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ABSTRACT 

A large-scale diagnostic model is used to determine the effect of 

various diabatic forcing functions on tropospheric motions. In this 

model the diabatic heating is specified and the response of the atmosphere 

to this forcing is determined. Many of the features of the tropospheric 

equatorial waves are duplicated by using the observed difference in 

heating between the trough and the ridge of the waves in the model. 

The structure of waves forced by the observed differences in radia­

tive heating was determined. Although the atmospheric response to this 

heating showed little resemblance to the observed wave structure, it was 

similar to the layered meridional wind structure observed during the 

Line Island Experiment. When the radiative heating was combined with 

convective heating, the vertical structure of the forced motions was 

found to be very sensitive to the phase difference of the convective and· 

the radiative heating. The amplitude of the meridional wind perturbations 

at 200mb varied from 1 m sec-1 for the case when radiatively active 

upper tropospheric clouds were centered over the convective heating to 

5.5 m sec-1 when the cloud was centered a half of wavelength from the 

convective heating. For the same cloud configurations, the divergence 

at 200mb varied from 1 x 10-6 sec-1 to 8 x lo-6sec-l at the region of the 

maximum convective heating. The variation of the response due to vertical 

shear of the mean zonal wind is determined. 
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I. INTRODUCTION 

Horizontal differences in the diabatic heating force large-scale 

motions in the tropical atmosphere. The principal components of the 

diabatic heating are the heating caused by the release of latent heat 

in cumulus clouds and the radiative heating. 

The release of latent heat in cumulus clouds results in an increased 

buoyancy of the cloud parcels, and hence, an increase upward mass trans­

port. A compensating downward motion must occur in the environment. 

From a large-scale point of view, Gray (1972) and Yanai et al.(1973) 

have shown that the net effect of this process will be a heating of the 

environment. 

Horizontal qradients in the convective heating result from the 

spatial distribution of convective clouds. Reed and Recker (1972) and 

Yanai et al.(l973) have made calculations of the large-scale convective 

heating. A known radiative heating, however, is implicitly required for 

these measurements. 

The radiative heating of the atmosphere depends on the net divergence 

of the shortwave {.3 ~m- 3 ~m) and infrared (3 ~m- 100 ~m) radiation. 

Although water vapor, carbon dioxide, and ozone content are important in 

determining the radiative heating of the atmosphere, clouds are the 

principle modulators of this heating. Consequently, horizontal variations 

in the cloudiness result in horizontal gradients of the radiative heating. 

The effects of clouds on infrared heating has been determined from 

measurements made during the line Island Experiment (LIE), 1967 (Cox, 

1969b). Of particular interest is the infrared heating resulting from 

an upper tropospheric cloud layer (eg. cirrostratus and altostratus) 
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occurring every six to eight days during the LIE. The vertical heating 

profile resulting from this cloud configuration differs significantly 

from the profile observed for other cloud configurations and for clear 

sky conditions. The differences are as large as 4° C day- 1 at individual 

levels, which is the same order of magnitude as the horizontal differences 

in the large-scale convective heating. 

Spectral analysis studies made of the wind, temperature, and moisture 

fields in the tropics indicate the presence of wave motions in both the 

lower and upper troposphere (see Wallace, 1971 for a comprehensive survey). 

Hayashi (1970), Holton (1971), Wallace (1971) and others have suggested 

that the diabatic heating resulting from the precipitation systems 

imbedded within these waves is a source of energy for the waves. Reed 

and Recker (1971) using a compositing technique determined a maximum in 

the rainfall near the trough of the lower tropospheric wave system. 

Chang (1970) and Wallace (1970) used satellite photographs in the 

form of time-longitude sections to reveal temporal and spatial variations 

in the tropical cloudiness which have the same time and space scales as 

the observed wave motions. Reed and Recker (1971) using similar photo­

graphs were able to correlate the variations in the cloudiness with lower 

tropospheric wave motions. The horizontal differences in cloudiness 

indicated by these photographs may result in horizontal differences in 

the radiative heating, particularly if the satellite observed cloudiness 

consists of upper tropospheric clouds. The persistence in time and the 

areal extent of this cloudiness would indicate that the radiative heating 

may be an important component of the total diabatic heating differences 

occurring within the wave systems. 
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Holton (1971) developed a diagnostic wave model to determine the 

response of the atmosphere to a prescribed diabatic forcing. Using a 

rather crude representation of the heating, he was able to successfully 

duplicate many of the features of the observed wave motions. 

In this study, the model formulated by Holton (1971) is used to 

detenmine the sensitivity of the tropical atmosphere to variations in 

the diabatic heating. The response of the atmosphere to radiative 

forcing only is deduced using this large-scale diagnostic model. The 

variations in the wave structure which result from phase differences in 

the radiative and convective heating are determined. The effect of 

vertical shear of the mean zonal wind on the response is also studied. 



II. LARGE-SCALE DIABATIC HEATING 

The diabatic heating distribution must be specified as a known 

variable in the diagnostic wave model developed below. It is desirable 

to specify the radiative and convective heating as separate quantities 

since these quantities may have varying spatial distributions. In this 

section, radiative and convective heating profiles which are consistent 

with observations will be specified. 

A. Radiative Heating 

The net divergence of longwave radiation is the principal source of 

radiative heating (cooling equals negative heating) in the troposphere. 

Furthermore, clouds are the principal modulator of this heating (Cox, 

l969a). The effectiveness of clouds as modulators of the radiative 

heating may be attributed to their ability to absorb and emit significant 

amounts of infrared radiation at nearly any level in the atmosphere. The 

infrared radiative effects of clouds have been studied observationally by 

Cox (1969b) and Platt (1973) and theoretically by Flemming (1973}, 

Yamamoto et al, (1970}, and Liou (1973}, 

During the Line Island Experiment (LIE), 1967, daily infrared 

soundings were made from Christmas (2N} and Palmyra (6N) Islands (Zipser 

and Taylor, 1968). These soundings were made at approximately 9:00-

10:00 p.m. LST, using a Suomi-Kuhn net radiometer. The instantaneous 

infrared heating rates were determined for 50 mb layers from these 

measurements. 

A total of twenty-three soundings were made at Palmyra for the 

period from March 24 - April 18. The heating at 250 mb, 350 mb and 500 

mb is shown as a function of time for this period in Fig. 1 . An 
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interesting feature of the heating is the sharp increase in heating at 

500 mb and the corresponding decrease at 250 mb occurring every six to 

eight days. The correlation coefficient calculated between the heating 

at 250mb and 500mb has the value of -.90 (Fig. 2}. The heating in the 

350 mb layer as shown by Fig. 1 and Fig. 2 shows little correlation with 

either the 250mb or 500mb level. 

The average infrared heating for the four perturbed days indicated 

in Fig. 1 (March 24, April 2, 10, 16) is shown in Fig. 3 as a function 

of pressure. A significant feature of this heating profile is the large 

cooling in the 250-300 mb layer. The average magnitude of this cooling 

is nearly -5° C day-1. Equally significant is the wanming of 1° C day-1 

at 500 mb. 

There is little variation in the individual soundings making up the 

average infrared heating for the perturbed days. The upper tropospheric 

minimum ranges in height from 275mb to 325mb. The amplitude of this 

minimum ranged from -6.4 to -3.9° C day-1. The maximum middle tropospheric 

warming ranges in height from 525 mb - 625 mb and has an amplitude of 
0 -1 .25 to 2.0 C day . 

Figure 4 is an average of the infrared heating for the non-perturbed 

days. This profile shows little resemblance to that of the perturbed 

cases. This average profile shows a nearly constant heating of -2° C 

day-l below 450mb. Above this level, the heating increases nearly 

linearly with pressure to a maximum of .5° C day-l at 175mb. 

Upper tropospheric clouds appear to be responsible for the infrared 

heating which occurs on the perturbed days. Cox (1969a) has discussed 

the radiative effects of this type of cloud configuration. The effect 

of the clouds is made apparent by comparing the upward and downward 

longwave irradiance of the perturbed and the unperturbed cases as shown 
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in Fig. 5. From this representation, it is evident that the upward 

irradiance above 300 mb appears to converge with the downward irradiance 

below 450 mb. This convergence indicates the presence of some type of 

radiating element. Only water droplets or ice particles (clouds) could 

produce radiative effects of this magnitude. Saturation of the layer 

between 400 mb and 150mb could change the heating by only .25° C day-l. 

It is difficult to determine the exact nature of the clouds in 

question from the average irradiance profiles. An examination of the 

individual soundings indicates that the clouds are at slightly different 

levels on different days causing a smoothing of the mean profile. 

Certain general features, however, are evident from the averaged profiles. 

From Fig. 5, it is apparent that the downward irradiance for the cloud 

case diverges from the non-perturbed case below 100 mb. This would 

indicate the presence of clouds near these levels. Likewise, the upward 

irradiance for the two cases diverges slowly above 600 mb and more 

rapidly above 400 mb, indicating the presence of clouds with bases in 

the middle troposphere. 

Since the soundings were made at night, the cloud observations made 

from the surface may not give reliable ·information about the cloud 

structure at the time of the soundings. Surface observations made 

during the day indicate the presence of altocumulus, cirrus and cirro­

stratus. Satellite photographs also indicate significant areas of 

cloudiness in the vicinity of Palmyra for periods before and after the 

perturbed infrared heating profiles. 

The presence of clouds is also evident in the moisture field. 

Figure 6 depicts the temperature and moisture profiles for the non­

perturbed soundings and those for the perturbed case. The temperature 
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and moisture profiles were determined from radiosonde measurements made 

at night in conjunction with the radiometer ascents; hence, these 

measurements should not suffer from errors induced by solar radiation. 

The temperature profiles for the upper level cloud case are slightly 

cooler above 700mb and slightly warmer below this level. 

Although the temperature differences are small for the cloud case 

and the unperturbed case, there are significant differences in the 

moisture profiles. Above 500mb, the relative humidity is considerably 

greater than for the undisturbed case. The region below 700 mb, however, 

is noticably drier. 

From the description above, some estimates of the physical nature 

of the perturbed case cloud may be made. First it appears that cirrus 

and cirrostratus are present in the upper troposphere. These cirrus may 

tend to be rather deep with the possibility that there may be several 

layers. Secondly, since the base of the clouds may extend to 450 mb, 

water droplet clouds are likely to be present below the cirrus layers. 

To gain further insight into how the radiation variations described 

above are manifested, the infrared heating was calculated using a long­

wave transfer model described by Cox (1973}. Clouds were included in 

the model using a technique outlined by Flemming (1973). 

Temperature, moisture, and ozone concentration profiles were 

needed as input parameters for the model. For this purpose, the average 

temperature and moisture profiles shown in Fig. 6 were used. At heights 

where the observed parameters were not available, the temperature and 

humidity for 15° N was taken from the Un1_t~.<!-~-t~.t_~s- ~_tmos_p_h_~_r~_S~pplem~_rlts 

.0966). The ozone profile was taken from an equatorial ozone model 

portrayed in the same publication. 
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If clouds are to be included in the model, the emissivity for the 

base and for the top of the cloud must be specified. Following a procedure 

outlined by Cox (1969a), the effective emissivity at the top of the cloud 

and that at the bottom are specified respectively as 

and 

HT(t} - H8(t} 
E: * ( t) = -4=-----­

oT CT - Hs(+) 

e:*(1-) 

( 1) 

(2) 

where the H1 (+) and H8(t) represent the upward frradiance at the top of 

the cloud and that at the base of the cloud. HT(1-) and H8 (~) are the 

downward irradiance at the top of the cloud and at its base. The temper­

ature at the cloud base and cloud top are TCT and Tea respectively. 

a is the Stefan-Boltzman constant. 

If the top of the average disturbed case cloud is defined as 150 mb. 

and the base as 400mb, e:*(~) = 1.0 and E*(t); .48. The results of the 

transfer calculation for this cloud are shown in Fig. 3. There is good 

agreement between the calculated and observed profiles. Slight improve­

ment might be made by redefining cloud top and base. The calculated 

heating for the undisturbed case (Fig. 4) also exhibits good agreement 

with the observed profile. The deviations in the lower levels may be 

due to the presence of shallow clouds in the region of the trade inversion. 

In the large-scale model, horizontal differences in the raidative 

heating are represented by the difference between the perturbed and 

unperturbed heating profile. Physically this represents horizontal 

differences in the upper tropospheric cloudiness. 
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There appears to be an organized distribution of clouds in the 

tropics. This fact is dramatically shown by time-longitude cross sections 

of satellite photographs (Chang, 1970; and Wallace, 1972). An example of 

this method of depicting the tropical cloudiness is shown in Fig. 7. 

From this representation of the clouds, it is apparent that the cloud 

systems move westward with time. These organized cloud patterns have a 

period of four to five days and a longitudinal separation of 2000-4000 km. 

It is generally accepted that the organized tropical cloudy regions 

as seen from the satellite consist mostly of cirrus and cirrostratus 

clouds. Based on these observations, the infrared heating difference 

used in the model was assumed to have a period of five days and a 

longitudinal wavelength of 4,000 km. 

B. Convective Heating 

A determination of the convective heating from observations is 

generally not possible without radiation measurements. Furthermore, the 

convective heating may be quite variable in the vertical, depending on 

the height distribution of the clouds. This heating is also sensitive 

to variations in the large-scale motion field. A complete treatment of 

this problem would require a scheme such as that proposed by Arakawa and 

Schubert (1974). In the diagnostic model, no consideration is given to 

the complex interaction between the heating and the large-scale motion 

field. 

Since the model requires that the heating be specified, an average 

value of the convective heating must be used. Although the specification 

of this heating may be somewhat arbitrary, we have chosen to make use of 

the apparent heat source of a region in the western Pacific as deterntined 

by Yanai et al.(l973). 
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This apparent heat source consists of the convective and radiative 

heating. This heating, called Q1 by Yanai et al.(l973), has the vertical 

distribution shown in Fig. 8. If it is assumed that the area investigated 

by Yanai included both perturbed and unperturbed radiation cases, the 

radiative heating included in Q1 may be approximated by some mean value. 

The mean infrared heating (QRM) for 15° N, summer (Cox, 1969a) is 

assumed to be the mean infrared heating term in Q1. 

The convective heating for the area may then be deduced by subtracting 

the average infrared heating (QRM) from the apparent heat source, Q1. 

This quantity (Q1-QRM) is shown in Fig. 8. It has approximately the 

same vertical distribution as Q1, with the maximum at 6 km increased by 

approximately 2° C day-l. 

(Q1-cRM) is used in the model to represent the difference in 

convective heating between areas of strong convection and those with 

little convection. 
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III. LARGE-SCALE DIAGNOSTIC MODEL 

A large-scale model will be used to determine the response of the 

atmosphere to various convective and infrared heat sources. This model 

is nearly identical to the model formulated by Holton (1971). The 

diabatic heating is specified and the resulting motions forced by the 

heating are determined. 

In this model, the horizontal momentum equations, the hydrostatic 

equation, the continuity equation, and the thermodynamic equation are 

combined into a single second order partial differential equation. This 

equation has variable coefficients and is solved numerically to obtain 

the geopotential height variations resulting from a specified heating 

distribution. The remaining variables are detenmined from this 

geopotential height field. 

A. Description of the Model 

The independent variables used in the model are (A, $, ~}, where X 

is the longitude, ~ is the latitude, and ~ is the vertical coordinate 

defined by 

~ = - H ln ~ , 
0 

where H is a constant vertical scale height, p is the pressure, and p
0 

is a sea level reference pressure. 

The pseudo-height, ~~ is related to the actual height, z, through 

the hydrostatic relationship, 

d~ = ~ (3) 
ll RT 

where T is the temperature at height z and pressure p. Figure 9 is a 

graphical representation of the relationship between the three vertical 
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variables~~ , z, and p. This graph was constructed using the temperature 

structure for a typical tropical atmosphere, with H ; 8 km. There is 

little difference between~ and z below heights of 10 km and only a 10% 

difference at z = 18 km. In the psuedo-height system, the vertical 

velocity is defined as w = ~ . 
In linearized fonm (see Appendix A), the horizontal momentum equations, 

the hydrostatic equation, the continuity equation and the first law of 

thermodynamics may be written as 

~ + 
at 

u 
a cos <1> 

au 
ax-- vu tan ¢ + 

a 
v d u 
a 'dtf> 

aq, + 2 n v sin ¢ .. K U , a cos 4> @A 

- 2uu av + u av + tan 4> = -~- 2o u at a cos ¢ Cl::\ a aa4> 

E.!. = RT 
at,: H' 

= 

sin r} - KV, 

1 au + 1 'dV ~tan ¢ + e~/H ~e-;/Hw) 0, 3r - - = a cos ¢ a d¢ a a~ 

aT - 3T + w( Rf df) !L + u + = KT ' at -a cos ¢ 'dA CPH dF; cP 

(4) 

(5) 

(6) 

(7) 

(8) 

au v af where the terms w 3f and a 'd$ have been neglected and may be shown 

'a posteriori' to be small compared to the other terms. In Eqs. 

(4) - {8), u, v, and w represent the zonal, meridional, and vertical 

velocity perturbations. ~ is the geopotential height perturbation and u 
and fare the time-zonally averaged zonal velocity and temperature fields. 

Q represents the diabatic heating per unit mass due to horizontal differ­

ences in radiation and convection, and CP is the specific heat of air at 

constant pressure. In Eq. (4) and (5), K is the Rayleigh drag coefficient 

and in Eq. (8}~ it represents a rate coefficient for Newtonian cooling. 
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Following the procedure outlined by Holton (1971), Eq. (4) - (8) 

are expressed in nondimensional form. The horizontal scale dimension is 

defined as the radius of the earth, a. The vertical scale dimension is 

defined as the scale height, H, and the reciprocal of twice the earth•s 

angular velocity, (2 n)-1, is specified as the time scale dimension. 

Using these scale dimensions, a set of nondimensional variables may be 

defined as 

u* = u cos <1> ( 2 n a} -l 

v* = v cos $ { 2 n a) -l 

- ( a)-1 u* = u cos rp 2 n 

w* = w ( 2 n H)-1 

~ * = 4> ( 2 n a) - 2 

T* == RT ( 2 n a)-2 

T* = RT(2 n a}-2 

Q* = RQ ( 2 a a)-2 ( 2 n cp) -l 

• (9) 

With the aid of Eq. (9) and defining y = sin '' Eqs. (4) - (8) may 

be written as 

: ut: + ~ au* + (au* _ Y) v* = 
a 1-y C)). ay 

at* - ar- - Du* , 

av* u av* (2u* ) ~ + __ + :----2" + 1 yu* = 
at l-y2 a). l-y 

acfl* = T* 
a;* ' 

2 at* - (1-y } -- Dv* ay 

1 
:-2 1-y 

au* - + 
()). 

av* ~* a { -t* ) = ay + e :Jt* e w 0, 

riT* u* :t T* - + ·--, + w*S = Q* - DT , 
at* l-y~ :lA 

{10) 

(11) 

(12) 

( 13) 

(14) 
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where ~* = ~ , t* = t(2n} and D ~ K{2n}-l is a dimensionless dissipation 

coefficient. S = ~:* + ~~: is the dimensionless static stability 

parameter. 

If the heating has a temporal and longitudinal variation of the form 

r* Q* = Q1 (y, ~*) exp[~(kA + wt*) + 2-] (15a) 

where k is the zonal wave number and w is the frequency of the westward 

propagating heat sources, the dependent variables will be forced to have 

the form 

u* = U I (y) t,;*) 

v* = VI (y' t,;*) 

w* = w' (y, ~*) exp[i(kA + wt*} + ~*] 
2 (15b) 

tp* = <%>I (y' ~*) 

T* = T' {y, t,;*) 

where the primed quantities may be complex. Using Eq. (15), Eqs. (10) -

(14) may be written as 

where 

• " I .{. w u 
a-u* 

+ (- - y) v' 
'dy = -i k <fl

1 
' 

-i w v• + 2yu* 
( 2 

( 1-y ) 
+ y) U I 

( 'd~* + ~) <fl = T I , 

av 1 a 1 + - + (- - -} w• ' ay ar,;* 2 

-i w T' + W1 S = Q' , 

w = w + 
ku .0 :----2 - .{. 

1-y 

Holton (1971) assumes that the mean zonal wind has a latitudinal 

variation of the form u* = u (~*) (l-y2}. Assuming this variation 
0 

reduces Eqs. (16) and (17) to 

( 16) 

(17) 

(18) 

( 19) 

(20) 
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i C:, u' - ( 2u
0 

+ 1) yv' = --i k <t> 
1 

, 

+ {2u + 1) yu 1 

0 

( 16a) 

(17a) 

If the mean zonal wind is assumed to be approximately 10 m sec-1, 

the nondimensional u0 (~) will be approximately .01. Hence, the terms 

involving u
0 

in Eqs. (16a) and (l7a) may be ignored. Making this 

approximation, Eqs. (l6a) and (17a) may be used to express v' and u• as 

u• = 
2 ")."'' 

~ k <P
1 

- y(l-y ) -0 '*'-
'dY 

2 ~2 
y - w 

" 2 341 1 

.{. k Y ifl I - -i W ( 1-y ) -av 
2 "2 y - w 

(21) 

(22) 

Using Eq. (18) to eliminate the temperature from Eq. {20) we obtain 

. A( a + 21) "'I + w'S = Ql -<- w a~* ..... (23) 

Equations {19}, (21), {22) and (23) form a set of four equations and 

four unknowns. The variables u•, v' and w• may be eliminated from these 

equations to form the single partial differential equation 

a 24>. 3<fl' 
2 

34>'] + + s .L [ { 1-~ } 
a~* 

- a 
a~* ay (y2 _ ~2) ay 

(24) 

[ s (4 (~2 + w2) k ) _ ( l + £.)] ~I -iS a 1 !L_ 
2 2 = ~ <ar,:* - 2) s ' (y -w } w (y2 _ w2) l-y2 4 2 

s d w where a = - ; dt,:* <s> . This equation is identical to the differential 

equation derived by Holton {1971}. 

Since w is a function of~' this differential equation must be solved 

numerically. The solution to an equation of this form has been outlined 

by Lindzen and Kuo (1969) and is described in detail in Appendix B. 
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B. Boundary Conditions and Specification of Parameters 

To obtain solutions to the partial differential Eq. (24), it is 

necessary to specify a y - ~ grid and appropriate boundary conditions. 

In the cases studied in this paper, the vertical spacing of grid points 

was chosen as n~ = 1 km and the horizontal spacing as ~Y = .030 (~1.6° 

latitude). 

The northern boundary was placed at~ = 28.7° N (y=.48). At this 

boundary the perturbation geopotential height was specified to be zero. 

This condition was also imposed at¢ = 13.95 (y = -.24). 

At the lower boundary vertical velocity is required to be zero. 

If there is no heating at the boundary, Eq. (20) implies that the tem­

perature perturbations will also be zero at this boundary. The upper 

boundary was specified at ~ = 21 km. The geopotential height perturbations 

at this boundary were required to be zero. To determine the effect this 

rather restrictive condition might have on the response of the model, 

the boundary was specified two kilometers lower. Little effect on the 

response could be detected. 

The parameters S, D, K, w, u
0 

and Q need to be specified as known 

quantities in Eq. {24). The static stability parameter, S, was computed 

from a 100 day time average over Yanai•s pentagon network (Yanai et al, 

1973). The dimensional form of this stability is shown in Fig. (10). 

The stability decreases with height to a minimum at 12 km. It then 

increases with height above this level to 19 km, where the atmosphere 

becomes isothermal and the static stability is constant with height. 

The dissipation, D, is considered to constant with height. The 

value of D chosen corresponds to a damping time of sixteen days, similar 

to the damping used by Holton {1972). 
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The heating Q'(y, ~) exp[i(kA + wt*) + ~*]is specified as an 

external parameter. For all the cases considered, the heating is assumed 

to have a wavelength of 4,000 km and a period of five days. The complex 

amplitude Q'(y, z) is specified to have the same variation with latitude 

as that used by Holton (1971), i.e. 

{y-yc)2 (y-yr)2] . 
Q'(y, ~) = Oc(~) exp[- ] + QR(~) exp[- e~8 , (25) 

nc ar 

where QC in Eq. (25} represents the convective heating (i.e. 1 of the 

difference between the heating at the ridge and the trough of the Q wave). 

QR is the correspondinq diabatic heating due to horizontal gradients in 

the radiation field. QR will have the same zonal and temporal dependence 

as Oc but with a phase difference of e. The quantities Yc and Yr define 

the latitudes of maximum convective and radiative heating. The parameters 

ac and ar determine the meridional extent of the heating terms described 

above. In this study, yc = Yr = . 15(~ = 8.6° N) and ar = ac = .05 

corresponding to a half width of approximately 3° latitude. The only 

parameters that need be specified are QC (~), Qr (~), u
0 

(~), and e. 

C. Verification of the Model 

The solution of Eq. (24) is somewhat complicated to perform 

numerically. Consequently, several checks were made to insure that the 

solution was correct. 

The usual method of checking the solution of a partial differential 

equation is to determine if the original differential equation and the 

boundary conditions are satisfied. The boundary conditions in this 

problem are relatively simple and are easily varified from the results. 

For the points within the boundaries, the geopotential height field 
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detenmined numerically from the differential equation (24) was 

substituted into the finite difference form of the left hand side of 

this equation. The result of this calculation was then compared to the 

right hand side of the equation. There was agreement to at least four 

significant figures in these two computations. 

To further insure that the solution was correct, the static 

stability and the heating used by Holton (1971) were tested in the model. 

The northern boundary was placed at ¢ = 40° N. The southern boundary 

was placed at the equator with the condition that the geopotential height 

be symmetric about the equator. The upper boundary was placed at ~ = 19 km 

and the temperature perturbations were required to be zero at ~ = 0. 

Figure {11) is a meridional cross section of the amplitude of the 

meridional wind perturbation calculated using the parameters defined 

above. Figure (12) portrays the identical cross section as calculated 

by Holton (1971). There is excellent agreement between these two calcu­

lations. There is, however, a slight difference at the lower boundary. 

Although Holton does not explicitly define the lower boundary condition, 

it appears that the difference in the two calculations may result from 

differences in the treatment of the lower boundary. Similar agreement 

was found for the temperature and the vertical velocity perturbations. 

To gain further insight into the ability of the model to simulate 

tropospheric waves, the results from the model were compared to the 

observed wave structure. This comparison was made by incorporating into 

the model the difference between the diabatic heating at the ridge and 

the trough of the waves as determined by Reed and Recker (1971). The 

structure of the wave forced by this heating is then compared to the 

structure observed by Reed and Recker (1971). 
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The vertical profile of the diabatic heating used in the model is 

shown in Fig. 13. This heating profile represents the difference between 

the large scale energy budget of the trough and ridge regions of the waves. 

Since the sinusoidally varying portion of q•(y, ~)will range in value 

from -1 to +1, only one half of this heating was substituted for QC in 

the model. Hence, the difference in Q•(y, ~) across one ha1f of its wave­

length will be identical to the heating function specified by Reed and 

Recker. The heating was assumed to have a period of five days and 

wavelength of 4000 km. 

The mean zonal wind reported by Reed and Recker (1971) for the KEP 

triangle (Fig. 14) was substituted in nondimensional form for u (s). 
0 

The calculated meridional wind perturbations are shown in Fig. 15. The 

abscissa of this cross section is presented in terms of longitude. It 

may also be interpreted as time with a-period corresponding to five days. 

This meridional wind structure shows a weak cyclonic curvature in the 

lower troposphere. A stronger anticyclonic curvature is evident at 13 km 

with the maximum winds being 3 m sec-l. In the middle levels, there is 

a slight eastward tilt with height; a westward tilt with height occurs 

above 16 km. 

The observed meridional wind is shown in Fig. 16. The general 

features are similar to the calculated perturbations. The lower level 

disturbance, however, is significantly stronger than the calculated 

perturbations. Holton (1971) has suggested that some form of cooling 

in the lowest layers may be important to the energetics of this lower 

leve1 circulation. 

The calculated meridional wind perturbations are somewhat greater 

than the observed variations in the upper level circulation. Reed and 
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Recker 1 s compositing technique may, however, tend to average out some 

of the features above 500 mb since the upper level anticyclonic circulation 

may not always have the same phase relationship with the lower level 

disturbance. 

The calculated and the observed temperature variations are shown in 

Figs. 17 and 18. The basic features are similar, although, in both cases, 

the temperature variations are small. The upper levels in the region of 

the trough appear to be slightly cooler, with a region of warmer temper­

atures below. 

There is some discrepancy between the observed and the calculated 

temperature perturbations at the lowest levels. The observed structure 

is significantly cooler east of the trough and warmer west of it. This 

featu~e is not observed in the model, however, since with no heating or 

vertical motion at the boundary there will be no temperature perturbations. 

The calculated and observed divergence field are shown in Figs. 

(19) and (20) respectively. Again, the basic structures are similar. 

Some care, however, must be made in interpretting these results. The 

heating used in the model represents a difference in the diabatic 

heating between the trough and the ridge. This heating was assumed to 

be symmetric in the longitudinal direction. Since this is probably not 

the case, the difference between the trough and the ridge might provide 

a more meaningful comparison of the divergence values. Compared in this 

manner, the magnitude and the vertical distribution of the observed and 

calculated divergence are nearly the same in the upper levels. The 

convergence near the lower boundary, however, is approximately 60% less 

than that observed. 
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A horizontal section of the calculated vector wind at 900 mb is 

shown in Fig. 21. The cyclonic nature of the flow is evident. The 

distribution of the north-south shear of the wind clearly indicates a 

cyclonic shear similar to that described by Williams (1970). There is 

also some indication of cross equatorial flow to the east and west of 

the trough. This flow pattern is in good agreement with the satellite 

deduced winds described by Fujita et al (1969) for the cloud clusters. 

The results presented above indicate good qualitative agreement 

between the model results and observations. Hence, we conclude that the 

model may be used to investigate the response of the atmosphere to 

variations in the diabatic heating. The magnitude of the circulation in 

the lowest 8 km, however, is significantly less than that observed. The 

divergence profile indicates that some mechanism may be needed in the 

model to produce greater convergence in the lowest layers. A more 

exact treatment of the frictional forces at the boundary may improve the 

results. 
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IV. THE DYNAMIC EFFECT OF THE SPATIAL DISTRIBUTION 

OF CONVECTIVE AND INFRARED HEATING 

The perturbed and unperturbed infrared radiation cases discussed 

in Chapter II suggest that variations in the type and amount of cloudiness 

may produce horizontal gradients of radiative heating. These gradients 

may be of the same magnitude as the total diabatic heating difference 

between the ridge and the trough of equatorial waves. If these waves 

are viewed as being forced by horizontal differences in diabatic heating, 

it is apparent that the radiation may play an important role in determining 

the magnitude and the structure of the wave motions. 

A. Response of the Model to Infrared Heat~ 

The model was used to diagnose the response of the atmosphere to 

the difference in infrared heating between the perturbed and the 

unperturbed infrared radiation profiles shown in Figs. 3 and 4. This 

difference is illustrated in Fig. 22, where the ordinate is given in 

units of pseudo-height ~- The difference is nearly sinusoidal in the 

~ direction, being symmetric about ~ = 8 km. 

It is important to note that in using this difference in the model, 

the difference in heating due to shortwave radiation has been neglected. 

To determine the validity of neglecting the shortwave heating, the short­

wave absorption by a cirrus cloud {Flemming, 1973) and the absorption by 

a middle level layer cloud (Korb and Moller, 1965) were determined. It 

was found that a maximum heating of .7° C day-l would occur in the 

150-400 mb layer. Since approximately .1-.2° C day-l would occur in an 

unperturbed area, the difference is less than 15% of the infrared induced 

gradient and is, therefore, neglected. 
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Figure 22. - Difference between observed perturbed and unperturbed 
heating profiles; points indicate actual differences 
and line represents difference used in the model. 
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Figure 23 is a latitude-height section of the amplitude of the 

meridional wind perturbations calculated using the infrared heating 

difference described above. Perturbations of nearly equal amplitude and 

latitudinal extent occur at ~ = 14 and ~ = 8 km. The maximum response 

occurs at a latitude of approximately 2° greater than the latitude of 

maximum heating. 

The longitude height section of the meridional wind at the latitude 

of maximum heating is shown in Fig. 24. From this figure, it is evident 

that the upper level response exhibits a cyclonic shear with respect to 

the perturbed infrared heating profile. The perturbation at 8 km 

exhibits an anticyclonic circulation. A weak cyclonic circulation is 

indicated near the surface. 

The divergence at the region of the upper tropospheric cloud is 

shown in Fig. 25a. Two levels of nondivergence exist, one at 6 km and 

the other at 11 km. The divergence profile shown in Fig. 25a and the 

meridional wind structure shown in Fig. 24 suggests a circulation at the 

region of the upper tropospheric clouds as shown in Fig. 25b. This 

circulation consists of a two cell pattern, with downward motion in the 

upper circulation and upward motion in the middle levels. Hence, a 

convergence exists at the top and bottom of the troposphere, with both 

cells of the circulation forcing a divergence at the middle levels. In 

the regions away from the upper level clouds, the circulation is reversed. 

As shown in Fig. 24, the meridional wind perturbations exhibit a 

layered structure, with alternating regions of north and south winds 

occurring in the troposphere. The model calculation for the radiative 

heating was repeated with the inclusion of a mean zonal wind similar to 



20 

18 

16 

......-. 14 E 
~ ......... 
;- 12 
:t: 
(!) ....... 10 L'J :.r: 

I 

0 8 c 
:J 
w 
"" 6 c. 

4 

2 

0 
12 

MODEl RESPONSE TO IR HEATING 
Ampritude of V perturbation (M/sec) 

8 

;'----- ........ 
/ ' 

I ' I \ 
I \ 

4 0 4 8 12 16 

LATITUDE 
Figure 23. - Height-latitude section of fhe amplitude of 

the meridional wind (m sec- ); computed using 
the difference shown in Figure 22. 

20 24 

I 
.::. 
m 
• 



20 

18 

16 

- 14 
E 

..¥ ...... 
12 ... 

:1: 
CJ 10 -w 
:c 
I 8 0 

0 
::» 6 w .., 
A. 

4 

2 

0 
-18° 

MODEL RESPONSE to IR HEATING 
V Perturbation (M/sec.) 

) 
1 0 

... r.s--.... .,., ' 
,' ' 

I \ 
I I 

-6° ·"~ A\AX RADIATIVE 
HEATING 

LONGITUDE 

-1 

Figure 24. - Longitude-height section of the meridional wind 
(m sec-1) with respect to the perturbed radiation 
case at the latitude of maximum heating. 

.,.._...---.._. I 

/,-- _....--2~ -1 
\ ~ I 

' 
..... _______ _ 

5---­,..... ' , ' , \ 

/ ' I l 

I 

-'==" 
........ 
I 



20 

10 

16 

e 14 
-"¥. -
!- 12 
:I: 
(!) 
w 10 
X 

I 

0 8 c 
:::. 
~ 6 
0.. 

4 

2 

-3 -2 -1 0 1 2 3 4 

DIVERGENCE (Xlo-6 sec-1) 

Figure 25a. - Divergence at latitude and longitude of 
maximum radiative heating. 

Level of. _____ L ______ _ 
Non-divergence f 

Level of _____ j _______ _ 

Non-divergence I 

Figure 25b. - Sketch of circulation forced by the 
radiative heating. 

I 
.c:::.. 
CX> 
I 



-49-

that observed during the LIE. This wind field is characterized by east­

erlies of ~10m sec-l at the surface and westerlies of ~0 m sec-l at 

15 km and 10m sec-l at 21 km. 

The meridional wind perturbations calculated at the latitude of 

maximum heating are shown in Fig. 26a. The magnitude of the response 

appears to be slightly diminished from the non-shear case. This effect, 

however, is primarly due to a northward displacement of the maximum upper 

tropospheric response. In the mid-troposphere, the vertical extent of 

the circulations is less than that determined for the case with no shear. 

Consequently, the layering of the winds becomes more pronounced in the 

middle troposphere. 

A multi-layered meridional wind structure was observed during the 

LIE {Madden and Zipser, 1970) as shown in Fig. 26b. The qualitative 

features of the calculated structure at -12° longitude are remarkably 

similar to the observed structure for 00 Z, April 8. The features common 

to the calculations and the observations are as follows: {1) north winds 

at the surface, J2) south winds at 4 km, (3) north winds in the layer from 

5-9 km, {4) south winds from 10 km to 16 km ( ~18 km pseudo-height), and 

(5) north winds at 17 km ( ~19 km pseudo-height). At all levels, however, 

the calculated perturbations are an order of magnitude less than the 

observed winds. Lindzen (1974) used wave CISK to explain the wind structure 

observed during the LIE. 

B. Response of the Atmosphere to Variations in Infrared and 
Convective Heating 

Tropical waves forced by horizontal differences in diabatfc heating 

may have a structure which is sensitive to the location of the high-middle 
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cloud with respect to the convective heating. The persistence in time of 

layered clouds, particularly cirrus decks, allows the upper tropospheric 

clouds to exist in regions where there may be very little convective activity. 

During the LIE, for example, there was some indication that the perturbed 

radiative cases occured 24-36 hours after rainfall was recorded at Palmyra. 

There are at least two possible means by which spatial differences in 

the convective and radiative heating may be maintained. For example, 

intense convection may be a source region for the upper level clouds. 

Thus, spatial differences in the heating components will be determined by 

the life-time of the upper level clouds, the motion of the convection, 

the wind shear and the temperature and moisture field. Similarly, the 

upper tropospheric clouds may be associated with an upper tropospheric 

wave. The meridional wind at 250 mb and 350mb observed from March 22 to 

April 16 at Palmyra during the LIE is shown in Fig. 27. During the first 

two weeks of this period, the perturbed radiative heating has a constant 

phase relationship to a wave in the meridional wind field. As shown by 

the spectral wave studies (Wallace, 1971), the upper tropospheric waves 

may have varying phase relationships to the disturbances in the lower 

troposphere; these differences in the phase of the wave would provide a 

mechanism for varying the phase relationship between the radiative and 

convective heating. 

The large-scale model described previously was used to diagnostically 

determine the effect that various diabatic heating profiles might have in 

determining the structure of the tropical wave motions. The heating pro­

files were determined by combining the convective and radiative heating 

with varying phase differences. 
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The radiative and convective heating used in the model are shown in 

Figs. 7 and 22. These heating profiles were considered to represent a 

maximum horizontal difference. Consequently, one half of the heating 

functions were used as the amplitude. 

Several model computations were made with the convective and radiative 

heating having different phase relationships. For the cases considered, the 

radiative heating has phases relative to the convective heating of 0, l 
~12, 3n/4 and n (positive phase indicates that the radiative heating is 

located west of the convective heating). The amplitude and phase of the 

meridional wind perturbations as determined from these calculations is 

shown in Figs. 2Ba and 28b. These perturbation quantities were detenmined 

at a latitude of 8.6° N, the latitude of maximum heating. The largest 

variations occur at 14 km. With the high-middle cloud centered over the 

convective heating, the meridional wind at 14 km has an amplitude of 

1 m sec-1. With the high-middle cloud centered a half wavelength out of 

phase with the convective heating, the amplitude is 5.5 m sec-l. Similar 

changes occur at the lower levels, although the changes are only half as 

great. 

The phase of the meridional wind perturbations (Fig. 28b) is nearly 

constant with height for all cases. With the exception of the circulation 

at 4-8 km, there is also little variation in the phase for the different 

heating patterns. In the middle troposphere, however, the phase differences 

between the perturbations are approximately equal to the phase differences 

between the convective and radiative heating. 

The calculated divergence is shown in Fig. 29. This calculation was 

made at the latitude and the longitude of the maximum convective heating. 
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For all cases, there is convergence in the lowest 350 mb. The convergence 

at 900mb varies from -3 x 10-6 sec-l for the 0 phase difference to 

-1.5 x 10-6 sec-1 for then phase difference. 

With the high-middle cloud located over the convective heating, there 

is divergence from 550 mb to the tropopause. The maximum divergence 

occurs at approximately 350mb, and has a magnitude of 4 x 10-6 sec -l. 

For the n phase difference case, the maximum occurs at 200 mb, with a 
. -6 -1 magn1tude of 8 x 10 sec · 

From Fig. 29, it is apparent that the most significant effect of 

varying the phase of the radiative and convective heating is to vary the 

height of the upper level divergence maximum and the level of nondivergence. 

For the case when the upper level clouds are centered over the convective 

heating, the level of nondivergence occurs near 500 mb. Hence, for this 

case, the maximum vertical velocities would also occur at this level. 

When the radiative cloud is centered a half of a wavelength from the con­

vective heating, the level of maximum vertical velocity at the region of 

the convection occurs near 300 mb. 

The calculations made above for various phases of convective and 

radiative heating were made with no vertical shear of the mean zonal wind. 

Holton (1971), however, has shown the structure of waves forced by the 

diabatic heating to be sensitive to the shear. To determine how the 

vertical shear might interact with differences in the radiative and 

convective heating, a mean zonal wind profile was specified and model 

calculations for the different heating functions were repeated. As for 

the case with no shear, the clouds associated with the radiative heating 

are assumed to have a spatial location which is independent of the wind 

field. 



-59-

The wind profile used in the model is the wind profile detenmined 

by Reed and Recker {1971) for the KEP triangle (Fig. 14). This wind pro­

file is characterized by easterlies increasing from ~ 2 m sec-1 at the 

surface to 9 m sec-1 at the tropopause. 

The amplitude and phase of the meridional wind perturbations 

calculated with shear are shown in Fig. 30a and Fig. 30b. The amplitude 

of the perturbations differ by less than 15% from the non-shear cases. 

The phase, however, differs significantly from the previous computations. 

For the non-shear cases the phase was nearly constant with height. With 

shear included, the phase tilts westward with height in the lowest 3 km 

and eastward with height from 3 km to 13 km; above 13 km, there is west­

ward tilt with height. The effect of the shear on the longitudinal 

structure (i.e. the phase), however, is approximately independent of the 

heating function considered. 

The divergence at the latitude and longitude of the maximum convective 

heating is shown in Fig.31 for the case with shear. These profiles vary 

by less than 15% from the non-shear cases shown in Fig. 29. 

Calculations were made with a vertical shear which was twice as great 

as that used in the model calculations above. For these cases, the divergence 

profile changed only slightly (<15%) from the weak shear and non-shear case. 

Significant changes, however, occured in the structure of the wind fields. 

These changes, however,do not show a strong dependence on the heating 

distribution and are in agreement with the results shown by Holton (1971) 

for the case with easterly shear. 

Wind profiles with vertical shears greater than twice the shear for 

the KEP were tested in the model. When the large shears are used in the 

model, however, noticable distortion of the wind fields occurs at the 
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upper boundary. Furthermore, if the vertical motion is large, the term 

w ;~ , which was ignored in the formulation of the model, may become 

significant compared to the other terms in the momentum equation. Hence, 

the results calculated using large shear may not be consistent with the 

approximation of dropping the term w f[ 



V. CONCLUSIONS 

A large-scale model is used to determine the effect of various 

diabatic forcing functions on low latitude tropospheric motions. The 

model consists of the horizontal momentum equations, hydrostatic equa­

tion, continuity equation and thermodynamic equation combined into a 

single partial differential equation. The diabatic heating is specified 

and the differential equation is solved numerically to determine the 

response of the atmosphere to the forcing. Many of the features of 

tropospheric equatorial waves are duplicated by using the observed 

differences in the heating between the trough and ridge of the waves in 

the model. 

During the Line Island Experiment, 1967, infrared heating rates de­

termined from radiometersonde measurements exhibit temporal differences 

of 4°C day -l at individual levels in the atmosphere. These differences 

result from high-middle cloudiness occuring every six to eight days. 

The structure of waves forced by the observed differences in 

radiative heating was determined. The results show that radiative 

heating and strong westerly shear cause the meridional wind field to 

respond in a manner which is in good qualitative agreement with the 

meridional wind field observed during the LIE. The magnitude of the 

perturbations, however, are significantly less than the observed winds. 

When the radiative heating was combined with convective heating the 

vertical structure of the forced motions were found to be very sen­

sitive to the phase difference between the convective and the radiative 
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heating. The amplitude of the meridional wind perturbations at 200 mb 
-1 ranged from 1 m sec for the case when the radiatively active upper 

tropospheric clouds were centered over the convective heating to 5.5 

-l h • d m sec w en the upper tropospher1c clou was centered a half of a 

wavelength from the convective heating. For the same cloud configurations, 

the divergence at 200mb varied from 1 x 10-6 to 8 x l0-6sec-1 at the 

region of the maximum convective heating. 

Varying the vertical shear from zero to twice that reported by 

Reed and Recker (1971) did not significantly alter the model•s response 

to the phase difference between the radiative and convective heating 

functions. 

The diagnostic wave model is shown to be a useful tool for investi­

gating the sensitivity of the atmosphere to a specified heating and zonal 

wind. A prognostic approach to the problem, however, would allow the 

heating to be a function of the large-scale motion fields. Such a treat­

ment would be needed to theoretically stu~ the effect of the cloud 

modulated infrared heating on the growth and decay of the tropical wave 

systems. 

The results of this study indicate that the radiative heating is a 

significant component of the diabatic heating. More investigation, how­

ever, is needed to determine the exact role of radiation in it rela­

tionship to the dynamic features of the tropics. For example, 

additional observations of the radiative effect of the upper level 

clouds would allow a more accurate description of the radiative 

heating fields important to the large-scale dynamics. If these 
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measurements are made in conjunction with measurements of the large-scale 

wind, temperature, and moisture fields. information m~ be obtained as to 

how the growth and structure of the tropical clouds systems vary with dif­

ferent configurations of convective and radiative heating. The results 

of such a study might easily be expressed in terms of a forecast tech­

nique, particularly since the location and movement of the upper tropo­

sphere clouds are easily monitored from satellites. 
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APPENDIX A: Derivation of Linearized Primitive Equations 

The momentum equations in spherical coordinates (A, ~. r) where 

r is the radius may be written as 

du 
dt = (2n + r c~s ~) (v sin'- w cos~)+ FA, (A.l) 

dv - (2n + r c~s ~) u sin ~ -
wv 

+ F~, (A.2) dt = r 

and dw (2n + r ~os ~) u cos 
v2 

+ F - g. (A.3) dt = ~--r r 

F).., F;• and Fr represent the components of the pressure and frictional 

forces and g represents the gravitational acceleration and the 

centrifugal force due to the earth's angular velocity n. The velocities 

u, v and w are 

u = 

v = h~ ~ • (A.4) dt 

hr 
dr 

w = dt 

where the scale factors in {A.4) are 

h).. = r cos ~ 

h~ = r (A.5) 

hz = 1 

The radius, r, may be represented as r = a(l + z/a) where z 

represents the vertical height above the sea level surface. Since the 

earth•s atmosphere is relatively shallow compared to the radius of the 

earth, z/a << 1. Hence, to a first approximation, r =a= constant and 

dr = dz. 
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Phillips {1966) has shown that if the approximation r = a is 

introduced into (A.5), and the resulting scale factors are used in the 

vector invariant form of the momentum equation 

(A.l) to (A.3) may be written as 

du u 
dt = (20 + a cos+) v sin'+ FA, (A.6) 

~~ = - {2o + a c~s ~) u sin 9 ~ F~, (A.7) 

dw 
dt = Fz - g. (A.S) 

Although the terms -(2n + a c~s +) w cos •· :, 2n u cos 4>, and 

2+ 2 1 
u av are missing in (A.6) to (A.B), these equations satisfy the 

angular momentum principle 

~t [a cos • (u + n a cos $)] = a cos 4> FA. 

Equations (A.6) to (A.8), the continui~ equation, and the first 

law of thermodynamics need to be expressed in terms of the pseudo-height 

coordinate system. Holton (1972) has discussed these transformations 1n 

detail. 

In the pseudo-height coordinate system, the operator d/dt is defined 

as 
d _ a + u a + v a + w .L 
crt - it a cos • » a ~ az {A.9) 

Using (A.9), (A.6) and (A.7) may be written as 

1 In hydrostatic problems, conservation of energy is enough to require 

that thew tenms in (A.l) and (A.2) be dropped. 
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!Y. + u !!!. + !. lY. + w !H. • 
at a cos 4> a>. a a+ ae 

.MY at 2 a tan ~ - a cos ~ ax + n v ~in ~ - KU, 
(A.lO) 

av + u av + 
y av + w av 

at » = a cos ' a>. a at 

U2! - _!!._ - 2n u sin f - KV, a tan + a a <P 
(A.ll) 

where the pressure and the frictional terms have replaced F>. and F • 

If the motions are assumed to be hydrostatic, (A.8} in the 

pseudo-height system becomes 

at _ RT az-tr (A.12) 

where R is the gas constant for dry air. Similarly, the continuity 

equation and the first law of thermodynamics may be written as 

1 . ![ + l h - Y tan ; + et/H L (e-t/~) = 0 
a cos ~ a>. a a; a at {A. 13) 

and 

.!L ·r • c - I( t 

p 
(A.l4) 

where KT represents a Newtonian cooling factor and Q represents the 

remaining diabatic heating teMm. 

The dependent variables 1n the equations described above ~ be 

expressed as follows: 

u{l., •• t, t) = u ( •• t) + u'{l., •• t, t) 

v(l., •• t • t) = v•(l., •• t. t) 

w(>., •• t. t) II WI (l. t •• t. t) 
(A .15) 

.t(l.' •• t • t) II i (+. E.:) + t'(l., ~I t I t) 

T(l., •• t, t) • T(<P, E.:) + T(l., ;, E;, t) 

Q(l., ~. E;, t) = Q(;, t) + Q•(.x, •• t. t) 
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where the barred quantities represent the time-zonally averaged basic 

state portion of the variables. The primed quantities in equation (A.15) 

represent the perturbation portion of the dependent variables. 

Substituting the variables defi-ned in (A.lS) into equations {A.lO) to 

(A.14) and neglecting products of perturbation quantities, the 

resulting linearized equations may be written as 

~ + u .!1! + w ].Y_ - vu tan ~ + v !Y. =r 
at a cos ~ a>. at a a a+ 

a c~: 4> ~A + 2n v sin cfJ - ec.u 

!! + u E,Y + 2uu tan ~ = 
at a cos ~ 3A a 

- _ll_ - 2n u sin ~ - ~ev, a a ~ 

!! = RT 
a.; H ' 

!I + u a r + y a r + w ( RT + dT ) = ~c _ ~<T 
at a cos ~ 3A a 3f CPH d~ p 

where the primes have been dropped on all primed quantities. 

(A.l6) 

(A .17) 

(A. 18) 

(A.19) 

(A.20) 



APPENDIX 8 

Numerical Solution of Second Order 
Partial Differential Equations 

A method for solving a second order partial differential equation 

such as (2 ) is outlined by Lindzen and Kuo (1969). 

They- t plane is discretized as shown in Figure 81. The unknown 

function f(y, t) is defined at M x N points, making M x N unknowns. The 

original differential equation provides (M-2) x (N-2) equations. 

2x(N-2) equations are provided by the boundary conditions at the y 

boundaries while 2M equations are provided by the boundary conditions at 

the t boundaries. Hence, to solve the equation, the M x N unknowns must 

be determined from the M x N equations described above. 

where 

The discrete form of the differential equation may be written as 

p(m, n)f{m, n-1) + q(m, n)f(m-1, n) 

+ r(m, n)f(m, n) + s(m, n)f{m+l, n) 

+ t(m, n}f(m, n+l) = u(m, n) 

m = 2, 3, M-1 

n = 2, 3, N-1. 

(B.l) 

The coefficients p, q, r, s, t, and the inhomogeneous term, u, are known 

from the or1g1nal differential equation. 



m=l 

y=(m-1)(6y) 

t =(n-1)(6C) 
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n=N 

.(m,n+l) 

.(m-1,n) .(m,n) .(m+l,n) 

• (m,n-1) 

n=l 

Figure B-1 - Sketch of discret1zed Y - t plane. 

m=M 
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Equation 8.1 may be written in vector form as 

0 0 • . . .. 0 0 0 • . 0 0 f{l, n-1) 
0 p(2, n) · . 0 0 0 . . 0 0 f(2, n.:l) 

..... . . . . . ..... . ..... . . . . . . . . 
0 0 • . p(m-1, n) . . . . 0 0 ·f(m-1, n-1) 
0 0 . . p(m, n) . . .. . 

0 0 f(m, n-1) + 
0 0 • . p(m+l, n) . 0 0 f(m+l, n-1) 

..... . . . . . 
' . . . . . ' . . . . . . . 

0 0 . 0 0 0 • . . p(M, n) 0 f(M-1, n-1) 

0 0 • 0 0 0 . . . . 0 0 f(M, n-1) 

r{l, n)s(l, n) · • • · 0 0 0 • 0 0 f(l, n) 
q(2, n)r(2, n)s(2, n) 0 0 0 • • 0 0 f{2, n) 

' ' ' . . . . 
' ' ' . ' ' ' . . . . . . . . 

0 q{m-1, n)r(m-1~ n)s(m-1, n) ·o 0 f(m .. l, n) 

0 0 • q(re, n)r(m, n)s{m, n) . ·o 0 f(m, n) + 
0 0 • . . q{m+l, n)r(m+l, n)s(m+l, n) 0 f(m+T, n) 

·' ' ' . . . . 
' ' ' . . . ' ' ..... . . . . . . 

0 0 • . . . . • . 0 0 q(M-1, n)r(M-1, n)s(M-1, n) f(M-1, n) 

0 0 • . 0 0 0 • . · q(M, n) s{M, n} f{M, n) 

0 0 .. . . . 0 0 0 • . • 0 0 f(l, n+l) u(l, n) 

0 t(2, n) . . 0 0 0 . 0 0 f(2, n+l) u(2, n) 

' . . . . . . . . . 
' . . ' . . . . . . . . . . .. . 

0 0 . . t(m-1, n) . 0 0 f(m-l,n+l u{m-1, n) 

0 0 • . t(m, n) . • 0 0 f ( m, n+ 1 ) = u ( fl1, n) 

0 0 • t{m+l, n) . • 0 0 f(m+l,n+l u(m+l, n) 

' . . . . 
' . . . . . ' . . . . . . 

0 0 • 0 0 0 . . t(M-1, n) 0 f(M-l,n+1 

0 0 • . 0 0 0 • . . . . 0 0 f(M, n+l) 

where n • 2, 3, .•• N-1. 
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[f(l, n}, f(2, n) .•.. f{M, n)], 

(u(l, n), u(2, n) .... u(M, n)], 

8.2 may be written in the more compact form 
..... ..... ..... 

An1n-1 + 8n1n + Cnfn+l = mn 

where A
0

, Bn' and en are the appropriate matrices in (8.2). 

The vector f
0 

may be expressed as 
..... ..... ..... 

(8.3) 

(8.4) 

{8.5} 

fn = an fn+1 + Bn (B.6) 

where an is an unknown matrix and e
0 

is an unknown vector. Using (8.6) 

in (B.S), we obtain the relationships 

(A
0 

a
0

_1 + Bn) a
0 

= - Cn , (8.7) 

-+ -+ -+ 

and (An an-1 + 8n) 6n = 0n- An 6 n-1· (8.8) 

If the boundary conditions at the lower and upper boundary may be 

written respectively as 

af + a f = b 
a~ b 1 

and 

where ab, bb, at, bt are constants, the boundary conditions in discrete 

vector fonm may be written as 

-+ ..... -+ 

and At 1N-1 + 8t~N = 0t• 
..,.. ..... 

The matrices Ab, Bb' At' Bt and the vectors Db and Dt are 

known. 

Comparing (8.9} with (8.6) we immediately obtain 

Aba 1 = - Bb 
..... 

= Db . and 

(8.9) 

(8.10) 

(8.11) 

(B.l2) 
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-+ 
Hence, knowing ~1 and s1 from (8.11) and (8.12), (8.7) and (8.8) 

may be used to compute an and Bn for n = 2, ••• N-1. 

Equations (8.8) and (8.6) may be used to derive the relationship 
-+ -+ 

(Bt + AtaN-1) fN = Dt- At BN-1 • (8.13) 

fN is determined from this expression. Since an and Bn have been 

calculated, (8.6) may be used to calculate the remaining f . n 

To summarize the procedure, let us write (8.11), (8.12), (8.7), 

(8.8), (8.13) and (8.6) as 

al = -'\-lab (8.14) 

-+ -1-+ (8.15) a, = Ab Db 

an = - (An an-1 + 8n)-1 Cn {8.16) 

-+ -1 -+ -+ (8.17) sn = (An an-1 + 8n) (On - An8n-1) 
-+ -1 -+ -+ (8.18) fN = (At aN-1 + 8t) (Dt - At8N-1) 

-+ -+ ..... 
fn = anfn+l + 8n (8. 19) 

..... 
Using {8.14) and (8.15) we determine a1and a1• Using (8.16) and (8.17) 

-+ 
an and Bn are determined for n = 2, 3, ••. N-1. Using (8.18) we 

determine fN' and using (8.19) we determine fn for n = N-1, N-2, •.• 1. 

The solutions of linear algebraic systems (i.e. matrix inversions) were 

obtained by the procedures given in Forsythe and Moler (1967). 
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