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ABSTRACT

LINEAR SYSTEM DESIGN FOR COMPRESSION AND FUSION

This is a study of measurement compression and fusion design. The idea common

to both problems is that measurements can often be linearly compressed into lower-

dimensional spaces without introducing too much excess mean-squared error or excess

volume in a concentration ellipse. The question is how to design these compressions to

minimize the excesses at any given dimension.

The �rst part of this work is motivated by sensing and wireless communication,

where data compression or dimension reduction may be used to reduce the required

communication bandwidth. The high-dimensional measurements are converted into

low-dimensional representations through linear compression. Our aim is to compress

a noisy measurement, allowing for the fact that the compressed measurement will be

transmitted over a noisy channel. We review optimal compression with no transmission

noise and show its connection with canonical coordinates. When the compressed mea-

surement is transmitted with noise, we give the closed-form expression for the optimal

compression matrix with respect to the trace and determinant of the error covariance

matrix. We show that the solutions are canonical coordinate solutions, scaled by coe�-

cients which account for canonical correlations and transmission noise variance, followed

by a coordinate transformation into the sub-dominant invariant subspace of the channel

noise.

The second part of this work is a problem of integrating multiple sources of measure-

ments. We consider two multiple-input-multiple-output (MIMO) channels, a primary

channel and a secondary channel, with dependent input signals. The primary channel

carries the signal of interest, and the secondary channel carries a signal that shares a
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joint distribution with the primary signal. The problem of particular interest is design-

ing the secondary channel, with a �xed primary channel. We formulate the problem

as an optimization problem, in which the optimal secondary channel maximizes an

information-based criterion. An analytical solution is provided in a special case. Two

fast-to-compute algorithms, one extrinsic and the other intrinsic, are proposed to ap-

proximate the optimal solutions in general cases. In particular, the intrinsic algorithm

exploits the geometry of the unit sphere, a manifold embedded in Euclidean space. The

performances of the proposed algorithms are examined through a simulation study. A

discussion of the choice of dimension for the secondary channel is given, leading to rules

for dimension reduction.
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CHAPTER 1

Introduction

1.1 Communication Systems and MIMO Channels

Communication devices such as radios, wire or cordless telephones, wi�, and remote

controllers, have emerged in everyone's daily life. Regardless of the functions of these

devices, the principle is essentially the transfer of information among di�erent objects

over time and space. Figure 1.1 describes a general communication system: The input

signal, which could be a human voice, a television picture, or an electronic waveform, is

modi�ed by the transmitter for e�cient transmission. The channel is a medium through

which the transmitted signal is sent to the receiver. The receiver then reprocesses the

received signal by undoing the signal modi�cations made at the transmitter and in the

channel. Modern communication systems are classi�ed into two categories: wireline

communication systems and wireless communication system. The wireline channel gen-

erally requires a physical transmission medium such as cable or wire, while the wireless

system sends signals without any electrical conductor.

Transmitter Channel Receiver

Input
signal

Transmitted 
signal

Received
signal

Output
signal

distortion
and
noise

Figure 1.1: A communication system.

One of the most widely used channels is the multiple-input-multiple-output (MIMO)

channel. MIMO channels arise in many di�erent systems, for example, the wireless

channel with multiple antennas at both transmitter and receiver (see Foschini and Gans
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[1998], Tarokh et al. [1998], and Telatar [1999]), the wireline digital subscriber line

channel with multiple twisted-pairs of telephone subscriber lines. Readers can refer to

Ginis and Cio� [2002], Honig et al. [1990], Lee and Petersen [1976], Salz [1985] for

introductions to various communication channels. Generally speaking, a MIMO channel

has multiple dimensions at both the transmitter and receiver. A generic MIMO channel,

as shown in Figure 1.2, can be expressed as

x = Hθ + u, (1.1.1)

where θ ∈ Rp is the input signal, H ∈ Rn×p is the channel matrix, x ∈ Rn is the output

signal, and u ∈ Rn is the channel noise. Note that the block diagram in Figure 1.2

is used to describe the model throughout this dissertation. The linear functions are

represented by blocks and the circles stand for additive noise. The line with a single

arrowhead depicts functional �ow from left to right, with the dimension of the signal in

the path shown on top of the slash.

H x

u
p n

θ

Figure 1.2: A generic MIMO channel.

Next, we will introduce several design problems common in communication with

MIMO channel.

1.2 MIMO Channel Design Review

For the MIMO channel (1.1.1), the channel state information refers to the channel

matrix H and the statistical properties of the noise u. This information describes how

a signal is propagated from the transmitter to the receiver. Throughout this disserta-

tion, we will assume perfect channel state information is available. In this case, the
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transmission and reception can be adapted to each channel realization using signal pro-

cessing techniques. The MIMO channel design, which controls the phase and amplitude

of the signal, is important for e�cient transmission. The �rst study dates back to the

1970s in Lee and Petersen [1976] and Salz [1985]. In this section, we will introduce the

design of the transmitter and the receiver, respectively. These techniques have applica-

tions in areas such as wireless communication, seismology, acoustics, radar, sonar, and

biomedicine. See Monzingo and Miller [1980], Van Veen and Buckley [1988], Johnson

and Dudgeon [1993], Krim and Viberg [1996], Van Trees [2002], and references therein.

1.2.1 Rank-Reduced Filtering

In signal processing, �ltering is used to produce an estimate of a desired random

process by �ltering an observed noisy process. As shown in Figure. 1.3, the linear �lter

estimates the input signal by linearly combining the elements of the received signal via

a matrix B as

θ̂ = Bx. (1.2.1)

It is well known that the optimal linear �ltering that minimizes the mean squared error

of θ is the Wiener �lter or LMMSE �lter. Recently, rank-reduced �ltering has emerged

in signal processing problems where data or model reduction, or high computational

e�ciency is required. The reduced-rank LMMSE (or Wiener �lter) is �rst brought up

in Scharf [1990] by minimizing mean squared error, and further developed in Scharf and

Thomas [1998], Scharf and Mullis [1998], and Schreier and Scharf [2006]. Hua et al.

[2001] later give a uni�ed review for the class of optimal reduced rank estimators with

respect to three commonly used measures of loss: trace, determinant, and weighted trace

of the error covariance. The optimal rank-reduced �lter matrix is given by the singular

value decomposition of the coherence matrix between the channel input θ and the output

x. In fact, the optimal �ltering matrix Bm with rank m returns the �rst m canonical
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coordinates of x corresponding to the �rst m largest canonical correlations. These may

be half canonical coordinates (see Scharf [1990]) or (full) canonical coordinates (Hua

et al. [2001]).

H x

u

Bm
n p

θ̂θ
p

Figure 1.3: Reduced rank �ltering.

1.2.2 Precoding Design

Consider the generic MIMO channel (1.1.1). The linear transmitter controls the

phase and amplitude of the input signal θ via the matrix P as

s = Pθ, (1.2.2)

The signal s is sent over a MIMO channel, and the resulted output signal is

x = HPθ + u, (1.2.3)

as shown in Figure. 1.4.

Pθ H x

u
np q

Figure 1.4: Precoding.

The transmit processing P is called precoding. In general, the precoding is a signal

processing technique that operates on the signal before transmission. Mathematically,

the function of the precoding matrix is the same as the transmitter. One of the �rst

results on precoder design is introduced in Vojcic and Jang [1998] for CDMA system,
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with a �xed linear MIMO channel. Linear precoding has been studied extensively for its

simplicity and optimal performance from an information viewpoint (see Skoglund and

Jöngren [2003]). Di�erent authors have considered various criteria: channel capacity,

mean squared error, signal-to-noise-ratio, mutual information, or bit-error-rate. (See

Visotsky and Madhow [2001], Sampath et al. [2001], Scaglione et al. [2002], Palomar

et al. [2003], Ding et al. [2003], Cover and Thomas [2005], Wiesel et al. [2006], Vu and

Paulraj [2007] and references therein.)

One of the di�erences between transmitter design and receiver design is that, to

conserve the total transmit power, the transmitter or precoder must satisfy the power

constraint

tr(PP T ) ≤ c (1.2.4)

for some positive constant c. In other words, the sum of transmitted power over all

subchannels is bounded by c. In many scenarios, the optimal precoder assigns power to

subchannels in a water�lling manner and gives more power to strong subchannels and

less or no power to weak subchannels.

1.3 Compression and Fusion Design

In this section, we will brie�y introduce the two design problems of interest in this

dissertation. The idea common to both problems is that measurements can often be

linearly compressed into lower-dimensional measurement spaces without introducing too

much excess mean-squared error or excess volume in a concentration ellipse.

1.3.1 Compression Design

In a communication system, when the communication bandwidth is limited, one can

precompress measurements to a lower-dimensional space before transmission. Such data

compression or dimension reduction greatly reduces the communication burden. In this

5



H x

u

θ W z

v
mp n

D
m

Figure 1.5: The linear compression with transmission noise.

work, we are interested in designing the linear compression matrix when measurements

are noisy, and the compressed measurement is to be transmitted over a noisy channel.

The system is given in Figure 1.5, where θ is the signal of interest, x is a noisy mea-

surement of θ. The measurement x is compressed through the matrix W and then

transmitted over a MIMO channel with channel matrix D and additive noise v. The

key term of interest is the compression matrix W .

The special case with no measurement noise or transmission noise is the standard

framework for compressed sensing, ( see Candès et al. [2006] and Donoho [2006]), so sta-

bility studies for compressed sensing establish performance guarantees when measure-

ments are noise-free. When the compressed measurement is to be transmitted noise-free,

the compression-estimation task is essentially a canonical correlation analysis problem.

We further notice that dimension-reduction design is then equivalent to reduced-rank

�ltering and estimation introduced in Section 1.2.1. Reduced-rank estimators transform

the measurement to a lower-dimensional measurement space, with dimension equaling

rank. When there is no measurement noise but with transmission noise, Carson et al.

[2012] derived the optimal projection of a high-dimensional, noise-free signal to max-

imize mutual information between the signal and the compressed measurement. This

problem is a special case of the precoding and equalization design problem in MIMO

communication systems with identity channel matrix, which has been discussed in Sec-

tion 1.2.2.

The compression design here is for compression of a noisy measurement, followed by

transmission of the compressed measurement over a noisy channel. This is the model
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considered in Schizas et al. [2007] and here in Chapter 2. Schizas et al. [2007] provide

the optimal compression and �ltering operators to minimize the mean squared error.

We minimize determinant of error covariance, which in the multivariate normal case

maximizes mutual information. Moreover, we show that the mean-squared error and

mutual information solutions are both scaled and rotated canonical coordinate solutions.

They are di�erent by their design of the scaling matrix and the choice of the coordinate

system.

1.3.2 Fusion Design

For the design problems introduced in the proceeding sections, there is a single source

of measurement. In the fusion problem, we allow multiple sources of measurements.

More speci�cally, we consider a two-channel system as shown in Figure 1.6. The top

panel is a linear MIMO channel with input signal θ and a noisy measurement x, and the

bottom panel is another linear channel with the input signal φ and a noisy measurement

y. We assume that the input signals θ and φ are correlated random quantities and the

signal θ is the term of interest. We call x the primary channel and y the secondary

channel since φ plays the role of a nuisance parameter. Such a system is quite common in

practice when there exist multiple sources of measurements. For example, the elements

of the primary signal θ may be the complex scattering coe�cients of several radar-

scattering targets and the elements of the secondary signal φ may be intensities in an

optical map of these same optical-scattering targets. The measurement x is then a

range-doppler map and the measurement y is an optical image.

The objective in this study is to design the secondary channel, with the primary

channel �xed, such that combining the measurements x and y brings the largest im-

provement in di�erential information rate. We will design the secondary channel matrix

G, or equivalently the precoding matrix for a channel with identity channel matrix. An

information-based criterion will be used to quantify the gain, subject to a total power

7



F

G

x

y

u

v

p

q

s

t

θ

ϕ

Figure 1.6: A two-channel system with two linear channels.

constraint. More details will be given in Chapter 3. We must point out that the main

di�erence between the fusion design and the compression design is the existence of the

primary channel. In fact, without the primary channel, this is simply the precoding

design problem introduced in Section 1.2.2 and a special case of compression design.

The optimal secondary channel depends on the primary channel, the joint distribution

of θ and φ, and the relation between y and φ. The optimization problem is more

complicated than the compression design. We obtain the analytical solution, in Sec-

tion 3.3, when the conditional covariance of φ given θ is proportional to the identity

matrix. For general cases, we approximate the optimal channel by numerical algorithms

in Section 3.4.

1.4 Notation

The set of length m real vectors is denoted by Rm and the set of m×n real matrices

is denoted Rm×n. Bold upper case letters denote matrices, boldface lower case letters

denote column vectors, and italics denote scalars. The scalar xi denotes the ith element

of vector x, and Xi,j denotes the element of X at row i and column j. The diagonal

matrix with diagonal elements x is denoted as diag(x). The n × n identity matrix

is denoted by In. The transpose, inverse, pseudo inverse, trace and determinant of a

matrix are denoted by (·)T , (·)−1, (·)+, tr(·) and det(·), respectively.

8



A covariance matrix is denoted by bold upper case Q with speci�ed subscripts: Qzz

denotes the covariance matrix of a random vector z; Qz1z2 is the cross-covariance matrix

between z1 and z2; Qz1z1|z2 is the conditional covariance matrix of z1 given z2.
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CHAPTER 2

Optimum Compression with Transmission over a

Noisy Channel
1

2.1 Introduction

In a distributed sensor network, one can precompress observations to lower dimen-

sional measurements before transmitting them around the network or to a fusion center.

Such data compression or dimension reduction reduces the communication burden, but

increases mean-squared error and reduces information rate. In this chapter, we are in-

terested in designing the linear compression matrix that minimizes the mean-squared

error or maximizes the information rate at the optimal compression ratio, under a power

constraint.

H x

u

θ W z

v
mp n

D
m

Figure 2.1: Linear compression of a noisy measurement x with channel noise v.

The diagram of Figure 2.1 frames the problem of interest in this chapter. In this

�gure, θ ∈ Rp is a signal of interest. The signal θ is carried through a sensor by

a linear transformation H ∈ Rn×p and then observed as the noisy and transformed

measurement x = Hθ + u ∈ Rn. This noisy measurement x is to be compressed with

the linear transformation W ∈ Rm×n(m < n) and then transmitted through a noisy

channel. The channel transforms the measurement by a channel matrix D ∈ Rm×m and

adds noise to produce a measurement z ∈ Rm. Our goal is to design the compressor

W so that the noisy and compressed measurement z may be processed for an estimator

1Part of this work is accepted by Asilomar Conference on Signals, Systems, and Computers, 2013.
The complete paper is submitted to IEEE Transactions on Signal Processing.
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of the signal θ whose error covariance has minimum trace or minimum determinant.

The minimum trace solution minimizes mean-squared error of the estimate and the

minimum determinant solution minimizes volume of the error concentration ellipsoid.

In the Gaussian case, it maximizes di�erential information rate.

We are not the �rst to consider this problem and its variants. In fact as we will show,

this chapter is an extension of the original work of Schizas, Giannakis, and Luo Schizas

et al. [2007], which in turn generalizes the work of Scharf [1990], Scharf and Thomas

[1998], Scharf and Mullis [1998], Hua et al. [2001], Schreier and Scharf [2006], Scaglione

et al. [2002], and Pérez-Cruz et al. [2010]. The innovation of our work is this. First

we replace the mean-squared error criterion of Schizas et al. [2007] with a maximum

information rate criterion, and second we show that our designs and theirs may be cast

as scaled and rotated canonical coordinate designs. This �nding is important, for it

generalizes the theory of canonical coordinates to a much more general class of problems

than the class for which they were originally designed in Hotelling [1936]. The maximum

information rate designs of this work require a di�erent proof technique than the proof

technique of Schizas et al. [2007].

Let us place our work in the context of prior art, by again making reference to

Figure 2.1. The problem addressed by Schizas et al. [2007] is to design the compression

matrix W so that the measurement z may be �ltered to produce a minimum mean-

squared error estimate of the signal θ. We generalize this problem to the maximization

of information rate and show that canonical coordinates are central to both criteria. The

literature on reduced-rank �ltering assumes that the channel matrix D is identity and

the channel noise v is zero. The result of Carson et al. [2012], which assumes the sensor

matrix H is identity, the sensor noise u is zero, and the channel matrix D is identity,

is a special case of precoding and equalizing.

So we may summarize by saying that the theory of canonical coordinates treats

the problem of compression when there is noise at the input to the compressor and
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the theory of scaled and rotated canonical coordinates developed in this work treats the

problem of compression when there is noise at the input and the output of the compressor.

Noise at the output brings an important element of design to the compression problem,

for it forces a constraint on the power out of the compressor W , a constraint that

leads to rather complicated reasoning about Lagrangians and the KKT conditions for

optimality, as for example in the prior work of Schizas et al. [2007], Scaglione et al.

[2002], and Pérez-Cruz et al. [2010].

The rest of this chapter is organized as follows. In Section 2.2, we brie�y introduce

the problem of interest. In Section 2.3, in the channel-noise-free case, the compression

matrix returns half canonical coordinates for trace minimization, and full canonical coor-

dinates for determinant minimization. In Section 2.4, when the compressed measurement

is transmitted over a noisy channel, the compression matrix for trace or determinant

minimization returns a scaled and rotated canonical coordinate design. Moreover, the

scaling matrix, which accounts for canonical correlations and channel noise variance, has

a mercury/water�lling interpretation. In Section 2.5, we extend the trace and determi-

nant criteria to di�erentiable functions of the error covariance and establish a uni�ed

factorization for the optimal compression matrix. Section 2.6 concludes the chapter.

2.2 Problem Statement

Suppose that θ ∈ Rp is a random signal of interest. Consider the linear model, as

depicted in Figure 2.1,

x = Hθ + u
z = DWx+ v.

(2.2.1)

Here x ∈ Rn is a noisy measurement of θ ∈ Rp,W ∈ Rm×n (m ≤ n) is the compression

matrix, and Wx is the signal to be transmitted over a noisy channel with a full-rank

channel matrix D ∈ Rm×m and random noise v ∈ Rm. Note that the dimension of the

signal Wx is smaller than that of the original signal x. It is assumed that the channel
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noise v has mean 0, and is independent of θ, u and x. Our objective is to design the

compression matrix W such that the compressed measurement z is optimal according

to a pre-speci�ed performance metric.

We use linear estimation which is optimal in the multivariate normal case. In par-

ticular, given a measurement z, the best linear unbiased estimator (BLUE) of θ is

θ̂z = µθ +QθzQ
+
zz(z − µz),

where µθ,µz are the means of θ and z respectively, and Q+
zz is the pseudo inverse of

Qzz. The error covariance matrix of θ̂z, denoted by Qee, is

Qee = E[(θ − θ̂z)(θ − θ̂z)T ] = Qθθ −QθzQ
+
zzQzθ.

Under model (2.2.1), Qee can be written as a function of W ; that is,

Qee = Qθθ −QθxW
TDT (DWQxxW

TDT +Qvv)
−1DWQxθ (2.2.2)

We assume that the covariance matrices Qθθ, Qxx, Qvv and the cross covariance

matrix Qθx are known. In practice, the covariance matrices are determined from the

physics of a problem or estimated from a two-channel experiment that generates realiza-

tions of (θ,x). Only the second order moments are required, not the exact distribution

of the random signals.

The performance of the compression matrix is determined by evaluating functions

of the resulting error covariance Qee. In the literature, the most prominent functions

are the determinant criterion, det(Qee), the average-variance criterion, (tr(Q−1
ee ))

−1
, the

smallest-eigenvalue criterion, λmin(Qee), and the trace criterion, tr(Qee). See Pukelsheim

[1993] for more detailed review and discussion. All these criteria provide a reasonable

measure of �largeness� of the error covariance matrix Qee. Consequently, the optimal

compression matrix W can be obtained by solving an optimization problem using one

of the aforementioned criterion. In Sections 2.3 and 2.4, we will focus on two classical
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criteria: tr(Qee) and det(Qee). The �rst measure tr(Qee) is the mean squared error of

θ̂z. The second measure det(Qee) is the volume of the error concentration ellipsoid.

When z and θ are jointly Gaussian distributed, minimizing det(Qee) is equivalent to

maximizing the mutual information between z and θ, or the di�erential information rate

at which measurement z brings information about θ ( see Cover and Thomas [2005]). For

simplicity, let us refer to the problems where we try to minimize tr(Qee) and det(Qee) as

the min-trace and min-det problems, respectively. In Section 2.5, we will explore more

general criteria, a class of di�erentiable functions of the error covariance matrix.

2.3 Channel-Noise-Free Compression Design

In this section, we study a special case of (2.2.1) in which the compressed measure-

ment can be transmitted perfectly, i.e., z = Wx. In particular, the error covariance

matrix is

Qee = Qθθ −QθxW
T (WQxxW

T )−WQxθ, (2.3.1)

where (·)− is the pseudo-inverse. The solutions of the min-trace and min-det problems

can be obtained by directly applying the results on optimal reduced-rank �ltering in

Scharf [1990], Scharf and Thomas [1998], Scharf and Mullis [1998], Hua et al. [2001],

and Schreier and Scharf [2006].

First, we will discuss a notion of canonical coordinates. The basic idea is to transfer

(θ,x) to canonical coordinates (θ̃, x̃) which have a diagonal cross-covariance matrix.

For the min-trace problem, we consider the singular value decomposition (SVD) of the

half coherence matrix

QθxQ
−T/2
xx = FKGT , (2.3.2)

where K ∈ Rp×n is a diagonal matrix with diagonal elements k1 ≥ . . . ≥ kmin{n,p} ≥ 0,

and F ∈ Rp×p and G ∈ Rn×n are orthogonal matrices. The vectors θ̃ = F Tθ and
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x̃ = GTQ
−1/2
xx x are the half canonical coordinates for θ and x, respectively. Note that

the cross-covariance matrix between θ̃ and x̃ is the diagonal matrix K given in (2.3.2).

For the min-det problem, the choice of the canonical coordinates is di�erent. In this

case, we consider an SVD of the coherence matrix

Q
−1/2
θθ QθxQ

−T/2
xx = FKGT , (2.3.3)

where K ∈ Rp×n is a diagonal matrix with diagonal elements k1 ≥ . . . ≥ kmin{n,p} ≥ 0,

and F ∈ Rp×p and G ∈ Rn×n are orthogonal matrices. Now, the vectors θ̃ = F TQ
−1/2
θθ θ

and x̃ = GTQ
−1/2
xx x are the full canonical coordinates of θ and x, respectively. Note

that for the simplicity of our notation, we choose to re-use the variables F ,K, and G

for both SVDs.

The optimal compression matrix is given in Proposition 2.1, which is a re-statement

of the results of Scharf [1990] and Hua et al. [2001].

Proposition 2.1. For the min-trace and min-det problems, the optimal compression

matrix W ∗
0 ∈ Rm×n can be written as

W ∗
0 = GT

mQ
−1/2
xx (2.3.4)

where Gm consists of the �rst m columns of G. The matrix G is de�ned in (2.3.2) for

the min-trace problem and in (2.3.3) for the min-det problem. Moreover, for any m×m

nonsingular matrix T , TW ∗
0 is also an optimal compression matrix.

Proposition 2.1 �gures prominently in our derivation of scaled and rotated canonical

coordinates for optimum compression with channel noise. It is also worth mentioning

that W ∗
0 x returns the �rst m canonical coordinates in x̃. Let W ∗

tr,0 and W ∗
det,0 denote

the optimal compression matrices given in Proposition 2.1. Straightforward calculation

yields that, using the compression matrix W ∗
tr,0, the minimum MSE of θ̂z is, as given

in Scharf [1990],

tr(Qee(W
∗
tr,0)) = tr(Qθθ|x) +

min{n,p}∑
i=m+1

k2
i ,
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where Qθθ|x is the error covariance for the BLUE of θ given x, and
∑min{n,p}

i=m+1 k2
i is the

minimum increase of the MSE. In addition, usingW ∗
det,0, the resulting minimum volume

of the error concentration ellipsoid ( see Scharf and Thomas [1998], Scharf and Mullis

[1998], and Schreier and Scharf [2006]) is

det(Qee(W
∗
det,0)) = detQθθ|x

min{n,p}∏
i=m+1

(1− k2
i )
−1. (2.3.5)

Note that, in the min-det problem, the diagonal elements of K, i.e., k1, . . . , kmin{n,p},

are the full canonical correlations that measure cosines of principle angles between θ

and x ( see Schreier and Scharf [2006]). In general, the ki's take values between 0 and

1, but in (2.3.5), we assume the ki's are strictly less than 1. It is easy to see that

det(Qee(W
∗
det,0)) ≥ det(Qθθ|x), which shows that compression indeed discards some

information about θ by compressing x to a lower-dimensional measurement.

2.4 Compression Design with Sensor Noise and Channel Noise

Now we extend the results in Section 2.3 by considering the linear compression of

the noisy measurement to be transmitted over a noisy channel. We assume the channel

noise v has mean zero and covariance matrix Qvv, and v is independent of θ and x.

A signi�cant feature of the design for noisy transmission is the need for a power con-

straint on the compression matrix, for otherwise the design problem is not well-de�ned.

In this chapter, we restrict the compression matrix W subject to tr(WQxxW
T ) ≤ c

for some pre-speci�ed constant c.

De�ne Qωω = D−1Qvv(D
−1)T with the eigendecomposition Qωω = UωΣωU

T
ω ,

where Uω is an m ×m orthogonal matrix and Σω ∈ Rm×m is a diagonal matrix with

diagonal elements σ2
ω,1, . . . , σ

2
ω,m with 0 < σ2

ω,1 ≤ . . . ≤ σ2
ω,m.
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2.4.1 Min-Trace Compression with Channel Noise

Under the power constraint, Schizas et al. [2007] have derived the optimal compres-

sion matrix to minimize tr(Qee). In Theorem 2.1, we re-state their result as a scaled

and rotated canonical coordinate design.

Theorem 2.1. An optimal compression matrix W ∗
tr minimizing tr(Qee) is given by

Schizas et al. [2007]

W ∗
tr = UωΣ∗trG

TQ−1/2
xx (2.4.1)

Here the matrices G and K are given in (2.3.2), Σ∗tr is an m× n diagonal matrix with

diagonal elements

σii =

{ √
kiσω,i/

√
µ− σ2

ω,i i = 1, . . . , κ

0 i = κ+ 1, . . . ,m,
(2.4.2)

with κ the maximum integer between 1 and rank(K) such that σ2
ii > 0 for i = 1, . . . , κ,

and

µ =

(
(c+

κ∑
i=1

σ2
ω,i)
−1

κ∑
i=1

σω,iki

)2

.

It can be seen that W ∗
tr factors into whitening Q

−1/2
xx , canonical coordinate trans-

formation GT , scaling Σ∗tr and rotation Uω into the sub-dominant invariant subspace

of Qωω.

2.4.2 Min-Det Compression with Channel Noise

The optimal compression matrixW to minimize det(Qee) under a power constraint

solves the optimization problem,

W ∗
det = arg min

W∈Rm×n
det(Qee) subject to tr(WQxxW

T ) ≤ c. (2.4.3)
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The matrix W has mn degrees of freedom. But let's restrict W to a subset of Rm×n,

over which the local minimizer of det(Qee) can be expressed explicitly. For a given n×n

orthogonal matrix V , de�ne

ΩV = {UωΠmΣΠT
nV

TQ−1/2
xx ,where Πm ∈ Rm×m,Πn ∈ Rn×n are permutation

matrices, and Σ ∈ Rm×n is diagonal with
m∑
i=1

σ2
ii ≤ c}. (2.4.4)

For �xed matrices Uω and Q
−1/2
xx , the set ΩV is a subset of the constrained space of

problem (2.4.3). Therefore, the local minimizer of det(Qee) over W ∈ ΩV generally

gives a suboptimal solution for problem (2.4.3). However, in Lemma 2.1, we show that,

for a suitable choice of V , the suboptimal solution on ΩV is a global optimal solution

for problem (2.4.3).

Lemma 2.1. Suppose that G is the orthogonal matrix given in (2.3.3). Then,

min
W∈ΩG

det(Qee) = det(Qee(W
∗
det)).

The proof is given in Section 2.7.2. Following a similar proof, we can show that

Lemma 2.1 holds for the min-trace problem as well, with G given in (2.3.2).

From Lemma 2.1, it can be seen that the local minimizer over ΩG is also a global

minimizer of (2.4.3). For any W ∈ ΩG, we have

det(Qee(W )) = det(Qθθ|x) det
(
In + ΠT

nΓΠn(In + ΣTΠT
mΣ−1

ω ΠmΣ)−1
)
. (2.4.5)

Here Γ = KT (Ip−KKT )−1K, withK given in (2.3.3), is an n×n positive semi-de�nite

diagonal matrix with diagonal elements γ2
i = k2

i /(1 − k2
i ) for i = 1, . . . ,min{n, p} and

0 otherwise. We require 0 ≤ ki < 1 for all i, and consequently, γ2
1 , . . . , γ

2
n is a �nite

decreasing sequence. The permutation matrices Πn and Πm reorder the diagonal ele-

ments of Γ and Σ−1
ω , respectively. In fact, for any W ∈ ΩG, Πn reorders the canonical

coordinates GTQ
−1/2
xx x and determines which m coordinates will be transmitted, and
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the permutation matrix Πm reorders the selected coordinates and determines which sub-

channel the coordinates will be transmitted over. The optimal compression matrix can

be obtained by minimizing det(Qee(W )) with respect to the permutation matrices Πm,

Πn and the diagonal matrix Σ. The computational complexity of this optimization has

been greatly reduced since there are just 2m+ n degrees of freedom in the permutation

matrices Πm, Πn and the diagonal matrix Σ. We give in Theorem 2.2 the closed-form

expression for the optimal compression matrix W ∗
det.

Theorem 2.2. Suppose the matrix Qωω has distinct eigenvalues, i.e., 0 < σ2
ω,1 < . . . <

σ2
ω,m. Then, the optimal compression matrix W ∗

det solving problem (2.4.3) is

W ∗
det = UωΣ∗detG

TQ−1/2
xx (2.4.6)

Here G is given in (2.3.3) where the matrix K contains singular values 0 ≤ ki < 1 for

all i; Σ∗det ∈ Rm×n is a diagonal matrix with diagonal elements σ∗11, . . . , σ
∗
mm such that

σ∗2ii =

 1
2
σ2
ω,i

(
−2− γ2

i +

√
γ4
i + 4

γ2i
µσ2
ω,i

)
i = 1, . . . , κ

0 i = κ+ 1, . . . ,m
(2.4.7)

where κ is the maximum integer between 1 and m such that σ∗2ii > 0 or equivalently

σ2
ω,i/k

2
i < 1/µ for i = 1, . . . , κ. The value of µ is nonnegative and uniquely solves∑κ

i=1 σ
∗2
ii = c. Moreover, the diagonal element of Σ∗det are decreasingly ordered, i.e.,

σ∗11 ≥ . . . ≥ σ∗mm ≥ 0.

The proof of Theorem 2.2 is given in Section 2.7.3.

Given that γ2
1 ≥ . . . ≥ γ2

n and σ2
ω,1 ≤ . . . ≤ σ2

ω,m, the optimal permutation matrices

Πm and Πn are both identity matrices. This indicates that the canonical coordinates of

the measurement with higher canonical correlation between the canonical coordinates

of θ are transmitted over the subchannels with less noise. The decreasingly ordered

sequence of scalings σ∗11 ≥ . . . ≥ σ∗mm ≥ 0 shows that the subchannels with higher

canonical correlation and lower noise are assigned higher power.
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Example 2.1. A Circulant Model. Consider the model x = θ + u where θ and u have

circulant covariances. Suppose that the channel matrix D = Im and the channel noise v

has a circulant covariance. Then both Q
−1/2
θθ QθxQ

−T/2
xx and Qωω are circulant matrices

with Discrete Fourier Transform (DFT) representations

Q
−1/2
θθ QθxQ

−T/2
xx = UnSθxU

T
n ;Qωω = VmSωωV

T
m

where Un ∈ Rn×n and Vm ∈ Rm×m are the DFT matrices and Sθx and Sωω are diagonal

matrices. Let u(1), . . . ,u(κ) be the columns of the DFT matrix Un sorted according to the

κ largest canonical correlations, and v(1), . . . ,v(κ) be the columns of the DFT matrix Vm

sorted according to the smallest eigenvalues of Qωω. It can be seen that the optimal com-

pression matrix selects the �rst κ sorted DFT coordinates uT(1)Q
−1/2
xx x, . . . ,uT(κ)Q

−1/2
xx x

and sends them over the κ sorted DFT modes v(1), . . . ,v(κ) of the channel.

Simple calculation shows that, with compression, the minimum determinant of the

error covariance is

det(Qee(W
∗
det)) = detQθθ|x

min{n,p}∏
i=κ+1

1

1− k2
i

κ∏
i=1

1 +
2√

1 + 4(γ2
i σ

2
ω,iµ)−1 − 1

 . (2.4.8)

The �rst term on the right hand side is the minimum volume of the error concentration

ellipsoid with no dimension reduction; the second term scales this volume according

to canonical correlations of discarded canonical coordinates; the third term scales the

volume by a term that depends on the channel noise variance, the power c, and the

full canonical correlations. The integer κ is the number of subchannels assigned with

positive power, and κ/n is the optimal compression ratio for a given power c.

In Theorem 2.2, it is assumed that all eigenvalues of Qωω are distinct. Notice that,

if some eigenvalues have multiplicity greater than 1, one can perturb Qωω by δQ such

that the matrix Q̃ωω = Qωω + δQ has distinct eigenvalues. Moreover, we can restrict

δQ such that the eigenspace of Q̃ωω is �xed. Because the optimal entries in (2.4.7) are
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continuous functions of σ2
ω,1, . . . , σ

2
ω,m, we can obtain the optimal compression matrix

by letting δQ go to zero.

It is worth mentioning that, for a su�ciently large c, we have 1/µ > σ2
ω,i/k

2
i (or

equivalently σ2
ii > 0) for all i = 1, . . . ,m. Consequently, the solution given in Theo-

rem 2.2 is also an optimal compression for the channel-noise-free case. We simply let

the nonsingular matrix T in Proposition 2.1 be T = Uω diag(σ∗11, . . . , σ
∗
mm). When c

goes to in�nity, the third part in (2.4.8) goes to 1, and the minimum determinant of

Qee converges to the channel-noise-free case. On the other hand, the diagonal elements

of Σ∗det go to in�nity. Therefore, we can see that the optimization problem is ill-posed

without a (�nite) power constraint.

Finally, we comment on the canonical correlations. Under our current framework, all

canonical correlations, ki, are less than 1. In fact, the factorization in (2.4.6) still holds

when ki = 1 with a di�erent scaling matrix Σ∗det. In the sensor-noise-free case, suppose

that x = Hθ and the matrix H ∈ Rn×p has rank p. The full canonical correlations

between θ and x are all 1. In this case, the compressorW operates onHθ directly and

the design ofW becomes a precoder design problem Scaglione et al. [2002], Pérez-Cruz

et al. [2010], Carson et al. [2012]. The optimal scaling matrix Σ∗det has diagonal elements

σ∗ii =

{ √
1/µ− σ2

ω,i σ2
ω,i < 1/µ

0 σ2
ω,i ≥ 1/µ

(2.4.9)

where the value of µ is determined by the power constraint
∑m

i=1 σ
2
ii = c.

2.4.3 A Mercury/Water�lling Interpretation

First, consider a sensor-noise-free case, x = Hθ. The optimal compressor has been

discussed in Section 2.4.2, with the factorization in (2.4.6) and Σ∗det given in (2.4.9).

The scaling matrix Σ∗det distributes the power among all the m subchannels according

to a water�lling policy, Cover and Thomas [2005], with a graphical display given in

Figure 2.2. There are m vessels, each of which represents a subchannel. The goal is to
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pour water of total volume c into these vessels. Here, each vessel has its own solid base

with height σ2
w,i. Recall that σ2

ω,1, . . . , σ
2
ω,m are the eigenvalues of Qωω. They can be

viewed as the variances of the channel noise in the channel coordinates since the optimal

compression rotates the scaled canonical coordinates by Uω, the eigenvectors of Qωω.

The desired water level 1/µ is determined by the power constraint, or equivalently, the

total volume of water equals c. The optimal compressor pours water into each vessel

until the water level reaches 1/µ. As a result, the water height in each vessel gives the

power assigned to the corresponding subchannel. Note that less power will be allocated

to noisier subchannels, and no power will be assigned to subchannels with noise variance

larger than 1/µ.

Solid

Water{1/μ }σω,i2
Figure 2.2: Water�lling without sensor noise. The total volume of water is c, and the
water height over the solid base on the ith vessel gives the power for the ith subchannel.

In general, x is a noisy measurement of θ and the full canonical correlations are

strictly less than 1. Therefore, the optimal power allocation policy needs to be adjusted

according to the canonical correlations. As a consequence of Theorem 2.2, the solution

can be interpreted as a mercury/water�lling policy, which is a three-step procedure that

has been introduced in Lozano et al. [2006]:

1. For the ith vessel, �ll in the solid base with height σ2
ω,i/k

2
i .

2. Compute µ from the power constraint. For the vessels with base height less than
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1/µ, �ll in mercury in the vessel until the height reaches

max

{
1

µ
− 1

2
σ2
ω,i

(
−2− γ2

i +

√
γ4
i + 4

γ2
i

σ2
ω,iµ

)
,
σ2
ω,i

k2
i

}
.

3. Pour water into all vessels until the height of water in each vessel reaches 1/µ.

In this mercury/water�lling policy, 1/µ is the parameter in the formula for water volume

σ2
ii that minimizes det(Qee) under the constraint that the total volume of water is c.

Given the value of µ, the determinant of the error covariance is minimized when the

value of σ2
ii equals the height of water in the corresponding vessel.

The height of the solid base, σ2
ω,i/k

2
i , is the variance of the channel noise in the

ith vessel divided by the ith squared canonical correlation. A higher solid base means

a less informative channel with high channel noise and weak correlation with θ. For

any vessel with base height exceeding 1/µ, neither mercury nor water will be added, or

equivalently, no power will be assigned to the corresponding subchannel.

While the base height determines whether water will be added, the mercury stage

regulates the water level for each vessel. Without adding mercury, the optimal power

allocation will have variable solid-plus-water levels among di�erent vessels. The mercury

is added to balance the sensor noise contained in x and the channel noise added in

transmission. Recall that no mercury is added in the special case when x = θ. The water

height in each vessel is the optimal power assigned to the corresponding subchannel. As

demonstrated in Theorem 2.2, the water height for each vessel is decreasingly ordered.

2.4.4 Scaled and Rotated Canonical Coordinate Design

Theorems 2.1 and 2.2 suggest a common architecture for compression, which spe-

cializes to all previous designs for reduced-rank �ltering and for reduced rank precoding

and equalizing. The optimal compressor can be factored into four component matrices.

As shown in Figure 2.4, the �rst matrix Q
−1/2
xx whitens the noisy measurement x. The
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Solid

Mercury

Water{1/μ }σω,iki__22
Figure 2.3: A mercury/water�lling policy. The total volume of water is c, and the water
height over mercury on the ith vessel gives σ2

ii.

Qxx GT Λm
-1/2

n m

x z

vW

DU

Figure 2.4: Scaled canonical coordinate transformation for compressing a noisy mea-
surement with transmission over a noisy channel.

second matrix GT transforms the whitened measurement into a canonical coordinate

system. For the min-det problem, the full canonical coordinates, GTQ
−1/2
xx x, are un-

correlated and have unit variance. The third matrix Σ∗ ∈ Rm×n is diagonal. The role

of Σ∗ is to extract the �rst m full canonical coordinates and distribute power across

the canonical channels. The ith canonical coordinate is scaled to have power σ2
ii. For

the min-det problem, when γ2
i = 0 (i.e., ki = 0), the corresponding scaling is σii = 0,

which means those canonical coordinates uncorrelated or weakly correlated with θ will

be eliminated. In general, the diagonal elements of Σ∗ have a mercury/water�lling

interpretation. The matrix Uω rotates the compressed canonical coordinates into the

sub-dominant invariant subspace of the matrix Qωω.

The di�erence between the trace and determinant designs is in the canonical coor-

dinates and in the values of scaling constants in the diagonal scaling matrix.
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2.5 A Uni�ed Framework for Optimal Compression

In the previous sections, our interest has centered on optimal compression under

two commonly used criteria: trace and determinant. Next, we consider the problem of

designing a compression matrix to minimize a general criterion:

W ∗ = arg min
W∈Rm×n

ϕ(Qee) subject to tr(WQxxW
T ) ≤ c. (2.5.1)

Here ϕ is a di�erentiable function on the space of p× p positive de�nite matrices.

Denote the �rst derivative of ϕ by ϕ′. Then ϕ′ is a mapping from Rp×p to Rp×p, with

(ϕ′(Qee))ij = lim
t→0

ϕ(Qee + tJij)− ϕ(Qee)

t
,

where Jij is the p× p single-entry matrix with 1 at (i, j) and 0 elsewhere.

We �rst establish a uni�ed factorization of W ∗ in the following theorem.

Theorem 2.3. Suppose that the diagonal matrix Σω has distinct diagonal elements.

Then for any minimizer W ∗ of (2.5.1), there exists an m×m permutation matrix Π∗m,

an m× n diagonal matrix Σ∗, and an n× n orthogonal matrix V ∗ such that

W ∗ = UωΠ∗mΣ∗V ∗TQ−1/2
xx . (2.5.2)

Proof of Theorem 2.3 is given in Section 2.7.4. Theorem 2.3 suggests that the optimal

compression matrix can be expressed as a sequence of operations, including whitening

(Q
−1/2
xx ), coordinate system transformation (V T ), scaling (Σ), re-ordering (Πm) and

rotation to the invariant subspace of the channel noise (Uω).

In general, searching for the global minimizer of the optimization problem (2.5.1) is

rather challenging. Enlightened by the factorization in (2.5.2), we �rst consider search-

ing for the optimal compressor for a �xed orthogonal matrix V . This more restricted

optimization problem can be carried out using the KKT conditions, which is not com-

putationally costly, as Πm is a permutation matrix, and Σ is a diagonal matrix.
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The choice of V is the key to the compression design, and there is no general solution

for it. The following lemma provides a necessary condition for the optimal coordinate

system V ∗.

Lemma 2.2. The optimal orthogonal matrix V ∗ de�ned in (2.5.2) satis�es the condition

[V ∗TLTϕ′(Q∗ee)LV
∗, (In + ∆∗)−1] = 0n×n, (2.5.3)

where [A,B] = AB−BA, L = QθxQ
−T/2
xx ∈ Rp×n is the half coherence matrix between

θ and x, Q∗ee is the error covariance for θ corresponding to the compression W ∗, and

∆∗ = Σ∗TΠ∗Tm Σ−1
ω Π∗mΣ∗ ∈ Rn×n is a diagonal matrix.

The proof is given in Section 2.7.5. An equivalent statement of Lemma 2.2 is that

(In + ∆∗)−1 and V ∗TLTϕ′(Q∗ee)LV
∗ commute. In general, the solution for (2.5.3)

is intractable, mainly because the terms Q∗ee and ∆∗ contain unknown Π∗m,Σ
∗,Π∗n.

Nevertheless, since (In + ∆∗)−1 is a diagonal matrix, we may choose an orthogonal

matrix V such that V TLTϕ′(Q∗ee)LV is diagonal for any Π∗m,Σ
∗,Π∗n. Next we give

two speci�c examples.

Example 2.2. Consider a linear criterion ϕ, i.e.,

ϕ(A+B) = ϕ(A) + ϕ(B);

ϕ(αA) = αϕ(A),

for any A,B ∈ Rp×p and α ∈ R1. Then, the derivative ϕ′(Qee), denoted by M , is a

constant known matrix. One choice of V to satisfy (2.5.3) is that the columns of V

are the eigenvectors of LTML. As a special case, when ϕ(Qee) = tr(Qee), we have

ϕ′(Qee) = Ip and V = G in (2.3.2) is a feasible choice.

Example 2.3. Consider ϕ(Qee) = det(Qee) with ϕ′(Qee) = det(Qee)Q
−1
ee . Given the

full canonical coordinate system in (2.3.3), one can show that

V TLTϕ′(Q∗ee)LV = V TGKT (I −KGTV T (In + ∆∗)−1V GKT )−1KGTV . (2.5.4)
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It can be seen that when V = G with G given in (2.3.3), the matrix in (2.5.4) is diagonal

and (2.5.3) holds for any ∆∗.

In the proceeding examples, a candidate coordinate system V is provided for each

problem by solving condition (2.5.3). For the min-trace problem, the half canonical

coordinate system indeed is optimal, according to the results in Schizas et al. [2007].

For the mid-det problem in Section 2.4.2, the full canonical coordinate system is optimal.

Moreover, for the weighted min-trace problem where ϕ(Qee) = tr(AQeeA
T ), one can

check that the weighted half canonical coordinate system, given by the SVD of the

weighted half coherence matrix AQθxQ
−1/2
xx , is optimal.

2.6 Summary

In this chapter we have considered the problem of compressing a noisy measurement

for transmission over a noisy channel, introduced in Schizas et al. [2007]. This problem

generalizes the problem of reduced rank �ltering (Scharf [1990], Scharf and Thomas

[1998], Scharf and Mullis [1998], Hua et al. [2001], and Schreier and Scharf [2006]) and the

problem of reduced rank precoder and equalizer design (Scaglione et al. [2002] and Pérez-

Cruz et al. [2010]), producing those designs as special cases. We have shown that designs

for minimizing trace or determinant of an error covariance matrix share a common

architecture. In this architecture, a noisy sensor measurement is �rst transformed into

a system of canonical coordinates. These coordinates are then scaled and rotated into

the sub-dominant subspace of the channel noise. The di�erence between the two designs

resides in the de�nition of canonical coordinates and in the determination of the scaling

constants. A generalization to di�erentiable functions of error covariance leads to a

factorization theorem that supports practical design for general criteria.
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2.7 Proofs

2.7.1 Proof for Proposition 2.1

We �rst prove the min-trace result of Proposition 2.1. Let W̃ = WQ
1/2
xx . Then,

tr(Qee) = tr(Qθθ −QθxQ
T/2
xx W̃

T (W̃W̃ T )+W̃Q1/2
xxQxθ)

= tr(Qθθ)− tr(W̃ T (W̃W̃ T )+W̃Q1/2
xxQxθQθxQ

T/2
xx )

= tr(Qθθ)− tr(W̃ T (W̃W̃ T )+W̃GKTKGT )

where the matrices K and G are given by the SVD

QθxQ
T/2
xx = FKGT .

Suppose that W̃ has the SVD W̃ = UΣV T . Then,

tr(Qee) = tr(Qθθ)− tr(

[
Im 0
0 0

]
V TGKTKGTV )

Note that the matrixGTV is an orthogonal matrix. Therefore V TGKTKGTV has the

same eigenvalues as the diagonal matrixKTK. Therefore, by the bounds on eigenvalues

of matrix products given in Komaro� [1990], it is easy to see that for any W ,

tr(Qee) ≥ tr(Qθθ)−
m∑
i=1

k2
i ,

and the minimum is attained at W̃ = GT
m which yields the optimal compression matrix

minimizing tr(Qee) is W ∗
0 = GT

mQ
−1/2
xx . Note that the minimum equals tr(Qθθ|x) +∑min{n,p}

i=m+1 k2
i since tr(Qθθ|x) = tr(Qθθ)−

∑min{n,p}
i=1 k2

i .

For the min-det result of Proposition 2.1, the proof follows the same track. Let

W̃ = WQ
1/2
xx . Then we have

det(Qee) = det(Qθθ −QθxQ
T/2
xx W̃

T (W̃W̃ T )+W̃Q1/2
xxQxθ)

= det(Qθθ)× det(I − W̃ T (W̃W̃ T )+W̃Q1/2
xxQθθQ

−1
θθQθθQ

T/2
xx )

= det(Qθθ)× det(I − W̃ T (W̃W̃ T )+W̃GKTKGT )
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where the matrices K and G are given by the SVD

Q
−1/2
θθ QθxQ

T/2
xx = FKGT .

Consider the SVD W̃ = UΣV T . Then,

det(Qee) = det(Qθθ)× det(I −
[
Im 0
0 0

]
V TGKTKGTV )

Proceeding as the min-trace problem, one can show that

det(Qee) ≥ det(Qθθ)×
m∏
i=1

(1− k2
i ).

The minimum is attained at W̃ = GT
m which yields W ∗

0 = GT
mQ

−1/2
xx as the opti-

mal compression matrix minimizing det(Qee). Note that the minimum can be rewrit-

ten as det(Qθθ|x) ×
∏min{n,p}

i=m+1 (1 − k2
i )
−1, from the fact that det(Qθθ|x) = det(Qθθ) ×∏min{n,p}

i=1 (1− k2
i ).

2.7.2 Proof for Lemma 2.1

Let A and B be two n × n positive semi-de�nite matrices with eigenvalues µ1 ≥

. . . µn ≥ 0 and λ1 ≥ . . . λn ≥ 0. Then,

det(In +AB) ≥
n∑
i=1

λiµn−i+1. (2.7.1)

The proof uses the same technique as the proof of Lemma 3 in Witsenhausen [1975] and

is omitted here.

By Theorem 2.3, it su�ces to consider the compression matrixW with factorization

W = UωΠmΣΠT
nV

TQ−1/2
xx (2.7.2)

where V is an orthogonal matrix, and Πn and Πm are permutation matrices. De�ne

Λ = (In + ΣTΠT
mΣ−1

ω ΠmΣ)−1, L = QθxQ
−T/2
xx and C = Q

−1/2
θθ L. Then,

det(Qee) = det
(
Qθθ −LLT +LVΠnΛΠT

nV
TLT

)
= det(Qθθ) det

(
Ip −CCT +CVΠnΛΠT

nV
TCT

)
= det(Qθθ) det

(
Ip −CCT

)
det
(
I + ΠnΛΠT

nV
TCT (Ip −CCT )−1CV

)
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Given the SVD, it can be seen that C = FKGT in (2.3.3),

V TCT (Ip −CCT )−1CV = V TGKT (Ip −KKT )−1KGTV ,

which has eigenvalues γ2
1 ≥ . . . ≥ γ2

n ≥ 0 where γ2
i = k2

i /(1− k2
i ) for i = 1, . . . ,min{n, p}

and 0 otherwise. Moreover, the matrix ΠnΛΠT
n has the same eigenvalues as Λ. Let

W 0 = UωΠmΣ(Π0
n)TGTQ

−1/2
xx where Π0

n is an n × n permutation matrix such that

the diagonal elements of the diagonal matrix Π0
nΛΠ0T

n are increasingly ordered. Then,

W 0 ∈ ΩG and

det(Qee(W )) ≥ det(Qθθ) det
(
Ip −CCT

) n∏
i=1

γ2
i λ(i) = det(Qee(W

0)). (2.7.3)

where the inequality is a direct consequence of (2.7.1). Minimizing both sides of (2.7.3)

over W with factorization (2.7.2) and W 0 ∈ ΩG, respectively, we have

det(W ∗
det) ≥ min

W∈ΩG
det(Qee(W )). (2.7.4)

The proof is therefore completed by the fact that det(W ∗
det) ≤ min

W∈ΩG
det(Qee(W )) by

de�nition.

2.7.3 Proof for Theorem 2.2

Given Lemma 2.1, we can restrict W = UωΠmΣΠT
nG

TQ
−1/2
xx where Πn and Πm

are permutation matrices, and Σ ∈ Rm×n is a diagonal matrix with diagonal elements

σ11, . . . , σmm. Let πm(i) be the index of the entry equal to unity in the ith column of

Πm, and πn(i) be the index of the unity entry in the ith column of Πn. Then

det(Qee(σ11, . . . , σmm, πm, πn)) =
m∏
i=1

(
1 +

γ2
πn(i)

1 + λπm(i)σ
2
ii

)
n∏

j=m+1

log(1 + γ2
πn(j)) (2.7.5)

where λi = σ−2
ω,i for i = 1, . . . ,m with λ1 ≥ . . . ≥ λm. We try to minimize det(Qee) over

all possible permutations and (σ11, . . . , σmm)T subject to
∑m

i=1 σ
2
ii ≤ c.
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First, we show that the minimum of det(Qee) can be achieved when πm(i) = i

for i = 1, . . . ,m and πn(j) = j for j = 1 . . . , n, or equivalently, when the optimal

permutation matrices Πm = Im and Πn = In. For a given permutation, de�ne

f(πn, πm) = min∑m
i=1 σ

2
ii≤c

det(Qee).

The optimal permutation (π∗n, π
∗
m) satis�es

f(π∗n, π
∗
m) ≤ f(πn, πm) (2.7.6)

for all other permutations (πn, πm). It is easy to see that for any i = 1, . . . ,m, one must

have γ2
π∗
n(i) ≥ max{γ2

π∗
n(m+1), . . . , γ

2
π∗
n(n)}. Moreover, since the orders of {πn(j)}nj=m+1 do

not a�ect the value of (2.7.5), we can set WLOG π∗n(j) = j for j = m + 1, . . . , n. For

i = 1, . . . ,m, it can be seen that πn(i) and πm(i) appear in (2.7.5) pairwise. Therefore,

we can set WLOG that π∗m(i) = i for i = 1, . . . , κ and f(πn) := f(πn, π
∗
m). Then the

objective is to search for the optimal permutation π∗n(i) that minimizes

m∏
i=1

(
1 +

γ2
πn(i)

1 + λ
i
σ2
ii

)
. (2.7.7)

Let's start from the simple case with m = 2. When λ1 = λ2 or γ
2
1 = γ2

2 , the function

in (2.7.7) is permutation invariant. When λ1 > λ2 and γ2
1 > γ2

2 , only two permutations

are possible, π1
n(i) = i or π2

n(i) = 3 − i for i = 1, 2. To minimize (2.7.7), consider the

following functions

h1(x) = (1 +
γ2

1

1 + λ1cx
)× (1 +

γ2
2

1 + λ2c(1− x)
);

h2(x) = (1 +
γ2

2

1 + λ1cx
)× (1 +

γ2
1

1 + λ2c(1− x)
).

with cx = σ2
11 and c(1− x) = σ2

22, in which case σ2
11 + σ2

22 = c. Then, f(π1
n) < f(π2

n) is

equivalent to

min
x∈[0,1]

h1(x) < min
x∈[0,1]

h2(x). (2.7.8)
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Straightforward calculation gives that

h2(x)− h1(x) =
c(γ2

1 − γ2
2)((λ1 + λ2)x− λ2)

(1 + λ1cx)(1 + λ2c(1− x))

Therefore h2(x) > h1(x) for any x ∈ [ λ2
λ1+λ2

, 1]. For x ∈ [0, λ2
λ1+λ2

], one can show that

h2(x) > h1(λ2
λ1

(1− x)) with λ2
λ1

(1− x) ∈ [ λ2
λ1+λ2

, 1]. Therefore (2.7.8) holds and π∗n(i) = i

for i = 1, 2. By checking the �rst and second derivative of h1(x), the minimum of h1 is

attained at x ∈ [1/2, 1]. This directly yields that cx ≥ c(1−x) or equivalently, σ2
11 ≥ σ2

22,

meaning that allocation of power decreases with increasing channel index.

For the general cases where m ≥ 2, de�ne (σπn11 , . . . , σ
πn
mm)

(σπn11 , . . . , σ
πn
mm) = arg min∑m

i=1 σ
2
ii≤c

det(Qee(σ11, . . . , σmm, πn, π
∗
m)).

Suppose that there exist 1 ≤ i < j ≤ m with γ2
πn(i) < γ2

πn(j). Let π̃n be a new permutation

with π̃n(i) = πn(j), π̃n(j) = πn(i), and π̃n(k) = πn(k) for k 6= i, j. De�ne

(σ̃ii, σ̃jj) = arg min
σ2
ii+σ

2
jj≤σ

πn2
ii +σπn2

jj

(
1 +

γ2
π̃n(i)

1 + λiσ2
ii

)(
1 +

γ2
π̃n(j)

1 + λjσ2
jj

)
. (2.7.9)

Given the result for the m = 2 case, it is straightforward to see that

det(Qee(σ
πn
11 , . . . , σ̃ii, . . . , σ̃jj, . . . , σ

πn
mm, π̃n, πm)) < det(Qee(σ

πn
11 , . . . , σ

πn
mm, πn, πm)

Therefore, the permutation πn cannot be the optimal permutation. Among all the

permutations γ2
πn(1) ≥ . . . ≥ γ2

πn(m), we can choose WLOG that π∗n(i) = i for i = 1, . . . ,m.

Next our problem focuses on �nding the sequence

{σ∗ii}mi=1 = arg min∑m
i=1 σ

2
ii≤c

m∑
i=1

log

(
1 +

γ2
i

1 + λiσ2
ii

)
. (2.7.10)

The log operator is implemented to simplify calculation. Note that the objective func-

tion in (2.7.10) is a strictly convex function, therefore (2.7.10) is a convex optimization

problem with unique minimizer. Moreover, the function is strictly decreasing in σ2
ii.

Hence the minimum is attained at
∑m

i=1 σ
2
ii = c. The Lagrangian is

L(σ11, . . . , σmm;µ) =
m∑
i=1

log

(
1 +

γ2
i

1 + λiσ2
ii

)
+ µ(

m∑
i=1

σ2
ii − c)
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By setting the �rst derivative of the Lagrangian with respect to σ11, . . . , σmm, and µ to

zero, the necessary conditions for any minimizer of problem (2.7.10) are

−
(

1 +
γ2
i

1 + λiσ2
ii

)−1
2γ2

i λiσii
(1 + λiσ2

ii)
2

+ 2µσii = 0 (2.7.11)

m∑
i=1

σ2
ii = c (2.7.12)

Equation (2.7.11) yields either σii = 0 or

σii =

√
1

2λi

(√
γ4
i + 4λiγ2

i µ
−1 − 2− γ2

i

)
(2.7.13)

The solution in (2.7.13) provides a feasible solution for σii only when µ ≤ λik
2
i = k2

i /σ
2
i

or 1/µ > σ2
w,i/k

2
i where k

2
i = γ2

i (1 + γ2
i )
−1 is the squared canonical correlation.

Next we investigate the possible minimizers by checking the second derivative of L,

which is

∂2L(σ11, . . . , σmm;µ)

∂σ2
ii

= 2µ− 2γ2
i λi

(1 + γ2
i + λiσ2

ii)(1 + λiσ2
ii)

+
4γ2

i λ
2
iσ

2
ii

(1 + γ2
i + λiσ2

ii)
2(1 + λiσ2

ii)
+

4γ2
i λ

2
iσ

2
ii

(1 + γ2
i + λiσ2

ii)(1 + λiσ2
ii)

2
(2.7.14)

Substituting (2.7.13), the second derivative

∂2L(σ11, . . . , σmm;µ)

∂σ2
ii

= 4µλiσii

(
1

1 + γ2
i + λiσ2

ii

+
1

1 + λiσ2
ii

)
is strictly positive when 1/µ > σ2

w,i/k
2
i . When σii = 0,

∂2L(σ11, . . . , σmm;µ)

∂σ2
ii

∣∣∣∣
σii=0

= 2µ− 2λiγ
2
i

1 + γ2
i

which is negative when 1/µ ≥ σ2
w,i/k

2
i and positive when 1/µ < σ2

w,i/k
2
i .

Let κ be the maximum integer between 1 and m such that 1/µ > σ2
w,i/k

2
i (or equiv-

alently σii > 0 for i = 1, . . . , κ) and 1/µ ≤ σ2
w,i/k

2
i (σii = 0 for i = κ+ 1, . . . ,m), where

the value of µ is determined by the power constraint (2.7.12). Then, the Hessian matrix

at

σ∗ii =


√

1
2λi

(√
γ4
i + 4λiγ2

i /µ− 2− γ2
i

)
, for i = 1, . . . , κ

0 for i = κ+ 1, . . . ,m
(2.7.15)
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is strictly positive and (2.7.15) is the minimizer.

As a summary, the optimal compression matrix minimizing det(Qee) is

W ∗
det = UωΣ∗detG

TQ−1/2
xx .

where Σ∗det ∈ Rm×n is a diagonal scaling matrix with diagonal elements given in (2.7.15).

2.7.4 Proof for Theorem 2.3

Since Uω and Q
−1/2
xx are invertible, one can uniquely de�ne a matrix Φ ∈ Rm×n such

that

W = UωΦQ−1/2
xx . (2.7.16)

The power constraint is equivalent to tr(ΦΦT ) ≤ c since tr(WQxxW
T ) = tr(ΦΦT ) for

any pair of (W ,Φ) satisfying (2.7.16). Moreover, the error covariance Qee simpli�es to

Qee = Qθθ −LΦT (ΦΦT + Σω)−1ΦLT , (2.7.17)

where L = QθxQ
−T/2
xx is the LMMSE �lter for estimating θ from x. Using the matrix

inversion lemma (I + ΦTΣ−1
ω Φ)−1 = I −ΦT (ΦΦT + Σω)−1Φ, the error covariance can

be rewritten as

Qee = Qθθ|x +L(I + ΦTΣ−1
ω Φ)−1LT , (2.7.18)

where Qθθ|x = Qθθ −LLT is a constant matrix with respect to Φ.

We de�ne an alternative optimization w.r.t. Φ as

Φ∗ = arg minϕ(Qee) s.t. Φ ∈ Rm×n, tr(ΦΦT ) ≤ c. (2.7.19)

The Lagrangian is L(Φ;µ) = ϕ(Qee) + µ(tr(ΦΦT )− c), and the necessary condition for

any optimizer Φ is

∂

∂Φ
L(Φ;µ) =

∂ϕ(Qee)

∂Φ
+ 2µΦ = 0
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By the matrix derivative chain rule,

∂ϕ(Qee)

∂φij
= tr(

(
∂ϕ(Qee)

∂Qee

)T
∂Qee

∂φij
)

= tr(ϕ′(Qee)
T ∂L(I + ΦTΣ−1

ω Φ)−1LT

∂φij
)

= − tr
(
(I + ΦTΣ−1

ω Φ)−1LTϕ′(Qee)
TL(I + ΦTΣ−1

ω Φ)−1ΦTΣ−1
ω Jij

)
− tr

(
Σ−1
ω Φ(I + ΦTΣ−1

ω Φ)−1LTϕ′(Qee)
TL(I + ΦTΣ−1

ω Φ)−1JTij
)

By the fact tr(AJij) = aji and tr(AJTij ) = aij, we have

∂ϕ(Qee)

∂Φ
=−Σ−1

ω Φ(I + ΦTΣ−1
ω Φ)−1LTϕ′(Qee)

TL(I + ΦTΣ−1
ω Φ)−1

−Σ−1
ω Φ(I + ΦTΣ−1

ω Φ)−1LTϕ′(Qee)L(I + ΦTΣ−1
ω Φ)−1

Left multiply ∂
∂Φ
L(Φ;µ) by Σω and right multiply by Φ. Then

2µΣωΦΦT =Φ(I + ΦTΣ−1
ω Φ)−1LTϕ′(Qee)

TL(I + ΦTΣ−1
ω Φ)−1ΦT

+ Φ(I + ΦTΣ−1
ω Φ)−1LTϕ′(Qee)L(I + ΦTΣ−1

ω Φ)−1ΦT

Since the RHS is a symmetric matrix, ΦΦTΣω = ΣωΦΦT . When the diagonal matrix

Σω has distinct diagonal elements, it can be seen that the symmetric matrix ΦΦT must

be a diagonal matrix.

Given the SVD Φ = UΣV T where U ,V are orthogonal matrices, and Σ ∈ Rm×n is

diagonal. Then by Lemma 6.8 of Pukelsheim [1993], there exists an m×m permutation

matrix Πm such that ΦΦT = ΠmΣΣTΠT
m. Therefore, Φ = ΠmΣV T . Plugging Φ

in (2.7.16), it can be seen that W ∗ can be factorized as W ∗ = UωΠ∗mΣ∗V ∗TQ
−1/2
xx .

2.7.5 Proof for Lemma 2.2

Suppose that W ∗ = UωΠ∗mΣ∗V ∗TQ
−1/2
xx is a solution for problem (2.7.19). For an

anti-symmetric matrix X ∈ Rn×n, let W (t) = UωΠ∗mΣ∗e−tXV ∗TQ
−1/2
xx and Qee(t) the
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resulting error covariance at compression W (t). De�ne a function f(t) for t ∈ R1 with

f(t) = ϕ(Qee(t)). It is easy to show that

f(t) = ϕ(Qθθ|x +L(I + V ∗etX∆∗e−tXV ∗T )−1LT ),

where ∆∗ = Σ∗TΠ∗Tm ΣωΠ∗mΣ∗. Notice that W (0) = W ∗. Since W ∗ is a min-

imizer for problem (2.7.19), we have f(t) ≥ f(0) for any t ∈ R. Therefore, the

necessary condition for V ∗ is ∂f
∂t

∣∣
t=0

= 0 for any anti-symmetric matrix X. Let

X = [V ∗TLTϕ′(Q∗ee)LV
∗, (In + ∆∗)−1], one can show that the necessary condition

yields tr(XXT ) = 0. Therefore X = 0, i.e, V ∗TLTϕ′(Q∗ee)LV
∗ and (In + ∆∗)−1

commute.
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CHAPTER 3

Fusion Inspired Channel Design
2

3.1 Introduction

Consider the following two-channel system, as illustrated in Fig. 3.1,

x = Fθ + u
y = Gφ+ v.

(3.1.1)

The �rst channel is the primary channel that carries the signal of interest θ. The sec-

ondary channel carries a signal φ that shares a joint distribution with θ. The measure-

ments x and y are linear transformations of the input signals with measurement noises

u and v, respectively. For example, the elements of the primary signal θ may be the

complex scattering coe�cients of several radar-scattering targets and the elements of the

secondary signal φ may be intensities in an optical map of these same optical-scattering

targets. The measurement x is then a range-doppler map and the measurement y is an

optical image. We assume a known signal model, i.e., the joint distribution of θ and

φ. When the signals θ and φ are correlated, the measurements x and y both contain

information about θ and we can combine them to estimate θ. The fused estimate is

expected to perform better than the estimate from a single source of measurements. In

this chapter, our objective is to design the channel matrix G, with the primary channel

�xed, such that the fused estimate achieves the best performance.

For a one-channel system x = Fθ + u, designing the channel matrix F exhibits

parallels to the linear precoding problem for multiple-input-multiple-output (MIMO)

communication systems by considering F as the precoder into an identity channel ma-

trix. The linear precoding design for MIMO channels has been studied in the literature,

2Part of this work is accepted by the 38th International Conference on Acoustics, Speech, and
Signal Processing (ICASSP). The complete paper is submitted to Signal Processing.
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Figure 3.1: A two-channel system with two linear channels.

e.g., Palomar et al. [2003], Scaglione et al. [2002], Pérez-Cruz et al. [2010], Vosoughi and

Scaglione [2007], Liu et al. [2012], Lamarca [2009], Sampath et al. [2001], Xiao et al.

[2011], and Palomar and Jiang [2007]. The optimal precoding is designed under various

criteria, for example, maximizing signal-to-noise ratio (SNR) and signal-to-interference-

noise ratio (SINR) ( see Palomar et al. [2003] and Scaglione et al. [2002]). Another

criterion that has drawn more attention recently is the mutual information between

input and output signals (see Pérez-Cruz et al. [2010], Carson et al. [2012], Liu et al.

[2012], and Lamarca [2009]). This information-based criterion is connected with esti-

mation theory in a vector Gaussian channel with arbitrary input distribution by linking

the mutual information with the minimum mean squared error (MMSE) ( see Guo et al.

[2005] and Palomar and Verdú [2006]). In Pérez-Cruz et al. [2010], an optimal pre-

coding matrix for the MIMO Gaussian channel with arbitrary input is expressed as

the solution of a �xed point equation. When the input signal is Gaussian distributed,

the one-channel design problem can be solved as a singular value decomposition (SVD)

problem. More specially, the optimal channel matrix has its singular vectors allocated to

create non-interfering subchannels and the singular values chosen to solve a generalized

water�lling problem ( see Lamarca [2009] and Cover and Thomas [2005]). In Liu et al.
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[2012], a greedy adaptive approach is considered to design a channel matrix row by row

to maximize information gain.

In Figure 3.1, if both θ and φ are of interest, the two-channel system can be ex-

pressed as a one-channel system with a block-diagonal channel matrix. However, due to

the �nuisance� signal φ, our two-channel system design problem is fundamentally more

di�cult than the one-channel system design. We �x the primary channel and design the

secondary channel matrix G that maximizes the information gain brought by adding

the secondary channel, subject to the total power constraint tr(GGT ) ≤ c with c a

pre-determined constant. We call this a one-channel design problem in a two-channel

system. Analytical solutions are derived for some special cases. In general, this is not

a convex problem. Moreover, this problem cannot be formulated as an SVD problem,

in contrast to the one-channel system design. Here, we propose two gradient-based

algorithms, one extrinsic and the other intrinsic, to approximate the optimal channel

matrix. The extrinsic algorithm is a gradient-ascent algorithm with projection onto the

constrained space as in Bertsekas [1982]. The intrinsic algorithm, a gradient-ascent algo-

rithm on a manifold, exploits the geometry that codes for the total power constraint by

vectorizing the channel matrix. The optimization on manifold has been widely studied

in literature, e.g., Absil et al. [2008], Edelman et al. [1998], Smith [1994], and Gabay

[1982].

The rest of the chapter is organized as follows. We formulate the channelization

problem in Section 3.2 and point out the challenges for design in a two-channel system.

In Section 3.3, we give an analytical solution when the conditional covariance of φ

given θ is the identity matrix. In Section 3.4, we propose two numerical algorithms,

extrinsic and intrinsic gradient searches, to approximate the optimal channel matrix

for general cases. A simulation study is presented to illustrate the performance of the

proposed algorithms in Section 3.4.3. In Section 3.5, we discuss the choice of number of

measurements for the secondary channel. Section 3.6 concludes the chapter.
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3.2 Overview

3.2.1 Problem Statement

The two channels of the system described in (3.1.1) have input signals θ ∈ Rp and

φ ∈ Rq, respectively. The signal θ is of key interest and φ is a secondary signal that

is jointly distributed with θ. The �rst channel x ∈ Rs is a direct measurement of θ,

while the secondary channel y ∈ Rt is an indirect measurement of θ through φ. Both

x and y contain information about θ, and one can expect that fusing measurements

from both channels will provide a better estimate than using a single measurement. The

data fusion problem has been widely studied in various areas including sensor networks,

image processing, etc. While much of the literature focuses on the methodology of

fusion or data integration, we are interested in designing the measurement system. More

speci�cally, our interest is to design the channel matrix G (or the precoding matrix with

an identity channel), with the �rst channel �xed, such that the di�erential information

rate at which x and y bring information about θ is maximized.

We make the following assumptions:

a1) The signals θ ∈ Rp and φ ∈ Rq are jointly Gaussian distributed as(
θ
φ

)
∼ N

((
µθ
µφ

)
,

(
Qθθ Qθφ

Qφθ Qφφ

))
with known Qθθ, Qθφ, Qφθ and Qφφ.

a2) The noises u ∈ Rs and v ∈ Rt are Gaussian distributed with mean zero and known

covariance matrices Quu and Qvv, respectively.

a3) The noises u and v are mutually independent, and independent of (θ,φ).

Based on these assumptions, the mutual information between θ and x is

I(θ;x) =
1

2
log det(Qθθ)−

1

2
log det(Qθθ|x),
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where Qθθ|x = (Q−1
θθ + F TQ−1

uuF )−1 is the conditional covariance of θ given x. The

mutual information between θ and x,y is

I(θ;x,y) =
1

2
log det(Qθθ)−

1

2
log det(Qθθ|x,y),

where Qθθ|x,y = [Q−1
θθ|x+MTGT (GQφφ|θG

T +Qvv)
−1GM ]−1 withM = QφθQ

−1
θθ and

Qφφ|θ = Qφφ−QφθQ
−1
θθQθφ. Note thatMθ would be the MMSE estimator of φ from

θ, and Qφφ|θ would be its error covariance, if θ could be measured.

The information gain is the extra information about θ brought by y, which is de�ned

by

D(G) := I(θ;x,y)− I(θ;x) =
1

2
log detQθθ|x −

1

2
log detQθθ|x,y.

By plugging in Qθθ|x and Qθθ|x,y, D(G) can be written as

D(G) =
1

2
log det[Ip +MTGT (GQφφ|θG

T +Qvv)
−1GMQθθ|x] (3.2.1)

The function D(G) is bounded and nonnegative. In fact, one can show that D(G) ≤

I(θ;x,φ) − I(θ;x), which means the maximum information gain the measurement y

can bring is no greater than what could be brought by φ. We further notice that, for

any G, D(λG) is monotone increasing for λ ≥ 0. Therefore, without any constraint,

maximization of the information gain in (3.2.1) will lead to a trivial solution by letting

the norm of G go to in�nity. Here we maximize the information gain subject to the

total power constraint tr(GGT ) ≤ c. This constraint bounds the total power of Gφ

since trE[GφφTGT ] ≤ c trE[φφT ]. In short, the problem of interest is

G∗ = arg max
G∈Rt×q

D(G) subject to tr(GGT ) ≤ c. (3.2.2)

Problem (3.2.2) is a one-channel design problem in a two-channel system. In general,

the optimization problem cannot be reformulated as an SVD problem in contrast to a

one-channel system. The di�culty arises due to the non-degenerate joint distribution

of θ and φ. However, when the conditional covariance matrix Qφφ|θ is zero, i.e., the

value of φ is �xed given θ, the optimal channel matrix G can be solved from an SVD

problem, as in a one-channel system.
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3.2.2 An Insightful Discussion of the Information Gain

To motivate our discussion, we decompose the secondary channel as follows:

y = (GME[θ|x]) + (GM (θ − E[θ|x])) + (G(φ− E[φ|θ]) + v) , (3.2.3)

where M = QφθQ
−1
θθ and Mθ = E[φ|θ]. It can be seen that the secondary channel y

is decomposed into three independent components, which are illustrated in Figure 3.2.

The �rst component GME[θ|x] is completely determined by the �rst channel x and

does not contribute to the information gain brought by y. The second component

GM (θ − E[θ|x]), denoted by ω, is (by orthogonality) independent of x and it carries

the extra information in channel y about θ. The third component G(φ− E[φ|θ]) + v,

denoted by ζ, is independent of both x and θ, and it can be viewed as noise.

y

GME[θ|x]

ζ=G(ϕ-E[ϕ|θ])+v

ω=GM(θ-E[θ|x])

Figure 3.2: Decomposition of the secondary channel.

Notice that the covariance matrices of ω and ζ are Qωω = GMQθθ|xM
TGT and

Qζζ = GQφφ|θG
T + Qvv, respectively. By the cyclic property of determinants, i.e.,

det(Im+AB) = det(In+BA) for any A ∈ Rm×n and B ∈ Rn×m, the information gain

of (3.2.1) can be re-written as

D(G) =
1

2
log det[I +Q

−1/2
ζζ QωωQ

−1/2
ζζ ]. (3.2.4)

By viewing ω as a signal and ζ as a noise, Q
−1/2
ζζ QωωQ

−1/2
ζζ is a generalized signal-to-

noise ratio matrix. Maximizing (3.2.4) essentially balances the tradeo� between the noise
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covariance and the signal covariance. As illustrated in Figure 3.2, a good channel design

will favor a long parallelepiped with short height. The di�culty of designing the channel

matrix G arises because G shapes both Qωω and Qζζ. When the secondary channel

has a single output, the channel matrix G is a row vector and Qζζ,Qωω are scalars.

In this case, the optimal G equivalently maximizes a generalized Rayleigh quotient and

the analytical solution can be derived by an eigendecomposition. For a general channel

with multiple outputs, designing the matrix G is fundamentally more di�cult than the

single output case. In Section 3.3, we obtain a closed-form expression for the optimal G

in a special case.

3.3 Analytical Solution

In this section, we consider the problem of maximizing the information gain, subject

to the total power constraint. The problem can be described as follows:

maximize
G∈Rt×q

D(G) = 1
2

log det[Ip +MTGT (GQφφ|θG
T +Qvv)

−1GMQθθ|x]

subject to tr(GQφφG
T ) ≤ c.

(3.3.1)

Note that problem (3.3.1) is not a convex problem since the information gain D(G) is

not concave in G ( see Boyd and Vandenberghe [2004] and Payaró and Palomar [2009]).

In Section 3.3.1, we give an analytical solution when the second channel has a single

output, i.e., t = 1. For the multiple-output channel (t > 1), we give an analytical

expression for the optimal channel matrix in Section 3.3.2, when the secondary channel

has white noise and the conditional covariance matrix Qφφ|θ is proportional to the

identity matrix.

3.3.1 The Case of MISO Channel

Suppose that the second channel has a single output. Then Qvv = σ2
v ∈ R1

+. The

channel matrix G is a row vector, and we denote G = gT for some vector g ∈ Rq. The
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information gain is

D(g) = log

(
1 +

gTMQθθ|xM
Tg

gTQφφ|θg + σ2
v

)
. (3.3.2)

Notice that log(1 + x) is strictly increasing for x ∈ (0,∞). Therefore, the optimization

problem is equivalent to solve the following problem

maximize
g∈Rq

gTMQθθ|xM
Tg

gTQφφ|θg + σ2
v

(3.3.3)

subject to ‖g‖ ≤ 1.

Note that the objective function in (3.3.3) is exactly σ2
ω/σ

2
ν , with ω and ν the signal and

noise de�ned in Section 3.2.2. This means a good channel matrix G = gT will maximize

the ratio of signal power σ2
ω to noise power σ2

ν . It is easy to see that the maximum is

attained when ‖g‖ = 1. Therefore we have gTQφφ|θg + σ2
v = gT (Qφφ|θ + σ2

vIq)g. Let

g̃ = (σ2
vIq +Qφφ|θ)

1/2g, where (σ2
vIq +Qφφ|θ)

1/2 is a matrix square root of σ2
vIq +Qφφ|θ.

The objective function in (3.3.3) is reduced to a Rayleigh quotient

g̃TAg̃

g̃T g̃
(3.3.4)

with A = (σ2
vIq + Qφφ|θ)

−1/2MQθθ|xM
T (σ2

vIq + Qφφ|θ)
−1/2, which is the signal-to-

noise-ratio matrix. The maximum of (3.3.4) is λmax(A), the largest eigenvalue of A.

This maximum is attained when g̃∗ = αumax(A) where umax(A) is the eigenvector of A

corresponding to its largest eigenvalue, and α is a scalar such that (σ2
vIq +Qφφ|θ)

−1/2g̃∗

has norm 1. The optimal channel vector g∗ is g∗ = (σ2
vIq + Qφφ|θ)

−1/2g̃∗, and the

maximum information gain is determined by the maximum eigenvalue of the signal-to-

noise ratio matrix:

D(G∗) = log (1 + λmax(A)) .

3.3.2 An Important Special Case of a MIMO Auxiliary Channel

Suppose that the conditional covariance of φ given θ is identity, i.e., Qφφ|θ = σ2
φ|θIq.

For example, φ = Mθ+τ whereM = QφθQ
−1
θθ and τ ∼ N(0, σ2

φ|θIq). In this case, the
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noise ζ in (3.2.4) has a relatively simple covariance Qζζ = GGT +Qvv and the signal

ω has covariance Qωω = GMQθθ|xM
TGT . While G still a�ects both covariance

matrices, we are able to �nd the balanced matrix G that maximizes the information

gain. Note that we focus on the case t ≤ q, i.e., the dimension of measurement y is at

most the dimension of φ. When t > q, the optimization problem can be reformulated

and solved as a special case of t = q, which will be discussed in Section 3.5.

Begin with the eigendecompositions Qvv = UvΣvUv and MQθθ|xM
T = UξΣξU

T
ξ

where Uv ∈ Rt×t, Uξ ∈ Rq×q are orthogonal matrices, and Σv ∈ Rt×t and Σξ ∈ Rq×q are

diagonal matrices with diagonal elements 0 < σ2
v,1 ≤ . . . ≤ σ2

v,m and σ2
ξ,1 ≥ . . . ≥ σ2

ξ,q ≥

0, respectively. Because the matrices Uξ and Uv are invertible, for each G ∈ Rt×q, there

is a unique matrix Φ ∈ Rt×q such that

G = UvΦU
T
ξ (3.3.5)

Then, the information gain D(G) in (3.2.1) can be written as

D(Φ) =
1

2
log det[I + ΦT (σ2

φ|θΦΦT + Σv)
−1ΦΣξ]

Moreover, the total power constraint is tr(ΦΦT ) ≤ c since tr(GGT ) = tr(ΦΦT ). For the

given eigendecompositions, the matricesUv andUξ are �xed. Therefore, the information

gain can be maximized with respect to Φ and the optimal channel matrix G is returned

by (3.3.5). WOLG we assume σ2
φ|θ = 1. The solution for general σ2

φ|θ is just di�erent by

a scaling factor. We give in Lemma 3.1 an important feature of any possible maximizer

Φ.

Lemma 3.1. Suppose that Qvv has distinct eigenvalues, i.e., 0 < σ2
v,1 < . . . < σ2

v,m, and

MQθθ|xM
T has distinct nonzero eigenvalues, i.e., σ2

ξ,1 > . . . > σ2
ξ,ρ > 0 where ρ ≤ t is

the rank of Σξ. Then Φ contains at most one nonzero entry in each row and column

and all the nonzero entries are located at the �rst ρ columns.
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Proof: See Section 3.7.1.

Lemma 3.1 restricts the optimal matrix Φ within a class of matrices with a special

structure. That is, Φ has at most one nonzero entry in each row and column. Searching

within this class, we are able to obtain the closed form expression for the optimal matrix

Φ. The corresponding optimal channel matrix G is given in Theorem 3.1.

Theorem 3.1. Suppose that Qvv and MQθθ|xM
T have distinct nonzero eigenvalues.

Then the optimal secondary channel matrix G∗ solving problem (3.2.2) is

G∗ = UvΛ
∗UT

ξ . (3.3.6)

Here Λ∗ ∈ Rt×q is a diagonal matrix with diagonal elements λ∗11, . . . , λ
∗
tt such that

λ∗2ii =

 σ2
v,i

2(1+σ2
ξ,i)

(
−(2 + σ2

ξ,i) +

√
σ4
ξ,i +

4(1+σ2
ξ,i)σ

2
ξ,i

2µσ2
v,i

)
i = 1, . . . , κ

0 i = κ+ 1, . . . , t
(3.3.7)

where κ is the maximum integer between 1 and rank(Σξ) such that λ∗2ii > 0 for i =

1, . . . , κ. The value of µ is non-negative and uniquely solves
∑κ

i=1 λ
∗2
ii = c.

Proof: See Section 3.7.2.

Notice that although Theorem 3.1 requires that Qvv andMQθθ|xM
T have distinct

eigenvalues, the result can be extended to general cases because the solution in (3.3.7)

is a continuous function of the eigenvalues of Qvv and MQθθ|xM
T .

Theorem 3.1 factors the optimal channel matrix G∗ into the product of three matri-

ces. The �rst matrix UT
ξ rotates the signal φ. Given Qφφ|θ = σ2

φ|θIq, the conditional

covariance of φ given x is MQθθ|xM
T + σ2

φ|θIq, which is diagonalized by UT
ξ . There-

fore, the components of the rotated signal UT
ξ φ are conditionally independent given x.

The second matrix Λ∗ ∈ Rt×q is a diagonal matrix that extracts the �rst t components

of UT
ξ φ and distributes power across the t subchannels optimally. The third matrix Uv

rotates the scaled components into the sub-dominant invariant subspace of the noise

covariance Qvv.
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The power allocation policy, given by the diagonal elements of Λ∗, can be inter-

preted as a mercury/water�lling algorithm, which is a three-step procedure that has

been introduced in Lozano et al. [2006]:

1. For the ith vessel, �ll in the solid base with height 2σ2
v,i/σ

2
ξ,i, where σ

2
v,i is a noise

variance component in the y channel, and σ2
ξ,i yields a variance component of φ

given x.

2. Compute µ. For the vessels with base height less than 1/µ, �ll in mercury in the

vessel until the height reaches

max

{
1

µ
− λ∗2ii ,

2σ2
v,i

σ2
ξ,i

}

.

3. Pour water into all the vessels until the height of each vessel reaches 1/µ.

The height of the solid base, 2σ2
v,i/σ

2
ξ,i, is half of the variance of the ith noise compo-

nent, weighted by the variance components of MQθθ|xM
T . A higher solid base means

a less informative channel with high channel noise and weak correlation with θ. For

any vessel with base height exceeding 1/µ, neither mercury nor water will be added, or

equivalently, no power will be assigned to the corresponding subchannel. Note that the

value of µ is computed by the constraint that the total volume of water equals c. The

mercury stage balances the noise contained in φ and the measurement noise contained

in y. Without adding mercury, the optimal power allocation would have variable water-

plus-solid levels among di�erent vessels. The mercury is added to regulate the water

level for each vessel. Given the value of µ, the information gain is maximized when the

value of λ∗2ii equals the height of water in the corresponding vessel.

From the mercury/water�lling procedure, it can be seen that the resulting optimal

channel matrix G∗ may not be full-rank. We will see in Section 3.5 that a rank-reduced
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Figure 3.3: Mercury/water�lling. For each vessel, the water height above mercury gives
the optimal power allocation for the corresponding subchannel. The total volume of
water equals c.

channel matrix can in some cases give a dimension-reduced secondary channel that car-

ries the same information gain as a full-dimensional channel, under the power constraint.

To better illustrate the possible rank-reduced optimal channel, we consider the following

simple example.

Example 3.1. Consider a two-channel system in (3.1.1) with p = q = s = t = 5. The

primary channel matrix F ∈ R5×5 is set to 1√
5
I5. The covariance matrices Quu, Qvv,

and Qθθ are I5. We consider three scenarios. In each scenario, we choose Qφφ and

Qφθ such that Qφφ|θ = I5 and the eigenvalues of MQθθ|xM
T have various levels of

spread. The corresponding G∗ is given in Table I.

In the �rst scenario, MQθθ|xM
T has constant eigenvalues and G∗ has full-rank

and equal singular values. In the second scenario, the eigenvalues of MQθθ|xM
T have

moderate spread and the corresponding G∗ has rank 4. In the third scenario, when the

spread of eigenvalues ofMQθθ|xM
T further increases, the rank of G∗ is further reduced

to 3.

In the compression design of Chapter 2, we generalized the problem of reduced-rank

�ltering and precoding/equalizing by designing the matrix G in the bottom channel of

Figure 3.4 so that y maximizes the di�erential rate at which y brings information about

θ. The di�erence between the compression design in Chapter 2 and the fusion design

48



Table 3.1: The optimal channel matrices G∗ for three scenarios.

(1) (2) (3)
Qφφ 2I5 Diag(26, 17, 10, 5, 2) Diag(82, 65, 50, 5, 2)
Qφθ I5 Diag(5, 4, 3, 2, 1) Diag(9, 8, 7, 2, 1)
MQθθ|xM

T 5
6
I5

5
6

Diag(25, 16, 9, 4, 1) 5
6

Diag(81, 64, 49, 4, 1)
G∗ 1√

5
I5 Diag(0.32, 0.30, 0.25, 0.14, 0) Diag(0.34, 0.33, 0.33, 0, 0)

here is that there was no existing channel x to be fused with y. For compression, the

compression G of Figure 3.4 is designed to maximize the di�erential information rate

at which y brings information about θ. For fusion, the compressor G is designed to

maximize the di�erential rate at which y and x bring information about θ.

F

G

x

y

u

v

p

q

s

t
θ

ϕ

ζ

M

Figure 3.4: An alternative representation for the two-channel system.

3.4 Numerical Algorithms

In general, the constrained optimization problem (3.2.2) is not a convex problem

(Boyd and Vandenberghe [2004]) since the information gainD(G) is not concave (Payaró

and Palomar [2009]). Notice that for any G with tr(GGT ) < c, there exists G̃ =
√
c

‖G‖G

such that tr(G̃G̃T ) = c and D(G̃) ≥ D(G). Therefore, it is su�cient to maximize the

information gain on the boundary tr(GGT ) = c. This fact motivates two gradient-based

search algorithms, one extrinsic and the other intrinsic, to approximate the optimal
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channel matrix. Both algorithms are very general and applicable for arbitrary covariance

between θ and φ. In the extrinsic gradient search, the gradient is computed by treating

the matrix G as a point in the Euclidean space Rt×q. In the intrinsic gradient search,

we consider G to be a point on the unit sphere Stq−1, which is a submanifold of Rtq.

The intrinsic gradient is computed by taking the geometry of the manifold Stq−1 into

consideration. WLOG we assume c = 1.

3.4.1 Extrinsic Gradient Search Algorithm

Let ∇GD be the gradient of the information gain w.r.t G. We show, in Section 3.7.3,

that the gradient can be written as

∇GD = Q−1
vvG[(Q−1

φφ|θ +GTQ−1
vvG)−B]−1B(Q−1

φφ|θ +GTQ−1
vvG)−1, (3.4.1)

where B = Q−1
φφ|θMQθθ|xM

T (Iq + Q−1
φφ|θMQθθ|xM

T )−1Q−1
φφ|θ. The gradient ∇GD

points in the direction of greatest increase of the function D in the neighborhood of

G. However, when moving along this direction, the constraint tr(GGT ) = 1 may be

violated. To circumvent this problem, we normalize the updated G at each iteration to

meet the unit norm constraint. The table below outlines the proposed extrinsic gradient

search algorithm.

Algorithm: Extrinsic Gradient Search
Input: Initial G0 ∈ Rt×q, tr(G0G

T
0 ) = 1.

Output: Sequence of iterates {Gk}.
for k = 0, 1, 2, . . . do
Select Gk+1 = ak(Gk + δk∇GkD) where ak = 1

‖Gk+δk∇GkD‖
is a

normalization constant such that tr(Gk+1G
T
k+1) = 1, δk is a small step size.

end for

In this extrinsic algorithm, the gradient of the information gain is computed on the

unconstrained Euclidean space Rt×q. Note that Gk + δk∇GkD is the unconstrained

update when maximizing D. The normalized update Gk+1 = ak(Gk + δk∇GkD) is a

projection of Gk + δk∇GkD onto the set of all G ∈ Rt×q with unit Frobenius norm. We

call it an extrinsic gradient search in contrast to the intrinsic gradient search algorithm,

in which the information gain is considered as a function on the manifold Stq−1.
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3.4.2 Intrinsic Gradient Search Algorithm

Let g be the vectorization of matrix G, denoted g = vec(G). That is,

g = [G1,1, . . . ,G1,q,G2,1, . . . ,G2,q, . . . ,Gt,1, . . . ,Gt,q]
T .

This vectorization operation is a one-to-one and onto mapping from Rt×q to Rtq. Thus,

for any g ∈ Rtq, there exists a unique matrix G ∈ Rt×q such that vec(G) = g. Under

the power constraint tr(GGT ) = 1, the corresponding vectorization g lies on the unit

sphere Stq−1 = {g ∈ Rtq :
∑tq

i=1 g
2
i = 1}. Therefore, the constrained optimization

problem (3.2.2) is an optimization on the manifold Stq−1. Note that Stq−1 is an embedded

submanifold of Rtq, a geometry that has been studied in Absil et al. [2008] and Lee [2000].

Before presenting the algorithm, we brie�y introduce the basic terms of a manifold.

Readers may refer to Absil et al. [2008] and Lee [2000] for more details.

A set M is a topological manifold with dimension n if it is a second-countable

Hausdor� space and every point ofM has a neighborhood that is homeomorphic to an

open subset of Rn. For each point p ∈ M, there is a open set U ⊂ M that contains p

and a homeomorphism ϕ such that ϕ(U) = Ũ for some open subset Ũ ⊂ Rn. (U,ϕ) is

an n-dimensional local chart of M. A smooth atlas A of M into Rn is a collection of

charts (Uα, ϕα) of the setM such that

1.
⋃
α Uα =M,

2. for any pair α, β with Uα
⋂
Uβ 6= ∅, the sets ϕα(Uα

⋂
Uβ) and ϕβ(Uα

⋂
Uβ) are

open sets in Rn and the transition ϕβ ◦ ϕ−1
α : Rn → Rn is smooth.

An atlas A is maximal if it is not contained in any strictly larger atlas. A smooth

maximal atlas of a set M is called a smooth manifold structure on M and the pair

(M, A) is a smooth manifold with dimension n. Often, we omit mention of the manifold

structureA and simply say �the manifoldM�. WhenM is a smooth manifold, a function
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f :M 7→ Rk is smooth if the composite function f ◦ϕ−1 : Ũ 7→ Rk has continuous partial

derivatives of all orders. A smooth mapping γ : R →M : t 7→ γ(t) is called a curve in

M. Let F(M) be the space of smooth scalar functions onM. The tangent vector ξx to

a manifoldM at a point x then is a mapping from F(M) to R such that there exists a

curve γ onM with γ(0) = x, satisfying

ξx(f) :=
d(f(γ(t)))

dt

∣∣∣∣
t=0

, ∀f ∈ F(M).

The tangent vector generalizes the notion of a directional derivative on a manifold and

it satis�es, for any a, b ∈ R and f, g ∈ F(M),

1. ξx(af + bg) = aξx(g) + bξx(g), and

2. ξx(fg) = ξx(g)f + ξx(f)g.

The tangent space toM at x, denoted TxM, is the set of all tangent vectors toM at x.

A smooth manifold whose tangent space TxM is endowed with an inner product 〈·, ·〉x is

a Riemannian manifold. Given a smooth scalar function f on the Riemannian manifold

M, the gradient of f at x, denoted by grad(f)x, is de�ned as the unique element of

TxM that satis�es

〈grad(f)x, ξx〉x = ξx(f) ∀ξx ∈ TxM.

The direction of grad(f)x is the steepest-ascent direction of f at x, which points in the

direction of search when maximizing f overM.

Given g ∈ Stq−1, the tangent space to Stq−1 at g is

TgS
tq−1 = {η ∈ Rtq : gTη = 0}.

The orthogonal projection of any h ∈ Rtq onto the tangent space is

PTgStq−1h = (Itq − ggT )h.
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Since Stq−1 is a submanifold embedded in Rtq, the gradient of IS on Stq−1 is

ηg , gradDg = PTgStq−1(∇gD)

where ∇gD is given in (3.4.1). The intrinsic gradient ηg points us in the direction of

search, and a retraction Rg generalizes the notion of moving on a manifold along that

direction. The line search on the manifold is then

gk+1 = Rgk(tηgk).

On the manifold Stq−1, one choice of the retraction is

Rg(η) = g cos(‖η‖) +
η

‖η‖
sin(‖η‖), (3.4.2)

where ‖η‖2 =
∑tq

i=1 η
2
i . For any tangent vector η ∈ TgStq−1, Rg(η) returns a point on

the manifold Stq−1. Notice the normalization in the extrinsic algorithm is also a choice

of retraction on Stq−1.

The following algorithm encodes the intrinsic gradient search, which approximates

a maximizer of the information gain on the manifold Stq−1. A graphical illustration is

depicted in Figure 3.5.

Algorithm: Intrinsic Gradient Search
Input: Initial g0 ∈ Stq−1

Output: Sequence of iterates {gk}.
for k = 0, 1, 2, . . . do
Select gk+1 = Rgk(δkηgk) where ηgk = (Itq − gkgTk )∇gkD is the
intrinsic gradient and δk is the step size.
end for

For any g ∈ Stq−1, the tangent plane TgS
tq−1 is the subspace orthogonal to g. The

intrinsic gradient, denoted by ηg, is the Euclidean gradient ∇gD projected onto the

tangent plane TgS
tq−1. The function Rg is a mapping from the tangent plane TgS

tq−1

to the manifold Stq−1 with

Rg(ηg) = g cos(‖ηg‖) +
ηg
‖ηg‖

sin(‖ηg‖) (3.4.3)
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for any tangent vector ηg ∈ TgS
tq−1. For δ ≥ 0, Rg(δηg) is a curve on the manifold

Stq−1 starting from g. This curve generalizes the idea of straight line in Euclidean space

on the manifold Stq−1 along the direction ηg. Given gk, Rg(δηgk) is a periodic function

of τ with period 2π/‖ηgk‖, thus the step size δk can be chosen within the interval

δ ∈ [0, 2π/‖ηgk‖) to maximize the information gain D(Rg(δηgk)). By the choice of δk,

the information gain is non-decreasing, i.e., D(gk+1) ≥ D(gk) for each k.

∇gD

ηg

TgS

g

Rg(ηg)

Figure 3.5: Projection of the Euclidean gradient to the tangent plane of the unit sphere.

3.4.3 A Numerical Study

Consider a two-channel system in (3.1.1) with p = q = 4 and s = t = 3. The input

signals θ and φ are characterized recursively as

φi =
i∑

j=1

ρi−j+1θj + τi,

where τ1, . . . , τ4 are i.i.d. Gaussian random variables with mean 0 and variance 1, and

the value of ρ is to be speci�ed. The covariance matrices for the signal θ and the noises

u,v are proportional to the identity matrix with variances 2, 1, 0.1, respectively. The

�rst channel matrix F ∈ R3×4 is a diagonal matrix with 1 on the diagonal. The initial

channel matrix G0 ∈ R3×4 is randomly generated with unit norm. For the intrinsic

algorithm, the initial value is g0 = vec(G0).
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The results are shown in Figure 3.6. Here we set the step size δk = 0.1. The x-axis

is the index for iterations and the y-axis gives the information gain for the secondary

channel returned at step k. First, it can be seen that, as ρ increases, the information gain

is increasing as well because the correlation between θ and φ is increasing. Next, it can

also be seen that the performance of the two algorithms is quite comparable and both

algorithms converge for each value of ρ. From our empirical evidence, when the step size

is constant, both algorithms would perform similarly, and in fact, the extrinsic algorithm

converges slightly faster. For more complex problems, we could choose the optimal step

size over a �nite interval as suggested by the intrinsic algorithm in Section 3.4.2. For

extrinsic algorithm, such a strategy for the optimal step size is not available.
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Figure 3.6: A numerical study. The x-axis is the index for iteration and the y-axis is the
information gain obtained at each iteration. The solid curve is for the intrinsic algorithm
and the dashed curve is for the extrinsic algorithm.

3.5 Discussion on Low-dimensional Channel Design

In the two-channel design problem considered in this chapter, the number of mea-

surements of the secondary channel, i.e., the number of rows of the channel matrix G

is an important factor. Ideally we want t to be as small as possible while keeping the

information gain as large as possible. More measurements will generally bring more in-

formation. However, under the total power constraint, the information a channel carries
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is bounded and the upper bound may be attained by a small number of measurements.

In fact, for a secondary channel with a q-dimensional input φ, a q-dimensional output y

is su�cient to achieve the maximum information gain, which is a consequence of the fol-

lowing lemma. Here we assume that the measurement noise v in the secondary channel

is white noise.

Lemma 3.2. Suppose that the noise covariance Qvv is proportional to the identity ma-

trix. Then, for any channel matrix G ∈ Rt×q with rank r, there exists an r-dimensional

secondary channel with the same noise variance that achieves the same information gain.

The proof is given in Section 3.7.4.

Since the maximum rank of G is q, Lemma 3.2 suggests that a q-dimensional y is

su�cient to achieve the maximum information gain. Thus, we restrict our attention to

the channel matrix with dimension t× q with t ≤ q. In some cases, the power constraint

will further reduce the dimension of y to t < q. For instance, as shown in Example 1,

the 5 × 5 optimal channel matrices can have rank 5, 4, or 3, and the dimension of y

may be reduced correspondingly. Denote G∗k the optimal channel matrix of dimension

k × q for k = 1, . . . , q. The optimal dimension of y, denoted by t∗, is de�ned as the

smallest k such that D(G∗q) = D(G∗k); that is, t∗ = min{k : D(G∗q) − D(G∗k) = 0}.

Note that D(G∗k) = D(G∗q) for any k ≥ t∗, and D(G∗k) < D(G∗q) for any k < t∗. In

general, the values of t∗ is unknown since no analytical solution forG∗k is available. From

a practical viewpoint, it is natural to approximate t∗ using the approximate optimal

channel matrices. Here we consider the following approach to obtain an approximant of

t∗.

For k = 1, . . . , q, obtain an approximate optimal channel matrix of dimension k × q,

denoted by Ĝ∗k, using either the extrinsic or intrinsic algorithm. Denote t̂∗ = min{k :

D(Ĝ∗q)−D(Ĝ∗k) ≤ c}, where c is a predetermined threshold value, and t̂∗ is the proposed

dimension of y. The following example demonstrates this suggested strategy with more

details.
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Example 3.2. Consider a two-channel system (3.1.1) with p = q = 20 and s = 10. The

channel matrix F ∈ R10×20 is randomly generated with Frobenius norm 1. The noise

covariances Quu = Qvv = I20. The covariances Qθθ and Qφφ are randomly generated

positive de�nite matrices. We consider two di�erent correlation structures between θ and

φ: 1) Qφφ|θ = I20 (analytical solution available); 2) Qφφ|θ is a banded matrix with 2

on the main diagonal line and 0.2 on the superdiagonal and subdiagonal lines (analytical

solution not available). The results are shown in Figure 3.7 and Figure 3.8, where the

x-axis is k (k = 1, . . . , q), the number of rows of the secondary channel matrix G, the

y-axis on the left is the information gain for a k-dimensional secondary channel, and

the y-axis on the right is the rank of the channel matrix G of dimension k × q.

In the �rst scenario (Figure 3.7), we obtain G∗k for k = 1, . . . , q analytically (shown

in the left panel). It can be seen that the information gain remains constant for all k ≥ 4.

Therefore the optimal dimension is t∗ = 4. Moreover, one can see that the rank of all

the optimal channel matrices G∗k with k ≥ 4 equal 4, which may suggest that the optimal

dimension t∗ equals the maximum rank of the optimal channel matrices. Therefore the

curve for the rank of the optimal matrices can be used as an important guidance. The

extrinsic (the middle panel) and intrinsic (the right panel) algorithms are implemented,

with the initial channel matrices randomly generated. Here we set the constant step size

δk = 0.1. For both algorithms we get t̂∗ = t∗ = 4 for c = 10−3, and so is the maximum

rank.

In the second scenario (Figure 3.8), we implement the extrinsic and intrinsic algo-

rithms to approximate the optimal channel matrix. Note that the solutions for k = 4 and

k = 5 have similar information gain but di�erent ranks. If the threshold value c = 10−3,

we have t̂∗ = 4 in both algorithms, while the maximum rank equals 5. The di�erence

may be caused by approximation error in the numerical algorithms.
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Analytical Solution
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Figure 3.7: Choice of number of rows of the secondary channel matrix G. The three
panels are associated with the channel matrices returned by the analytical solution (top),
the extrinsic algorithm (middle) and the intrinsic algorithm (bottom), respectively. In
each panel, the x-axis indicates the number of rows of G, the y-axis on the left is the
information gain (solid line), and the y-axis on the right is the rank of the channel
matrices (star dotted line).
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Extrinsic Approximant
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Figure 3.8: Choice of number of rows of the secondary channel matrixG. The two panels
are associated with the channel matrices returned by the extrinsic algorithm (left) and
the intrinsic algorithm (right), respectively. In each panel, the x-axis indicates the
number of rows of G, the y-axis on the left is the information gain (solid line), and the
y-axis on the right is the rank of the channel matrices (star dotted line).

3.6 Summary

In this chapter, we have studied the problem of fusing multiple sources of information.

We have modeled the problem as a two-channel system where the signal in the primary

channel is of interest, and the signal in the secondary channel is jointly distributed with

the signal of interest. The objective is to design the secondary channel to maximize

the information gain brought by fusing measurements from the primary and secondary

channels. Based on the Gaussian distribution and linear channel assumptions, we obtain

a closed-form expression of the information gain. When the input signals have a special

covariance structure, we obtain an explicit solution for the optimal channel matrix,

where the singular vectors are allocated to create non-interfering subchannels and the

singular values solve a generalized water-�lling problem. For general cases, we propose

two gradient search algorithms, an extrinsic algorithm and an intrinsic algorithm to

approximate the optimal channel matrix. Both algorithms can be extended to optimize

other design criteria under a power constraint. With the designed secondary channel

matrix, combining the measurements of both channels achieves the best information

gain. Note that, without the Gaussian assumption, our results maximize the volume of
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the error concentration ellipsoid of the LMMSE.

3.7 Proofs

3.7.1 Proof of Lemma 3.1

By the matrix inversion lemma ΦT (ΦΦT + Σv)
−1Φ = I − (I + ΦΣ−1

v ΦT )−1. So

D(Φ) may be rewritten as

D(Φ) =
1

2
log det[I + Σξ − (I + ΦΣ−1

v ΦT )−1Σξ]

=
1

2
log det[I + Σξ] +

1

2
log det[I − (I + ΦΣ−1

v ΦT )−1Σξ(I + Σξ)
−1]

De�ne Λ := Σ−1
v , a t × t diagonal matrix with diagonal elements λi = σ−2

v,i , and Γ :=

Σξ(I + Σξ)
−1, a q × q diagonal matrix with diagonal elements γi = σ2

ξ,i/(1 + σ2
ξ,i). Let

ρ be the rank of Σξ. Then 1 > γ1 ≥ . . . ≥ γρ > 0 and γρ+1 = . . . = γq = 0. The

Lagrangian is

L(Φ;µ) =
1

2
log det(In − (In + ΦTΛΦ)−1Γ) + µ(tr(ΦΦT )− c) +

1

2
log det[I + Σξ]

(3.7.1)

where µ is the Lagrangian multiplier. The partial derivative of L(Φ;µ) with respect to

the elements of Φ is

∇ΦL(Φ;µ) = ΛΦ(In − Γ + ΦTΛΦ)−1 −ΛΦ(In + ΦTΛΦ)−1 + 2µΦ.

Left multiply the gradient by Λ−1 and right multiply by ΦT :

−Φ(In − Γ + ΦTΛΦ)−1ΦT + Φ(In + ΦTΛΦ)−1ΦT = 2µΛ−1ΦΦT

Since the LHS is symmetric, ΦΦTΛ−1 = Λ−1ΦΦT . Therefore, when Λ has distinct

diagonal elements, the symmetric matrix ΦΦT must be diagonal. Next we show that

Φ(In − Γ)−1ΦT is diagonal. Notice that

Φ(In − Γ + ΦTΛΦ)−1ΦT = Λ−1 −Λ−1(Λ−1 + Φ(In − Γ)−1ΦT )Λ−1

Φ(In + ΦTΛΦ)−1ΦT = Λ−1 −Λ−1(Λ−1 + ΦΦT )Λ−1

60



Then, right multiply the gradient by ΦT :

Λ−1Φ(In − Γ)−1ΦT = Λ−1ΦΦT − µΦΦT

The RHS is symmetric since ΦΦT is diagonal. Therefore we have Λ−1Φ(In−Γ)−1ΦT =

Φ(In − Γ)−1ΦTΛ−1, which implies that Φ(In − Γ)−1ΦT is diagonal.

Denote Φ := [φij]. Given the fact that Φ(In−Γ)−1ΦT and ΦΦT are diagonal, (3.7.1)

can be rewritten as

L(Φ;µ) =
1

2
log det(Im + ΛΦ(In − Γ)−1ΦT )− 1

2
log det(Im + ΛΦΦT )

+
1

2
log det(In − Γ) +

1

2
log det[I + Σξ] + µ(tr(ΦΦT )− c)

=
m∑
i=1

1

2
log(1 + λi

n∑
j=1

φ2
ij

1− γj
)−

m∑
i=1

1

2
log(1 + λi

n∑
j=1

φ2
ij)

+
1

2
log det(In − Γ) +

1

2
log det[I + Σξ] + µ(

m∑
i=1

n∑
j=1

φ2
ij − c)

Notice that L(Φ;µ) is quadratic in each φij. Therefore, we can assume WLOG φij ≥ 0.

The partial derivative of L(Φ;µ) w.r.t φij is

∂L(Φ;µ)

∂φij
= φij

[
λi(1− γj)−1

1 +
∑n

j=1 φ
2
ij(1− γj)−1

− λi
1 +

∑n
j=1 φ

2
ij

+ 2µ

]
For j > ρ, we have γj = 0, and L(Φ;µ) is monotone decreasing in φij since µ ≤ 0. Hence

for any minimizer Φ, φij = 0 for any j > ρ.

For the ith row, suppose that there exist two non-zero elements φij1 and φij2 . Then

the partial derivative ∂L(Φ;µ)
∂φij1

= ∂L(Φ;µ)
∂φij2

= 0 yields

λi(1− γj1)−1

1 +
∑n

j=1 φ
2
ij(1− γj)−1

=
λi(1− γj2)−1

1 +
∑n

j=1 φ
2
ij(1− γj)−1

which contradicts the assumption γj1 6= γj2 . For the jth column, if there are two non-

zero elements φi1j and φi2j, then φi1k = φi2k = 0 for any k 6= j since each row of Φ has

at most one non-zero entry. Hence, [ΦΦT ]i1i2 =
∑n

k=1 φi1kφi2k = φi1jφi2j 6= 0, which

contradicts diagonal ΦΦT .
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3.7.2 Proof of Theorem 3.1

Restricting the matrix Φ within the class of matrices satisfying Lemma 3.1, Φ can be

written as Φ = Π2ΛΠT
1 where Π1 ∈ Rq×q and Π2 ∈ Rt×t are permutation matrices and

Λ is a t×q diagonal matrix with diagonal elements λ11, . . . , λtt. The maximum informa-

tion gain is taken over the permutations Π1 Π2 and λ11, . . . , λtt subject to
∑t

i=1 λ
2
ii ≤ c.

First of all, we show the optimal permutation matrices are Π1 = Iq and Π2 = It.

Denote

f(Π1,Π2) = maxD(Φ) subject to Φ = Π2ΛΠT
1 and

t∑
i=1

λ2
ii ≤ c.

The objective is to show

f(Iq, It) ≥ f(Π1,Π2)

for all the possible permutations Π1 and Π2.

Let π1(i) be the index of the entry equal to unity in the ith column of Π1, and π2(i)

the index of the unity entry in the ith column of Π2. Then the information gain D(Φ)

can be written as

D(Φ|Π1,Π2) =
1

2

t∑
i=1

log

(
1 +

σ2
ξ,π1(i)λ

2
ii

λ2
ii + σ2

v,π2(i)

)

It is easy to see that for any i = 1, . . . , t, one must have

σ2
ξ,π1(i) ≥ max{σ2

ξ,π1(t+1), . . . , σ
2
ξ,π1(q)}.

Moreover, since the orders of {π1(j)}qj=t+1 do not a�ect the value of D(Φ), we can set

WLOG π1(j) = j for j = t + 1, . . . , q. For i = 1, . . . , t, it can be seen that π1(i) and

π2(i) appear pairwise in D(Φ|Π1,Π2). Therefore, we can set WLOG that π2(i) = i for

i = 1, . . . , t and then search for the optimal permutation π1(i) to maximize

D(Φ|Π1, It) =
1

2

t∑
i=1

log

(
1 +

σ2
ξ,π1(i)λ

2
ii

λ2
ii + σ2

v,i

)
(3.7.2)
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The proof that Π1 = Iq is the optimal permutation matrix is similar to the proof for

Theorem 2 in Wang et al. [2013]. First prove the case t = 2 and generalize the results

to t ≥ 2. The details are omitted.

Next, the objective is to solve a simpler optimization problem:

{λ∗ii}ti=1 = arg max
1

2

t∑
i=1

log

(
1 +

σ2
ξ,iλ

2
ii

λ2
ii + σ2

v,i

)
subject to

t∑
i=1

λ2
ii ≤ c. (3.7.3)

The Lagrangian is

L(λ11, . . . , λtt, ;µ) =
1

2

t∑
i=1

log

(
1 +

σ2
ξ,π1(i)λ

2
ii

λ2
ii + σ2

v,π2(i)

)
− µ(

t∑
i=1

λ2
ii − c) (3.7.4)

where µ ≥ 0 is the Lagrange multiplier. Setting the �rst derivative of L w.r.t. λii equal

to zero, we have either λii = 0 or

λii =

√√√√bi

(
−(2 + ai) +

√
(2 + ai)2 − 4(1 + ai)(1− ai/(2µbi))

)
2(1 + ai)

(3.7.5)

where ai = σ2
ξ,i and bi = σ2

v,i. Equation (3.7.5) provides a feasible solution for λii when

µ ≤ ai/(2bi). To see whether the solution is the maximizer for (3.7.3) , we check the

Hessian matrix. The second derivative of L w.r.t. λii is

∂2L(Φ;µ)

∂λ2
ii

= −2µ+
aibi

(λ2
ii + bi)(λ2

ii + bi + aiλ2
ii)
− 2aibiλ

2
ii((λ

2
ii + bi)(2 + ai) + aiλ

2
ii)

(λ2
ii + bi)2(λ2

ii + bi + aiλ2
ii)

2

(3.7.6)

For i = 1 . . . , κ, upon substituting (3.7.5),

∂2L(Φ;µ)

∂λ2
ii

= −8µ2λ2
ii

ai

√
(2 + ai)2 − 4(1 + ai)(1−

ai
2µbi

).

which is negative when µ < ai/(2bi). For λii = 0,

∂2L(Φ;µ)

∂λ2
ii

∣∣∣∣
λii=0

= −2µ+
ai
bi
,

is negative when µ > ai/(2bi). Let κ be the maximum integer such that µ < ai/(2bi) for

i = 1, . . . , κ with µ uniquely solves that
∑κ

i=1 λ
2
ii = c. Then, the maximizer of (3.7.3) is

λ∗11, . . . , λ
∗
tt where

λ∗2ii =

{
bi

(√
(2+ai)2−4(1+ai)(1−ai/(2µbi))−(2+ai)

)
2(1+ai)

, for i = 1, . . . , κ

0 for i = κ+ 1, . . . , t.
(3.7.7)
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3.7.3 Proof of Equation 3.4.1

Applying the matrix inversion lemma yields

GT (GQφφ|θG
T +Qvv)

−1G = Q−1
φφ|θ −Q

−1
φφ|θ(G

TQ−1
vvG+Q−1

φφ|θ)
−1Q−1

φφ|θ.

Therefore, the information gain is

D(G) =
1

2
log det[Iq + (Q−1

φφ|θ −Q
−1
φφ|θ(G

TQ−1
vvG+Q−1

φφ|θ)
−1

×Q−1
φφ|θ)MQθθ|xM

T ]

=
1

2
log det[Iq +Q−1

φφ|θMQθθ|xM
T ] +

1

2
log det[I −B(GTQ−1

vv

×G+Q−1
φφ|θ)

−1]

where B = Q−1
φφ|θMQθθ|xM

T (Iq +Q−1
φφ|θMQθθ|xM

T )−1Q−1
φφ|θ.

Let Ji,j be a t × q matrix with value 1 at element (i, j) and 0 elsewhere. From

Petersen and Pedersen [2008], for a matrix X, we have the partial derivatives

∂X−1 = −X−1(∂X)X−1, ∂ log detX = tr(X−1∂X).

Let C = (Iq − (Q−1
φφ|θ +GTQ−1

vvG)−1B). Then D(G) = 1
2

log detC and we have

∂D

∂Gi,j

=
1

2
tr{C−1 ∂C

∂Gij

}

= −1

2
tr{C−1

∂(Q−1
φφ|θ +GTQ−1

vvG)−1

∂Gij

B}

=
1

2
tr{C−1(Q−1

φφ|θ +GTQ−1
vvG)−1

∂(Q−1
φφ|θ +GTQ−1

vvG)

∂Gi,j

× (Q−1
φφ|θ +GTQ−1

vvG)−1B}

=
1

2
tr{C−1(Q−1

φφ|θ +GTQ−1
vvG)−1(JTi,jQ

−1
vvG+GTQ−1

vvJi,j)

× (Q−1
φφ|θ +GTQ−1

vvG)−1B}

=
{

(Q−1
φφ|θ +GTQ−1

vvG)−1BC−1(Q−1
φφ|θ +GTQ−1

vvG)−1GTQ−1
vv

}
j,i

where the last equality follows from tr(AJij) = Aj,i = tr(JTijA
T ). Hence, the gradient

of function D with respect to G is

∇GD = Q−1
vvG[(Q−1

φφ|θ +GTQ−1
vvG)−B]−1B(Q−1

φφ|θ +GTQ−1
vvG)−1.
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3.7.4 Proof of Lemma 3.2

Suppose that the noise v has covariance Qvv = σ2
vIt. Then for any t× t orthogonal

matrix U ,

D(UG) =
1

2
log det[Ip +MTGTUT (UGQφφ|θG

TUT + σ2
vIt)

−1UGMQθθ|x]

=
1

2
log det[Ip +MTGT (GQφφ|θG

T + σ2
vIt)

−1GMQθθ|x]

= D(G)

Therefore, the information gainD(G) is invariant to left unitary multiplication ofG. For

any G ∈ Rt×q with rank r, G has the singular value decomposition G = U∆V T where

U and V are orthogonal matrices, and ∆ ∈ Rt×q is a diagonal matrix with diagonal

elements ∆1,1 ≥ . . . ≥∆r,r > 0 and ∆i,i = 0 for any i ≥ r. By the invariance property,

we can assume WLOG that U = It. Let G̃ = Diag(∆1,1, . . . ,∆r,r)V
T
r ∈ Rr×q where

Vr ∈ Rq×r contains the �rst r columns of V . It can be seen that G = [G̃T ,0q×(t−r)]
T

and tr(GGT ) = tr(G̃G̃T ). Moreover, one can easily check that

D(G) =
1

2
log det[Ip +MT G̃T (G̃Qφφ|θG̃

T + σ2
vIr)

−1G̃MQθθ|x]. (3.7.8)

The RHS of (3.7.8) is the information gain brought by an r-dimensional channel ỹ,

ỹ = G̃φ+ ṽ

where ṽ is r-dimensional white noise with variance σ2
v. The new channel ỹ brings the

same information gain, that is I(θ;x,y)− I(θ;x) = I(θ;x, ỹ)− I(θ;x).
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CHAPTER 4

Conclusion and Future Work

4.1 Conclusion

In this dissertation, we have considered two design problems arising in MIMO channel

signal processing. In Chapter 2, we have considered the linear compression or dimension

reduction of a noisy measurement x, which is then transmitted over a noisy channel.

The �nal dimension-reduced measurement z is used to recover the signal of interest θ.

Over the processes of compression and noisy transmission, we lose some information

that x contains about θ. The optimal compression matrices that minimize the trace or

determinant of the error covariance matrix, subject to the power constraint, were derived.

Both analytical solutions return the scaled and rotated canonical coordinates of x, while

the choice of the canonical coordinate system depends on the criterion implemented.

The scaling coe�cients are determined by the canonical correlations between x and θ,

and the eigenvalues of the noise covariance. The rotation sends the scaled canonical

coordinates into the subdominant invariant space of the noise covariance matrix. We

further extend the discussion to a general criterion and show that the general solution

also returns the scaled and rotated canonical coordinates, with a particular choice of the

coordinate system and scaling coe�cients.

In Chapter 3, we have considered a system with multiple sources of measurements and

correlated input signals. More speci�cally, a secondary channel is added to an existing

primary channel. The objective is to design the optimal secondary channel to maximize

the mutual information between the signal of interest and the measurements from both

channels, subject to a total power constraint. In this problem, the input signals and

the channel noises are Gaussian distributed, which allows an explicit expression for the

mutual information. When the conditional covariance of the secondary input signal
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given the primary input signal is proportional to the identity matrix, we have obtained

an analytical solution for the optimal channel. For general cases, we have proposed

two numerical algorithms to approximate the optimal secondary channel. The �rst

extrinsic algorithm implements a projection onto the constraint space given by the power

constraint. The second intrinsic algorithm exploits the geometry of the power constraint

and restricts the search to a manifold. Both algorithms converge to a local optimal

channel. We also show that the optimal secondary matrix can in some cases carry a

compression of the secondary input signal.

4.2 Future Work

The work so far focuses on linear systems. Moreover, for compression and for fusion,

the optimal solutions only exploit the second moments of the signals. In Chapter 2,

the optimal compression matrix is derived in a system of canonical coordinates. These

coordinates are given by the SVD of the coherence matrix, which is fully determined

by the second moments of the signals. In Chapter 3, the Gaussian distribution is fully

characterized by the �rst and second moments as well. Future work would seek design for

compressing and fusing nonlinear features of the measurements, based on higher-order

correlations between signals.

The idea of using nonlinear maps prior to linear processing has been exploited in

the theory of support vector machine, where the data are mapped by a nonlinear map-

ping into a high-dimensional feature space, in which the features are linearly separable

(see Vapnik [1995] and Vapnik [1998]). The idea of kernel methods avoids the high-

dimensional nonlinear mapping and allows all computations to be carried out in the

original low-dimensional space. In short, the kernel function is de�ned on the input

space and returns the inner products in the feature space. Since the development of the

support vector machine, numerous results have been reported on kernel nonlinear coun-

terparts of standard information processing techniques including principal component
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analysis, Fisher discriminant analysis, linear least squares estimation, etc. See Scholkopf

et al. [1998], Ruiz and de Teruel [2001], and Scholkopf and Smola [2002] for more de-

tails. In a coming study, we will explore compression and fusion in system of featured,

extracted from kernel pre-processing.
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CHAPTER 5

Background Materials

5.1 Lagrange Duality Theory and KKT Optimality Conditions

Consider the optimization problem

minimize f0(x)
subject to fi(x) ≤ ui, i = 1, . . . ,m

hi(x) = vi, i = 1, . . . , n
(5.1.1)

with variable x ∈ Rp. This is a constrained optimization problem with inequality

constraints and equality constraints. We assume the domain of the functions fi(i =

0, 1, . . . ,m) and hi(i = 1, . . . , n) have nonempty intersection.

The Lagrange duality theory is based on a dual optimization problem associated

with problem (5.1.1). To initiate the discussion, we �rst introduce the Lagrangian and

the Lagrange dual function. The Lagrangian L is a mapping from Rp ×Rm ×Rn to R1

as

L(x,λ,ν) = f0(x) +
m∑
i=1

λifi(x) +
n∑
i=1

νihi(x). (5.1.2)

The vectors λ and ν are the Lagrange multipliers associated with the problem (5.1.1).

The Lagrange dual function, denotes g, is a mapping from Rm × Rn to R1 that returns

the minimum of the Lagrangian over x:

g(λ,ν) = inf
x

(
f0(x) +

m∑
i=1

λifi(x) +
n∑
i=1

νihi(x)

)
. (5.1.3)

For any λ ≥ 0 and ν, the Lagrange dual function g(λ,ν) gives a lower bound on the

minimum of problem (5.1.1). This fact is easy to verify and omitted here. Readers may

refer to Boyd and Vandenberghe [2004] for more details. The Lagrange dual problem is

then the maximization of the Lagrange dual function, which is to

maximize g(λ,ν)
subject to λ ≥ 0

(5.1.4)
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The problem (5.1.1) is sometimes referred to the primary problem. The Lagrange dual

problem (5.1.4) is a convex optimization problem, which is true no matter whether the

primal problem (5.1.1) is convex or not.

Let x∗ and (λ∗,ν∗) be the optimal solutions of the primary problem and the dual

problem, respectively. Moreover, de�ne p∗ = f0(x∗) and d∗ = g(λ∗,ν∗). It can be seen

that

d∗ ≤ p∗

The di�erence between d∗ and p∗ is called the duality gap. When the duality gap is

zero, we say that strong duality holds. In this case, any primal optimal point is also a

minimizer of L(x,λ∗,ν∗), where (λ∗,ν∗) is a dual optimal solution. In other words, a

primal optimal solution is also a solution of the following unconstrained problem:

minimize L(x,λ∗,ν∗) = f0(x) +
m∑
i=1

λ∗i fi(x) +
n∑
i=1

ν∗i hi(x) (5.1.5)

This is the motivation for Karush-Kuhn-Tucker (KKT) conditions:

fi(x
∗) ≤ 0, i = 1, . . . ,m

hi(x
∗) = 0, i = 1, . . . , n
λ∗i ≥ 0, i = 1, . . . ,m

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

∇f0(x∗) +
∑m

i=1 λi∇fi(x) +
∑n

i=1 νi∇hi(x) = 0

(5.1.6)

The �rst three conditions are necessary for any feasible solutions. The last condition is

a direct consequence of problem (5.1.5). The fourth condition is called complementary

slackness. Note that

f0(x∗) = g(λ∗,ν∗)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +
n∑
i=1

ν∗i hi(x)

)

≤ f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

n∑
i=1

ν∗i hi(x
∗)

≤ f0(x∗)
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where the �rst equation follows the strong duality and the last inequality follows from

λ∗ ≥ 0, fi(x
∗) ≤ 0 and hi(x

∗) = 0. This directly yields that
∑m

i=1 λ
∗
i fi(x

∗) = 0 and

λ∗i fi(x
∗) = 0 since each term is nonnegative.

In summary, for problem (5.1.1) with di�erentiable objective and constraint func-

tions, any optimal solution must satisfy the KKT conditions (5.1.6).

5.2 Miscellaneous Matrix Results

When solving the matrix variate optimization problems in this dissertation, simpli-

fying the objective function reduces the complexity of the problem. In this section, we

introduce several useful results in matrix analysis.

First, we show a fundamental equation for the determinant function, which is known

as Sylvester's Determinant Theorem: For any m× n matrix A and n×m matrix B,

det(Im +AB) = det(In +BA)

More generally, for any invertible m×m matrix X,

det(X +AB) = det(I +ABX−1) det(X)

The matrix inversion formula, or Woodbury matrix identity, gives a useful transfor-

mation of matrix inverse: Suppose that the matrices A and C are invertible. Then,

(A+UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1.

When the matrix A is the identity matrix and V = UT , we have

(I +UCUT )−1 = I −U
(
C−1 +UTU

)−1
UT .

Next, we introduce di�erentiation of a scalar function with respect to a matrix X.

Given a scalar function y = f(X), the matrix derivative of f to X is de�ned as

∂y

∂X
=


∂y
∂x11

∂y
∂x21

· · · ∂y
∂xp1

∂y
∂x12

∂y
∂x22

· · · ∂y
∂xp2

...
...

. . .
...

∂y
∂x1q

∂y
∂x2q

· · · ∂y
∂xpq

 .
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A list of the derivative of the trace and determinant function is

∂ tr(X)

∂X
= I

∂ detX

∂X
= detX(X−1)

∂ log detX

∂X
= X−1

∂ tr(X−1)

∂X
= −X−2

∂ det(X−1)

∂X
= − detX−1(X−1)

In our optimization problem, computing the �rst-order derivative provides a necessary

condition for the optimal solution. Solving the �rst-order derivative often gives a reduced

candidate set of the solutions.

5.3 Di�erential Entropy and Information

In Chapter 3, the criterion we used is based on information theory. In this section,

we will brie�y introduce the concept of entropy and mutual information. For a discrete

random variable Z with probability mass function p(z) = Prob(Z = z), the entropy for

Z is

H(Z) = E[− logb(p(Z))] = −
∑
i

p(zi) logb p(zi)

Here b is the base of the logarithm used. When b = 2, then entropy is measured in

bits. The entropy H(z) is a measure of uncertainty of z. For example, the random

experiment of �ipping a fair coin has entropy 1 bits. Through this work, we will use

Euler's base where logb is the natural logarithm. The continuous version of the entropy

is called the di�erential entropy. The di�erential entropy for a random variable Z with

density function f is

H(Z) = E
[
log

1

f(Z)

]
.
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A Gaussian distributed random vector z ∈ Rk with mean µz and covariance Qzz has

di�erential entropy

H(z) =
1

2
log detQzz +

k

2
log(2π).

For two random variables Z1 and Z2, the equivocation or conditional entropy for Z1

given Z2 is

H(Z1|Z2) = E
[
log

1

fZ1|Z2(Z1|Z2)

]
,

where fZ1|Z2(·) is the conditional density of Z1 given Z2. The expectation is taken over

the joint distribution of (Z1, Z2). The equivocation H(Z1|Z2) measures the average

remaining information in Z1 after revealing the value of Z2. H(Z1|Z2) = 0 if and only

if the value of Z1 is determined by the value of Z2. For z1 ∈ Rk1 and z2 ∈ Rk2 with a

joint Gaussian distribution,

H(z1|z2) =
1

2
log detQz1z1|z2 +

k1

2
log(2π),

where Qz1z1|z2 is the conditional covariance matrix of z1 given z2. The mutual informa-

tion between two random variables Z1 and Z2 is

I(Z1;Z2) = H(Z1)−H(Z1|Z2).

The mutual information I(Z1;Z2) measures the amount of information Z2 contains about

Z1, or equivalently, the amount of information Z1 contains about Z2. I(Z1;Z2) = 0 if and

only if Z1 and Z2 are independent random variables. For jointly Gaussian distributed

random vectors z1 and z2, the mutual information is

I(z1; z2) =
1

2
log detQz1z1 −

1

2
log detQz1z1|z2 (5.3.1)

with Qz1z1 the covariance matrix of z1. In Chapter 3, the explicit expression (5.3.1)

is used to derive the information gain criterion, when the input signals are Gaussian

distributed.
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