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ABSTRACT 

This paper is basically a review or survey of range and deficit analyses in hydrology. The bulk of the 
paper consists of a catalogue of results , both exact and approximate, that are known about the various properties 
of range and deficit, with particular emphasis upon the mean, variance and asymptotic distributions; these 
:esults are categorized according to whether the sample is small or large, whether the input is dependent or 
1ndependent, and whether or not seasonality is included in the model. A discussion of the problems associated 
with statistical inference in range and deficit analyses is included, as well as a discussion of the role and 
importance of r ange and deficit analyses i n practical hydrologic applications. Several areas where further 
research would be of value are suggested. 

PREFACE .. 
Substantive bridges between the water storage theory, of various schools of approaches and contributions to 

storage problems, and the ongoing applications in planning and operation of reservoirs, have not been made. yet. 
The storage theory has not become part of practice yet. The reason is simple. Both the water supply and the 
water demand, as inputs and outputs of reservoirs , are complex time processes. Not only the per iodicity in 
parameters and the complex stochasticity superimposed but also the man-made interventions are responsible for 
this lack of bridges. 

Whenever input and output processes are complex, it becomes difficult to develop the exact mathematical, 
analytical and numerical, methods that would be theoretically justified and implementable in practice. There­
fore, simplifications for inputs and outputs in theoretical treatments are unavoidable in first approximations. 
The more simplified these processes, the farther is the theory from the practice. It is quite likely that the 
future of the basic water storage theory will be able to tackle many complex water problems. · Only then will it 
be accepted by practitioners, and considered as useful tools. The numerical methods of solving storage problems, 
helped by theory, will constitute some of the future bridges between the theory and the practice. 

The application of the range and d"eficit analyses, as statistical techniques for solving storage problems, 
has been initiated by H. E. Hurst in 1951 by his now classical paper "Long-Term Storage Capacity of Reservoirs," 
published in Transaction of American Society of Civil Engineers, Volume 116, pages 770-779 . Basically, the 
study of the over-the-year regulation problems of the Nile River basin led Hurst to analytical and experimental 
studies that triggered the work on the water storage theory in general, and by the range and deficit analysis 
in particular. 

The analyses of range and deficit are often considered only as theoretical approaches for either infinite 
or semi-infinite reservoirs , but not for finite reservoirs with two boundaries, empty and full reservoir . How­
ever, this distinction is controversial, because the range and deficit analyses can be applied to any type of 
reservoir: infinite, positive semi-infinite, negative semi-i nfinite or bounded by both sides, with either 
absorbing or reflecting boundaries, or with a combination of these two types of boundaries in any relationship 
or even with a stochastic ratio between the absorbing and reflecting aspects at the boundaries. It shoul d be 
expected that the range anal ysis, and the deficit analysis as one of the subtopics of the range analysis, will 
be the major probabilistic-stochastic approach in making the future bridges between the water storage theory 
and the practice of planning and operation of storage reservoirs. 

Analysis made by Hurst using long records of geophysical time series appear to show that the log-log plot 
of t he range (r escaled range) versus the sample size n is a straight line with the slope greater than 1/2 or 

that the range is proportional to nh, with h > 1/2. On the other hand, Hurst and also W. Feller in 1951 showed 

that for normal independent variabl es, the range is proportional to nh, with h = 1/2. This apparent discrepancy 
has been called the "Hurst phenomenon." Some authors have called this the "Hurst law." However, it seems more 
appr opriate t o use the first term because studies after Hurst have shown that only in the asymptotic domain, for 
very large sample sizes, the straight-line fit is acceptable. 

v 



The study of the range, deficit and the other associated properties of input and output of reservoirs, has 
been a subject of much interest to many researchers at Colorado State University in the last two decades. The 
professor s, research associates, and graduate studies in the Department of Civil Engineering, Department of 
Statistics, as well as in some other departments, have been invol ved. Many scientists from abroad visited 
Colorado State University. Their visits have been very beneficial to both, scientists at Colorado State 
University, as well as to visiting scient ists. One of these visits was by Dr. G. G. S. Pegram from South 
Africa. The idea of writing this paper was discussed and agreed upon by the four writers of this paper. The 
first draft of the paper was written by Dr. Pegram, Dr. D. C. Boes and Dr. J. D. Salas. Dr. V. Yevjevich con­
tributed in several sections of the draft. In the continuing work by the four authors and by an exchange of 
subsequent drafts, the present hydrology paper was shaped. Because Dr. Pegram has been most instrumental in 
assembling data and in writing parts of the paper , he is assigned the role of the senior author. 

This paper presents a kind of state-of-the-art on the Hurst phenomenon, and the range and deficit analyses. 
However, several positions in the paper, hypotheses advanced and views on the potential of future contributions, 
are also given at many places in the paper . Therefore, the paper is a combination of the state-of- the-art and 
positions of the four writers. In writing a paper by four authors, compromise on positions, terms, interpre­
tations of who did what, when and how, has to be made. Therefore, all the writers may not share all the state­
ments in detail as presented in the paper. 

The writers have tried their best to find all the relevant references and to show their contributions as 
much as feasible. However, as always the case may be, no state-of-the-a·rt or no position paper, or their com­
bination can exhaust all references, in all the parts of the world, and do it completely and objectively, by 
finding and presenting contributions by all the authors. The writers apologize if they have either missed, 
omitted by the lack of information, any reference, paper or contribution that bears on the Hurst phenomenon as 
related to the range and deficit analyses. 

The writers of this paper hope that its contents will be beneficial to all those who would like to find the 
state- of-the-art on this subject sometime by the end of 1978 and the middle of 1979. They are welcome to chal­
lenge concepts or results presented, to advance new approaches, and to contribute new knowledge on this evolv-
ing subject. · 

Some contributors to the knowledge on the range and deficit take the position that everything on range and 
deficit analyses is already known. Others think that the problem of storage theory is really in its infancy 
and the the present state-of-the-art is nothing more than the first phase on a long path of mastering and 
developing the realistic water storage theory that will be of significant practical impact. At the water sto­
rage capacities, both surface and subsurface, will increase in the world with time by the proper pl anning. 
development and management, a logical expectation is that the water storage theory for planning and operation 
of storage capacities will be more and more needed, and in the proper focus, than the case is at present. 
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CHAPTER 1 
INTRODUCTION 

1-1 Motivation of the Study of Range, Deficit and 
Storage 

Whenever we wish to store anything, the immediate 
question to be asked is: "liow much storage is needed?" 
The questions which immediately follow are: "What is 
the character of the inflow to storage?" and, likewise, 
"What is the character of the outflow from storage?" 

These questions and their answers follow from the 
mathematical storage equation (which is the equation 
of conservation of mass), written as 

(1-1) 

with Vt = the volume of storage , Zt = the rate of 

inflow and Yt = the rate of outflow all at time t. 

Integrating Eq. (1-1) over a finite interval of time 
Ct1, t 2) then 

(1-2) 

Note that the change in storage can be written as 
the difference between the accumulated inflow and the 
accumulated outflow or, equivalently, as the cumulative 
sum of differences between inflows and outflows. Note 
further that Yt is ~he total outflow from the storage, 
including the planned withdrawals and the uncontrolled 
spills. It can thus be stated unequivocally that the 
change in storage in an interval of time 6t is equal 
to the "net input," which is the integral of net inflow. 

Any storage facility to be constructed must of 
necessity be finite. Furthermore, the amount of usable 
storage may fluctuate with time or in fact diminish 
with tim~. For example, if one is thinking primarily 
of conservation storage in a reservoir, the amount 
available may be affected by the need to provide flood 
storage, varying seasonally over a year,, while the 
amount of storage lost to sediment accumulation will 
increase with time unless steps are taken to divert or 
remove the sediment. 

Effectively then one can define the lower and 
upper limits of storage on some scale as V

0 
and V

0 
+ C, 

where C = the capacity of the beneficial storage with 
-~ < V

0 
< V

0 
+ C < +~. In general, V

0 
and C are func-

tions of time: V
0

(t) and C(t) . 

The net inflow xt = zt - yt is a function of vt, 

in addition to t. This may be so because Yt' following 

some policy of withdrawals , varies with Vt, particu­

larly when Vt reaches either of the two boundaries, 

vo,t or vo,t + Ct, with Xt constrained to be zero. 

Now the first question can be rephrased as: "With 
this characterization, what does one have to do to find 

1 

out how much storage is needed?" Given the lower 
bound V t and the storage capacity C and the outflow o, t 
Yt, one can ascertain the net inflow xt for a given 

gross inflow Zt. In general, Zt will be the combina­

tion of a deterministic and a stochastic component. 
Hence, Xt will also result as a combination of deter-

ministic and stochastic components. Frequently Xt 

can be thought of as being the sum of the two compo­
nents, but in g·eneral this combination will not be 
linear. Nevertheless, Xt will always result as a 

stochastic process. It remains to ascertain (or 
specify) the stochastic model and estimate its para­
meters to characterize the storage problem which can 
now be variously phrased as: "What is the probability 
distribution of {Vt} or {V ; X } or {Y } ?" There are 
.. t t t 
other associated questions that can be asked, such as: 
"What is the minimum storage that for a given proba­
bility of assurance is needed to ensure that no spills 
nor shortages are experienced in some interval 
(t

0
,t1)?"; or "Given that the reservoir starts full, 

what size of reservoir will be needed, on the average, 
to prevent shortages with a given risk, to occur in 
some interval (t

0
,t1)?"; and similar questions. 

This study is addressed to these questions. They 
can be answered by analyzing the statistical charac­
teristics of Vt, and this is called general storage 

analysis. When V
0 
~ -w, but V

0 
+ C = 0 and in addition 

vt =0, then we examine o6t 
0 

This is called the deficit analysis. When V > -"' and 
0 

C < +~ we have a finite reservoir and we look for the 
distribution of Vt, etc. We call this the finite sto-

rage analysis. When V
0 
+ -~and V

0 
+ C++~ and in 

addition Vt 0, we have an infinite reservoir and we 
0 

look for the distribution of Rht = max Vt - min Vt in 

6t = (t
0
,t1). We call this the infinite storage analy-

sis or range analysis. 

1- 2 Objectives of this Study 

The various properties of the range, deficit and 
storage are related to the stochastic model and the 
parameters of the net inflow. The primary objective 
of this study is then to catalogue and discu,ss the 
relationships that can be found in the literature and 
to fill in the gaps whenever feasible. In cases where 
these relations have not yet been found, we will sug­
gest useful lines of inquiry. 

The objective of this study is of a tutorial na­
ture, pulling together what is known about range, 
deficit, stochastic modeling and storage theories into 
a unified treatment, in an attempt to show the corres-, 
pondence between what appear to be separate subjects. 
As a result, we deliberately break with the traditional 
report form in which one lists previous contributions 
in chronological order. By contrast, we will acknow­
ledge previous contribution i n the appropriate sections. 
The intent is to make the whole more readable and hence 
more informative. 



1-3 Definitions of Ranges and Deficits 

1-3-1 Net [nputs 

Throughout this study, except where expressly 
stated otherwise, inpuf is taken to mean net input to 
an infinite, a semi-in inite or a finite reservoir. 
The net i nput xt in the discrete interval [t, t+l] is 

taken as the difference between the gross input Zt and 

gross output or withdrawal Yt in the interval. The 

level of develo ment or the de ree of re ulation is 
defined as the rat io a = E Yt /E Zt , where E Yt is 

the expected value of beneficial withdrawals. The mean 
net input E(Xt] (invariantly called ~) is related to a 

by~ = E(Zt ] - E(Yt] : (1-a) E(Zt] or a = 1-~/E[Zt); (a 

is somet imes expressed as a percentage) . Most of the 
results in this paper refer to a : 1, i.e . v = 0, and 
this should be understood unless stated ot herwise . The 

variance Var(Xt] will be denot ed by a
2. Note also that 

in the above definitions the expected values can be 
estimated by their sample means. For instance a may 

be defined as a " Y/Z. 

The high value of a (approximat ely a ~ 1) does not 
require a constant output close to its mean . A large 
installed capacity of a hydroelectric power plant, say 
n t i mes the mean (n : 3-5), would enable nearly all 
the water to be released beneficially, provided there 
is a market for the power all the time . Therefore, a 
depends on many factors related to the supply and 
demand . 

Att ention is confined herein to discrete time 
inputs. However, the distributions and time structure 
of inputs dealt with will be both conti nuous (gamma, 
A~~. etc. ) and discrete (bi nomial, Markov chains , 
etc.). Furthermore, the net input Xt may be either a 

stationary or nonstationary process. For i nstance , if 
the net inputs are annual values of hydrologic series, 
they are assumed to be stationary , i.e. a process with 
constant mean, constant variance and constant auto­
covar iance structure. On the other hand, if the net 
input s are periodic-stochastic as i n seasonal hydrolo­
gic ser i es, they are nonstationary, i.e . a process 
that has periodic mean, periodic variance, periodic 
skewness, and often periodic autocovariance structure. 

1-3-2 Accumulated Net rnput 

Define St: St-l + Xt, t = 1,2, ... ,n; where 

5
0 

• 0. The process (St} is the accumulated sum of 

all previous net inputs to an infinite reservoir. 
(There wi ll be cases where St applies t o the storage 

level in a semi-infinite or finite reservoir, but 
the meaning will be clear from the context. ) 

The sum of the adjusted net inputs is 
distinguished by an asterisk: 

n 

(1-3) 

where the two adjustments w ~ or w = X n r x. 
n i=l ~ 

i 
Sn/n are considered. The term S. = L Xt is also 

~ t=l 
called the partial sum and SJ: = s1 -aw is the adjusted 

partial sum. 

2 

Define also M n "' max (0. 51, 52, ...• Sn) 

m min {0. 51, 52' • • • I Sn) n 
(1-4) 

M* 
n •max (0, Si, Si , ... ' S~) 

m* n • min (0, Si , si, ... ' S~) 
where M n and m n are cal l ed the maximum and minimum 

partial sums , respectively, and M* and m* are the maxi-n n 
mum and minimum adjusted partial sums, r espectively . 
Some definitions do not start with S : 0 or 5* = 0 

0 0 
but with s

1 
or si . Such definitions are not used in 

this study. 

1-3-3 The Range 

Define Rn = Mn - mn as the range . This has also 

been called the crude range (Anis and Lloyd, 1975) as 
well as the unadjusted range, but these terms will not 
be used herein . The range is thus the difference 
between the maximum and the mini mum of the partial sums 
in n t ime-steps . Figure 1-1 is a graphical representa­
tion of the partial sum Si, the maximum partial sum 

Mn' the minimum partial sum mn and the range Rn . 

Si 

Fig. 1-1 Def i nition of the maximum partial sum Mn, 

the minimum partial sum mn, and the range Rn. 

1-3-4 The Adjusted Range 

Conventionally when a : 1, and w Xn, the 

adjusted range is defined as 

R~ • M~ - m~ (1- 5) 

In this case S~ : 0, so that the adjusted range is the 

difference between the maximum and minimum of the 
adjusted sum.s in the first n steps. We will use this 
notation and definition herein, although in some cases 
R~ has been denoted simply as the range . Figure 1-2 

is a graphical representation of the adjusted partial 
sum Si, the maximum adjusted partial sum M~, the mini-

mum adjusted partial sum m~ and the adjusted range R~. 

1-3-5 

Define 

variance of 

The Rescaled Range 
n 

a2
: ~ L (X. -X )

2
, the (biased) sampl e 

n n i:l ~ n 

the inputs. Then R~* : R~/on i s called 



the rescaled range. Sometimes the term rescaled ~ 

adjusted range is used, but it has not been the prac-
tice to rescale the unadjusted range, so the term 
rescaled range will be used to describ·e R~*. Instead 

of o~. often the unbiased sample variance is used. 

Fig . 1-2 Definition of the adjusted partial sum sr, 
the maximum adjusted partial sum M~, the 

minimum adjusted partial sum m~, and the 

adjusted range R~. 

Other notations have been used, perhaps in an 
attempt to make the definitions more appealing visually . 
For example, aRn has been used for R~ and rRn for R;*. 

However, it is felt that a proliferation of notations 
will only complicate what is already a highly complex 
subject , and the simpler notation will be used herein. 

1-3-6 The Conditional Range 

A recent arrival , appropriate to discrete inputs, 
is R = [R IS = 0] called the conditional range. It 

c n n n 
is useful as a close approximation to the adjusted 
range R~, 

1-3-7 'The Maximum Accumulated Deficit 

We call D the maximum accumulated deficit to 
n 

disti nguish it from mn and m~ which have been called 

"deficit" in some publications. 

Let S
0 

: 0 as previously. If St-l + Xt ~ 0, set 

St = 0, otherwise St = St-l + Xt ~ 0. {St} is now 
interpreted as the storage level in a semi-infinite 
reservoir which spills at St = 0, when Xt ~ 0, but has 
no bottom. 

DefineD = -min (O ,S.) , i = 1,2, ... ,n; this 
n i 1 

quantity is the maximum accumulated deficit (to a 
semi-infinite reservoir). Maximum accumulated deficit 
analysis which is to be abbreviated to the term 
"deficit analysis" is akin to the "sequent peak" or 
mass -curve analysis applied to a semi-infinite 
reservoir. 

An equivalent definition of On is 

on= max {0, M1-s1, M2-s2, ... ,Mn- Sn} (1-6) 

with S. and M. as defined above. The definition of D 
1 1 n 

is ihown in Fig. 1-3. 

3 

n 

Fig. 1-3 Definition of the maximum accumulated defi­
cit Dn as compared with the deficit of the 

range Rn. 

1-3-8 A Comment on Sampling 

All of Xt' St, Rn, R~, R;* and On are random 

variables. It is unfortunate that in the literature 
little distinction has been made between random 
variables and samples. In what follows, most of the 
results apply to dis tributions or expectations of the 
random variables. Where simulation experiments are 
involved, reference will be made to estimates of 
these; for example , r will be an estimate of E[R ] n n 
found by performing a simulation or from sampling data 
from a geophysical process. Actual realizations of Rn, 

which we would prefer to call r . (for the jth sample 
n,J 

of Rn) will not be referred to specifically, but it is 

understood that if, for example, m simulations have to 
be performed to estimate E[R ], r will be understood n n 

1 m 
to mean- L r .. 

m j=l n,J 

1-4 Organization of the Paper 

Section l-5 of this chapter reviews Hurst's per­
sonal work and the interpretation of his work by others. 

Chapter 2 lists many of the known and no-so-well­
known results such as expectations , variances and dis­
tribution functions of the four ranges and the deficit; 
(we may only give references to the more lengthy 
results). These are laid out as to whether n is small 
or la.rge, and whether the input is dependent or inde­
pendent with periodic or non-periodic parameters . 

Chapter 3 touches on i nference in range and defi­
cit analysis which have not received much attention in 
the past, and is intended to initiate new avenues of 
inquiry. 

Chapter 4 discusses the importance of range and 
deficit analysis in hydrology and is naturally a col ­
lectively personal view of where we see the studies we 
describe having an impact in our research and opera­
tional efforts. 

Chapter 5 attempts to pull the whole of this 
rather loose s ubject together. 



1-5 A Review of Hurst's Work 

1-5-1 Hurst Studies 

In studying the planning of the storage capacity 
of the Aswan Dam on the Nile River and the regulation 
schemes of the Great Lakes of the same river basin, 
H. E. Hurst (1951) realized that by using only the his­
torical records misleading results may be obtained as 
to the size of the reservoir needed and as to the bene­
fit to be expected from it. Hurst then used proba­
bility theory and experimental statistics and derived 
equations for the expected conditional range of inde­
pendent variables and for the expected rescaled range 
of geophysical variables which led to much controversy 
and various positions in statistical hydrology during 
the past 30 years. 

Hurst (1951) derived the expected conditional 
range E(cRn) of independent inputs which could assume 

only the values +1 and -1 (tossing coins for heads and 
tails) each with probability 1/2 as 

(1- 7) 

where ncn/2 denotes the number of combinations of n 

objects in groups of n/2; n is, of course, even. Fur­
thermore, using the Stirling approximation to factori ­
als when n is large, Eq. (1-7) can be written as 

(1-8) 

Based on the fact that the expansion of the binomial 
distribution leads to the normal distribution Hurst 
showed that Eq. (1-8) is asymptocially valid for inde­
pendent normal variables and that in general it can be 
written as 

(1-9) 

where a is the standard deviation of net inputs. It 
is worth mentioning that the above equations derived 
by Hurst have always been thought to be the expected 
adjusted ranges until Boes (personal communication) 
and Gomide (1975) realized that what Hurst actually 
studi ed analytically was the conditional range. In 
order to verify his analytical results, Hurst conducted 
experiments with random events by tossing ten six­
pences 1,000 times, cutting probabili ty cards 1,000 
times and with serial numbers of bonds. In each case 
the r -escaled range was computed and a close agreement 
was found between the experimental results and those 
found analytically. It should be mentioned that Hurst 
actually compared two different equations, Eq. (1-9) 
for the expected conditional range written as E(cRn)/ 

aln and the expected conditional range, written as 
r** /Iii = (E r* /8 lri/m) where m is the number of samples. 

n . n n 
What Hurst should preferably have used was a_instead 
of fJ , so that the estimated adjusted range r*/a/0 

n n 
would have compared better with E(cRn)/a/0. Anyway, 

his comparisons were still valid since E(cRn)/a -

E(R~)/a ~ E(R~*) for large n. 

Having derived analytically the asymptotic 
expected conditional range of normal independent vari­
ables, and having demonstrated, by simulation experi­
ments with random events, that a similar expression 
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exists for the rescaled range, Hurst wanted to find 
the mean rescaled ranges of series of natural phenomena. 
Thus Hurst (1951) conducted studies with a large num­
ber of geophysical time series such as river discharges, 
lake and river levels, rainfall, temperature, pressure, 
tree rings, layers of mud (varves) and sunspot numbers, 
which all together constituted 75 time series of vary­
ing length which were divided into 690 cases of lengths 
ranging from 30 to 2,000. Later Hurst et al. (1965, 
1966) extended his experiments to 120 time series with 
a total of 872 cases of lengths varying from 10 to 
2,000 . Since H~rst 's analytical and experimental 
studies showed that for large n the expected conditional 

range was proportional to a and n112 (Eq.l-9) and that 
the estimated mean rescaled range was proportional to 

n112, he was expecting to find similar n
1
' 2-behavior 

for the ranges of natural time series. Instead, he 
found that the estimated mean rescaled range r** 

increased more rapidly than n112. In general,nhe 
found that 

(1-10) 

with c a constant and h an exponent greater than 1/2. 
However, Hurst's original equation for the rescaled 
range was 

r~• • (~) < (n/2{ (1- lla) 

where (although he did not imply it) K is a random 
variable, so 

log cr~·)= log(~:)< n 
K log Cz) (1-llb) 

a straight line in the log domain. It should be men­
tioned that the reason why Hurst chose to use 
Eq. (1-llb) instead of Eq. (1-10) was because he wanted 
the line to go through r** " 1 for n " 2 since that is n 
known for all cases (we will di scuss this more fully 
later.) 

Equation (1-llb) was us ed in various ways to esti­
mate the value of K. He first used (his Fig. 4 in 
Hurst, 1951 and in Hurst et al., 1965) an estimate by 
f i tting straight lines to graphical plots of log (r**) n 
vs. log (n) so that the line goes through the point 
(log (1) and log (2)] and through the center of gravi ty 
of all the observations. In this way, he found values 
of R ~ 0.75 for river statistics (river levels and 
discharges), R = 0.70 for rainfall, temperature and 
pressure, R = 0.80 for tree rings and similar values 
for other data. He secondly used a point-by-point 
estimate of the slope 

R " log (r~*)/log (n/2) (1-12) 

for each of the 690 (Hurst, 1951) individual values of 
r** (837 cases in Hurst et al., 1965) obtaining an 
n , 

arithmetic mean value of K = 0.729, a standard devia­
tion of 0.092 and a range of individual values of 
0.46 to 0.96 (see Fig. 5 in Hurst, 1957, and Fig. 6 
and Appendices 4 through 11 in Hurst et al., 1965). 
The third s lope estimate used by Hurst and generally 
used by investigators is 

R • log (r**) /log (n/2) 
n 

(1-13) 



as shown in Table 7 (Hurst, 1951) where the values of 
R varied between 0.60 and 0.91 for the 690 cases 
analyzed. 

As a result of Hurst's 'discovery that (a) his 
esti9ators of K were > 1/2, (b) his graphical approach 
to support fitting a curve and (c) the fact that he 
used some very long time series (he assumed n = 2000 
was long enough to demonstrate asymptotic behavior), 
Hurst concluded that for geophysical time series K > 
1/2 for very large n. It was his conclusion that the 
combined K value (0.73) derived for finite n, being 
different from the asymptotic result for independent 
normals (Eq. 1-9) was evidence that there was some­
thing special about geophysical time series. Hurst 
(1951) was not sure about the theoretical significance 
that R is appr.oximately 3/4 for geophysical series, 
but comparing Eqs. (1-9) and (1-lla) he observed that 
while in Eq. (1- 9) for random events, i.e. normal 
independent events eRn (used as an approximation to 

R~) is a function of a and n, in Eq. (1-lla) for natu­

ral events I r"' is a function of & I n and K where "K n n 
depends on the order in which variates occur." Actu- . 
ally,. Eq. (1-lla) would not really imply exactly that 
since the average is over r~* and not over r~, but 

Hurst used Eq. (1- lla) in a rather loose sense. So 
Hurst himself realized that the difference he found 
may be due to the dependence of the time series, but 
he suggested that that dependence would be due to 
groupings of high or low values, which occur in random 
events, but "their tendency to occur in natural events 
is greater" (Hurst, 1951). In fact, he seemed to 
neglect the year-to-year correlation (Hurst, 1957). 
Referring to annual values of river flows, rainfall 
and temperature, he said "their principal characteris­
tic, however, is the occurrence of periods when on the 
whole, values tend to be high and others when they 
tend to be low, though low values may occur in a high 
period and vice versa. So far as is shown, there is 
no regularity in the occurrence or the length of these 
periods, and usually there is not sigificant correla­
tion over one of them between a year and its successor." 

In an attempt to devise a model that would explain 
what he (Hurst, 1951) had found in natural time series, 
Hurst (1957) devised an ingenious experiment with play­
ing cards involving shifts in the mean. He started 
with a pack of fifty-two cards that he called "proba­
bility cards." Each of the cards was labelled with 
one of the following numbers: - 7, -5 , - 3, -1, +1, +3, 
+5, or +7; there were thirteen of each of the ones, 
eights of the threes, four of the fives, and one of 
the sevens. The distribution of the cards in the pack 
provides a crude approximation to a normal distribution 
with mean zero and standard deviation three . 

Hurst performed the following experiment. First 
he aut a card from the deck, noted its number, and 
replaced it. He then randomly divided the fifty-two 
cards into two hands of twenty-six cards, and selected 
one of the hands. If the initially cut card was +j, 
he removed the j lowest cards from his hand and 
replaced them with the j highest cards from the other 
hand; and, if the cut card was -j , he removed the j 
highest cards from his hand and repla~ed them with the 
j lowest cards from the other hand. Thus, if he had 
cut a positive card, he had a tendency to give his 
hand a positive bias. He added a joker to his hand of 
twenty-six and drew cards at random, with replacement 
from the twenty-seven cards. The number on the first 
card drawn is the first number in the series, the num­
bert on the second card drawn is the second number in 
the series, etc. He continued to draw cards until he 

5 

drew the joker, at which time he started over from the 
beginning. Four different experiments of 1000 gene­
rated numbers each were performed and analyzed, result­
ing in the usual diagram of log rescaled-range versus 
log n. His mean computed K using Eq. (1-5) for all 
experiments was 0.73. These experiments were further 
extended as described in Hurst et al. (1965). 

1-5-2 Interpretation of Hurst's Findings: 
The Hurst Phenomenon 

Hurst (1951) showed that the mean conditional 
range of normal independent variables was asympt.otically 

proportional to n112 (Eq. 1-9). This square root 
behavior was further confirmed by Feller's (1951) ana­
lytical equations when he found that the mean range 
E (Rn) and the mean adjusted range E (R~) were also 

asymptotically proportional to n112 for normal inde­
pendent variables. But Hurst also showed that the 
mean rescaled range was on the average proportional to 

0 . 73 f 1 . Th . d. n or natura ser1es. 1s 1screpency between 
theoretical results stating that the exponent of n is 
:asymptotically 1/2 and Hurst's empirical findings that 
the exponent of n is greater than 1/2 for natural 
series, has become known as the "Hurst Phenomenon." 
Some statisticians and hydrologists also use the term 
"Hurst law" to denote the fact that when straight lines 
are fitted to ~he rescaled ranges of natural phenomena 
using log scales, they have Hurst slopes greater than 
1/2. (The assumption is made that the available n's 
of natural series are long enough to guarantee asymp­
totic behavior.) 

Interpretation of the Hurst phenomenon has been 
varied and controversial i n statistical hydrology ever 
since Hurst published his first results. One inter­
pretation has been that the expected rescaled range of 
hydrologic samples is asymptotically proportional to 

nh with h > 1/2. Another interpretation is that series 
exhibiting the Hurst phenomenon have Hurst slope h 
greater than 1/2 for small or moderate values of n, but 
that it tends to 1/2 asymptotically. Hurst's findings 
and consequent interpretations initiated a volume of 
investigations by statisticians , hydrologists and geo­
physicists in general, i ntent on seeking a mathemati­
cal and/or physical explanation of the phenomenon and 
to ascertain its operational consequences in water 
resources systems. 

Since the Hurst phenomenon has centered around 
the exponent of n (slope) being either 1/2 or greater 
than 1/2, comments and criticisms of Hurst work began 
with the way he estimated the slope and some alterna­
tive estimates have been proposed. Chow (1951) first 
questioned Hurst's graphical slope estimate (line 
going through the point log r** = 0 and log 2 = 0.30) 
and suggested instead a least squares estimate. Using 
Hurst ' s (1951) data, Chow found a slope of 0.87 and 

graphically showed that his equation r** = 0.31 
n 

would give a better fit than Hurst's r** • 0.65 
n 

0.87 
n 
0. 72 

n 

In response to Chow's comments, Hurst indicated that 
the main reason why he used the slope estimates of 
Eqs. (1-12) or (1-13) was for the practical convenience 
of using just ·one parameter instead of two as in Chow's 
least squares procedure . Besides, he said, the fit 
obtained with just one parameter appeared to be as 
good as Chow's equation with two parameters. 

Mandelbrot and Wallis (1969 , p. 321-340) suggested 
that the Hurst slope should be discarded because 
"actual pox diagrams have a straight trend of slope H 

I 



that fails to pass through the point of abscissa log 2 
and o·rdinate 0. Hurst's average K is thus a very poor 
estimate of the slope H. It tends to be too low when 
H > 0. 72 and too high when H < 0. 72." [Note that in 
this passage H is used instead of an (implied) constant 
h, neglecting the fact that the exponent h in E[R**] • 

C nh actually varies with n. Already notational ~onfu­
sion abounds, but we will continue to use h as an 
asymptotic exponent, K as a random variable (with K 
its estimate) and k as a sample value, unless other­
wise stated.] They referred to Figs. 2 through 7 in 
Mandelbrot and Wallis (1969, p. 242-259) to verify 
such statements. However, their statements appear to 
be exaggerated because while it is true that the best 
fit lines would not pass through the point of abscissa 
log 2 and ordinate 0 (obviously because the relation 
of E[R**] vs. n is actually a curve, even in log-log 

n 
plot, and_not a line) Mandelbrot and Wallis' computa­
tions of r~* seemed to be based on unbiased variances. 

The equations for the variances shown in their papers 
are a.ctually biased standard deviation, so they must 
have changed the estimate while doing the programming, 
which for small n actually distorts the estimate r** n 
causing, for instance for n = 2, values of r** < 1 

when it should be the opposite since rr* = 1 exactly. 

This can be easily verified by observing for instance 
Fig. 2 in Mandelbrot and Wallis (1969, p. 323), Fig. 3 
in Mandelbrot and Wallis (1969, p. 245) and simi lar 
other figures in other pages of the same authors. 
This method of computation was later modified as it 
appears in a later paper by Wallis and Matalas (1970, 
p. 1583-1594); for instance compare Fig. 1 of this 
paper with Fig. 5 in Mandelbrot and Wallis (1969, 
p. 247). . 

Gomide (1975) discusses the Hurst K estimator of 
Eq. (1-13), acknowledging that the estimator is sound 
in the sense that one would like to have R* = a for n n 
n = Z independently of the value of K. This is so when 
the biased estimator of on is used. He noted that per-

haps that was the reason why Hurst did not use the 
Eq. (1-10) with c = 1.2533 (to match the coefficient 
of Eq. (1-9] which would lead to the estimator 

K 
log (r**) - log (1.2533) 

n 
log (n) 

(1-14) 

Gomide also noted that if Eq. (1-14) is used for 
Hurst's 30 sequences of generated random events (Hurst, 
1951, Table 6) the mean value of R is 0.50. On the 
other hand, if Eq . • (l-13) is applied to th~ same data, 
the mean value of K is 0. 64. These results indicate 
that Eq. (1-13) actually forces R to be > 1/2 for 
independent normal random events (of course this 
occurs in varying degree, not only with R estimated 
from (1-13), but with any other since R actually 
depends on the sample size n) and this is also to be 
expected when dealing with natural time series which 
are usually dependent. Gomide also found that when 
Eq. (1-14) is used, the mean value of R is 0.57 for 
the 690 natural series used by Hurst. More about the 
estimation of the slopes of ranges is given in Chapter 3. 

Several attempts to explain the Hurst phenomenon 
have been made since Hurst's (1951) paper. Practically 
all those attempts center around the so- called tran­
sience, because the expected ranges (as f unctions of 
n) even of independent normal summands do display 
transient regions . Several models · or model changes, 
that produce transient regions compatible with Hurst' s 
empirical findings and consequently provide an 
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asymptotic explanation of the Hurst phenomenon, have 
been previously proposed and are reviewed herein. 
These models and resultant explanations of the Hurst 
phenomenon are categorized as: (i) non-normal skewed 
marginal distributions, (ii) dependence structure, and 
(iii) "nonstationarity" in the mean or shifting levels . 

Non-normal skewed marginal distributions. 
Commenting on Hurst's (1951) paper, Milleret (1951) 
questioned the assumption of normality when Hurst 
analyzed the 690 natural series. He said there are 
objections to using the normal distribution since 
natu.ral phenomena always have a certain skew. Hurst 
replied in the sense that "the difference between R/a 
''by which he meant R~/on" for natural and for pure 

chance events is not due to skewness, but to the fact 
that the distribution of natural events is not hap­
hazard. It happens that irregular successions o£ high 
or low years tend to occur in any long series of years." 
Hurst had at least good intuitive feeling (although 
without mathematical proof) that the skewness would 
not be the cause of the difference found for normal 
random events and natural events (the Hurst phenomenon) 
lilut instead the cause would be the "groupings of high 
and low values." It seems that this is why Lan~bein 
(1955) in commenting Hurst ' s (1955) second paper was 
interested in the reason for the grouping tendency 
observed by Hurst. 

Based on statistical tests using the long records 
of some American rivers, Langbein concluded that the 
skewness would not be the cause of the grouping ten­
dency, thus confirming Hurst's previous statement. In 
another comment on the Hurst (1956) paper, Lloyd and 
Anis (1955) mentioned that a possible explanation of 
the Hurst phenomenon might lie in the nature of the 
distribution of the individual increments and in par­
ticular their non-normality. However, they also men­
tioned that such a l i ne of reasoning would not work, 
making reference to Feller's (1951) paper where he 
argued that the asymptotic distribution of the range 
(meaning Rn and R~ only) were independent of the dis-

tribution of the increments and so the asymptotic n
1
/

2 

law f ollowed even when they were non-normal. 

Assuming that the net inputs are independent 
stable distributions having characteristics function 

exp {-jtjY}, 1 < y < 2, Moran (1964) showed that the 

expected range is proportional to nl/y and Boes and 
Salas (1973) showed that the expected adjusted range 

is also proportional to n11Y. Therefore, although 
stable distributions are not quite appropriate for geo­
physical series, it was thought that, at least mathe­
matically, distributions with heavy tails (such as the 
stable distributions) would provide expected ranges 

proportional to nh with h > l/2 as geophysical series 
were thought to have. However, even though both E(R ) 

1/ n 
and E(R*) were shown to be proportional to n Y there 

n 
was no assurance that E(R~*) would behave in the same 

way. Simulation studies with independent stably dis­
tributed summands withy = 1.3 carried out by McLeod 
and Hipel (1978) gave r** values nearly the same as 

n 
those of independent normal variables, suggesting that 

E(R**) - n112 even though E(R) - n°· 77 and E(R*) -
n n n 

n°·· 77 i n this case . 

Yevjevich (1965) studied the effect of skewness 
by generati ng a very large number of samples of inde­
pendent gamma processes, with various values of the 



skewness coefficient . The range and adjusted range 
behavior showed relatively modest deviations from their 
corresponding values for normal i ndependent processes. 
Deviations from the normal case increased both with a 
decrease of n and an increase of the skewness coeffi­
cient, but the overall effect was not very great. 
Matalas and Huzzen (1967) used a simulation of normal 
and lognormal lag-one Markov variables. They concluded 
that the skewness had virtually no effect on the Hurst 
slope. Moran (1968) suggested using gamma variables 
with large skewness. Mandelbrot and Wallis (1969c), 
using computer simulat ion with the skewed marginal 
distributions of truncated normal, lognormal, and 

- hyperbolic form showed that the asymptotic n1' 2-law is 
valid for both the adjusted and resclaed ranges. Fur­
thermore, they showed heuristically that for gamma 
variables with large skewness, the adjusted range is 

asymptotically proportional to n112. 

Although previous experiments by Mandelbrot and 
Wallis (1969c) and by Matalas and Huzzen (1967) 
appeared to show that skewed distributed independent 

variables would yield r** - n112, there was still the n 
question whether the transience induced by skewness 
would be such that it would be an explanation of the 
Hurst phenomenon. In this direction, Anis and Lloyd 
(1975) derived expressions for the expected range and 
the expected adjusted range of independent gamma vari­
abl es and showed that for particular parameters E[R ] 

h n 
and E (R~] behave as n with h > l/2 for 100 < n < 1000. 

They suggested a possibility of similar behavior for 
E(Rrt*). Using relatively large skewness values, they 

were able to produce local slopes of the order observed 
by Hurst for 100 < n < 1000 for both the range and 
adjusted range. Thus , they showed that severe skew­
ness was capable of producing a transient region con­
sistent with Hurst's finding, at least for the range 
and adjusted range. 

However, Salas et al. (1979) generated 10,000 
values of independent exponential and gamma variables 
with skewness equal to 2 and 10, respectively and com­
pared the r * and r ** obtained for these variables with n n 
the corresponding ranges of independent normal vari­
ables (known exactlr i n this case). In the case of 
the adjusted range r~ decreases as the skewness 

increases therefore showing different transience. 
However, the transience depends on what slope estima­
tor is used. For instance, if the Hurst slope R of 
Eq. (1-13) is used, the transience decreases as the 
skewness increases, but if other estimators such as 
the Mandelbrot-Wallis H or the local slope 

H =log (r**./r**.)/log ((n+j)/(n-j)) 
n n+J n-J 

(1-15) 

for some j close to 1, are used, then the transience 
increases with the skewness (the term transience used 
herein denotes how fast (with n) the slope tends to 
the limiting slope). On the other hand, the computed 
r** for both exponential and gamma variables are 

n 
indistinguishable from the E(R~*) of normal variables. 

Since geophysical series have skewness much smaller 
than those tested ~ere, it is safe to conjecture that 
for all practical purposes the skewness affects r~ in 

the transient region, but does not affect r ** 
appreciably. n 

Dependence structure. Since many geophysical 
series are time dependent , and since theoretical 
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results for E(R**) - n112 have been confined to inde-
n 

pendent variables, it is reasonable to hypothesize that 
the dependence structure may contribute to prolonging 
the transient region and hence provide a11 explanation 
of the Hurst phenomenon. It is fair to mention that 
Hurst (1951, p. 783) himself hypothesized that the 
groupings of high and low flows (long-term persistence) 
observed in natural series may be a cause of the Hurst 
phenomenon. But he puts this concept in a different 
context to the typical year-to-year serial correlation 
and, in fact, he later (Hurst, 1956, p. 575; Hurst 
1957, p. 494; Hurst et al. 1965, p . ; Hurst et al. 
1966, p. 67) emphasized that the observed groupings 
were due to a persistence over an indefinite period 
(long-term persistence) rather than due to the year­
to-year correlation. Evidently Hurst considered two 
types of persistence or dependence structure, one long­
term and another short-term and thus he attributed the 
cause of the observed groupings (and therefore the 
cause of the Hurst phenomenon) to the long-term per­
sistence. However, since long-term persistence was 
little understood in the 1950 ' s (and in fact is still 
not well understood today), and on the contrary since 
short-term persistence and corresponding models (say 
autoregressive models) have been pretty well under­
stood, it was natural to first look at these vis ~ vis 
the Hurst phenomenon. 

Feller (1951) suggested the autocorrelati on struc­
ture as a possible explanation of the Hurst phenomenon, 
and in fact he specifically referred to the Markov 
process for the modeling of the increments but he al so 
warned about the difficulty of finding an analytical 
solution to the problem since it would demand the solu­
tion of the general Fokker-Planck equation whose solu­
tion is not explicitly known. Barnard (1956), however, 
claimed that no single set of autocorrelation functions 
could account for the Hurst phenomenon. Thomas (1956) 
discussing the causes of the ' 'groupings" observed by 
Hurst referred to Laushey's (1956) discussion on 
Hurst ' s (1956) paper and said he had no doubts that 
the value of the Hurst slope K was closely associated 
with tho degree of autocorrelation. Also Langbei n 
(1956) in analyzing long records of some American 
rivers, as well as some of the Hurst data, concluded 
that the persistence was more complex than that of an 
AR(l) model. ~loran also suggested that the serial 
correlation of the underlying process would have to be 
of a very peculiar kind for the slope h to remain 
greater than 0. 50 as n + ... He went on saying that "a 
more plausiable theory is that the experimental series 
used by Hurst are, as a result of serial correl ation, 
not long enough for the asymptotic formula to become 
valid, and thus for small n, E(R**) may vary like 
h n 

n with h 1 1/2." 

Since t .he use of autoregressive models (in fact 
the use of stochastic models in general) for genera­
tion of hydrologic data began at the beginning of the 
1960's with the work of those like Thomas and Fiering 
(1962) and Yevjevich (1963), it was natural to study 
the range properties of these models despite previous 
suggestions (Hurst, 1956; Barnard, 1956; Langbein, 
1956 and Moran, 1959) that the Hurst phenomenon may 
not be explained with a simple dependence structure, 
but with a very special type of persistence. Thus 
Yevjevich (1965, 1967, 1972) did some analytical work 
to find the distribution of the range complemented 
with extensive computer experiments . He argued and 
showed by plots that the Hurst phenomenon is the 
result of transience. Fiering (1967) was especially 
concerned in finding out whether for common design 
l ines of hydraulic structures (say for time periods of 
10 to 100 years) the use of autoregressive models 



would be adequate . He made extensive computer experi­
ments with these models and compared the storages 
obtained from simulation (using the sequent -peak algo­
rithm) with those obtained by the Hurst equation. 
Fiering concluded that for the periods of 10 to 100 
years the AR models were adequate for most design pur­
poses. However, he admitted that for larger periods 
such as those studied by Hurst, more elaborate models 
may be needed. Therefore, although both Yevjevich ' s 
and Fiering ' s studies were useful for explaining the 
applicability of AR models for storage design, they 
were limited in fully explaining the Huxst phenomenon 
because they dealt with relatively small values of n 
compared with those used by Hurst. 

In referring to Hurst's analysis of geophysical 
records, Mandelbrot and Wallis (1969, p. 321) stated: 
"were the records in question generated by a random 
process such that observations far removed in time can 
be considered independent R(t,n)/S(t,n) should become 

asymptotically proportional to n112, which means that 
Hurst ' s Law would have to 'break' for large enough 
lags. But no such break has been observed. Thus, for 
practical purposes, geophysical records must be con­
sidered to have an ' infinite' span of s tatistical 
interdependence." Based on this interpxetation of the 
Hurst phenomenon, Mandelbrot and Wallis (1968, p. 910) 
suggested that models in the Brownian domain cannot 
account for the Noah and Joseph effects. (They 
defined the Noah effect as the observation that 
extreme precipitation can be very extreme and the 
Joseph effect as the observation that a long period of 
unusual high or low precipitation can be extremely 
long.) And they stated "therefore, our sweeping asser­
tion can only be controversial in its blanket condem­
nation of all models in the Brownian domain." 

The Brownian domain contains those models for 

wh~ch the ultimate behavior for r ** follows the n112 
.. n 

law, and the interpretation by M!fldelbrot and Wallis 
of the Hurs t phenomenon is that r~* asymptotically 

behaves like nh with h > 0.50. Following this inter­
pretation, all models within the Brownian domain of 
attraction, e.g., autoregressive models AR(p), auto­
regressive-moving average models APMA(p,q) and even 
Hurst-like shifting level models, fall under this 
"blanket condemnation." Using the above interpreta­
tion as justification, Mandelbrot and Wallis proposed 
a fractional Gaussian noise model for hydrologic 
modeling and simulation. This model uses the concept 
of self- similarity, implying that the autocorrelation 
structure is such that the infinite past exerts small 
but non-negligible effects on the present. This model 

produces an asymptotic behavior of r~* as nh with 

h > 0.50. However, some hydrologists (Yevjevich, 1968 
at the Tucson Symposium, personal communication; 
Scheidegger, 1970, p. 754; Klemes, 1974, p. 676-678) 
have ques tioned the physical basis of fxactional 
Gaussian noise models a~ well as the above interpreta­
tion of the Hurst phenomenon put forward by Mandelbrot 
and Wallis. 

We note that the frequently stated justification 
for the use of FGn takes a form similar to the opinion 
expressed by Wallis (1977): " ... most geophysical 
records and some laboratory experimental noises 
(Brophy, 1970) have [sic) h > 0.5 , while all station­
ary independent and short memory stochastic processes 
have h • 0.5." We do not argue with the possibility 
that some "real" processes may have asymptotic h > 0.5, 
but content that n < 2000 is too short to enable a 
statistician to reject the.null hypothesis that asymp­
totic h = 0.5 for these processes. We have only to 
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examine the slope of the log [E[R;* J] vs. log [n] 

curve for independent normal inputs as given by Anis 
3 

and Lloyd [1976) to see that at n = 10 we get K a 

6 0.587 and Hn = 0 .514, while .at n • 10 we get K"' 0.544 

and H = 0. 501. Dogmatic statements l ik.e Wallis • above n 
are unfortunate because they cloud the issue, in t he 
sense that they cannot stand there without a rebuttal. 
Regrettably, we cannot prove Wallis wrong because we 
do not have long enough records as yet, but we do feel 
that he has rather over-stated the case for FGN. 

Markovian models, characterized by the property of 
short memory, have been cr iticized as not being capable 
of simulating the Hurst phenomenon. This is based on 
the interpretation of the Hurst phenomenon as being t he 
asymptotic behavior of r** versus n for geophysical 

n 
time ser i es, neglecting the transience or the pre­
asymptotic effects. Yevjevich (1972, p . 167) using 
relativel y short samples of generated AR(l ) series, 
computed the Hurst R from Eq. (1-13), using r instead 

n 
Qf r~· · and gave the mean of K as a function of n. 

Gomide (1975) using samples as long as those u.sed 
by Hurst, and assuming as Hurst (1951) t hat E(cRn) is 

an approximation of E(R~/8n), computed the Hurst 

slopes for first-order autoregressive models with 
0 ~ p ~ 0.90, and found that the computed slopes for 
n up to 1000 were similar to those found ~y Hurst for 
his data. The mean of Gomide's comput ed K was around 
0. 75 as compared to Hurst's 0. 73. The above results 
do not impl y that all the geophysical time series f ol­
low the first-order autoregressive model . However, 
this simple dependence model shows that transience 
(as a result of serial correlation) by itself can 
explain the Hurst phenomenon. Klemes (1974) also 
demonstrated that i nfinite dependence was not a pre­
requisite for a process to exhibit the Hurst phenomenon, 
in fact , processes of short-term or no persistence, as 
a result of a storage, can produce the Hurst 
phenomenon . 

ARMA models were suggested by Carlson et al. (1970) 
for modeling s\treamflow series and O' Connell (1971, 
1974) suggested the ARMA(l,l) model for reproducing t he 
Hurst phenomenon . Extensive simulation experiments 
were conduct ed to investigate the long- term character­
i stics of this model by computing the rescaled range 
r~* and observing the slopes of the "pox-diagr8111S" ·r~• 

versus n. It was shown that the ARMA(l , l) model could 
yield slopes of the order of those fo~d by Hurst. 
Further experiments carried out by Boes and Salas (1978) 
and Salas et al. (1979) indicated a strong transient 
behavior of r*" versus n for the ARMA(l,l) models, in 

H n 

that r••-n n with H >>1/2 for n's that could be of the 
n n 

order of 100-2000 and ultimatel y Hn+l/2 as n+- (we here 

use H of Eq. (1-15». In fact, they showed that r"* 
n n 

versus n results in an S-curve (Fig. 1-4), which may 
be divided into three regions : (1) an initial region 
with slopes somewhat greater than 1/2; (2) a pre­
asymptotic region with slopes much greater than 1/2; 
and (3) the asymptotic region, or the r egion of ulti­
mate behavior, with slopes converging to 1/2. Also, · 
McLeod ·and Hipel (1978) and Hipel and McLeod (1978) 
demonstrate that ARMA models may reproduce the Hurst 
phenomenon. 

Shifting levels. As mentioned above, Hurst (1957) 
himself tried to build a model that could reproduce 
the Hurst phenomenon in geophysical series. His 



r,:·. ;. ; 

E(R.'")- 12.53311., 

10' 

104 

Fig. 1-4 Mean adjusted range and mean rescaled range 
of equivalent models of ARMA(l,l) and non­
stationary means GNN in logarithmic scales. 
The two curves for r** and r* of each of n n 
these two models are mutually indistinguish­
able, and appear as unique curves.) Taken 
from Salas et al., 1979. 

ingenious experiment with playing cards involved 
shifts in the mean. Four different experiments each 
of 1000 generated numbers were performed and then 
analyzed, resul ting in a plot of log r** versus log n 

n 
that produced a Hurst slope of about 0.70, with a 

break toward the asymptotic n112-law somewhere around 
n = 1000. Hurst concluded that his experiment led to 
time series very similar to the geophysical series he 
had earlier analyzed. He was first to demonstrate 
that shifting levels provide a possible explanation of 
the Hurst phenomenon. 

Klemes (1974) made a thorough review of the Hurst 
phenomenon, including comments on possible physical 
factors that could cause it. Among various causes he 
followed Hurst and investigated the effect of non­
stationari ty in the process "central tendency" by 
simulation of random series with periodic changes in 
the mean, and with means alternati ng randomly. His 
results showed that the plot of r** versus n yielded 

n 
slopes much greater than 1/2 for moderated n with the 
slope tending to 1/2 as n~. In discussing Klemes' 
paper , Potter (1975) also reported experiments using 
time series with shifting means obtaining similar 

9 

results to Klemes . Potter (1976a) extended the argu­
ment of shifting means as a physical explanation of 
the Hurst phenomenon by analyzing six precipitation 
records from the East Coast of the United Stat es and 
argued that nonstationarity of the mean is a viable 
explanation (although later Pott er (1978) seemed to 
conclude that the apparent shift in the mean may be · 
attributed to nonhomogeneity). Boes and Salas (1978) 
generalized the concepts of Hurst, Klemes and Potter 
and proposed a mixture model for shift ing levels. In 
particular, they showed that special shifting level 
models can have correlation structures identical to 
~~models and consequently, since it is the correla­
tion structure that dictates the preasymptotic 
behavior of the rescaled range, the shifting level 
models and ARMA models have equal capacity for mimick­
ing the Hurst phenomenon. 

1-5-3 Concluding Remarks 

Extensive analyses reported by Hurst (1951, 1956) 
and Hurst et al. (1965, 1966) of geophysical records 
of lengths varying from 10 to 2000 year s showed that 

(-;;-r-o K · h -rn.'on • n w1t a mean value K • 0. 73 and a standard 

d~viation of 0:092: On the other hand, Hurst 's anal y­
tlcal result Wlth lndependent normal variables yielded 

1/2 
E[cRn] • n for n~ ( thi s analytical result was later 

shown to be valid for E(R ), E(R*) and E(R**)). This 
n n n 

apparent discrepancy of a slope greater than 1/2 for 
geophysical series and an asymptotic slope equal to 
1/2 for independent normal series has become known as 
the Hurst phenomenon . Two main interpretations of the 
Hurst phenomenon have been postulated in the litera­
ture: (1) that the Hurst phenomenon is caused by the 
supposition that geophysical time series have ultimate 
or asymptotic slopes greater than 1/2, and (2) that 
the Hurst phenomenon is caused by the supposition that 
geophysical time series have slopes greater than 1/2 
in the prcasymptotic region, becoming l/2 asymptoti­
call y. Based on these two main interpretations, 
hydrologists and statisticians have analyted and sug­
gest ed models to exhibit the Hurst phenomenon, and 
sought for explanations. Research results appear to 
indicate that transience may be the major reason for 
the Hurst phenomenon, that transience is inherent, 
even in independent normal processes but can be accen­
tuated by dependence (short memory or long memory) 
shifts in the mean and skewness. ~lodels within th~ 
Brownian domain of attraction (autoregressive , ARMA, 
shifting level s) yield Hurst slopes similar to those 
found by Hurst for geophysical series, but asymptoti­
cally the slopes are known to conver ge t o 1/2. On the 
other hand, models outside the Brownian domain of 
attraction such as Fractional Gaussian Noise models 
can yield asymptotic Hurst slopes between l/2 and 1: 



CHAPTER 2 
EXAO AND APPROXIMATE RESULTS 

In this chapter, where we concentr ate by far the 
greatest effort, will be found some exact and approxi­
mate results for the expectations, variances and dis­
tributions, for finite and infinite n, periodic and 
non-periodic, dependent and independent inputs in each 
of the cases that have been distinguished in the intro­
duction: The Range , The Conditioned Range, The Adjus~ed 
Range, The Rescaled Range and The (maximum accumulated) 
Deficit. The results also depend on the marginal dis­
tribution of the inputs, so where known, results will 
be given under the following hierarchy of headings: 
Preasymptotic results; independent inputs with constant 
parameters; dependent inputs with constant parameters; 
dependent inputs with periodic parameters; and marginal 
distribution. 

Much is well known, so will only be listed where 
appropriate. Less well-known results will be enlarged 
upon a little, and a lthough the intention is that the 
paper should be of a review nature, we have occasion­
ally succumbed to temptation and reported some new 
work when we felt this would help the development; 
this is clearly stated and acknowledgements are given 
where appropriate. 

2-1 Preasymptotic Results of the Range Rn 

2-1-1 Independent Net Inputs with Constant 
Para~~eters 

Bernoulli inputs. Let P[Xt = +1] = P[Xt = -1) 

1/2. sn = ~ xt is then the classic one-dimensional 
t =l 

random walk .~ Gomide (1975, Eqs. (4.22) and (4.23)) 
gave the explicit recursive expressions for E[R ] and 
E[R2] as: n 

n 
E[Rn+l1 - E[Rn) = vn(l , l) + vn(l , 2) 

k=K- 1 
E(Rn+~1 - E[R!1 = vn(l,l) + vn(l,2) + 2 ~ 

k=l 

{vn(l,l) + vn(l,2) - L [vn(2j(k+l) + 1,1) 
ja-e» 

+ vn(2j(k+l) + 1, 2) - vn(2j(k+l) - 1, k-1) 

- vn(2j(k+l-l),k)1}, 

n n 
where vn(r,t) • nc(n+r-t)/2(1/2) = nc(n+t-r)/2(1/2) • 
and K is a "very large number." Gomide gives a table 
(his Table 4. 2) for E [Rn) and var [Rn) for n • 1, 2, ... , 

100. He also gives an algorithm for the explicit 
eval uation of the p.d.f. of Rn for a discrete input of 

which the Bernoulli inputs are a particular case. 

Binomial inputs. Let P[Xt • i ] = C( m ' )(l/2)m m 2 +l 

. m m m m 
for 1 = - 2 , - 2 + 1 , . .. ,0, ... ,2 - 1, 2 · Gomide 

(19751 used this distribution with m = 100 as an 
approximation to the normal distribut ion. 

Normal inputs. Let Xt be i ndependent and normal 

(0,1) distributed random variables . For this case, 
Anis and Lloyd [1953] derived the result 
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I? n-1 
E(R 1 " f (=.) ~ i -l/2 (2-l a) 

n 11 i=l 

where~ • max(S1, ... ,Sn) - min(S1, . .. ,Sn). Equation 

(2-la) should read 

E(R) ,./I ~ i-l/2 

n 11 i•l 
(2-lb) 

when Rn =max (o,s1, ... ,Sn) -min (O,s1, ... ,Sn). 

P~wever, Anis ' and Lloyd's formula can be written 
in a more general form, based on Spitzer's (1957) 
identity 

where ~3.(t) and ~.(t) are the characteristic functions 
+ J 

of M. and S. , respectively; that is ~ .(t) = E {exp(i + 
J J + J+ 

Mj)} and ~j(t) • E {exp(i + Sj)} and Sj = max (0, Sj). 

The above identity is actually valid even for exchange­
able random variables of any distribution function. 
Based on the above identity, Salas (1972) demonstrated 
that Anis and Lloyd formula can be written as 

E(R) = /!_ ~ i-l (Var 5.) 112 

n 11 i=l 1 
(2-3) 

Gomide (1975) derived the p.d.f. for Rn' n • 1,2, 

3, explicity. As f(R2) and f(R
3

) require evaluation 

of~( ·) (the c.d.f. of the standardized normal) no 
closed form solutions exist for the evaluation of f(Rn)' 

n ~ 2. As an alternative, Gomide provided an algo­
rithm for the numerical evaluation of the p.d.f. of R 
by binomial approximation . n 

(....!....) 
12 

Laplace inputs. Let X have a p .d. f.: fX (x) • 

exp[ -I:Zi xiJ;-m<x<m, Gomide (1975) derived expli-

cit expressions for the evaluat ion of the p.d.f. of the 
range for n • 1,2,3,4, and gave a recursive relat ion 
for f(Rn) . Further , he derived the expressions for the 

mean range 

n 2i: 
E[R 1 = 12 I 2ic

1
. (1/2) 

n i•l 
(2-4) 

and for the second moment of the range 

n n-1 
E [Rn) = 2 L ~ 

i=l j=O 
(2- 5) 

where bij are found from complicated recursive rela­

tions. He tabulated E[R 1 and var [R 1 for n • 1,2, . .. , 
30. n n 



Exponential inputs. Gomide (1975) derived f(Rn) 

analytically for n • 2 and numerically for n = 8, SO. 

Stable inputs. Let X,X1 ,X2, ... ,Xn,X,X1,x2, ... ,Xn 

be independent random variables with common character­

istic function ~(t) = exp(-ltiYJ where 1 < y < 2. X 
then has a stable distribution with finite first moment 
(for examples see Feller (1966)). 

Moran (1964) showed that in this case 

n I iCliYJ-1 E[R] .. E( IXIl n i=l 
(2-6) 

In particular , when y = 2, X is normally distributed. 

2-1-2 Dependent Net Inputs with Constant · 
Parameters 

Bernoulli input s. Let P[Xt=+l] = P(Xt=-1 ] = 1/2 

and further, let P[Xt+l"±liXt=±l) = (l+p)/2 = p, and 

P[Xt+l=±ll\=+1] = (1-P)/2 = q. These correlated 

Bernoulli inputs Xt form a Markov chain {Xt} with 
s 

corr[Xt+s'Xt] =p , s=O,l,2, ... 

Gomide (1975) found f(Rn) for this process for n 

up to 1000 and for p = 0,0 .3, 0.6,0.8, and 0.9. He 
demonstrated that the standardized range (Rn-E[Rn])/ 

fvar[R ] of this two-state input process converged in 
n 

distribution to the asymptotic standardized range with 
n as low as 100. 

Binomial input. In this section new developments 
are presented. Readers interested in the final numeri­
cal results should proceed to the end of the section. 

lm m ·m m m 
Let P(Xt=i] = me(~+ i) c2J , i = 2 , 2 +1, . .. ,2 1,2, 

2 
and let L = PI + (1-P)pl ' be the transition matrix of 
the homogeneous Markov chain {Xt} . Hereafter in this 

section, p • {P(Xt=i]} is the equilibrium vector mar­

ginal distribution of Xt, I is an (m+l)-square iden­

tity matrix and the 1' is a row vector of m+l ones, 
where the prime denotes the matrix transpose. It can 

s 
be shown that corr(Xt+s'Xt] = p , s = 0,1,2, ... If we 

define v' • (-m,-m+l,-m+2, ... ,m-l ,m] and V = diag(v), 
2 2 

then E(Xt) = v'p = 0; ox= E[Xt) = v ' Vp and E[Xt+l Xt) = 
v'LVp = v ' (Pl + (1-P) pl']Vp = pv'Vp + (1-p)v'p l'Vp 

2 
p ox. 

Further as L 
2 [pi (1-p)pl ' ] 2 

2 
P I + 2p(l-p)pl' 2 

+ (1- p) pl ' pl ' 

2 = P I + 
2 2 (2p-2p +l-2p+p )pl' (as. 

l'p (1)) 

2 
P I + 

2 
(1-p )pl ' 

s 
then corr[Xt+s'Xt] p as asserted. This process is 

then the discrete anal og of the lag-one autoregressive 
normal process, and the approximation improves with an 
increase of m. 
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It has been demonstrated by Gomide (1975) that 
for independent binomial inputs the standardized 
range (R - E[R ))/~ converges (in distribution) n n n 
to the asymptotic distribution for n as low as 6 when 
m = 100. For moderate n then, it is sufficient to 
know the standardized asymptotic p.d.f. of Rn together 

with E(R ) and var[R ] for an adequate description of n n 
the distribution of the range for arbitrary P, and the 
results for the dependent binomial input converge to 
those of the dependent normal (autoregressive) process 
when m or n is large . 

In this section, an algorithm for computing E[Rn] 

and var(R ) for dependent binomial net inputs is given. n 
'lbe method is an adaption and extension of the Gomide 
(1975) algorithm and leans heavily on his theoretical 
treatment. 

The key equation is Gomide ' s Eq. (4.9), which 
applies to i ndependent and dependent discrete inputs 
equally well, namely 

P(Rn=k] :l(n) 
k+l 

2:1. (n) 
k 

:~_(n) 
+ k-1 (2-7) 

where 

:~_(n) 
k k 

q (n) I I (s ,u) k u=l s=l k (2-8) 

k 
and " L q~n) (s, u) denotes the probability that the 

s•l 
system (Sn] does not reach the boundaries (states 0 

and k+l) in the first n steps given the initial state 
u." 

In the independent input case qk(s,u) is an ele­

ment of the k-square "restricted" transition proba-
n 

bility matrix Qk of a Markov chain {Sn : Sn L Xt} 
t=l 

where the states 0 and k+l are taboo states. Thus 

qk (n)(s,u) is the (s,u) element of the matrix 
n n 

{qk(s,u)} = Qk. 

In the case of dependent inputs we interpret 

q (n)(s u) as P[S = uiS = s, 0 < st+l. < k+l : k ' t +n t 
i +O,l,2, ... ,n) and it remains to define this conditional 
probability. To accomplish this, we treat the problem 
as one where \St ,Xt} is a bivariate Markov chain. 

Let qsiluj = P(St+l = s, xt+l = i iSt X u, xt X j) 

(s,u = O,l,2, ... ,k+l; i, j = O,l, ... ,m; t = 0,1, ... ) be 
the conditional probabilities of the bivariate homo­
geneous Markov chain {St,Xt} . Inadmissable transi-

tions will result in the values of q . I . being zero. 
Sl UJ 

The joint probability P[St+l = s, Xt+l = i, St = 

u, X = j] can be written as q .
1 

. P(St = j, Xt = j] 
t Sl UJ 

qsiluj P(St = u] P(Xt = j) because Xt is independent 

of s t. 



Then P[St+l = s ls t = u] • <.I . P(St+l • s, xt+l = 
l,J 

i , st = u, xt = j]} / P (St = u] = { L q . I . P (st = u] 
i , j Sl UJ 

P(Xt = j)}/P(St = uJ=.L. {qsiluf P(Xt = j] } . 
l. , ) 

By s imilar r easoning, it is found (by employing 
the Chapman- Kolmogorov theorem) that 

P[St+n=s iSt=u, 0 < St+i < k+l, i=O,., . .. ,n] 

(i.e. the probability that st+n = s given that s t ~ u 

without any intermediate S-values reaching either of 
the boundaries 0 and k+l} 

• L q (~)I . p [X = j 1 
i,j S l UJ t 

Here, the conditional probability q(~) . is an element 
S l UJ 

of the "restricted" (to states= 1,2, ... ,k) n-step 
transition probability matrix (t.p.m.) 

n n-1 
Qk = Qlc Qk' (n = 1,2, ... ) 

The matrix Qk is defined as follows . The net 

input process {Xt } i s an (m+l) -state Markov chain 

described by an (m+l) - square t.p.m. L such that Lp 
p; l'p = 1. L can be writt en as L • L_m/2 + L_m/2+1 + 

... + Lm12_1 + Lm/2 (for m even) , wh~re Li is an (m+l) ­

squar e matrix, void except for the column correspond­

ing to the state i E {- m/2 , ... ,O, ... , m/2}' 

Now since attention is restricted to the states 
S = 1,2, . . . ,k, · the nature of states 0 and k+l is 
immaterial, hence the restricted transition matr ix Qk 
becomes: 

where L. : 0 for j > m/2 (if m/2 < k-1) . One further 
J 

definition is required and then the algorithm for t he 

evaluation of A~n) follows immediately. 

Let w = [p' p' ... p']' be a k (m+l) element vec­
tor consisting of Jc· identical vectors p , then the 
scalar 

where , i n this context, 1 ' is a row vector of k(m+l) 
ones performing the necessary swmnation. 

For any part icular choice of n, we assemble A~n) 
fork= 1,2, .. ,K, where K is chosen so that A~n) 
A(n) • l+e where le i < l0-12 Then (Gomide 1975, K-1 ·, 
Eq. 4-12) 
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(2-9) 

and 

(2-10) 

which is more conveni ent than Gomide ' s (1975, Eq. 4.12 
combi ned with his Eq . 4.13). 

To get reasonable approximat ion to the normal 
distribution, m must be large, especially for small n. 
Exploratory computations yielded the following table 
for var[R2) as a funct ion of m. The value correspond-

ing tom • ~is Gomide's (1975) result (p. 24). 

m 4 100 

0.6619 0.6157 0.6023 0.5997 

Thus for small n, if a binomial approximation to 
the normal is desired, m must be set 100. A 
straight-forward application of the algorithm requires 
a Qk which can be up to 5000-square! Exploiting the 

sparse and patterned nature of Qk' t he computation can 

be compressed to one in which the largest matrices are 
of the order of 5000 el ements. Even so, one is 
daunted by the amount of comput ation required for the 
evaluation of E[Rn] and var [Rn] for large m up to 

large n, which explains the censored appearance of the 
followi ng Tabl e 2- 1 of results. 

Table 2-1 E(Rn] and Var(Rn] for binomial input s. 

.. , ... ... n•lf• n•ll 

I.U,:t :.2!17 J.417t s .Jill 7.t nt 1( .. 111. 

100 l . 3Sf.l ,, l . l 57"t 2.216S 

" l. U -46 2.2J: .a .s •. u n I I II,. I .. l ,J_.U 1.:2010 , . • ~0 5.2'101 

• l .!td 2 •• 4101 J.JtU .$,1Ut l.ll.ZO 

100 0. 7:'61 .. 0 .17';'0 1. 0256 
>6 0 .171)0 1.02U I . Jt?ft ~ .. 0 .71-17 LOJI2 • . • 001 l.t401 

' O.tJS6 l.OSll ... 1,. t.ts•o 2.7266 

100 1.31!6 .. L.JI IO :.-
0.1 .. L.Jii6 Z.2M7 ),671% ••••• " l!.J61t l.21H l . 6J91 S.66JO 

• 1 .31:'2 Z.~26Z S.SISO S.S9U I . .UI6 

100 O. I .S::I .. o.IJ.-o l. U46 .. O.lit$ I. U 6l 1.1764 ~ .. O.I.U7 1. 1S04 l. S1a.c 2.1111 

• o.aaoo 1. 1?31 1. $819 2.114) 3 . 0162 

100 . . .. :tl .. 1 . 4,!':'4 z . ., •• .. 1 .-':lt 2 . .Ul9 • .ottJ . ... ) 
It l . .aHO 2.4S99 4 .0116 6 .6061 

0 .1 

' 1.ua 2. )~69 •L0l4l 6. Uia 9.1$16 

100 o.uu .. o.un l.st•o .. O.flt.l 1.l~ l.tl&l ~ •• o.t:.t.s 1 • .10-26 t.tsu 1.7$7$ 

• 0,,,. 1. 4)" I.~S 2.74.)1 J.n•t 

100 1.4756 .. 1 . 47)1 l -0619 
14 L l.it7 2. 6$69 • .nn Elll,.l .. 1.4SIZ: 2 .... 2& 4.S7tl 7.SIO' 

0 . 5 

• l . ltS< l . S67t 4,)016 7 .4 UI 11.1771 

100 1. 0!l6 .. 1. 0:56 1.6621 ,. 1.0100 1 .6661 Z.S069 ~ •• l . O, !J 1 .6179 Z.SIOS J.li6U 

• 1.10.!'1 • • , .. 11 J,S4U 1.1 ... .. . • 99) 

100 1 . 5!!1 ... l. !t:oo 2.1591 
!6 l. Sts7 Z.ISU S .1U 7 ., ... .. 1.~ou 2.1)4J S.1U4 0,,,., 
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o., 

100 L:o.;.a ... l.H"•U l . lJUO ,, 1.11\li I tU1 ,. ~:u ~ .. Ll :t.t '·"'" a.:s•' -' .11U 

• 1.1967 :.o::as 1.}.114 .a. t111 6 . 171t 



Table 2-2 gives the results for m = 4 and p = 0 
extended to n • 1024. The first row (m = oo) is com­
pu.ted from Anis and Lloyd's (1953) equation for inde­
pendent normal net inputs. 

Table 2-2 E[Rn] and Var [Rn] for the dependent bino­

mial from Eqs . (2-9) and (2-10). 

n 64 128 256 512 1024 m 

E[Rn] 11.6508 16 .9241 24.3920 34.9606 49.9119 .. 

E[Rn] 11.5355 16.8052 24.2706 34.8372 49.7813 4 

lvar[R ] n 3.8399 5.3979 7 .6210 10. 7686 15.2227 4 

Gaussian inputs . Because of the labor and com­
plexity of the mathematics involved, there are very 
few exact results for E(R ), var[R ] and f(R ) for n n n 
finite n in the case of dependent Gaussian processes, 
and these are confined to small n. On the other hand, 
a large amount of simulation of varying degrees of 
approximation to the exact results has been performed 
and reported on. 

Arbitra correlation structure of normal in uts. 
Salas (1972 derived exact expressions for E Rn for 

n = 1,2,3 when x1, x2, x3 have a multivariate normal 

distribution with general mean and covar iance. He 
considered as special cases exchangeable and first­
order autoregressive random variables. The expres­
sions are rather unwieldy· and will not be reproduced 
here. For comparison purposes we single out his 
expressions in the autoregressive case . 

n = 

E [R
1

) 

E[R2] •/? [1 
1 

+- ll+p 1 
12 

T? 3 2 
E[R3l c { ~ {(4 + 211 · arctan(l +p)] + 

~ 1 1 
+ f2(l+P) · (4 + 2i · arct an 

+ /c3+4p+2p 2). [!.. + .!_ 
4 211 

arctan ( (l+p)
2 

))} 
h+4p+2p2 

2 
2+2p-p ] + 

2ph(l+p) 

(2-11) 

Extending Salas' work , Troutman (1974) derived the 
expected range for n = 4 as 

ri .. .; .::. . 
11 

4 
L c. ·i-l lvar(S . ) 

i=l 1 1 

2 1 1 (l+p) (2+p+p ) 
where c1 = 2 + 211 arctan ~==~-=-_!.. 

12(l+p+p2) 

(2-12) 

1 (l+p+p2) 1 (l+P) + 211 · arctan + rr arctan 
12+2p+p2 
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3 1 d(l+p) (l+p+p2) 
c2 • 2- 211 · arctan - -- 2 

p 

-!..arctan~ 
11 ~ 

- .!. arctan l2p(2+2P) 
11 

(2+2P-P2) 

3 
- 211 

3 13+4p+2p2 
- 211 arctan 2 

1 1 
c4 "' 2 + if arctan 

2 + -arctan 11 

(l+p) 

[ 
1+2p+4p

2
+2p

3
+p

4 
] 

2~(l+p)(2+p+p2)(l+p+p2) 

(l+P) 3(2+p+p2) 
2 2 (2+2p+p ) 

with var[s
1
) .. 1, var[S2] • 2(l+p), var(s3) • 3 + 4p + 

2 2 + p , and var[S4) = 2(l+p)(2+p+p ). 

Salas (1974) and Troutman (1974) used the above 
formulae to check the following very close approxima­
tion (hypothesized by Yevjevich, 1967) to the exact 
values of E [Rn) 

E(R ) a(I_ · n 11 
(2- i3) 

which is exact for the case of independent or exchange­
able (see Eq. 2-3) random variables x1, x2, ••• ,Xn' as 

shown by Boes and Salas (1973) . Salas (1974 and 
Troutman (1974) found that the approximation was to 
within 0.1\ for E[R3] and 0.2\ for E(R4), respectively. 

Troutman (1976) showed, inter alia, that Eq. (2-13) 
for E(R ] holds exactly as n+oo in any case where the 

n 
correlogram of Xt is integrable and where ~x· 0 and 

0 < o2 
< .... 

X 

Sutabutra (1967) had suggested (based on his 
simulations) that Eq. (2.11) may be a satisfactory 
approximation to the expected range of a first-order 
autoregressive process. Yevjcvich (1967) showed with 
extensive simulation that this was indeed t he case 
and showed further that it applied equally wel l in the 
case of a second-order autoregressive process and a 
first-order moving-average process. 

Results for var[R ) are harder to come by. Salas 
2 n 

(1972) derived E(R2) and Var(R2) for the AR(l) model 
as 



and 

2 1/2 
2(l+p) + 3(1-p ) - (1+2p) 

11 11 

[ 
2 1/2 ] 

arctan (l-pp) , 

2 2(l+p) - if+ 

1/2 
- (l+p) -

[ 
2 1/2] 

arctan (l-p P) 

The results in Table 2-1 appear to be the first 

(2-14) 

(2-15) 

attempt to get analytical appro~imations (via binomial 
approximation) to the variance of the range of the lag­
one autoregressive (AR(l)) input process for n > 2. 
Salas (1972) a l so demonstrated by simulation that 
var(R

0
] was apparently linearly proportional to n. 

Gomide (1975) showed that a linear relationship 
between var[Rn] and n holds to a high degree of 

approximation for the case of independent normal inputs. 

Table 2-3 compares the expression 

var[R] • 0.2261 1
1
•P · n 

n -p 
(2-16) 

shown by Troutman (1976)to hold asymptotically for 
AR(l) processes with the binomial approximations of 
the previous section (Table 2-1) given in the upper 
and lower line respectively for each p. 

Table 2-3 Comparison of var[Rn] from Eq. (2- 16) 

(upper line) with those obtained from the 
binomial approximation (Table 2-1) (lower 
line). 

n 2 4 8 16 32 

p= 0 .4522 .9044 1. 8088 3.6176 7.2352 
.6023 1.0519 1.9533 3.7667 7.4343 

p=O.l .5527 1.1054 2.2108 4 .4215 8.8430 
.6936 1.3101 2.4850 4. 7603 9.2185 

p=0. 3 .8398 1. 6796 3.3592 6. 7184 13.4368 
.8727 1. 9432 3.9374 7.6038 15.7998 

p=O.S 1. 3566 2.7132 5.4264 10.8528 21. 7056 
1.0478 2. 7649 6. 2845 12.6836 24.0031 

P=0 .7 2.5625 5.1249 10.2499 20.4997 40.9995 
1. 2184 3.8142 10.3768 23.7296 47. 2230 

From an examination of the results for the depen­
dent binomial process of the previous' sect ion, it will 
be seen that these results are upper bounds to the 
values of the variance, whereas for higher n and p 
values we can be sure that the asymptotic formula pro­
vides a lower bound. Nevertheless, as n becomes 
large both appro~imations will improve. (They both 
converge to the true variance as n~.) 
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For practical purposes then, the distribution of 
the range of the important class of linearly dependent 
Gaussian processes can be computed with fair accuracy 
from reasonably simple formulae, (or the tables herein) 
together with Feller's (1951) expression for the 
asymptotic p.d.f. of the range: 

fR (~) = 8 I (-l)j+l/+0~)' ~ > 0, 
j .. l 

(2-17) 

where R"' Rnlaxl; and +C·) is the standardized normal 

p .d.f.; see Section 2-2-1. 

E~changeable random variables. When corr(X.,X.)a 
1 J 

= p for i,j = 1,2, ... ,n; i; j, the Xi are exchange-

able or symmetrically correlated. Based on Spitzer 's 
(1956) lemma, Salas (1972) demonstrated that the fol­
lowing result holds for exchangeable normal summands 
for n - 1,2,3: 

i-l lvar(S .) 
1 

(2-18) 

8oes and Salas (1973) showed that this expression 
holds for any n and for an arbitrary degree of 
development, a . The case of full development (a= 1) 
coincides with the problem of the range considered 
here, and in that case 

2 
var(Si) • oX i[l + p(i-1)] , so that 

E(Rn] •H ox·J
1 

{[1 + p(i-l)]/i]
112

} . 

2-1-3 Independent Net Inputs with Periodic 
Parameters 

(2-19) 

Little work has been done to determine the range 
properties of independent net inputs with varying or 
periodic parameters. The analytical results available 
are those of Salas (1972). He derived the expected 
ranges for n = 2 and n = 3 for independent normal 

2 2 2 
variables with variances o1 , o2 and a 3 as 

• (2-20) 

and 

E{R
3
} = /3. {.!.(o +o +a ) + .!. ( (o2 +o

2
2) 112 + V':ii 4 1 2 3 4 1 

( 2 2) 1/2 ( 2 2 2) 1/21 + o 2 + o 3 + o 1 +o 2 +o 3 + 

0 

2! arctan 
02 1 c.2.l + o 

1 211 arctan + 03 (- ) + 
03 a l 

2 2 2 1/2 1 
+ (ol + 02 +03) 2ii' 

arctan (2-21) 



As 11aybe observed from the above equations, E [Rn] 

becomes a complex function of a~, a~ and a;, as n 

increases. Salas proposed a simple approximate equa­
tion containing the variances of all possible combina­
tions of partial sums as 

(~) 
~ 

~ 
j=l 

1/2 [Var (S.).] 
~ J (2-22) 

where (S.). denotes the j-th sum of size i out of (~) 
l J l 

possible sums. In other words , for given values of n 

and i, there are (~) possibl e ways in which Si may be 

formed. For example, for n = 3, Eq. (2-22) becomes 

/2 1/2 1 1/2 1/2 E(R3) =vw {(Var si) + 6 [var s2)
1 

+ (Var s 2)
2 

+ (Var s 2) 112] + ~ (Var s 3)112} 
3 

which in terms of the variances of the summands 
becomes 

E(R3) = Ji. {a + 1 [(a 2 +a 2) 1/2 ( 2 2)1/2 ..J-; 1 6 1 2 + crl + a3 

+ (a
2

' + cr
3

2) 1/2] 1 ( 2 2 2) l/2} 
+ 3 al + a2 + cr3 (2-23) 

It may be shown that Eq. (2-22) leads to the Anis and 
Lloyd Eq. (2 .1) if cr1 = a2 = cr3 =a. The approxima-

tion of Eq. (2-23) with respect to the exact Eq . (2-21) 
was checked for various combinations of values of cr

1
, 

a2 and a3• For all cases tested, the error was within 

+ 1.0%. 

The approximation of Eq. (2-22) was also tested 
for increasing, decreasing and periodic functions of 
t he variance of t he summands and for various values of 
n (Salas, 1972). In these cases, the comparison was 
made between the E[Rn] computed for Eq . (2- 22) and the 

corresponding values obtained from computer simulation. 
The results obtained were good as may be observed in 
Fig . 2-1 for the case of i ncreasing variance, Fig. 2-2 
for the case of decreasing variance and Fig. 2-3 for 
the case of periodic variance. 

Although the approximation by Eq. (2-22) i s very 
good, its evaluation takes much computer time for 
large n . Salas (1972) found fur ther approximations. 
For i nstance, since Eq. (2-22) requires that, for 
given n and i the average of the standard deviation of 
al l possible sums of size i must be computed, instead 
one can take a random sample of a given size, say 100, 
ou~ of all the possible sums of size i and then take 
the average over the sample size . Using this idea, 
Sal as gave the equation 

E(R ) = fj_ E 
n J; i=l 

. -1 
l -

m 

m 

I 
j=l 

[Var (S.).] 112 
). J (2-24) 
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40 E{Rn},r
0 

--Computed b y Eq. 2-lZ 
o Computed from Simulated 

30 Samples 

20 

10 

Fig . 2-1 Comparison of mean ranges obtained from simu­
lated samples and the expected values of 
range computed by Eq. (2-22) for independent 
random variables with standard deviation 
i ncreasing with t (Salas, 1972). 

30 

20 

2 3 4 5 6 7 8 9 10 II 12 

Fig. 2-2 Comparison of mean ranges obtained from 
simul ated samples and the expected values 
of range computed by Eq. (2-22), for inde­
pendent random variables with standard 
deviation decreasing with t (Salas, 1972). 

E{R~}, rn 
50 p •030 

-- Co.m9uted by Eq. 2-22 

40 • Computed from Simuloltd Somples 

30 

zo 

10 

4 5 6 7 8 9 10 II 12 13 14 15 16 t7 18 

Fig. 2-3 Comparison of mean ranges obtained from simu­
lated samples and the expect ed values of 
range computed by Eq. (2-22) , for non­
stationary exchangeable random variables 
(Salas,l977). 

where m denotes the sample size of the sums computed 
and the subscript j denotes a particular realization 
of the sum of size i taken at random. He also tested 
the approximation of this equation concluding that for 
practical use of this procedure a compromise should be 
made between the accuracy of results and the amount of 
computer time r equired, both of which depend on the 
size of the sample considered. 



Another equation suggested by Salas (1972) for 
est imating the expected range of i ndependent variables 
with varying variance is 

. (2-25} 

with an defined by 

(2-26) 

where o
2 

denotes the variance at 
T 

ticular case of periodic variance 

time t. For the par-

a2 with 1 

1000 E{ } • 
Rn ' rn 

500 - CoMpwttCI ''0"' s ,m..,IOitd Somplu 
• Co~noutto bt Ect 2-25 

100 

I() 
10 f2) "A .. 

Ill 

• .. ~ ,, 
~~~------~~~o------~~_.~oo----~~~~~ 

and w the main period (say w a 12 
Eqs. (2-25) and (2-26) give 

T T = , .•• ,W 

for monthly values), Fig. 2- 5 Comparison of mean range obtained from simu­
lated samples and the expected range computed 
by Eq. (2-25) , for two cases of independent 
variables with periodic standard deviation: 
(1) aT = 5 and s(ot) = 2. 79, and (2) 01: = 10 

(2-27) 

Equation (2-27) is the same as Eq. (2-25) only for 
values of n = pw, say for n ~ 12,24, ... ,12p with pan 
integer and w • 12. However, as n becomes large, 
Eqs. (2-25) and (2-27) yield similar results. The 
goodness of the approximation of Eq. (2-25) is tested 
by compar i ng results obtained by this ~uation and by 
computer simulation. The results are sho~ in Fig . 2-4 
for the cases of a linear i ncrease and a linear decrease 
of variance and in Fig. 2-5 for the case of periodic 
variance. 

t000 l{A.) ' r n 
- COMOul td ltom $1'"uiGfed Samples 

COM~IId b)' Eq 2·25 

100 

100 soo 1000 

Fig. 2-4 Comparison of mean range obtained from simu­
lated sampl es and the expected range computed 
by Eq. (2-25) for independent variables with 
standard deviation: (1) i ncreasing with t, 
and (2) decreasing with t (Salas, 1972) . 

2-1-4 Dependent Net Inputs with Periodic 
Parameters 

The results of a systematic study of basic charac­
teristics of the expected range of dependent net inputs 
with periodic parameters , carried out by Salas (1972}, 
are reported herein. 
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and s(at) • 6.87 (Salas, 1972). 

Model with period1C variance and exchangeable 

dependence . A model with periodic vari ance a
2, t 2 
T 

= l, ... ,w (w i s the period), and equal autocorrela­
tion coefficients pk • p for any lag k (exchangeable 

or symmetrically correlated random variables) may be 
written as (Owen and Steck, 1962) 

(2- 28) 

where £
0 

and £t are independent normal variables with 

mean zero and variance one, both uncorrelated. Salas 
showed that Eqs. (2-22), (2-24), (2-25) and (2-27) are 
good approximations for the expected range of summands 
derived from Eq. (2-28). For instance, a good approxi­
mation is obtained between the expected range computed 
from Eq. (2- 22) and those obtained from computed simu­
lation for p = 0.30 and ot with "!rt = 5, and s(at) = 
• 3.28 (Fig. 2- 3}. 

Autore ressive model with eriodic coefficients. 
AR mo els w1th periodic (seasonal autoregressive 
coefficients may be written as (Salas, 1972) 

X v,-r 

p 
l ~- X • + b £ ),T-j V,T-J T V1 "t j•l 

(2-29) 

p p 1/2 
with bT = (1- i~l j!l ~i,t-i ~j.t-j Pli- jl,t-1) ' 

1 =max (i,j), where ~- is the periodic autoregres­
J I"£ 

s ive coef ficient of order j and t ime-r, p. is the 
J,"t 

per iodic autocorrelation coefficient, p is the order 
of the model and £ is the i ndependent normal vari-v,-r 
able with mean zero and variance one. Salas used 
Eq. (2-3), (valid for exchangeable random variables 
and shown to be an excellent approximation for AR 
models with constant autoregressive coefficients) for 



approximating the expected range when the inputs are 
AR models with periodic parameters as in Eq. (2-29) . 
Therefore, using Eq. (2-3), the expected range may be 
written as 

E[R ] =A a r i -l [i + 
n 1T i=l 

+ 2 iil it I <P P (u-j, t)] lf2 (2-30) 
t=l u=l j=l j,t+u-k 

where t = (p-l)w + t and p (u-j,t) is the periodic 
autocorrelation function which may be determined from 
an extension of the Yule-Walker equation given by 
Salas (1972, p. 13). 

The validity of Eq. (2- 30) was tested by computer 
simulation for AR(l), AR(2) and AR(3) models and vari­
ous cases of periodic parameters. Figure 2-6 gives a 
good approximation between E[Rn] computed by Eq . (2-30) 

and those obtained by computer simulation. 
shows E[Rn] to be greater for AR(l) models 

odic parameters than for AR(l) models with 
parameters. 

It also . 
with peri-

constant 

Autoregressive model with periodic variance and 
constant coefficients. AR models with periodic vari­
ance and constant autoregressive parameters are 
expressed by 

p 
x. :oa (t"' z .+ b e;] , 
V,t t j~l Tj V, t-J V,t 

(2- 31) 

with 

p p 
b • (1 - L r +i •J· p. . 1 lf2 

i=l j•l l.-J 

2 . h where a is the periodic variance of x , f. lS t e 
t v,t J 

j-th constant autoregressive coefficient, Pj is the 

constant autocorrelation coefficient of order j , z ~ v,. 
is the standardized dependent variable x ~fa and v,. t 

e is an independent variable with mean zero and v,t 
variance one. Computer simulation by Eq. (2-31), car­
ried out for p • i, periodic aT with aT = 5.0 and 

S(crt) = 2.79, and autocorrelation coefficients p = 0, 
p = 0.3, p = 0.6 and p = 0.9, gave the expected ranges 
presented in Fig. 2-7. The mean range is an increas­
ing periodic function, with the same period as for aT 

and maximum amplitudes that are out of phase with 
respect to aT. Salas (1972) gives an approximate 

equation for the expected range as 

n 

[ r 
i•l 

l
.-lf2 + 

at 

(2-32) 

where an is defined by Eq. (2-26), aT is the mean of 

the periodic standard deviation and var(Si) is the 
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variance of the partial sums of AR summands with con­
stant autoregressive coefficients. The approximate 
mean ranges of AR models obtained by Eq. (2-32) with 
a = 5.0, S(a) = 2.79 and p = 0.6, and with o = 10.0, T T . T 
S(aT) = 6.87 and P = 0.6 were compared with those 

directly obtained by simulation, with a good agreement 
(Salas, 1972). 

Fig. 2-6 

E{RJ, rn 
20 :::;:: {computed 
16 
16 
14 

12 

10 
8 

20 30 40 30 60 

Comparison of mean range obtained from simu­
lated samples and the expected range computed 
by Eq. (2- 30) for the first-order Markov 
model with p1 = 0.60, and: (1) s(p1 ) = 

,T 1 T 
• 0.0; (2) s(p1 ) = 0.102; and (3) s(p

1 
) 

,t ,t 
0.207 (Salas, 1972). 

p • Q90 
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Fig. 2-7 Mean range obtained from simulated samples 

for the model x • a (x 1 +~ e;~ T). p,T T p,T- ;•, 
with periodic standard deviation aT and con-

stant first autocorrelation coefficient p 
(Salas, 1972) . 

Autore~ressive model with periodic mean, periodic 
variance an constant autoregressive coefficients. The 
model is 

• (2- 33) 

where ~ is the periodic mean, z 
T v,t is the standardized 

dependent variable (x ~-~~)fa and the other terms as v.. . t 

defined for Eq. (2-31). Salas (1972) 
expected range of net inputs equal to 

computed the 
x -\J by simu-v,t t 



-lation, showing that differences between rn of net 

inputs of Eq. (2-33) .and r of net inputs of Eq. (2-31) 
n 

are constant , or independent of n after a short tran­
sience and also independent of P, but are dependent on 
the standard deviation s(~T), on the mean aT and on the 

standard deviation s(oT). Figure 2-8 is an example of 

results obtained by simulation. They show that the rn 

of AR net inputs with parameters ~ T, aT and p can be 

made up of two parts , the deterministic part, as a 
function of s(~T), aT and p0fT), and the stochastic 

part, as a function of OT , p(oT) , P and n. 

800 1-
(n 

700 

600 

500 

40 0 

300 

200 

100
0 50 100 I~ 200 250 300 3~ 400 450 500 550 600 

Fig. 2-8 Deterministic and stochastic storage capaci­
ties in case of inputs with periodic mean ~ , 

T 

periodic standard deviation a and constant 
T 

serial correl ation coefficient p with o • 
T 

= 10, s(oT) = 6.87 and p = 0.60 (Salas, 1972). 

2-2 Asymptotic Results of the Range Rn 

2-2-1 Independent Net Inputs with Constant 
Parameters 

Input distribution belonging to the Brownian 
domain of attraction and no drift. Results of this 
section appeared originally in the initial pages of 
Hurst (1951) and Feller (1951} on this subject. 
Recent derivations utilizing so-called weak convergence 
theor y appear in Troutman (1976), (1978) and Siddiqui 
(1976); these works wi ll be followed here. 

Results are complete in the sense that tne asymp­
totic distribution from which asymptotic moments can 
be obtained, is known. Let 

r 
FR (r) • [f 

0 

(2-34) 

where (as in Eq. 2-17) 

fR(z) • (8 L (- l)j+l j
2 

f(jz)) I(O,"')(z) (2-35) 
j=l 

2 
and ~(u) ~ (2w) · l/2e-u 12 
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FR(·) is the c.d.f. of the range in the continu­

ous time standard Wiener process or Brownian motion. 
For independent net inputs {Xt} with ~ = E(Xt) = 0 

and belonging to the Brownian domain of attraction, 
the following holds: 

lim P[R /on112 
< r] = FR(r) n -n-

(2-36) 

2 
where, as before, Rn is the range and a var [Xt]. 

As E[R] • 2(2/rr} 112, then 

E(R ) - 2(2/rr}1/ 2 on112 
n 

and as E[R
2

] 4 tn 2, then 

var [Rn] - [(tn 2)-(2/n) ] 4o
2
n 

(2-37) 

(2-38) 

The first two moments of R are not obtained by 
termwise integration of Eq. (2-35}; rather Eq. (2-34} 
is first expressed in the following alternate form and 
then integrated. 

fR(r) = 4t(r) + 4 L {(2j-1)
2 

t[(2j-l}r] + 
j=l 

+ (2j+l) 2 t((2j+l)r) -

8j
2 

t(2jr)} I(O,co)(r) 

Input distribution belonging to the Brownian 
domain of attraction with drift. Assume now that 
{X }is independent and identical ly distributed ~ith 

t 2 . . . 
E(Xt] • ~ > 0 and var [Xt] = a < "'· It ~s ~ntu~-

tively clear that E (Rn] should grow with n rath·er 

than n1/ 2 In fact, E[Rn) ~ E[isnll ~ jE(Snll = 

=n iE[X1)1 and E[Rn] ~ 2E(~ lxi l l = 2n E[ x1 ) (see 
1 

Boes and Salas (1973)). 

The main result is given in Troutman (1976) as 

lim p 
n...,. 

n < r :a 
[ 

R - n~ 

1 v(n/E[J))l/2 -
~ (r) (2-39) 

where t(·) is the standard normal c.d.f., J is the 

> 1, for which S. > 0 and v
2 

= 
- J-first index j 

.. var(SriiJ). So we see that R is asymptotically 
. n 

norn~lly distributed with both mean and variance 
increasing with n. 

Stable inputs. As previously stated, Moran (1964) 
showed that 

E[ lXI] 
n 
L i (2-40) 

(1/y) -1 

i=l 

for X, x1, ... , Xn•··· independent random variables 

with common characteristic function exp [-ltiYJ where 
1 < y ~ 2. Such X has a symmetric stable distribution . 
From Eq. (2-40) it follows that 

(2-41) 



For 1 < y < 2, 1/2 < 1/y < 1 so E[Rn] "can be made to 

grow asymp;otically-like nh for any 1/2 ~ h < 1 even 
for i ndependent net inputs." 

2-2-2 Net Inputs with Constant and Periodic 
Parameters 

Dependent, periodic inputs belonging to the 
Brownian domain of attraction . Dependent stationary 
i nputs can be treated as a special case of the more 
general dependent peri odic inputs by followi ng 
Troutman (1976) and (1978). 

Suppose now that the input process {Xt} is 

periodic of period length w in the following sense: 
(X , X , ... ,X ) has the same joint distribution as 

t 1 t 2 tj . 
(X h, X h , ... ,X h) for any time indices t 1• w t 2• w tj• w 
t 1 , . .. ,tj and any integer h. In particular, if we are 

dealing with monthly values and the period is one year, 
then the period length w = 12; also, the definition of 
periodicity would say, for instance, that the joint 
distribution of May and July of one year would be the 
same as the joint distribution of May and July of any 
other year. 

2 
Define E[Xt] = ~t' var[Xt] = at, and 

2 
corr[Xt, Xt+tl = pt,t' 1 = 0,1,2, ... ,with ~t' at , and 

Pi, all periodic in t of period length w. Set 

\1 = w 
-1 w 2 

~ a 
T=l 

the average values, respectively, of ~, 

one cycle. Now define 

P.w 
x; ~ xt 

t = (p-l)w+l 

T 
(2-42) 

and a2 over 
T 

(2-43) 

which is the total net input over the pth cycle. Note 
that the sequence {X'} will be stationary and in gene­

p 
ral dependent. w = 1 reduces the periodic dependent 
input to stationary, dependent input. 

The type of dependence allowed for in the depen­
dent periodic input {Xt} is constrained by the type of 

dependence allowed for in the {X'} process, and the 
p 

type of dependence allowed for in the {X •} process is p 

quite general, yet complicated enough not to take the 
time and space to delineate it here. Suffice it to 
say that it encompasses the traditional ARMA-processes , 
Markov chain processes, log-linear processes , etc . For 
details, refer to Troutman (1978) who in turn refer­
ences Billingsley (1968), a text on weak convergence 
theory. Essentially, the type of dependence permitted 
is restricted by the types of dependence sufficient 
for application of the weak convergency theory. Let 
FR(·) be as in Eq. (2-34). The main result is the 
following. 

Let Xt be periodic and dependent as specified 

above with ~ • 0 (no drift) then 
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lim PI~/ynl/2 ~ r) Fr(r) n-+<D (2-44) 

2 2 -1 w 00 

where y iJ" + 2 w ~ ~ a a T+1 Pt,T T=l 1=1 T 
(2-45) 

and it is assumed 0 < y 2 
< "' 

One notes that the specification of the periodi­
city and dependence enters only through V = 0 and the 

scale parameter y. If w = 1 (non-periodic), y2 is the 
sum of the covariance function. Thus, for example, 
if {Xt} is assumed to be stationary AR(l) process, 

2 l+P 1 2 
then y = l -P a , and one can readily see the influ-

1 
ence of the dependence. It is important to observe 
that dependence or periodicity enters the asymptotic 
distribution only through the first and second order 
moments! Results for drift (~ ~ 0) are available, 
but not presented here . See Troutman (1976). 

Exchangeable random variables . Assume that {Xt} 

are exchangeable or symmetrically correlated; that is, 
x1, ... ,Xn are exchangeable random variables if any 

permutation, say X. , ... , X. of x
1

, ... , X has the same 
ll ln n 

joint distribution as x1, ... ,Xn. Let p = corr[Xi,Xj] 

fori 1 j. If a sequence {Xt} is to be exchangeable, 

necessarily p ~ 0. For p > 0, exchangeability forces 
a strong (long memory) type of dependence and as such 
it manifests itself in rapid growth of E[Rn]. Boes 

and Salas (1973) showed that for exchangeable normal 
random variables with 11 • 0 (no drift) 

n 
E(R. ] = ~ ~ (p + l~p]nl/2 

n rz; i=l 1 
(2-46) 

which implies E(Rn]~constant times n. That is, one 

gets the same rapid growth of E[Rn] with no drift and 

strong dependence that one gets with drift in the weak 
dependence case. 

Fractional Gaussian noise. A long-memory sta­
tionary stochastic process, known as fractional 
Gaussian noise , (FGN), was introduced i nto hydrology 
by Mandelbrot (1965) , and has been recently studied by 
several writers, including Lawrence and Kottegoda 
(1977) and McLeod and Hipel (1978). Mandelbrot and 
Van Ness (1968) and Mandelbrot and Wallis (1969 a,b,c) 
present the initial analytical treatment, and in 
particular showed that the correlation function at lag 
~ of FGN is given by 

2h 2h 2h 
p • (1/2) [(.2.+1) -21 +(1-1) ] 

1 (2-4 7) 

for 0 < h < 1 and .2. = 1,2, ...• Such correlation func­
tion damps with increasing lag but at such a rate that 
it is not summable for 1/2 < h < 1. Here h is a para­
meter of the model . Furthermore, 

0 < h < 1 (2-48) 

where a is a constant not depending on n. Equation 
(2-48) is the principal result from the theory of frac ­
tional Gaussian noise relating to this paper. It shows 



that asymptotically E[Rn] can be made to grow like 

nh for 1/2 < h < 1, which certainly includes the expo­
nents observed by Hurst. Indeed, FGN is sometimes 
referred to as the model of Hurst ' s geophysical series. 

Here we see that .nh growth of E[R ], with 1/2 < h < 1, 
. n 

is possible with a strong type of dependence (long 
memor y) and not heavy tails'; in the previous subsection 
similar growth of E[Rn) was possible wi th no dependence 

but heavy-tailed stable distributions. 

2-3 Proasymptotic Results of the Conditional Range eRn 

Only two studies have been made of the conditional 
range as far as is known to the writers. The first was 
by Hurst (1951) for the case of independent inputs and 
the second for dependent inputs was by Gomide (1978) 
(wher e the conditional range is first defined). (The 
latter publicat ion grew out of Gomide ' s (1975) earlier 
work where the conditional range was incorrectly called 
the adjusted range.) 

i.e. 

Basicall y, the conditional range is (Rn1Sn • 0), 
n 

those cases of the range where S = L X. = 0. 
n 1 

i=l 

Clearly, this conditioning limits the study to dis­
crete random variables (although one could of course 
define R for Gaussian processes by binomial approxi-c n 
mation in the limit). 

Thus let S •[(X1+X2+ ... +X liS =OJ; t =l,2, . . . ,n, c t t n 

cMn•max(O,cSl'cs2, ... ,csn- l ) 

m •min(O, s1, s2, ... , S 1) · c n c c c n-

Then R : M is the conditional range of partial :ial c n c n 
sums of Xt. 

Hurst (1951) implicity compared the behavior of 
E( R) with that of r**. The validity of this compari-

c n n 
son is discussed by Gomide (1978), who demonstrates 
that the approximation is fair for simple cases of 
dependence when n is large. 

2-3-1. Independent Net Inputs with Constant 
Parameters 

Consider Be~oulli inputs such that P[Xt·~l) = 
• i- Hurst studied this process and derived the -fol­

lowing result (Eq. 1-7) which obviously only holds for 
even n: 

2-3-2 Dependent Net Inputs with Constant 
Parameters 

(2-49) 

Consider as before Bernoulli inputs such that 
1 

P[Xt = ~ 1) = 2 and further let 

P[Xt+l ~ ~ 11xt = ~1] = (1 + p)/2 = p and 

P[X = + liX = +1) • (1 - p)/ 2 = q • 1-p. t+l - t -
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So let {X } be a two-state Markov chain with 
t 

corr[X ,X] s ps; s s 0,1,2, ..• , E[Xt] • 0 and t+s t 
var[\] = 1. 

Gomide (1978) studied the conditional range of 
this input process and showed that 

E( R] = K- v(n)/P(S =OJ (2-50) 
c n K n 

where K is large enough to ensure P(cRn ~ K] 1, and 

n-1 
P(S =O] .. pn-1 ~ (n-2)C [i]· (n-2)C(i:!.]. (s_)j 

n L 2 2 2 2 p 
j•l 

(where [·] denotes the integer part of the argument) , 
k 

and where v~n) z L q~n) (u,u) in which q~n) (u,u) is 
u=l 

the probabilit y of a transition from "state" u back to 
"state" u in n steps without reaching 0 or k+l. For a 
full treatment of the algorithm, the reader is referred 
to Gomide (1975). 

2-4 Asymptot ic Results of the Conditional Range eRn 

2-4-1 Independent Net Inputs 

Hurst (1951) showed by taking Stirl ing ' s approxi­
mation to the factorials in (2-49) that 

E[ R ] + .f.rm/2 - 1 " .f.rrn/2 "' 1.25331ri'. c n 

2-4-2 Dependent Inputs 

(2-51) 

Following Hurst' s approach, Gomide (1978) showed 
that 

E( R ] + c n 
[ n(l+p) ] = 1. 2533 v( n l+p) 
[ 2(1-p) . \ 1-P 

(2-52) 

for the case of the two state Markov chains considered. 
Moreover he demonstrated numerically that the distri­
bution of the standardized conditional range: 

( R - E[ R ])/lvar[ R ] for p = 0.5 
en en en 

converges to that of the asymptotic standardized 
adjusted range: 

{R* - E [R*]) /Ivar[R*] for p • 0.0 with n as n n n 

low as 50. 

For the sake of comparison, Table 2-4 shows the 
exact values of E[R ], E[ R ], its asymptotic approxi-

n c n 
mat ion l(m/2) - 1, the result by Solari and An is 
(1957) for the adjusted range and Anis and Lloyd's 

(197Sj res~lt for the rescaled range for n = 2i, i = 1, 
2, ... ,10. Except for E[cRn] and its approximation, the 

other results are for independent normal inputs . The 
conclusion is that E[R*) < E(R**l < E[ R ) for all n, 

n n - c n 
while it is clear that the approximation (lnrr/2-1) is 
very good to all three of the ranges other than Rn. 



Table 2-4 Comparison of results for mean ranges . 

n E{R ) E( R ) ln11/2- l E[R*] E[R**] n c n n n 
2 1. 3621 1.0000 0. 7724 0.5642 1.0000 
4 2.2217 1. 6667 1.5066 1.3203 1.6547 
8 3.4879 2.6571 2.5449 2. 3692 2.6246 

16 5.3171 4.0922 4.0133 3. 8428 4 .0355 
32 7.9322 6.1454 6.0898 5.9220 6.0655 
64 11.6508 9.0658 9.0265 8.8600 8.9656 

128 16.9241 13.2074 13.1796 13. 0138 13. 0906 
256 24. 3920 19.0726 19.0530 18.8875 18.9431 
512 34.9606 27.3731 27.3592 27.1939 27 . 2338 

1024 49.9119 39.1167 39.1060 38.9408 38.9693 

Troutman (1976) comments that R will converge 
c n 

(asymptotically) i n distribution to the asymptotic 
distribution fR* of the adjusted/rescaled range, ori­

n 
ginally given by Feller (1951); (see Eq. 2.70 of 
Section 2-6-1). 

We let R* • R I liia " R* I alii = R** /alii for l arge c n n n 
n, as the conditional, adjusted and rescaled range all 
converge to the same distribution asymptotically as 
shown by Troutman (1976). 

Troutman (1976) proves that the mean and variance 
of eRn' R~ and R;* are given asymptotically by : 

E[R*] • y/(11/2), var[R*] • (112/6 - 11/2)y
2 

(2-53) 

where y
2 is defined in Eq. (2-45). 

Thus for a lag-one autoregressive process Xt' 

y
2 = a~ (1 + p 1)/(l - p1), corroborating Gomide ' s 

(1978) result for E[ R ] and his conjecture that c n 

l+p 
var[R*] = 0.0741 · -1 - . -p 

(2-54) 

· 2-5 Preasymptotic Results o1 the Adjusted Range R~ 

2-5-1 Independent Net Inputs with Constant 
Parameters 

Normal inputs. Solari and Anis (1957) derived 
the first two moments of the maximum adjusted partial 
sums of i ndependent standard normal variables as: 

and 

E(M*) = !_ lfn I i-1/2 (n-i) -1/2 ' 
n 2 Vli izl 

(2-55) 

E(M*2) ,. !_ n -1 + ~ ~ ~ 
[ 

2 ,- n-1 i - 1 

n 6 n 211 i=2 j =l 
i (2i-n) I 

/ j3(n-l) (i-j)3 . 

(2-56) 

Then from Eq. (2-55) the Sol ari and Anis equation for 
the expected adjusted range is 

E(R*) • 1{£__ nV2if 
n 
t .-l/2 ( ')-1/2 
L 1 n-1 

i • l 
(2-57) 

However, Boes and Salas (1973) showed that since 
the net i nputs (x.-i) are exchangeable, Spitzer's 

1 n 
identity of Eq. (2- 2) for exchangeable random variables 
applies. Thus Boes and Salas showed that E(~) for 
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independent normal random variables may be written as 

(2-58) 

which is of t he same form as Eq. {2-3) for ECRn)· 

They also showed that Eq. (2-58) applies as well when 
the net inputs are (x.-ai) where 0 <a < l. Thus i n 

1 n -
this case 

,. 1/2 a V'iii 
n -1/2 2 1/2 
~ i [(n-1) + ~(1-a) ] 

i=l 
(2-59) 

Gamma i nputs. Follol!'ing Boes and Salas' (1973) 
results , Anis and Lloyd (1975) give E(R~) for gamma 

m-1 -x net inputs wi th pdf f(x) = x e / r (m) for x > 0 as 

= 2r(nm) n~l imi-l(n-i)(n-i)m 
E (R~) /ri nnm i~l (mi)(n- i)m • n > 1 . 

(2-60) 

Stable i nputs. For x1, ... ,Xn variables having 

char acteristic funct ion exp{-[t[ Y} , 1 < y ~ 2 and net 
inputs equal to (X.-ax ) , Boes and Salas (1973) 

1 n 
derived the expected adjusted range as 

n 
E(R*) R E[IXIl ~ {i[(l/i)-(a/n)]Y + 

n i=l 

+ (n-i){a/n)y}l/y 

which leads to E(R*) - n11Y. 
n 

(2-61) 

Inputs of any distribution. For x1, ... ,Xn inde­

pendent variables of any distribution function, the 
net i nputs (X. -aX ) are exchangeable variables. Thus 

l n 
Boes and Salas (1973) used Spitzer' s identity of 
Eq. (2.2) to derive the expected adjusted range as 

n n 
E(R*) ~ L i-1 E[ls~ll = ~ E[ [x.-ax j ) . (2-62) 

n i•l l i "'l l n 

The above Eqs . (2-58) and (2-59) for normal variables, 
Eq. (2-60) for gamma variab~es and Eq . (2-61) for . 
stable variables can be derlved from Eq . (2-62) wh1ch, 
as said before, is applicable for any distribution. 

2-5-2 Dependent Net Inputs with Constant 
Parameters 

Exchangeable random variables . Boes and Salas 
(1973) showed that if the variables x1, ... ,Xn are 

exchangeable, the net inputs (X. -aX) are also 
l n 

exchangeable. Therefore, based on Spitzer' s identi t y 
of Eq . (2-2), they showed that Eq. (2-62) also holds 
for the case of exchangeable random variables of any 
distribution. In particular, if the Xi variables are 

normal with mean E(X . ] .. \1 and variance Var[X.] 
l l 

the expected adjusted range becomes 

n 
E(R~) • ~ i-l (E(S~)(2~(K . ) - l] + 

i=l l l 

+ 2(Var S~) 1/2 ~(K . )}, 
l l 

2 
= I! • 

(2-63) 



ecsp 
where K. • In addition, if ~ • 0 or 

1 (Var 5'!')112 
1 

«a 1, then Eq. (2-63) takes the form of Eq. (2-58). 

AR dependent inputs. Few analytical results are 
avail able for the expected adjusted range of AR net 
i nputs. Based on Salas (1972, p. 24-32) results of the 
expected range of multivariate normal variables Salas 
et al. (1979b) showed that the expected adjusted 
ranges E(Ri) and E(R3) are 

E(Ri) = Vf (Var sp1
1

2 
(2-64) 

and 

E (R*) a I li (!. (Var S*) l/2 .!. (V S*) l/2 + 3 fir 2 1 + 2 ar 2 

(2-65) 

In particular, if the inputs are first-order auto­
regressive, Eq. (2-65) gives 

E(R*) • ~ ((3-p- 2p2) 1/
2 + (3-4p+p2)112). (2-66) 

3 31W 

This result serves to demonstrate (Salas et al., 1979b) 
t hat Eq . (2-58) is not applicabl e for AR variables. 
In fact, the relative errors obtained by using Eq. 
(2-58) vary from +1.62 percent for p = 0.1 to +12 . 72 
percent for p = 0.9. 

Results for larger n are available from simula­
tions carried out by Yevjevic.h (1965). He obtained 
the empirical distributions of R~ for AR(l) inputs 

with p • 0.0, 0.1, 0.2 , 0.4, 0.6, and 0.8 and n rang­
ing from 2 to SO. Yevjevich also obtained by simula­
tion the corresponding means, variances and skewness 
coefficients of R~. 

2-S-3 Net Inputs with Periodic Parameters 

No results are available for the expected adjusted 
range of inputs (either independent or dependent) with 
periodic paramet ers or in general, inputs with para­
meters varying with time. However, assuming that the 
variables x1, x2, and x3 are independent with vari-

ances ol2) o2
2, and o3

2 , Eq . (2-65) yields 

E(R*) 1 2 {(4 2 2 2)1/2 
3 = 6 ii 01 +02 +03 + 

( 2 4 2 2)1/2 ( 2 2 4 2)1/2} 01 + 02 +03 + 01 +02 + 03 . 

2-6 Asymptotic Results of t he Adjusted Range R~ 

2- 6-1 Independent Net Inputs with Constant 
Parameters 

(2-67) 

Input distribution belonging to the Brownian 
domain of attraction. This section is.introduced by 
quoting the opening paragraphs of Fel ler' s (1951) 
paper . 

"Let Xk be a sequence of mutually independent 

random variables with a common distribution V(x), and 
suppose that E[~) • 0, var(~) = 1. Put Sn • x1 + 

... + Xn and let 
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M • max(o,s1,s2, ... ,Sn). 
(1.1) n 

mn 2 min[o, s1,s2, . .. ,Sn) . 

The random variable 

(1. 2) R = M - m n n n 

will be called the range of the cumulat ive sums S . n 

In applications '[c.f Hurst (1951)]' it i s advan­
tageous to modify this definition. One considers 
instead of the values of the sums Sk their deviations 

from the straight line joining the origin to the 
point (n,Sn). Thus , we replace the random variables 

~by 

(k 2 l, ... ,n) 

and define the corresponding variables M~, m~, R~ i n 

~alogy wi th (1.1) and (1 .2). The variable R~ will be 

called the adjusted range of the cumulative sums Sn. 

The adjusted range has a greater sampling sta­
bility, but its main advantage is probably due to the 
fact that it eliminates the t rend when E[Xk] ~ 0, so 

that it can be used even when the means do not vanish." 

Feller goes on to derive the asymptotic distribu­
tion of the adjusted range for this input and gives: 

E(R*) + l(nw/2) (2-68) 
n 

2 
var(R;) • (w /6 - ~/2)n. (2-69) 

.. 
fR*/..'n(r) = 41211 L {k(k-1) [~' (2(k-l)r) -

n k• l 

~ ' (2kr) ] + (k-1)
2

r4>"(2(k-l)r) + 

+ k2r~"(2kr)} (2-70) 

0 o2 
where ~" (u} • - 4> ' (u) • - 4> (u) and 4> (u} is the 

au au2 
standard normal density. 

Gomide (1978} derives a version of the density 
of the adjusted range which is more amenable to compu­
tation. 

fR* (r) • L 2 2 2 2 2 
8k r(4k r - 3) exp(-2k r ) , (2- 71) 

k=l 

where R* is the limit in distribution of 

(2-72) 

The infinite series in Eq. (2-71) converges very fast. 

Input with positive drift. As a generalization 
of Feller' s definition of R*, Salas and Boes (1974) 
introduced n 

(i • 1,2, ... ,n) , 

where w can be ~hosen to be the sample mean 5
0

/n or 

population mean J.lz of the input process Zi. (Recall 



that Xi is the mean net input zi Yi where Y1 is the 

withdrawal. ) 

Thus in this context, ~Z need not be zero, and 

a(O ~a ~ 1) is a constant which, i n the language _of 
storage theory, can be considered to be the degree of 
development or draft. 

Asymptotically, w + ~. so Si + SL-l + (Zi- a~Z). 

When either a ~ 1 or ~ • 0 the net i~put Xi = (Zi -

- a~) has zero mean, so S~ becomes S. and the problem 
l l 

reverts to that of studying the range. 

On the other hand, if 0 ~a< 1 and~> 0 then 
based on Boes and Salas (1973), Salas and Boes (1974) 
show that "E (R~) increases asymptotically as fast as 

n," and this result applies regardless of the under­
lying distribution of the process . 

To date, there are no other aymptotic results for 
R~ when ~ > 0 , 0 ~a < 1, although Troutman (1976) 

outlines an approach for Rn. Thus, the results 

reported in the rest of this section confine themselves 
to the case where the mean net input ~X " 0, although 

a wil l be variable. Evidently in the limit we could 
include the special case ~Z = 0, a > 0. 

Troutman (1976, p. 89) gives the p.d.f. fR*(r;a) 

of the asymptotic adjusted range R* defined by Eq. 
(2-72) for 0 <a < 1, and demonstrates that it con­
verges (as a~ 1) to Feller's (1951) result . It i s a 
very lengthy formula and will not be reproduced here. 
However, we have performed some computat ions to see 
whether, by standardizing the random variables, it was 
possible to find a common distribution, independent of 
a. 

Troutman (1976) gave the first two moments of R*, 
(0 ~ a < 1) for large n as 

E(R*) + I['[T; · (1 - a + (arc sin /9){/6] 

E(R•
2) + (1/26/2&){ L (1[1 + 4i(i+l) (1-e)]/ 

i=l 

fl[i(i+l)]) - 262 + 69-1} 

(2-73) 

(2-74) 

where 9 = a(2- a). Letting~~= E(R*) and (a~) 2 = 

E(R•) 2 - (~~) 2 , Table 2-5 gives~~ and a~ as a func­

tion of a. 

Table 2-5 Mean and standard deviation of asymptotic 
adjusted range as functions of a. 

a II* a* 
a a 

0. 5 1.3637 .3146 
0.6 1.3284 .2976 
0.7 1.2983 .2857 
0.8 1. 2748 .2779 
0.9 l. 2591 .2737 
1.0 1. 2533 . 2723 

Define q = (r - ~*)/a* as a standardized variable 
a a a ' 

then 

pare 
we put r = qaa~ + 11; in fR*(r;a) in order to com-

the distributions of the standardized variate q 
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as a function of a. Further, define 

R1 
• lim (R* - E(R*))/Ivar(R* ) 

n- n n n 
(2-75) 

t hen by direct ' computation it was found that the p.d.f. 
I N 

of R (0 ~ a < 1) equals that of R (a = 1) to within 
three significant figures for a • 0.6. The approxima­
tion improves markedly as a + 1. Thus a large amount 
of unnecessary computation can be obviated if t his 
fact is taken into account. 

Input distributions belonging to the stable 
domain of attiaction. Only one resul t exists for R* 

n 
and that is from Salas and Boes (1974) where they 
demonstrate that 

E(R*) +constant x nl/Y. 
n (2-76) 

Here y is a parameter which characterizes a s table 

which has a characteristic function: exp(-lti Y), 
1 < y ~ 2. 

2-6-2 Dependent Inputs with Constant Parameter s 

The c. d.f. of R
1 

is given in Table 2-7 i n Section 
2-7-1. 

Distributions in the Brownian domain of attrac­
tion. Troutman (1976) was the first to find asymp­
totic results for R* where the input process is a 

n 
Markov chain, autoregressive, moving average or mixed 
autoregressive moving average. He even gives results 
for log ARMA which apply equally well. The basis of 

his development is the definition of y
2 which is the 

sum of the covariance function of X as given i n Eq . 
(2-45). He shows that R~/y/n is distributed as R* 

asymptotically, and gives the formula for arbitrary a. 

Thus for example if Xt is AR(l) with E[X] = 11 • 
2 ] s = 0, var[X] =a = l,corr[Xt+s'Xt = p, (S • 1 , 2, ... , ), 

then 

[ ]
1/2 

E(R~) + n; ~:~) = In · ~· ·Y . (2-77) 

, 
It has already been shown above that R , the stan­
dardized asymptotic distr ibution of R* for 0.5<a<l * n closley resembles that of R when a= 1. Thu$ f or all 
practical purposes, a knowledge of ~~. a~ as given in 

Table 2-5 and f RI given by Eq. (2-84) will enable any­

one studying R~ to obtain the inf ormation he wants 

(for large n), provided that he can define y
2• 

Symmetrically correlated i nputs. Given 
corr[Xt+s'Xt) = p for every s ; 0, Boes and Salas 

(1973) give E(R;) for Xt normally distributed (O, a2) 
as : 

E(R~) ~ ~ (1-a) ln(l+(n-l)p) + constant x n 
~ (2-78) 

for p > 0 . 

2-6-3 Net Inputs with Periodic Parameters 

Troutman (1976) examines the case where the dis­
tribution of the net input X has periodic properties 
with period w, i .e. E[X ] " ~ , var[X ) = a2 < .. and 

T T T T 
corr[\ •\.1 ] = p.t't (p "0, 1,2, ... ,) (T • 1,2, ... ,w). 

I 
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If further the net inputs are to be adjusted by a,, 

also periodic in t, then define 

-1 w -2 -1 
w 

-1 
w 

\l = (j) I ).!' ' a w I i Q w I a 
t•l t=l ' 

Eq. (2-45). 

He shows that 

lim P(R*/yln < r) 
n-- n -

where FR* (r;a) z fr fR* (Z;Q) dZ , (r > 0) 
0 

.. 0 (r ~ 0) . 

t=l ' 

(2-79) 

fR*(Z;a) is given by Troutman, bu~ as we have 

shown above , this distribution can be recovered with 
reasonable accuracy for a > 0.6 from that of fR*(Z;l) 

given by Eq. (2-71) if suitable standardization is 
empl<Jyed. 

The remarkable fact that emerges from Troutman's 
work is that if \l = 0, the asymptotic distributions of 
the range and the adjusted range depend only on mean 
values of the adjustment factors and the covariance 

- 2 sum, i.e . a and y • 

2-7 Preasymptotic Results of the Rescaled Range R;* 

2-7 -1 Independent Net Inputs with Constant 
Parameters 

Normal inputs. Anis and Lloyd (1975) made use of 
Boes and Salas' (1973) version of Spitzer's (1956) 
lemma on exchangeable random variables to produce an 
exact formula for the expected rescaled range, when 
llx = o: 

r[(n-1)/2] n-l 1/2 I [ (n-i) /i) 
r[n/2] /11 i=l 

(2- 80) 

and computed this expression for selected n values up 

to 106 . (See Table 2-4 of this paper f<Jr a comparison 
of the various expected ranges, and a close 
approximation). 

Wallis and O'Connell (1973) compu~ed the e.c.d.f. 
{empirical cumulative distribution function) of R** 

n 
for n • 20,30 ,40,50,75 ,100 for independent normal as 
well as autoregressive (lag-one) inputs. Thi~y thou­
sand samples were used for each set, and they produce 
curves of the e.c.d.f.'s plotted on a probability 
scale. This was apparently the first attempt to find 
the distribution of R;*. Hipel and McLeod (1977) pro-

duce e.c.d.f.'s for R;* in tabular form which are 

easier to use for the purpose of reading percentiles 
directly or extracting information about E(R**) and 

n 
var(R~*). Comparing their results with those of Wallis 

and O'Connell , it will be seen that there is no differ­
ence in the percentiles as far as a visual comparison 
on the scale of the plots will permit. This comparison 
adds credence to both sets of e.c.d.f.'s as they were 
produced independently. 
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Hipel and McLeod (1978) computed the distribution 
of E(R~*) for Xt i.i.d. normal (0,1) empirically by 

simulation, for selected n < 200 . The percentiles 
were published in terms of Hurst ' s K defined as K = 
= log(r**)/log(n/2), where r** were sample values of 

n n 
R~*, 10,000 samples for each n. McLeod and Hipel 

(1978), in a companion paper, compare i** for their 
n 

simulation with Eq. (2-80) and show a good measure of 
agreement. To date there have been no reports of 
values of var(R~*), and it was decided that this posi-

t ion could be rectified by using Hipel and McLeod's 
tables of the e.c.d.f. (The treatment extends i tself 
to the case of AR(l) inputs, which will be summarized 
in the next sub-section.) 

The justification for using this approach rests 
on the following considerations. 

(i) Hipel and McLeod's e.c.d.f.'s required a 
horrendous amount of computing which it was thought 
would be folly to repeat; 

(ii) Gomide (1975) shows that the standardized 
range and conditional range converge to their respec­
tive asymptotic distributions extremely fast, the 
implication being that the same should hold for the 
rescaled range; 

(iii) Should values of var(R~*) become available, 

then utilizing the exact expression for E(R~*) in Eq. 

(2-80), both the p.d.f. and c.d.f. for R~* can be com­

puted with reasonable accurac~ say for n > n0 (with n0 
a value of n at which the ~istribution of the s tan­
dardized rescaled range, Rn = (R~* - E[R~*))/ 

lvar[R**], has converged to its asymptotic equivalent 
n 

R# to within a desired degree of accuracy). 

(iv) Salas et al. (1977) demonstrated by simula­
tion that r** for normal, gamm~ and McLeod and Hipel 

n 
(1978) ~how that, in addition, stable and Cauchy 
variables,have virtually indistinguishable behavior 
for n up to 200, which justifies concentrating atten­
tion on the normal. 

Hipel and McLeod (1978) give percentiles of 
K: P[K<k) for the case of X i.i.d. normal with 11 • 0. 
For example for n = 20 they give the values of 
Table 2-6. 

Table 2-6 Distribut ion of R** for n 
n 

Percen-
tile 0.5 1.0 2.5 5.0 10 20 

20. 

30 40 

k .406 . 426 . 459 .486 .520 .565 .600 .628 

-
Percen-
tile 60 70 80 90 95 97.5 99 

k . 681 . 708 .738 .775 .804 .827 .882 

50 

.655 

99 .5 

.870 

To find v4r{R;*) from the given e.c.d.c.f., the 

following procedure was used. First transform the K 



values to r : (n/2)K. Next fit two cubic polynomials 
to the five percentiles at each end of the e.c.d.f. by 
least squares , and compute the values of r0 and r 100 
where, effectively, P(R;* ~ r

0
) • 0 and P(R~* ~ r 100) 

= 1.0, respectively. Then using cubic splines , fit 
eight cubic polynomials (with continuous first and 
second derivatives matching at the end-points of the 
intervals) to the values r 10, r 20 , ... , r 90 . There 

are then 10 cubic polynomials f . (r), i • 1,2, ... ,10 
l 2 3 

such that fi (r) = aiO + ai1r + ai2r + a13r . It fol -

lows that the first and second moments are: 

£ (R**) 
n 

9 2 2 3 3 L (a.l (r. 1 ri)/2 + ai2(ri+l - r l.)/3 
i •O l l+ 

+ 

5 5 
+ ai3(ri+l-ri)/S] (2- 82) • 

whence var(R~*) and c~1 • E(R~*)/Ivir(Rh*) are 
obtainable. n 

To corroborate the results of this treatment, a 
second method of finding the moments of R~* from 

Hipel and McLeod's tables was devised. It was to com­
pare Hipel and McLeod's percentiles for various n 
values wi th those of the asymptotic distribution given 
by Feller (1951). 

Now, Gomide's (1975) version of Feller's formula 
is Eq. (2-71): 

.. 
fR,. (x) = L 

k• l 

2 2 2 2 2 
8k x(4k x - 3)exp (-2k x ) (2-83) 

where R~/o)(frl and R~*/o)(frl both tend to R* as n ...... 

E(R*) ~ I;.T:Z, var(R*) s (w2/ 6 - w/2) which we 

call IJ* and o•2, respectively. By WTiting R* ~ IJ* + 

+c*R1, we define a standardized variate R
1 

whose p.d.f. 
is 

(2-84) 

The c.d.f. of R
1 

can be computed by numerical integra­
tion of this exact function to any desired accuracy, 

and Table 2 .7 gives the percentiles of R
1 

to within 
five decimal places. 

Let r. stand for an experiment~lly derived per­
l 

centile for a particular n as found by Hipel and 
McLeod. What is sought is E(R**) and ivir(R**), such 

n n 
that the standardized values , y. ~ E(R**) + r.lvar(R**) 

1 n 1 n 
matches (as closely as possible) the corresponding 
values of r given in the above table. E(R**) and 

n 
lv4r (R~*) were found by least squar es, and differed 

very little, except for a bit more scatter, from the 
values found by integrating the fitted cubic pol y­
nomials, thus lending credence to the results. 

Using Hipel and McLeod's data for p • 0, the 
results of the integrated cubic spline computations 
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Table 2.7 Percentile of the standardized asymptotic 
adjusted range R1 computed from Eq. (2-84) . 

100 x FR1 (r) r 100. FRI (r.) r 

0.1 -2 .18388 90 1.34459 
0 .5 -1.95488 95 1.81343 
1 -1.83071 97.5 2.23640 
2.5 -1.63079 99 2.74503 
5 -1.44038 99.5 3.10060 

10 -1.19741 99.9 3.85591 
20 - . 86632 
30 - .60071 
40 - . 35523 
50 - .11022 
60 .14968 
70 .44365 
80 .80753 

are reported in Table 2.8 in columns 4, 5 and 6 
together with Anis and Lloyd' s expression for E(R**) 

n 
in column 2 and Hipel and McLeod's results for E(R**) n 
in column 3. as functions of n. 

Table 2- 8 Results of integrated cubic spline 
computations. 

n E (R**) E (R**) E(R**) var(R**) c~~ n n n n 
(A+L) (II+M) 

.5 1.9274 1.9273 1.933 .080 6.825 
10 3.0233 3.0302 3.034 . 357 5.079 
~0 3.8812 3.8826 3.889 .684 4. 703 
25 4.6111 4.6047 4.594 1.040 4.504 
30 5.2576 5.2540 5.259 1.401 4.442 
35 5.8443 5.8770 5.843 1.751 4.415 
40 6 . 3851 6.4214 6.363 2.120 4.370 
45 6.8895 6.8920 6.925 2.602 4.293 
so 7.3640 7.3595 7. 389 2.901 4.338 
60 8.6502 8.6246 8.650 3.908 4.376 
70 9 .4210 9.4453 9.401 4 .651 4. 359 
80 10.1392 10.1349 10.159 5.496 4.333 
90 10.8143 10.8208 10.853 6.321 4.317 

100 11.4533 11.4775 11.438 7.005 4.321 
125 12.9243 12.9617 12.922 8.680 4.386 
150 14. 2556 14.1956 14.285 10.966 4.314 
175 15.4806 15.4198 15.457 12.580 4.358 
200 16.6214 16.5938 16.658 13.964 4.357 

Scrutiny of Table 2-8 will show that there is 
good correspondence between E(R;*) and the twp values 

of its estimates, in fact better than 0.6\ difference 
in all cases . This encourages one to feel that the 
values for v4r(R~*) are reasonably accurate. Examina-

tion of the standardized percentiles of the e.c.d.f. 
for n • 35 shows that they are close to what appear to 
be the asymptotic values. Furthermore, on comparing 
the percentiles (see Tables 2-lZ and 2- 13 at the end 
of this section), it seems that the standardized dis­
tribution of R~* has effectively converged to its 

asymptotic equivalent by n = 35. Note further that 

the values of C-l appear to follow a reasonably smooth 
v 

curve, asymptotic to a value of about 4.34. But the 



asymptotic value of c-1 for R** is ~·;o• =·13/(rr- 3) v n 
• 4.6030 . .. which is six percent larger than 4.34. 
Does this imply that there is an error in analysis? 

Checking the cubic spline algorithm with the 
exact values of the standardized asymptotic c.d.f. for 
R;* (given as FR1(r) in Table 2- 7 above), it was found 

that the error in computing the standard deviation was 
less than 0.5 percent, which exonerates the cubic 
spline algorithm. This fact together with the 
observed accuracy of £(R**) in Table 2-8 seems to indi-

n 
cate that the values of the variance given here may be 
too large by about twelve percent. (This phenomenon 
was also observed for the cases where Hipel and McLeod 
(1978) compute.d the e. c. d. f. 's of R;* for an input 

following a Gaussian AR(l) process with p > 0.) 

A simulation check appeared to be in order, so 
E(R**), var(R**) and c were computed for ten lots of n n v 
500 samples of length n • 35. Var(R**) lay between 

n 
1.887 and 2.274, and for the whole set of 5,000 samples, 
for n = 35, the result was £(R**) = 6.439 (compared to n 
the exact value of 6 .3851), and var(R**) = 2.109 (com-

n 
pared to 2.120 computed from Hipel and McLeod's tables) 

with C-l = 4.4336. Results of simulations cannot prove 
anythiXg conclusively, but the indicationis that the 
results given in Table 2-8 computed from Hipel and 
McLeod's values appear to be reasonable, especially 
when it is recalled that their values correspond well 
with those of Wallis and O'Connell. 

Two explanations are offered for this apparent 
paradox. First, the simulation check reported here 
used the Box-Muller transformation to get normally 
distributed pseudo-random numbers from uniform-iy~dis­
tributed ones, and this may give a value of X which is 
occasionally too high.· Did Wallis and O'Connell and 
Hipel and McLeod also use this transformation? The 
second explanation is that n = 200 is too small for 

C-l to have reached its asymptotic value of 4.6030, 
v 

although the good agreement between the standardized 
percentiles of (i) the e.c.d.f. and (ii) the asymp­
totic c.d.f. seem to indicate otherwise. 

At ~ny rate, the results reported here seem to be 
consistent, but it still remains to prove that they are 
fair approximations to the true values. Some zealot 
with a large research grant at his disposal will no 
doubt remedy the situation some day! In the meantime, 
the conclusion is that Hipel and McLeod's tables (and 
Wallis and O'Connell's diagrams) of the e.c.d.f. of 
R** may possibly err on the conservative side as far 
n 

as the variance is concerned. 

Skewed input distributions. McLeod and Hipel 
(1978) compute E(R~*) using 10,000 samples for 

n < 200, when the input is variously distributed as 
gamma, stable and Cauchy. Incredibly, there is very 
little difference in these values from the correspond­
ing exact result for the normal given by Anis and 
Lloyd (1975). 

This is supported by Matalas and Huzzen (1967) 
and Salas et al . (1979) who reported simulation.experi­
ments with correlated and independent skewed inputs. 
They found that skewness has virtually no effect on 
E(R~*) for any value of n. This property of R~* is in 

marked contrast to the behavior of Rn and R~. 
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2-7-2 Dependent Net Inputs with Constant 
Parameters 

All the results that have appeared to date are 
from simulation experiments. Without exception, they 
are confined to net inputs with normal marginal dis­
tributions. That this is not a deficiency fo llows 
from the conclusion in the last paragraph that skew­
ness has negligible effect on the behavior of E(R~*), 

coupled with th.e proof by Troutman (1976) that th.e 
asymptotic distribution of R~* is unaffected by the 

form of the marginal distribution of those inputs 
belonging to the Brownian domain of attraction. The 
variation of the behavior of R;* thus rests prillllarily 

upon the nature of the serial correlation structure of 
the net inputs, hence the headings which follow des­
cribe the type of dependence examined. 

Autore ressive, la -one or AR(l) model. Matalas 
and Huzzen 1967) were the irst to report experiments 
on R** for the AR(l) input process. They give a table 
of Knfor p = 0.1, ... ,0.9 and selected values of n from 
~ to 1,000. Ten thousand values of K = log(r~*)/ 
log(n/2) were computed for each p and n and R was 
given as the average of these K(P,n) values. Their 
objective was to explain the Hurst phenomenon, so they 
were not particularly interested in E(R~*). However, 

their values of K (second row) and K computed from the 
exact Anis and Lloyd (1975) result (third row) appear 
in Table 2-9 for comparison purposes. It is evident 
that because of the difference in the skewness of the 
distributions of R;* and K, there is no easy way to 

find E(R;*) accurately from these data. 

Table 2- 9 Values of K and K. 

n 

R 
K 

5 

.59 

.716 

10 

.66 

.687 

25 

.64 

.657 

so 

. 63 

. 639 

100 

.61 

.623 

Wallis and O'Connell (1973) gave curves of 
e . c.d.f. •s (computed from 30,000 sequences for each 
p and n) for n = 20, 30, 40, SO, 75 and 100 and p = 
• 0, 0.1, ... , 0.5, 0.75, 0.9. As mentioned already, 
these curves agree well with Hipel and McLeod's (1978) 
tables of percentiles of the e.c.d.f. of R~* (given 

for = 0.1, 0.2, ... , 0.9 and n = 5(5)50(10)100(25)200 
using 10,000 sequences for each P and n). 

As in the case of the independent i nputs, Hipel 
and McLeod's tables will not be reproduced here, but 
by using the same (integrated fitted cubic spline) 
technique, the entries in Tables 2-10 and 2-11 were 
calculated. 

Inspection of the standardized percentiles of 
these e.c.d.f. ' s indicates that asymptotic convergence 
in distribution appears to have been effectively 
achieved for p = 0.2 by n0 = 70 and for p = 0.4 by 

n0 • 150. (Recall that for p = 0.0, n
0 

= 35.) For 

higher values of P, convergence in distribution has 
not been achieved by n = 200. This i nvalidates 
neither the computations of E(R**) and var(R**) nor 

n n 
Hipel and McLeod's tables, nor Wallis and O'Connell' s 
curves of the e.c.d.f. 's, but is a comment on the 



rate of convergence in distribution (transience) as a 
function of p . 

For illustration purposes, Table 2-12 
percentiles of the standardized e.c.d.f.'s 

gives some 
of R** for 

n 
the case p = 0 and variable n. Table 2-13 
e.c.d.f. 's of R** for n • 200 and variable 

n 

gives the 
p, which 

should be compared with the last two lines of 
Table 2-12. 

Table 2-10 E(R**) values computed from Hipel and n 
McLeod's tables. 

n p•0.2 p• 0.4 p=0.6 p=0.8 

10 3.24 3.44 3.64 3.80 
20 5.11 5.70 6.35 7.06 
30 6.63 7.55 8.68 10.08 
40 7.92 9.14 10.69 12.80 
so 9.03 10.55 12.46 15.28 
60 10.04 11.78 14.09 17.60 
70 10.98 12.93 15.58 19.70 
80 11.90 14.07 17.05 21.81 
90 12.74 15.11 18.41 23.82 

100 13.46 16.01 19.60 25.53 

125 15.29 18.30 22.55 29.86 
150 16.95 20.37 25.24 33.79 
175 18.38 22.15 27.58 37.29 
200 19.85 23 .99 29.98 40.81 

Table 2-11 yvar(RH) value.s computed from Hipel and 
n 

McLeod's tables. 

n p•0.2 p=0.4 p=0.6 p•0.8 

10 .609 .611 .597 .573 
20 1.099 1.179 1.226 1. 217 
30 1.477 1.630 1. 774 1.844 
40 1. 779 2.010 2.233 2.423 
so 2.060 2.339 2.682 2 .996 
60 2.282 2.641 3.073 3.545 
70 2.518 2.945 3.474 4.071 
80 2. 753 3.232 3.841 4.631 
90 2.942 3.465 4.140 5.039 

100 3.118 3.687 4.438 5.467 

125 3.496 4.179 5.083 6.481 
150 3.932 4 . 738 5.833 7.506 
175 4.252 5.129 6.339 8.409 
200 4.477 5.463 6.847 9.092 

Table 2-12 Standardized percentiles for p • 0. 

10 20 30 40 so 60 70 10 90 

s - 1.311 ····· . . su •. lSI - .Oll .Ill .Sl2 .19S 1.260 
10 · I. lOS - .9 16 -.603 •• lll - .037 .255 . S6S .901 1.350 
20 ·I. 2SI •.90J -.601 • . 341 -.074 .199 .SOl .&59 l. l 36 
50 -I. 220 •.&61 - .S99 - . l49 - .096 . 158 .444 . Ill 1. 3ll 

100 · I. ISS •• f6J -.596 • .3S6 -.116 . I S6 ,44S • 793 1.311 
200 - 1.111 -.165 -.601 • .351 •• 111 . l71t .457 .101 1.343 

· I. U74 •• 1663 - .6007 • .J5Sl -.1102 .1497 ,4436 .107S I. 3446 

tThis value was computea from the corresponding 
value given by Hipel and McLeod as 0.619. To show how 
sensitive the calculations are to errors, if a value 
K • 0.618 is used i nstead of 0. 619 , 0.171 changes to 
0.150 . 
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Table 2-13 Standardized percentiles for n 200. 

10 20 30 40 so 60 70 10 90 

.2 - 1.207 -.174 - .606 -.3Sl - , 099 .lSI .461 . 114 1.341 

.4 · 1.209 -.176 -.602 -.347 - . 106 . 164 , 466 . 117 1.342 

·' ·I. 214 -.179 -.S96 -.340 -.096 . 171 .470 . U3 1.343 
, I - 1. 242 -.173 -.sts - . 331 - .074 .201 .S06 . 142 1.337 

Autore ressive - movin avera e: ARMA(l,l) models. 
O' Connell 1 71 used an ARMA 1,1 model for X with -­
varying from 0.8 t o 0.99 and 9 varying from 0.5 to 0.9 
to find H from ten sequences of X of length 9,000 for 
each pairof (+,9) values. His the mean of the ten 
values of H that he defined as the slope of the line 
fitted by least squares to log(r~*) - log n for 

n < 2,000, where r;• are the sampled values of the 

rescaled range. Except for five pox diagrams for 
selected (,,9) pairs, no estimates were given for 
E(R**). 

' n 
Wallis and O'Connell (1973) give diagrams for the 

e.c.d.f. of a long ARMA(l,l) model with + ~ 0.9 and 
9 • 0.64 for n • 20, 30, 40, 50, 75, 100. They used 
the same technique for the computation of these as 
they did for the AR(l) input, so they should be 
accurate. 

Boes and Salas (1978) computed E(R;*) for (+ , 9) 

(0.99, 0.8676) and (0.9, 0.6268) for comparison with 
conditionally nonstationary models of identical cor­
relation structure. 

Nonstationary models. Hurst (1957), Klemes 
(1974 , 1975) and Potter (1975 , 1976a ~d 1976b) and 
Boes and Salas (1978) give values of E(R~*) for some 

restricted sets of parameters. The rescaled range 
behavior of these and the matching ARMA(-1,1) models is 
indistinguishable from the results of the simulations, 
reinforcing the observation made earlier that for 
finite n, the resclaed range depends little, if at all, 
on the marginal distribution of the inputs, and depends 
only on the covariance function . 

Exchangeable variables. For Xt symmetrically 

correlated (corr(Xt+s'Xt) = p, for s ~ 0) Anis and 

Lloyd (1975) showed that E(R~*) is independent of p. 

Hence symmetrically correlated and independent inputs 
have the same mean rescaled range for a given n. 

Fractional Gaussian noise: FGN: The FGN aodel, 
proposed by Mandelbrot (1965) and a mathematical 
derivation given by Mandelbrot and Van Ness (1968) 
and Mandelbrot and Wallis (1969) , and literature con­
cerning the FGN model SUIIIII.al'ized by Wallis and 
0' Connell (1973) and Lawrence and Kottegoda (1977), 
will not be repeated here. 

There have been several attempts at obtaining 
approximations to FGN, but McLeod and Hipel (1978) 
were the first to give an algorithm for the exact 
generation of FGN samples. It appears to be tractabl e 
for sequences up to length n = 200, as they compute 
E(R**) for n = 5(5)50(10)100(25)200 and H s 0. 7, 0.9 . 

n 
For each value of n and H, 10, 000 simulated se~uences 
were generated. (McLeod and Hipel give an excellent . 
exposit ion of the FGN model, its fitting to data and a 
comparison with ARMA models, and the interested 
reader is referred to their paper . ) 



What distinguishes FGN from models i n the Brownian 
domain of attraction is that when 0.5 < H < 1 the cor­
relogram of the former is not summable , unlike those of 
the latt er. Nevertheless, i t can be shown that 
E(R~*) - nH for FGN, whereas ~odels in the Brownian 

domain of attraction yield E(R**) ~ n112 when ~ . 
It is this differ ence that has prompted a long contro­
versy over the Hurst phenomenon. 

2-7-3 Net Inputs with Periodic Parameters 

There are no known results for R** when X is dis­
n 

tribued with periodically varying paramet e rs. This 
state of affairs includes the asymptotic case. 

2-8 Asymptotic Results of the Rescaled Range R~* 

Numerous references to the asymptotic case were 
made in the pr evious section and will not be repeated 
here. Hurst (1951) was the first to observe that sam­
ple means of R** values seemed to grow at a rate pro-

portional to jt with h :> 1/2 for a wide variety of 
geophysical time series . The principal theoretical 
result here (Troutman, 1976) concerns the asymptotic 
distribut ion of R~* for stationary, dependent i nput 

{Xt} belonging t o the Brownian domain of attraction. 

Let 

r 
FR* (r) "' (f 

0 

where fR*(u) is given by Eq. (2-71) , t hen 

lilll P[R**/Bn1/ 2 
< r) = FR*(r) 

n n -

2 
where 8 

.. 
1 + 2 ~ p1 , and it is asswned 82 

.f.•l 

(2-85) 

(2-86) 

< .. 

The limiting distribution here is the same as the 
limiting distribution in the case of the adjusted 
rangeR~ (see Section 2.6); only t he scal e parameter 

2 2 2 
has changed from y there to 8 here, where y "' a 8 , 
to account for tho fact that the r escaled range has 
t he sample standa.rd deviation as a divisor. One notes 
again t hat dependence enters the asymptotic distribu­
tion only through the parameter 8. Also , one can 
readily derive 

E(R**) ~ (n/2)1/ 2 8n112 (2-87) 
n 

and 
2 II 2 

var(R~*) - ((n /6) - 2l 8 n • (2-88) 

For the case of independent stationary inputs 8 "' 1. 

Comments for the cases of exchangeable random 
variables and fractional Gaussian noise were made in 
the previous section. 

2-9 Preasymptotic Results of the Maximum Deficit, On 

Using the mass-curve concept of Rippl (1883), 
Hur~t (1951) studied the maximum adjusted deficit 0~ 

particularly in the case where the l evel of development 
(regulation) is less than 100 percent, his reasoning 
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being that the range (rescaled) is not relevant where 
withdrawals are less than the arithmetic mean gross 
input. Why the c·hoice of the adjusted deficit o; (and 

indeed the adjusted and rescaled ranges R; and R~*) 

should be more relevant for sizing reservoirs than its 
(their ) unadjusted counterpart(s) is not clear. 
Thomas and Fiering (1962) used simulation and deficit 
analysis (which they dubbed the "sequent peak 
algorithm") to size reservoirs. The first analytical 
treatment of the (maximum accumulated) deficit was pro­
vided by Gomide (1975) in his milestone paper. Since 
then Troutman (1976) has treated the asymptotic case. 
Following Gomide' s lead, Mutreja (1976) and a follow-up 
paper Mutreja and Yevj evich (1977) have examined the 
asymptotic behavior of the deficit of ARMA processes, 
evidently unaware that t heir results had been pre­
empted by Troutman's work. 

2-9-1 Independent Net Inputs with Constant 
Parameters 

Gomide (1975) devised an algorithm for the evalu­
~tion of the exact distribution of On' defined in 

Section 1-3, for discrete inputs based on Moran' s 
(1955) concept of a discrete reservoir. This algorithm 
permits the computation of P(Dn ~ k] directly by sum-

ming the elements of the (k+l)-square taboo t ransition 
matrix of the Markov chain describing the storage, and 
is applicable to an arbitrary distribution of net 
inputs. In other words, P[Dn ~ k] is the probability 

that the semi-infinite reservoir level does not reach 
state zero i n the first n steps given the initial 
state is k+l (full reservoir). 

Gomide then proceeds to derive the asymptotic 
distribution of on for the case of full regulation 

and gives , 

for 0 • lim D I rn . 
n-+- n 

(2-89) 

o-1)/2 ... c· > 
(-1) .J., JX (2-90) 

., 
F0 (x) • 4 ~ 

(j+l)/2=1 
{(-l)(j-1)/2. ~(jx)} - 1 

(2-91) 

By using the binomial approximation he demon­
strates t hat the standardized deficit for normal 

inputs: o1 = (D - E[D ])/lvar[O ) converges in dis -n n n n 
tribution to its asymptotic equivalent: i.e. , 

0# + 0# • (D - E(D}/fvar[O]) by n = 15. As he says, 
n 

"the convergence of the standardized exact density to 
the standardized asymptotic densit y is slower" than in 
the case of R "because of the influence of the proba-

n 
bilit y mass at 0 " 0." For the case of full regula­

n 
tion, Gomide shows analytically that P(Dn "' 0] ~ 

• [t(~)]n for normal inputs when E[Xt] • ~. 

In addition t o this general result, he gives 
curves for E[O ) and var[D ] for~ " 0, 0.25, 0.3, 1 · 

n n 
for 0 ~ n ~SO, when Xt is normally distributed. 

Because of its usefulness in computation, the 
p.d.f. and c.d.f. of o•, the standardized asymptotic 
deficit are tabulated in Table 2-14, for some selected 
values of the standardized variate z. (Note that 



Gomide gives E(D] = .fiiTi = 1.25331. ., and an infinite 

series for E[D
2

] requiring the evaluation of about 
1,000 terms for six figure accuracy; then var[D] = 
.. 0.511014). 

Table 2-14 
It 

p.d.f. and c.d.f. of D , the standardized 

z 

-2 
-1.5 
-1 
-0.5 
0 
0.5 
1 
1.5 
2 
2.5 
3 
3.5 
4 
4 .5 

asymptotic deficit 

10 
.07629 
.41828 
.46799 
. 36972 
. 26116 
.17196 
.10605 
.06126 
.03315 
.01680 
.00798 
.00355 
.00148 

0 
.00698 
.13568 
.36877 
.58016 
.73732 
.84465 
.91320 
.95423 
.97724 
.98934 
.99530 
.99805 
.99923 

2-9-2 Dependent Net Inputs with Constant 
Parameters 

Let us consider Bernoulli inputs. Using the two 
state input Gomide used i n the study of the range: 

P[X 1 = + liX • + 1) A p, t+ - t - P(X = + liX = t+l - t 

= + 1] = q, P(\ = 1) = P(\ = -1) = 1/2, 

Gomide · (1975) extended his algorithm for the inde­
pendent input case to t hat for correlated inputs. 
This two-state Markov chain has the same correlation 
structure as an AR(l) process , so that when n is 
large the results approximate those which correspond 
to an AR(l) Gaussian input. He demonstrates that for 
~ = 0 and p = 0.5 the standardized deficit has 
effectively converged (in distribution) to its asymp­
totic counterpart, o*. He gives diagrams of E[D ) 

n 
(but not, alas, var[Dn)) for n up to 100 and p = 0, 

0.20, 0.50. It remains for var[Dn] to be computed for 

correlated inputs, and it will be easy to extend the 
a l gorithm for Rn in Section 2-1-1 and 2-1-2 to the 

case of On. In the meantime, Troutman ' s (1976) asymp­

totic expression for On could be used, giving a con­

servative estimate of the variance, for use with f0t 

and F0f; his expression is 

2 
var(Dn] + 0.511015y n (2-92) 

where y
2 

is given by Eq. (2-45). 

2-10 Asymptotic Results of the Maximum Deficit, On 

Results for no drift will be presented here for 
the general case of dependent, periodic net inputs and 
the special cases of dependent but non-periodic inputs 
and finally independent inputs will be noted as special 
cases. The main contributors are Gomide (1975), (1979) 
and Troutman (1976), (1978). Gomide (1979) presents a 
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succinct derivation of the asymptotic distribution of 
the maximum deficit for independent 1nputs using the 
theory of Markov chains. Troutman (1978) will be fol­
lowed here . 

The maximum deficit was defined in Section 1-3; 
it can also be defined by either Eqs . (2-93) or (2-94), 
namely 

(2-93) 

where the S. are the partial sums of the X•s and M is 
J n 

the maximum of the first n of these partial sums. Or, 

0 = (-1) min [X. + X. 
1

+ ••• +X ] . 
n l~i~~n 1 l+ j 

(2-94) 

Let Xt denote the dependent periodic input ran­

dom variables where the nature of the dependence and 
periodicity is just as in the latter part of Section 
2-2. Set 

then 

I CC-l)j/C2j•l)J 
j"'O 

2 2 2 
exp[ -lf (2j+l) /8d ]}I (O,oo) (d) 

lim P[D I nl/2 < d] = F (d) 
n._ ny - D 

where, as before, the constant y is given by 

2 -2 
Y = a + 

(2-95) 

(2-96) 

(2-97) 

1/2 Once again we see that On is scaled by n regardless 

of the distribution of the Xt' s, the type of dependence, 

or type of periodicity present, subject, of course, to 
the mild constraints that permit utilization of the 
weak convergence theory. The contribution of the 
dependence and periodicity to the asymptotic distribu­
tion is completely encompassed within the parameter y 
and it in turn f ully describes the effects of the 
dependence and periodicity in terms of second order 
moments. For i nstance, if there are no periodic com­
ponents, then w = 1, and y is defined by 

(2-98) 

2 and if further there is no dependence y reduces to 
2 a . The asymptotic mean and variance of On are given 

by 

(2-99) 

and .. 
var[D ] - [2 ~ (-l)j (2j+l) -

2 
- 11/2Jl n. 

n j=O 
(2-100) 

The asymptotic mean is the same as for R~. 
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CHAPTER 3 
INFERENCE ON RANGE AND DEFICIT 

3-1 Introduction 

For the .est part, Chapters 1 and 2 are reviews 
of those results concerning the range and deficit that 
were able to be deduced fro11 assllllled models. The 
problea of drawing i nferences from data regarding such 
results was relegated to this chapter. The general 
problea of inference is often categorized into the 
following types of inference: (a) model building or 
goodness of fit ; (b) point estimation; (c) interval 
estimation; ~d (d) hypothesis testing. Each of these 
c~ in turn be studied fro11 the parametric or non­
parameteric viewpoint and both will be employed. Also, 
as has been the case throughout this paper, results 
obtained by either simulation or analytical methods 
are presented. 

Admittedly, model building and goodness of fit of 
various models is important, but since it is somewhat 
divorced from the subject at hand, namely range and 
deficit analysis, it will not be addressed in this 
paper. Suffice it to say that ce~ain models, speci­
fically fractional Gaussian noise, were proposed 
because they were thought to be able to mimic behavior 
of the range. The real proble11 of deciding which of 
several alternative aodels best fit a given geophysical 
pheno~non will not be discussed. Aaong the other 
three .odes of inference, naaely point estiaation, 
interval estiaation, and hypothesis testing, only the 
first two will be considered. 

The chapt er is divided into three further sub­
sections . The Section 3-2 considers estimation of 

y
2, the sua of the covariance function. It was noted 

in Chapter 2 that / is an important parameter as far 
as range and deficit analyses are concerned; in fact, 

/ characterized much of the asymptotic theory given 
there . Section 3-3 looks at the relationship between 
the range and/or deficit statistics obtained from 
overlapping time intervals of observations. Often 
times, for a given say, 100 year span of data, possibly 
simulated, the range statistic is computed for n • 100 
and also for n "' SO, say by .dividing the 100 years of 
data into two sets of SO each. How then is Rso 

related t o R100? The final Subsection 3-4, considers 

estimation of the Hurst slope. It will be noted that 
the Hurst slope for the rescaled range is nearly inde­
pendent of the \Dlderlying 1110del marginal distribution, 
and consequently is a poor statistic for discriminating 
between models. The problem of just how stable the 
Hurst. slope is for moderate length records is broached. 

3-2 The Integral of the Covariance F\Dlction y
2 

In Chapter 2 it was noted that y
2 played a key 

role in the asymptotic theory of the range and deficit; 

in fact, y or S, where r2 
" a

2s2
, enters as a scale 

parameter in most limiting distributions given there. 
Consequently, estimation of y, as well as an indica­
tion of the precision of such estimates, is fundamen­
tal in' range and deficit study. Two approaches will 
be mentioned, the first is parametric in which a para­
metric model is assumed and then y is a function of 
the model parameters and hence amenable to the usual 
parametric estimation techniques such as maximum like­
lihood or the method of moments; the second is non-
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nonparametric and uses techniques not associated with 
a particular model. 

2 2 2 2 t Recall that y = o S where S' = 1 + 2 L p. for 
J j=l 

the nonperiodic dependent Brownian domain of attrac­
tion case. To give some idea of the estimation of 
2 

y , consider a simple AR(l) model given by 

(3-1) 

where {e} is ~hite noise with variance parameter a 2 and 
t £ • 

-1 < p < 1 is a parameter. It is known that pJ. = pJ 
2 2 2 and a ,. a/(1-p ) for an AR(l) model, hence 

and 

.. 
s2 = 1 • 2 L pj = c1 • p)/Cl - p) 

1 

2 a 
Y
2 £ 

• --2 
1-p 

2 
a function of the model parameters p and a . 

£ 

(3-2) 

(3-3) 

The general theory of maximum likelihood estima­

t ion states that the maximum likelihood estimator of r 2
, 

say r2
, is given by 

(3-4) 

where p and 8
2 are the maximum likelihood estima~ors 

2 t 
of p and a£ , respectively . Furthermore, such theory 

states that r2 is asymptotically distributed as a nor­

mal with mean • r 2 
and variance 

• ! {4a: var[~] 
n (l-P)6 

(3-S) 

Pro111 Eq. (3-S) one can gain some idea as to the 
precision of the maximum likelihood estimator. For 

instance, if P • O.S and a~ • 1 then r2 
is asympto-· 

tically distributed as N(4, 200/n) and so one would 

expect about 95 percent of the values of the estimate 

r2 to fal l within 4 ~ 20 /27n, and about 67 percent to 

fall within 4 ~ 10 liifi. 
Now if one were interested in the estimation of 

2 2 S , rather than y , then the maximum likelihood esti-
2 ~2 

mator of B is S = (l+p)/(1-p) where again p is the 

maximum likeli hood estimator of p. Here 62 
is asymp­

totically distributed as a normal wi th mean • s2 
and 

variance 



4 4(1-
2

) 
= ~var[il]" P 4 

(1-P) n(l-p) 

4(l+p) 
3 

n (1-p) 
(3-6) 

· 2 so if p = 0.5 then 8 is asymptotically distributed as 

48 a N(3, 11). Note that in either case the precision 

worsens as p approaches 1. Similar comments can be 
made for models other than an AR(l) with the under­
standing that as the complexity of the model increases 
so does the corresponding asymptotic theory. In any 
case, the asymptotic distribution of the maximum likeli -

hood estimator of r 2 
is specific to the model. 

To gain some insight into the nonparametric esti­

mation of r 2 
or 8

2
, emphasis will be placed on 8

2 
and 

use will be made of the relation 

8
2 = 1 + 2 L pk = 2nf(O) 

k=l 
(3-7) 

where f(O) is the spectral density of the process 

evaluated at zero frequency. Estimation of 8
2 

is now 
tantamount to estimati on of the spectral density 
evaluated at zero. A variety of spectral density 
esti mators are available, but only the usual window or 
smoothe d esti mators will be considered here . The 
asymptotic theory associated with such estimators 
states that f(O) is asymptotically distributed with 

d 
2 n 2 

mean f(O) and variance 2f (0) L W (j) where Wn(j) 
j=-d n 

n 

are the so-called window weights (Fuller, 1976). In 
comparison wi th the AR(l) model given above, that is, 

a2 = 1 and p = 0.5, the asymptotic variance of 2nf(O) z . 
for a rectangular window i s given by 

2 2 1 2 8
4 

41T ( 2 f (O)) 2d +1 = 2d +1 (3-8) 
n n 

Since this latter technique is nonp.arametric, it 
would serve better i n those cases when the model i s 
more complicated but with an attendant loss in 
precisi on. 

A variety of studies regarding inferences of r 2 

can be envisioned but wi ll not be pursued here. Since 
our purpose is primarily one of review, and not 
development, and the literature on inferences concern-

ing r 2 is void, little can be said; the above just 
sketches an approach to the problem. 

3- 3 The Correlati on Between Successive Values of 
Range and Deficit 

Notwithstanding the intent expressed in the last 
sentence of the previous section, in this section we 
present some new results obtained by simulation, sup­
ported by limited analytical exploration. They con­
cern the correlation between successive values of the 
range R and al so of the (accumulated maximum) deficit 

n 
Dn' where the input {Xt} is a t wo-state Markov chain. 

To motivate this part of the study, the following 
question might well be posed; Why is the correlation 
between Rn and Rn+k or On and Dn+k (n ~ 1, k ~ 1) of 
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interest? This immediately raises the question: 
study Rn and On at all? 

In partial answer to the second question: 

Why 

(a) Because Hurst proposed R~* and On as quanti­

ties or statistics useful for defining the size of a 
reservoir; 

(b) Because it has been demonstrated that differ­
ent input processes have different range and deficit 
behavior, and thus it has been inferred that by examin­
ing the range or deficit it may be possible to detect 
important differences in characterization of inputs. 

Leading on from (b), in order to quantify the 
range behavior, some statistics need to be derived; and 
before anything meaningful can be inferred from these, 
it would be helpful if something was known about their 
distributions. 

One statistic of interest is the Hurst slope K 
nefined (inter alia) as a function of the rescaled 
range by Hurst(l951) (see Eq. 1- 12) as log(R~*)/ 

log[n/2]; another is the local slope Hn defined by Boes 

and Salas (1973); see Eq. (1- 15). The behavior of 
these statistics (and their information content) must 
depend on the correlation between successive values of 
R** for if R** and R** are correlated then ~(R**) n ' n n+k ' n 
(and hence any statistics based on a finite sampl e) 
will have greater variance than if there were no cor­
relation between successive values of the range. A 
similar argument applies to the deficit, and hence an 
answer has been provided to the first of the questions 
posed above. 

As a first step to understanding, the simplest 
cases are treated initially: the range Rn and the 

(maximum accumulated) deficit On' where the input pro­

cess is a two-state Markov chain. It is conjectured 
that the results for R will translate to R* and R** n n n 
with perhaps an i ntensification of the degree of 
intercorrelation. 

Two-state Markov chain input. Let P[Xt = -1] a 

P[Xt = +1] = I /2. Further, let p = P[Xt+l = ±ll 

X "'"+1] " (l+p)/2 and q "' P[X l "'±1 !x = "+1] = 
t t+ t 

= (1 -p)/2. Then ~Xt} is a two- state Markov chain with 

corr[Xt+s'Xt] = p , s • 0,1,2, .... 
n 

The cumulative sums of this chain (Sn = L Xi) 
i=l 

converge in distribution to a Wiener process as shown 
by Troutman (1976), and for moderate n these Sn mimic 

the cumulative sums of an autoregressive process with 
the same correlation structure. This fact was 
exploited by Gomide (1975). Hence the results reported 
in this section will apply with a fair degree of 
approximation to cases with Gaussian inputs. 

The range, Rn. For small n it is easy to find the 

exact jolnt distribution of {R1, R2 , ... ,Rm} by direct 

evaluation. For large n the procedure is tedious and 
recourse is simulation; however, the exact results 
in Table 3-1 give us a bench-mark for comparison pur­
poses, where it is understood that P[R0=0] = P(R1=1] 
= 1. 

I 
I 
i 
! 

I 
I 
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Table 3-5 Corr [Rn,~],n,m = 2,4, ... ,256 for various 

values of p . 

16 

lZ .. 
t:s 
:s& 

I. 

" ... 

,. 

l6 n 64 u a 2S6 

~ 

O.ltS6 0. 190.t 0. 0786 O.O$U 0.04J9 0. 00209 O.OOS$9 

O • .tiJI 

0.1: 59 

O. Jl52 

.0.6017 

~~ 

0.18;\0 0.06SO 0.0402 

0. $010 0 . 2073 0 .0113 

O.Sl64 O.Z676 

0,59J7 

I 

~ 

0.07ll 

0.17Sl 

O.IUI 
O. S9n 

0.0215 

0.1021 

0. 162S 

0.~961 

0.51.31 

I 

0.0189 

0. 0670 

0.0941 

O. IUI 

0.~32'7 

0 . 6012 

0.0190 0. 00?)5, -0.00951 

o.o:u o.ou.a -o.out 
0 .1221 0 .0122 

0.)2'17 0.1790 

O.U21 O.l09$ 

0.40Sol 

0.051" 

O.OU? 

O. IU6 

O.JS.07 

0.6388 

I 

0.1676 O.llH O.Ol6l 0.011~ 0.0016$ ~0.00~07 0.0442 

0.4317 0.16$4 O.OU7 O. OtOI 0.0419 0.0341 

1 o.sus o.::na O.Il48 b.05&7 O.OS78 

0 . :56611. O.J0-40 0. U .IJ O. OSl7 

0.1103 

0.2767 

0.5822 

(I.SI .SI 0 . 30!)7 

0. $540 

1:1 • 0.90 

o. ~SH o. IS.:J o.o4:9 .. o.a-zoo .. o.ous . o.oso:s ~0.0470 

o,.l.l6S o. a97 o.oss:s o.06U. -o.ooo:n -O.ot97 
I O.S:&s O.l?GS 0.077:2 O. Ol9S 0 . 012? 

0 . S017 O. ISU 0. 06.!15 0.00606 

o.s:11 o.: o19 o.o?gs 
1 0. 47•5 0.196.4 

1 O.S3SI 

evaluation of the joint probabilities of successive 
va lues of the random variable Dn yields the following 

exact results when the input is the two-state Markov 
chain described above. Now P(D0=o] = 1, and in 

Table 3-6 p = (l+p)/2 and q = (1-p)/2 as before. 

0 0 0 0 

0 0 0 

0 0 1 1 

0 0 1 2 

0 1 1 1 

0 1 2 2 

0 1 2 3 

1 1 1 1 

1 2 2 2 

1 2 3 3 

1 2 3 4 

p3/2 

2 
p q/2 

2 pq /2 

2 
p q/2 

2 (pq + 

2 pq /2 

2 
p q/2 

2 (p q 

2 
(p q 

2 
p q/2 

3/2 

2 3 
+ pq ... q )/2 

2 
+ pq ) /2 
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From Table 3- 6, 

1 

2 
var[D2] ~ p s (l+p)/2 = o [D2] 

3 2 2 3 
E[D4) = (4p + 12p q + 9pq + 2q )/2 

var(D4] 
3 2 2 3 (16p + 28p q + 15 pq + 2q )/2 

2 
- E(D4] and 

4p3 + p2q + 5pq2 + q3, 

f rom which we compile Table 3-7, giving some exact 
results for values of p which correspond to the later 
simulations. 

Table 3- 7 Expected values, standard deviations and 
autocorrelation coefficients of successive 
defi cits. 

p 

0 
0.3 
0.6 
0.9 

1 
1 
1 
1 

. 7071 

.8062 

.8944 

.9747 

1.6875 
l. 8377 
1.9440 
1.9963 

o[D4] 

.9823 
1.2370 
1. 5352 
1. 8771 

.6299 

.7389 

.8506 

.9626 

The results of four different sets of 1000 independent 
simulations are shown in Table 3-8, 3-9 and 3-10. 

Table 3- 8 E(D ) for various values of p and n. 
n 

p 

0 
0.3 
0.6 
0.9 

2 

0.98 
0.98 
0.99 
1.03 

4 

1.66 
1. 78 
1.90 
2.03 

8 

2.63 
3.08 
3.53 
4.03 

16 

4.01 
5.07 
6.36 
7.88 

32 

6.11 
8.01 

10.49 
14.94 

Table 3-9 (D ] for various values of p and n. 
n 

p 

0 
0 . 3 
o:6 
0 .9 

2 

0 . 72 
0.78 
0.88 
0 .98 
' 

4 

0.99 
1.23 
1.55 
l. 89 

8 

1.41 
1.83 
2.44 
3.52 

16 

2.02 
2.75 
3. 71 
6.31 

32 

2.92 
3.99 
·5. 39 

10.54 

The bracketed figures in Table 3-10 are the exact 
values for corr[D2,o4) from Table 3-7. These results 

are much as anticipated; however, it is interesting to 
note the high correlation between Dn and o2n. Further, 

i t would appear f rom the simulation (although it may 
be fortuitous) that the sampling variation for Dn is 

s maller than that for R . 
n 

The short conclusion that can be drawn from this 
study is that R and R k or D and D k are highly 

n n+ n n+ 
correlated for k > 1. Thus great care should be taken 
in making inferences on statistics such as K, but more 
on this in Section 3- 4. 



Table 3-10 Sample correlation matrices corr(D ,D), n m 
n,m = 2,4,8,16,32 and various p. 

~ 2 4 8 16 32 

p = 0.0 

2 1 0.645 0.349 0.190 0.114 
(0.6299) 

4 1 0.623 0.334 0.145 
8 1 0.660 0.330 

16 1 0.641 
.32 1 

p = 0.30 

2 l 0.740 0.405 0 . 173 0.082 
(0 . 7389) 

4 1 0.691 0.343 0.147 
8 1 0.654 0.348 

16 1 0.670 
.32 l 

p = 0.60 

2 1 0.856 0.574 0.312 0.154 
(0.8506) 

4 1 0.782 0.440 0.218 
8 1 0.703 0.373 

16 1 0 .665 
.32 1 

p = 0.90 

2 1 0.965 0. 857 0.675 0.451 
(0. 9626) 

4 l 0 .934 0.754 0.515 
8 l 0.886 0.632 

16 1 0.822 
.32 1 

3-4 The Hurst Slope 

In this section some results concerning inferences 
on the Hurst slope are reviewed. The primary refer­
ences are the recent studies of McLeod and Hipel (1978) 
and Hipel and McLeod (1978). 

Before commencing with the review, a clear under­
standing of what we are about is required . The Hurst 
slope can be considered from the asymptotic or the pre­
asymptotic viewpoint. The asymptotic viewpoint is the 
following: Assume that the model is such that 

h 
E[R~*] • a n (3-10) 

where "~" is defined as lim E[R**)/(a nh) • 1. Here 
n-- n 

h is a resultant characteristic of the model. As 
noted in Chapter 2, for any model belonging to the 
Brownian domain of attraction h is l /2 and for frac­
t i onal Gaussian noise models indexed by h, h can vary 
from 0 to 1. Now, while it is of interest to make 
inferences regarding h from data for fixed n in the 
sense that, say the distribution of some estimator of 
h be studied, such will not be pursued here. Rather, 
the preasymptotic notion of the Hurst slope will be 
considered. Again, such slope can be viewed in seve­
ral ways, but the easiest is to follo~ Hipel and 
McLeod (1978) who defined the Hurst slope as the ran­
dom variable Kn in 

K 
R~* ~ (I) n . (3-11) 
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Such definition of the Hurst slope is certainly moti­
vated by Hurst's original work in which he computed a 
slope, say kn' from a record of length n by estimating 

a value of R~*, say r~*, from the data and then setting 

kn =log r~*/log (n/2) . (3-12) 

If the definition of Eq. (3-11) is adopted, as it 
is here, inferences concerning the Hurst slope are 
embodied in the distribution of K and such distribu­n 
t ion can be theoretically obt ained from the distribu­
tion of R** via the transformation 

with 

n 

Kn = log R~*/log (n/2) . (3-13) 

For the case of R** a continuous random variable 
n 

f (k) en) k (-n) f ( (n) k ) K = 2 log 2 R** 2 
n n 

(3-14) 

where fR** the density of R~*, the only problem is 
n 

that the distribution of R~* is not exactly known 

except in very special cases. If n is large enough, 
then the asymptotic distribution of R~* is given in 

Section 2.8, but the form of this asymptotic distribu­
tion is such that the corresponding asymptotic distri­
bution of Kn coming out of Eq. (3-14) is not nice. It 

could, however, be written down and probabilities 
could be obtained numerically. 

Employing the simple propagation of errors formu­
lae and still assuming n large enough that the asymp­
totic results for R~* can be invoked, one gets 

and 

log E[R**) 
E(Kn] = log (nf2) 

1 log B Iii 
2 + log (n/2) 

var [R**) 
n 

11 l 
<6 - 2> 

log (n/2) 

(3-15) 

2 (11 /6) - 11/2 
2 

(11/2) (log (n/2)) 
(11/3 - 1) --

1
::.._--,.. = 

(log (n/2) / 

.0472 
2 

(log (n/2)) 
(3-16) 

Admittedly, propagation of errors formulae are 
crude, but for an AR(l) model with p ., 0.4 and n = 100, 

one obtains e2 
= (l+p)/(1-p) = 7/3, and 

E[K100] = 0. 75 (3-17) 

and standardard deviation 

KlOO • 0.056 . (3-18) 

Hipel and McLeod (1978) tabled the empirical cumu­
lative distribution function of K for vari ous ARMA 

n 
models and various n via Monte Carlo simulation. For 
each model and for each n their empirical cumulative 



distribution function of Kn was computed from a sample 

of 10
4 

K 's; 10
4 

is certainly large enough that their n 
empirical c.d.f. 's are very close to the true c.d.f.'s 
(but see comments in Section 2-7). For example, for 
an AR(l) with p = 0.4 and n = 100, their empirical 
c.d.f. gives (0.585, 0.813) as a 95 percent probability 
interval for K100. Such interval is not that differ-

ent from the corresponding interval of (0.64, 0.86) 
obtained using asymptotic theory and propagation of 
errors (see Eqs. (3-17) and (3-18). Not much more can 
be said about ~ than to give its distribution and 

Hipel and McLeod do give such distributions, via empi­
rical distributions that are accurate enough for prac­
tical considerations, for the models and parameters 
that they simulated; other models and parameters 
could be handled similarly. 

Other definitions of the Hurst slope could be 
defined for the preasymptotic case; including one sug­
gested by Gomide (1975) and another by Siddiqui (1976). 
These could then be analyzed as Kn was, but there does 
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not seem to be much point in doing so since Hurst 
actually made his calculations using the equality 
given in the definition (Eq. 3-13) of Kn. Mandelbrot 

and Walli s (1969) define a slope estimator, labelled 
H, as the slope of the least squares regression line: 

log [r~*] = a + H log n , M
0 
~ n ~ N. Such definition 

seems appropriate for those cases when h in E[R~*]«nh 
is constant ov·er n, as is the case for the fractional 
Gaussian noise models. They give an indication of the 
variability of such H. Also, Wallis and Matalas (1970) 
further studied H type estimators and presented simula­
tion results t .hat indicated the distribution of H for 
various models and various n. Their results are com­
patible with the empirical distributions of Hipel and 
McLeod. 

In summary, some distribution results concerning 
the Hurst slope are known and well documented, the 
primary references being Hipel and McLeod (1978), 
Mandelbrot and Wallis (1969), and Wallis and Matalas 
(1970). 

f 
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CHAPTER 4 
IMPORTANCE OF RANGE AND DEFICIT ANALYSES IN HYDROLOGY 

4-1 Storage Design 

There are several ways of s1z1ng reservoirs to 
regulate flows with a given level of assurance. The 
methods vary from rule of thumb through the intui­
tively appealing (and operationally flexible) simula­
tion approach to the analytic method, with an attempt 
to yield r esults in exact form. Of necessity, the 
last approach requires that certain simplifying assump­
tions be made about the form of input, output and 
reservoir conditions, but it has the advantage that 
exact results are forthcoming, usually with a rela­
tively small amount of computation. However, the 
great virtue of the analytic method is to allow for 
objective comparisons between the results of the 
various assumptions that are made concerning the model 
specif ication. 

Here, we concentrate on the analytic approach, 
drawing together some well known results from range 
and deficit analyses, which are juxtaposed wi th some 
£tom stochastic reservoir theory. Pains are taken to 
ensure that they are compared in the same framework. 
To facilitate this comparison, two simple and perhaps 
unrealistic inputs are used. They are the normal and 
discrete(+!) input processes. They have been chosen 
because they are so dissimilar. 

We will compare the results of range, deficit and 
storage behavior for both these types of input when 
the respective net inputs have zero mean and are 
serially independent. We then compare the effect of 
the choice of the two types of input on the behavior 
of a finite reservoir when the net input has non- zero 
mean . To facilitate this, we introduce the concept of 
the standard reservoir which is shown to be a power­
fully unifying one. We shall end with a brief excur­
sion into reservoir behavior when the input is 
serially correlated. 

4-1-1 Preliminaries 

Range analysis can be conceived among others, as 
the study of the behavior of the accumulated net input 
to an infinite reservoir, where, of necessity, the net 
input must have zero mean. Def icit analysis can also 
be conceived, among others, as the study of t he accu­
mulated net i nput to a semi-infinite reservoir, i.e. 
it has a top but no bottom. This form of the semi­
infinite reservoir is chosen because usual l y the 
reservoirs in practice may be operated with a positive 
mean net input . However , this is none other than the 
reflect i on of the semi-infinite reservoir treated in 
classical stochastic reservoir theory i n which the 
reservoir has a bottom and no top and the mean net 
input is negative, ensuring ergodicit y of the proba­
bility distribution of storage. Thus the semi­
infinite reservoir is useful as a fir st approximation 
to a f inite reservoir. Storage analysis will be under­
stood to mean t he study of t he behavior of a finite 
reservoir subjected to a net input whose mean can be 
posit ive , negative or zero. Before we pr oceed, we 
list some essential definitions , repeating some from 
Section 1-3 for the purpose of clarity . 

Net input . The net input Xt in the interval 

(t,t+l) is t he difference between the gross input zt 

and all abstraction Yt, which are assumed to occur 

simultaneously. (For simplicity evaporation and 
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other losses may or may not be included in t he model 
abstractions . ) We consider two types of net input: 
normal and discr ete. The discrete input employed here 
has three states: -1, 0 , +1. Much of the study 
empl oys the part icular choice P(Xt~-1] ; 1-p, P[Xt=O) = 
• 0 , P(Xt=l) s p. In this case, the three-state 

binomial input is reduced to 2 -state binomial input. 

We denote E[Xt) , var[Xt] and corr[\,Xt_1) by~. 
2 

a and p respectivel y, as we assum3 stationarity 
throughout the sequel. Skewness is not explicity 
included as a parameter, although its importance is 
tacitly recognized. Note that this formulation can 
accomodate a stochastic demand process . 

Demand draft . The demand is assumed to be con­
stant (all the variance being embodied in Zt),and is 

the amount that we would like the reser voir to supply 
in any interval. The draf t (or abstraction) Yt on the 

other hand is a variable, conditional on the reservoir 
level: Yt a 6 unless the reservoir level reaches one 

of the boundaries (if they exist). 

Storage. Consider a reservoir of f inite capacity 
V. Define St+l = min(V, max[O ,St+Xt)] where there is 

no restriction on the value of ~. Depending on the 
application, the initial storage s0 can be any point 

on the interval (O, V). (We may be interested in the 
first passage time from 0 to V or from V to 0, or more 
traditionally, in the equilibrium distribution of 
storage lim P(St ~ s], (O~s~V), which is independent 

t­o£ s
0
.) 

Effective capacity. If , as we have assumed, Zt 

and Yt occur simultaneously, then the effective capa­

city of a reservoir of size Vis equal to V. If , on 
the other hand, either Zt or \ (or both) occur instan-

taneously, the former before the latter, then at t+l 
the level of the reservoir will be lower by 6 than it 
was the instant before the withdrawal commenced. 

The effective capacity of the reservoir is thus 
reduced by 6 in the case of "staggered" net input. 
All the results of the sequel will be interpreted in 
terms of V. Thus, they apply to a reservoir of capa­
cit y V when the net input is "simultaneous" (either 
instantaneous or evenly spread in [t,t+l)) and to a 
reservoir capacity V + 6 when the net input is 
"staggered." 

Drift. The drift t is defined as the standar­
dized-mein net input ~/a. It is thus the inverse of 
the coefficient of variation of the net i nput and is 
related to the level of development a by t • (1-a) . 
E(Zt]/a. 

Standardized reservoir . We define a standardized 
reservoir to be one of standardized capacity c = V/a 
fed by a net input wi th drift t. For the independent 
inputs considered above, it will be shown that the 
behavior of the finite res ervoir is a function only of 
c and t. The .scaling of the reservoir capacity by o 
is i n marked cont rast to the common practice of scal­
ing the capacity by E[Zt], the mean gross input . 



Probability of emptiness. In storage analysis, a 

quantity of much interest is v = lim P[S =0] the 
0 t-- t ' 

probability of emptiness. Also of interest is the 

probability of failure, Yo=~:: P[Yt < o], to supply 

the full demand. The relationship between v0 and y0 
depends on whether {Xt} has a continuous or discrete 

distribution. If {Xt} has a continuous distribution, 
then lim c-

y = t-- P(St=c].P[X <c] T f P[S =s]. 
0 t 0+ t 

P[Xt<s]ds + P[St=O].P(Xt<O] . 

Because of the continuity of the input, P[Xt=s] = 0, 

for all s, so we can replace the inequalities < with 
~ in the above expression, which is then numerically 
equal to v0. 

Thus, for continuous input distributions, the 
probability of emptiness, and the probability of fail­
ure are equal, if not synonymous. 

The practice shows, however, that most operated 
reservoirs have approximately a S-distribution of con­
tents (levels) with two different probability values 
of full and empty reservoir . This comes from the fact 
that the operational rules are such that a full reser­
voir (and dangers of spillovers) and an empty reser­
voir (and dangers of shortages) are penalized by vari­
ous operational criteria, penalties and optimizations. 

When {Xt} has a discrete distribution, then 

P[Xt = i] > 0 for at least some s, so that following 

the above argument, y0 ~ s. In fact, for the classic 

case where o = 1 and xt~ {-1,0,1, ... ,n-1} we get y0 = 
= v0.P[Xt = -1] < v0 . 

This suggests that when comparing the results for 
continuous and discrete distributions, we should look 
at v0 , not y0 . This is what is done in the sequel. 

Mean first passage times. In studying the 
behavior of a finite ~larkov chain with discrete state 
and homogeneous (time invariant) transition probability 
matrix, we denote by m .. the mean number of time-steps 

lJ 
taken to reach state i from state j for the first time. 
In particular, if 0 is the empty state of the chain, 
m00 is the mean recurrence time of emptiness. Thus, 

if we have a discrete input to a suitably defined 
reservoir with a discrete s tate space, then m00 is 

none other than the reciprocal of v0, the probability 

of emptiness. Again, if c is the label of the full 
state, mcO is the mean f irst passage time from empty 

to full or the "mean time to fill," while conversely, 
m0c is the "mean time to empty. " mcc is the mean 

recurrence time of being full, which may not be usually 
of much interest. 

The mean first passage times give us a key to the 
comparison of deficit and storage, because as Gomide 
(1975) pointed out: "the probability that a reservoir 
of size (k+l], initially full, is empty for the first 
time at discrete time n, regardless of the occurrence 
of overflows is simply P [D > k] - P [D 1 > k]." 

n n-

Troutman (1976) interpreted this to mean 
P[N > n] = P[D /o < c) where N0 is the first pas-o,c n ,c 
sage time from full to empty. Because of the sense of 
the inequalities we intuitively expect m0c to be 

greater than {n : E[Dn/o] = c} . This is born out by 

the comparison. 

4-1-Z Algorithm for Evaluation of Mean First 
Passage Times of a ~tarkov Chain 

Kemeny and Snell (1960) detail the development of 
the algorithm. We quote their results and show how 
they can be applied in storage analysis. 

Let a discrete-state stochastic process {St} be a 

lag-one finite Markov chain with n+l states, defined 
by its (n+l)-square transition probability matrix Q. 
{St} will be a stationary process if Q is constant. 

The marginal probability distribution vector of St' 

denoted by pt = {P(St =iJ} i = 0,1,2, ... ,n, is given by 

• pt = Qpt-l = Qtp0 where p0 is the initial distribution 

vector. If Q has at least one positive diagonal ele­
ment and no zero rows or columns, then St is ergodic, 

which implies ~hat pt ~ n, (the equilibrium distribu­

tion vector of S) as t ~ 00
• It follows that Qn = rr, 

which when combined with the condition l'rr = 1 (where 
1' i s a row of ones), yields rr on solution of the set 
of n+l independent linear simultaneous equations. 

Kemeny and Snell give the following algorithm for 
evaluation of ·the mean first passage time matrix M = 
{mij},i,j = O,l, ... ,n, where each element, mij' is 

equal to the mean number of steps taken to go from j 
to i for the first time. (It is usual to call mii the 

mean first recurrence t ime for state i, but we will 
dispense with that distinction where we are talking 
collectively of m ... ) 

lJ 
They find M as follows. Define the "fundamental 

-1 matrix" Z as Z [1 - Q + 111 1 ] then 

M = D(I - Z + dl') ( 4-1) 

where D is a diagonal matrix with 1/ni as the i-th 

entry and d is a vector formed from the diagonal ele­
ments of Z. When {St} is a random walk with partially 

reflecting barriers at 0 and n, so that 

q = 1-p, 

i+ 11 st 

= q 

i) 

n-11 S 1 t-

n) = p, 

n] 

p and P [St i-liSt-l i] 

fori= l,Z, ... ,n-1, then {St} is a finite discrete 

ergodic Markov chain. 

Kemeny and Snell also give the following explicit 
formulae for m .. for this case. 

lJ 
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If p "' 1/2, 

m .. • {~2:-~+l)i - (2n-j+l)j 
1) 

j (j+l) - i(i+l) 

If p ~ l/2, 

rn+l_l 1 
--r:r -r 

m .. · l -1 [rn~j+l_rn-i+l - (i-j)} 
1) p-q r-1 

1 [ rj - ri J - (j-i) 
p-q (r-l)ri+j 

i=j, 

i>j, 

i<j. 

i>j 

i <j 

(4-2) 

(4-3) 

where r = p/q. These formulae will prove useful when 
the discrete finite reservoir fed by a ~ 1 input is 
studied. 

4-1 -3 Mean First Passage Times for the Finite 
Reservoir with Normal Input 

In the case of the normal input, we have to 
devise a finite difference algorithm for the evalua­
tion of them ... Consider a standardized reservoir of 

1) 

capacity c, with drift e, discretized into k equal 
slices of size 6c "' c/k. As k._, the results for this 
finite difference approximation will tend to those for 
the continuous reservoir. Fortunately, it has been 
found that adequate convergence is achieved for 
k ~ 2c, when the following scheme is adopted. 

The k+2 states of this approximating discrete 
reservoir are i = 0,1,2, .•. ,k+l, i.e . zero, the mid­
point of each of the sub-intervals and full. 

For the case of independent continuously distri­
buted net inputs (in particular the normal) the proba­
bility of transition from one state at t to another at 
t+l depends on whether St is a boundary or interior 
state. 

If St • 0 then 

-e: 
/ +Cx).dx, = t[ -e:) 

P[St+l = ijSt ~ OJ a t(i6c - e) - t[(i-1)6c - e:) 

for i a 1 '2 ' ... ' ) 

P[St+l ~ k+ljSt • 0) • 1 - t[c-e) 

where +(x) and t(x) are the standardized normal p.d.f. 
and.c.d.f. 

for intermediate states: 

P[St+l i jSt = i] = t[6c/2 -e) - t[-6c/2 -t] 

P[St+l = i + ljSt • i] • t[36c/2 - t] -

- t[6c/2 -e) etc. 

These transition probabilities can be assembled 
in a (k+2)-square transition probability matrix Q, 
where qij = P[St+l = ijst"' j), which will be sym-

metric if t = 0. We can then proceed to find M from 
Eqs. (4-1) and (4-2), increasing k until satisfactory 
convergence is achieved. 
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4-1-4 Results and Discussion of Computing Mean 
First Passage Times 

In this section we report the results of the 
computations made using the above algorithm, which 
enable us to do the comparisons. 

NormaZ nJJt inputa with aero d:Pift . 

Storage. Once 6c • c/k is small enough, the mean 
first passage times become i ndependent of k, thus we 
will denote the mean filling time by mcO which equals 

the mean time to empty m0c because of symmetry. The 

mean recurrence time of emptiness is m00 • mcc· Table 

4-1 gives these quantities for th~ case t • 0 as a 
function of c. 

Table 4-1 Mean first passage t imes for normal input 
with zero drift as a function of standar­
dized capacity c. 

c moo"'mcc moc·mcO 
1/4 2.219 2. 462 
1/2 2.476 3.065 

1 3.082 4. 749 
2 4.473 10.002 
4 7.307 26.65 
8 12.98 83.57 

16 24.47 287.8 

A comment may be appropriate here. Contrary to 
expectations based on the behavior of the discrete 
reservoir , the probability density of the intermediate 
levels of storage is not uniform, unless c is either 
small or large. The distortion from uniformity seems 
to be largest when c is about 4. In this case, the 
ratio between the densities at St • c/2 and at St • 

= c - (or 0+) is approximately 1.30. 

Range. For independent normally distributed net 
input with e: "' 0, E[Rn/o) is given as a function of n 

by Eq. (2-1). A few tabulated values of this function 
will be helpful. 

n 2 4 8 16 32 64 
1.362 2.222 3.488 5.317 7.932 11.651 

128 256 
16.924 24.392 

Deficit. For independent normal inputs with 
e: • 0, Gomide (1975) devised a finite difference 
scheme for the evaluation of E(Dn/o] as a function of 

n. He does not tabulate any values, but gives a graph 
(his Fig. 5.9) from which the following values have 
been taken; they are therefore approximate. 

n 2 4 8 16 32 
.80 1.44 2.46 3.93 5.96 

Figure 4-1 shows E(R /o] and E[D /o] plotted 
n n 

against n. Plotted coaxially with them is c ag:ainst 
mcO for the standardized reservoir with e: • 0. All 

these for independent normal net inputs, plotted as 
full lines. 
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Fig. 4- 1 Range and deficit as a function of n, with 
mean first passage time from full to empty 
of a standard reservoir of size c with inde­
pendent normal (full lines) and i ndependent 
~1 discrete (dashed lines) inputs . 

Note that for c ~ 8, n ~ 64, values of E(Rn/o) 

and E[D/o] yield reservoir sizes respectively about 

1. 7 and 1.3 times as big as those comput ed from moe· 
These factors increase as c and n get smaller. 

Diucrete net inputs with zero drift 

When the net input is discrete and takes the form 
P[X = ~ 1] = 1/2 , range analysis is associated with 

t 
an unre~;tricted random walk, deficit analysis is asso­
ciuted ~ith a random walk where there is partial 
reflection at the upper boundary and storage analysis 
is ~ssociated with a random walk with two partially 
refl ecting boundaries. Gomide (1975) developed the 
algorithms for range and deficit analysis for this Xt' 

while eqs . (4-2) apply t o storage analysis. 

Note that in this case, E[Xt] = 0 , var[Xt) 

Range . From Table 4-2 of Gomide (1975) it 
results 

n 2 4 8 16 32 64 

r:[R/o] 1.5 2. 375 3.6484 5 .480() 8.0967 11. 3157 

var[R/o] 0 .25 . 7344 ·1.6342 3.4393 7.0552 14. 2897 

1. 

uefici t. Gomide (1975) outlines an algori thm for 
obtaini1ig~D /o], but does not tabulate any values. 

n 
The algorithm is based on the theory of Markov chains 
with absorbing barriers. The following is an adapta­
tion of his method . 

Let f. 
~.n 

P[Dn ~ i], the c.d . f. of On; then 

n-1 n- 1 
E[On) = n - L 

i=O 
f. and var(D ] = L (2i+l)(l-f. )-
l,n n i=O 1,n 

z - f: [Dnj . To compute f. , i • 1,2 , .. . ,n, we proceed 1,n 
as fo llows. Let g be an i-element vector, void 
except for the first clement which is 1. For n suc­
cessvie steps, compute the following, g0 = 
(g0 • g1)/2 , g. = g. 112 and g. = (g. 1 + g. 1)/2, j. 

l l- J J- J + 
1,2, ... ,i-1. 
i 
~ g. , and 

j=O J 

v:Jr[Lln]. 

At the n-th s tep compute f . = 
~.n 

put f • l/2n . Then compute E[D J and O,n n 
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The results of this computation are: 

4 8 16 32 64 

1.6875 2.6712 4.1035 6.1541 9.0721 

var(Dn] 0.5 .9648 2.0173 4.1115 8. 2873 16.6432 

S:orage. To apply the theory of random walks to 
storage analysis, we must take care with the specifi­
cation of the state space of the discrete reservoir. 
To have the correct properties, the discrete reser­
voir of "size" k must have k+2 states, O,l, ..• ,k+l 
where, as before 0 and k+l are the "empty" and "full" 
states . Transitions from one state to another will 
only occur if the input consists of amounts which are 
multiples of the difference between adjacent storage 
levels . Thus, the "distance" between the adjacent 
s tates of a discrete reservoir are all equal. By 
contrast, in the finite difference version of the con­
tinuous reservoir, the distance between the adjacent 
interior states is 6c, whereas the distance from 0 to 
1 and from k to k+l is 6c/2. Despite this disparity, 
the results for the continuous and discrete reservoirs 
compare favorably, as will be shown in the next 
section. 

When discussing first passage time, we will con­
tinue to use the subscript c to denote full; then 
from Eq. (4-2), with k c, 

c + 2 

m0c = mcO • (c+l)(c+2) 

(4-4) 

( 4-5) 

Comparing these results with those of the normal dis­
tribution listed in Tablo 4-1, it will be seen that 
the moo values match quite well for c < 4, while mco 

values match well throughout. 

The results for E(Rn/o ] ~ n, E[On/o) ~ n and 

c ~ mcO are plotted in Fig. 4-1 as dashed curves and 

will be seen to match their corresponding continuous 
curves , especially in the cases of Rn/o and Dn/o . 

Note that although a discrete reservoir cannot be 
defined for non-integer k, if we allow the above 
expressions to be interpreted for 0 < k < 1, t hey 
closely approximate the normal curves. 

The correspondence of results of the continuous 
and discrete symmetric distributions seems to be 
fairly good . This suggests that more realistic dis­
crete models should perform even better than the +1 
model employed here. This observation is relevant, 
because a thorough study of reservoir behavior for 
various skewnesses and correlation st ructures would 
require a daunting amount of computation if done by 
simulation or by finite difference approximation to 
the cont i nuous input. 

Before proceeding to examine the effect of drift 
on reservoir behavior, some concluding remarks on 
range-deficit-storage analyses seem to be appropriate. 
Notwithstanding their intellectual appeal because of 
the interesting (but often difficult) problems asso­
ciated with range and deficit analyses, and their 
undoubted influence on time series analysis in 
hydrology, their practical application in the sizing 
of r eservoirs may l eave a lot to be desired, if only 
because storage analysis is far riche~ in results 
than the former, and often yields unequivocal answers 
to a wide variety of problems with relatively simple 



algorithms. Without even invoking the practical 
aspects of optimization, there are other considera­
tions that may speak against the use of range and 
deficit analyses in storage problems: 

(i) They are each approximations of storage 
analysis which yield over-conservative reservoir 
sizes unless adjustments are made. 

(ii) The simplicity of the expression for the 
range may once have been a justification for its use 
when storage analysis was in its infancy. This con­
dition may no longer hold, since it is seen from 
Eqs. (4-4) and (4-5) that the equivalent expressions 
for the first passage times for a discrete reservoir 
are trivially simple, but accurate. 

(iii) Effects of non-zero serial correlation and 
drift, although not beyond the grasp of range and 
deficit analysis (Gomide, 1975), are easily computed 
from simple formulae derived from analysis of the dis­
crete reservoir. The convergence to exact results of 
continuous reservoirs and net inputs by the use of dis­
crete reservoirs and discrete net inputs are still 
problems to be taken into account. 

4-1-5 Storage Analysis with Non-Zero Drift 

Independent, norma~~y distributed inputs 

Using the finite difference scheme outlined above, 
we obtain the following values for m00, mOe' mc:O and 

mcc: as functions of c: and e . Note that, because of the 

symmetry of the normal distribution, [m00 lel = 
[m 1-c] and (m 01e) • (m0 1-e). cc: c: c: 

Table 4-2 Mean recurrence time of emptiness, m00. 

c 0 .2 .4 .6 .8 1.0 

1/4 2. 219 2. 738 3.491 4.604 6.279 8.852 
1/2 2.467 3.186 4.270 5.951 8.607 12.89 

1 3.082 4.376 6.595 10.48 17.43 30.06 
2 4.473 7.998 16.12 35.70 84.57 209.2 
4 7.307 21.60 84.73 397.1 2057 11280 
8 12.98 114.8 1920 41670 1013000 26xl06 

16 24.47 2627 95xl04 45xl07 

Table 4-.3 Mean first passage time from full to empty , 
moe:· 

c: 0 . 2 .4 .6 .8 1.0 

1/4 2.462 3.024 3.825 4.989 6. 719 9.352 
1/2 3.065 3.891 5.106 6.936 9.761 14.23 

1 4. 750 6.466 9.220 13.78 21.5& 35.29 
2 10.00 15.93 27.99 54 . 19 114.3 258.1 
4 26.65 59.89 175.9 653.1 2871 14080 
8 83.57 408.6 4250 69350 14xlo5 33xlo6 

16 287.8 10300 21x105 76xl07 

Table 4- 4 

£ 0 c: 

1/4 2.462 
1/2 3.065 

1 4.750 
2 10.00 
4 26.65 
8 83.57 

16 287.8 

Table 4-5 

£ 0 c 

l/4 2.219 
1/2 2.476 

1 3.082 
2 4.473 
4 7. 307 
8 12.98 

16 24.46 

c: 
<II~ <r: 

-oo o 
N 

0 
I I I I . . 

Mean first passage time from empty to full, 
mco· 

. 2 .4 . 6 . 8 1.0 

2.062 1. 772 1.560 1.404 1. 289 
2.492 2.085 1. 793 1.579 1. 421 
3.644 2.908 2.401 2.042 1. 780 
6.858 5.063 3.960 3.238 2.738 
14.91 9.868 7.272 5.742 4.748 
33.54 19.81 13.94 10.74 8.752 
73 .16 39.80 27.27 20.75 16.75 

Mean first recurrence time of fullness, mcc:' 

.2 .4 .6 .8 1.0 

1.858 1.603 1.422 1.294 1. 202 
2.003 1.684 1.467 1.317 1. 214 
2.311 1.839 1.544 1.356 1.233 
2.852 2.052 1.629 1.390 1.247 
3.498 2.200 1.666 1.400 1.250 
3.935 2.256 1.680 1.406 1.253 
4.066 2.267 1.684 1.408 1.254 

0 

3~ 

16 

8 

4 

2 

0.4 
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0.8 
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Fig. 4-2 Mean recurrence time of emptiness, m00 , of 

a standard reservoir of capacity c: fed by an 
independent input of drift £. 

These tabled results are plotted in Pigs. 4. 2 and 4.3. 

Independent discrete inputs 

The discret e +1 net input with non-zero drift is 
given by P(Xtsl] s-p, P(Xt•-1) = q = 1-p with p ~ 1/2. 

To compare the results of the normal and discrete net 
inputs, we must define the standardized reservoir for 
discrete net inputs with £ ~ 0 . 

Firs!!Y, p = p-q, a = 2ipq, so the drift, e = 
(p-q)/(2/pq). Secondly, for a given k, the standard 



2 4 8 16 32 64 IU 256 512 10~ 2048 4096 

Fig. 4-3 ~lean first passage time from full t o empty, 
mOe' of a standard reservoir of size c fed 

by an independent normal input with drift c. 

capacity c = k/o and vice versa. 
r ~ p/q F l. In terms of c , 

p [/(l+c2) + c]/[2l(l+c2)] 

r = [/(l+c2
) 

(p-q) cd(l+c2) 

so that we get, from Eq. (4-3) 

moo '" 
k+2 

(r - 1)/r - 1) 

moe [m00 - (k+2)]/(p-q) 

k+l m moolr cc 

m~o [k + 2 - mcc]/(p-q) 

When e t- 0, we have 

c) 

p "" q 

These expressions clearly interpolate for non-interger 
k, so that we can use them to compute first passage 
times for given values of c and c, by which they are 
completely specified. 

It may be more convenient to compute c from a 
given m00 and c. In that case 

a = l//(l+e
2

) 

k tn[l + moo<r-1)]/tnr - 2 . 

Whence c = k/a is the standardized capacity. Figure 
4-4 shows this interrelationship, where a family of 
curves in terms of m

00 
(the recurrence interval of 

failure), has been plotted on c and c axes . The 
appearance of this graph is reminiscent of the storage­
draft -frequency curves that are sometimes employed in 
storage problems. The similarity is not coi ncidental. 
If we recall that c = (1-o)E[Zt]/o, where o is the 

level of development, we get o = 1 - co/E[Zt]. Thus 

when e = 0, o = 1.00, and if the coefficient of varia­
tion of the gross input is 1/2, say , a = 0.50 when 
£ = l. 

The important point to note about Fig. 4-5 is 
that the standardized capacity and the drift are 
respectively the capacity and the mean net input 
scaled by the standard deviation of the input and not 
the mean gross input (or mean annual runoff) which is 
usually the case in practice. It is evident that more 
meaningful regionalizations are likely if first pas­
sage times are expressed in ·terms of the standardized 
capacity and drift. 
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c 

Fig. 4-4 The relationship between size c and drift c 
of a standard reservoir fed by discrete +1 
input (full lines) and normal input (dashed 
lines) for given moo· 

Fig. 4-5 The effect of correlation on the mean recur­
rence time of emptiness of a standard reser­
voir of size c • 4 fed by a discrete ~1 
input with drift e, with the corresponding 
curve for the independent normal input shown 
dotted for comparison. 

Superimposed on Fig . 4-4 are curves from the sec­
tion of normal net inputs, for various m00 values, 

shown dotted. Note that the discrete model requires 
a larger c for a given c when m00 is 100. .It is thus 

(compared to the normal) slightly conservative in this 
region, but the overall behavior is quite 
satisfactory. 

Other discrete 3-state inputs 

Of course, one should not be restricted to the +1 
process . If Xt is chosen to have a binomial (2,p) -

distribution, then the following relationships hold: 

a liP<i } p (1 + c;/(2+c2)]/2. 

£ = (p-q)/o q [1 c/,t{z:7)]/2 . 

2/ 2 [ ~) 
2 

+ £] r = p q = 
/c2+e?) £ 



For example, when c = 4 and t = 0.2, we get a = 
0 . 70014, and r = 1. 75737; yielding moo • 18.46. 

Comparing this with 19.51 for the +1 input, and 
21.60 for the normal, there is not a large disparity. 
For c • 2 and E • 1, the normal yields moo = 209.2 , 

the binomial 314.1 and the +1 input 84.9, so the 
expressions appear not to be so close when t is 'large 
(or conversely when~ is small). 

SeriaLly correlated discrete inputs with 
arbitrary drift 

Since the approximation of the continuous reser­
voir by the discrete model is so satisfactory in the 
case of independent inputs, some confidence is felt 
that the same will occur when the inputs are no longer 
independent. For the input, the discrete analog of 
the lag-one autoregressive model is the lag-one Markov 
chain , specified by the transition probability matrix, 

L • pl + (1-p) wl! (4-6) 

where p is the first serial correlation coefficient , 
I is ~he iden~ity matrix and v is the equilibrium vec­
tor probability distribution of {Xt~· This input 

model was introduced by Pegram (1974) where it was 
applied to reservoir problems. Explicit expressions 
for y

0
, the probability of failure to meet f ull 

demand, were given by Pegram (1978), however, as we 
have seen above, for meaningful comparison with con­
tinuous reservoirs, we need to compute v 0 (or its 

inverse m00) rather than Yo· 

A brief derivation of the expressions will be 
given, and we then explore the behavior of m00 as a 

function of c, &, p. The joint equilibrium vector 
proba'bility distribution of [St •\] is v = {v ij} 

where v.j • tim P[S • i , Xt = j], i • 0,1,2, ... ,k+l; 
1 t- t 

j • -1,0,+1. nlen the equilibr ium stora&e dis~ribu­
tion is given by the elements 

+1 
v. • tim P[S • i] "' l v .. 

1 t- t j=-1 1) 

It was shown by Peg~am (1974) that i n particular 

2 k-1 k v0 • a/[a + b{l+~+~ + .•. +~ ) + d~ J {4-7) 

for a k-state reservoir. 

Pegram (1978) derived expres~ions for the terms 
in Eq.(4-7) when the input has the particular form 
given by Eq. (4-6). In that case,~~ [q(l-p-q) p]' 
is the equilibrium vector distributi·on of Xt and it 

was found that, in terms of p, q and p, 

a • l /(p(1-p)] 

lb • (l+p)/(q+pp) 

d "' 1/[q(l-p)] 

~ • (p+pq) I (pp+q) (4-8) 
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There are two cases of interest: zero and non­
zero drift. For zero drift, p • q and the substitu­
tion of Eq. (4-8) into Eq. (4- 7) yields, after 
simplification 

(4-9) 

for & • 0, which in turn yields Eq. (4-4) when p • 0. 
Note that this expression is quite independent of p 
or q and hence the variance of the input. 

When & ~ 0, we find that 

k+l m00 "' (p~ /q-l)(pp+q)/(p-q) (4-10) 

k+2 which becomes (r -1)/(r- 1), as expected , when p = 0, 
since in that case, ~ = p/q = r. We also have that 

k k+l 
mcc . moo/(p~ /q) becomes moolr when p "' 0. 

We note that p and q can i n general be chosen 
independently (subject to the constraint that all 
elements of n are non-negative). However, if we 

'specifically fix p+q • 1, then we only have one para­
meter, p, describing the equilibrium marginal distri­
bution of the discrete +1 input, while p fixes the 
serial correlation. 

We then have that, as before p = (/(1+&
2
) +E]/ 

[2~)) and k • 2c~. so that moo is in terms of 

c, & and p only. For a fixed c "' 4, we show, in 
Fi g. 4-S, how m00 varies as a function of t and p . 

Note that for p = 1, m00 s 1/q as expected. 

c 
,. 0 .8 o.4 o -o.4 -o.e 

32 

16 

8 

4 

2 

1/2 

moo 
114'L,----~2~---4~--~8----~1~6--~3~2~--~64~--~12~8~~ 

Fig. 4-6 Mean recurrence time of emptiness, m00, of 

a standard reservoir of capacity c fed by a 
discrete input (~1) with ~ero drift and 
first serial corr elation coefficient p. The 
independent normal i nput shown dotted for 
comparison. 

In Fig. 4-6, we show how m00 varies as a function 

of c and p for e • 0. Plotted coaxially is the dashed 
curve for the independent normal input for comparison, 

< 

l 

l 
.i 



which is seen to hug the discrete input curve for 
p • 0 at low c, moving across to the curve for P = -0.4 
at about c = 8 . The discrete model is thus conserva­
tive in its estimate of m00 when compared to the nor-

mal, but undoubtedly indicates the general response of 
a reservoir fed by a serially correlated input. 

4-1-6 Concluding Remarks 

One point of view is that the range and deficit 
analyses cannot compete with the storage analysis in 
the realm of reservoir sizing and risk evaluation. 
The reasoning is that not only are they relatively 
cumbersome and arcane, but the greater richness of 
results available from storage analysis makes their 
application to reservoir problems obsolete. However, 
there are different viewpoints on the applicability of 
range and deficit in practice. 

Reservoirs fed by two different net input types, 
distributed as tho normal and the +1 discrete, com1ng 
from opposite ends of the spectrum~ as it were, might 
be expected to behave quite differently. Not so. 
Provided that tho state-description is carefully done 
in terms of a standardized reservoir, with the correct 
drift, then the correspondence is remarkably good; so 
good, in fact, that bettor correspondence between the 
results of continuous and discrete reservoirs can be 
expected for more realistic discrete input 
distributions. 

The final optimistic note is that, because of the 
fair approximation of the continuous by the discrete 
reservoir, effects of correlation structure and per­
haps skewness can be ascertained with relatively small 
amounts of exploratory computations. The major dif­
ferences in viewpoints can result from the interpre­
tation of what a "fair approximation" means. 

A word on the application of the range may be 
useful at this end. If a standardized storage capa­
city V/o, is assumed in planning process or. is a~ready 
fixed (decided upon, being constructed, or 1s bu1lt), 
then the range analysis may provide some useful infor­
mation. If one looks at what is the probability that 
this capacity would be suffi cient for an overyear 
regulation and a proscribed draft, for a given number 
n of years, the distribution of Rn for the given type 

of net inputs would provide the probability P(Rn ~ 

V/o). 1he difference 1- P(Rn ~ V/o), or its recipro­

cal, would give the risk of V/o not being abl e to 
sat isfy the draft in the next n years. In other words, 
this risk may give the number of n-year periods, out 
of a given number m of n-year periods, that the sto­
rage capacity V would not be able to regula~e the 
inflows to a desired demand outflow. In th1s analy­
sis , the initial condition of the reservoir storage 
is crucial. If the regulation starts with V/2 (half 
storage), the above probability information may be 
close to reality. However, to apply the above infor­
mation not only R , but also M and m , as the par-

' n n n 
tial maximum and minimum sums , are also important I 
because the conditions (V/2) ~Mn and (V/2) ~ lmn 

should also be satisfied. For a proper application 
of the range, one should develop its additional 
properties, namely the conditional range-storage dis­
tributions, 

P(R
0 

• r I £CV./o) > M; (V-V.)/o) > lmni) 
n J - n J -

where V. m the state of the reservoir, V = total 
J 
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capacity, Mn = the sample value of maximum partial 

sum, and m • the sample value of minimum partial sum. 
n 

The initial storage state (0 < V. < V) must 
- J-

enter as a condition for any reasonable application 
and realistic probability statements related to any 
range and deficit analysis, and the storage design, 
with.bo~h ~ and mn of the range being important 
Stat1StlCS. 

4-2 Modeling Hydrologic Time Series 

The stochastic modeling of hydrologic time series 
is one of the basic tools for pl anning and operation 
of water resources systems in general and of water 
storage related systems in particular. Modeling is 
necessary in order to generat e new samples that are 
statistically indistinguishable from the historical 
record and use them at the planning stage, for instance 
for designing an appropriate storage capacity of a 
reservoir, or at the operation level for instance for 
developing or testing reservoir operational rules. In 
modeling hydrological time series in general, there 
are several important aspects to consider such as the 
selection of the class of models, the model identifi­
cation, estimation of parameters and testing t he good­
ness of fit of the models selected, and finally the 
use of the model. It is not the intention to review 
here in detail all those aspects, but to point out 
some that are related to the range and deficit analy­
sis and the Hurst phenomenon. 

Hydrologist s and water resources planners in gene­
ral have been discussing for several years the best 
model to be used for planning and operating of water 
resources systems. Some have advocated the use of 
autoregressive models (Thomas and Fiering , 1962; 
Yevjevich, 1963; Beard, 1965, etc.). Others suggested 
the use of fractional Gaussian noise models 
(Mandelbrot and Wallis, 1968; Matalas and Wallis, 
1971, etc.). Others advised the use of broken-line 
models (Mejia et al . , 1972; Garcia et al., 1972, etc.). 
Others suggested the use of mixed autoregressive and 
moving average (ARMA) models (Carlson et al . , 1970; 
O'Connel, 1971; Hipel et al., 1977, etc . ), and more 
recently a new class of mixture models for instance 
(shifting-level models) has been proposed (Boes and 
Salas, 1978). Supposedly , all these models have been 
developed and proposed with the objective of reproduc­
i ng some or most of the main statistical charact~ris­
tics which are ident ifiable in observed hydrolog1c 
series but (and most importantly) which have a bearing 
on the design and/or operation of the water system 
under study. 

Although generally it is not difficult to find 
and estimate the main statistical characterist ics of 
proposed models by an analytical or a data generation 
technique (for instance Yevjevich, 1965; Fiering, 
1967; Matalas and Wallis, 1971; O'Connel , 1971; Salas, 
1972; Hipel and McLeod, 1978) unfortunately it is more 
difficult to detect or identify those which are the 
true statistical characteristics of sampled hydro­
logic series. This problem arises due to the inherent 
uncertainty present in hydrologic samples because of 
the prevalence of short records in hydrology. Pre­
cisely, difficulties of dealing with observed samples 
of hydrologic series , i.e., the identification of 
design or operational statistics from the sample, their 
understanding and interpretation, and their ultimate 
use in selecting an appropriate model, has led to con­
troversy and a sort of "col d war" among hydrologists 
and engineers around the world. 



These controversies have been mainly centered 
around what estimates from historical series should be 
reproduced in modeling. In most cases hydrologists 
have agreed on the necessity for reproducing statis­
tics such as the mean, variance and sometimes skew­
ness coefficient (the latter at least in the order of 
magnitude sense), as well as the first serial correla­
tion coefficient, the main arguments have been with 
statistics that represent long-term persistence and 
extreme values. The first serial correlation coeffi­
cient, especially when used in connection with esti­
mating the parameter of AR(l) model, has meant to 
represent the "short memory" or short-term persistence 
of the time series in question. Similarly, the "long 
memory" or long-term persistence of a time series has 
been represented by the Hurst K (or similar s l opes), 
or by the corresponding rescaled range. On the other 
hand, the frequency and magnitude of high or low 
values (extreme events) has been respresented by the 
run-length and run-sum statistics. Since the persis­
tence and run characteristics are related to the 
Hurst phenomenon, the main argument among hydrologists 
has been connected to the interpretation of the Hurst 
phenomenon per se, the statistics to be reproduced and 
by which models, and their impact on the design and 
operation of water resources systems. Here specifi­
cally, hydrologists and water resources planners and 
operators usually ask questions such a.s: Is it neces­
sary to reproduce the Hurst phenomenon when modeling 
streamflow or other hydrologic series? Is there 
really a Hurst phenomenon or is it the result of a 
transient behavior of the rescaled range? If the 
Hurst phenomenon is the result of a transient behavior 
of the rescaled range, what class of models or more 
precisely what model should be selected as most 
appropriate? 

If a planner believes or considers necessary to 
reproduce the Hurst phenomenon, what model should be 
chosen? Is the Hurst phenomenon important in design­
ing reservoirs of say 50-100 years of economic design 
life? Is the Hurst phenomenon important for develop­
ing, checking or updating reservoir operational rules 
for say 50 years of economic horizon, especially when 
the environmental, technological, social, political, 
legal and economic conditions are changing very 
rapidly and many times in an unpredictable manner? 

Undoubtedly the answers to all or most of these 
questions depend very much on the basic philosphy of 
modeling, statistical and design and operational 
practical experience, biases of the analyst (for 
instance some hydrologists do not see the necessity 
for models other than AR, while others do not believe 
in the appropriateness of models other than fractional 
Gaussian noise) and similar factors . Based on prac­
tically 30 years of experience (since 1951) of mathe­
matical and experimental analysis, of stochastic 
modeling, of the Hurst phenomenon and of the design 
and operation of water resources systems in general, 
and of water storage reservoirs in particular (experi­
ence gained and shared by mathematicians, hydrologists, 
and water engineers in general) , one can safely make 
conclusions on most of the above raised questions. 
For instance, it has been demonstrated that the Hurst 
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phenomenon can be the result of transcience of the 
rescaled range (Salas et al., 1979b). Therefore, 
simple models such as autoregressive models in some 
cases and mixed autoregressive moving average models 
(ARMA) or shifting level models, in most cases , are 
capable of reproducing transient rescaled ranges of 
the ·order of those exhibited by hydrologic records 
(Salas, et al., 1977; Hipel and McLeod, 1978; Salas 
et al., 1979b). However, based on the typical lengths 
of hydrologic records, it is practically infeasible 
to discriminate statistically between short-term and 
long-term persistence (Wallis and O'Connell, 1973), 
which discrimination would be necessary for justifying 
the use of models outside the Brownian domain of 
attraction. Several hydrologists have been able to 
statistically reproduce historica: K's (or rescaled 
ranges) with AR and ARMA models (for instance see 
Hi pel and McLeod, 1978). This also resolves the ques­
tion about the necessity to reproduce the Hurst phe­
nomenon for design and operation of the water resources 
systems in general or of reservoirs in particular. 

However, it is fair and necessary to say that in 
some cases the hydrologist or water resources planner 
or operator may still wish to test his design or 
operational schemes with other models. He might wish 
to test the sensitivity of his design or operational 
rule to the type of model, so in this case he may need 
fractional Gaussian noise or broken line models . In 
other cases he might wish to have a model to reproduce 
both the p1 and the asymptotic h slope. This will not 
be feasible with AR or ARMA models, nor with frac­
tional Gaussian noise models, then broken line models 
might be the answer. 

Likely, m~y years wi ll pass until the above con­
troversies will be properly settled. The trend among 
some practitioners, to generate new samples by the 
selected models by reproducing identically nearly all 
the properties of the historic sample(s), runs against 
the basic theory of sampling statistics. Properties · 
of newly generated samples should preserve the inferred 
statistics only within the limits and variations as 
prescribed by the sampling theory. Furthermore, two 
future types of investigations: (1) physical back­
grounds of stochastic models of hydrologic time series; 
and (2) tests with a large number of historic hydro­
logic time series on the reliable (homogeneous, consis­
tent) samples all over the world, will likely provide 
the physical and statistical backings for the simplest, 
sufficiently accurate, hydrologic stochastic models. 
Sensitivity analyses of how the various models and 
methods affect the results of reservoir sizing and 
operation would be the final criteria in selecting 
between the simple and the complex models. 

In summary, then, from the point of view of water 
resources planning, the model choice is as always, a 
pragmatic one. As to tbe importance of range and 
deficit analyses for modeling hydrologic time seri es, 
suffice it to say that given the (of necessity sub­
j ective) choice of stochastic model, there is no sub­
stitute for efficiently estimating the parameters of 
the model; to infer from a derived statistic is to 
cloud the issue. 



CHAPTER 5 
POSTSCRIPT 

Two titles might be appropriate for this paper: 
"Reservoirs, Rippl and Range" or "A Guided Tour 
through the Phantasmagoria of the Hurst Phenomenon." 

The bulk of the paper is a catalog of results, 
approximate and exact , that are known about the vari­
ous properties of range and deficit, particularly 
about their first two moments and their asymptotic 
distributions. Contributions for dependent and/or 
periodic inputs make the results more realistic from 
the point of view of hydrologic series and applica­
tions, especially when applied to reservoir system 
studies. Care has been taken to unify definitions, 
notations and results in this assembled body of 
knowledge. 

Coming out of this stock-taking are some areas 
that are felt to be profitable for research. The 
behavior of On for correlated inputs can easily bo 

found, based on results outlined in Section 2-9. 
Further, a whole new field is opened up on inference 
(Chapter 3). One has yet to discover accurate (as 
against approximate by simulation) methods of calculat­
ing or defining the distributions of ranges and defi­
cits for intermediate n. The need exists for further 
investigation of the behavior of quasi-stationary 
models for hydrologic phenomena, for example, weather 
patterns in combination with s torage of moisture and 
heat in the oceans and atmosphere suggest that conven­
tional hydrologic time series models may be far too 
restrictive, specifically as their deployment implies 
stationarity. Time series modeling in hydrology will 
sur ely further evolve. This paper has collected some 
of the tools and ideas that may assist in devising 
meaningful models and testing them. The asymptotic 
distributions of range and deficit depend, as would 
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be expected, only on the sum of the covariance func­

tion, y2, when the inputs belong to the Brownian 
domain of attraction. This is interesting in itself, 
but the impli cation is far- reaching. 

There ar e problems for which currently favored 
statistical methods applied to time series are not 
of much use. Consider, for example, an ARMA(l,l) pro­
cess with ~ = 0.99 and 6 ~ 0.95258. For such process, 

the variance of the white noise is equal to 0.93426a2 

and / = 2la2 (compa.red to / = a 2 for a white noise x 
X X 

process). Estimating the parameters of this ARMA pro­
cess is fraught with difficulty, at least when the 
sample size is smal l, because the theoretical auto-

correlation function is ·pk • 0.1 (0.99)k-l fork = 

1,2, ... , and , since the confidence limits for the null 
hypothesis of pk = 0 are proportional to 1/IR, most 

samples are likely to be estimated to be white noise. 

Thus, the relatively large y2 will be missed. Sta­
tistics and the black-box approach only in stochastic 
hydrology are inadequate; what seems to be needed is 
a combination of statistics and a reliable descrip­
tion of the underlying physical mechanism, based on 
the physics of the phenomenon, for adequate model 
specification. 

The evidence that is collected here should be 
sufficient to persuade those concerned with statisti­
cal and probabilistic applications that one must be 
incredibly careful in phrasing the problems and 
arguments. Hurst sowed good seed; researchers must 
now continue to nurture, cultivate , weed and ultimately 
harvest the crop. 
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