
Thesis

Implications of Storage Subsystem Interactions on Processing Efficiency

in Data Intensive Computing

Submitted by

Hanisha Koneru

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2015

Master’s Committee:

Advisor: Shrideep Pallickara

Sangmi Pallickara
Mazdak Arabi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Mountain Scholar (Digital Collections of Colorado and Wyoming)

https://core.ac.uk/display/354484854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright by Hanisha Koneru 2015

All Rights Reserved

Abstract

Implications of Storage Subsystem Interactions on Processing Efficiency

in Data Intensive Computing

Processing frameworks such as MapReduce allow development of programs that oper-

ate on voluminous on-disk data. These frameworks typically include support for multiple

file/storage subsystems. This decoupling of processing frameworks from the underlying stor-

age subsystem provides a great deal of flexibility in application development. However, as

we demonstrate, this flexibility often exacts a price: performance.

Given the data volumes, storage subsystems (such as HDFS, MongoDB, and HBase) dis-

perse datasets over a collection of machines. Storage subsystems manage complexity relating

to preservation of consistency, redundancy, failure recovery, throughput, and load balanc-

ing. Preserving these properties involve message exchanges between distributed subsystem

components, updates to in-memory data structures, data movements, and coordination as

datasets are staged and system conditions change. Storage subsystems prioritize these prop-

erties differently, leading to vastly different network, disk, memory, and CPU footprints for

staging and accessing the same dataset.

This thesis proposes a methodology for comparing and identifying the storage subsystem

suited for the processing that is being performed on a dataset. We profile the network I/O,

disk I/O, memory, and CPU costs introduced by a storage subsystem during data staging,

data processing, and generation of results. We perform this analysis with different storage

subsystems and applications with different disk-I/O to CPU processing ratios.

ii

Table of Contents

Abstract . ii

List of Tables . v

List of Figures . vi

Chapter 1. Introduction . 1

1.1. Research Questions . 2

1.2. Thesis Contributions . 3

1.3. Thesis Organization. 3

Chapter 2. Hadoop MapReduce . 5

Chapter 3. Distributed File/Storage Systems. 7

3.1. Distributed Database Storage Models . 9

3.2. Distributed File Systems . 12

3.3. Choosing a Suitable Storage System. 13

Chapter 4. Related Work . 15

Chapter 5. Methodolody . 20

5.1. Profiling . 20

5.2. Applications . 22

5.3. Hardware Specifications . 26

Chapter 6. Results . 27

6.1. Word Frequency Counter: HDFS vs. HBase . 27

6.2. K-Means Clustering: HDFS vs. HBase . 30

iii

Chapter 7. Conclusion . 33

Chapter 8. Future Work . 35

Bibliography . 36

iv

List of Tables

5.1 Sample Wireshark Captured Data . 22

v

List of Figures

6.1 Disk I/O during staging of Word Frequency Counter application 28

6.2 Network I/O during staging of Word Frequency Counter application 29

6.3 Disk I/O for Word Frequency Counter application . 29

6.4 Network I/O for Word Frequency Counter application. 30

6.5 Disk I/O for K-Means Clustering application. 31

6.6 Network I/O for K-Means Clustering application . 31

vi

CHAPTER 1

Introduction

The traditional file systems and databases cannot handle the huge amount of data storage

requirements that is common now-a-days. Adding more and more storage to a system is not

an optimal solution as there is an increased risk of failure and decrease in access bandwidth.

Also, scaling-up is complex and expensive.

A Distributed Storage System stores data in multiple computers. But to an end user, the

data appears to be located on a single local disk. The ideal properties in a distributed system

are availability, consistency, scalability, transparency and security. Distributed Storage Sys-

tems can be broadly divided into two categories - Distributed File Systems and Distributed

Databases. Distributed File Systems are very similar to classic file systems in terms of read

and write operations with the added advantage of distributing the load of disk space over

multiple machines. Though there are no fixed standards, Distribtued Databases can be

categorized as Key-Value Storage, Column-Family Storage, Document Storage and Graph

Storage. The data access patterns in each of these types of databases is different. There are

numerous distributed storage systems available today and each system has its own specific

architecture.

Different distributed systems are well suited for different types of applications. For in-

stance, Key-Value databases are best utilized for storing user specific data such as user

session data and user preferences but should be avoided when querying the database for

specific data values. Where Document-oriented databases show optimal performance for

e-commerce platforms and content management systems, Column-Family based databases

1

are optimal for log applications. Graph storage systems are immensely significant for ap-

plications that have connected data, specially social networks and recommendation engines.

There are numerous implementations available for each of theses categories of databases.

But there is no one distributed system that is the winner of all. Depending on the use cases

and deployment conditions, one storage system might outperform another and lag behind

the same if the conditions change.

It is thus important to choose the right distributed system for an application. Otherwise,

the advantages offered by such a system will be limited and might very well be negated

by a deterrent in the same system. Performance of a distributed system is application

specific. Thus, the distributed system as well as the use cases and environment in which the

application needs to be deployed should be thoroughly assessed.

All distributed systems distribute the data among the data nodes in the cluster. An

application, whether running on a Key-Value Storage System or a Graph Storage System or

any other system, would require to access the data and process it according to the require-

ments. For this, the distributed components need to interact with each other and also with

the client. How and when the data is accessed and processed impacts the performance of the

system. By profiling these interactions between the components, we can judge the impact

of an underlying storage system on the processing efficiency of the distributed system.

1.1. Research Questions

The research focus of this thesis is to provide answers for the following questions on

storage frameworks.

(1) Which aspects of a storage framework’s resource utilization profile impacts process-

ing performed on the managed datasets?

2

(2) How can we identify differences in how storage frameworks preserve properties for

managed datasets?

(3) How can we harness knowledge about costs introduced by a storage subsystem to

inform suitability for processing performed in managed datasets?

1.2. Thesis Contributions

This thesis aims at providing methodologies and benchmarks to assess a storage systems’

performance with regards to data management and compare different storage frameworks

against applications with varying I/O to CPU processing ratios. There are two key method-

ologies proposed in this work.

(1) Profiling storage frameworks for several aspects of data management

(2) Assessing suitability of a storage framework for performing analytic tasks with dif-

ferent I/O to CPU processing ratios.

Profiling of storage frameworks is done by analyzing the costs involved in the interactions

between the distributed components for different applications. These interactions include

message exchanges (network I/O), storage (disk I/O) and processing times. Based on the

results of the experiments performed, other storage frameworks can also be evaluated for

performance efficiency. For instance, the results on HDFS and HBase presented in this

paper can be used to assess the performance of MongoDB on same applications by following

the same methodologies and benchmark standards.

1.3. Thesis Organization

The rest of this thesis is organized as follows. Section 2 describes a distributed system

and its components. Section 3 explores the different types of distributed storage systems

available and their main characteristics. Section 4 contains a survey of related work. Section

3

5 details out the methodology used for the analysis and the applications examined. Section 6

puts forth the results obtained from the experiments and Section 7 presents the conclusions

drawn from this work. We conclude this report with future works in Section 8.

4

CHAPTER 2

Hadoop MapReduce

Apache Hadoop [1] is the framework for distributed storage and distributed processing.

It can handle very large data sets by distributing the data and processing over multiple

commodity hardwares. Hadoop is composed of four main modules:

• Hadoop Common: This contains all the libraries and utilities required for other

Hadoop modules.

• Hadoop Distributed Storage System (HDFS): This is the distributed file storage

system. Through HDFS, data is stored over multiple commodity hardwares.

• Hadoop YARN : This is the resource-manager for Hadoop. This module manages

the resources in Hadoop clusters and schedules the jobs and tasks.

• Hadoop MapReduce: This is the programming model which is used for large scale

data processing.

Hadoop can be integrated with other frameworks or applications as well. For example,

a different distributed storage system can be used in place of HDFS such as MongoDB [9],

HBase [4] and Cassandra [10]. Hadoop can be integrated with data processing engines such

as Hive, Pig and Spark which render it with additional features. Hive [11] is a data warehouse

infrastructure that provides data summarization and ad-hoc querying. Pig [12] is a high-level

data-flow language and execution framework for parallel computation. Spark [13] provides

a simple and expressive programming model that supports a wide range of applications,

including ETL, machine learning, stream processing, and graph computation. It is a fast

and general compute engine for Hadoop data. There are many other applications which can

be incorporated along with Hadoop to enhance its features.

5

In a relational database, data is organized as a set of one or more tables of rows and

columns. Data in a relational database is analyzed using query languages. Structured Query

Language (SQL) is the most commonly used query language for these databases. HDFS is

a file system and not a real database. Though it provides services for storage and retrieval

of data, same as a database, there are no queries involved. Hadoop is more of a data

warehousing system. So it requires a framework such as MapReduce to process the data.

MapReduce [5] is capable of processing massive amounts of unstructured data in parallel

across a distributed cluster of nodes. A MapReduce program is comprised of two types of

procedures: Map tasks and Reduce tasks. Each Map task or Mapper spawns a map function

which takes in a value as input and spawns out intermediate key-value pair(s). Each map

task is deployed on the node which stores part of the input split data that it is responsible for

processing. This maintains data locality resulting in very high aggregate bandwidth across

the cluster. If local computations are not possible, the map task is executed on a different

cluster node that is closest to the data. In general, this situation is not so common as most

distributed systems replicate the data while storing. All map operations are independent of

each other and operate in parallel. After generating the key-value tokens, the map functions

group the tokens by their key values. The set of all keys is partitioned by either a default

partitioner function which uses hashing or by a custom partitioner as defined by the user.

The keys are partitioned into same number of boxes as the number of reducers. A Reducer

or Reduce task fetches, from all the Mappers, the key-value tokens that it is responsible for

and applies the reduce function on them. The reduce tasks also run in parallel but there

is no enforced data locality for the reduce tasks. Each Reducer writes the final output as

key-value pairs to the file system.

6

CHAPTER 3

Distributed File/Storage Systems

We all know that the amount of data in the world is exploding. According to International

Data Corporation (IDC) [14], a prominent market research, analysis and advisory firm, the

world’s information now approximately doubles about every year and a half. In 2011, there

was a total of 1.8 zettabytes of data generated and stored world-wide and in 2012, this

number was 2.8 zettabytes. IDC predicts that by the year 2020 the world would have

generated 40 zettabytes of digital data. This statistics show the growth in amount of data

and, along with it, storage needs. When dealing with huge data, typically in petabytes or

higher, it is not feasible to store all the data in one disk. For one, there is high risk of

losing all the data in case of disk failure. Also, the access bandwidth would decrease with

the increase in storage. So rather than scaling-up, the better solution is to scale-out. This

means that instead of building and investing in large, expensive and complex hardware with

more and more storage capacity, it is better to add low cost commodity hardware to increase

storage capacity incrementally. In other words, we need to distribute the storage to different

machines/ disks instead of overloading one machine.

A very simple definition of Distributed Storage is storing data in multiple computers

or in computers that are geographically dispersed. It offers the advantages of centralized

storage with the scalability and cost base of local storage. Centralized Storage or Storage-

Area Network (SAN) [15] is a dedicated high-speed network with multiple storage units that

communicate with each other and give access to multiple users simultaneously. Users of

a distributed system should perceive a single, integrated computing facility even though it

may be implemented by many computers in different locations. Though there are numerous

7

distributed storage systems such as Hadoop Distributed Storage System (HDFS), Google File

System (GFS) [6], Cassandra [10], HBase [4] and MongoDB [9], they all try to implement

the following basic design principles:

Availability : Server crashes or hardware failures should ideally not affect the data acces-

sibility in a distributed system. For a distributed system to be continuously available, every

request received by a non-failing node in the system must result in a response [16]. A system

should be have high availability as the costs of down-time can be huge in these cases. One

possible and most widely used way to achieve this is using Data Replication. Multiple copies

of the data are maintained on different systems. So even if one system fails temporarily or

permanently, data can be fetched from a replicated server.

Consistency : Consistency means all nodes should see the same data at the same time.

If the data has been replicated, as is the case in almost all distributed systems, then all the

replicas should be consistent with each other. If a change has been made to a data item on

one machine, it takes some time to propagate the change to all the other replicas. During

this short time, the copies of the data will be different from each other. But eventually the

change will be propagated to all the copies and the system will attain consistency. This is

known as eventual consistency. Various distributed systems tackle consistency in different

ways as there is a trade-off between availability, consistency and speed.

Scalability : A distributed system should be able to handle the addition of users and

resources without suffering a prominent increase in complexity or loss of performance. Scal-

abilty is important as its preferable to scale-out than scale-up, if required.

Security : Due to the multiple systems and users being involved, security threats become

even more prevalent in distributed systems. As such, it becomes very significant to prohibit

8

illegal access of data and protect systems from malicious attacks. This is done using different

methods of authentication, authorization and encryption.

Transparency : Transparency hides the fact that resources are physically distributed

across multiple systems. All aspects of the distributed system design such as access, lo-

cation, replication, concurrency and failure should be invisible to the user. To the user, the

whole distributed system should appear as a single system.

3.1. Distributed Database Storage Models

Distributed Storage Systems can be broadly divided into four categories based on their

design and access patterns: Key-Value Storage, Document Storage, Column Family Storage

and Graph Storage. Most of the current distributed storage systems will fall into one of

these four categories. All these storage models provide different ways of accessing data.

3.1.1. Key-Value Storage Model

SQL, the Structured Query Language is the standard language for relational databases.

It can handle structured data efficiently and can execute arbitrary and highly dynamic

queries. But the focus is shifting more and more towards object oriented way of thinking.

Data to be stored is not being modeled for a database but for logical integrity so as to

help in understanding the software infrastructures. An object-based storage manages data

as objects, where an object typically includes the data, some variable amount of metadata

and a unique identifier. For object-based storage, the ability of SQL to process arbitrary

dynamic queries is rendered useless. As such SQL becomes inefficient for such systems and

we need a different model to manage data storage. In response to these changes, new ways to

store data have emerged that allow data to be more unstructured, schema-less and grouped

together more logically and naturally.

9

In a Key-Value store [17], data is stored as a collection of key and value pairs, such that

each possible key appears just once in the collection. The data structures in a relational

database is a pre-defined series of tables with fields of defined data types and all the records

have the same format. Key-Value stores provide more flexibility in modeling the data. There

is no defined structure and each record may have different fields associated with it. Since

the data is indexed using a single unique key, retrieval can be random. This means that to

retrieve one specific data or range of data, the whole collection need not be accessed. The

system can directly lookup the required record(s) using the key.

Some of the most popular distributed Key-Value storage systems are Redis [22], Amazon’s

Dynamo [23] and Cassandra [10].

3.1.2. Document Storage Model

Where SQL is good for structured data and Key-Value stores perform well for unstruc-

tured data, Document-oriented Database [18] are effective for semi-structured data. Though

they can be treated as a sub-class of the Key-Value storage system, they have gained much

popularity and are used as extensively. Document-based storage systems also have meta-

data and a unique identifier associated with each data item, same as Key-Value stores. The

difference between the two is in the processing of the data. In Key-Value store, data is

considered to be inherently opaque to the database as their is no structure to the data. In

Document-based stores, the data has an internal structure which is useful while extracting

the metadata for further optimization. This internal structure is comparable to an XML

document structure. The retrieval process is similar to that of Key-Value store where the

key is used to lookup the record. Typically, the keys are indexed and the indexes are used

to speed up the retrieval. In addition, utilizing the document structure of the data, only

specific parts of the document can also be retrieved.

10

MongoDB [9], Microsoft’s DocumentDB [24] and CouchDB [21] are few examples of

D5ocument-oriented storage systems.

3.1.3. Column-Family Storage Model

In a Column-Family Storage System [19], data tables are stored as sections of columns

of data instead of the general way as rows of data. Columns which will be usually accessed

together are grouped together into one column family. Each column is a part of one and only

one column family. This is done to avoid duplication of data. Row-based storage systems can

efficiently return an entire row data. As such they are not suitable for operations covering

the entire data-set. For instance, to retrieve records that meet some condition on a column,

the entire data-set would have to be combed through to get those specific rows of data. The

same operation in a column-family storage system would access only one specific column and

then return all the rows matching the specified condition.

In this storage system, all values of a Column-Family are serialized together, then the

values of the next column-family and so on. Data is indexed by row key, column key and

timestamp. The data retrieval in such systems in performed column-wise. It is more ef-

ficient when data processing requires many rows but only a subset of columns. Google’s

BigTable [25] and Apache’s HBase [4] are the most popular distributed systems implement-

ing Column-Family storage. We will analyze HBase in more detail in the next sections.

3.1.4. Graph Storage Model

With the recent advances in machine learning and data mining, Graph Storage [20] is

becoming more and more popular. Graph databases are based on graph theory and have

three entities: nodes, properties and edges. Nodes are analogous to entities or objects.

Properties are pertinent information related to the nodes. Edges are connections from nodes

11

to nodes or nodes to properties and represent the relationship between the two. Each node,

property and edge in the system is represented by a unique identifier. Every node comprises

of a set of outgoing and/or incoming edges and a set of properties expressed as key-value pairs

and each edge has a starting and/or ending node and a set of properties. Graph storages

are useful for mining data from social media as they can efficiently analyze connections and

relations between entities. Graph storage systems do not require index look-ups. The edges

act as direct pointers between adjacent nodes.

A few examples of distributed graph storage systems are FlockDB [26], InfiniteGraph [27]

and OrientDB [28].

3.2. Distributed File Systems

We discussed different types of distributed storage models and their design principles.

There is another class of distributed storage which is Distributed File Systems. These are

network file systems where the server is distributed over multiple machines which may or

may not be geographically dispersed. It also allows access to files from multiple hosts. It

can be seen as a distributed implementation of the classical model of a file system, where

multiple users share files and storage resources.

The difference between distributed file systems and distributed storage systems is analo-

gous to the difference between a local file system and a local mySQL database. In distributed

file systems, files are broken down into smaller chunks of files, if needed, and then distributed

over all the nodes in the system to be stored in their local storage.

Google File System [6], Hadoop Distributed File System [2], Sun Network File Sys-

tem [30], Andrew File System [29] are few of the numerous distributed files systems devel-

oped. We will discuss more about Hadoop Distributed File System in the upcoming sections.

12

3.3. Choosing a Suitable Storage System

In the previous sections, we have seen how many different types of storage systems are

available today. We have also established that as the data storage or processing needs grow,

it is preferable to use distributed storage and computing rather than putting the whole load

on a single machine. But how do we decide which storage system to use and which computing

technique to use? We cannot generalize that Column-Family storage systems are better than

Key-Value storage systems or that Distributed File Systems outperform Document storage

systems. The performance of storage systems is dependent on the application. For different

applications, different systems might perform better. For instance, if suppose we need to

access only a very small subset of the data, then some distributed storage system would be a

better choice than a distributed file system which allows only linear sequential access but if

all the data needs to be accessed, then a distributed file system might outperform the rest.

The design of the application also plays an important role in performance of the system.

While designing applications, the architecture of the underlying storage subsystem must also

be considered as it would effect the interactions between the components for data retrieval

and processing. For instance, to do text processing on a text document where each word in

the document has to be processed individually, retrieving a line or paragraph at once would

still be more optimal than retrieving each word separately. Data retrieval has overhead

charges associated with it.

To answer the question of which storage system would be ideal for a specific type of

application, we compare their performances against different types of applications. Each

application is designed to optimize the performance In this work, we have done a performance

analysis of HDFS and HBase on two types of applications: I/O bound and compute bound.

13

For each of the storage systems, applications have been designed to optimize performance

on that storage system, keeping the basic algorithm intact.

14

CHAPTER 4

Related Work

HDFS and HBase, have both been developed by the Apache Software Foundation. HDFS

has been inspired by and is comparable to Google’s GFS [6] and was designed to store large

files across multiple geo-diverse machines. Similarly, HBase is a distributed non-relational

database modeled after Google’s Bigtable [25]. Both HDFS and HBase are open-source

projects. Along with storage systems, we need distributed computing to utilize the dis-

tributed nature of the data storage. This is achieved using MapReduce [5], an open-source

programming model developed by Google Inc. Apache also developed it’s own distributed

computing programming model, based on the same idea, called Hadoop MapReduce [31].

MapReduce [5] provides an infrastructure for executing large-scale data processing jobs

on multiple cluster machines. It exploits the processing capacity of the computing clusters

by distributing the work load over the clusters. Partitioning of input data, scheduling of

executions across the cluster nodes, coordinating between the nodes and node failures is

all handled by MapReduce. It is a framework that provides automatic parallelization and

distribution of large-scale computations. Hadoop MapReduce was developed on the same

concepts.

The primary purpose of HDFS is to store very large data-sets and to stream those data-

sets to user applications at high bandwidths. By distributing the storage across multiple

cluster nodes, scalability can be achieved at economical rates. In 2006, when Hadoop was

first developed and deployed at Yahoo!, it span over 25000 servers and stored 25 petabytes

of data. As per IDC’s most recent report around 32 percentage of enterprises have deployed

Hadoop and another 36 percentage are planning to do so.

15

Shvachko, Kuang, Radia and Chansler [2] give a detailed description of HDFS and its

architecture. The HDFS namespace follows hierarchical structure of files and directories.

Files are split into large blocks (by default, 128 megabytes) and each data block is replicated

at multiple DataNodes (by default, three). The NameNode is responsible for maintaining

the namespace metadata and mapping of file blocks to DataNodes. Blocks in DataNodes are

stored in the native file system of the local host. For user applications to interact with HDFS,

they require HDFS Client, which acts as the interface between users and HDFS. For reading

a file from HDFS, the HDFS Client requests locations of the corresponding data blocks from

the NameNode. The NameNode sends the list of all DataNodes hosting replicas of the data

blocks. The HDFS Client then reads the data directly from the DataNode closest to it. For

writing a file to HDFS, the HDFS Client splits the file into data blocks and, for each data

block, requests the NameNode to assign DataNodes to host the replicas. The Client then

establishes a pipeline to the required DataNodes and sends the data blocks. Each DataNode

sends periodic heartbeats to check in with the NameNode and also informs the NameNode

about the data blocks that it hosts.

Hadoop Distributed File System has write-once read-many access semantics. Shafer,

Rixner and Cox [32] analyzed the interactions between Hadoop and HDFS, and described the

performance bottlenecks in the filesystem. Due to the structural implementation of Hadoop

causing delays in scheduling new MapReduce tasks, HDFS is not utilized as efficiently as

possible. In HDFS, the access pattern for disk is periodic and prefetching is not employed.

HDFS is written in Java and hence some performance-enhancing features of the native

platform are not exploited. As such, the HDFS implementation runs less efficiently and has

higher processor usage than would otherwise be necessary. Also, though HDFS is portable,

its performance is highly dependent on the behavior of underlying software layers. These

16

performance bottlenecks can be overcome by improving I/O scheduling, adding pipelining

and prefetching to task scheduling and HDFS clients, pre-allocating file space on disk, and

modifying or eliminating the local filesystem [32].

HBase [4] is a fault-tolerant, highly scalable, NoSQL distributed database built on top

of HDFS. HBase only contains information about the storage locations of the data blocks

whereas the actual data resides in HDFS. HDFS, because of its file system structure, can

allow only linear access to data. On the other hand, HBase can be used for real-time random

read and write operations on large data-sets. HBase also employs master-slave architecture,

similar to HDFS. HBase has a master server (HMaster), analogous to the NameNode of

HDFS, and numerous data servers (HRegionServers) as slaves, similar to the DataNodes in

HDFS. Scheduling and management of resources is done by Zookeeper [3]. Each row in a

HBase table has a unique sorting key and arbitrary number of columns. The table cells

are versioned by timestamp which is assigned during insertion. Because of this, a column

can have several versions for the same row key. Each cell has four identifiers: Table name,

Row-Key, Column-Family and Column name, and Timestamp. HBase tables are split into

regions according to row keys and distributed among the HRegionServers. Regions are

further divided vertically by column-families and stored as files in HDFS.

Parallel databases [33] seek to improve the performance of relational database manage-

ment systems through parallelization of various operations involved with a database such as

loading data and evaluating queries. Both MapReduce and Parallel databases process data

in parallel using multiple systems. Where MapReduce jobs express the problem in terms

of map and reduce functions, Parallel databases organize their data in the relational data

model using collections of tables. These two systems are competing and complimentary to

17

each other. Parallel databases scored high on performance and MapReduce is more flexi-

ble in handling unstructured data. In [34], Mchome describes how data analysis is affected

by data organization and querying structure in both Parallel databases and MapReduce

programming models.

Before choosing between the different distributed storage models as the ideal system for

a particular application, it is recommended to analyze whether a distributed system would

be ideal for the application or a parallel database. McClean, Conceicao and O’Halloran [34]

provide a high level comparison between MapReduce and Parallel databases and present

a selection criteria to choose between the two for a particular application. MapReduce

performs better for unstructured data and Parallel databases for structured data. Also, the

cost for MapReduce beats the cost for using Parallel databases at enterprise level.

A comparative analysis of GFS and HDFS is done by Vijayakumari, Kirankumar and

Rao [8]. They provide the similarities and dissimilarities between the two in terms of ar-

chitecture and properties such as scalability, security, cache management, communication,

replication strategy, etc. HDFS and GFS are similar in more ways than not. Both have a

cluster based master-slave architecture, have hierarchical file structure and support batch

processing. GFS uses TCP for communications and HDFS uses RPC based protocol on top

of TCP/IP. GFS uses Bigtable as its database and HDFS uses HBase. These are some of

the similarities and dissimilarities between the two distributed file systems. HDFS, being an

open-source project, is more popular and widely used in different enterprises, whereas GFS

is owned and used by Google Inc.

In 2010, Facebook shifted from Cassandra, it’s in-house built distributed database, to

HBase. The reasons, as indicated by Borthakur, Sarma, Gray, Muthukkaruppan, Spiegel-

berg et al. [35], for moving away their MySQL-based architecture was that it is difficult and

18

not optimal to scale some workloads because of very high throughput, massive datasets,

unpredictable growth or other patterns. Facebook Messaging, Facebook Insights and Face-

book Metrics System were the applications that were over growing the powers of RDBMS.

The requirements for a new storage system and the reasons for choosing Hadoop and HBase

were elasticity, high write throughput, efficient and low-latency strong consistency semantics

within a data center, efficient random reads from disk, high availability and disaster recovery,

fault isolation, atomic read-modify-write primitives, and range scans.

19

CHAPTER 5

Methodolody

Storage frameworks involve interactions between the distributed components. These

interactions pertain to ensuring consistency, fault tolerance, load balancing, and preserving

high throughput. These interactions entail message exchanges (network I/O), storage (disk

I/O), updates to data structure (memory) and processing encompassing several outputs

(CPU). How and when these interactions are performed impact efficiency of the processing

that is performed on the underlying data. We profile the costs (disk I/O, network I/O, and

CPU) associated with these interactions, and identify their impact on different applications

that have a slightly different mix of CPU and I/O processing.

5.1. Profiling

The systems are profiled on costs involved for disk I/O on each node in the cluster,

network I/O between all pairs of nodes and run-time for the application.

5.1.1. Disk I/O Monitoring

For a CPU to process the data, it requires the data to be present in memory. For this,

data is fetched from disk and cached in memory. If the disk I/O operations are lagging, the

processor sits idle till the data is cached in memory. Hence, reading and writing to disk has

an impact on the processing of an application. Using Linux disk monitoring tools, we gather

the number of bytes of data read from and written to disk in each node of the cluster, during

both staging and processing of the data.

20

5.1.2. Network Monitoring

For a system comprising of multiple machines, it is important to ensure smooth flow of

information between nodes as the functioning of one system is dependent on others as well.

Also, a network bottleneck can also delay the execution of a process.

We used Wireshark tool to perform network analysis on the cluster. Wireshark is an

open-source network packet analyzer that does network analysis at a microscopic level. It is

similar to tcpdump in functionality. It captures, logs and analyzes data transferred between

and over a network. One significant advantage of Wireshark over other network analyzers is

that it can record traffic on a network and store it for analysis later on. Captured network

data can be browsed via GUI, or via the TShark utility.

TShark enables us to capture the network traffic data directly into a file which can be

processed later. Table 5.1 shows a sample of data captured using Wireshark utilities. Here,

A and B denote the nodes between which the network traffic has been captured. Address

A and Address B are the IP addresses of the nodes and Port A and Port B are the ports

through which the data was transmitted or received. Packets and Bytes column give us

the total number of packets and total number of bytes that went to and fro between nodes

A and B. Wireshark also gives us the direction specific data: number of packets and bytes

transmitted from node A to node B and vice versa (Packets A→B, Bytes A→B, Packets

A←B, Bytes A←B). It also gives us the rate of transmission both ways (bps A→B, bps

A←B), the relative start time of that particular capture (Rel Start) and the duration of the

capture (Duration).

We are interested in finding the total amount of data transferred between all pairs of

nodes in the cluster. For this, we run the TShark utility on all the nodes in the cluster,

including the NameNode, Secondary NameNode, Data Nodes and Region Servers. For each

21

pair of nodes A and B, we gather the data from the captured files at both A and B and we

then take the average of these values. This is done for all pairs of nodes in the cluster.

Table 5.1. Sample Wireshark Captured Data

Address A Port A Address B Port B Packets Bytes Packets A→B Bytes A→B
129.82.46.32 35037 129.82.46.31 issd 13059 95002040 6716 94564799
129.82.46.33 38296 129.82.46.31 issd 17872 132853214 9669 132293731
129.82.46.34 48994 129.82.46.31 issd 18532 136572331 9910 135984654
129.82.46.37 35242 129.82.46.31 issd 17093 126548879 9072 125994587

Packets A←B Bytes A←B Rel Start Duration bps A→B bps A←B
6343 437241 29.593103000 2.0770 364236105.92 1684125.18
8203 559483 868.552229000 1.2155 870717247.01 3682347.56
8622 587677 874.219346000 1.6478 660213022.84 2853204.37
8021 554292 121.693596000 2.0454 492791488.42 2167953.29

5.1.3. Application Run Time

Run time is the time taken for fully processing an application from start to end. It

includes any setup time taken by Hadoop before starting the actual MapReduce processes.

The Staging time is not included in the application run-time but is taken into consideration

separately. This is the time taken to stage the dataset before running the applications. It

includes the time to load the input data into the file system and distribute it among the

cluster nodes.

5.2. Applications

In this section, we discuss the applications that have been analyzed, algorithms involved,

mapReduce implementations for these applications and datasets used. In general, most

applications are either compute bound or I/O bound. We take one I/O intensive application

and one compute intensive application to perform our experiments and analyze the storage

system’s performances in both cases. For an I/O bound job, we perform Word Frequency

Count and for compute bound job, we perform K-Means Clustering. Since HDFS, being a

22

file system, lacks random read and write accesss, we did not utilize this feature of HBase. So

as to ensure fairness in the comparison, the datasets were accessed linearly for both HDFS

and HBase.

5.2.1. Word Frequency Counter

The Word Frequency Counter counts the frequency of all distinct words in a document.

One of the applications of Word Frequency Counter is during sentiment analysis. Sentiment

analysis refers to the use of language processing and text analysis tools to identify and

extract subjective information in source materials. It determines the attitude of the writer

on some topic or the overall contextual polarity of the document [wiki]. The applications

for sentiment analysis are endless. It is used extensively in social media monitoring and

customer-oriented business analytics.

In this algorithm, the mapper reads the input text and generates the key-value pairs of

distinct words as keys and their corresponding frequency counts as values. In the Hadoop

implementation of this algorithm, the mapper functions read the input text data and emit

each encountered word as key with value as one. The mappers also do some preprocessing

of the data. All the special characters are removed and all the characters are converted

to lower case as we do not want the final output to be case sensitive. For example, for

the input sample text ”Colorado State University#” the output from the mapper would be

(colorado,1), (state,1) and (university,1). All the instances of the same key go to the same

reducer irrespective of at which mapper it was generated at. At the reducer, the results for

each word are summed up to get the final count of that word in the whole text document.

The outputs from all the reducers are combined to get the final output of the program.

For this application, test data was built by combining different books available under

Project Gutenburg, which is the online repository of free e-books. Ten different files were

23

created with the size of each file being between 10-15GB. The total size of all the 10 files

combined together was 126GB.

5.2.2. K-Means Clustering

K-means Clustering [36] is an unsupervised learning methodology for grouping data

points into clusters. It partitions n observations into k clusters in which each observation

belongs to the cluster with the nearest mean. The mean of all the data points in a cluster

serves as a prototype of that cluster and all the points in that cluster should be closest to

this mean than to the mean of any other cluster. The clusters formed using this algorithm

are non-hierarchical and they do not overlap with each other.

To compare two observations, we need a notion of similarity or dissimilarity between the

two. If the observations are numerical or can be equated to numerical values, we can take

the distance between two observations as their dissimilarity index. There are many distance

measures available such as Manhattan Distance, Euclidean Distance and Cosine Distance.

For our experiments, we will be using Euclidean Distance measures. If the observations

or items are comparable to points in an d -dimensional space, where d is the number of

attributes in each observation, then we can take the Euclidean distance as the metric of

dissimilarity. The Euclidean distance between two points is square root of the sum of the

squares of the differences between the corresponding coordinates of the points.

The K-Means Clustering algorithm takes in two inputs: the d -dimensional data and k

initial cluster centers. The k initial cluster centers are randomly picked from n observations

of the data, without replacement. For all the experiments, same initial clusters are taken

so as to maintain uniformity in the iterations. The aim of this algorithm is to group the n

observations into k clusters such that all items in same cluster are as similar to each other

as possible and items not in same cluster are as different as possible. Each cluster has a

24

centroid which is the most representative point of the whole cluster. For numerical data, as

is the case here, we can take the mean of all the points in the cluster to be the cluster center.

The first step of the algorithm is to, for each of the n points, find the nearest center

among the k cluster centers and assign it to that cluster. Then the cluster centers are

updated by taking the mean of the points in the cluster. In the next iteration, the same

steps are repeated with the new set of k cluster centers. These iterations proceed in a loop

till there is no change in any cluster between two consecutive iterations.

Though sometimes this algorithm may take exponential time, it always converges. The

time complexity of the sequential K-means clustering algorithm is O(ndki) where n is the

number of observations in the data-set, d is the dimensionality of the data, k is the number

of clusters and i is the number of iterations the algorithm executed. So this algorithm is

very compute intensive.

In MapReduce, we take the same approach but distribute the work between multiple

Mappers and Reducer. Each iteration of the algorithm is executed by a new MapReduce

job. Each Map task receives a portion of the n data points as input and reads the k cluster

center points from a common location of the file system. The map function calculates the

similarity/ dissimilarity index for each of its observations against the k centers and outputs

the closest cluster center as key and the data point as value. There is only one Reducer

in this application. The Reducer receives all the cluster center and data point key-value

pairs and for each center, calculates the new cluster center by taking the mean of all the

data points with that particular center key. The MapReduce tracks the number of cluster

centers that have converged as a parameter in its configuration. The Reducer checks the

convergence of each cluster center with its new center and reports the final count of number

of convergences to the Job. The Reducer then updates the values of the cluster centers

25

stored in the file system. After this Job completes, the program starts a new instance of the

same Job if the number of converged centers is less than k. This program ends when all the

centers have converged with the last run centers.

For this application, test data was generated randomly with a mix of Integer, Float and

Boolean values. The test dataset contained 10 million points with 10 attributes each. The

number of classes to cluster the data into was taken as 10.

5.3. Hardware Specifications

For both HDFS and HBase, a ten node cluster was formed. The NameNode, Resource

Manager and HMaster servers were run on different nodes. The same ten systems were

used as the DataNodes for HDFS and as HRegionServers for HBase. On the whole, thirteen

systems were employed for the experiments. All the thirteen systems were HP Generation 6

machines running on Linux (Fedora) Operating System.

26

CHAPTER 6

Results

We show the performances of HDFS and HBase for two applications: Word Frequency

Counter and K-Means Clustering. A subjective comparison is done based on disk I/O,

network I/O, staging time and application run time.

6.1. Word Frequency Counter: HDFS vs. HBase

When staging the data-set in HDFS, the total number of bytes of data read from the

local disk of all cluster nodes is 136GB. Out of this, 126GB of data is read from a single

node as that node hosts the original input file. As for the disk writes, 383 GB of data is

written across all the nodes and this is evenly distributed among all the DataNodes. The

disk writes is three times the size of input data as the replication factor is, by default, three

for HDFS. For staging a data-set in HBase, the data-set should first be loaded into HDFS

as the data in HBase actually resides in HDFS and HBase just stores the locations of the

data blocks. But HBase is a NoSQL distributed database whereas HDFS is a distributed

file system. So, to enable random access to data, it requires the location of not just data

blocks but of each record as well. Since HBase is a Column-Family storage system, it needs

to write the data back to HDFS in a column-oriented structure. This process generates a lot

of disk I/O. Among all the nodes in the cluster, the total number of disk reads is 1230GB

and the total number of disk writes is 2217GB. Figure 6.1 shows the comparison between

HDFS and HBase in disk reads (Figure 6.1a) and disk writes (Figure 6.1b) at each node in

the system. From these plots, we can see that, as expected, the disk I/O is negligible for

the HDFS NameNode, YARN Resource Manager Node and HBase Master. The number of

27

disk reads on NameNode is an exception here because the the original input file was stored

in local disk of the NameNode.

(a) Disk Reads (b) Disk Writes

Figure 6.1. Disk I/O during staging of Word Frequency Counter application

Figure 6.2 shows the network I/O between pairs of nodes in descending order of the

network traffic. We are showing the network traffic between the top 60 pairs of nodes as the

rest of the pairs have very negligible network I/O between them. Network traffic in HBase

is not as drastically higher than HDFS as was disk I/O. This shows that there is one on

one link between the HDFS DataNodes and the HBase RegionServers and HBase maintains

the same data locality as HDFS. Figure 6.2 also shows the staging times of the two systems

which is around 43 minutes in HDFS and 133 minutes in HBase. On the whole, staging a

data-set in HBase is much costlier than staging it in HDFS in terms of disk I/O and staging

time.

For the Word Frequency Counter application, the total number of disk reads in HDFS is

128GB and that in HBase is 191GB. The distribution and comparison of disk reads between

the two systems is shown in Figure 6.3a. The disk reads are quite evenly distributed among

28

Figure 6.2. Network I/O during staging of Word Frequency Counter application

the data nodes which ascertains the load balancing capabilities of these storage systems. As

for the disk writes, we can again see the drastic difference as was observed during staging.

HDFS writes a total of 8GB to disk as output and HBase a total of 205GB. Though both

HDFS and HBase follow ’write-once read-many’ approach, writing to HBase is much more

costlier in terms of disk usage and time.

(a) Disk Reads (b) Disk Writes

Figure 6.3. Disk I/O for Word Frequency Counter application

Figure 6.4 shows the network traffic distribution and the application run time. The

network traffic for HDFS is very less as it enforces data locality while running applications.

29

In HBase, the highest amount of network traffic between two nodes is 24GB. Though this

is more than that in HDFS, it is not inconsiderably high. The interesting results found in

this application are the application run times. HDFS takes 39.22 minutes to complete this

program whereas HBase takes only 36.33 minutes. This is because HDFS processes the input

data blocks line by line and in HBase, the words are already separated into different columns

and can be accessed column-wise.

Figure 6.4. Network I/O for Word Frequency Counter application

For an I/O bound application like the Word Frequency Counter, the overall performance

of HDFS is better. Even though the application run time for HBase is faster, the staging

time and amount of disk I/O and network I/O consumed by HBase makes HDFS a better

choice.

6.2. K-Means Clustering: HDFS vs. HBase

There are two input files for K-Means Clustering program. The first contains the ten

million input vectors and the second file has the ten initial centers. The input vectors file is

327MB in size and the file with initial centers is 326B. Because the input files are so small

in size, the staging will not be of significance here. K-Means Clustering is a compute-bound

application. For the sample data-set and the initial centers, the map-reduce job runs 80

30

times iteratively for convergence. We compute the disk I/O and network I/O for all the 80

runs together.

(a) Disk Reads (b) Disk Writes

Figure 6.5. Disk I/O for K-Means Clustering application

Figure 6.5 shows the disk reads and writes on all the nodes in the cluster. From Fig-

ure 6.5a, we can see that the disk reads in HDFS and HBase are much the same. The disk

writes for HBase are slightly more than that of HDFS (as shown in Figure 6.5b). Again, this

is expected as HBase uses more resources for write operations than HDFS.

Figure 6.6. Network I/O for K-Means Clustering application

31

The network traffic generated by HBase is 472GB whereas HDFS generates only 65GB

(as shown in Figure 6.6). But the application run time for HBase is faster than that of

HDFS. For the 80 iterations of the algorithm, HDFS takes 227 minutes and HBase takes

only 221 minutes. This means that for each iteration, HBase is 5.25 seconds faster than

HDFS. Though this might seem meager for one run, for large computations it makes a

significant difference. For larger input files and/ or more number of of classes to be clustered

into, K-Means clustering can even take thousands of iterations for completion. Also, the time

complexity of this algorithm is directly proportional to both the number of input vectors

and the number of classes. So, an increase in either would also increase the run time of each

individual iteration.

Based on the disk I/O, network traffic and application run time analysis for the K-Means

clustering application on the sample data, we can say that for compute-bound applications

with inconsequential I/O requirements, HBase is more efficient than HDFS.

32

CHAPTER 7

Conclusion

Distributed File Systems and NoSQL databases are fast becoming the standard data

platform for storing large datasets. While there are many distributed storage systems in

the market, there is not a single universal top storage system outperforming the rest for

all applications. Depending on the requirements of the application, the I/O and network

communications involved, the structure of the data-set and deployment conditions, it is

almost always possible for one storage system to outperform another and lag behind the

same when the rules of engagement change.

While it is recommended to assess a system’s performance for specific use cases and

environments, we can postulate based on the performance analysis of a similar system.

For instance, the performance of Hierarchical Clustering, a connectivity based clustering

algorithm, would be very similar to the performance of K-Means Clustering application

against different storage systems.

From the Word Frequency Counter results, we can infer that, for an I/O bound applica-

tion, HDFS would be a better choice over HBase. HBase consumes much more I/O resources

than HDFS and hence for an application that is already I/O intensive, it would put extra

burden on the system. Therefore, writing large outputs to HBase should be avoided. If the

output is not required to be in a column-family structure, then writing the end result to some

other file system such as HDFS would make a significant improvement in the performance

of HBase in terms of the disk I/O and network I/O.

The K-Means Clustering application’s performance with HBase is better than with

HDFS. This is a significantly compute-bound application with comparatively negligible I/O

33

involved. In most real time applications of K-Means, not every attribute of the input vector

contributes towards the clustering. In such cases, where only a smaller set of attributes from

a larger set will be utilized, performance of HBase would improve significantly, as the data

in HBase is stored and accessed column wise.

The storage architecture and data access patterns play an important role in determining

the performance of a distributed system.

34

CHAPTER 8

Future Work

In this work, we have analyzed the performance implications of using HDFS and HBase

as the storage system for Word Frequency Counter and K-Means Clustering applications.

This covers one Distributed File System and one Column-Family Storage System. The same

analysis can be performed on other types of distributed databases: Key-Value Storage, Graph

Storage and Document Storage.

The Word Frequency Counter is a purely I/O bound application and K-Means Clustering

a significantly compute-bound application. Additionally, these applications require a specific

access pattern. We can extend this work on applications with a mix of I/O and computation

restrictions and on applications with different access requirements.

35

Bibliography

[1] A. Bialecki, M. Cafarella, D. Cutting, and O. OMALLEY. ”Hadoop: a framework

for running applications on large clusters built of commodity hardware”. Wiki at

http://lucene. apache. org/hadoop, 2005.

[2] K. Shvachko, H. Kuang, S. Radia and R. Chansler. ”The Hadoop Distributed File Sys-

tem”. In Proceedings of the 26th Symposium on Mass Storage Systems and Technologies

(MSST), pages 1-10. IEEE, 2010.

[3] The Apache Software Foundation. Apache ZooKeeper.

[4] The Apache Software Foundation. Apache HBase, 2012.

[5] J. Dean and S. Ghemawat, ”MapReduce: Simplified Data Processing on Large Clusters”

In Proceedings of the 6th Symposium on Operating Systems Design and Implementation,

San Francisco CA, Dec. 2004.

[6] S. Ghemawat, H. Gobioff and S. Leung. ”The Google file system” In Proceedings of ACM

Symposium on Operating Systems Principles, Lake George, NY, Oct 2003, pp 2943.

[7] M.N. Vora. ”Hadoop-HBase for Large-Scale Data”. In Proceedings of 2011 International

Conference on Computer Science and Network Technology. IEEE, 2011.

[8] R. Vijayakumari, R. Kirankumar and K.G. Rao. ”Comparative analysis of Google File

System and Hadoop Distributed File System”. In Proceedings of International Journal

of Advanced Trends in Computer Science and Engineering, volume 3, pages 553-558,

2014.

[9] MongoDB, Inc. MongoDB.

[10] The Apache Software Foundation. Planet Cassandra.

36

[11] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu and

R. Murthy. ”Hive A Petabyte Scale Data Warehouse Using Hadoop”. In Proceedings of

International Conference on Data Engineering - ICDE, pages 996-1005, 2010.

[12] A.F. Gates, O. Natkovich, S. Chopra, P. Kamath, S.M. Narayanamurthy, C. Olston, B.

Reed, S. Srinivasan and U. Srivastava. ”Building a High-Level Dataflow System on top

of Map-Reduce: The Pig Experience”. In Proceedings of the VLDB Endowment, volume

2, issue 2, pages 1414-1425, 2009.

[13] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica. ”Spark: Cluster Com-

puting with Working Sets”. In Proceedings of the 2nd USENIX conference on Hot topics

in Cloud Computing, pages 10-10, 2010.

[14] International Data Group. International Data Corporation.

[15] Wikipedia Contributors. Storage area network.

[16] S. Gilbert and N. Lynch. ”Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services”. In Newsletter of ACM SIGACT News, volume 33, issue

2, pages 51-59, 2002.

[17] Wikipedia Contributors. Key-value database.

[18] Wikipedia Contributors. Document-oriented database.

[19] Wikipedia Contributors. Column-oriented DBMS.

[20] Wikipedia Contributors. Graph database.

[21] The Apache Software Foundation. CouchDB.

[22] Redis Labs. Redis.

[23] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. ”Dynamo: amazons highly available key-value store”. In Proc SOSP.

Citeseer, 2007

37

[24] Microsoft Azure. DocumentDB

[25] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R.E. Gruber. ”Bigtable: A distributed storage system for structured

data”. ACM Transactions on Computer Systems (TOCS), volumne 26, issue 2, article

4, 2008.

[26] Twitter. FlockDB.

[27] Objectivity. InfiniteGraph.

[28] Orient Technologies. OrientDB.

[29] Andrew Project, Carnegie Mellon University. Andrew File System.

[30] R. Sandberg. ”The Sun Network Filesystem: Design, Implementation and Experience”.

In Proceedings of the Summer 1986 USENIX Technical Conference and Exhibition. 1986.

[31] The Apache Software Foundation. Hadoop MapReduce.

[32] J. Shafer, S. Rixner, A.L. Cox. ”The Hadoop Distributed Filesystem: Balancing Porta-

bility and Performance”. In Proceedings of 2010 International Symposium on Perfor-

mance Analysis of Systems and Software. IEEE, 2010.

[33] D. Dewitt, J. Gray. ”Parallel Database Systems: The Future of High Performance Data-

base Processing”. In Communications of the ACM, volume 35, issue 6, pages 85-98, 1992.

[34] A. McClean, R. Conceicao, M. O’Halloran. ”A Comparison of MapReduce and Parallel

Database Management Systems”. In The Eighth International Conference on Systems,

pages 64-68, 2013.

[35] D. Borthakur, J.S. Sarma, J. Gray, K. Muthukkaruppan, N. Spiegelberg, H. Kuang, K.

Ranganathan, D. Molkov, A. Menon, S. Rash, R. Schmidt and A. Aiyer. ”Apache hadoop

goes realtime at Facebook”. In Proceedings of SIGMOD International Conference on

Management of data, pages 1071-1080. ACM, 2011.

38

[36] Wikipedia Contributors. k-means clustering.

[37] The Wireshark Foundation. Wireshark.

39

