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ABSTRACT

This paper is basically a review or survey of range and deficit analyses in hydrology. The bulk of the
paper consists of a catalogue of results, both exact and approximate, that are known about the various properties
of range and deficit, with particular emphasis upon the mean, variance and asymptotic distributions; these
results are categorized according to whether the sample is small or large, whether the input is dependent or
independent, and whether or not seasonality is included in the model. A discussion of the problems associated
with statistical inference in range and deficit analyses is included, as well as a discussion of the role and
importance of range and deficit analyses in practical hydrologic applications., Several areas where further
research would be of value are suggested.

PREFACE

Substantive bridges between the water storage theory, of various schools of approaches and contributions to
storage problems, and the ongoing applications in planning and operation of reservoirs, have not been made. yet.
The storage theory has not become part of practice yet. The reason is simple. Both the water supply and the
water demand, as inputs and outputs of reservoirs, are complex time processes. Not only the periodicity in
parameters and the complex stochasticity superimposed but also the man-made interventions are responsible for
this lack of bridges.

Whenever input and output processes are complex, it becomes difficult to develop the exact mathematical,
analytical and numerical, methods that would be theoretically justified and implementable in practice. There-
fore, simplifications for inputs and outputs in theoretical treatments are unavoidable in first approximations.
The more simplified these processes, the farther is the theory from the practice. It is quite likely that the
future of the basic water storage theory will be able to tackle many complex water problems.  Only then will it
be accepted by practitioners, and considered as useful tools. The numerical methods of solving storage problems,
helped by theory, will constitute some of the future bridges between the theory and the practice.

The application of the range and deficit analyses, as statistical techniques for solving storage problems,
has been initiated by H. E. Hurst in 1951 by his now classical paper '"Long-Term Storage Capacity of Reservoirs,"
published in Transaction of American Society of Civil Engineers, Volume 116, pages 770-779. Basically, the
study of the over-the-year regulation problems of the Nile River basin led Hurst to analytical and experimental
studies that triggered the work on the water storage theory in general, and by the range and deficit analysis
in particular.

The analyses of range and deficit are often considered only as theoretical approaches for either infinite
or semi-infinite reservoirs, but not for finite reservoirs with two boundaries, empty and full reservoir. How-
ever, this distinction is controversial, because the range and deficit analyses can be applied to any type of
reservoir: infinite, positive semi-infinite, negative semi-infinite or bounded by both sides, with either
absorbing or reflecting boundaries, or with a combination of these two types of boundaries in any relationship
or even with a stochastic ratio between the absorbing and reflecting aspects at the boundaries. It should be
expected that the range analysis, and the deficit analysis as one of the subtopics of the range amalysis, will
be the major probabilistic-stochastic approach in making the future bridges between the water storage theory
and the practice of planning and operation of storage reservoirs.

Analysis made by Hurst using long records of geophysical time series appear to show that the log-log plot
of the range (rescaled range) versus the sample size n is a straight line with the slope greater than 1/2 or

that the range is proportional to nh, with h > 1/2. On the other hand, Hurst and also W. Feller in 1951 showed

that for normal independent variables, the range is proportional to nh, with h = 1/2. This apparent discrepancy
has been called the '"Hurst phenomenon.'" Some authors have called this the "Hurst law.'" However, it seems more
appropriate to use the first term because studies after Hurst have shown that only in the asymptotic domain, for
very large sample sizes, the straight-line fit is acceptable.



The study of the range, deficit and the other associated properties of input and output of reservoirs, has
been a subject of much interest to many researchers at Colorado State University in the last two decades. The
professors, research associates, and graduate studies in the Department of Civil Engineering, Department of
Statistics, as well as in some other departments, have been involved. Many scientists from abroad visited
Colorado State University. Their visits have been very beneficial to both, scientists at Colorado State
University, as well as to visiting scientists. One of these visits was by Dr. G. G. S. Pegram from South
Africa. The idea of writing this paper was discussed and agreed upon by the four writers of this paper. The
first draft of the paper was written by Dr. Pegram, Dr. D. C. Boes and Dr. J. D. Salas. Dr. V. Yevjevich con-
tributed in several sections of the draft. In the continuing work by the four authors and by an exchange of
subsequent drafts, the present hydrology paper was shaped. Because Dr. Pegram has been most instrumental in
assembling data and in writing parts of the paper, he is assigned the role of the senior author.

This paper presents a kind of state-of-the-art on the Hurst phenomenon, and the range and deficit analyses.
However, several positions in the paper, hypotheses advanced and views on the potential of future contributions,
are also given at many places in the paper. Therefore, the paper is a combination of the state-of-the-art and
positions of the four writers. In writing a paper by four authors, compromise on positions, terms, interpre-
tations of who did what, when and how, has to be made. Therefore, all the writers may not share all the state-
ments in detail as presented in the paper.

The writers have tried their best to find all the relevant references and to show their contributions as
much as feasible. However, as always the case may be, no state-of-the-art or no position paper, or their com-
bination can exhaust all references, in all the parts of the world, and do it completely and objectively, by
finding and presenting contributions by all the authors. The writers apologize if they have either missed,
omitted by the lack of information, any reference, paper or contribution that bears on the Hurst phenomenon as
related to the range and deficit analyses.

The writers of this paper hope that its contents will be beneficial to all those who would like to find the
state-of-the-art on this subject sometime by the end of 1978 and the middle of 1979. They are welcome to chal-
lenge concepts or results presented, to advance new approaches, and to contribute mew knowledge on this evolv-
ing subject. '

Some contributors to the knowledge on the range and deficit take the position that everything on range and
deficit analyses is already known. Others think that the problem of storage theory is really in its infancy
and the the present state-of-the-art is nothing more than the first phase on a long path of mastering and
developing the realistic water storage theory that will be of significant practical impact. At the water sto-
rage capacities, both surface and subsurface, will increase in the world with time by the proper planning,
development and management, a logical expectation is that the water storage theory for planning and operation
of storage capacities will be more and more needed, and in the proper focus, than the case is at present.

Vujica Yevjevich
Professor of Civil Engineering
Colorado State University
Fort Collins, Colorado 80523
and
Research Professor and Director
International Water Resources Institute
School of Engineering and Applied Science
George Washington University

August 1980 Washington, D.C. 20037
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CHAPTER 1
INTRODUCTION

1-1 Motivation of the Study of Range, Deficit and
Storage

Whenever we wish to store anything, the immediate
question to be asked is: "How much storage is needed?"
The questions which immediately follow are: ''What is
the character of the inflow to storage?" and, likewise,
"What is the character of the outflow from storage?"

These questions and their answers follow from the
mathematical storage equation (which is the equation
of conservation of mass), written as

av,
a4 N (=1

with Vt = the volume of storage, Zt = the rate of
inflow and Y, = the rate of outflow all at time t.

Integrating Eq. (1-1) over a finite interval of time
(tl, t2) then

b 2
V., =V, + [“z dt- [°¥Y dt-=
t2 tl t t t )
1 1
L
=V, +tj (z,-Y ldt . (1-2)
1

Note that the change in storage can be written as
the difference between the accumulated inflow and the
accumulated outflow or, equivalently, as the cumulative
sum of differences between inflows and outflows. Note
further that Yt is the total outflow from the storage,
including the planned withdrawals and the uncontrolled
spills. It can thus be stated unequivocally that the
change in storage in an interval of time At is equal

to the '"net input,” which is the integral of net inflow.

Any storage facility to be constructed must of
necessity be finite. Furthermore, the amount of usable
storage may fluctuate with time or in fact diminish
with time. For example, if one is thinking primarily
of conservation storage in a reservoir, the amount
available may be affected by the need to provide flood
storage, varying seasonally over a year, while the
amount of storage lost to sediment accumulation will
increase with time unless steps are taken to divert or
remove the sediment.

Effectively then one can define the lower and
upper limits of storage on some scale as Vo and VO + C,

where C = the capacity of the beneficial storage with
- VS Vo + C < +=, In general, Vo and C are func-

tions of time: VD(t) and C(t).

The net inflow xt = Zt - Yt is a function of Vt,
in addition to t. This may be so because Yt’ following

some policy of withdrawals, varies with V_, particu-

t

larly when V_ reaches either of the two boundaries,

t
Vo,t or Vo,t + Ct, with xt constrained to be zero.

Now the first question can be rephrased as: '"With
this characterization, what does one have to do to find

out how much storage is needed?' Given the lower
bound VD t and the storage capacity Ct and the outflow
Yt’ one can ascertain the net inflow Xt for a given

gross inflow Zt. In general, Zt will be the combina-

tion of a deterministic and a stochastic component.
Hence, xt will also result as a combination of deter-

ministic and stochastic components. Frequently X¢

can be thought of as being the sum of the two compo-
nents, but in general this combination will not be
linear. Nevertheless, Xt will always result as a

stochastic process. It remains to ascertain (or
specify) the stochastic model and estimate its para-
meters to characterize the storage problem which can
now be variously phrased as: 'What is the probability
distribution of {V .} or {Vt; X} or {Yt}?" There are

other associated questions that can be asked, such as:
"What is the minimum storage that for a given proba-
bility of assurance is needed to ensure that no spills
nor shortages are experienced in some interval
(to’tl)?“; or "Given that the reservoir starts full,

what size of reservoir will be needed, on the average,
to prevent shortages with a given risk, to occur in
some interval [to,tl)?"; and similar questions.

This study is addressed to these questions. They
can be answered by analyzing the statistical charac-
teristics of Vt’ and this is called general storage

analysis. When Vo + -=, but Vo + C =0 and in addition

Vto=0, then we examine D&t = -min Vt in At = (tn'tlj'
This is called the deficit analysis. When VD > -= and

C < += we have a finite reservoir and we look for the
distribution of Vt’ etc. We call this the finite sto-

rage analysis. When VD + -= and Vo + C =+ +» and in

addition vt
o

look for the distribution of Rﬂt = max Vt - min Vt in

= 0, we have an infinite reservoir and we

At = {to’tl}' We call this the infinite storage analy-

sis or range analysis.

1-2 Objectives of this Study

The various properties of the range, deficit and
storage are related to the stochastic model and the
parameters of the net inflow. The primary objective
of this study is then to catalogue and discuss the
relationships that can be found in the literature and
to fill in the gaps whenever feasible. In cases where
these relations have not yet been found, we will sug-
gest useful lines of inquiry.

The objective of this study is of a tutorial na-
ture, pulling together what is known about range,
deficit, stochastic modeling and storage theories into
a unified treatment, in an attempt to show the corres-
pondence between what appear to be separate subjects.
As a result, we deliberately break with the traditional
report form in which one lists previous contributions
in chronological order. By contrast, we will acknow-

ledge previous contribution in the appropriate sections.

The intent is to make the whole more readable and hence
more informative.
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1-3 Definitions of Ranges and Deficits

1-3-1 Net Inputs

Throughout this study, éxcept where expressly
stated otherwise, input is taken to mean net igpu to
an infinite, a semi-infinite or a finite reservoir.
The net input x in the discrete interval [t, t+l] is

taken as the diffarence between the gross input Zt and
The
level of development (or the degree of regulation) is
defined as the ratio a = E Yt /E[Z,_], where E Yt is
it R

the expected value of beneficial withdrawals. The mean
net input E[xt] (invariantly called u) is related to a
by u= E[Zt] - E[Yt] = (l-a) E[Zt] or a = l-u/E[Zt]; (o

is sometimes expressed as a percentage). Most of the
results in this paper refer to a = 1, i.e. u = 0, and
this should be understood unless stated otherwise. The

Note also that

gross output or withdrawal Yt in the interval.

variance Var[x ] will be denoted by az,

in the above defznxtlons the expected values can be
estimated by their sample means. For instance a may

be defined as a = Y/Z.

The high value of o (approximately o = 1) does not
require a constant output close to its mean. A large
installed capacity of a hydroelectric power plant, say
n times the mean (n = 3-5), would enable nearly all
the water to be released beneficially, provided there
is a market for the power all the time. Therefore, o
depends on many factors related to the supply and
demand.

Attention is confined herein to discrete time
inputs. However, the distributions and time structure
of inputs dealt with will be both continuous (gamma,
ARMA, etc.) and discrete (binomial, Markov chains,
etc.). Furthermore, the net input xt may be either a

stationary or nonstationary process. For instance, if
the net inputs are annual values of hydrologic series,
they are assumed to be stationary, i.e. a process with
constant mean, constant variance and constant auto-
covariance structure. On the other hand, if the net
inputs are periodic-stochastic as in seasonal hydrolo-
gic series, they are nonstationary, i.e. a process
that has periodic mean, periodic variance, periodic
skewness, and often periodic autocovariance structure.

1-3-2 Accumulated Net Input

Define S_ = S,
S, = 0. The process {St} is the accumulated sum of

all previous net inputs to an infinite reservoir.
(There will be cases where S5, applies to the storage

# Xt, t=1,2,...,n; where

level in a semi-infinite or finite reservoir, but
the meaning will be clear from the context.)

The sum of the adjusted net inputs is
distinguished by an asterisk:
(1-3)

S* = s*

& g A =

n
where the two adjustments w = y or w = ?ﬁ - % I x
=

i
The term S, = 1 X, is also
t= 1
-aw 1s the adjusted

Snfn are considered.

called the partial sum and SI = Si

partial sum.

Define also Mn = max (0, 51' 52,.... SnJ
m o=nin (0 8., 8.0 8
n 32 n (1-4)
* * * oW
Mn = max (0, S*, Sz,..., an}

m; = min (0, S%, SE...., S;]

where Mn and m_are called the maximum and minimum
partial sums, respectively, and M; and m; are the maxi-

mum and minimum adjusted partial sums, respectively.
Some definitions do not start with S,=0o0rS; =0

but with S1 or SI. Such definitions are not used in
this study.

1-3-3 The Range
Define Rn This has also

been called the crude range (Anis and Lloyd, 1975) as
well as the unadjusted range, but these terms will not
be used herein. The range is thus the difference
between the maximum and the minimum of the partial sums
in n time-steps. Figure 1-1 is a graphical representa-
tion of the partial sum S;, the maximum partial sum

=M - m_ as the ra i
A 3 nge

Mn' the minimum partial sum mn and the range Rn.

S
Jr '
g
.Iz M"
; i’
I 2 3 i
R"

Fig. 1-1 Definition of the maximum partial sum Mn’

the minimum partial sum m and the range Rn.

1-3-4 The Adjusted Range

Conventionally when a = 1, and w = iﬁ, the
adjusted range is defined as

R; = H; - m* (1-5)

n

In this case 5; = 0, so that the adjusted range is the

difference between the maximum and minimum of the
adjusted sums in the first n steps. We will use this
notation and definition herein, although in some cases
Rﬁ has been denoted simply as the range. Figure 1-2

is a graphical representation of the adjusted partial
sum S;, the maximum adjusted partial sum M;, the mini-

mum adjusted partial sum m; and the adjusted range R;.
1-3-5 The Rescaled Range

=—£cx
i=1
variance of the inputs.

Define 8 - ih)z, the (biased) sample

Then R;‘ = R;/on is called



the rescaled range. Sometimes the term rescaled
adjusted range is used, but it has not been the prac-
tice to rescale the unadjusted range, so the term
rescaled range will be used to describe R;*. Instead

"2 ; " !
of O often the unbiased sample variance is used.

S
P
_.---""""-.-.---I
“|re
Mo | S . —_
= ,,..‘-"'\‘]:n“s g
=T i
I 2 3 ..o
L —
n
Fig. 1-2 Definition of the adjusted partial sum S;,

the maximum adjusted partial sum M, the
minimum adjusted partial sum m;, and the

adjusted range R;.

Other notations have been used, perhaps in an
attempt to make the definitions more appealing visually.
For example, aRn has been used for R; and ar for R;*.

However, it is felt that a proliferation of notations
will only complicate what is already a highly complex
subject, and the simpler notation will be used herein.

1-3-6 The Conditional Range

A recent arrival, appropriate to discrete inputs,
is R = [R S, = 0] called the conditional range. It

is useful as a close approximation to the adjusted
range Rr.

1-3-7 The Maximum Accumulated Deficit

We call Dn the maximum accumulated deficit to
distinguish it from m and m; which have been called

"deficit" in some publications.

Let So = 0 as previously. If St-

+ xt < 0.

7 F Kt > 0, set

8, = 0, otherwise St = § {St} is now

t-1
interpreted as the storage level in a semi-infinite
reservoir which spills at S, = 0, when X, > 0, but has
no bottom.
Define B =

-min (0,5.), i = 1,2,...,n; this
i 1

quantity is the maximum accumulated deficit (to a
semi-infinite reservoir). Maximum accumulated deficit
analysis which is to be abbreviated to the term
"deficit analysis' is akin to the "'sequent peak" or
mass-curve analysis applied to a semi-infinite
reservoir.

An equivalent definition of Dn is

Dn = max {0, M,-S_, M_-S M -5} (1-6)

s - b i S

with Si and Mi as defined above. The definition of Dn

is shown in Fig. 1-3.

Si

123..

Fig. 1-3 Definition of the maximum accumulated defi-
cit Dn as compared with the deficit of the

range Rn.

1-3-8 A Comment on Sampling

*
AL of %o S.. R RE

variables. It is unfortunate that in the literature
little distinction has been made between random
variagbles and samples. In what follows, most of the
results apply to distributions or expectations of the
random variables. Where simulation experiments are
involved, reference will be made to estimates of
these; for example, Eﬁ will be an estimate of E[Rn]

R;* and Dn are random

found by performing a simulation or from sampling data

from a geophysical process. Actual realizations of Ro»
which we would prefer to call T 3 (for the jth sample
of Rn) will not be referred to specifically, but it is

understood that if, for example, m simulations have to
be performed to estimate E{Rnl, s will be understood

L E
to mean — T
m 45 n,j

1-4 Organization of the Paper

Section 1-5 of this chapter reviews Hurst's per-
sonal work and the interpretation of his work by others.

Chapter 2 lists many of the known and no-so-well-
known results such as expectations, variances and dis-
tribution functions of the four ranges and the deficit;
(we may only give references to the more lengthy
results). These are laid out as to whether n is small
or large, and whether the input is dependent or inde-
pendent with periodic or non-periodic parameters.

Chapter 3 touches on inference in range and defi-
cit analysis which have not received much attention in
the past, and is intended to initiate new avenues of
inquiry.

Chapter 4 discusses the importance of range and
deficit analysis in hydrology and is naturally a col-
lectively personal view of where we see the studies we
describe having an impact in our research and opera-
tional efforts.

Chapter 5 attempts to pull the whole of this
rather loose subject together.



1-5 A Review of Hurst's Work

1-5-1 Hurst Studies

In studying the planning of the storage capacity
of the Aswan Dam on the Nile River and the regulation
schemes of the Great Lakes of the same river basin,

H. E. Hurst (1951) realized that by using only the his-
torical records misleading results may be obtained as
to the size of the reservoir needed and as to the bene-
fit to be expected from it. Hurst then used proba-
bility theory and experimental statistics and derived
equations for the expected conditional range of inde-

- pendent variables and for the expected rescaled range
of geophysical variables which led to much controversy
and various positions in statistical hydrology during
the past 30 years.

Hurst (1951) derived the expected conditional
range E{cRnJ of independent inputs which could assume

only the values +1 and -1 (tossing coins for heads and
tails) each with probability 1/2 as

1=.(R)=T—2Jrl .
Gt n n/2 ’

(1-7)

where ncn/Z denotes the number of combinations of n

objects in groups of n/2; n is, of course, even. Fur-
thermore, using the Stirling approximation to factori-
als when n is large, Eq. (1-7) can be written as

0.5

E(R) = (B Jad

:1.2533n " (1-8)

Based on the fact that the expansion of the binomial
distribution leads to the normal distribution Hurst
showed that Eq. (1-8) is asymptocially valid for inde-
pendent normal variables and that in gemeral it can be
written as

0.5

E(cRn) =1.2533 0 n (1-9)

where ¢ is the standard deviation of net inputs. It
is worth mentioning that the above equations derived
by Hurst have always been thought to be the expected
adjusted ranges until Boes (personal communication)
and Gomide (1975) realized that what Hurst actually
studied analytically was the conditional range. In
order to verify his analytical results, Hurst conducted
experiments with random events by tossing ten six-
pences 1,000 times, cutting probability cards 1,000
times and with serial numbers of bonds. In each case
the rescaled range was computed and a close agreement
was found between the experimental results and those
found analytically. It should be mentioned that Hurst
actually compared two different equations, Eq. (1-9)
for the expected conditional range written as E(cRn)/

ng and the expected conditional range, written as
rﬁ*{/ﬁ'= (z r;/6n¢57nﬂwhere m is the number of samples.

What Hurst should preferably have used was ¢_instead
of & , so that the estimated adjusted range r;/aﬁ;

would have compared better with E(_R )/ovn. Anyway,
his comparisons were still valid since E(cRn)fo -
E(R;)/a E E(R;*) for large n.

Having derived analytically the asymptotic
expected conditional range of normal independent vari-

ables, and having demonstrated, by simulation experi-
ments with random events, that a similar expression

exists for the rescaled range, Hurst wanted to find

the mean rescaled ranges of series of natural phenomena.
Thus Hurst (1951) conducted studies with a large num-
ber of geophysical time series such as river discharges,
lake and river levels, rainfall, temperature, pressure,
tree rings, layers of mud (varves) and sunspot numbers,
which all together constituted 75 time series of vary-
ing length which were divided into 690 cases of lengths
ranging from 30 to 2,000. Later Hurst et al. (1965,
1966) extended his experiments to 120 time series with
a total of 872 cases of lengths varying from 10 to
2,000. Since Hurst's analytical and experimental
studies showed that for large n the expected conditional

range was proportional to o and n”2 (Eq.1-9) and that
the estimated mean rescaled range was proportional to

nl/z, he was expecting to find similar nl/z-bahavior
for the ranges of natural time series. Instead, he
found that the estimated mean rescaled range r;*

increased more rapidly than n1f2.

found that

In general, he

?;1* bcn (1-10)

Kl

with ¢ a constant and h an exponent greater than 1/2.
However, Hurst's original equation for the rescaled
range was

311 = (n/2)" , (1-11a)

where (although he did not imply it) K is a random
variable, so

ey

= n
*h) =

log (rn )= log E;

= K log (%) (1-11b)

a straight line in the log domain. It should be men-
tioned that the reason why Hurst chose to use

Eq. (1-11b) instead of Eq. (1-10) was because he wanted
the line to go through r;* = 1 for n = 2 since that is

known for all cases (we will discuss this more fully
later.)

Equation (1-11b) was used in various ways to esti-
mate the value of K. He first used (his Fig. 4 in
Hurst, 1951 and in Hurst et al., 1965) an estimate by
fitting straight lines to graphical plots of log (r}*)

vs. log (n) so that the line goes through the point
[log (1) and log (2)] and through the center of gravity
of all the observations. In this way, he found values
of K = 0.75 for river statistics (river levels and
discharges), K = 0.70 for rainfall, temperature and
pressure, K = 0.80 for tree rings and similar values
for other data. He secondly used a point-by-point
estimate of the slope

R = log (rx*)/log (n/2) (1-12)

for each of the 690 (Hurst, 1951) individual values of
r;‘ (837 cases in Hurst et al., 1965) obtaining an

arithmetic mean value of K = 0.729, a standard devia-
tion of 0.092 and a range of individual values of
0.46 to 0.96 (see Fig. 5 in Hurst, 1957, and Fig. 6
and Appendices 4 through 11 in Hurst et al., 1965).
The third slope estimate used by Hurst and generally
used by investigators is

K = log (x2%)/10g (/2) , (1-13)



as shown in Table 7 (Hurst, 1951) where the values of
K varied between 0.60 and 0.91 for the 690 cases
analyzed.

As a result of Hurst's discovery that (a) his
estimators of K were > 1/2, (b) his graphical approach
to support fitting a curve and (c) the fact that he
used some very long time series (he assumed n = 2000
was long enough to demonstrate asymptotic behavior),
Hurst concluded that for geophysical time series K >
1/2 for very large n. It was his conclusion that the
combined K value (0.73) derived for finite n, being
different from the asymptotic result for independent
normals (Eq. 1-9) was evidence that there was some-

thing special about geophysical time series. Hurst
© (1951) was not sure about the theoretical significance
that K is approximately 3/4 for geophysical series,
but comparing Eqs. (1-9) and (1-11a) he observed that
while in Eq. (1-9) for random events, i.e. normal
independent events cRn (used as an approximation to

R;) is a function of o and n, in Eq. (l-11la) for natu-
ral events, ?; is a function of an, n and K where "K

depends on the order in which variates occur.'" Actu-.
ally, Eq. (1-11a) would not really imply exactly that
since the average is over r;* and not over rﬁ, but

Hurst used Eq, (l1-11a) in a rather loose sense. So
Hurst himself realized that the difference he found
may be due to the dependence of the time series, but
he suggested that that dependence would be due to
groupings of high or low values, which occur in random
events, but "their tendency to occur in natural events
is greater'" (Hurst, 1951). In fact, he seemed to
neglect the year-to-year correlation (Hurst, 1957).
Referring to annual values of river flows, rainfall
and temperature, he said '"their principal characteris-
tic, however, is the occurrence of periods when on the
whole, values tend to be high and others when they
tend to be low, though low values may occur in a high
period and vice versa. So far as is shown, there is
no regularity in the occurrence or the length of these
periods, and usually there is not sigificant correla-
tion over one of them between a year and its successor."

In an attempt to devise a model that would explain
what he (Hurst, 1951) had found in natural time series,
Hurst (1957) devised an ingenious experiment with play-
ing cards involving shifts in the mean. He started
with a pack of fifty-two cards that he called "proba-
bility cards.'" Each of the cards was labelled with
one of the following numbers: -7, -5, -3, -1, +1, +3,
+5, or +7; there were thirteen of each of the ones,
eights of the threes, four of the fives, and one of
the sevens. The distribution of the cards in the pack
provides a crude approximation to a mormal distribution
with mean zero and standard deviation three.

Hurst performed the following experiment. First
he cut a card from the deck, noted its number, and
replaced it. He then randomly divided the fifty-two
cards into two hands of twenty-six cards, and selected
one of the hands. If the initially cut card was +j,
he removed the j lowest cards from his hand and
replaced them with the j highest cards from the other
hand; and, if the cut card was -j, he removed the j
highest cards from his hand and replaced them with the
j lowest cards from the other hand. Thus, if he had
cut a positive card, he had a tendency to give his
hand a positive bias. He added a joker to his hand of
twenty-six and drew cards at random, with replacement
from the twenty-seven cards. The number on the first
card drawn is the first number in the series, the num-
bert on the second card drawn is the second number in
the series, etc. He continued to draw cards until he

drew the joker, at which time he started over from the
beginning. Four different experiments of 1000 gene-
rated numbers each were performed and analyzed, result-
ing in the usual diagram of log rescaled-range versus
log n. His mean computed K using Eq. (1-5) for all
experiments was 0.73. These experiments were further
extended as described in Hurst et al. (1965).

1-5-2 Interpretation of Hurst's Findings:
The Hurst Phenomenon

Hurst (1951) showed that the mean conditional
range of normal independent variables was asymptotically

proportional to nl‘}2 (Eq. 1-9). This square root
behavior was further confirmed by Feller's (1951) ana-
lytical equations when he found that the mean range
E(Rn) and the mean adjusted range E(R;] were also

asymptotically proportional to nl/2 for normal inde-
pendent variables. But Hurst also showed that the
mean rescaled range was on the average proportional to

0.73 : : ;
n for natural series. This discrepency between
theoretical results stating that the exponent of n is

-asymptotically 1/2 and Hurst's empirical findings that

the exponent of n is greater than 1/2 for natural
series, has become known as the "Hurst Phenomenon."
Some statisticians and hydrologists also use the term
"Hurst law'" to denote the fact that when straight lines
are fitted to the rescaled ranges of natural phenomena
using log scales, they have Hurst slopes greater than
1/2. (The assumption is made that the available n's
of natural series are long enough to guarantee asymp-
totic behavior.)

Interpretation of the Hurst phenomenon has been
varied and controversial in statistical hydrology ever
since Hurst published his first results. One inter-
pretation has been that the expected rescaled range of
hydrologic samples is asymptotically proportional to

nh with h > 1/2. Another interpretation is that series
exhibiting the Hurst phenomenon have Hurst slope h
greater than 1/2 for small or moderate values of n, but
that it tends to 1/2 asymptotically. Hurst's findings
and consequent interpretations initiated a volume of
investigations by statisticians, hydrologists and geo-
physicists in general, intent on seeking a mathemati-
cal and/or physical explanation of the phenomenon and
to ascertain its operational consequences in water
resources systems.

Since the Hurst phenomenon has centered around
the exponent of n (slope) being either 1/2 or greater
than 1/2, comments and criticisms of Hurst work began
with the way he estimated the slope and some alterna-
tive estimates have been proposed. Chow (1951) first
questioned Hurst's graphical slope estimate (line
going through the point log r** = 0 and log 2 = 0.30)
and suggested instead a least squares estimate. Using
Hurst's (1951) data, Chow found a slope of 0,87 and
0.87

graphically showed that his equation E;* =0.31n
0.72

would give a better fit than Hurst's ?:* = 0.65 n

In response to Chow's comments, Hurst indicated that
the main reason why he used the slope estimates of

Eqs. (1-12) or (1-13) was for the practical convenience
of using just one parameter instead of two as in Chow's
least squares procedure, Besides, he said, the fit
obtained with just one parameter appeared to be as

good as Chow's equation with two parameters.

Mandelbrot and Wallis (1969, p. 321-340) suggested
that the Hurst slope should be discarded because
"actual pox diagrams have a straight trend of slope H




that fails to pass through the point of abscissa log 2
and ordinate 0. Hurst's average K is thus a very poor
estimate of the slope H. It tends to be too low when
H > 0.72 and too high when H < 0.72." [Note that in
this passage H is used instead of an (implied) constant
h, neglecting the fact that the exponent h in E[R;*} =

C nh actually varies with n. Already notational confu-
sion abounds, but we will continue to use h as an
asymptotic exponent, K as a random variable (with K
its estimate) and k as a sample value, unless other-
wise stated.] They referred to Figs. 2 through 7 in
Mandelbrot and Wallis (1969, p., 242-259) to verify
such statements. However, their statements appear to
be exaggerated because while it is true that the best
fit lines would not pass through the point of abscissa
log 2_and ordinate 0 (obviously because the relation
of E[R;*] vs. N is actually a curve, even in log-log

plot, and not a line) Mandelbrot and Wallis' computa-
tions of r;* seemed to be based on unbiased variances.

The equations for the variances shown in their papers
are actually biased standard deviation, so they must
have changed the estimate while doing the programming,
which for small n actually distorts the estimate 1r** .

causing, for instance for n = 2, values of r** < 1

when it should be the opposite since r** = 1 exactly.

This can be easily verified by observing for instance
Fig. 2 in Mandelbrot and Wallis (1969, p. 323), Fig. 3
in Mandelbrot and Wallis (1969, p. 245) and similar
other figures in other pages of the same authors.

This method of computation was later modified as it
appears in a later paper by Wallis and Matalas (1970,
p. 1583-1594); for instance compare Fig. 1 of this
paper with Fig. 5 in Mandelbrot and Wallis (1969,

p. 247).

Gomide (1975) discusses the Hurst K estimator of
Eq. (1-13), acknowledging that the estimator is sound
in the sense that one would like to have R; = for

This is so when
He noted that per-

n = 2 independently of the value of K.
the biased estimator of o is used.

haps that was the reason why Hurst did not use the
Eq. (1-10) with ¢ = 1.2533 (to match the coefficient
of Eq. (1-9)) which would lead to the estimator

log (E;*) - log (1.2533)
log (n)

K= ? (1-14)
Gomide also noted that if Eq. (1-14) is used for
Hurst's 30 sequences of generated random events (Hurst,
1951, Table 6) the mean value of K is 0.50. On the
other hand, if Eq._(1-13) is applied to the same data,
the mean value of K is 0.64. These results indicate
that Eq. (1-13) actually forces K to be > 1/2 for
independent normal random events (of course this
occurs in varying degree, not only with K estimated
from (1-13), but with any other since R actually
depends on the sample size n) and this is also to be
expected when dealing with natural time series which
are usually dependent. Gomide also found that when
Eq. (1-14) is used, the mean value of K is 0.57 for
the 690 natural series used by Hurst. More about the

estimationof the slopes of ranges is given in Chapter 3.

Several attempts to explain the Hurst phenomenon
have been made since Hurst's (1951) paper. Practically
all those attempts center around the so-called tran-
sience, because the expected ranges (as functions of
n) even of independent normal summands do display
transient regions. Several models or model changes,
that produce transient regions compatible with Hurst's
empirical findings and consequently provide an

asymptotic explanation of the Hurst phenomenon, have
been previously proposed and are reviewed herein.
These models and resultant explanations of the Hurst
phenomenon are categorized as: (i) non-normal skewed
marginal distributions, (ii) dependence structure, and
(iii) "nonstationarity" in the mean or shifting levels.

Non-normal skewed marginal distributions.
Commenting on Hurst's (1951) paper, Milleret (1951)
questioned the assumption of normality when Hurst
analyzed the 690 natural series. He said there are
objections to using the normal distribution since
natural phenomena always have a certain skew. Hurst
replied in the sense that "the difference between R/c
by which he meant R;/&n" for natural and for pure

chance events is not due to skewness, but to the fact
that the distribution of natural events is not hap-
hazard. It happens that irregular successions of high
or low years tend to occur in any long series of years."
Hurst had at least good intuitive feeling (although
without mathematical proof) that the skewness would
not be the cause of the difference found for normal
random events and natural events (the Hurst phenomenon)
but instead the cause would be the '"groupings of high
and low values." It seems that this is why Langbein
(1955) in commenting Hurst's (1955) second paper was
interested in the reason for the grouping tendency
observed by Hurst.

Based on statistical tests using the long records
of some American rivers, Langbein concluded that the
skewness would not be the cause of the grouping ten-
dency, thus confirming Hurst's previous statement. In
another comment on the Hurst (1956) paper, Lloyd and
Anis (1955) mentioned that a possible explanation of
the Hurst phenomenon might lie in the nature of the
distribution of the individual increments and in par-
ticular their non-normality. However, they also men-
tioned that such a line of reasoning would not work,
making reference to Feller's (1951) paper where he
argued that the asymptotic distribution of the range
(meaning Rn and R; only) were independent of the dis-

1/2

tribution of the increments and so the asymptotic n
law followed even when they were non-normal.

Assuming that the net inputs are independent
stable distributions having characteristics function

exp {—|t]Y}, 1 <y < 2, Moran (1964) showed that the

expected range is proportional to nlfT and Boes and
Salas (1973) showed that the expected adjusted range

is also proportional to n1/¥. Therefore, although

stable distributions are not quite appropriate for geo-
physical series, it was thought that, at least mathe-
matically, distributions with heavy tails (such as the
stable distributions) would provide expected ranges

proportional to nh with h > 1/2 as geophysical series
were thought to have. However, even though both E(Rn)

and E(R;J were shown to be proportional to 1-11'(Y there
was no assurance that E(R;*} would behave in the same

way. Simulation studies with independent stably dis-
tributed summands with_y = 1.3 carried out by McLeod
and Hipel (1978) gave r;‘ values nearly the same as

those of independent normal variables, suggesting that

E(R;*) ~ nl"‘2 even though E[Rn} - n0'77 and E(R;J <
n0.77

in this case.
Yevjevich (1965) studied the effect of skewness

by generating a very large number of samples of inde-
pendent gamma processes, with various values of the
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skewness coefficient. The range and adjusted range
behavior showed relatively modest deviations from their
corresponding values for normal independent processes.
Deviations from the normal case increased both with a
decrease of n and an increase of the skewness coeffi-
cient, but the overall effect was not very great.
Matalas and Huzzen (1967) used a simulation of normal
and lognormal lag-one Markov variables. They concluded
that the skewness had virtually no effect on the Hurst
slope. Moran (1968) suggested using gamma variables
with large skewness. Mandelbrot and Wallis (1969¢),
using computer simulation with the skewed marginal
distributions of truncated normal, lognormal, and

hyperbolic form showed that the asymptotic nlfz-law is
valid for both the adjusted and resclaed ranges. Fur-
thermore, they showed heuristically that for gamma
variables with large skewness, the adjusted range is

asymptotically proportional to nlfz.

Although previous experiments by Mandelbrot and
Wallis (1969¢) and by Matalas and Huzzen (1967)
appeared to show that skewed distributed independent
variables would yield ;;* ~ nljz, there was still the
question whether the transience induced by skewness
would be such that it would be an explanation of the
Hurst phenomenon. In this direction, Anis and Lloyd
(1975) derived expressions for the expected range and
the expected adjusted range of independent gamma vari-
ables and showed that for particular parameters EIRnl

and E[Rﬁ] behave as nh with h > 1/2 for 100 < n < 1000.

They suggested a possibility of similar behavior for
E[Rﬁ']. Using relatively large skewness values, they

wexre able to produce local slopes of the order observed
by Hurst for 100 < n < 1000 for both the range and
adjusted range. Thus, they showed that severe skew-
ness was capable of producing a transient region con-
sistent with Hurst's finding, at least for the range
and adjusted range.

However, Salas et al. (1979) generated 10,000
values of independent exponential and gamma variables
with skewness equal to 2 and 10, respectively and com-
pared the rﬁ and r;* obtained for these variables with

the corresponding ranges of independent normal vari-
ables (known exactly in this case). In the case of
the adjusted range r; decreases as the skewness

increases therefore showing different transience.
However, the transience depends on what slope estima-
tor is used. For instance, if the Hurst slope K of
Eq. (1-13) is used, the transience decreases as the
skewness increases, but if other estimators such as
the Mandelbrot-Wallis H or the local slope

Hy = log (Fp3,/mar)/1og ((n+5)/(n-3)) (1-15)

for some j close to 1, are used, then the transience
increases with the skewness (the term transience used
herein denotes how fast (with n) the slope tends to
the limiting slope). On the other hand, the computed
r;* for both exponential and gamma variables are

indistinguishable from the E(R;*) of normal variables.

Since geophysical series have skewness much smaller
than those tested kere, it is safe to conjecture_that
for all practical purposes the skewness affects r; in

the transient region, but does not affect ?:*
appreciably.

Dependence structure. Since many geophysical
series are time dependent, and since theoretical

5
results for E(RE*J = nlf" have been confined to inde-

pendent variables, it is reasonable to hypothesize that
the dependence structure may contribute to prolonging
the transient region and hence provide an explanation
of the Hurst phenomenon. It is fair to mention that
Hurst (1951, p. 783) himself hypothesized that the
groupings of high and low flows (long-term persistence)
observed in natural series may be a cause of the Hurst
phenomenon. But he puts this concept in a different
context to the typical year-to-year serial correlation
and, in fact, he later (Hurst, 1956, p. 575; Hurst
1957, p. 494; Hurst et al. 1965, p. ; Hurst et al.
1966, p. 67) emphasized that the observed groupings
were due to a persistence over an indefinite period
(long-term persistence) rather than due to the year-
to-year correlation. Evidently Hurst considered two
types of persistence or dependence structure, one long-
term and another short-term and thus he attributed the
cause of the observed groupings (and therefore the
cause of the Hurst phenomenon) to the long-term per-
sistence. However, since long-term persistence was
little understood in the 1950's (and in fact is still
not well understood today), and on the contrary since
short-term persistence and corresponding models (say
autoregressive models) have been pretty well under-
stood, it was natural to first look at these vis A vis
the Hurst phenomenon.

Feller (1951) suggested the autocorrelation struc-
ture as a possible explanation of the Hurst phenomenon,
and in fact he specifically referred to the Markov
process for the modeling of the increments but he also
warned about the difficulty of finding an analytical
solution to the problem since it would demand the solu-
tion of the general Fokker-Planck equation whose solu-
tion is not explicitly known. Barnard (1956), however,
claimed that no single set of autocorrelation functions
could account for the Hurst phenomenon. Thomas (1956)
discussing the causes of the 'groupings" observed by
Hurst referred to Laushey's (1956) discussion on
Hurst's (1956) paper and said he had no doubts that
the value of the Hurst slope K was closely associated
with the degree of autocorrelation. Also Langbein
(1956) in analyzing long records of some American
rivers, as well as some of the Hurst data, concluded
that the persistence was more complex than that of an
AR(1) model. Moran also suggested that the serial
correlation of the underlying process would have to be
of a very peculiar kind for the slope h to remain
greater than 0.50 as n+«, He went on saying that "a
more plausiable theory is that the experimental series
used by Hurst are, as a result of serial correlation,
not long enough for the asymptotic formula to become
valid, and thus for small n, E(R;‘J may vary like

a® with h # 1/2."

Since the use of autoregressive models (in fact
the use of stochastic models in general) for genera-
tion of hydrologic data began at the beginning of the
1960's with the work of those like Thomas and Fiering
(1962) and Yevjevich (1963), it was natural to study
the range properties of these models despite previous
suggestions (Hurst, 1956; Barnard, 1956; Langbein,
1956 and Moran, 1959) that the Hurst phenomenon may
not be explained with a simple dependence structure,
but with a very special type of persistence. Thus
Yevjevich (1965, 1967, 1972) did some analytical work
to find the distribution of the range complemented
with extensive computer experiments. He argued and
showed by plots that the Hurst phenomenon is the
result of transience. Fiering (1967) was especially
concerned in finding out whether for common design
lines of hydraulic structures (say for time periods of
10 to 100 years) the use of autoregressive models



would be adequate, He made extensive computer experi-
ments with these models and compared the storages
obtained from simulation (using the sequent-peak algo-
rithm) with those obtained by the Hurst equation.
Fiering concluded that for the periods of 10 to 100
years the AR models were adequate for most design pur-
poses. However, he admitted that for larger periods
such as those studied by Hurst, more elaborate models
may be needed. Therefore, although both Yevjevich's
and Fiering's studies were useful for explaining the
applicability of AR models for storage design, they
were limited in fully explaining the Hurst phenomenon
because they dealt with relatively small values of n
compared with those used by Hurst,

In referring to Hurst's analysis of geophysical
records, Mandelbrot and Wallis (1969, p. 321) stated:
"were the records in question generated by a random
process such that observations far removed in time can
be considered independent R(t,n)/S(t,n) should become

asymptotically proportional to n' 2, which means that
Hurst's Law would have to 'break' for large enough
lags. But no such break has been observed. Thus, for
practical purposes, geophysical records must be con-
sidered to have an 'infinite' span of statistical
interdependence.'" Based on this interpretation of the
Hurst phenomenon, Mandelbrot and Wallis (1968, p. 910)
suggested that models in the Brownian domain cannot
account for the Noah and Joseph effects. (They
defined the Noah effect as the observation that
extreme precipitation can be very extreme and the
Joseph effect as the observation that a long period of
unusual high or low precipitation can be extremely
long.) And they stated 'therefore, our sweeping asser-
tion can only be controversial in its blanket condem-
nation of all models in the Brownian domain."

The Brownian domain contains those models for
which the ultimate behavior for ?;' follows the n'/?
law, and the interpretation by Mandelbrot and Wallis
of the Hurst phenomenon is that r;* asymptotically

behaves like nh with h > 0.50. Following this inter-
pretation, all models within the Brownian domain of
attraction, e.g., autoregressive models AR(p), auto-
regressive-moving average models APMA(p,q) and even
Hurst-like shifting level models, fall under this
"blanket condemnation." Using the above interpreta-
tion as justification, Mandelbrot and Wallis proposed
a fractional Gaussian noise model for hydrologic
modeling and simulation. This model uses the concept
of self-similarity, implying that the autocorrelation
structure is such that the infinite past exerts small
but non-negligible effects on the present. This model

produces an asymptotic behavior of ?;* as nh with

h > 0.50. However, some hydrologists (Yevjevich, 1968
at the Tucson Symposium, personal communication;
Scheidegger, 1970, p. 754; Klemes, 1974, p. 676-678)
have questioned the physical basis of fractional
Gaussian noise models as well as the above interpreta-
tion of the Hurst phenomenon put forward by Mandelbrot
and Wallis.

We note that the frequently stated justification
for the use of FGn takes a form similar to the opinion
expressed by Wallis (1977): ... most geophysical
records and some laboratory experimental noises
(Brophy, 1970) have [sic] h > 0.5, while all station-
ary independent and short memory stochastic processes
have h = 0.5." We do not argue with the possibility
that some "real" processes may have asymptotic h > 0.5,
but content that n < 2000 is too short to enable a
statistician to reject the.null hypothesis that asymp-
totic h = 0.5 for these processes. We have only to

examine the slope of the log [E{R;']] vs. log [n]

curve for independent normal inputs as given by Anis
and Lloyd [1976] to see that at n = 103 we get K =
0.587 and H_ = 0.514, while.at n = 10° we get K = 0.544
and Hn = 0.501. Dogmatic statements like Wallis' above

are unfortunate because they cloud the issue, in the
sense that they cannot stand there without a rebuttal.
Regrettably, we cannot prove Wallis wrong because we
do not have long enough records as yet, but we do feel
that he has rather over-stated the case for FGN.

Markovian models, characterized by the property of
short memory, have been criticized as not being capable
of simulating the Hurst phenomenon. This is based on
the interpretation of the Hurst phenomenon as being the
asymptotic behavior of r;* versus n for geophysical

time series, neglecting the transience or the pre-
asymptotic effects. Yevjevich (1972, p. 167) using
relatively short samples of generated AR(1) series,
computed the Hurst K from Eq. (1-13), using T instead

of ?;‘, and gave the mean of K as a function of n.

Gomide (1975) using samples as long as those used
by Hurst, and assuming as Hurst (1951) that E(cRnJ is

an approximation of E(R;/&nj. computed the Hurst

slopes for first-order autoregressive models with

0 <p <0.90, and found that the computed slopes for
n up to 1000 were similar to those found by Hurst for
his data. The mean of Gomide's computed K was around
0.75 as compared to Hurst's 0.73. The above results
do not imply that all the geophysical time series fol-
low the first-order autoregressive model. However,
this simple dependence model shows that transience

(as a resuylt of serial correlation) by itself can
explain the Hurst phenomenon. Klemes (1974) also
demonstrated that infinite dependence was not a pre-
requisite for a process to exhibit the Hurst phenomenon,
in fact, processes of short-term or no persistence, as
a result of a storage, can produce the Hurst
phenomenon.

ARMA models were suggested by Carlson et al. (1970)
for modeling streamflow series and O'Connell (1971,
1974) suggested the ARMA(1,1) model for reproducing the
Hurst phenomenon. Extensive simulation experiments
were conducted to investigate the long-term character-
istics of this model by computing the rescaled range
ri* and observing the slopes of the "pox-dingrans"'r;‘

versus n. It was shown that the ARMA(l,1) model could

yield slopes of the order of those found by Hurst.

Further experiments carried out by Boes and Salas (1978)

and Salas et_al. (1979) indicated a strong transient

behavior of r;' versus n for the ARMA(1l,1) models, in
H

that ;:*-n ™ with H >>1/2 for n's that could be of the

order of 100-2000 and ultimately H“¢1/2 as n+= (we here
use H_of Eq. (1-15). In fact, they showed that ?;*

versus n results in an S-curve (Fig. 1-4), which may
be divided into three regions: (1) an initial region
with slopes somewhat greater than 1/2; (2) a pre-
asymptotic region with slopes much greater than 1/2;
and (3) the asymptotic region, or the region of ulti-
mate behavior, with slopes converging to 1/2. Also,
McLeod -and Hipel (1978) and Hipel and McLeod (1978)
demonstrate that ARMA models may reproduce the Hurst
phenomenon.

Shifting levels. As mentioned above, Hurst (1957)
himself tried to build a model that could reproduce

the Hurst phenomenon in geophysical series. His
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able, and appear as unique curves.) Taken
from Salas et al., 1979.

ingenious experiment with playing cards involved
shifts in the mean. Four different experiments each
of 1000 generated numbers were performed and then
analyzed, resulting in a plot of log r;' versus log n

that produced a Hurst slope of about 0.70, with a

break toward the asymptotic nlzz-law somewhere around
n = 1000. Hurst concluded that his experiment led to
time series very similar to the geophysical series he
had earlier analyzed. He was first to demonstrate
that shifting levels provide a possible explanation of
the Hurst phenomenon.

Klemes (1974) made a thorough review of the Hurst
phenomenon, including comments on possible physical
factors that could cause it. Among various causes he
followed Hurst and investigated the effect of non-
stationarity in the process "central tendency' by
simulation of random series with periodic changes in
the mean, and with means alternating randomly, His
results showed that the plot of r;* versus n yielded

slopes much greater than 1/2 for moderated n with the
slope tending to 1/2 as n+=, In discussing Klemes'
paper, Potter (1975) also reported experiments using
time series with shifting means obtaining similar

results to Klemes., Potter (1976a) extended the argu-
ment of shifting means as a physical explanation of
the Hurst phenomenon by analyzing six precipitation
records from the East Coast of the United States and
argued that nonstationarity of the mean is a viable
explanation (although later Potter (1978) seemed to
conclude that the apparent shift in the mean may be
attributed to nonhomogeneity). Boes and Salas (1978)
generalized the concepts of Hurst, Klemes and Potter
and proposed a mixture model for shifting levels. In
particular, they showed that special shifting level
models can have correlation structures identical to
ARMA models and consequently, since it is the correla-
tion structure that dictates the preasymptotic
behavior of the rescaled range, the shifting level
models and ARMA models have equal capacity for mimick-
ing the Hurst phenomenon.

1-5-3 Concluding Remarks

Extensive analyses reported by Hurst (1951, 1956)
and Hurst et al. (1965, 1966) of geophysical records
of lengths varying from 10 to 2000 years showed that

(r;fé;) = o with a mean value K * 0.73 and a standard

deviation of 0.092, On the other hand, Hurst's analy-
tical result with independent normal variables yielded

E[cRn] ~ nljz for n+= (this analytical result was later
shown to be valid for E(Rn}, E(Rﬁ] and E(R;')J. This

apparent discrepancy of a slope greater than 1/2 for
geophysical series and an asymptotic slope equal to
1/2 for independent normal series has become known as
the Hurst phenomenon. Two main interpretations of the
Hurst phenomenon have been postulated in the litera-
ture: (1) that the Hurst phenomenon is caused by the
supposition that geophysical time series have ultimate
or asymptotic slopes greater than 1/2, and (2) that
the Hurst phenomenon is caused by the supposition that
geophysical time series have slopes greater than 1/2
in the preasymptotic region, becoming 1/2 asymptoti-
cally. Based on these two main interpretations,
hydrologists and statisticians have analyzed and sug-
gested models to exhibit the Hurst phenomenon, and
sought for explanations. Research results appear to
indicate that transience may be the major reason for
the Hurst phenomenon, that transience is inherent,
even in independent normal processes but can be accen-
tuated by dependence (short memory or long memory),
shifts in the mean and skewness. Models within the
Brownian domain of attraction (autoregressive, ARMA,
shifting levels) yield Hurst slopes similar to those
found by Hurst for geophysical series, but asymptoti-
cally the slopes are known to converge to 1/2. On the
other hand, models outside the Brownian domain of
attraction such as Fractional Gaussian Noise models,
can yield asymptotic Hurst slopes between 1/2 and 1.



CHAPTER 2
EXACT AND APPROXIMATE RESULTS

In this chapter, where we concentrate by far the
greatest effort, will be found some exact and approxi-
mate results for the expectations, variances and dis-
tributions, for finite and infinite n, periodic and
non-periodic, dependent and independent inputs in each
of the cases that have been distinguished in the intro-
duction: The Range, The Conditioned Range, The Adjusted
Range, The Rescaled Range and The (maximum accumulated)
Deficit. The results also depend on the marginal dis-
tribution of the inputs, so where known, results will
be given under the following hierarchy of headings:
Preasymptotic results; independent inputs with constant
parameters; dependent inputs with constant parameters;
dependent inputs with periodic parameters; and marginal
distribution.

Much is well known, so will only be listed where
appropriate. Less well-known results will be enlarged
upon a little, and although the intention is that the
paper should be of a review nature, we have occasion-
ally succumbed to temptation and reported some new
work when we felt this would help the development;
this is clearly stated and acknowledgements are given
where appropriate.

2-1 Preasymptotic Results of the Range R,

2-1-1 Independent Net Inputs with Constant
Parameters

Bernoulli inputs. Let P[Xt = +1] = P[Xt = -1] =

E X, is then the classic one-dimensional
t=1

random walk.” Gomide (1975, Eqs. (4.22) and (4.23))
gave the explicit recursive expressions for E[R ] and
E[RZ] as:

EIRn*l]

8 3 Sn -

- E[R ] = v (1,1) + v (1,2)
2 k=K-1
- E[R]) = v (1,1) + v (1,2) +2 )

2
E[R ]
ek k=1

(v, (1,1) + v (1,2) - )

ju-n

[v, (23 (k+1) + 1,1)

+ vn(Zj(k+1) +1,2) - vn(Zj(kbl) -1, k-1)
- vn[Zj(k+1-1],kJ]}.

n n
where vn[r,t} = nc(n+r-t]/2(l{2) = nC(mt_r”z(lﬂ} 3

and K is a "very large number.'" Gomide gives a table
(his Table 4,2) for E[Rn] and var[Rn] forn=1,2,...,

100. He also gives an algorithm for the explicit
evaluation of the p.d.f. of Rn for a discrete input of

which the Bernoulli inputs are a particular case.

Binomial inputs. Let P[X, = i] = C( % +i}(m}"
" m m 2
for i = - % y = % + 1,...,0,...,5 -1, 7 Gomide

(1975) used this distribution with m = 100 as an
approximation to the normal distribution.

Normal inputs. Let xt be independent and normal

(0,1) distributed random variables. For this case,
Anis and Lloyd [1953] derived the result

10

» 7 o) Powpt] s w ) 2}

E[RJ-/—J e

’ (2-1a)
1—1
where R, = max(Sy,...,S;) - min(S;,...,8;). Equation
(2-1a) should read
E(R) = /,_ § o1 (2-1b)
i=1
when Rn = max (O’SI""'sn} - min {0,81,...,Sn}.

However, Anis' and Lloyd's formula can be written
in a more general form, based on Spitzer's (1957)
identity

(2-2)
j=1 j=1

where Oj(t) and ¢, (t) are the characteristic functions
of Mj and 5*, respectively; that is ej(t) = E {exp(i +

M)} and y;(t) = E {exp(d + s;)} and $] = max (0, 5,0
The above identity is actually valid even for exchange-
able random variables of any distribution function.
Based on the above identity, Salas (1972) demonstrated
that Anis and Lloyd formula can be written as

E[R)-ﬁ -

1 (var 51}1’2
i=1

(2-3)

Gomide (1975) derived the p.d.f. for Rn’ n=1,2
3, explicity. As f(R2} and f(RS] require evaluation
of ¢(+) (the c.d.f. of the standardized normal) no
closed form solutions exist for the evaluation of f(Rn),

n > 2, As an alternative, Gomide provided an algo-
rithm for the numerical evaluation of the p.d.f. of R
by binomial approximation.

Laplace inputs. Let X have a p.d.f.: fx(x) =

0}53 exp[-YZ|x|];-=<x<=. Gomide (1975) derived expli-

cit expressions for the evaluation of the p.d.f. of the
range for n = 1,2,3,4, and gave a recursive relation
for f(Rn}. Further, he derived the expressions for the

mean range

" 24
E[R]] = V2 121 2163 (1/2) ; (2-4)

and for the second moment of the range

E[R ] = 2 E Z i by /;v’jJ !
i=1 j=0

(2-5)

where bij are found from complicated recursive rela-

tions. He tabulated E[Rn] and var[Rn] forn «1,2,...,

30.



Exponential inputs. Gomide (1975) derived f(RnJ

analytically for n = 2 and numerically for n = 8, 50.

Stable inputs. Let x,xl,xz,...,xn,x,xl,xz,...,xn
be independent random variables with common character-

istic function y(t) = exp(-|t|") where 1 <y <2, X
then has a stable distribution with finite first moment
(for examples see Feller (1966)).

Moran (1964) showed that in this case
n

E[R ) = E[[X]] _Il st (2-6)
1=

In particular, when y =2, X is normally distributed.

2-1-2 Dependent Net Inputs with Constant
Parameters

Bernoulli inputs. Let P[Xt=+1] = P[xt=-1] = 1/2
and further, let P[Xt+1=t1|xt=t1] = (1+p)/2 = p, and
p[xt+1=:1|xt=¥1] = (1-p)/2 = q.
Bernoulli inputs X, form a Markov chain {X } with

s t
Xl =7, s=0,1,2,...

These correlated

corr[xt+s

Gomide (1975) found f(Rn) for this process for n

up to 1000 and for p = 0,0.3,0.6,0.8, and 0.9. He
demonstrated that the standardized range (Rn-E[Rn])/

fvar[Rn] of this two-state input process converged in
distribution to the asymptotic standardized range with
n as low as 100.

Binomial input. In this section new developments
are presented. Readers interested in the final numeri-
cal results should proceed to the end of the section.

m m. m

Let P[X =i] = mc{%i'i] [%gm’ § i -%- 5 +1,.0 03 Lim,
and let L = pI + (1-p)pl' be the transition matrix of
the homogeneous Markov chain {Xt]. Hereafter in this
section, p = {P[Xt=i]} is the equilibrium vector mar-
ginal distribution of xt, 1 is an (m+1l)-square iden-

tity matrix and the 1' is a row vector of m+l ones,
where the prime denotes the matrix transpose. It can

s
t+s,xt] = p”, 8=20,1,2,... If we
define v' = [-m,-m+1,-m+2,...,m-1,m] and V = diag(v),

2 2 o
then E[Xt] =v'p =0; L E[Xt] = v'Vp and E[xt+1xt] =
V'LVp = v'[pI + (1-p) pl']Vp = pv'Vp + (1-p)v'p 1'Vp =

be shown that corr[X

2
a”.
P %%

Further as L2 = [pI ¢

(1-p)pl']

2
2p(1-p)p1"' + (1-p) pl'pl’

+

= pz_[
= pZI + (29»292+1-2p+pz)p1' (as.

1'p = (1))

= ol1 s apdp1r

then corr[X . _,X ] = ps as asserted.

T+t
then the discrete analog of the lag-ome autoregressive
normal process, and the approximation improves with an
increase of m.

This process is
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It has been demonstrated by Gomide (1975) that
for independent binomial inputs the standardized
range (Rn - E[Rn]]/iVarIRni converges (in distribution)

to the asymptotic distribution for n as low as 6 when
m = 100. For moderate n then, it is sufficient to
know the standardized asymptotic p.d.f. of Rn together

with E[Rnl and var[Rn] for an adequate description of

the distribution of the range for arbitrary p, and the
results for the dependent binomial input converge to
those of the dependent normal (autoregressive) process
when m or n is large.

In this section, an algorithm for computing E[Rn]

and var[Rn] for dependent binomial net inputs is given.

The method is an adaption and extension of the Gomide
(1975) algorithm and leans heavily on his theoretical
treatment.

The key equation is Gomide's Eq. (4.9), which
applies to independent and dependent discrete inputs
equally well, namely

PIR =k] = 1&31 @ 2&&“) + Aﬁfi (2-7)
where
kK k
WMy T a™ s, (2-8)
el 351

k
and " X qin) (s,u) denotes the probability that the
s=1

system [Sn] does not reach the boundaries (states 0

and k+1) in the first n steps given the initial state
u.ll

In the independent input case qk(s,u) is an ele-
ment of the k-square '"restricted" transition proba-

n
bility matrix Q of a Markov chain {Sn : Srl = tzl Xt}
where the states 0 and k+1 are taboo states. Thus

qk[n}(s,uJ is the (s,u) element of the matrix

(g (s,w 1" = Q.

In the case of dependent inputs we interpret
(m) ;
a4 (s,u) as Pist+n ey < k+1:
i+0,1,2,...,n] and it remains to define this conditional
probability. To accomplish this, we treat the problem
as one where {St,xt} is a bivariate Markov chain.

= u|St =5, 0<8

Let qsi|uj = P[St+l %y Xy ® 1[St »uy Ky il
(s,u=0,1,2,...,k+1; i,j = 0,1,...,m; t = 0,1,...) be
the conditional probabilities of the bivariate homo-
geneous Markov chain {st,xt}. Inadmissable transi-

tions will result in the values of q being zero.

si]uj

The joint probability P[St+l =5, X =i, St =

t+l
si|uj POy =l X 3] =
uj P[Kt = j] because Xt is independent

u, Xt = j] can be written as q

s |uj Fiey
of St'

T ————

PR —————



Then P[S,,, = s|S, =ul = { [ P[S,,, =5, X, =
i, S, =u, X = jl} /R[S, = 2 A; |uj PIS, = vl
P[X, = j1M/P[S, = E {qs1]u3 P[x = j]}.

By similar reasoning, it is found (by employing
the Chapman-Kolmogorov theorem) that
s[S,=u, 0 <S__

P[S g S k+1, i=0,.,...,n]

t"‘l’l

(i.e. the probability that St+n = s given that St

without any intermediate S-values reaching either of
the boundaries 0 and k+1)

Z qi?iuj 3]

(n)
si uj
of the "restricted" (to state s = 1,2,...,k) n-step
transition probability matrix (t.p.m.)

lo, @-

The matrix Qk is defined as follows. The net

Here, the conditional probability q is an element

[

input process {X } is an (m+1)-state Markov chain
described by an (m+l)-square t.p.m. L such that Lp =
p; 1'p = 1. L can be written as L = I._W2 + L-m12+1
e Lij-l . l..w2 (for m even), where Li is an (m+1l)-

square matrix, void except for the column correspond-

+

ing to the state i € {- l“/2,..., ....,m/2}

Now since attention is restricted to the states
§=1,2,...,k, the nature of states 0 and k+l is
1mmaterlal hence the restricted transition matrix Qk
becomes:

- : -

Lo L-l L-Z L-k‘l
L, b Ly L xe2
= L L Lkes

LLk-l Lk-2 Lk-3 LD

where Lj =0 for j > m/2 (if m/2 < k-1). One further
definition is required and then the algorithm for the
evaluation of AﬁnJ follows immediately.

Let = = [p'" p' ... p']' be a k(m+l) element vec-
tor consisting of k identical vectors p, then the
scalar

W e 1@

where, in this context, 1' is a row vector of k(m+l)
ones performing the necessary summation.

For any particular choice of n, we assemble k(n}
for k = 1,2,..,K, where K is chosen so that A(n)
[f} = l+e where |e| < 10 12t Then (Gomide 1975,

Eq. 4-12)
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E[R ] =K - xﬁ“} + (2-9)

and

var[R ] = 2 E A LAl gl (2-10)

i=1

which is more convenient than Gomide's (1975, Eq. 4.12
combined with his Eq. 4.13).

To get reasonable approximation to the normal
distribution, m must be large, especially for small n.
Exploratory computations yielded the following table
for var[ﬂz] as a function of m. The value correspond-

ing tom = = is Gomide's (1975) result (p. 24).

m 4 16 100

Var[Rz] 0.6619 0.6157 0.6023 0.5997

Thus for small n, if a binomial approximation to
the normal is desired, m must be set 100. A
straight-forward application of the algorithm requires
a Qk which can be up to 5000-square! Exploiting the

sparse and patterned nature of Qk' the computation can

be compressed to one in which the largest matrices are
of the order of 5000 elements. Even so, one is
daunted by the amount of computation required for the
evaluation of E[Rn] and var[Rn] for large m up to

large n, which explains the censored appearance of the
following Table 2-1 of results.

Table 2-1 E[Rn] and Var[Rn] for binomial inputs.
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Table 2-2 gives the results for m = 4 and p = 0
extended to n = 1024, The first row (m = =) is com-
puted from Anis and Lloyd's (1953) equation for inde-
pendent normal net inputs.

Table 2-2 E[Rn] and Var [Rn] for the dependent bino-
mial from Eqs. (2-9) and (2-10).

n 64 128 256 512 1024 (m

E[Rn] 11.650816.9241| 24,3920 34.9606 |49.9119| =
ER,]

fvar{Rn]

11.5355)16.8052|24.2706|34.8372 [49.7813| 4

3.8399| 5.3979| 7.6210(10.7686 (15.2227|4

Gaussian inputs. Because of the labor and com-
plexity of the mathematics involved, there are very
few exact results for E{Rn], var[R“] and f[Rn] for

finite n in the case of dependent Gaussian processes,
and these are confined to small n. On the other hand,
a large amount of simulation of varying degrees of
approximation to the exact results has been performed
and reported on.

Arbitrary correlation structure of normal inputs.
Salas (1972) derived exact expressions for E[Rn] for

n=1,2,3 when Xl, XZ'

distribution with general mean and covariance. He
considered as special cases exchangeable and first-
order autoregressive random variables. The expres-
sions are rather unwieldy and will not be reproduced
here. For comparison purposes we single out his
expressions in the autoregressive case.

xs have a multivariate normal

Autoregressive lag-one model of normal inputs.
Salas (1972) gave the following expressions for E[Rn]'

3 = =
n = 1,2,3 when corr[xt*s,xt] =0, 09 =1, u =0

E[R;] =/

2 1
eiRy) =/ 2 (1 vk /T

E{R_{} '/g {[% + g—“ - arctan(l+p)] +
2
+ '2[1+0)'[% + %i" arctan -2*20°0 ] +
2pv2(1+p)
' /(3+4p+292).[% " %F . ;
arctan (_[123_2_)]] (2-11)

3+4p+2p

Extending Salas' work, Troutman (1974) derived the
expected range for n = 4 as

—
E[R,) -/E- 3 epri”t Aarsy

(2-12)

(1+p}[2+n+pz}
/2(1+p+pz]

|-

where cl = arctan

Y

2
+.—-—-a‘rctmg:-.°:£-—)+l

2r V2420402

arctan (1+p)
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3.1, 2/(1sp) (1049’
¢, =3 - 37 * arctan D—z——l
1 J2+Zp+p2
- ? arctan —m—————
v2(1+p)
- "I]? arctan —*———29(2*2;)
(2+20-p%)
3 3 n(1+o)2
c3 = % - -i? arctan

f§(1+0+02}[3+4p+292]

3 2+2p+p
- 32 arctanl%V————————

3+4c+292_

arctan

u‘3+4p+2p2
AT

3
“* (1+p)

2 3 4
+ 1 arctan [ 1e2pedp +2p *p ]
L 2Y(14p) (2+p+p2) (1+p+p?)

(g
&

]
| -

(1+p)3(2+p+02)

+ %-arctan 3
2(2+2p+p")

with var[Sl] =1, var[Szl - 2(1+;}, var[Ssl =3+ 4p +
+ oz. and var[84] = 2(1+p) (2+4p+p ).

Salas (1974) and Troutman (1974) used the above
formulae to check the following very close approxima-
tion (hypothesized by Yevjevich, 1967) to the exact
values of E[Rn]

(2-13)

E[Rn] ¢/?'_ =

]

i_lfvar[si] 4

i=1

which is exact for the case of independent or exchange-
able (see Eq. 2-3) random variables Xl, xz,...,xn, as

shown by Boes and Salas (1973). Salas (1974 and
Troutman (1974) found that the approximation was to
within 0.1% for E[R;] and 0.2% for E[R,], respectively.

Troutman (1976) showed, inter alia, that Eq. (2-13)
for E[Rn] holds exactly as n** in any case where the

correlogram of X, is integrable and where UR 0 and

2
0 < g. v,

Sutabutra (1967) had suggested (based on his
simulations) that Eq. (2.11) may be a satisfactory
approximation to the expected range of a first-order
autoregressive process. Yevjevich (1967) showed with
extensive simulation that this was indeed the case
and showed further that it applied equally well in the
case of a second-order autoregressive process and a
first-order moving-average process.

Results for var[Rn] are harder to come by. Salas

(1972) derived E(Rg) and Var(R,) for the AR(1) model
as



2 1/2
E(Rg) = 2(1+p) + 3{1-9“) o (1+iﬂ)
, 172 :
arctan [&E-D-)—-] ; (2-14)
and
, )t/ 1/2
Var(R,) = 2(1+p) - A [3(1-p) ' -
- (1+p) / - 23] - .(1+29.l
1/2
arctan [-—‘—“—L—-] (2-15)

The results in Table 2-1 appear to be the first

attempt to get analytical approximations (via binomial
approximation) to the variance of the range of the lag-
one autoregressive (AR(1)) input process for n > 2.
Salas (1972) also demonstrated by simulation that
var[R ] was apparently linearly proportional to n.

Gomide (1975) showed that a linear relationship
between var[Rn] and n holds to a high degree of

approximation for the case of independent normal inputs.

Table 2-3 compares the expression

1+p

var[R ] # 0.2261 )

*n (2-16)

shown by Troutman (1976) to hold asymptotically for
AR(1) processes with the binomial approximations of
the previous section (Table 2-1) given in the upper
and lower line respectively for each p.

(2-16)

(upper line) with those obtained from the
binomial approximation (Table 2-1) (lower

Table 2-3 Comparison of var[R“] from Eq.

line).
n 2 4 8 16 32

p= 0 .4522 .9044 1.8088 3.6176 7.23852
L6023 1.0519 1.9533 3.7667 7.4343
p=0.1 .5527 1.1054 2.2108 4.4215 8.8430
.6936 1.3101 2.4850 4.7603 9.2185
p=0.3 L8398 1.6796 3.3592 6.7184 13.4368
8727 1.9432 3.9374 7.6038 15.7998
p=0.5 1.3566 2.7132 5.4264 10.8528 21.7056
1.0478 2.7649 6.2845 12.6836 24,0031
p=0.7 2.5625 5.1249 10.2499 20.4997 40.9995
1.2184 3.8142 10,3768 23.7296 47.2230

From an examination of the results for the depen-
dent binomial process of the previous section, it will
be seen that these results are upper bounds to the
values of the variance, whereas for higher n and p
values we can be sure that the asymptotic formula pro-
vides a lower bound. Nevertheless, as n becomes
large both approximations will improve. (They both
converge to the true variance as n+=.)
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For practical purposes then, the distribution of
the range of the important class of linearly dependent
Gaussian processes can be computed with fair accuracy
from reasonably simple formulae, (or the tables herein)
together with Feller's (1951) expression for the
asymptotic p.d.f. of the range:

RO =8 %60, as0,  @an
J'

where R = Rn/ch; and ¢(-) is the standardized normal

p.d.f.; see Section 2-2-1.

Exchangeable random variables. When corr(xi,xj]-

=p for i,j = 1,2,...,n; i # j, the xi are exchange-

able or symmetrically correlated. Based on Spitzer's
(1956) lemma, Salas (1972) demonstrated that the fol-
lowing result holds for exchangeable normal summands
forn - 1,2,3:

EIR,] -V@ i)=:1 Aar(s,)

Boes and Salas (1973) showed that this expression
holds for any m and for an arbitrary degree of
development, o, The case of full development (a = 1)
coincides with the problem of the range considered
here, and in that case

(2-18)

var(si) = ai « i[1 + p(i-1)] , so that

N R R U R R

2-1-3 Independent Net Inputs with Periodic

Parameters

Little work has been done to determine the range
properties of independent net inputs with varying or
periodic parameters. The analytical results available
are those of Salas (1972). He derived the expected
ranges for n = 2 and n = 3 for independent normal

variables with variances clz, 622 and 032 as

ER,) = \E [é.' v, % Mg s ';" ("12 * c’22)1/21 * (2-20)
and
E(R,} .E {7(o,40,%0,) + 7 [(0 wg) 12,
+(u + 33]1/2 (Uf +02 +0 3]1/2] +
+ 0 E%-arctan (§§J . 03 E%-arctan (;33 *
+ (ui + 0, +c§]1/2 E%
arctan ( 103 )}. (2-21)
cz[oi + cg + ai}llz



As may be observed from the above equations, E[Rn]
becomes a complex function of af, ai and ai,
increases. Salas proposed a simple approximate equa-
tion containing the variances of all possible combina-
tions of partial sums as

as n

7 I s=1 [2} 1/2

2 [= oo

0 izl ) J'Zl NS (2-22)
1

where (Si)j denotes the j-th sum of size i out of (2)
possible sums. In other words, for given values of n
and i, there are (?} possible ways in which Si may be

formed. For example, for n = 3, Eq. (2-22) becomes

E(Ry) =‘/-§— {(Var 51)1/2 " é- [Var sz}i/z + (Var 52);/2

1/2
3

+ ar 5,012 + L (var 53)1/-2}

which in terms of the variances of the summands
becomes

2 1
E(Ry) =\/;{c1 2 1t el T

Z 2) 1/2

AR % o 2 2 2.1/2

1 +3 (0 +0;7 +0,)" . (2-23)

It may be shown that Eq. (2-22) leads to the Anis and
Lloyd Eq. (2.1) if 9) =9, =09; =0. The approxima-

tion of Eq. (2-23) with respect to the exact Eq. (2-21)
was checked for various combinations of values of 9y

gy and Oz
+ 1.0%.

For all cases tested, the error was within

The approximation of Eq. (2-22) was also tested
for increasing, decreasing and periodic functions of
the variance of the summands and for various values of
n (Salas, 1972). In these cases, the comparison was
made between the E[Rn] computed for Eq. (2-22) and the

corresponding values obtained from computer simulation.
The results obtained were good as may be observed in
Fig. 2-1 for the case of increasing variance, Fig. 2-2
for the case of decreasing variance and Fig. 2-3 for
the case of periodic variance.

Although the approximation by Eq. (2-22) is very
good, its evaluation takes much computer time for
large n. Salas (1972) found further approximations.
For instance, since Eq. (2-22) requires that, for
given n and i the average of the standard deviation of
all possible sums of size i must be computed, instead
one can take a random sample of a given size, say 100,
out of all the possible sums of size i and then take
the average over the sample size. Using this idea,
Salas gave the equation

n =1
E(R) = ﬁ Z 1 ]1/2
R =

, (2-24)

I ~13

[Var (Si}j

j=1
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AOrE{R"}'Fn
Computed by Eq. 2-22
o  Computed from Simulated
304 Samples
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i i}
B
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01 23 485 6 7 B3 o2
Fig. 2-1 Comparison of mean ranges obtained from simu-

lated samples and the expected values of
range computed by Eq. (2-22) for independent
random variables with standard deviation
increasing with t (Salas, 1972).

E{Rn} » M
Computed by Eq. 2-22
o Computed from Simulated

30F Samples

20 o
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1 2 34 56 7 8 9 101l |2
Fig. 2-2 Comparison of mean ranges obtained from
simulated samples and the expected values
of range computed by Eq. (2-22), for inde-
pendent random variables with standard
deviation decreasing with t (Salas, 1972).

i3 _E{Rn}- n 27030

Computed by Eq 2-22

40 . Computed from Simuloted Somples

slegl =3.28

A

L
-] i 2 3 4 5 &
L

n
L s il il | L ) . L
12 13 14 15 18 IT 18

a0 2 3 & 8 & 7T 8 9

1 L
o

Fig. 2-3 Comparison of mean ranges obtained from simu-
lated samples and the expected values of
range computed by Eq. (2-22), for non-
stationary exchangeable random variables
(Salas,1977).

where m denotes the sample size of the sums computed
and the subscript j denotes a particular realization
of the sum of size i taken at random. He also tested
the approximation of this equation concluding that for
practical use of this procedure a compromise should be
made between the accuracy of results and the amount of
computer time required, both of which depend on the
size of the sample considered.



Another equation suggested by Salas (1972) for
estimating the expected range of independent variables
with varying variance is

n
E(gn} = /% 8, I i-IiZ

(2-25)
i=1
with §  defined by
1 2 2
8 = f= ] L

n n Tgl 1 (2-26)
where ci denotes the variance at time t. For the par-
ticular case of periodic variance ci with T = 1,...,®

and w the main period (say w = 12 for monthly values),
Eqs. (2-25) and (2-26) give

2‘}1 ¢ 2 3 .2
E[Rn] 'J; Ergl % izl 2 .

Equation (2-27) is the same as Eq. (2-25) only for
values of n = pw, say for n = 12,24,...,12p with p an
integer and w = 12, However, as n becomes large,

Eqs. (2-25) and (2-27) yield similar results. The
goodness of the approximation of Eq. (2-25) is tested
by comparing results obtained by this equation and by
computer simulation. The results are shown in Fig. 2-4
for the cases of a linear increase and a linear decrease
of variance and in Fig. 2-5 for the case of periodic
variance.

(2-27)

IOﬁUrE{nn} 4 rn
== Computed from Simulated Sampies
*  Computed by Eq 2-25
S00p
ocr
5o}
o i i L
=] 50 100 500 000

Fig. 2-4 Comparison of mean range obtained from simu-
lated samples and the expected range computed
by Eq. (2-25) for independent variables with
standard deviation: (1) increasing with t,

and (2) decreasing with t (Salas, 1972).

2-1-4 Dependent Net Inputs with Periodic
Parameters

The results of a systematic study of basic charac-
teristics of the expected range of dependent net inputs
with periodic parameters, carried out by Salas (1972),
are reported herein.
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1000, -
({Rn} 1 'n
Computed from Simuigted Sompies
® Computed by Ea 2.25

Fig. 2-5 Comparison of mean range obtained from simu-
lated samples and the expected range computed
by Eq. (2-25), for two cases of independent
variables with periodic standard deviation:
(1) 8} = 5 and s(ar] =2.79, and (2) T_ = 10

and s(ut} = 6.87 (Salas, 1972).

Model with periodic variance and exchangeable

dependence.

=1,...,0 (w is the period), and equal autocorrela-
tion coefficients Pp =P for any lag k (exchangeable

A model with periodic variance Uos B

or symmetrically correlated random variables) may be
written as (Owen and Steck, 1962)

Xy ® O o €, * Y10 €,) (2-28)
where €, and €, are independent normal variables with

mean zero and variance one, both uncorrelated. Salas
showed that Eqs. (2-22), (2-24), (2-25) and (2-27) are
good approximations for the expected range of summands
derived from Eq. (2-28). For instance, a good approxi-
mation is obtained between the expected range computed
from Eq. (2-22) and those obtained from computed simu-
lation for p = 0.30 andatuith U} = 5, and 5[01) =

= 3.28 (Fig. 2-3).
Autoregressive model with periodic coefficients.

AR models with periodic (seasonal) autoregressive
coefficients may be written as (Salas, 1972)

P
- jzl b oos Ricay T8 s (2-29)
p P
. 1/2
withb, » (1= F % # .o ¥ s Pl sl ccgd o
T jo1 o1 bt e |i-j|,T-%

£ = max (i,j), where ’j ¥ is the periodic autoregres-
»

sive coefficient of order j and time T, Dj . is the

periodic autocorrelation coefficient, p is the order
of the model and L. is the independent normal vari-

»

able with mean zero and variance one. Salas used
Eq. (2-3), (valid for exchangeable random variables
and shown to be an excellent approximation for AR

models with constant autoregressive coefficients) for



approximating the expected range whem the inputs are

AR models with periodic parameters as in Eq. (2-29).

Therefore, using Eq. (2-3), the expected range may be
written as

E[Rn]==JP a Z Al £

i=1

i-1 i-t

+2 E Z b
t=1 usl js1 Tk

1/2

pu-j,t)] (2-30)

where t = (p-1)w + T and p (u-j,t) is the periodic
autocorrelation function which may be determined from
an extension of the Yule-Walker equation given by
Salas (1972, p. 13).

The validity of Eq. (2-30) was tested by computer
simulation for AR(1), AR(2) and AR(3) models and vari-
ous cases of periodic parameters. Figure 2-6 gives a
good approximation between E[Rn] computed by Eq. (2-30)

and those obtained by computer simulation. It also . .
shows E[Rn] to be greater for AR(1) models with peri-

odic parameters than for AR(1) models with constant
parameters.

Autoregressive model with periodic variance and
constant coefficients. AR models with periodic vari-
ance and constant autoregressive parameters are
expressed by

P

R U [jzl ¢j by b Ev,r] 7 (2-31)

with
1/2
b-[l—I£¢¢ W
i=1 j=1
where ai is the periodic variance of X, ¢j is the
is the

j-th constant autoregressive coefficient, pj
constant autocorrelation coefficient of order j, oy
»
1/01 and
€ is an independent variable with mean zero and
variance one. Computer simulation by Eq. (2-31), car-
ried out for p = 1, periodic ¢  with 0 = 5.0 and

S(o_) = 2.79, and autocorrelation coefficients p = 0,
p=20.3,p=0.6and p=0.9, gave the expected ranges
presented in Fig. 2-7. The mean range is an increas-
ing periodic function, with the same period as for o_

is the standardized dependent variable x
?

and maximum amplitudes that are out of phase with
Tespect to o_. Salas (1972) gives an approximate

equation for the expected range as

n

2 o~ B -1/2 = =
E[R ] =V;- 6 I i SO G
i=] i=1

1/2
(var Si) -

i‘le]} (2-32)

1

]
|I'M:1

1

is defined by Eq. (2-26),
the periodic standard deviation and var(Si) is the

vhere o_ E} is the mean of
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variance of the partial sums of AR summands with con-
stant autoregressive coefficients. The approximate
mean ranges of AR models obtained by Eq. (2-32) with
ﬁ} = 5.0, S(UT] = 2.79 and p = 0.6, and with E;: 10.0,

S(e.) = 6.87 and p = 0.6 were compared with those

directly obtained by simulation, with a good agreement
(Salas, 1972).

Ehg.r 2)
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L Samples(ims=
14F o 36001
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] o] .
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Fig. 2-6 Comparison of mean range obtained from simu-
lated samples and the expected range computed
by Eq. (2-30) for the first-order Markov
model with Ei = 0.60, and: (1) s(p, ) =

P o 1,1
= 0.0; (2) 5(01,1) = 0.102; and (3) 5(91’1) =

= 0,207 (Salas, 1972).

x 2030
S
160 n
1HoF
120F
#0060
100F
[+l pa030
£o0
s0f
ek
a0 Fpe80, slogs2.79
&y
20p
g . | s
(=] (=] 20 30

Fig. 2-7 Mean range obtained from simulated samples

for the model x =g {x
P»T

P,T- 1 n,T
with periodic standard deviation o and con-

stant first autocorrelation coeff1c1ent p
(Salas, 1972).

Autoregressive model with periodic mean, periodic
variance and constant autoregressive coefficients. The
model is

8 E ¢ ¥b ]

xv.r = He ¥ j=1 j v T-]j T » (2-33)

where Mo is the periodic mean, zv & is the standardized
dependent variable {xv -| )/G and the other terms as

defined for Eq. (2-31). Salas (1972) computed the
expected range of net inputs equal to X, T-ﬁ; by simu-
El

Tacts i

s P

ShaE e




lation, showing that differences between 5“ of net
inputs of Eq. (2-33) and En of net inputs of Eq. (2-31)

are constant, or independent of n after a short tran-
sience and also independent of p, but are dependent on
the standard deviation s(uTJ, on the mean E} and on the

standard deviation s(ut). of

results obtained by simulation. T

n

Figure 2-8 is an example
They show that the
of AR net inputs with parameters u_, o_and p can be

made up of two parts, the deterministic part, as a

function of s(uTJ, G and a(ﬁ}], and the stochastic

T
part, as a function of E;, p(or), p and n.

800F I=
1"n slugl=12,40 .
i o
00} ot
o sl 200
sook Determimistic Siorages '
S,[s!pﬁ.&r.slw,l]
500}
S . i
400} /Slor. astic Storoge s,[&r,slerl.p_n]
om0, _ o
300} RS T - =
4203
s i L i L L n
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100 1 i I i i i i i i I L PR |
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Fig. 2-8 Deterministic and stochastic storage capaci-
ties in case of inputs with periodic mean Hos
periodic standard deviation o, and constant
serial correlation coefficient p with 51 =
= 10, s[cT) = 6.87 and p = 0.60 (Salas, 1972).
2-2

Asymptotic Results of the Range Rn

2-2-1 Independent Net Inputs with Constant
Parameters

Input distribution belonging to the Brownian
domain of attraction and no drift. Results of this
section appeared originally in the initial pages of
Hurst (1951) and Feller (1951) on this subject.

Recent derivations utilizing so-called weak convergence
theory appear in Troutman (1976), (1978) and Siddiqui
(1976); these works will be followed here.

Results are complete in the sense that the asymp-
totic distribution from which asymptotic moments can
be obtained, is known. Let

r
Fa(r} B [£ fR (z) dz] I(O,“)(r) 4 (2-34)

where (as in Eq. 2-17)

£,(2) = [8 |
R P

-J/ze-uzxz_

0T eGn) 1 @) @39

and ¢(u) = (2m)
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FR{-) is the c¢.d.f. of the range in the continu-
ous time standard Wiener process or Brownian motion.
For independent net inputs {X } with u = E[Xt] =0

and belonging to the Brownian domain of attraction,
the following holds:

lim P[Rnlanllz

e

2p] = FR(‘I.'] (2-36)

where, as before, Rn is the range and 02 = var [xtl.

As E[R] = 2(2/m)*2, then
1/2

E[R,] ~ 2(2/mY? on : (2-37)
and as E[Rz] = 4 ¢n 2, then
var [Rn] - [(4n 2)-(2/m)] 402n " (2-38)

The first two moments of R are not obtained by
termwise integration of Eq. (2-35); rather Eq. (2-34)
is first expressed in the following alternate form and
then integrated.

£,(0) = 46(x) + 4§ 123-D? s[@i-D1] +
J:
v (25+1)% 3[25+1)1] -
2 .
- 8j" ¢(2jr)} I(u’“)(r) .

Input distribution belonging to the Brownian
domain of attraction with drift. Assume now that
{Kt}is independent and identically distributed with

E[Xt] =y > 0 and var [Xt] .0 % =, It is intui-
tively clear that E[Rn} should grow with n rather
than “1/2. In fact, E[R ] > E[|8n|] > lE[Sn]l =
=n|E[X,]| and E[R ] < 25[? %11 = 2n B[ X ] (see

Boes and Salas (1973)).

The main result is given in Troutman (1976) as

: R - nu
lim n ] =
L s . A ®(r) (2-39)
v(n/E[J])

where #(-) is the standard normal c.d.f., J is the
first index j > 1, for which Sj >0 and v
= var[SJ-uJ]. So we see that Rn is asymptotically

nornially distributed with both mean and variance
increasing with n.

Stable inputs.
showed that

As previously stated, Moran (1964)

n
B[R ) = (x|} ] 1 /M1 (2-40)

i=1
for X, Xl,..., Xn,... independent random variables

with common characteristic function exp [-lt|*] where
l <y <2, Such X has a symmetric stable distribution.
From Eq. (2-40) it follows that

E[R ] = v E[|X|]n™/Y . (2-41)



For 1 <y <2, 1/2 <1/y <1 so E{Rn] "can be made to
grow asymptotically like nh for any 1/2 < h < 1 even
for independent net inputs."

2-2-2 Net Inputs with Constant and Periodic
Parameters

Dependent, periodic inputs belonging to the
Brownian domain of attraction. Dependent stationary
inputs can be treated as a special case of the more
general dependent periodic inputs by following
Troutman (1976) and (1978).

Suppose now that the input process {Xt} is

eriodic of period length w in the following sense:

P P g

(Xt . xt ,...,Kt ) has the same joint distribution as
1 2 j

[xt1+hm’ xt2+hw""’

xt.+hw] for any time indices

tl,...,tj and any integer h. In particular, if we are

dealing with monthly values and the period is one year,
then the period length w = 12; also, the definition of
periodicity would say, for instance, that the joint
distribution of May and July of one year would be the
same as the joint distribution of May and July of any
other year.

. 2
Define E[Xt] =, var[xt] =0, and

t 2
corr[xt, xt+L] = px,t’ £=0,1,2,...,with Uys Ts and
Py, all periodic in t of period length w. Set

w w
vl ) ou adelawl ] 62, (2-42)
T T
T=1 =1

: 2
the average values, respectively, of e and o_ over

one cycle., Now define
& (2-43)
' = -
X3 L%
t = (p-Dutl
which is the total net input over the pth cycle. Note

that the sequence {X'} will be stationary and in gene-

ral dependent. w = 1 reduces the periodic dependent
input to stationary, dependent input.

The type of dependence allowed for in the depen-
dent periodic input {xt} is constrained by the type of

dependence allowed for in the {X'} process, and the
type of dependence allowed for in the {Xﬁ} process is

quite general, yet complicated enough mot to take the
time and space to delineate it here. Suffice it to

say that it encompasses the traditional ARMA-processes,
Markov chain processes, log-linear processes, etc. For
details, refer to Troutman (1978) who in turn refer-
ences Billingsley (1968), a text on weak convergence
theory. Essentially, the type of dependence permitted
is restricted by the types of dependence sufficient

for application of the weak convergency theory. Let
FR['] be as in Eq. (2-34). The main result is the

following.

Let X, be periodic and dependent as specified
above with I = 0 (no drift) then
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i/t < 1) = B () (2-44)

(2-45)

[n} o
where 72 T 1 J oo By

t=1 =1 * T+

and it is assumed 0 < 72 < @,

One notes that the specification of the periodi-
city and dependence enters only through ¥ = 0 and the

scale parameter y. If w =1 (non-periodic), Tz is the
sum of the covariance function. Thus, for example,
if {xt} is assumed to be stationary AR(1) process,
l+p
1-p1 cz, and one can readily see the influ-
1 :

ence of the dependence. It is important to observe
that dependence or periodicity enters the asymptotic
distribution only through the first and second order
moments! Results for drift (U # 0) are available,
but not presented here. See Troutman (1976).

2
then ¥y~ =

Exchangeable random variables. Assume that {X_ }

are exchangeable or symmetrically correlated; that is,
xl""’xn are exchangeable random variables if any
permutation, say X. ,...,X, of X,,..
i i 1
joint distribution as Xl....

.,Kn has the same

X . let p = corr[xi,xj}

for i # j. If a sequence {Xt} is to be exchangeable,

necessarily p > 0. For p > 0, exchangeability forces
a strong (long memory) type of dependence and as such
it manifests itself in rapid growth of E[Rn]. Boes

and Salas (1973) showed that for exchangeable normal
random variables with u = 0 (no drift)

n
E[R] = 2"? I [+ 22gal/2 (2-46)

2r i=1

which implies E[Rn]—constant times n. That is, one
gets the same rapid growth of E{Rn] with no drift and

strong dependence that one gets with drift in the weak
dependence case.

Fractional Gaussian noise. A long-memory sta-
tionary stochastic process, known as fractiomal
Gaussian noise, (FGN), was introduced into hydrology
by Mandelbrot (1965), and has been recently studied by
several writers, including Lawrence and Kottegoda
(1977) and Mcleod and Hipel (1978). Mandelbrot and
Van Ness (1968) and Mandelbrot and Wallis (1969 a,b,c)
present the initial analytical treatment, and in
particular showed that the correlation function at lag
% of FGN is given by

2
b, = (/2 [ 1) 20 (p1)
for 0 <h<1land®=1,2,...., Such correlation func-
tion damps with increasing lag but at such a rate that
it is not summable for 1/2 < h < 1. Here h is a para-

(2-47)

meter of the model. Furthermore,
h
E[Rn] gm0 ShR 1l (2-48)
where a is a constant not depending on n. Equation

(2-48) is the principal result from the theory of frac-
tional Gaussian noise relating to this paper. It shows



that asymptotically E[Rn] can be made to grow like

" for 1/2 < h < 1, which certainly includes the expo-
nents observed by Hurst. Indeed, FGN is sometimes
referred to as the model of Hurst's geophysical series.

Here we see that-nh growth of E[Rn], with 1/2 <h < 1,

is possible with a strong type of dependence (long
memory) and not heavy tails} in the previous subsection
similar growth of E[Rn] was possible with no dependence

but heavy-tailed stable distributions.

2-3 Preasymptotic Results of the Conditional Range cRn

Only two studies have been made of the conditional
range as far as is known to the writers. The first was
by Hurst (1951) for the case of independent inputs and
the second for dependent inputs was by Gomide (1978)
(where the conditional range is first defined). (The
latter publication grew out of Gomide's (1975) earlier
work where the conditional range was incorrectly called
the adjusted range.)

Basically, the conditional range is [Rn|Sn = 0],

n
i.e. those cases of the range where Sn - Z Xi = 0.
i=1

Clearly, this conditioning limits the study to dis-
crete random variables (although one could of course
define cRn for Gaussian processes by binomial approxi-

mation in the limit).

Thus let csta-[[)(1+1c2+...+xt}|sn=o]; 7 R, 1)

M =max(0, S,, S,,...0 S )
cmﬂ-min[ﬁ,csl,csz,...,csn_l).
Then cRnsan is the conditional range of partial ial
sums of Xt.

Hurst (1951) implicity compared the behavior of
E[ckn] with that of ?;*. The validity of this compari-

son is discussed by Gomide (1978), who demonstrates
that the approximation is fair for simple cases of
dependence when n is large.

2-3-1. Independent Net Inputs with Constant
Parameters

Consider Bernoulli inputs such that P[Xt-:}] =
%u Hurst studied this process and derived the fol-

lowing result (Eq. 1-7) which obviously only holds for
even n:

P
E[R] = (1—)- 1. (2-49)
-2 nn/2
2-3-2 Dependent Net Inputs with Constant
Parameters
Consider as before Bernoulli inputs such that
P, = £} = % and further let
P[xt-ﬁl = llxt = -_I:l] = (1+p)/2=p and
p[xti»] = llxt = 11] = (1 -p)/2= q = l-p.

20

So let {Xt} be a two-state Markov chain with
corr[xt+5,xt] = ps; s wiD 1200 E[xt] = 0 and
var[xt] = 1.

Gomide (1978) studied the conditional range of
this input process and showed that

E[R ] = K - v(™/p[s, = 0] (2-50)

where K is large enough to ensure P[cRn < K] =1, and

a1 B2t po2.c
P[5n=°] = p ’E o

1 .
L &5 @’

2

(where [+] denotes the integer part of the argument),

and where v&n) = E q{n] (u,u) in which q{nJ (u,u) is
u=1

the probability of a transition from "state" u back to

"state' u in n steps without reaching 0 or k+1. For a

full treatment of the algorithm, the reader is referred

to Gomide (1975).

2-4 Asymptotic Results of the Conditional Range cRn

2-4-1 Independent Net Inputs

Hurst (1951) showed by taking Stirling's approxi-
mation to the factorials in (2-49) that

E[R ]~ Ym/2 - 1 = /an/Z = 1.2533/n . (2-51)

2-4-2 Dependent Inputs

Following Hurst's approach, Gomide (1978) showed

that
n(l+ = 1+
E[R) + 20y ] 1.2533 (n —-El_p)

for the case of the two state Markov chains considered.
Moreover, he demonstrated numerically that the distri-
bution of the standardized conditional range:

(2-52)

R - E[cRn])/str[cRn] for p = 0.5

(Cn

converges to that of the asymptotic standardized
adjusted range:

(R - E[R;I)/Jvar[aﬁl for p = 0.0 with n as

low as 50.

For the sake of comparison, Table 2-4 shows the
exact values of E[Rn], E[cRn], its asymptotic approxi-
mation ¥(wm/2) - 1, the result by Solari and Anis
(1957) for the adjusted range and Anis and Lloyd's

(1975) result for the rescaled range for n = 21, i=1,
2,...,10. Except for E[cRn] and its approximation, the

other results are for independent normal inputs. The
conclusion is that E[R;] < E[R;*] S_E[cRn] for all n,

while it is clear that the approximation (v/nw/2-1) is
very good to all three of the ranges other than Rn.



Table 2-4 Comparison of results for mean ranges.

n E[Rn] E[cun] Ynn/2-1 E[R;] E[R;*]
2| 1.3621 1.0000 0.7724 0.5642 1.0000
4| 2,2217 1.6667 1.5066 1.3203 1.6547
8| 3.4879 2.6571 2.5449 2.3692 2.6246
16 | 5.3171 14,0922 4.0133 3.8428 4.0355
32| 7.9322 6.1454 6.0898 5.9220 6.0655
64 [11.6508 9.0658 9.0265 8.8600 8.9656
128 [16.9241 13.2074 13.1796 13.0138 13.0906
256 | 24.3920 19.0726 19.0530 18.8875 18,9431
512 | 34,9606 27.3731 27.3592 27.1939 27.2338
1024 [49.9119 39.1167 39.1060 38.9408 38.9693

Troutman (1976) comments that cRn will converge
(asymptotically) in distribution to the asymptotic
distribution f,, of the adjusted/rescaled range, ori-

n

ginally given by Feller (1951); (see Eq. 2.70 of
Section 2-6-1).
We let R* = cRﬂ/#ﬁb = R;/o/ﬁhs R;*{a/ﬁlfor large

n, as the conditional, adjusted and rescaled range all
converge to the same distribution asymptotically as
shown by Troutman (1976).

Troutman (1976) proves that the mean and variance
of Rn, R; and R;‘ are given asymptotically by:

-
E[R*] = y/(772), var[R*] = (/6 - 7/2)y° (2-53)

where y> is defined in Eq. (2-45).

5 Tgus for a lag-one autoregressive process Xt,
Y=oy 1+ le/(I B pIJ. corroborating Gomide's
(1978) result for E[cRn] and his conjecture that
isp
Esp *

' 2-5 Preasymptotic Results o§ the Adjusted Range R;

var[R*] = 0,0741 - (2-54)

2-5-1 Independent Net Inputs with Constant

Parameters

Normal inputs. Solari and Anis (1957) derived
the first two moments of the maximum adjusted partial
sums of independent standard normal variables as:

n
EMY) = %Véig LR g™

5007} » é [nz-l LAl @i
n

(2-55)
and

W L e e a9
(2-56)

Then from Eq. (2-55) the Solari and Anis equation for
the expected adjusted range is

n
ERY) -vg L R eyl

However, Boes and Salas (1973) showed that since
the net inputs [xi-xn) are exchangeable, Spitzer's

(2-57)

identity of Eq. (2-2) for exchangeable random variables

applies. Thus Boes and Salas showed that E(RF) for

independent normal random variables may be written as

z ¥ .4 1/2
ERY) =|/5 I 177 (var s}) (2-58)
i=1
which is of the same form as Eq. (2-3) for E(Rn).

They also showed that Eq. (2-58) applies as well whgn
the net inputs are (xi-uan where 0 < a < 1. Thus in

this case
n 1/2
ey < V2 -1/2 - P -
E(R?) ‘/zﬂ o 121 i [(n-1) + iQ-)7] .
(2-59)
Gamma inputs. Following Boes and Salas' (1973)
results, Anis and Lloyd (1975) give E(R;] for gamma

net inputs with pdf £(x) = o e */r(m) for x > 0 as

2 (nm) n-1 imi-ltn_i}{n—i]m

Vm nnm i=1

*) = "
E(Rn} P Bt

(mi) (n-1)m
(2-60)

Stable inputs. For xl....,xn variables having

characteristic function exp{-it}T}, 1 <y < 2 and net
inputs equal to {Xi-uinl. Boes and Salas (1973)

derived the expected adjusted range as
n

ERY = E(IXI] ] (i[a/i)-(a/m)]Y +
i=1
v -1y tam) Y (2-61)
which leads to E(R;J ~ nllY.
Inputs of any distribution. For Xl,...,Kn inde-

pendent variables of any distribution function, the
net inputs (Xi-cin] are exchangeable variables. Thus

Boes and Salas (1973) used Spitzer's identity of
Eq. (2.2) to derive the expected adjusted range as

ooy n -
E(RY) = igl i E[lsyl] = i§1 E[|R;-oX_|1. (2-62)

The above Eqs. (2-58) and (2-59) for normal variables,
Eq. (2-60) for gamma variables and Eq. (2-61) for
stable variables can be derived from Eq. (2-62) which,
as said before, is applicable for any distribution.

2-5-2 Dependent Net Inputs with Constant
Parameters

Exchangeable random variables. Boes and Salas
(1973) showed that if the variables xl,...,xn are

exchangeable, the net inputs [xi-uin) are also

exchangeable. Therefore, based on Spitzer's identity
of Eq. (2-2), they showed that Eq. (2-62) also holds
for the case of exchangeable random variables of any
distribution. In particular, if the xi variables are

normal with mean E[Ki] = u and variance Var[xi] = 02,
the expected adjusted range becomes

n
E(RY) = ‘Zl it (B(sp) 20 (K,)-1] +
1=

1/2

+ 2(Var S;] #(Ki]}, (2-63)



E(Sz)
where K, = .
1 (var s;)Ijz
a = 1, then Eq. (2-63) takes the form of Eq. (2-58).

In addition, if w = 0 or

AR dependent inputs. Few analytical results are
available for the expected adjusted range of AR net
inputs. Based on Salas (1972, p. 24-32) results of the
expected range of multivariate normal variables Salas

. (1979b) showed that the expected adjusted
ranges E(R*) and E{R ) are

E(RJ V (Var S')

E(RY) = v_{l (Var s*)”z g
vz,

(2-64)
and

(Var S* )1/2 +

2 [Var (s3-57)] (2-65)

In particular, if the inputs are first-order auto-
regressive, Eq. (2-65) gives

-2 )1/2 2.1/2

ERY = = [(3-» + (3-4p+9°) /%], (2-66)

This result serves to demonstrate (Salas et al., 1979b)
that Eq. (2-58) is not applicable for AR variables.

In fact, the relative errors obtained by using Eq.
(2-58) vary from +1,62 percent for p = 0.1 to +12.72
percent for p = 0.9.

Results for larger n are available from simula-
tions carried out by Yevjevich (1965). He obtained
the empirical distributions of R; for AR(1) inputs

with p = 0,0, 0.1, 0.2, 0.4, 0.6, and 0.8 and n rang-
ing from 2 to 50. Yevjevich also obtained by simula-
tion the corresponding means, variances and skewness
coefficients of R;.

2-5-3 Net Inputs with Periodic Parameters

No results are available for the expected adjusted
range of inputs (either independent or dependent) with
periodic parameters or in general, inputs with para-
meters vary;ng with time. However, assuming that the
variables X, 2, and X, are independent with vari-

ances 0123 9, and 032, Eq. (2-65) yields
1 2 2 2 2.1/2
E[R*} . {[401 +0, 404 +
2 2 2.1/2 1/2
(61 0 402 +0, + (01 +4U ) 1.

(2-67)

2-6 Asymptotic Results of the Adjusted Range R;

2-6-1 Independent Net Inputs with Constant
Parameters

Input distribution belonging to the Brownian
domain of attraction. This section is introduced by
quoting the opening paragraphs of Feller's (1951)

paper.

"Let Xk

random variables with a common distribution V(x), and
suppose that E[Xkl =0, var[xk) =1. PutsS =X +

. X“ and let

be a sequence of mutually independent

22

M_ = max[O, S, . (R
(1.1) n 2
mo= mln[O,Sl, 2,...,Sn].

S ].

The random variable

(1.2) Rn = Mn -

will be called the range of the cumulative sums Sn.

In applications '[c.f Hurst (1951)]' it is advan-
tageous to modify this definition. One considers
instead of the values of the sums Sk their deviations

from the straight line joining the origin to the
point [n,Sn}. Thus, we replace the random variables

S Y

(1.3) 5{ - Sk - kSn/n (k=1,...,n)

and define the corresponding variables H;, m;, R; in

analogy with (1.1) and (1.2). The variable R; will be

called the adjusted range of the cumulative sums Sn.
The adjusted range has a greater sampling sta-

bility, but its main advantage is probably due to the
fact that it eliminates the trend when E[lk] £ 0, so

that it can be used even when the means do not vanish."

Feller goes on to derive the asymptotic distribu-
tion of the adjusted range for this input and gives:

E(RR) + ¥(nn/2) (2-68)
var(R;] + (n2/6 - w/2)n. (2-69)
fR;,,E{r) = a/2m k§1 {k(k-1)[¢' (2(k-1)T) -

- ' @2kn)] ¢ (k-1)’re" (2(k-1)7) +

+ kK2re" (2kr) } (2-70)

where ¢"(u) = o= $'(w) = — ¢(u) and ¢(u) is the
du
standard normal density.

Gomide (1978) derives a version of the demsity

of the adjusted range which is more amenable to compu-
tation.

for (0 = 1 8Pr@ds’ - 3) ep(-2k’th), (2-71)
k=1

where R* is the limit in distribution of

R* /oA (2-72)

The infinite series in Eq. (2-71) converges very fast.

As a generalization
Salas and Boes (1974)

Input with positive drift.
of Feller's definition of R*
introduced

S; = 5;_1 » {Zi -ow), (i=1,2,...,0),

where w can be chosen to be the sample mean Sn/n or

population mean Hy of the input process Zi. (Recall



that xi is the mean net input Zi - Yi where Yi is the
withdrawal.)

Thus in this context, o need not be zero, and
a(0 < a < 1) is a constant which, in the language of
storage theory, can be considered to be the degree of
development or draft.

Asymptotically, w + u, so 5; + S{ 1t {Zi - apZ).
When either @ = 1 or ¥ = 0 the net input X; = {Zi
- ap) has zero mean, so S; becomes Si and the problem
reverts to that of studying the range.

On the other hand, if 0 <a < 1 and 4 > 0 then

based on Boes and Salas (1973), Salas and Boes (1974)
show that "E(R;) increases asymptotically as fast as

n," and this result applies regardless of the under-
lying distribution of the process.

To date, there are no other aymptotic results for
R; when u > 0, 0 < a < 1, although Troutman (1976)
Thus, the results

reported in the rest of this section confine themselves
to the case where the mean net input By = 0, although

a will be variable. Evidently in the limit we could
include the special case u, =0, a >0,

outlines an approach for Rn.

Troutman (1976, p. 89) gives the p.d.f. ER*(r;“}

of the asymptotic adjusted range R* defined by Eq.
(2-72) for 0 < a < 1, and demonstrates that it con-
verges (as a -+ 1) to Feller's (1951) result. It is a
very lengthy formula and will not be reproduced here.
However, we have performed some computations to see
whether, by standardizing the random variables, it was
possible to find a common distribution, independent of
a.

Troutman (1976) gave the first two moments of R*,
(0 <a < 1) for large n as

E(R*) » /(2/w +[1 - a + (arc sin v8)//8] (2-73)
E(R*?) + cuze/ze){iz (/T + AL (1-8)]/
=1
IEAGDD - 262 + 68-1} (2-74)

where 8= u[2 - a). Letting u* = E(R*) and (u’)
E(R‘) (u‘} , Table 2-5 gives u' and u; as a func-

tion of a.

Table 2-5 Mean and standard deviation of asymptotic
adjusted range as functions of o

- -
= Ha %a
0.5 1.3637 .3146
0.6 1.3284 .2976
0.7 1.2983 .2857
0.8 1.2748 2779
0.9 1.2591 2T 37
1.0 1.2533 L2723
Define ™ (r - u;)/a; as a standardized variable,

then we put r = quag + u; in fn,(r;u) in order to com-

pare the distributions of the standardized variate q

23

as a function of a.

#
gl o 1in (RY - E(R®))/Var (R )

Further, define

po (2-75)

then by direct computation it was found that the p.d.f.

of R#(D < a < 1) equals that of R#(a = 1) to within
three significant figures for a = 0.6. The approxima-
tion improves markedly as a + 1. Thus a large amount
of unnecessary computation can be obviated if this
fact is taken into account,

Input distributions belonging to the stable
domain of attraction. Only one result exists for R*

and that is from Salas and Boes (1974) where they
demonstrate that

E(RY) + constant x n'/". (2-76)

Here y is a parameter which characterizes a stable

which has a characteristic function: exp(-|t|Y),

1 <y< 2.

2-6-2 Dependent Inputs with Constant Parameters

The c.d.f. of R# is given in Table 2-7 in Section
2-7-1.

Distributions in the Brownian domain of attrac-
tion.  Troutman (1976) was the first to find asymp-
totic results for R; where the input process is a

Markov chain, autoregressive, moving average or mixed
autoregressive moving average. He even gives results
for log ARMA which apply equally well. The basis of

his development is the definition of 72 which is the
sum of the covariance function of X as given in Eq.
(2-45). He shows that R*/y/n is distributed as R*

asymptotically, and gives the formula for arbitrary a.

Thus for example if Xt is AR(1) with E[X] = u =

= 0, var[X] = o - 1,corr[xt+s,xt] = ps, (8 = 1;2:vausks
then
1/2
nw(l+
E(RE) + [‘i%I‘%%] WS o e (2-77)
It has already been shown above that R‘ the stan-

dardized asymptotic distrxbution of R‘ for 0.5<a<l

closley resembles that of R when @ = 1 Thus for all
practical purposes, a knowledge of “u' 0; as given in

Table 2-5 and fo4 given by Eq. (2-84) will enable any-
one studying R; to obtain the information he wants
(for large n), provided that he can define 72.
Symmetrically correlated inputs. Given
corr{xt*s, t] = p for every s # 0, Boes and Salas

(1973) give E(Rh) for x normally distributed (0,0 ]
as:

E(RY) =

(l-u} vYn(l+(n-1)p) + constant x n
(2-78)
for p > 0.

2-6-3 Net Inputs with Periodic Parameters

Troutman (1976) examines the case where the dis-
tribution of the net input X has periodic properties
with period w, i.e. E[X ] = u, var[X ] = o$<<¢ and

corr[x WX +£] Pyre Coim @) @vaeag) Trs L@ cu i)
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If further the net inputs are to be adjusted by G
also periodic in 1, then define

w w w
W= m-l E e s 52 = m-l i Uf , &= m-l Z @,
T=1 t=1 t=1
2. 2 1 v v .
and v° = 0 + 0 121 121 0.0 pq Py, p » 25 in
Eq. (2-45).

He shows that
lim

il (2-79)

P(R;/TJh <r1) = FR*{r;E)
where Fp, (r;a) = ér ER* (Z;a) dZ , (r > 0)

=0 (r<0).

fR*(Z;u] is given by Troutman, but as we have

shown above, this distribution can be recovered with
reasonable accuracy for o > 0.6 from that of fR*[Z;IJ

given by Eq. (2-71) if suitable standardization is
employed.

The remarkable fact that emerges from Troutman's
work is that if p = 0, the asymptotic distributions of
the range and the adjusted range depend only on mean
values of the adjustment factors and the covariance

i - 2
sum, i.e. @ and v .

2-7 Preasymptotic Results of the Rescaled Range R;*

2-7-1 Independent Net Inputs with Constant
Parameters

Normal inputs. Anis and Lloyd (1975) made use of
Boes and Salas' (1973) version of Spitzer's (1956)
lemma on exchangeable random variables to produce an
exact formula for the expected rescaled range, when
My = 0:

n-1
LR Fa R D

(2-80)

and computed this expression for selected n values up

to 106. (See Table 2-4 of this paper for a comparison
of the various expected ranges, and a close
approximation) .

Wallis and O'Connell (1973) computed the e.c.d.f.
(empirical cumulative distribution function) of R

for n = 20,30,40,50,75,100 for independent normal as
well as autoregressive (lag-one) inputs. Thirty thou-
sand samples were used for each set, and they produce
curves of the e.c.d.f.'s plotted on a probability
scale. This was apparently the first attempt to find
the distribution of R;*. Hipel and McLeod (1977) pro-

duce e.c.d.f.'s for R;' in tabular form which are

easier to use for the purpose of reading percentiles
directly or extracting information about E(R;*) and

var[R;*]. Comparing their results with those of Wallis

and 0'Connell, it will be seen that there is no differ-
ence in the percentiles as far as a visual comparison
on the scale of the plots will permit. This comparison
adds credence to both sets of e.c.d.f.'s as they were
produced independently.

24

Hipel and McLeod (1978) computed the distribution
of E[R;*] for Xt i.i.d. normal (0,1) empirically by

simulation, for selected n < 200. The percentiles
were published in terms of Hurst's K defined as K =
= log(rx*)/log(n/2), where r** were sample values of

McLeod and Hipel

(1978), in a companion paper, compare 5;* for their

R;*, 10,000 samples for each n.

simulation with Eq. (2-80) and show a good measure of
agreement. To date there have been no reports of
values of var{R;*), and it was decided that this posi-

tion could be rectified by using Hipel and McLeod's
tables of the e.c.d.f. (The treatment extends itself
to the case of AR(1) inputs, which will be summarized
in the next sub-section.)

The justification for using this approach rests
on the following considerations.

(i) Hipel and McLeod's e.c.d.f.'s required a
horrendous amount of computing which it was thought
would be folly to repeat;

) (ii) Gomide (1975) shows that the standardized
range and conditional range converge to their respec-
tive asymptotic distributions extremely fast, the
implication being that the same should hold for the
rescaled range;

(iii) Should values of var(R;*) become available,
then utilizing the exact expression for E[R;‘} in Eq.
(2-80), both the p.d.f. and c.d.f. for R;* can be com-
puted with reasonable accuracy, say for n > n, (with n,

a value of n at which the distribution of the stan-
dardized rescaled range, Rn = [R;* - E[R;*]}/

fvar[R;*], has converged to its asymptotic equivalent
R to within a desired degree of accuracy).

(iv) Salas et al. (1977) demonstrated by simula-
tion that i;* for normal, gamma, and McLeod and Hipel

(1978) show that, in addition, stable and Cauchy
variables, have virtually indistinguishable behavior
for n up to 200, which justifies concentrating atten-
tion on the normal.

Hipel and McLeod (1978) give percentiles of
K: P[K<k] for the case of X i.i.d. normal with u = 0,
For example for n = 20 they give the values of
Table 2-6.

Table 2-6 Distribution of R;* for n = 20.

Percen-
tile 0.511.0(2.5|5.0]10 20 | 30 | 40 S0

k L406 |,426 (,459 |.486 [.520 |.565 |.600 |.628 |.655
Percen- ]
tile 60 |70 |80 [90 |95 97.5 99 99.5

k L681 |.708 |.738 |.775 [.804 .827 | .8B2 .87

To find var{R;*) from the given e.c.d.c.f., the

following procedure was used. First transform the K



values toT = {n/Z]K. Next fit two cubic polynomials
to the five percentiles at each end of the e.c.d.f. by
least squares, and compute the values of T, and T100

4 ok - "k =
where, effectively, P{R“ g_ro) 0 and P(Rn < rlOOJ

= 1.0, respectively. Then using cubic splines, fit
eight cubic polynomials (with continuous first and
second derivatives matching at the end-points of the

intervals) to the values Ti0° Ta0 *» Tgp* There
are then 10 cubic polynomials fi{r]. =ik 200,10

3
such that fi{r) =djp v A, T4 AT 4 oA T, it fol-

lows that the first and second moments are:

9
o L 2 2, . B alioe
E(R3*) iEO (81 (5sy - ¥3)/2 + app(ry,, - 7)/3
N aiS(r:+1 . ri)/d] (2-81)
9

.2 3 3 4
BRI ) = 120 [8) (Fj4y-T3)/3 # ‘iz(’:+1'ri]14 ?

5 5
- ai3(ri+1~ri}/5] (2-82) .
whence vir(R**) and ﬁ;l = E(R;*]/VVar[R;*} are
obtainable. n

To corroborate the results of this treatment, a
second method of finding the moments of R;‘ from

Hipel and Mcleod's tables was devised. It was to com-
pare Hipel and McLeod's percentiles for various n
values with those of the asymptotic distribution given
by Feller (1951).

Now, Gomide's (1975) version of Feller's formula
is Eq. (2-71):

fnt{.xJ - E Bkzx(lkzxz - S)QXP(-ZKZKZ)
k=1

(2-83)

where R;/axfﬁ and R;*IGXVE'hoth tend to R* as n»= ,

E(R*) = /1/2, var(R*) = (12/6 - 7/2) which we
call p* and 0*2, respectively. By writing R* = u* +
#
+c*R#, we define a standardized variate R whose p.d.f.
is

£4(r) = 0. EF (u* + 0'1). (2-84)

The c.d.f. of R' can be computed by numerical integra-
tion of this exact function to any desired accuracy,

#
and Table 2.7 gives the percentiles of R to within
five decimal places.
Let fi stand for an experimentakly derived per-

centile for a particular n as found by Hipel and
McLeod. What is sought is E[R;'J and Jvariﬁﬁ*i, such

that the standardized values, " ﬁ(R;*) + filvar(R;*}

matches (as closely as possible) the corresponding
values of r given in the above table. E(R;*] and

fv&r(R;'] were found by least squares, and differed

very little, except for a bit more scatter, from the
values found by integrating the fitted cubic poly-
nomials, thus lending credence to the results.

Using Hipel and McLeod's data for p = 0, the
results of the integrated cubic spline computations
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Table 2.7 Percentile of the standardized asymptotic
adjusted range R¥ computed from Eq. (2-84).

100 x FR‘(r} T IOO.FR![xJ r
0.1 -2,18388 90 1.34459
0.5 -1.95488 95 1.81343
1 -1.83071 97.5 2.23640
2.5 -1.63079 99 2,.74503
5 -1.44038 99.5 3.10060

10 -1.19741 99.9 3.85591
20 - .B6632
30 - .60071
40 - .35523
50 - .11022
60 .14968
70 . 44365
80 .80753

are reported in Table 2.8 in columns 4, 5 and 6
together with Anis and Lloyd's expression for E(R;*]

in column 2 and Hipel and McLeod's results for E{Rﬁ*)
in column 3, as functions of n.

Table 2-8 Results of integrated cubic spline

computations.
RE* *oh *H & ok a1
n  ER® )] E(Rn ) E[Rn ) var(R**) ¢,
(A+L) (H+M)
5 1.9274 1.9273 1.933 .080 6.825
10 3.0233 '3.0302 3.034 . 357 5.079
20 3.8812 3.8826 3.889 684 4.703
25 4.6111 4.6047 4,594 1.040 4.504
30 5.2576 5.2540 5.259 1.401 4.442
35 5.8443 5.8770 5.843 1,751 4,415
40 6.3851 6.4214 6.363 2.120 4,370
45 6.8895 6.8920 6.925 2.602 4,293
50 7.3640 7.3595 7.389 2,901 4,338
60 8.6502 8.6246 8.650 3.908 4.376
70 9.,4210 9.4453 9.401 4,651 4,359
80 10.1392 10.1349 10.159 5.496 4,333
950 10.8143 10.8208 10.853 6.321 4.317
100 11.4533 11.4775 11.438 7.005 4.321
125 12.9243 12.9617 12,922 8.680 4,386
150 14.2556 14.1956 14,285 10,966 4,314
175 15.4806 15.4198 15.457 12,580 4,358
200 16.6214 16.5938 16.658 13.964 4.357

Scrutiny of Table 2-8 will show that there is
good correspondence between E(R;'} and the two values

of its estimates, in fact better than 0.6% difference
in all cases. This encourages one to feel that the
values for var{R;*J are reasonably accurate. Examina-

tion of the standardized percentiles of the e.c.d.f.
for n = 35 shows that they are close to what appear to
be the asymptotic values. Furthermore, on comparing
the percentiles (see Tables 2-12 and 2-13 at the end
of this section), it seems that the standardized dis-
tribution of Rﬁ* has effectively converged to its
asymptotic equivalent by n = 35, Note further that
the values of C;l appear to follow a reasonably smooth

curve, asymptotic to a value of about 4.34. But the



asymptotic value of C;l for R* is p*/o* =V3/(v - 3) =

= 4.6030... which is six percent larger than 4.34.
Does this imply that there is an error in analysis?

Checking the cubic spline algorithm with the
exact values of the standardized asymptotic c.d.f. for
RE* (given as FRx(r) in Table 2-7 above), it was found

that the error in computing the standard deviation was
less than 0.5 percent, which exonerates the cubic
spline algorithm. This fact together with the
observed accuracy of E(R;*) in Table 2-8 seems to indi-

cate that the values of the variance given here may be
too large by about twelve percent. (This phenomenon
was also observed for the cases where Hipel and McLeod
(1978) computed the e.c.d.f.'s of R;' for an input

following a Gaussian AR(1) process with p > 0.)

a A simulation check appeared to be in order, so
E(R**), vdr(R**) and C_ were computed for ten lots of

500 samples of length n = 35, Vir(R;*J lay between

1.887 and 2.274, and for the whole set of 5,000 samples,
for n = 35, the result was E(R;‘) = 6.439 (compared to

the exact value of 6.3851), and vﬁr[R;*) = 2.109 (com-
pared to 2.120 computed from Hipel and McLeod's tables)

with C_l = 4.4336. Results of simulations cannot prove
anything conclusively, but the indicationis that the
results given in Table 2-8 computed from Hipel and
McLeod's values appear to be reasonable, especially
when it is recalled that their values correspond well
with those of Wallis and O'Connell.

Two explanations are offered for this apparent
paradox. First, the simulation check reported here
used the Box-Muller transformation to get normally
distributed pseudo-random numbers from uniformly.dis-
tributed ones, and this may give a value of X which is
occasionally too high. Did Wallis and O'Connell and
Hipel and McLeod also use this transformation? The
second explanation is that n = 200 is too small for

C-l
v
although the good agreement between the standardized

percentiles of (i) the e.c.d.f, and (ii) the asymp-
totic c.d.f. seem to indicate otherwise.

to have reached its asymptotic value of 4.6030,

At .any rate, the results reported here seem to be
consistent, but it still remains to prove that they are
fair approximations to the true values. Some zealot
with a large research grant at his disposal will no
doubt remedy the situation some day! In the meantime,
the conclusion is that Hipel and McLeod's tables (and
Wallis and O'Connell's diagrams) of the e.c.d.f. of
R;* may possibly err on the conservative side as far

as the variance is concerned.

Skewed input distributions. McLeod and Hipel
(1978) compute E(Rﬁ*] using 10,000 samples for

n < 200, when the input is variously distributed as
gamma, stable and Cauchy. Incredibly, there is very
little difference in these values from the correspond-
ing exact result for the normal given by Anis and
Lloyd (1975).

This is supported by Matalas and Huzzen (1967)
and Salas et al. (1979) who reported simulation.experi-
ments with correlated and independent skewed inputs.
They found that skewness has virtually no effect on
E[R;*} for any value of n. This property of RE* is in

marked contrast to the behavior of Rn and R;.
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2-7-2 Dependent Net Inputs with Constant
Parameters

All the results that have appeared to date are
from simulation experiments. Without exception, they
are confined to net inputs with normal marginal dis-
tributions. That this is not a deficiency follows
from the conclusion in the last paragraph that skew-
ness has negligible effect on the behavior of E{R;*J,

coupled with the proof by Troutman (1976) that the
asymptotic distribution of R;* is unaffected by the

form of the marginal distribution of those inputs
belonging to the Brownian domain of attraction. The
variation of the behavior of R;* thus rests primarily

upon the nature of the serial correlation structure of
the net inputs, hence the headings which follow des-
cribe the type of dependence examined.

Autoregressive, lag-one or AR(1) model. Matalas
and Huzzen (1967) were the first to report experiments
on R** for the AR(1) input process. They give a table
of K™for p=0.1,...,0.9 and selected values of n from
S to 1,000. Ten thousand values of K = log(r;')z

log(n/2) were computed for each g and n and K was
given as the average of these K(p,n) values. Their
objective was to explain the Hurst phenomenon, so they
were not particularly interested in E[R;*). However,

their values of K (second row) and K computed from the
exact Anis and Lloyd (1975) result (third row) appear
in Table 2-9 for comparison purposes. It is evident
that because of the difference in the skewness of the
distributions of R;* and K, there is no easy way to

find E[R;*) accurately from these data.

Table 2-9 Values of K and K.

n 5 10 25 50 100
K .59 .66 .64 .63 .61
.716 .687 .657 .639 .623

Wallis and O'Connell (1973) gave curves of
e.c.d.f.'s (computed from 30,000 sequences for each
p and n) for n = 20, 30, 40, 50, 75 and 100 and p =
=0, 0,1,..., 0.5, 0.75, 0.9. As mentioned already,
these curves agree well with Hipel and McLeod's (1978)
tables of percentiles of the e.c.d.f. of R;* (given

for =0,1, 0.2, ..., 0.9 and n = 5(5)50(10)100(25)200
using 10,000 sequences for each p and n).

As in the case of the independent inputs, Hipel
and McLeod's tables will not be reproduced here, but
by using the same (integrated fitted cubic spline)
technique, the entries in Tables 2-10 and 2-11 were
calculated.

Inspection of the standardized percentiles of
these e.c.d.f.'s indicates that asymptotic convergence
in distribution appears to have been effectively
achieved for p = 0.2 by n, = 70 and for p = 0.4 by

n, = 150. (Recall that for p = 0.0, n, ® 35.]

higher values of p, convergence in distribution has
not been achieved by n = 200, This invalidates
neither the computations of E(R;*) and var(R;*) nor

For

Hipel and McLeod's tables, nor Wallis and O'Connell's
curves of the e.c.d.f.'s, but is a comment on the



rate of convergence in distribution (transience) as a
function of p.

For illustration purposes, Table 2-12 gives some
percentiles of the standardized e.c.d.f.'s of R;‘ for

the case p = 0 and variable n. Table 2-13 gives the
e.c.d.f.'s of R;' for n = 200 and variable p, which

should be compared with the last two lines of

Table 2-12.

Table 2-10 E(R;*} values computed from Hipel and
McLeod's tables.

n p=0,2 p=0.4 p=0.6 p=0.8
10 3.24 3.44 3.64 3.80
20 5.11 5.70 6.35 7.06
30 6.63 7.55 8.68 10.08
40 7.92 9.14 10.69 12.80
50 9.03 10.55 12.46 15.28
60 10.04 11.78 14.09 17.60
70 10.98 12.93 15.58 19.70
80 11.90 14.07 17.05 21.81
90 12.74 15.11 18.41 23.82
100 13.46 16.01 19.60 25.53
125 15.29 18.30 22.55 29.86
150 16.95 20.37 25.24 33.79
175 18.38 22,15 27.58 37.29
200 19.85 23.99 29.98 40.81

Table 2-11 VvsriR:‘i values computed from Hipel and
McLeod's tables.

n p=0.2 p=0.4 p=0.6 p=0.8
10 .609 .611 +897 .573
20 1.099 1.179 1.226 1.217
30 1.477 1.630 1.774 1.844
40 1.779 2.010 2,233 2.423
50 2,060 2,339 2.682 2.996
60 2,282 2.641 3.073 3.545
70 2,518 2.945 3.474 4.071
80 2.753 3,232 3.841 4,631
90 2.942 3,465 4.140 5.039
100 3,118 3.687 4,438 5.467
125 3.496 4.179 5.083 6.481
150 3.932 4.738 5.833 7.506
175 4.252 5.129 6.339 8.409
200 4.477 5.463 6.847 9.092
Table 2-12 Standardized percentiles for p = 0.
n 10 0 30 40 50 60 70 B0 90
5 -1.318 -, 844 =512 -.258 -,032 .183 .532 .98 1.260
o -1, 305 -, 916 -.603 -, 328 -.037 255 .565 -901 1.350
0 -1.258 =, 903 =.601 -. 341 -.074 .199 .501 .B59 1.336
50 -1.220 -, 868 -.599 -.349 -.096 .158 444 -813 1.338
100 =1.185 -, 863 -.596 - . 356 =.116 .156 445 <793 1.318
00 -1.211 -, 365 -. 608 =, 351 =.118 171t 457 808 1.343
“ | -1.1974 -.8663 -.6007 3552 -.1102 .1497 4436 3075 1.3446

#This value was computed from the corresponding
value given by Hipel and McLeod as 0.619. To show how
sensitive the calculations are to errors, if a value

g ;52.618 is used instead of 0.619, 0.171 changes to
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Table 2-13 Standardized percentiles for n = 200.

L] 10 0 30 4“0 50 60 70 80 80
2 -1.207 -.878 -.606 -.352 -.099 .158 -461 -Bl4 1.341
4 -1.209 -, 876 -.602 -. 347 -, 106 164 466 .07 1.342
o] -1.214 -. 879 -.596 340 -.096 AN .470 823 1.343
N -1.242 -.878 -.598 -.331 -.0Td L2001 506 842 1.337

Autoregressive - moving average: ARMA(1,1) models.
0'Connell (1971) used an ARMA(1,1) model for X with ¢
varying from 0.8 to 0.99 and 8 varying from 0.5 to 0.9
to find H from ten sequences of X of length 9,000 for
each pairof (¢9,0) values. H is the mean of the ten
values of H that he defined as the slope of the line
fitted by least squares to lug(r;*] ~ log n for

n < 2,000, where r;* are the sampled values of the

rescaled range. Except for five pox diagrams for
selected (¢,8) pairs, no estimates were given for
E(RA*).

Wallis and O'Connell (1973) give diagrams for the
e.c.d.f. of a long ARMA(1,1) model with ¢ = 0.9 and
6 = 0.64 for n = 20, 30, 40, 50, 75, 100. They used
the same technique for the computation of these as
they did for the AR(1) input, so they should be
accurate.

Boes and Salas (1978) computed E(R**) for (¢,6) =

= (0.99, 0.8676) and (0.9, 0.6268) for comparison with
conditionally nonstationary models of identical cor-
relation structure.

Nonstationary models. Hurst (1857), Klemes
(1974, 1975) and Potter (1975, 1976a and 1976b) and
Boes and Salas (1978) give values of E(R;‘) for some

restricted sets of parameters. The rescaled range
behavior of these and the matching ARMA(l,1) models is
indistinguishable from the results of the simulatioms,
reinforcing the observation made earlier that for
finite n, the resclaed range depends little, if at all,
on the marginal distribution of the inputs, and depends
only on the covariance function.

Exchangeable variables. For Xt symmetrically

correlated [corr[xt+s.xt) = p, for s # 0) Anis and

Lloyd (1975) showed that E(R;') is independent of p.

Hence symmetrically correlated and independent inputs
have the same mean rescaled range for a given n.

Fractional Gaussian noise: FGN: The FGN model,
proposed by Mandelbrot (1965) and a mathematical
derivation given by Mandelbrot and Van Ness (1968)
and Mandelbrot and Wallis (1969), and literature con-
cerning the FGN model summarized by Wallis and
0'Connell (1973) and Lawrence and Kottegoda (1977),
will not be repeated here.

There have been several attempts at obtaining
approximations to FGN, but McLeod and Hipel (1978)
were the first to give an algorithm for the exact
generation of FGN samples. It appears to be tractable
for sequences up to lemgth n = 200, as they compute
E(RE'} for n = 5(5)50(10)100(25)200 and H = 0.7, 0.9.

For each value of n and H, 10,000 simulated sequences
were generated. (MclLeod and Hipel give an excellent
exposition of the FGN model, its fitting to data and a
comparison with ARMA models, and the interested

reader is referred to their paper.)



What distinguishes FGN from models in the Brownian
domain of attraction is that when 0.5 < H < 1 the cor-
relogram of the former is not summable, unlike those of
the latter. Nevertheless, it can be shown that

E(R;*} ~ nH for FGN, whereas models in the Brownian

domain of attraction yield E(R**) - n1/2 when mee
It is this difference that has prompted a long contro-
versy over the Hurst phenomenon.

2-7-3 Net Inputs with Periodic Parameters

There are no known results for R;‘ when X is dis-
tribued with periodically varying parameters. This
state of affairs includes the asymptotic case.

2-8 Asymptotic Results of the Rescaled Range R;'

Numerous references to the asymptotic case were
made in the previous section and will not be repeated
here. Hurst (1951) was the first to observe that sam-
ple means of R** values seemed to grow at a rate pro-

portional to n" with h > 1/2 for a wide variety of
geophysical time series. The principal theoretical
result here (Troutman, 1976) concerns the asymptotic
distribution of R;' for stationary, dependent input

{xt} belonging to the Brownian domain of attraction.
Let

o
Fpe () = (£ fpe (W) du) 10 (x) (2-85)
where th(u) is given by Eq. (2-71), then
18 Prpeasgnt’? < 5] = B0, (2-86)

-
where 82 =1+ 2 [ Py > and it is assumed 52 < ®,
L=1

The limiting distribution here is the same as the
limiting distribution in the case of the adjusted
range R; (see Section 2.6); only the scale parameter

2
has changed from y there to § here, where 72 =0 Bz,

to account for the fact that the rescaled range has
the sample standard deviation as a divisor. One notes
again that dependence enters the asymptotic distribu-
tion only through the parameter B. Also, one can
readily derive

/2 gpt/2 (2-87)

EREY) - (1/2)"
and

var®:*) - [@7/6) - 71 8% n . (2-88)

Por the case of independent stationary inputsf= 1.
Comments for the cases of exchangeable random
variables and fractional Gaussian noise were made in

the previous section.

2-9 Preasymptotic Results of the Maximum Deficit, D“

Using the mass-curve concept of Rippl (1883),
Hurst (1951) studied the maximum adjusted deficit D;

particularly in the case where the level of development
(regulation) is less than 100 percent, his reasoning

28

being that the range (rescaled) is not relevant where
withdrawals are less than the arithmetic mean gross
input. Why the choice of the adjusted deficit D; (and

indeed the adjusted and rescaled ranges R; and R;‘)

should be more relevant for sizing reservoirs than its
(their) unadjusted counterpart(s) is not clear,
Thomas and Fiering (1962) used simulation and deficit
analysis (which they dubbed the "sequent peak
algorithm') to size reservoirs, The first analytical
treatment of the (maximum accumulated) deficit was pro-
vided by Gomide (1975) in his milestone paper. Since
then Troutman (1976) has treated the asymptotic case.
Following Gomide's lead, Mutreja (1976) and a follow-up
paper Mutreja and Yevjevich (1977) have examined the
asymptotic behavior of the deficit of ARMA processes,
evidently unaware that their results had been pre-
empted by Troutman's work.

2-9-1 Independent Net Inputs with Constant
Parameters

Gomide (1975) devised an algorithm for the evalu-
ation of the exact distribution of Dn’ defined in

Section 1-3, for discrete inputs based on Moran's
(1955) concept of a discrete reservoir. This algorithm
permits the computation of P[Dn < k] directly by sum-

ming the elements of the (k+l)-square taboo transition
matrix of the Markov chain describing the storage, and
is applicable to an arbitrary distribution of net

inputs. In other words, P[Dn < k] is the probability

that the semi-infinite reservoir level does not reach
state zero in the first n steps given the initial
state is k+1 (full reservoir).

Gomide then proceeds to derive the asymptotic
distribution of Dn for the case of full regulation

and gives,
for D = 220 /0, (2-89)
- (-10/2 40 ;
fﬂ(x) - 4 z (-1) i (x) (2-90)
(j+41)2=1
o) =4 ] (192 4601 -1

(j+1)/2=1
(2-91)

By using the binomial approximation he demon-
strates that the standardized deficit for normal
inputs: D; = (Dn B E[Dn]]//var[nn[ converges in dis-
tribution to its asymptotic equivalent:
Dz + D# = (D - E[D]/Yvar[D]) by n = 15. As he says,
“the convergence of the standardized exact density to
the standardized asymptotic density is slower' than in
the case of Rn ""because of the influence of the proba-

i.e.,

bility mass at Dn = 0." For the case of full regula-
tion, Gomide shows analytically that P[Dn = 0] =
= [¢[u}]n for normal inputs when E[Xt] =y,

In addition to this general result, he gives
curves for E[Dn] and var[Dn] for u = 0, 0.25, 0.3, 1
for 0 < n < 50, when xt is normally distributed.

Because of its usefulness in computation, the
p.d.f. and c.d.f. of Df, the standardized asymptotic

deficit are tabulated in Table 2-14, for some selected
values of the standardized variate z. (Note that



Gomide gives E[D] = vw/2 = 1,25331..,and an infinite

series for E[Dz] requiring the evaluation of about
1,000 terms for six figure accuracy; then var[D] =
= 0.511014).

#
Table 2-14 p.d.f. and c.d.f. of D , the standardized
asymptotic deficit

% fD#[z] FD*[z}
-2 1078 0
-1.5 07629 .00698
-1 .41828 L 13568
-0.5 .46799 .36877

0 .36972 .58016
0.5 .26116 .73732
1 .17196 . 84465
1.5 . 10605 .91320
3 .06126 .95423
s .03315 .97724
3 .01680 .98934
3.5 .00798 .99530
4 .00355 .99805
4.5 .00148 .99923

2-9-2 Dependent Net Inputs with Constant
Parameters

Let us consider Bernoulli inputs. Using the two
state input Gomide used in the study of the ramge:
P[X

+ 1|xt =+1] =p, P[X =+ 1|xt =

tel t+l

=¥ 1] =q, P[X, = 1] = P[X, = -1] = 1/2,

Gomide -(1975) extended his algorithm for the inde-
pendent input case to that for correlated inputs.
This two-state Markov chain has the same correlation
structure as an AR(1) process, so that when n is
large the results approximate those which correspond
to an AR(1l) Gaussian input. He demonstrates that for
u =20 and p = 0.5 the standardized deficit has
effectively converged (in distribution) to its asymp-
totic counterpart, D¥. He gives diagrams of E[Dn]

(but not, alas, var[Dn]) for n up to 100 and p = 0,
0.20, 0.50. It remains for var[Dn] to be computed for

correlated inputs, and it will be easy to extend the
algorithm for Rn in Section 2-1-1 and 2-1-2 to the
case of Dn. In the meantime, Troutman's (1976) asymp-
totic expression for D“ could be used, giving a con-
servative estimate of the variance, for use with fnf
and FD*; his expression is

var([p ] + 0.511015y%n

(2-92)
2 i
where Y 1is given by Eq. (2-45).

2-10 Asymptotic Results of the Maximum Deficit, Dn

Results for no drift will be presented here for
the general case of dependent, periodic net inputs and
the special cases of dependent but non-periodic inputs
and finally independent inputs will be noted as special
cases. The main contributors are Gomide (1975}, (1979)
and Troutman (1976), (1978). Gomide (1979) presents a

29

succinct derivation of the asymptotic distribution of
the maximum deficit for independent inputs using the
theory of Markov chains. Troutman (1978) will be fol-
lowed here.

The maximum deficit was defined in Section 1-3;
it can also be defined by either Eqs. (2-93) or (2-94),
namely

D = max [0, M,-S,, My=SyseensM =S ] (2-93)
where the Sj are the partial sums of the X's and M is
the maximum of the first n of these partial sums. Or,

D“ = (-1) min [X, + X

+...4X ],
l<igj<n 2

Yol (2-94)

Let xt denote the dependent periodic input ran-

dom variables where the nature of the dependence and
periodicity is just as in the latter part of Section
2-2. Set

© Rp(@ = (/m) (] (1@
j=0

exp[-u2[2j+1Jz/8d2]]I[D’.}[dJ (2-95)
then
Mae vt car = R@ (2-96)
where, as before, the constant y is given by
Y=2+2x1 f E O Opeg Pk (2-97)
k=1 &=1 ?
Once again we see that Dn is scaled by nu2 regardless

of the distribution of the Xt's, the type of dependence,

or type of periodicity present, subject, of course, to
the mild constraints that permit utilization of the
weak convergence theory. The contribution of the
dependence and periodicity to the asymptotic distribu-
tion is completely encompassed within the parameter y
and it in turn fully describes the effects of the
dependence and periodicity in terms of second order
moments. For instance, if there are no periodic com-
ponents, thenw= 1, and vy is defined by

2 2 2 7
Y'=0¢"+20 Z Py (2-98)

and if further there is no dependence rz reduces to

az. The asymptotic mean and variance of D are given
by

E,) - /)3 a2,

(2-99)
and

var(p ] - [2 jzﬂ -3 @2je1)72 - w242 n.
(2-100)

The asymptotic mean is the same as for R;.
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CHAPTER 3
INFERENCE ON RANGE AND DEFICIT

3-1 Introduction

For the most part, Chapters 1 and 2 are reviews
of those results concerning the range and deficit that
were able to be deduced from assumed models. The
problem of drawing inferences from data regarding such
results was relegated to this chapter. The general
problem of inference is often categorized into the
following types of inference: (a) model building or
goodness of fit; (b) point estimation; (c) interval
estimation; and (d) hypothesis testing. Each of these
can in turn be studied from the parametric or non-
parameteric viewpoint and both will be employed. Also,
as has been the case throughout this paper, results
obtained by either simulation or analytical methods
are presented.

Admittedly, model building and goodness of fit of
various models is important, but since it is somewhat
divorced from the subject at hand, namely range and
deficit analysis, it will not be addressed in this
paper. Suffice it to say that certain models, speci-
fically fractional Gaussian noise, were proposed
because they were thought to be able to mimic behavior
of the range. The real problem of deciding which of
several alternative models best fit a given geophysical
phenomenon will not be discussed. Among the other
three modes of inference, namely point estimation,
interval estimation, and hypothesis testing, only the
first two will be considered.

The chapter is divided into three further sub-
sections. The Section 3-2 considers estimation of

72, the sum of the covariance function. It was noted

in Chapter 2 that 'rz is an important parameter as far
as range and deficit analyses are concerned; in fact,

72 characterized much of the asymptotic theory given
there. Section 3-3 looks at the relationship between
the range and/or deficit statistics obtained from
overlapping time intervals of observations. Often
times, for a given say, 100 year span of data, possibly
simulated, the range statistic is computed for n = 100
and also for n = 50, say by dividing the 100 years of
data into two sets of 50 each. How then is RSO

related to Rmo? The final Subsection 3-4, considers

estimation of the Hurst slope. It will be noted that
the Hurst slope for the rescaled range is nearly inde-
pendent of the underlying model marginal distribution,
and consequently is a poor statistic for discriminating
between models. The problem of just how stable the
Hurst slope is for moderate length records is broached.

3-2 The Integral of the Covariance Function *rz

In Chapter 2 it was noted that 72 played a key
role in the asymptotic theory of the range and deficit;

3 2 2.2

in fact, y or B, where y = 0 B, enters as a scale
parameter in most limiting distributions given there.
Consequently, estimation of y, as well as an indica-
tion of the precision of such estimates, is fundamen-
tal in’ range and deficit study. Two approaches will
be mentioned, the first is parametric in which a para-
metric model is assumed and then y is a function of
the model parameters and hence amenable to the usual
parametric estimation techniques such as maximum like-
lihood or the method of moments; the second is non-
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nonparametric and uses techniques not associated with
a particular model.

2. .23 2 N
Recall that y = ¢ B where B> =1 + 2 Z p. for
i=1
the nonperiodic dependent Brownian domain of attrac-
tion case. To give some idea of the estimation of

YZ, consider a simple AR(1) model given by

X, = pX + €, (3-1)

where {:t} is white noise with variance parameter ci and

J

-1 <p <1 is a parameter. It is known that pj =p

and 02 = ui/ [l-pz} for an AR(1) model, hence

32=1+2§pj=(1+£’)/(1'p) (3-2)
and
r.r2 02
2 [ l+p €
Y = . —— = (3‘3)
1 P ()0

a function of the model parameters p and az.

The general theory of maximum likelihood estima-
tion states that the maximum likelihood estimator of 12,

say ?2, is given by

¥ =0la-0? (3-4)

where § and Gi are the maximum likelihood estimators
of p and dz, respectively. Furthermore, such theory
states that ?2 is asymptotically distributed as a nor-

mal with mean = 72 and variance

4
1 {4% var[f] . var[32]}=
n

a-0° a-p?

4 ) 4
4Ug(1~p ) . &
a-0°  20-9)°

From Eq. (3-5) one can gain some idea as to the
precision of the maximum likelihood estimator. For

(3-5)

=

instance, if p = 0.5 and 0: = 1 then ‘?2 is asympto-
tically distributed as N(4, 200/n) and so one would
expect about 95 percent of the values of the estimate
% to fall within 4 + 20 ¥2/n, and about 67 percent to
fall within 4 + 10 ¥2/n.

Now if one were interested in the estimation of
62. rather than 12, then the maximum likelihood esti-
mator of 82 is §2 = (1+6)/(1-p) where again § is the
Here B° is asymp-

totically distributed as a normal with mean = BZ and
variance

maximum likelihood estimator of p.



4(1-p%) _ 4Q1+p)
n-0)"  n(i-p)

var[f] = (3-6)

(1-p)
so if p = 0.5 then 52 is asymptotically distributed as

48 ; ; ;i
a N(3, 1;%. Note that in either case the precision

worsens as p approaches 1. Similar comments can be
made for models other than an AR(1) with the under-
standing that as the complexity of the model increases
so does the corresponding asymptotic theory. In any
case, the asymptotic distribution of the maximum likeli-

hood estimator of TZ is specific to the model.

To gain some insight into the nonparametric esti-

mation of 72 or Bz, emphasis will be placed on ﬂz and
use will be made of the relation

82 =142 1 o, = 27£(0) (3-7)
k=1 k

where £(0) is the spectral density of the process

evaluated at zero frequency. Estimation of BZ is now
tantamount to estimation of the spectral density
evaluated at zero. A variety of spectral density
estimators are available, but only the usual window or
smoothed estimators will be considered here. The
asymptotic theory associated with such estimators
states that £(0) is asymptotically distributed with

n
mean (0] and variance: 22500 1 an(j} where W_(j)
j=-d
n

are the so-called window weights (Fuller, 1976). In
comparison with the AR(1) model given above, that is,

ci =1 and p = 0.5, the asymptotic variance of 2rf (0)

for a rectangular window is given by

1 2 g*

2 2
R EON (3=8)
n n

Since this latter technique is nonparametric, it
would serve better in those cases when the model is
more complicated but with an attendant loss in
precision.

A variety of studies regarding inferences of yz
can be envisioned but will not be pursued here. Since
our purpose is primarily one of review, and not
development, and the literature on inferences concern-

ing ?2 is void, little can be said; the above just
sketches an approach to the problem.

3-3 The Correlation Between Successive Values of
Range and Deficit

Notwithstanding the intent expressed in the last
sentence of the previous section, in this section we
present some new results obtained by simulation, sup-
ported by limited analytical exploration. They con-
cern the correlation between successive values of the
range Rn and also of the (accumulated maximum) deficit

D, where the input {xt} is a two-state Markov chain.

To motivate this part of the study, the following
question might well be posed: Why is the correlation
between R and R,corD andD . (n>1, k >1) of
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interest? This immediately raises the question: Why
study Rn and Dn at all?

In partial answer to the second question:

(a) Because Hurst proposed R;' and Dn as quanti-

ties or statistics useful for defining the size of a
Teservoir;

(b) Because it has been demonstrated that differ-
ent input processes have different range and deficit
behavior, and thus it has been inferred that by examin-
ing the range or deficit it may be possible to detect
important differences in characterization of inputs.

Leading on from (b), in order to quantify the
range behavior, some statistics need to be derived; and
before anything meaningful can be inferred from these,
it would be helpful if something was known about their
distributions.

One statistic of interest is the Hurst slope K
defined (inter alia) as a function of the rescaled
range by Hurst(1951) (see Eq. 1-12) as log[R;*}/

log[n/2]; another is the local slope Ho defined by Boes

and Salas (1973); see Eq. (1-15). The behavior of
these statistics (and their information content) must
depend on the correlation between successive values of
R**, for if R** and R*¥ are correlated, then E(R;')

(and hence any statistics based on a finite sample)
will have greater variance than if there were no cor-
relation between successive values of the range. A
similar argument applies to the deficit, and hence an
answer has been provided to the first of the questions
posed above.

As a first step to understanding, the simplest
cases are treated initially: the range Rn and the
(maximum accumulated) deficit D, where the input pro-

cess is a two-state Markov chain. It is conjectured
that the results for Rn will translate to R; and R;*

with perhaps an intensification of the degree of
intercorrelation.
Two-state Markov chain input. Let P[xt = -1] =
= P[X, = +1] = 1/2. Further, let p = PIX, .y ™ +1]
X, =¥1] = (1+p)/2 and q = P[X_,; = £l 1xt =¥1] =
= (1-p)/2. Then {Xt} is a two-state Markov chain with

s
corr[xt+s,)(t] I A B [ O

n
The cumulative sums of this chain (Sn = E xi)
i=1

converge in distribution to a Wiemer process as shown
by Troutman (1976), and for moderate n these Sn mimic

the cumulative sums of an autoregressive process with
the same correlation structure. This fact was
exploited by Gomide (1975). Hence the results reported
in this section will apply with a fair degree of
approximation to cases with Gaussian inputs.

The range, Rn. For small n it is easy to find the

exact joint distribution of {Rl, RZ,...,Rm} by direct

evaluation. For large n the procedure is tedious and
recourse is simulation; however, the exact results

in Table 3-1 give us a bench-mark for comparison pur-
poses, where it is understood that P[R0=0] = P[Rl=1] =
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Table 3-1 p.m.f. for-[Rz,Rs,R4].

R, R, R, P[R,:R,,R,]

1 1 1 ra

1 1 2 a°p

1 2 2 a’p

1 2 3 ap>

2 2 2 o Cprap?

2 3 3 >

2 3 4 P
where p = (1+p)/2 and q = (1-p)/2 from above. From
Table 3-1:

E[R2] =1+p F

varlR,] = pa (= o’ [R,] say)

EIR,] = + 6a’p + Sqp° + 4p°

var[R4] = q3 + 12q2p + 22qp2 + 16p3 -

-ER]? (=o’[R,] say)
E[RR,] = q° + 8q%p + 13 qp> + 8p°, and
cor[Ry,R,] = (/T50//16) (1-p) (3+07)/
(47+220-23p2-20p>-230*-2p°-p%) 1/ 2- (22

Hence, for comparison with the numerical simulation
results we give:

Table 3-2 Expected values, standard deviation and
autocorrelation coefficients of succes-
sive ranges.

Corr (R,.R,)
4375 %
2
T+ (1=0){3+s")
Corr(R,.R,) = (VT}
4328 | 24 o) N7+ 220 - 2P - 2000 - 23 - 2" - o
A275 @
4225
2
175 |
@
4128
@
4075 b &
=] a
@ a »
4025 1 1 ! L L L ? 1 1
hls] .20 30 AQ S0 J0 BO [0
Fig. 3-1 Corr[Rz,R4] for correlated Bernoulli inputs
as a function of p.
Table 3-3 E{Rn] for various values of p and n.
n
0 2 4 8 16 32 64 128 256
o+ |1.5 2.37  3.65 5.48 8.10  11.82  [16.92] [24.39]
0 |1.485 2.423 3.686  5.602  B.183 11.733 17.048 24.102
0.3 |1.639 2.796 4.495  7.134 10.758 15.951 23.218 32.760
0.6 [1.815 3.259 5.574  9.209 14.507 21.960 32.580 47.766
0.9 |1.951 3.845 7.385 13.717 24.158 39.860 63.226 98.051

In the first row of Table 3-3, the last two entries
[bracketed] are from Anis and Lloyd's (1953) result.
Table 3-4 is for G[Rn], where the first row * is from

Gomide (1975).

Table 3-4 G[Rn] for various values of p and n.

P E[R2] U[Rz] E[R4] a[R4] corr[Rz.R4]
0 1.5 0.5000 2,.3750 0.8570 0.4376
0.3 1.65 0.4770 2.8021 0.8909 0.4136
0.6 1.8 0.4000 3.2720 0.8331 0.4033
0.9 1.95 0.2179 3.8049 0.5122 0.4053

The values of E[Rz], E[R4], a[RZJ and U[R4] agree with
Gomide (1975).

increases, sketched in Fig. 3-1. This behavior seems
to extend to corr[Rn,R2n] for n > 2 as demonstrated

by the simulation results which follow in Tables 3-3
and 3-4.

Note the behavior of corr[Rz,R4] as p

The results are computed from different sets of
1000 independent samples. Table 3-3 gives E[Rn],

where Gomide's (1975) results appear in the first line
marked * for comparison.
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n

o 2 4 8 16 32 64 128 256
o* |o0.50 0.86 1.28 1.85 2,66 3.78 - -
1] 0.499 0.844 1.296 1.936 2.689 3.712 5.486 7.700

0.5 |0.480 0.876 1.487 2.319 3.504 5.192 7.276 9.772

0.6 [0.388 0.840 1.621 2.957 4.839 7.190 10.472  15.005

0.9 |0.216 0.461 1.178 2.932 6.371 12.063 19.704 31.296

The corresponding sample correlation matrices
{corr(Rh,Rm)}, n,m = 2,4,...,256 are given in Table 3-5.

It is seen that for n > 4, cBrr(Rn,Rzn) generally exceeds
0.5 regardless of p while csrr(Rn,R4n) is generally in
excess of 0.25. This indicates a surprisingly consistent
(with varying p) and by no means negligible correlation
for large values of n.

The deficit, Dn. The particular case of full

regulation development (i.e. where mean net input is
zero) is treated here. As with the range, an explicit



Table 3-5 Corr [Rn,Rm],n.m =2,4,...,256 for various From Table 3-6,

values of p.

E[DZ] =1
2

&‘ 2 f ] 16 32 64 128 56 \rar[[}z] =p= (1+p)/2 = o [02]

8 =0.0 3 2 2 3
T 1 0356 01904 D078 D,0082  0,0439  0.00200  0.00559 E[D4] " iGpT - 13p e Spqc % 29 )12
a 1 0.3412 02499 p.1259 00731 0,021 0.0189 3 2 2 3
8 1 05834 0.3152 01783 01021 0.0670 VaT[D4] = (16p~ + 28p q + 15 pq + 2q )/2 -
16 1 0,6017 0.3363  0.1625 0.0948 2
32 1 0.5047  0.2961 0.1638 - E[D,]” and
61 1 0.5831 0.3327 4 5
128 A 3 3
46 I TEDS: E[Dzna] = 4p” + qu + 5pq” + q°,

6= 0,30
21 04ML 01830 0.0650  2.0402 00190 D,00738  -0,00951 from which we compile Table 3-7, giving some exact
] 1 0.5070  0.2073  0.0833 0,023 0.0118  -0.0129 results for values of p which correspond to the later
k] 1 0.5164 0. 2678 b.1221 0.0722 0.0514 simulations.
16 1 0.5937 037 p.1T90 0.0897
: : gt Table 3-7 Expected values, standard deviations and
128 1 0.5388 autocorrelation coefficients of successive
256 1 deficits.

o = 0,60
2 1 0.3676 0.111% 0.0383 0.01E5 0. 00165 ~0.,00607 0.0442 3
i 1 0.6387  D.1684 0,087 0.0808 00410 0,034 .
5 1 08138 D.2388  0.1348  b.0se7 0.0578 # E[DZ] U[DZJ E[Ddl G{D4] corr[D2'D4]
16 1 D. 5668 Q.3040 0.1443 0.0837
2 ! il - 0 1 .7071  1.6875  .9823 .6299
i : il 0.3 1 .8062 1.8377 1.2370 .7389
Fh 1 0.6 1 L8944 1.9440 1.5352 . 8506

- 0.9 1 L9747  1.9963 1.8771 L9626

nn
z 1 0.4357 0.1843 0.0429 =0,0300 -0.0118 -0,0503 «0,0470
< ' [ e S el e The results of four different sets of 1000 independent
13 1 0.5017 0.1581 0, 0485 0.00606 simulations are shown in Table 3-3, 3-9 and 3-10.
3z 1 05271 0.2010 0,075
i : Tans, L Table 3-8 E[D_] for various values of p and n.
125 1 0.5358 n
36 1

. p 2 4 8 16 32
evaluation of the joint probabilities of successive
values of the random variable Dn yields the following 0 0.98 1.66 2.63 4.01 6.11
exact results when the input is the two-state Markov g—g g-gg i.;g g.gg 2.2; lg.gé
i i . Now P[D,=0] = 1, and in . . . . . 4
S il MR, G AL 0.9 | 1.03  2.05  4.03  7.88 14,94
Table 3-6 p = (1+p)/2 and q = (1l-p)/2 as before.
Table 3-6 p.m.f. of [DI’DZ’Ds'D4l' Table 3-9 [Dn] for various values of p and n.
b, D, Dy D, P[D,,D,,D5,D,] 0 2 4 8 16 32
3 0 0.72 0.99 1.41 2.02 2.92
E & & o p/2 0.3 | 0.78 1.23 1.83  2.75 3.99
2 0.6 0.88 1.55 2.44 3.7 5.39
& & 4 P2 0.9 0.98 1.89 3,52 6.31 10.54
0o 0 1 1 pa’/2
0 0 1 2 pzq/Z The bracketed figures in Table 3-10 are the exact
2 3 values for corr[DZ,D4] from Table 3-7. These results
. . 1 . e = g )72 are much as anticipated; however, it is interesting to
0 1 2 ) pq2 /2 note the high correlation between Dn and DZn' Further,
5 it would appear from the simulation (although it may
0 1 2 3 2 be fortuitous) that the sampling variation for D_ is
pa/ mpling "
1 1 1 1 (pzq 3 qu i q3Jf2 smaller than that for Rn.
1 2 B 2 ( 2 4 2 /2 The short conclusion that can be drawn from this
Pq+Ppq) study is that R_ and R or D and D are highly
2 n n+k n n+k
1 2 3 3 pq/2 correlated for k > 1. Thus great care should be taken
5 in making inferences on statistics such as K, but more
1 2 3 4 p /2 ! on this in Section 3-4,
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Table 3-10 Sample correlation matrices cﬁrr[Dn,Dm],

n,m = 2,4,8,16,32 and various p.

m 2 4 8 16 32
p=0.0
2 1 0.645 0.349 0.190 0.114
(0.6299)
4 1 0.623 0.334 0.145
8 1 0.660 0.330
16 1 0.641
32 1
p =0.30
2 1 0.740 0.405 0.173 0.082
(0.7389)
4 1 0.691 0.343 0.147
8 1 0.654 0.348
16 1 0.670
32 B
p = 0,60
2 1 0.856 0.574 0.312 0.154
(0.8506)
4 1 0.782 0.440 0.218
8 1 0.703 0.373
16 1 0.665
32 1
p =0.90
2 1 0.965 0.857 0.675 0.451
(0.9626)
4 1 0.934 0.754 0.515
8 1 0.886 0.632
16 1 0.822
32 1

3-4 The Hurst Slope

In this section some results concerning inferences
on the Hurst slope are reviewed. The primary refer-
ences are the recent studies of McLeod and Hipel (1978)
and Hipel and McLeod (1978).

Before commencing with the review, a clear under-
standing of what we are about is required. The Hurst
slope can be considered from the asymptotic or the pre-
asymptotic viewpoint. The asymptotic viewpoint is the
following: Assume that the model is such that

h

E[R**] ~ an (3-10)

lim

h
ek =
where "~" is defined as E[R ]/[a n } 1. Here

h is a resultant characteristic of the model. As
noted in Chapter 2, for any model belonging to the
Browhian domain of attraction h is 1/2 and for frac-
tional Gaussian noise models indexed by h, h can vary
from 0 to 1. Now, while it is of interest to make
inferences regarding h from data for fixed n in the
sense that, say the distribution of some estimator of
h be studied, such will not be pursued here. Rather,
the preasymptotic notion of the Hurst slope will be
considered. Again, such slope can be viewed in seve-
ral ways, but the easiest is to follow Hipel and
McLeod (1978) who defined the Hurst slope as the ran-
dom variable K, in

K
RE® = (%) B (3-11)
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Such definition of the Hurst slope is certainly moti-
vated by Hurst's original work in which he computed a
slope, say kn, from a record of length n by estimating

a value of R;*, say r;’. from the data and then setting

k_=log r;*/log (n/2) . t3—12)

n
If the definition of Eq. (3-11) is adopted, as it

is here, inferences concerning the Hurst slope are
embodied in the distribution of K“ and such distribu-

tion can be theoretically obtained from the distribu-
tion of R;* via the transformation
K =
n

log R;*/log (n/2) . (3-13)

For the case of R;* a continuous random variable
with

n

f 00 - B* 108 & Fpes @ . G

where fR**
n

that the distribution of R;* is not exactly known

the density of R;*, the only problem is

except in very special cases. If n is large enough,
then the asymptotic distribution of R;* is given in

Section 2.8, but the form of this asymptotic distribu-
tion is such that the corresponding asymptotic distri-
bution of Kn coming out of Eq. (3-14) is not nice. It

could, however, be written down and probabilities
could be obtained numerically.

Employing the simple propagation of errors formu-
lae and still assuming n large enough that the asymp-
totic results for R;* can be invoked, one gets

. w 1
iy Y Ly pe | D
K] * Tog 72y * 7 * Tog m/2) ~ Tog @/2)
(3-15)
and
var [R;*}
var [Kn] = > =
{E[R;*] log (n/2)}
u {“2/6J o “/2 - [.Tffs - l) _1—2:
(n/2) (tog (n/2))* (log (n/2))
0472

—— (3-16)
(log (n/2))

Admittedly, propagation of errors formulae are

crude, but for an AR(1) model with p = 0.4 and n = 100,
one obtains 82 = (1+p)/(1-p) = 7/3, and

E[K1oul = 0.75 (3-17)
and standardard deviation

KIUO ~ 0,056 . (3-18)

Hipel and McLeod (1978) tabled the empirical cumu-
lative distribution function of Kn for various ARMA

models and various n via Monte Carlo simulation. For
each model and for each n their empirical cumulative



distribution function of Kn was computed from a sample
of 104 Kn's; 104 is certainly large enough that their
empirical c¢.d.f.'s are very close to the true c.d.f.'s
(but see comments in Section 2-7). For example, for
an AR(1) with p = 0.4 and n = 100, their empirical
c.d.f. gives (0.585, 0.813) as a 95 percent probability
interval for KIOO' Such interval is not that differ-

ent from the corresponding interval of (0.64, 0.86)
obtained using asymptotic theory and propagation of
errors (see Eqs. (3-17) and (3-18). Not much more can
be said about Kn than to give its distribution and

Hipel and MclLeod do give such distributions, via empi-
rical distributions that are accurate enough for prac-
tical considerations, for the models and parameters
that they simulated; other models and parameters

could be handled similarly.

Other definitions of the Hurst slope could be
defined for the preasymptotic case; including one sug-
gested by Gomide (1975) and another by Siddiqui (1976).
These could then be analyzed as Krl was, but there does
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not seem to be much point in doing so since Hurst
actually made his calculations using the equality
given in the definition (Eq. 3-13) of Kn' Mandelbrot

and Wallis (1969) define a slope estimator, labelled
H, as the slope of the least squares regression line:

log [;;*] =a+Hlogn ,M <n<N. Such definition
seems appropriate for those cases when h in E[R;*]znh
is constant over n, as is the case for the fractional
Gaussian noise models. They give an indication of the
variability of such H. Also, Wallis and Matalas (1970)
further studied H type estimators and presented simula-
tion results that indicated the distribution of H for
various models and various n. Their results are com-
patible with the empirical distributions of Hipel and
McLeod.

In summary, some distribution results concerning
the Hurst slope are known and well documented, the
primary references being Hipel and McLeod (1978),
Mandelbrot and Wallis (1969), and Wallis and Matalas
(1970).
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CHAPTER 4
IMPORTANCE OF RANGE AND DEFICIT ANALYSES IN HYDROLOGY

4-1 Storage Design

There are several ways of sizing reservoirs to
regulate flows with a given level of assurance. The
methods vary from rule of thumb through the intui-
tively appealing (and operationally flexible) simula-
tion approach to the analytic method, with an attempt
to yield results in exact form. Of necessity, the
last approach requires that certain simplifying assump-
tions be made about the form of input, output and
reservoir conditions, but it has the advantage that
exact results are forthcoming, usually with a rela-
tively small amount of computation. However, the
great virtue of the analytic method is to allow for
objective comparisons between the results of the
various assumptions that are made concerning the model
specification.

Here, we concentrate on the analytic approach,
drawing together some well known results from range
and deficit analyses, which are juxtaposed with some
from stochastic reservoir theory. Pains are taken to
ensure that they are compared in the same framework.
To facilitate this comparison, two simple and perhaps
unrealistic inputs are used. They are the normal and
discrete(+l) input processes. They have been chosen
because they are so dissimilar.

We will compare the results of range, deficit and
storage behavior for both these types of input when
the respective net inputs have zero mean and are
serially independent. We then compare the effect of
the choice of the two types of input on the behavior
of a finite reservoir when the net input has non-zero
mean, To facilitate this, we introduce the concept of
the standard reservoir which is shown to be a power-
fully unifying one. We shall end with a brief excur-
sion into reservoir behavior when the input is
serially correlated.

4-1-1 Preliminaries

Range analysis can be conceived among others, as
the study of the behavior of the accumulated net input
to an infinite reservoir, where, of necessity, the net
input must have zero mean. Deficit analysis can also
be conceived, among others, as the study of the accu-
mulated net input to a semi-infinite reservoir, i.e.
it has a top but no bottom. This form of the semi-
infinite reservoir is chosen because usually the
reservoirs in practice may be operated with a positive
mean net input. However, this is none other than the
reflection of the semi-infinite reservoir treated in
classical stochastic reservoir theory in which the
reservoir has a bottom and no top and the mean net
input is negative, ensuring ergodicity of the proba-
bility distribution of storage. Thus the semi-
infinite reservoir is useful as a first approximation
to a finite reservoir. Storage analysis will be under-
stood to mean the study of the behavior of a finite
reservoir subjected to a net input whose mean can be
positive, negative or zero. Before we proceed, we
list some essential definitions, repeating some from
Section 1-3 for the purpose of clarity,

Net input. The net input xt in the interval
(t,t+1) is the difference between the gross input Zt
and all abstraction Yt' which are assumed to occur

simultaneously. (For simplicity evaporation and
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other losses may or may not be included in the model
abstractions.) We consider two types of net input:
normal and discrete. The discrete input employed here
has three states: -1, 0, +1. Much of the study
employs the particular choice P[xtn-l] = 1-p, P[xt=0] =

= 0, P[xtnl] = p. In this case, the three-state

binomial input is reduced to 2-state binomial input.

We denote E[Xt], var[xt] and corr[xvxt_ll by u,

a® and p respectively, as we assum2 stationarity
throughout the sequel. Skewness is not explicity
included as a parameter, although its importance is
tacitly recognized. Note that this formulation can
accomodate a stochastic demand process.

Demand draft. The demand is assumed to be con-
stant (all the variance being embodied in Zt),and is

the amount that we would like the reservoir to supply
in any interval. The draft (or abstraction) Yt on the

other hand is a variable, conditional on the reservoir
level: Yt = § unless the reservoir level reaches one

of the boundaries (if they exist).

Storage. Consider a reservoir of finite capacity

V. Define St+1 = min[V, max[0.5t+xt]] where there is

no restriction on the value of y. Depending on the
application, the initial storage S0 can be any point

on the interval [0,V]. (We may be interested in the
first passage time from 0 to V or from V to 0, or more
traditionally, in the equilibrium distribution of
storage lim P[St < 5], (0<s<V), which is independent

T4
of SO')

Effective capacity. If, as we have assumed, Zt

and Y, occur simultaneously, then the effective capa-

city of a reservoir of size V is equal to V. If, on
the other hand, either Zt or Yt (or both) occur instan-

taneously, the former before the latter, then at t+l
the level of the reservoir will be lower by § than it
was the instant before the withdrawal commenced.

The effective capacity of the reservoir is thus
reduced by & in the case of '"staggered" net input.
All the results of the sequel will be interpreted in
terms of V. Thus, they apply to a reservoir of capa-
city V when the net input is "simultaneous'" (either
instantaneous or evenly spread in [t,t+1)) and to a
reservoir capacity V + & when the net input is
staggered.'

Drift. The drift € is defined as the standar-
dized mean net input u/o. It is thus the inverse of
the coefficient of variation of the net input and is
related to the level of development o by € = (l-a).
E[Zt]/U.

Standardized reservoir. We define a standardized
reservoir to be one of standardized capacity ¢ = V/o
fed by a net input with drift e. For the independent
inputs considered above, it will be shown that the
behavior of the finite reservoir is a function only of
c and €. The scaling of the reservoir capacity by ¢
is in marked contrast to the common practice of scal-
ing the capacity by E[Zt}, the mean gross input.

-



Probability of emptiness. In storage analysis, a

quantity of much interest is v, = lim P[5t=01, the
Also of interest is the

0 toe
i P[Yt < §], to supply

Lo
the full demand. The relationship between Yo and Yo

probability of emptiness.
probability of failure, Yo =

depends on whether {xt} has a continuous or discrete

distribution.

&3 {Xt} has a continuous distribution,
then

% C=
Iim
Vi ™ e PLENETVR[X 2E] = Im P[S,=s].

P[X,<s]ds + P[S =0].P[X <0].

Because of the continuity of the input, P[ths] =0,

for all s, so we can replace the inequalities < with
< in the above expression, which is then numerically
equal to Vg

Thus, for continuous input distributions, the
probability of emptiness, and the probability of fail-
ure are equal, if not synonymous.

The practice shows, however, that most operated
reservoirs have approximately a fg-distribution of con-
tents (levels) with two different probability values
of full and empty reservoir. This comes from the fact
that the operational rules are such that a full reser-
voir (and dangers of spillovers) and an empty reser-
voir (and dangers of shortages) are penalized by vari-
ous operational criteria, penalties and optimizations.

When {Xt} has a discrete distribution, then

P[X, =

the above argument, yo £ s.

i] > 0 for at least some s, so that following
In fact, for the classic

case where § = 1 and Xtc {-1,0,1,...,n-1} we get ¥y =

= vﬂ,P[xt = -1] < Yo
This suggests that when comparing the results for
continuous and discrete distributions, we should look
at VG’ not YO' This is what is done in the sequel.
Mean first passage times. In studying the
behavior of a finite Markov chain with discrete state
and homogeneous (time invariant) transition probability
matrix, we denote by mij the mean number of time-steps

taken to reach state i from state j for the first time.
In particular, if 0 is the empty state of the chain,
Moo is the mean recurrence time of emptiness. Thus,

if we have a discrete input to a suitably defined
reservoir with a discrete state space, then My is

none other than the reciprocal of v,, the probability

of emptiness. Again, if c¢ is the label of the full
state, m_, is the mean first passage time from empty

to full or the '"mean time to fill,'" while conversely,
Moe is the "mean time to empty." LI is the mean

recurrence time of being full, which may not be usually
of much interest.

The mean first passage times give us a key to the
comparison of deficit and storage, because as Gomide
(1975) pointed out: ''the probability that a reservoir
of size [k+1], initially full, is empty for the first
time at discrete time n, regardless of the occurrence
of overflows is simply P[Dn > k] - P[Dn_1 > k]."
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Troutman (1976) interpreted this to mean
P[No,c >n] = P[Dn/c < c¢] where NO,c is the first pas-
sage time from full to empty. Because of the sense of
the inequalities we intuitively expect m__ to be

Oc
greater than {n : E[Dn/a] = ¢}. This is born out by

the comparison.

4-1-2 Algorithm for Evaluation of Mean First
Passage Times of a Markov Chain

Kemeny and Snell (1960) detail the development of
the algorithm. We quote their results and show how
they can be applied in storage analysis.

Let a discrete-state stochastic process {St} be a

lag-one finite Markov chain with n+l states, defined
by its (n+l)-square transition probability matrix Q.
{St} will be a stationary process if Q is constant.

The marginal probability distribution vector of St’

denoted by P, = {P[St=i]} i=0,1,2,...,n, is given by

Py = th-l =Q Py where Py is the initial distribution

vector. If Q has at least one positive diagonal ele-
ment and no zero rows or columns, then St is ergodic,

which implies that Pp ™™ (the equilibrium distribu-

tion vector of 5) as t + =, It follows that Qm = m,
which when combined with the condition 1'v = 1 (where
1' is a row of ones), yields 7 on solution of the set
of n+l independent linear simultaneous equations.

Kemeny and Snell give the following algorithm for
evaluation of the mean first passage time matrix M =
[mij},i,j = 0,1,...,n, where each element, mij’ is

equal to the mean number of steps taken to go from j
to i for the first time. (It is usual to call m the

mean first recurrence time for state i, but we will
dispense with that distinction where we are talking
collectively of mij')

They find M as follows. Define the "fundamental

matrix" Z as Z = [I - Q + ':rl']-‘1 then

M=D[I - Z + d1'] (4-1)

where D is a diagonal matrix with 1/1ri as the i-th

entry and d is a vector formed from the diagonal ele-
ments of Z, When {St} is a random walk with partially

reflecting barriers at 0 and n, so that

P[S, = 1|st_1 =0] = P[S, = n|St_1 =n] =p,

P[S, = 0|s,_, = 0] =P[S, = n-l|St_1 =n] =
g = l‘Pn

P(S, = 1+1|st =i] =pandP[s, = 1-1|st_1 = i] =
=q

for i = 1,2,...,n-1, then {St} is a finite discrete

ergodic Markov chain.

Kemeny and Snell also give the following explicit
formulae for mij for this case.



If p = 1/2,

n+l i=j:
my = (2n-i+1)i - (2n-j+1)j i>j, (4-2)

j(G+1) - i(i+1) i<j.
1f p £ 1/2,

n+l
r =} 1
r-1 _i' i=j
" j+1 o =i+l
m = _q [ . (i-j}] ij  (4-3)
[(i -i) - m] i<j ,

where r = p/q. These formulae will prove useful when
the discrete finite reservoir fed by a + 1 input is
studied.

4-1-3 Mean First Passage Times for the Finite
Reservoir with Normal Input

In the case of the normal input, we have to
devise a finite difference algorithm for the evalua-
tion of the mij' Consider a standardized reservoir of

capacity c, with drift e, discretized into k equal
slices of size Ac = ¢/k. As k+=, the results for this
finite difference approximation will tend to those for
the continuous reservoir. Fortunately, it has been
found that adequate convergence is achieved for

k > 2c, when the following scheme is adopted.

The k+2 states of this approximating discrete
reservoir are i = 0,1,2,...,k+1, i.e. zero, the mid-
point of each of the sub-intervals and full.

For the case of independent continuously distri-
buted net inputs (in particular the normal) the proba-
bility of transition from one state at t to another at
t+1 depends on whether S is a boundary or interior

state.
If S = 0 then
P[S,,, = 0Is, = 0] = I m) dx, = o[-€]
PiS,,; = ilst = 0] = ¢(iAc - €) =~ ¢[(i-1)Ac - €]
for i =1,2,...,5])
PIS,,; = k41|St =0] =1 - ®[c-€]

where ¢(x) and ¢(x) are the standardized normal p.d.f.
and .c.d.f.

For intermediate states:

P[S = ilst = i] = ¢[Ac/2 -€] - ¢[-Ac/2Z -¢]

P[S,,y =1+ 1|st =i] = ¢[3Ac/2 - €] -

- ¢[ac/2 -] , etc.

These transition probabilities can be assembled
in a {k+2] -square transition probability matrix Q,
where 9; = PIs,., * i]S = j], which will be sym-

metric if € = 0. We can then proceed to find M from
Eqs. (4-1) and (4-2), increasing k until satisfactory
convergence is achieved.
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4-1-4 Results and Discussion of Computing Mean 1
First Passage Times

In this section we report the results of the
computations made using the above algorithm, which
enable us to do the comparisons.

Normal net inputs with zero drift

Storage. Once Ac = c/k is smnll.enough, the mean
first passage times become independent of k, thus we
will denote the mean filling time by L which equals

The
mean recurrence time of emptiness is Moo = Tee Table

4-1 gives these quantities for the case ¢ = 0 as a
function of c.

the mean time to empty LT because of symmetry.

Table 4-1 Mean first passage times for normal imput
with zero drift as a function of standar-
dized capacity c.

£ M0 ce mOc-mco

1/4 2,219 2.462

1/2 2,476 3.065
1 3.082 4,749
2 4.473 10.002
4 7.307 26.65
8 12.98 83.57
16 24.47 287.8

A comment may be appropriate here. Contrary to
expectations based on the behavior of the discrete
reservoir, the probability density of the intermediate
levels of storage is not uniform, unless c is either
small or large. The distortion from uniformity seems
to be largest when c is about 4. In this case, the
ratio between the densities at St = ¢/2 and at St

= ¢ - (or 0+) is approximately 1,30.

Range. For independent normally distributed net
input with € = 0, E[Rn/a] is given as a function of n

by Eq. (2-1). A few tabulated values of this function
will be helpful.
n 2 4 8 16 32 64
E[Rn/c] 1.362 2.222 3,488 5.317 7.932 11.651 '

128 256
16.924 24,392

Deficit. For independent normal inputs with
€ = 0, Gomide (1975) devised a finite difference
scheme for the evaluation of E[Dn/a] as a function of

n. He does not tabulate any values, but gives a graph
(his Fig. 5.9) from which the following values have
been taken; they are therefore approximate.

2 4 8 16 32 !
.80 1.44  2.46  3.93  5.96 i

n
E[D /0]

Figure 4-1 shows E[Rn/u] and E[Dn/c] plotted i

Plotted coaxially with them is ¢ against
All

these for independent normal net inputs, plotted as
full lines.

against n.
0 for the standardized reservoir with £ = 0.
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Fig. 4-1 Range and deficit as a function of n, with
mean first passage time from full to empty
of a standard reservoir of size c with inde-
pendent normal (full lines) and independent
+1 discrete (dashed lines) inputs.

Note that for ¢ < 8, n < 64, values of E[Rn!uj
and E[Dn/c] yield reservoir sizes respectively about
1.7 and 1.3 times as big as those computed from m

0c”
These factors increase as ¢ and n get smaller.

Digcrete net inputs with zero drift
When the net input is discrete and takes the form
P[xt =+ 1] = 1/2, range analysis is associated with

an unrestricted random walk, deficit amalysis is asso-
cioted with a random walk where there is partial
reflection at the upper boundary and storage analysis
is associated with a random walk with two partially
reflecting boundaries. Gomide (1975) developed the
algorithms for range and deficit analysis for this xt,

while Egs. (4-2) apply to storage analysis.
Note that in this case, E[xt] =0, var[xt] 0 I

Range. From Table 4-2 of Gomide (1975) it

results

n 2 4 8 16 32 64
E[Rn/c] 1.5 2,375 13,0484 5.4806 8,0967 11,8157

var[Rn/n] 0.25 ,7344.1,6342 5,4593 7.0552 14,2897

veficit. Gomide (1975) outlines an algorithm for
obtaining E|Dn/o], but does not tabulate any values.

The algorithm is based on the theory of Markov chains
with absorbing barriers. The following is an adapta-
tion of his method.
Let £, _ = P[D_ < i], the c.d.f. of D_; then
i,n n-— n

n-1 n-1

E[D ] =n - .{ £; p and var(D ] = ‘[ (21+1J(1-fi‘n]-
i=0 i=0

- R[Dn}‘. To compute fi ¥ i=1,2,...,n, we proceed

as follows. Let g be an i-element vector, void
except for the first element which is 1. For n suc-
cessvie steps, compute the following, g =

(8 * 8))/2, 8; = 8;_;/2 and gy = (g;_; + 85,1)/2, j=
1,2,...,i-1. At the n-th step compute fi R

i
! g, and put £
§=0 i 0,n

vur[unj.

= 1/2"%, Then compute E{Dnl and

The results of this computation are:

a 2 4 8 16 32 64
E[Dnj 1 1.6875 2,6712 4,1035 6.1541 9.0721

var[Dn] 0.5 .9648 2.0173 4.1115 8.2873 16.6432

Storage. To apply the theory of random walks to
storage analysis, we must take care with the specifi-
cation of the state space of the discrete reservoir.
To have the correct properties, the discrete reser-
voir of "size" k must have k+2 states, 0,1,...,k+l
where, as before 0 and k+1 are the "empty" and "full"
states. Transitions from one state to another will
only occur if the input consists of amounts which are
multiples of the difference between adjacent storage
levels. Thus, the '"distance' between the adjacent
states of a discrete reservoir are all equal. By
contrast, in the finite difference version of the con-
tinuous reservoir, the distance between the adjacent
interior states is Ac, whereas the distance from 0 to
1 and from k to k+l is Ac/2. Despite this disparity,
the results for the continuous and discrete reservoirs
compare favorably, as will be shown in the next
section.

When discussing first passage time, we will con-
tinue to use the subscript ¢ to denote full; then
from Eq. (4-2), with k = ¢,

Mgg = Mee * € * 2 ? (4-4)

"oc

=M. = (c+l) (c+2) . (4-5)
Comparing these results with those of the normal dis-
tribution listed in Table 4-1, it will be seen that

the My values match quite well for c < 4, while Mo

values match well throughout.

The results for E[Rnlu] v on, E[Dn/a] ~ n and
¢ wm,, are plotted in Fig. 4-1 as dashed curves and

will be seen to match their corresponding continuous
curves, especially in the cases of nn/o and Dn/c.

Note that although a discrete reservoir cannot be
defined for non-integer k, if we allow the above
expressions to be interpreted for 0 < k < 1, they
closely approximate the normal curves.

The correspondence of results of the continuous
and discrete symmetric distributions seems to be
fairly good. This suggests that more realistic dis-
crete models should perform even better than the +1
model employed here. This observation is relevant,
because a thorough study of reservoir behavior for
various skewnesses and correlation structures would
require a daunting amount of computation if done by
simulation or by finite difference approximation to
the continuous input.

Before proceeding to examine the effect of drift
on reservoir behavior, some concluding remarks on
range-deficit-storage analyses seem to be appropriate.
Notwithstanding their intellectual appeal because of
the interesting (but often difficult) problems asso-
ciated with range and deficit analyses, and their
undoubted influence on time series analysis in
hydrology, their practical application in the sizing
of reservoirs may leave a lot to be desired, if only
because storage analysis is far richer in results
than the former, and often yields unequivocal answers
to a wide variety of problems with relatively simple



algorithms. Without even invoking the practical
aspects of optimization, there are other considera-
tions that may speak against the use of range and
deficit analyses in storage problems:

(i) They are each approximations of storage
analysis which yield over-conservative reservoir
sizes unless adjustments are made.

(ii) The simplicity of the expression for the
range may once have been a justification for its use
when storage analysis was in its infancy. This con-
dition may no longer hold, since it is seen from
Eqs. (4-4) and (4-5) that the equivalent expressions
for the first passage times for a discrete reservoir
are trivially simple, but accurate.

(iii) Effects of non-zero serial correlation and
drift, although not beyond the grasp of range and
deficit analysis (Gomide, 1975), are easily computed
from simple formulae derived from analysis of the dis-
crete reservoir. The convergence to exact results of
continuous reservoirs and net inputs by the use of dis-
crete reservoirs and discrete net inputs are still
problems to be taken into account.

4-1-5 Storage Analysis with Non-Zero Drift

Independent, normally distributed inputs

Using the finite difference scheme outlined above,

we obtain the following values for a2 Boer Beg and

m. s functions of ¢ and . Note that, because of the

symmetry of the normal distribution, [m00|e] s
[mccl-cl and {mco[e] = (moci—e).

Table 4-2 Mean recurrence time of emptiness, Myo*

q 0 ol .4 .6 .8 1.0

1/4 | 2.219 2.738 3.491 4.604  6.279 8.852

1/2 | 2.467 3.186 4.270 5.951  8.607 12.89
1|3.082 4.376 6.595 10.48  17.43 30.06
2|4.473 7.998 16.12 35.70 84.57 209.2
4|7.307 21.60 84.73 397.1 2057 11280
8112.98 114.8 1920 41670 1013000 26x10°
16 | 24.47 2627 95x10% 45x10 . =

Table 4-3 Mean first passage time from full to empty,

Iloc.

g o .2 .4 .6 .8 1.0

1/4 | 2.462 3.024 3.825 4.989 6.719 9.352

1/2|3.065 3.891 5.106 6.936 9.761 14.23
1|4.750 6.466 9.220 13.78 21.58 35.29
2|10.00 15.93 27.99 54,19 114,3 258,1
4|26.65 59.89 175.9 653.1 2871 14080
8 [83.57 408.6 4250 69350 14x10° 33x10%
16 | 287.8 10300 21x10° 76x107 - =

Table 4-4 Mean first passage time from empty to full,
m ..
c0

0 2 .4 .6 .8 1.0

1/4 | 2.462 2,062 1,772 1,560 1.404 1.289
1/2 | 3.065 2.492 2,085 1,793 1.579 1.421
114.750 3.644 2.908 2.401 2.042 1.780
2 110.00 6.858 5.063 3.960 3.238 2.738
4 126.65 14.91 9.868 7.272 5.742 4.748
8 (83,57 33.54 19.81 13.94 10.74 8.752
16 | 287.8 73.16 39.80 27.27 20.75 16.75

Table 4-5 Mean first recurrence time of fullness, m ..

.603 1.422 1.294 1.202
.684 1.467 1.317 1.214
.839 1.544 1.356 1.233
2 |4.473 2.852 2.052 1.629 1.390 1.247
4 7.307 3.498 2.200 1.666 1.400 1.250
812,98 3.935 2.256 1.680 1.406 1.253
16 | 24,46 4.066 2.267 1.684 1.408 1,254

1/4 12.219 1.858
1/2 [2.476 2.003
1]3.082 2.311
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Fig. 4-2 Mean recurrence time of emptiness, m,,, of

a standard reservoir of capacity c fed by an
independent input of drift e.

These tabled results are plotted in Figs. 4.2 and 4.3.
Independent discrete inpute

The discrete +1 net input with non-zero drift is
given by P[xtSi] = p, P[Xt--lj =q = l-p with p # 1/2,

To compare the results of the normal and discrete net
inputs, we must define the standardized reservoir for
discrete net inputs with ¢ # 0.

Firstly, u = p-q, ¢ = 2/;;; so the drift, € =
(p-q)/(2vpq). Secondly, for a given k, the standard
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Fig. 4-3 Mean first passage time from full to empty,
L of a standard reservoir of size ¢ fed

by an independent normal input with drift e,

capacity ¢ = k/o and vice versa.
r=np/q# 1. In terms of g,

P = sy e]/[2/(1+szj]
r= (Jased)
(p-q) = e/¥(1+e”) ,

so that we get, from Eq. (4-3)

L) (rk+2 -1)/r - 1)

Oc = [mou - [k"'z)l;!(P‘q}

i o~ /rk+l
ce 00

Whene# 0, we have

el/[/(1+e?) - €]

m
p#q

m = [k +2-m 1/(p-q)

These expressions clearly interpolate for non-interger
k, so that we can use them to compute first passage
times for given values of c and e, by which they are
completely specified.

It may be more convenient to compute c from a
given Moo and €. In that case

g = lfftl*ezj

k = &n[l + moo(r—l)]/!,nr - 2.

Whence ¢ = k/o is the standardized capacity. Figure
4-4 shows this interrelationship, where a family of
curves in terms of Moo (the recurrence interval of

failure), has been plotted on € and c axes. The
appearance of this graph is reminiscent of the storage-
draft-frequency curves that are sometimes employed in
storage problems. The similarity is not coincidental.
If we recall that € = (l-uJE[Zt]Xu, where o is the

level of development, we get o = 1 - as[E[Zt]. Thus

when € = 0, o = 1,00, and if the coefficient of varia-
tion of the gross input is 1/2, say, a = 0.50 when
e =1,

The important point to note about Fig. 4-5 is
that the standardized capacity and the drift are
respectively the capacity and the mean net input
scaled by the standard deviation of the input and not
the mean gross input (or mean annual runoff) which is
usually the case in practice. It is evident that more
meaningful regionalizations are likely if first pas-
sage times are expressed in terms of the standardized
capacity and drift,
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Fig. 4-4 The relationship between size ¢ and drift ¢
of a standard reservoir fed by discrete +1
input (full lines) and normal input (dashed
lines) for given m

00"
o—2 8 16 32 64 128 256 512 1024 2048
= p=-08 Mo
-08
02k
=04
oapk | 5
\\.
06 e
\“\{ﬂm¢numw
\Norml
0 Input
[=N-] 0.2 \\
8} 0.4 S
|,° 0.8
1.0¢
Fig. 4-5 The effect of correlation on the mean recur-

rence time of emptiness of a standard reser-
voir of size c = 4 fed by a discrete +1
input with drift e, with the corresponding
curve for the independent normal input shown
dotted for comparison.

Superimposed on Fig. 4-4 are curves from the sec-
tion of normal net inputs, for various Mao values,

shown dotted. Note that the discrete model requires
a larger c for a given € when Mo is 100. .It is thus

(compared to the normal) slightly conservative in this
region, but the overall behavior is quite
satisfactory.

Other discrete 3-state inputs

0f course, one should not be restricted to the #1
process. If Xt is chosen to have a binomial (2,p)

distribution, then the following relationships hold:

a = /2pq p=[1+ E;J(zmz)]/z.
e = (p-q)/0 q = [1 - e/Y(2+e7)]/2.

2
_ 2,2 V(24e") + ¢
=V
(2+e7) - 7 .



For example, when ¢ = 4 and € = 0.2, we get o =
0.70014, and r = 1.75737; yielding Moo = 18.46.

Comparing this with 19.51 for the +1 input, and
21.60 for the normal, there is not a large disparity.
For ¢ = 2 and € = 1, the normal yields Moo = 209.2,

the binomial 314.1 and the :} input 84.9, so the
expressions appear not to be so close when € is large
(or conversely when a is small).

Serially correlated discrete inputs with
arbitrary drift

Since the approximation of the continuous reser-
voir by the discrete model is so satisfactory in the
case of independent inputs, some confidence is felt
that the same will occur when the inputs are no longer
independent. For the input, the discrete analog of
the lag-one autoregressive model is the lag-one Markov
chain, specified by the transition probability matrix,

L = pl + (1-p) wl! (4-6)

where p is the first serial correlation coefficient,
I is the identity matrix and v is the equilibrium vec-
tor probability distribution of {Itl. This input

model was introduced by Pegram (1974) where it was
applied to reservoir problems. Explicit expressions
for Yor the probability of failure to meet full

demand, were given by Pegram (1978), however, as we
have seen above, for meaningful comparison with con-
tinuous reservoirs, we need to compute Vo (or its

inverse -00) rather than Yo
A brief derivation of the expressions will be
given, and we then explore the behavior of my as a

function of ¢, &, p. The joint equilibrium vector
probability distribution of [st,xt] is'v = {vij}

where vij = ::: P[St =i, Xt = 3§], i =0,1,2,...,k*1;

j = -1,0,+1. Then the equilibrium storage dis<ribu-
tion is given by the elements

+1
= Lim P[S_ = i] = )
trm j=—1

vy

vij .
It was shown by Pegram (1974) that in particular

vy = a/la + b(leaerZe.. . a25 ) & ¥ (4-7)
for a k-state reservoir.

Pegram (1978) derived expressions for the terms
in Eq.(4-7) when the input has the particular form

given by Eq. (4-6). In that case, 7 = [q(1-p-q) p]'
is the equilibrium vector distribution of xt and it

was found that, in terms of p, q and p,
a = 1/[p(1-p)]
b = (1+p)/(q*ep)
d = 1/[q(1-p)]
A = (p+oq)/(pp+q) . (4-8)
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There are two cases of interest: zero and non-
zero drift. For zero drift, p = q and the substitu-
tion of Eq. (4-8) into Eq. (4-7) yields, after
simplification

Moo = T = llvo =2 + k(1-p) (4-9)

for € = 0, which in turn yields Eq. (4-4) when p = 0.
Note that this expression is quite independent of p
or q and hence the variance of the input.

When € # 0, we find that

mge = @/a-1) (op+a)/ (p-a) (4-10)

which becomes {rk*z-l)/{r-l), as expected, when p = 0,
since in that case, A = p/q = r. We also have that

». " moof(plk/q) becomes mm/rk+1 when p = 0.

We note that p and q can in general be chosen
independently (subject to the constraint that all
elements of v are non-negative). However, if we

‘specifically fix p+q = 1, then we only have one para-

meter, p, describing the equilibrium marginal distri-
bution of the discrete +1 input, while p fixes the
serial correlation.

We then have that, as before p = [V(l+e) +e]/
[2/(14¢“)] and k = 2¢vpq, so that myo is in terms of
¢, € and p only. For a fixed ¢ = 4, we show, in
Fig. 4-5, how Moo varies as a function of e and p.

Note that for p = 1, m;, = 1/q as expected.

p 08 04 0-04-08
32}

1/2F

Moo

174 L 1 L 'l L 1

2 4 8 16 32 64 128

Fig. 4-6 Mean recurrence time of emptiness, Moo of

a standard reservoir of capacity c fed by a
discrete input (+1) with zero drift and
first serial correlation coefficient p. The
independent normal input shown dotted for
comparison.

In Fig. 4-6, we show how Do varies as a function

of ¢ and p for € = 0. Plotted coaxially is the dashed
curve for the independent normal input for comparison,
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which is seen to hug the discrete input curve for

p = 0 at low ¢, moving across to the curve for p = -0.4
at about ¢ = 8. The discrete model is thus conserva-
tive in its estimate of Moo when compared to the nor-

mal, but undoubtedly indicates the general response of
a reservoir fed by a serially correlated input.

4-1-6 Concluding Remarks

One point of view is that the range and deficit
analyses cannot compete with the storage analysis in
the realm of reservoir sizing and risk evaluation.

The reasoning is that not only are they relatively
cumbersome and arcane, but the greater richness of
results available from storage analysis makes their
application to reservoir problems obsolete. However,
there are different viewpoints on the applicability of
range and deficit in practice.

Reservoirs fed by two different net input types,
distributed as the normal and the +1 discrete, coming
from opposite ends of the spectrum, as it were, might
be expected to behave quite differently. Not so.
Provided that the state-description is carefully done
in terms of a standardized reservoir, with the correct
drift, then the correspondence is remarkably good; so
good, in fact, that better correspondence between the
results of continuous and discrete reservoirs can be
expected for more realistic discrete input
distributions.

The final optimistic note is that, because of the
fair approximation of the continuous by the discrete
reservoir, effects of correlation structure and per-
haps skewness can be ascertained with relatively small
amounts of exploratory computations. The major dif-
ferences in viewpoints can result from the interpre-
tation of what a "fair approximation' means. :

A word on the application of the range may be
useful at this end. If a standardized storage capa-
city V/o, is assumed in planning process or is already
fixed (decided upon, being constructed, or is built),
then the range analysis may provide some useful infor-
mation. If one looks at what is the probability that
this capacity would be sufficient for an overyear
regulation and a prescribed draft, for a given number
n of years, the distribution of R, for the given type

of net inputs would provide the probability P(Rn <
V/a). 'The difference 1 - P[Rn < V/a), or its recipro-

cal, would give the risk of V/o not being able to
satisfy the draft in the next n years. In other words,
this risk may give the number of n-year periods, out
of a given number m of n-year periods, that the sto-
rage capacity V would not be able to regulate the
inflows to a desired demand outflow. In this analy-
sis, the initial condition of the reservoir storage
is crucial. If the regulation starts with V/Z (half
storage), the above probability information may be
close to reality. However, to apply the above infor-
mation, not only Rn. but also Mn and m , as the par-

tial maximum and minimum sums, are also important
because the conditions (V/2) > M_and (V/2) 2 lmn]

should also be satisfied. For a proper application
of the range, one should develop its additional
properties, namely the conditional range-storage dis-
tributions,

PR, = 7| [(Vy/0) 2 83 (V=Vy)/e] 2 |m[)

where Vj = the state of the reservoir, V = total
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capacity, ﬁn = the sample value of maximum partial

sum, and @ = the sample value of minimum partial sum.

The initial storage state (0 < Vj < V) mast

enter as a condition for any reasonable application
and realistic probability statements related to any
range and deficit analysis, and the storage design,
with both M_ and n of the range being important
statistics,

4-2 Modeling Hydrologic Time Series

The stochastic modeling of hydrologic time series
is one of the basic tools for planning and operation
of water resources systems in general and of water
storage related systems in particular. Modeling is
necessary in order to generate new samples that are
statistically indistinguishable from the historical
record and use them at the planning stage, for instance
for designing an appropriate storage capacity of a
reservoir, or at the operation level for instance for
developing or testing reservoir operational rules. In
modeling hydrological time series in general, there
are several important aspects to consider such as the
selection of the class of models, the model identifi-
cation, estimation of parameters and testing the good-
ness of fit of the models selected, and finally the
use of the model. It is not the intention to review
here in detail all those aspects, but to point out
some that are related to the range and deficit analy-
sis and the Hurst phenomenon.

Hydrologists and water resources planners in gene-
ral have been discussing for several years the best
model to be used for planning and operating of water
resources systems. Some have advocated the use of
autoregressive models (Thomas and Fiering, 1962;
Yevjevich, 1963; Beard, 1965, etc.). Others suggested
the use of fractional Gaussian noise models
(Mandelbrot and Wallis, 1968; Matalas and Wallis,
1971, etc.). Others advised the use of broken-line
models (Mejia et al., 1972; Garcia et al., 1972, etc.).
Others suggested the use of mixed autoregressive and
moving average (ARMA) models (Carlson et al., 1970;
0'Connel, 1971; Hipel et al., 1977, etc.), and more
recently a new class of mixture models for instance
(shifting-level models) has been proposed (Boes and
Salas, 1978). Supposedly, all these models have been
developed and proposed with the objective of reproduc-
ing some or most of the main statistical characteris-
tics which are identifiable in observed hydrologic
series but (and most importantly) which have a bearing
on the design and/or operation of the water system
under study.

Although generally it is not difficult to find
and estimate the main statistical characteristics of
proposed models by an analytical or a data generation
technique (for instance Yevjevich, 1965; Fiering,
1967; Matalas and Wallis, 1971; O'Connel, 1971; Salas,
1972; Hipel and McLeod, 1978) unfortunately it is more
difficult to detect or identify those which are the
true statistical characteristics of sampled hydro-
logic series. This problem arises due to the inherent
uncertainty present in hydrologic samples because of
the prevalence of short records in hydrology. Pre-
cisely, difficulties of dealing with observed samples
of hydrologic series, i.e., the identification of
design or operational statistics from the sample, their
understanding and interpretation, and their ultimate
use in selecting an appropriate model, has led to con-
troversy and a sort of '"cold war" among hydrologists
and engineers around the world.



These controversies have been mainly centered
around what estimates from historical series should be
reproduced in modeling. In most cases hydrologists
have agreed on the necessity for reproducing statis-
tics such as the mean, variance and sometimes skew-
ness coefficient (the latter at least in the order of
magnitude sense), as well as the first serial correla-
tion coefficient, the main arguments have been with
statistics that represent long-term persistence and
extreme values. The first serial correlation coeffi-
cient, especially when used in connection with esti-
mating the parameter of AR(1) model, has meant to
represent the ''short memory' or short-term persistence
of the time series in question. Similarly, the "long
memory' or long-term persistence of a time series has
been represented by the Hurst K (or similar slopes),
or by the corresponding rescaled range. On the other
hand, the frequency and magnitude of high or low
values (extreme events) has been respresented by the
run-length and run-sum statistics. Since the persis-
tence and run characteristics are related to the
Hurst phenomenon, the main argument among hydrologists
has been connected to the interpretation of the Hurst
phenomenon per se, the statistics to be reproduced and
by which models, and their impact on the design and
operation of water resources systems. Here specifi-
cally, hydrologists and water resources planners and
operators usually ask questions such as: Is it neces-
sary to reproduce the Hurst phenomenon when modeling
streamflow or other hydrologic series? Is there
really a Hurst phenomenon or is it the result of a
transient behavior of the rescaled range? If the
Hurst phenomenon is the result of a transient behavior
of the rescaled range, what class of models or more
precisely what model should be selected as most
appropriate?

If a planner believes or considers necessary to
reproduce the Hurst phenomenon, what model should be
chosen? Is the Hurst phenomenon important in design-
ing reservoirs of say 50-100 years of economic design
life? Is the Hurst phenomenon important for develop-
ing, checking or updating reservoir operational rules
for say 50 years of economic horizon, especially when
the environmental, technological, social, political,
legal and economic conditions are changing very
rapidly and many times in an unpredictable manner?

Undoubtedly the answers to all or most of these
questions depend very much on the basic philosphy of
modeling, statistical and design and operational
practical experience, biases of the analyst (for
instance some hydrologists do not see the necessity
for models other than AR, while others do not believe
in the appropriateness of models other than fractional
Gaussian noise) and similar factors. Based on prac-
tically 30 years of experience (since 1951) of mathe-
matical and experimental analysis, of stochastic
modeling, of the Hurst phenomenon and of the design
and operation of water resources systems in general,
and of water storage reservoirs in particular (experi-
ence gained and shared by mathematicians, hydrologists,
and water engineers in general), one can safely make
conclusions on most of the above raised questions.

For instance, it has been demonstrated that the Hurst
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phenomenon can be the result of transcience of the
rescaled range (Salas et al., 1979b). Therefore,
simple models such as autoregressive models in some
cases and mixed autoregressive moving average models
(ARMA) or shifting level models, in most cases, are
capable of reproducing transient rescaled ranges of
the order of those exhibited by hydrologic records
(Salas, et al., 1977; Hipel and McLeod, 1978; Salas

et al., 1979b). However, based on the typical lengths
of hydrologic records, it is practically infeasible

to discriminate statistically between short-term and
long-term persistence (Wallis and O'Connell, 1973),
which discrimination would be necessary for justifying
the use of models outside the Brownian domain of
attraction. Several hydrologists have been able to
statistically reproduce historical K's (or rescaled
ranges) with AR and ARMA models (for instance see
Hipel and McLeod, 1978). This also resolves the ques-
tion about the necessity to reproduce the Hurst phe-
nomenon for design and operation of the water resources
systems in general or of reservoirs in particular.

However, it is fair and necessary to say that in

‘some cases the hydrologist or water resources planner

or operator may still wish to test his design or
operational schemes with other models. He might wish
to test the sensitivity of his design or operational
rule to the type of model, so in this case he may need
fractional Gaussian noise or broken line models. In
other cases he might wish to have a model to reproduce
both the p, and the asymptotic h slope. This will not
be feasiblé with AR or ARMA models, nor with frac-
tional Gaussian noise models, then broken line models
might be the answer.

Likely, many years will pass until the above con-
troversies will be properly settled. The trend among
some practitioners, to generate new samples by the
selected models by reproducing identically nearly all
the properties of the historic sample(s), runs against
the basic theory of sampling statistics. Properties
of newly generated samples should preserve the inferred
statistics only within the limits and variations as
prescribed by the sampling theory. Furthermore, two
future types of investigations: (1) physical back-
grounds of stochastic models of hydrologic time series;
and (2) tests with a large number of historic hydro-
logic time series on the reliable (homogeneous, consis-
tent) samples all over the world, will likely provide
the physical and statistical backings for the simplest,
sufficiently accurate, hydrologic stochastic models.
Sensitivity analyses of how the various models and
methods affect the results of reservoir sizing and
operation would be the final criteria in selecting
between the simple and the complex models.

In summary, then, from the point of view of water
resources planning, the model choice is as always, a
pragmatic one. As to the importance of range and
deficit analyses for modeling hydrologic time series,
suffice it to say that given the (of necessity sub-
jective) choice of stochastic model, there is no sub-
stitute for efficiently estimating the parameters of
the model; to infer from a derived statistic is to
cloud the issue.

R
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CHAPTER 5
POSTSCRIPT

Two titles might bé appropriate for this paper:
"Reservoirs, Rippl and Range" or "A Guided Tour
through the Phantasmagoria of the Hurst Phenomenon."

The bulk of the paper is a catalog of results,
approximate and exact, that are known about the vari-
ous properties of range and deficit, particularly
about their first two moments and their asymptotic
distributions. Contributions for dependent and/or
periodic inputs make the results more realistic from
the point of view of hydrologic series and applica-
tions, especially when applied to reservoir system
studies, Care has been taken to unify definitions,
notations and results in this assembled body of
knowledge.

Coming out of this stock-taking are some areas
that are felt to be profitable for research. The
behavior of Dn for correlated inputs can easily be

found, based on results outlined in Section 2-9.
Further, a whole new field is opened up on inference
(Chapter 3). One has yet to discover accurate (as
against approximate by simulation) methods of calculat-
ing or defining the distributions of ranges and defi-
cits for intermediate n. The need exists for further
investigation of the behavior of quasi-stationary
models for hydrologic phenomena, for example, weather
patterns in combination with storage of moisture and
heat in the oceans and atmosphere suggest that conven-
tional hydrologic time series models may be far too
restrictive, specifically as their deployment implies
stationarity. Time series modeling in hydrology will
surely further evolve. This paper has collected some
of the tools and ideas that may assist in devising
meaningful models and testing them. The asymptotic
distributions of range and deficit depend, as would
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be expected, only on the sum of the covariance func-

tion, 72, when the inputs belong to the Brownian
domain of attraction. This is interesting in itself,
but the implication is far-reaching.

There are problems for which currently favored
statistical methods applied to time series are not
of much use. Consider, for example, an ARMA(1,1) pro-
cess with ¢ = 0.99 and 6 = 0.95258. For such process,

the variance of the white noise is equal to 0.934260i
and 12 = Zloi (compared to YZ = oi for a white noise

process). Estimating the parameters of this ARMA pro-
cess is fraught with difficulty, at least when the
sample size is small, because the theoretical auto-

correlation function is’p, = 0.1 [O.Bg)k'l for k =

1,2,..., and, since the confidence limits for the null
hypothesis of p, = 0 are proportional to 1/v/n, most

samples are likely to be estimated to be white noise.

Thus, the relatively large 72 will be missed. Sta-
tistics and the black-box approach only in stochastic
hydrology are inadequate; what seems to be needed is
a combination of statistics and a reliable descrip-
tion of the underlying physical mechanism, based on
the physics of the phenomenon, for adequate model
specification.

The evidence that is collected here should be
sufficient to persuade those concerned with statisti-
cal and probabilistic applications that one must be
incredibly careful in phrasing the problems and
arguments. Hurst sowed good seed; researchers must
now continue to nurture, cultivate, weed and ultimately
harvest the crop.
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