation in vital rates.  

Many studies also assume that vital rates vary independently over time (Figure 2.1, panel 

one), which is a costly assumption because covariation among vital rates can sometimes have a 

greater influence on population dynamics than the direct impact of temporal variances (Coulson 

et al. 2005, Doak et al. 2005). Omitting temporal covariation from population models could 

therefore lead to spurious conclusions about population dynamics and inappropriate management 

actions, since these co-varying relationships are often caused by vital-rate responses to common 

environmental drivers that can be targeted by managers (Coulson et al. 2005). For example, 

positive temporal covariation is caused by vital rates responding similarly to underlying 

environmental conditions (Figure 2.1, panel two). Whereas negative covariation arises when vital 

rates respond differently to environmental conditions, or when greater investment in one part of 

the life-cycle results in a trade-off at another part, e.g., a cost of reproduction (Figure 2.1, panel 

three; Hoekman et al. 2002, Aubry et al. 2009, Amundson et al. 2013). Understanding and 
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including these relationships among vital rates into population models could identify 

environmental variables that may cause changes in multiple vital rates that managers can then 

manipulate to efficiently benefit population growth rates (Fieberg and Ellner 2001). Considering 

such correlations among demographic rates could be particularly important for population 

viability analyses, as these are used to determine extinction risk and management actions for 

imperiled species (Boyce 1992, Brook et al. 2000). However, to estimate covariation among vital 

rates, demography must be studied over long periods of time at the same geographic location (or 

via longitudinal studies at multiple locations). 

Long-term studies can incorporate temporal covariation in vital rates as well as inform 

perturbation analyses (Miller et al. 2011, Morris et al. 2011). Both prospective and retrospective 

perturbation analyses provide insights as to which vital rates to target for management actions 

(Mills and Lindberg 2002, Morris and Doak 2002). Prospective perturbation analysis examines 

how equivalent changes in vital rates could affect population growth rate in the future. Whereas, 

retrospective analyses quantify how non-equivalent changes in vital rates affected population 

growth rates in the past (Caswell, 2000, 2001), from which historical information can be used 

(with care) to inform future actions (Koons et al. 2016).  

 Lesser scaup (Aythya affinis) are a medium-sized diving duck that could benefit from a 

deeper understanding of these processes because their population has declined while other North 

American waterfowl are thriving. The continental population of scaup (Aythya spp., 3.6 ± 0.2 

million birds, U.S. Fish and Wildlife Service, 2019) remains well below the North American 

Waterfowl Management Plan objectives of 4.9 million birds, continuing a nearly three-decade 

long deficit relative to objectives (Figure 1.1; note that estimates of scaup abundance represent a 

combination of greater scaup (A. marila) and lesser scaup because these two species cannot be 
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differentiated in aerial surveys, but is comprised of ~90% lesser scaup, Anteau et al. 2014, U.S. 

Fish and Wildlife Service 2019). The extensive range of lesser scaup (hereafter scaup) exposes 

them to a wide variety of threats that may be contributing to the marked population decline. 

Previous analyses of long-term wing collections by hunters suggested that recruitment and 

female survival may have both declined since the 1970s (Allen et al. 1999, Afton and Anderson 

2001).  However, recent analyses of banding data and an integration of monitoring data have 

found no long-term declines in survival and concluded that recruitment was the likely driver of 

population declines (Arnold et al. 2016, 2018, Koons et al. 2017). These results highlight the 

need to better understand the factors limiting recruitment in scaup.  

Recruitment is defined as the number of young that survive to breed the following season 

(Cowardin and Blohm 1992) and thus entails multiple vital rates throughout the annual life cycle. 

For lesser scaup and other waterfowl these vital rates include breeding propensity, clutch size, 

nesting success, re-nesting probability, duckling survival, and first year survival of fledged 

offspring. Understanding drivers of recruitment is crucial to waterfowl management because 

each component of recruitment is affected by different habitats and potentially even various 

times of the year when considering cross-seasonal effects, and because it is helpful to accurately 

forecast recruitment (to at least the next fall flight) to set sustainable harvest regulations 

(Cowardin and Blohm 1992). 

Koons et al. (2006) first applied prospective tools to examine how changes in vital rates 

could affect lesser scaup population growth rate. However, this study amalgamated rates from 

different locations and could not incorporate temporal covariation of vital rates into population 

models. Recent work utilized prospective and retrospective transient perturbation analyses to 

identify recruitment as the likely driver of long-term declines in scaup abundance across the 
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large-scale traditional survey area (Koons, Arnold, & Schaub, 2017), however the use of a large-

scale integrated population model prevented inference at local scales where the mechanisms 

driving temporal covariation among vital rates is most meaningful to management. Finer-scale 

studies that can address temporal covariation in vital rates are thus needed to better understand 

the local environmental drivers that affect recruitment and population dynamics, and to better 

identify habitat drivers that can be managed. 

Wetland basin densities and water levels are potential habitat variables that managers can 

manipulate. On the breeding grounds, variation in wetland abundance is known to have strong 

impacts on recruitment, but water level manipulation is rarely considered as a tool for affecting 

recruitment; though it is a common tool used for maximizing food availability to wintering 

waterfowl (Smith et al. 1989, Dzus and Clark 1998). Variation in water levels and water level 

phenology can plausibly affect scaup recruitment because they rely on wetlands for nearly every 

component of their life cycle; however, managers need a better understanding of correlations 

between wetland conditions and vital rates to successfully influence recruitment through 

management (Anteau et al. 2014, Baldassarre 2014).  

Correlations between wetland condition and various vital rates have been observed in 

scaup. For example, wetland condition was positively correlated with breeding propensity 

(Rogers 1964, Warren et al. 2014) and negatively correlated with female seasonal survival at 

sites in Canada (Rotella et al. 2003). However, at our study site wetland levels were positively 

correlated with adult female breeding season survival and negatively correlated with adult non-

breeding season survival (Warren 2018). Thus, correlations between wetland conditions and vital 

rates could potentially affect scaup population growth rate by driving co-variation among 

important vital rates.  
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 We collated information from a long-term study of lesser scaup demography at Red Rock 

Lakes National Wildlife Refuge and created time-variant population models. We were uniquely 

able to estimate and incorporate covariation among vital rates into our models to explore its 

impact on local lesser scaup population dynamics. We created stochastic population models and 

conducted a transient life-table response experiment (LTRE) to 1) determine stochastic 

population growth rate (𝜆𝑆) and prospective sensitivities of 𝜆𝑆 to proportional changes in the vital 

rates, 2) examine the contribution of temporal variance and covariance of vital rates to past 

variation in realized growth rates, and 3) decompose variation in realized growth rates into direct 

effects from variance in vital rates and indirect effects from covariance among vital rates.  

Methods  

Study Site 

Our study was conducted on Lower Red Rock Lake (LRRL) at Red Rock Lakes National 

Wildlife Refuge (RRL) in Southwest Montana (Figure 2.3). Lower Red Rock Lake is a 2,330-

hectare, high elevation (2,014 m above mean sea level) montane wetland complex within the 

Centennial Valley that supports a high-density of breeding lesser scaup (>7.7 breeding pairs/km2, 

J. Warren pers obs).  This wetland system is characterized by large areas of open water with 

hardstem bulrush (Schoenoplectus acutus) islands and surrounded by vast stands of seasonally 

flooded northwest territory sedge (Carex utriculata). Interspersed in the sedge stands are small 

(< 2 ha) open water ponds, which offer additional nesting habitat (e.g., to nest near open water 

and escape from predators).  

Research on the scaup population on LRRL began in 2005 to estimate seasonal and age-

specific survival using capture-mark-recapture techniques (Warren 2018). Then in 2006 field 
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methods were added to enable the estimation of certain reproductive parameters (Warren et al. 

2013, 2014). Finally, procedures were added to estimate duckling survival in 2010 (Stetter 2014, 

Warren 2018). A detailed description of study site can be found in chapter one of Navarre 

(2020).   

While LRRL is on the southern extent of the scaup breeding range, it hosts many 

similarities to wetland complexes in scaup’s core breeding area in the northwest boreal forest of 

Canada. Similarities include growing season length, shallow waters, fluvial hydrology and large 

expanses of flooded northwest territory sedge (U.S. Fish and Wildlife Service 2009, Wells et al. 

2010, Gurney et al. 2017). Underlying environmental similarities between LRRL and the boreal 

forest may provide better insights as to what could be potentially driving declines than many of 

the previous studies on scaup that were conducted in prairie-parkland habitats (Afton 1984, 

Koons and Rotella 2003b, 2003a, Rotella et al. 2003, Anteau and Afton 2006), but see (Slattery 

and Clark 2019). Prairie habitats differ from LRRL and the boreal ecosystem as prairie systems 

are fed by snow-melt and ground water, have longer growing season lengths, and landscapes are 

dominated by agriculture (wheat, barley, canola, and flax, Koons and Rotella 2003a, Gurney et 

al. 2011). 

Vital Rate Estimates and Life-Cycle Model  

 Using the rich array of scaup research at the RRL study site, we collated a set of 

published and unpublished estimates of vital rate means and sampling variances for each year 

possible. Vital rates of interest included breeding propensity (BP), clutch size (CS), nest survival 

(NS), duckling survival (DS), juvenile survival from fledging until the following breeding season 

(JS), adult female breeding season survival (BS), and non-breeding season survival of adult 

females (NBS).  
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Previously published estimates of breeding propensity controlled for capture date, age 

class and drought conditions (Warren et al. 2014) and were estimated directly in 2007-2009. 

Using the estimated relationship between drought and BP from Warren et al. (2014), we modeled 

predicted BP for all other years based on annual mean water levels. Within- and among-year 

variation in clutch size was estimated during 2006-2015 and 2017-2018 (Chapter One). A 

previous study (Koons et al. 2006) found both breeding propensity and clutch size to be age-

specific (rates differed between second-year (SY) and after-second-year (ASY) birds). At our 

study site we were unable to determine the age of most nesting hens, and thus we calculated age-

specific estimates in a post hoc fashion. To do so we took each annual estimate of clutch size at 

our study site (which conflates any effect of age) and partitioned it into two age classes using the 

relative difference between age classes reported in Koons et al. (2006) and the stable age 

distribution from Koons et al. (2006). Next, we used estimates of nest survival from Chapter 

One, which were estimated each year during 2005-2015 and 2017-2018. Duckling survival was 

estimated during 2010-2015 and 2017-2018 (Stetter 2014). Juvenile survival, adult breeding 

season survival, and adult non-breeding season survival were estimated each year during 2005-

2015 and 2017-2018, while accounting for marker loss (Warren 2018). Finally, we calculated the 

among-year mean and temporal process variance for each vital rate using the method described 

by (White 2000), which were later used in building time-variant population models.  

We approximated the annual life cycle of Lesser Scaup (Figure 2.4) with two age classes: 

SY (birds entering their second year of life) and ASY (after second year). Based on this life 

cycle, our matrix projection model (Equation 2.1) was parameterized with a fertility value for 

each age class assuming a pre-breeding census and female limited birth-pulse reproduction 

(Caswell 2001).  
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𝐀 = [𝑓𝑆𝑌,𝑡 𝑓𝐴𝑆𝑌,𝑡𝑆𝑆𝑌,𝑡 𝑆𝐴𝑆𝑌,𝑡]                                                                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1) 

Age-specific fertility (Equation 2.2) is the product of the sex ratio (0.5 for lesser scaup 

(Arnold et al. 2016), age-specific breeding propensity (BPx), age-specific clutch size (CSx), and 

the probabilities of nest survival (NS), duckling survival (DS), and juvenile survival between 

fledging in year t and the start of nesting in year t+1 (JS).  

𝑓𝑥,𝑡 = 0.5 ∗ 𝐵𝑃𝑥,𝑡 ∗ 𝐶𝑆𝑥,𝑡 ∗ 𝑁𝑆𝑡 ∗ 𝐷𝑆𝑡 ∗ 𝐽𝑆𝑡                                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2) 

For the purposes of this analysis we assumed scaup do not re-nest due to limitations of our study, 

though evidence indicates that at least some should (Afton 1984, Flint et al. 2006). Survival 

probabilities were assumed to be equivalent for both age classes and annual adult survival was 

parameterized as a product of breeding season survival (BS) and non-breeding season survival 

(NBS, Equation 2.3). 

𝑆𝑥,𝑡 = 𝐵𝑆𝑡 ∗ 𝑁𝐵𝑆𝑡                                                                                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3) 

 

Population Modeling  

 To relax assumptions of the commonly used deterministic matrix projection model 

(MPM), we sought to account for the realities of variation and covariation among vital rates over 

time. To do so, we first generated probability distributions for each vital rate using its estimated 

mean and temporal process variance for years in which we had direct estimates of vital rates (BP: 

2007-2009, CS: 2006-2015 and 2017-2018, NS: 2006-2015 and 2017-2018, DS: 2010-2015 and 

2017-2018, JS: 2005-2017 BS: 2005-2017, NBS: 2005-2017). Beta distributions were used to 

summarize the temporal variability of any vital rate constrained between 0 and 1 (BP, NS, DS, 
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JS, BS, NBS) and gamma distributions were used for CS. We then incorporated covariation 

among vital rates by calculating Pearson correlation coefficients between each pair of vital-rate 

point estimates for years when all vital rates were estimated (2010-2015 & 2017; wherein BP 

was predicted based on water levels). We then utilized copulas to generate correlated temporal 

distributions of vital rates using the copula package in R (Hofert et al. 2018). Next, we generated 

a Monte Carlo sequence of 10,000 randomly selected values for each vital rate. This sequence 

was used to estimate 𝜆𝑆 (Tuljapurkar 1984, Caswell 2001):   

log𝜆𝑠̂ = 1𝑇 ∑ 𝑟𝑡𝑇−1
𝑡=0                                                                                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.4) 

where 𝑟𝑡 = log(𝑁(𝑡 + 1)/𝑁(𝑡)). Finally, we calculated lower-level elasticities of 𝜆𝑆 to 

proportional changes in the mean (𝐸𝑖𝑗𝑆𝜇
), temporal process variance (𝐸𝑖𝑗𝑆𝜎), and the coefficient of 

variance (𝐸𝑖𝑗𝑆 ) of each vital rate, as previously outlined by others (Equation 2.5 - 2.7, Doak et al. 

2005a, Haridas and Tuljapurkar 2005, Tuljapurkar and Haridas 2006).  

𝐸𝑖𝑗𝑆𝜇 = 𝜕 𝑙𝑜𝑔 𝜆𝑆𝜕 𝑙𝑜𝑔 𝜇𝑖𝑗                                                                                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.5) 

𝐸𝑖𝑗𝑆𝜎 = 𝜕 𝑙𝑜𝑔 𝜆𝑆𝜕 𝑙𝑜𝑔 𝜎𝑖𝑗                                                                                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.6) 

𝐸𝑖𝑗C = lim𝑇→∞ (1𝑇) ∑ 𝑣𝑖(𝑡)𝐶𝑖𝑗(𝑡)𝑢𝑗(𝑡 − 1)𝜆(𝑡)(𝐯(𝑡), 𝐮(𝑡))𝑇
𝑡=1                                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.7) 

Equation 2.7 is the general formula for calculating elasticities and which can yield 𝐸𝑖𝑗𝑆𝜇
 when, 𝐶𝑖𝑗(𝑡) = 𝜇𝑖𝑗,  𝐸𝑖𝑗𝑆𝜎 when  𝐶𝑖𝑗(𝑡) = 𝑋𝑖𝑗(𝑡) − 𝜇𝑖𝑗, and 𝐸𝑖𝑗𝑆  when 𝐶𝑖𝑗(𝑡) = 𝑋𝑖𝑗(𝑡). Where 𝐮(𝑡) is the 

sequences of population structure vectors, 𝐯(𝑡) is the sequences of reproductive value vectors at 

each time step 𝑡, and 𝑋𝑖𝑗(𝑡) is the matrix element perturbed by a proportional amount 𝐶𝑖𝑗(𝑡). 
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To additionally account for possible non-stationary changes in the local scaup 

demography over time and to exploit the insights provided by retrospective perturbation 

analyses, we analyzed population dynamics over the observed timeframe of 2010-2017 (omitting 

2016). Lacking knowledge of the age distribution in 2010, we first conducted an asymptotic 

analysis of a deterministic MPM for 2010 to determine its stable age distribution, which we then 

used to project future abundances and age structures using the realized time-variant sequence of 

vital rates thereafter. After accounting for process variance and covariance among vital rates and 

age structure, we first calculated the sensitivity (Equation 2.8) of 𝜆𝑡 to change in each 

demographic parameter using symbolic calculus, where 𝜆𝑡 is the realized population growth rate 

at time step t and 𝜃𝑖,𝑡 is demographic parameter 𝜃𝑖 at time step t (inclusive of both vital rates and 

population structure): 

𝜕𝜆𝑡𝜕𝜃𝑖,𝑡                                                                                                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.8) 

The calculated sensitivities and the covariation among demographic rates were used to obtain the 

variation in realized growth rates (Equation 2.9)  

var( 𝜆realized,𝑡) ≈   ∑ ∑ cov𝑗𝑖 ( 𝜃𝑖,𝑡, 𝜃𝑗,𝑡) 𝜕𝜆realized,𝑡𝜕𝜃𝑖,𝑡 𝜕𝜆realized,𝑡𝜕𝜃𝑗,𝑡 |𝜃𝑖𝑗                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.9) 

Finally, contributions of each individual demographic parameter (𝜒𝜃𝑖) to temporal variance in 

realized population growth rates was calculated by summing over the vital-rates covariances 

(Equation 2.10, Horvitz et al. 1997). 

𝜒𝜃𝑖 ≈   ∑ cov𝑗 ( 𝜃𝑖,𝑡, 𝜃𝑗,𝑡) 𝜕𝜆realized,𝑡𝜕𝜃𝑖,𝑡 𝜕𝜆realized,𝑡𝜕𝜃𝑗,𝑡 |𝜃𝑖𝑗                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.10) 
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A vital rate may contribute little to variation in 𝜆𝑡 due to a low sensitivity (it is insensitive to 

change), low variance in demographic parameter 𝜃𝑖, and/or the effect of negative covariation 

between 𝜃𝑖 and 𝜃𝑗  nullifying the direct effect of variation in 𝜃𝑖 (Koons et al. 2016). The 

contribution of 𝜃𝑖 to variation in 𝜆𝑡 reveals how strongly fluctuations in 𝜆𝑡 are driven by 𝜃𝑖. We 

also decomposed variation in realized growth rates into contributions of direct effects of 

variation in vital rates and indirect effects of covariation among vital rates, by summing over the 

variances and covariances separately.  

Results 

 We found that NS and DS experienced the highest levels of temporal process variance 

during our study, whereas BPSY and BPASY experienced the lowest levels. The process variance 

of CSSY and CSASY were also low.  Mean vital rate estimates, process variances, and the years 

which were used to calculate these statistics can be found in Table 2.1 for the prospective 

analysis and Table 2.2 for the retrospective analysis. We found strong positive correlations 

between BS and JS and strong negative correlations between NS and CS, JS and NBS and BS 

and NBS. All other correlations were moderate to weak (between -0.70 and 0.70). Pearson’s 

correlations used in the prospective perturbation analysis can be found in Table 2.3 and 

correlations used in the retrospective perturbation analysis can be found in Table 2.4. We also 

note that correlations between BPSY and BPASY, and CSSY and CSASY, were intrinsically close to 

1.00 because rates for SY and ASY birds were differentiated from one another post hoc using a 

composite estimate of BP and CS which included both estimates.  

The stochastic population growth rate over the study period was 0.94, which suggests the 

studied scaup population was declining at an average rate of 6% each year (but was fluctuating 



42 

and did not decline at this rate every year). The stochastic elasticities of 𝜆𝑆 to changes in the 

mean of lower level vital rates 𝐸𝑖𝑗𝑆𝜇
 were highest for BS (0.84) and NBS (0.82), indicating 

proportional changes in mean BS and NBS have the greatest potential to influence population 

growth rate into the future (Figure 2.5 Panel 1). In contrast 𝐸𝑖𝑗𝑆𝜇
 for BPSY (0.02) and CSSY (0.02) 

were lowest, indicating that equivalent proportional changes in these vital rates would have little 

influence on 𝜆𝑆. Changes to mean BPASY, CSASY, NS, DS, JS also had relatively low 𝐸𝑖𝑗𝑆𝜇
. 

Elasticities of 𝜆𝑆 to changes in the process variance of vital rates (𝐸𝑖𝑗𝑆𝜎) was highest for NS 

(0.05), followed by NBS (0.02), suggesting that increased variation in NS and NBS would 

positively influence 𝜆𝑆 (Figure 2.5, Panel 2). Conversely, 𝐸𝑖𝑗𝑆𝜎  was negative for DS (-0.12), 

indicating increased rates of variation in DS would result a decline in 𝜆𝑆. Finally, elasticities of 𝜆𝑆 to changes in the coefficient of variation (CV) of vital rates (𝐸𝑖𝑗𝑆 ) demonstrated similar 

patterns as changes in mean vital rates with BS and NBS (both 0.84) having the highest 𝐸𝑖𝑗𝑆  and 

BPSY and CS (both 0.02) having the lowest (Figure 2.5, Panel 3).  

Results from the transient LTRE demonstrated that temporal variation in DS (0.64) made 

the greatest contribution to temporal variation in 𝜆𝑡, followed by NS (0.27) and NBS (0.20, 

Figure 2.6). A subset of demographic parameters (CSSY, CSASY, JS, BS) had small negative 

contributions (-3.65 * 10-3, -0.02, -0.08, -0.04 respectively) to variation in 𝜆𝑡. SY (-0.03) and 

ASY (-0.01), the demographic rates which accounted for the proportion of the population in each 

age class, also had small negative contributions to variation in 𝜆𝑡. BPSY, BPASY, had little to 

negligible positive contributions to variation in realized growth rates. Finally, comparing direct 

and indirect contributions of vital rates to variation in realized growth rates indicated that 
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covariation among demographic parameters explained 37% of the variation in 𝜆𝑡, while direct 

variation in demographic parameters explained 63% (Figure 2.7, Table 2.6).  

Discussion  

Understanding population dynamics requires knowledge of how demographic parameters 

temporally covary with one another because such processes can explain a large proportion of 

variation in population growth rates (Coulson et al. 2005, Doak et al. 2005). Here we accounted 

for temporal covariation in vital rates across the annual cycle of lesser scaup and conducted 

prospective and retrospective perturbation analysis to determine which demographic parameters 

had the greatest influence on population growth rate. We found that covariation among 

parameters explained 37% of the variation in realized growth rates, which is a non-negligible 

amount that stresses the importance of including temporal covariation into population analyses. 

Utilizing prospective and retrospective tools, while accounting for temporal covariation will 

allow managers to make well-informed decisions regarding species in decline.  

Prospective Analysis 

Like the continental population, the population of scaup at LRRL may be declining (U.S. 

Fish and Wildlife Service 2019). The stochastic growth rate of 0.94 at LRRL is slightly higher 

than that of 0.91, estimated across several populations in the boreal and prairie-parklands (Koons 

et al. 2006). Regardless, we suspect our estimate of  𝜆𝑆  is biased low because the study 

population has remained locally abundant throughout the study period. It is possible there are 

high rates of immigration supplementing this population, or birds may return to the Centennial 

Valley, but not LRRL and remain undetected by our re-sight surveys. Recent work at our study 

site also indicates that nasal markers negatively influence survival (Deane 2017), that once 

finalized and accounted for, could increase the estimate of 𝜆𝑆.  
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We found the highest elasticities were to changes in mean BS and NBS survival, which is 

similar to many prospective perturbation analyses conducted on waterfowl such as mallards 

(Anas platyrhynchos, Hoekman et al. 2002) and many species of sea duck (Schamber et al. 2009, 

Flint 2015). Like our study, Koons et al. (2006) found that modeled population growth rates were 

most elastic to changes in mean BS and NBS, however they were unable to account for temporal 

covariation among vital rates, which may explain dissimilar results between our studies and 

theirs to perturbations of variance in vital rates. Koons et al. (2006) found elasticities to changes 

in variance to be negative for all vital rates with the largest magnitudes for NS and DS, 

indicating fluctuation in variance would negatively impact population growth rate. In contrast, 

we found a positive elasticity to changes in the variance of NS, which may lead to increased 

population growth rates by allowing for more “boom” years and in turn higher recruitment rates 

(Boyce et al. 2006, Lawson et al. 2015, Iles et al. 2019) 

Retrospective Analysis  

Our goal was to pin-point which vital rates were driving scaup population dynamics 

using retrospective tools, which explore how a vital rate’s sensitivity value and temporal 

variation contributed to realized growth rates. There is evidence across taxa that vital rates with 

high elasticities, such as adult survival, have little influence on realized growth rates due to low 

interannual variation, especially in species with longer generation times (Gaillard et al. 1998, 

Sæther and Bakke 2000). Adult survival is hypothesized to be buffered against temporal 

variation, whereas vital rates which contribute to fertility tend to be more variable and potentially 

more labile to temporal changes in environmental conditions, which can result in larger 

contributions to realized growth rates (Pfister 1998, Morris and Doak 2004, Koons et al. 2009).  

Vital rates with high elasticities are also found to have small contributions to realized 
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growth rates in waterfowl (Koons et al. 2014). For example, in both snow geese (Chen 

caerulescens) and barnacle geese (Branta leucopsis) components of recruitment were found to 

contribute most to realized growth rates, while adult survival had the highest prospective 

elasticities (Rockwell et al. 1997, Cooch et al. 2001, Layton-Matthews et al. 2019). There is a 

similar trend in species with intermediate life histories, such as sea ducks, as well as with scaup 

(Flint 2015). Koons et al. (2017) conducted a transient LTRE on lesser scaup utilizing an 

Integrated Population Model (IPM) and found that JS had the largest contribution to realized 

growth rates at 52%, while adult survival had the highest prospective elasticity. In contrast we 

found that DS contributed most to realized growth rates, which is likely due to incorporating 

covariation among vital rates that is being driven by local environmental variables (e.g., Chapter 

1). DS had relatively high process variance as well as moderately high realized sensitivity (Table 

2.5), which resulted in its large contribution to realized growth rates (See equation 2.9). Unlike 

Koons et al. (2017), we found a slightly negative contribution of JS to realized growth rates due 

to negative covariation with several other vital rates, nullifying the direct effect of variation 

(Table 2.3, Table 2.6). While our results were somewhat different than those of Koons et al. 

(2017), our conclusions support the broader hypothesis that recruitment is driving scaup 

population dynamics because DS is an important component of recruitment (Arnold et al. 2016, 

Koons et al. 2017). Recruitment has had a large influence on the population dynamics of many 

waterfowl species including mallard, canvasback (Aythya valisineria), and lesser scaup (Johnson 

et al. 1992b, Anderson et al. 1997, Walker and Lindberg 2005), and duckling survival may have 

a greater influence on population growth rates in populations with high nest survival such as at 

LRRL (Amundson and Arnold 2011)  
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Contribution of Temporal Covariation 

Our study as well as many others found significant correlations among demographic 

parameters. For example, Sæther and Bakke (2000) examined the contribution of variation in 

vital rates on population growth rate for several avian species and found positive correlations 

between fecundity and juvenile survival, and between adult survival and juvenile survival. Sim et 

al. (2011) also found positive correlations between reproductive success and adult survival for 

ring ouzels (Turdus torquatus). We also found positive correlations between juvenile and adult 

survival rates, which indicates that these vital rates respond similarly to underlying environment 

conditions. For example, if environmental conditions are favorable on the breeding grounds both 

age classes would have high rates of survival. However, we also found significant negative 

correlations between BS and NBS of adults, implying a cost-of-reproduction that was examined 

in depth by Warren et al. (2018) at our study site.  

When comparing the contribution of covariation among demographic parameters to the 

direct contributions of variation, we found that covariation accounted for 37% of the temporal 

variation in realized growth rates. Closer examination of the proportional contributions of 

individual pairs of demographic rates found the largest positive contributions came from 

covariation between JS and BS, additionally supporting the conclusion these rates respond 

similarly to environmental conditions (Table 2.6). Whether environmental conditions on the 

breeding grounds (due to carry-over effects) or wintering grounds is driving rates of JS warrants 

further study. In contrast, the largest negative contributions were a result of covariation between 

JS and NBS followed by BS and NBS, further supporting the conclusion that scaup experience 

decreased levels of fitness after breeding (Table 2.6). Understanding these relationships allows 

managers to weigh the cost and benefits of specific management actions.  
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Our results are similar to those of Coulson et al. (2005) who found that covariation 

explained between ⅓ and ½ of the variation in population growth rates for several ungulate 

populations. This conclusion supports our hypothesis that covariation in demographic parameters 

can greatly contribute to population growth rate, and though commonly done, researchers should 

not assume independence among demographic parameters. To truly understand demographic and 

evolutionary processes, studies must account for temporal covariation among vital rates (Doak et 

al. 2005).   

Management Implications and Future Research Needs 

Accounting for temporal covariation is especially important for applied management, 

since we often prioritize influential vital rates for management actions (Wisdom et al. 2000, 

Davison et al. 2013). Assuming that vital rates are temporally independent could lead to spurious 

conclusion about the demographic processes that are most influential on population dynamics, 

such inference could misinform management and possibly have negative impacts on declining 

populations. Efforts should be made to account for temporal covariation among demographic 

parameters in population viability analysis to correctly estimate extinction thresholds, compare 

management actions, and determine which demographic parameters have the greatest influence 

on population dynamics (Boyce 1992, Mills and Lindberg 2002, Boyce et al. 2006). Our results 

further support the need for long-term studies that enable the estimation of process variance and 

covariance in order to understand demographically what is driving populations and make the best 

management decisions (Menges 2000, Sæther and Bakke 2000). 

In addition, our findings provide insights into needed management actions as well as 

future research need for scaup at LRRL and other regions such as the boreal forest. The results of 

the prospective analysis indicated that BS and NBS survival have the greatest potential to 
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influence population growth rate, however, these rates are currently high, and vary little 

interannually. Thus, we might have little potential to positively influence these survival 

probabilities, and if hunting has compensatory impacts on NBS (Arnold et al. 2016, Warren 

2018), then harvest might have little potential to negatively impact survival as well. However, 

work to incorporate a correction factor for the effect of nasal markers on survival will be 

necessary for an accurate estimate of JS, BS, and NBS. Given that the vital rates with the highest 

prospective elasticities contributed little to realized growth rates, management might consider 

directing focus at increasing DS and possibly other components of recruitment in other 

populations. Efforts to increase, stabilize the large amount of variation around DS, or positively 

influence vital rates which are positively correlated with DS, could lead to notable increases in 

population growth rate. One possible action could be to manipulate water levels to positively 

influence breeding propensity (which is highly correlated with duckling survival), because water 

levels are known to influence BP at our study site (Warren et al. 2013). Our findings from 

chapter one found that manipulating water levels could also positively influence NS, which could 

increase population growth rate since NS was found to have the second highest contribution to 

realized growth rates. However, Stetter (2013) explored drivers of duckling survival and found 

no effect of water levels, but a positive effect of water temperature (a proxy for wetland 

phenology), which often drives primary productivity and available invertebrate food resources 

(Vannote and Sweeney 1980, Cayrou and Céréghnio 2005, Devries et al. 2008). Management of 

scaup populations would benefit from a better understanding of drivers of invertebrate resources 

on which scaup ducklings rely (Dawson and Clark 1996). 

While our study site does not perfectly emulate boreal forest habitats where scaup 

predominantly breed, our results could offer some insights into research needs for boreal 
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populations due to similarities between locations which include similar growing season lengths, 

large expanses of flooded sedge habitats, fluvial hydrology, and dammed systems (U.S. Fish and 

Wildlife Service 2009, Wells et al. 2010, Gurney et al. 2011, 2017). Determining rates and 

drivers of duckling survival in these locations should be a priority. However, it should be noted 

that the boreal forests are realizing the effects of climate change at a faster rate than sites at lower 

latitudes such as RRL and efforts should be made to determine how vital rates vary and covary at 

boreal sites in response to climate change and commensurate impacts on wetlands and 

hydrology.  
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Table 2.1) Summary of vital rate means and temporal process variances for lesser scaup (Aythya 

affinis) used for the prospective perturbation analysis, as well as years in which vital rates were 
directly measured at the Lower Red Rock Lake study area. BPSY: SY breeding propensity, 
BPASY: ASY breeding propensity, CSSY: SY clutch size, CSASY: ASY clutch size, NS: nest 
survival, DS: duckling survival, JS: juvenile survival, BS: breeding season survival, NBS: non-
breeding season survival. 

Vital Rate Mean Process Variance Years 

BPSY 0.723 1.435*10-3 2007-2009  

BPASY 0.984 1.435*10-3 2007-2009 

CSSY 7.455 1.512*10-1 2006-2015, 2017-2018  

CSASY 8.132 1.512*10-1 2006-2015, 2017-2018 

NS 0.431 1.351*10-2 2006-2015, 2017-2018  

DS 0.285 1.325*10-2 2010-2015, 2017-2018  

JS 0.442 8.623*10-3 2005-2017  

BS 0.843 3.409*10-3 2005-2017  

NBS 0.904 9.637*10-3 2005-2017 
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Table 2.2) Summary table of mean and temporal process variance for each demographic 

parameter from 2010-2015 and 2017 for lesser scaup (Aythya affinis), which were used for the 

transient LTRE at the Lower Red Rock Lake study area. BPSY: SY breeding propensity, BPASY: 

ASY breeding propensity, CSSY: SY clutch size, CSASY: ASY clutch size, NS: nest survival, DS: 

duckling survival, JS: juvenile survival, BS: breeding season survival, NBS: non-breeding season 

survival, SY: the proportion of SY females in the local population, ASY: the proportion of ASY 

females in the local population. 

Vital Rate Mean Process Variance 

BPSY 0.711 2.05*10-3 

BPASY 0.956 2.05*10-3 

CSSY 7.447 1.51*10-1 

CSASY 8.108 1.51*10-1 

NS 0.448 1.90*10-2 

DS 0.293 1.49*10-2 

JS 0.428 1.41*10-2 

BS 0.838 1.55*10-3 

NBS 0.910 1.14*10-2 

SY 0.308 9.73*10-3 

ASY 0.692 9.73*10-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 

Table 2.3) Pearson’s correlation coefficients between vital rates used in the prospective 
perturbation analysis for lesser scaup (Aythya affinis) at the Lower Red Rock Lake study site 

(years in which data were collected for each vital rate are listed in table 2.1). BPSY: SY breeding 

propensity, BPASY: ASY breeding propensity, CSSY: SY clutch size, CSASY: ASY clutch size, 

NS: nest survival, DS: duckling survival, JS: juvenile survival, BS: breeding season survival, 

NBS: non-breeding season survival. 

 BPSY BPASY CSSY CSASY NS DS JS BS NBS 

BPSY - 1.000 -0.675 -0.673 0.556 0.319 0.623 0.525 -0.610 

BPASY - - -0.675 -0.673 0.556 0.319 0.623 0.525 -0.610 

CSSY - - - 1.000 -0.717 0.078 -0.552 -0.386 0.687 

CSASY - - - - -0.717 0.083 -0.553 -0.388 0.689 

NS - - - - - -0.137 0.007 -0.086 -0.100 

DS - - - - - - -0.093 -0.240 0.002 

JS - - - - - - - 0.966 -0.946 

BS - - - - - - - - -0.843 
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Table 2.4) Pearson’s correlation coefficients between vital rates used in the retrospective perturbation analysis for lesser scaup (Aythya 

affinis) at the Lower Red Rock Lake study site (years for each vital rate listed in table 2.1). BPSY: SY breeding propensity, BPASY: 

ASY breeding propensity, CSSY: SY clutch size, CSASY: ASY clutch size, NS: nest survival, DS: duckling survival, JS: juvenile 

survival, BS: breeding season survival, NBS: non-breeding season survival, SY: proportion of the population comprised of SY 

females, ASY: proportion of the population comprised of ASY females. 

 BPSY BPASY CSSY CSASY NS DS JS BS NBS SY ASY 

BPSY - 1.000 -0.683 -0.683 0.556 0.319 0.560 0.550 -0.502 0.854 -0.854 

BPASY - - -0.683 -0.683 0.556 0.319 0.560 0.550 -0.502 0.854 -0.854 

CSSY - - - 1.000 -0.718 0.049 -0.476 -0.400 0.560 -0.811 0.811 

CSASY - - - - -0.718 0.049 -0.476 -0.400 0.560 -0.811 0.811 

NS - - - - - -0.137 -0.042 -0.068 -0.020 0.514 -0.514 

DS - - - - - - -0.166 -0.212 0.121 0.453 -0.453 

JS - - - - - - - 0.973 -0.943 0.514 -0.514 

BS - - - - - - - - -0.843 0.418 -0.418 

NBS - - - - - - - - - -0.602 0.602 

SY - - - - - - - - - - -1.000 
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Table 2.5) Estimates of process variance (2010-2015,2017), realized sensitivity, and prospective 

elasticity to changes in mean vital rates (𝐸𝑖𝑗𝑆𝜇
) for each vital rate for lesser scaup (Aythya affinis) 

at the Lower Red Rock Lake study site. Note DS has relatively high process variance, moderate 

prospective elasticity, high retrospective sensitivity, and contributed most to realized growth 

rates (𝜆𝑡). BPSY: SY breeding propensity, BPASY: ASY breeding propensity, CSSY: SY clutch 

size, CSASY: ASY clutch size, NS: nest survival, DS: duckling survival, JS: juvenile survival, BS: 

breeding season survival, NBS: non-breeding season survival. 

Vital Rate Process Variance Realized Sensitivity Prospective Elasticity 

BPSY 2.05*10-3 0.04 0.02 

BPASY 2.05*10-3 0.18 0.14 

CSSY 1.51*10-1 3.90 * 10-3 0.02 

CSASY 1.51*10-1 0.02 0.15 

NS 1.90*10-2 0.47 0.10 

DS 1.49*10-2 0.71 0.27 

JS 1.41*10-2 0.460 0.16 

BS 1.55*10-3 0.90 0.84 

NBS 1.14*10-2 0.84 0.82 
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Table 2.6) Proportional contributions of demographic parameter variation (diagonal) and covariation (off-diagonal) to variation in 

realized growth rates of lesser scaup (Aythya affinis) at the Lower Red Rock Lakes study site. Positive values indicate a positive 

contribution to realized growth rates while negative values represent a negative contribution.  

 BPSY BPASY CSSY CSASY NS DS JS BS NBS SY ASY 

BPSY 3.39*10-4 1.49*10-3 -1.90*10-4 -1.06*10-3 6.71*10-3 5.16*10-3 5.69*10-3 3.64*10-3 -8.38*10-3 -8.90*10-4 -2.20*10-4 

BPASY - 6.54*10-3 -8.50*10-4 -4.64*10-3 2.95*10-2 2.27*10-2 2.50*10-2 1.60*10-2 -3.68*10-2 -3.90*10-3 -9.70*10-4 

CSSY - - 2.35*10-4 1.29*10-3 -7.22*10-3 6.63*10-4 -4.03*10-3 -2.21*10-3 7.79*10-3 7.03*10-4 1.75*10-4 

CSASY - - - 7.06*10-3 3.96*10-2 3.63*10-3 -2.21*10-2 -1.21*10-2 4.27*10-2 3.86*10-3 9.57*10-4 

NS - - - - 4.30*10-1 -7.88*10-2 -1.51*10-2 -1.59*10-2 -1.21*10-2 -1.91*10-2 -4.73*10-3 

DS - - - - - 7.71*10-1 -8.05*10-2 -6.69*10-2 9.60*10-2 -2.25*10-2 -5.58*10-3 

JS - - - - - - 3.05*10-1 1.93*10-1 -4.71*10-1 -1.61*10-2 -3.99*10-3 

BS - - - - - - - 1.29*10-1 -2.74*10-2 -8.48*10-3 -2.11*10-3 

NBS - - - - - - - - 8.21*10-1 3.08*10-2 7.66*10-3 

SY - - - - - - - - - 3.20*10-3 7.93*10-4 

ASY - - - - - - - - - - 1.97*10-4 
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Figure 2.1) Examples of no covariation (Panel 1), positive covariation (Panel 2) and negative 
covariation (Panel 3) based on hypothesized relationships between a subset of vital rates for 
lesser scaup (Aythya affinis) at the Lower Red Rock Lake study site. Positive covariation 
between nest survival and breeding season survival indicates these vital rates are responding 
similarly to an underlying environmental variable (e.g., predation). Negative covariation between 
winter survival and breeding season survival indicates there is a trade-off between these two vital 
rates.  
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Figure 2.2) Breeding population estimates (solid line) of combined lesser scaup (Aythya 

affinis) and greater scaup (Aythya marila) abundance (the two species cannot be 
differentiated during aerial surveys) and standard errors (grey area). The dashed line 
indicates the North American Waterfowl Management Plan population goal. Estimates 
are from the Waterfowl Breeding Population and Habitat Survey traditional survey area 
which comprises coastal, boreal, prairie-parklands, prairie pothole habitats in parts of 
North-Central United States, Canada, and Alaska (U.S. Fish and Wildlife Service 2019) 
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Figure 2.3) Map of Lower Red Rock Lake study site and location of Red Rock Lakes National 

Wildlife Refuge in southwestern Montana, USA. 
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Figure 2.4) Age-structured life cycle model for a pre-breeding census of lesser scaup (Aythya 

affinis) at the Lower Red Rock Lake study site. Second-year (SY) and after-second year (ASY) 
age classes can have different fertility (fx) and survival estimates (Sx), but as explained in the text 
we constrained adult survival probabilities to be equivalent between SY and ASY females.  
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Figure 2.5) Prospective elasticities for changes in vital rate means (panel 1), variances (panel 2) 

and coefficients of variation (CV, panel 3) for lesser scaup (Aythya affinis) at the Lower Red 

Rock Lake study site. Large positive elasticities indicate that changes in mean/ variance/ CV 

have a greater positive influence on population growth rate. Conversely, a large negative 

elasticity such as with DS (panel 2) indicates increasing variance of DS would negatively 

influence population growth rate. BPSY: SY breeding propensity, BPASY: ASY breeding 

propensity, CSSY: SY clutch size, CSASY: ASY clutch size, NS: nest survival, DS: duckling 

survival, JS: juvenile survival, BS: breeding season survival, NBS: non-breeding season survival. 
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Figure 2.6) Proportional contributions of vital rates and components of age structure to variation 

in realized growth rates from transient LTRE of lesser scaup (Aythya affinis) at the Lower Red 

Rock Lake study site. 
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Figure 2.7) The contribution of the direct effect from variability of demographic parameters and 

the indirect effect of covariation among demographic parameters on variation in realized growth 

rate from the LTRE for lesser scaup (Aythya affinis) at the Lower Red Rock Lake study site.   
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Figure A1.1) Time series of environmental variables measured at the Lower Red Rock Lake 

study site, Montana, USA. A) Annual mean pre-breeding season water levels (in meters), B) 

mean breeding season water levels, C) mean pre-breeding season water temperatures, D) ordinal 

date of maximum water level, and E) phenological index (mean nest initiation date – ordinal date 

of maximum water level).   
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Figure A1.2) Boxplots of nest initiation dates each year for lesser scaup (Aythya affinis) at the 

Lower Red Rock Lake study area, Montana, USA. Shown are the estimated median (bold line), 

1st and 3rd quartiles (box) and largest and smallest value within 1.5x interquartile range above 3rd 

quartile and below 1st quartile (whiskers).   

 

 


