
Project THEMIS 
Technical Report No. 17 

WIND-TUNNEL MODELING OF FLOW AND DIFFUSION 
OVER AN URBAN COMPLEX 

by 

F. H. Chaudhry 

and 

J. E. Cermak 

Prepared under 

Office of Naval Research 

Contract No. N00014-68-A-0493-000l 

Project No. NR 062-4l4/6-6-68(Code 438) 

U. S. Department of Defense 

Washington, D.C. 

"This document has been approved for public release 
and sale; its distribution is unlimited." 

Fluid Dynamics and Diffusion Laboratory 
College of Engineering 

Colorado State University 
Fort Collins, Colorado 

May, 1971 

CER70-7lFHC-JEC24 

Ull.,Ol 05751.,5 



DISCLAIMER 

THE FINDINGS IN THIS DOCUMENT ARE NOT TO BE CONSTRUED 
AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS 
SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS. THE USE 
OP TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN 
OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH 
COMMERCIAL HARDWARE OR SOFTWARE. THIS REPORT MAY NOT 
BE CITED FOR PURPOSES OF ADVERTISEMENT. 

DISPOSITION INSTRUCTIONS 

DESTROY THIS REPORT WHEN NO LONGER NEEDED 
DO NOT RETURN IT TO THE ORIGINATOR 



ABSTRACT 

The purpose of this study is to explore and test the powerful 

potential of wind-tunnel modeling as an alternative to the more expensive 

and tedious full-scale urban diffusion experiments. 

A model of the city of Fort Wayne was constructed to a horizontal 

scale of 1:4000 and a vertical scale of 1:2000. Flow and diffusion over 

the model was studied in the environmental wind tunnel of the Fluid 

Dynamics and Diffusion Laboratory at Colorado State University. If the 

roughness and the heat-island effects modeled properly, and the 

approach flows made similar, the flow over the model city was found to 

conform to that in the field. The pattern of the heat island over Fort 

Wayne is reproduced almost exactly in the model. Simulation of diffusion 

from an aerial line source was accomplished by traversing a continuously 

emitting source of Krypton-85 upwind of the city. The measured dosages 

of this tracer over the city compare well with the corresponding field 

data except immediately downwind from the source where the downdraft 

from the disseminating aircraft becomes significant in the field. The 

model is found to give same overall picture of the effect of the city on 

dispersion process as that observed in the field. The results show that 

the heat island effect vitiates the environment by bringing pollutants 

down from elevated releases through enhanced vertical mixing. The model 

results compare reasonably with approximate theory of Smith (1957). 

The results of this study have proved that it is indeed possible to 

simulate the flow over a city and obtain useful information, relatively 

inexpensively, on urban diffusion. This investigation opens the way for 

studies of air-pollution problems for purposes of urban planning. The 
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location of industrial sites relative to major topographical features, 

the location of freeways through existing cities, the grouping of tall 

buildings in an urban-development program, or even the judicious placing 

of parks, residential and industrial areas in an entirely new city to 

minimize air pollution potentials under adverse meteorological conditions 

can be studied systematically. 
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I. INTRODUCTION 

Knowledge of turbulent diffusion over urban areas can be useful 

in predicting the occurrence of air-pollution episodes and controlling 

the release of pollutants into the atmosphere from existing or proposed 

industrial locations and thus improve the deteriorating urban atmosphere. 

The ability of the atmosphere to disperse the pollutants is variable 

especially in urban areas. Atmospheric dispersion processes are not 

completely predictable but the advances made in the last two decades 

enable one to estimate, with fair confidence, the concentrations of 

pollutants released over relatively flat terrain under different 

stability conditions. Diffusion over urban areas is more complex and 

involves additional parameters such as non-uniform surface roughness, 

topographic relief and climatic modifications due to higher temperatures 

in the city or the so called ttheat-island effect". 

Davis (1968) and Myrup (1969) have reviewed the urban heat-island 

studies and also the explanations for this phenomenon offered by differ­

ent authors. The heat-island effect is associated in varying degrees 

with self heating due to industrial and domestic combustion in a city, 

crowded population, blanketing effect of urban atmospheric pollution, re­

duced evaporation, large heat capacity and conductivity of building and 

paving materials etc. Myrup (1969) concludes that the urban heat island 

is the result of a complex set of interacting physical processes. The 

urban heat-island effect is significant during inversion conditions in 

that it produces less stable lapse rates near the surface causing greater 

dispersion over urban areas. 

Experimental investigations have formed the foundation of present 

understanding and practice of relating dispersion to meteorological 
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parameters in the atmosphere. The emphasis, however, has been on the 

study of diffusion over level terrain so that the problem of treating 

diffusion over complex surfaces is relatively new. 

The experimental investigations of diffusion over urban areas are 

few and the results are inconclusive. Turner (1964) attempted to extend 

the Gaussian distribution approach to dispersion from multiple sources 

in Nashville, Tennessee for which 24-hr sUlphur-dioxide measurements 

were made over a year. Seventy percent of the calculated values were 

found to be within a factor of two. This model, however, disregarded 

the topographic variations and heat-island effect in addition to other 

simplifying assumptions. Such attempts, while providing means of esti­

mating pollution do not contribute toward understanding of the dispersion 

process. Pooler (1966) has reported a field program of a tracer study 

over St. Louis to obtain "evidence to indicate at least order-of-magnitude 

urban area dispersion parametertt
• The limited results suggested the for­

mation of a slightly unstable layer as the air passed over the city during 

evening. The most exaustive field experiments, yet, are those performed 

at Fort Wayne, Indiana (Hilst and Bowne, 1966) to study primarily the 

influence of urban complex on atmospheric diffusion. In these experiments, 

diffusion downwind from a quasi-instantaneous line source created by re­

lease of flourescent pigment by an aeroplane flying cross wind was studied. 

A rather complete surface dosage distribution pattern in the city and the 

adjoining rural area were obtained. Their analysis revealed no preferred 

regions of high or low dosage within either city or rural areas. Hilst 

and Bowne (1966) concluded that a city of the size and structure of Fort 

Wayne may be considered a single surface anomaly for the purpose of pre­

dicting its effect on aerosol diffusion. Although this study provided a 
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set of data which is the best as yet, it has by no means completed the 

knowledge On urban effects. Many more experimental investigations need 

to be made; however, only a limited number is feasible due to the pro­

hibitive cost of field studies. An alternative method is, therefore, 

required to inquire into this important problem. 

Aerodynamic modeling has contributed greatly in the understanding 

of fluid-flow phenomena which cannot be treated theoretically or, ex­

perimentally through prototype investigations. The problem under con­

sideration is defiant in the same manner and a logical approach to 

obtain further knowledge would be to make a scale-model study of disper­

sion over a typical city- Fort Wayne, Indiana is most suited for such a 

study for two reasons. Firstly, it has nearly all the characteristics of 

a typical big city with an environment made up of an industrial and 

agricultural complex and has the simplifying features of a surrounding 

flat rural topography. Secondly, extensive prototype data are available 

which can facilitate modeling the flow over the city. An attempt to 

study temperature distributions by modeling the urban atmosphere was made 

by Davis (1968). The basis of modeling and the interpretation of results 

by Davis left much to be desired in modeling of such flows. It is neces­

sary to use the more accepted modeling techniques such as those discussed 

by Cermak et.al. (1965) and McVehil et.al. (1967). Although sufficient 

knowledge is available on wind-tunnel modeling to make studies of the 

urban atmosphere feasible, the correspondance between model and prototype 

result must, however, be established. 

The purpose of this study is to explore and test the application of 

wind-tunnel modeling to diffusion over urban areas. If the model and 

prototype data compare favorably, this investigation would not only meet 
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the above stated objective but also open the way for studies of air 

pollution problems for purposes of urban planning. The location of in­

dustrial sites relative to major topographical features, the location of 

freeways through existing cities, the grouping of tall buildings in an 

urban development program, or even the geometrical features of an entirely 

new city to minimize air pollution potentials under adverse meteorological 

conditions could be studied systematically. 

The experiments were performed in the new environmental wind tunnel 

of the Fluid Dynamics and Diffusion Laboratory at Colorado State University. 

The model of the city of Fort Wayne was constructed to a scale of 1:4000 

in the horizontal and two main features which significantly effect 

atmospheric motion and aerosol dispersion have been incorporated into the 

model. One is the surface roughness in the form of buildings and the other 

is the "heat-island effect". The latter was accomplished by placing 

nichrome wires over the city area and applying a predetermined voltage. 

A traversing system carrying a continuously emitting source of 

Krypton-8S upwind of the city to simulate aircraft releases of fluorescent 

particle tracers in the field. The modeling requirements, the experimental 

methods and the results are discussed in the following sections. 
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II. EXPERIMENTAL EQUIPMENT 

2.1 Wind Tunnel 

The experimental work was carried out in the new environmental wind 

tunnel of the Fluid Dynamics and Diffusion Laboratory at Colorado State 

University. Its large 12 ft wide test section can accommodate large 

models like that of the city of Fort Wayne. The environmental wind 

tunnel is an open-circuit type as shown in Fig. 1. AlSO H.P. blower 

generates stable air speeds from about 8 ft/sec up to 60 ft/sec in a 12 

ft x 8 ft test section. The air speed is set by varying the fan-blade 

pitch. The wind-tunnel ceiling can be adjusted to achieve a zero pres­

sure gradient in the longitudinal direction. The large entrance is 

provided with honey-comb straighteners and a pair of screens to calm the 

flow into the test section and eliminate large-scale disturbances. 

A sizable portion of 52 ft long test section has a uniform free-

stream velocity. Figure 2 shows the free-stream velocity variation. The 

pressure gradient along the tunnel was zero for this set of measurements. 

The effect of the constriction at the end of the wind tunnel extends up­

stream for about 12 ft only. The section of the wind tunnel between 

x = 20 ft and x = 32 ft, thus, seemed the most suitable one for the 

location of the model. Transverse velocity distributions at three different 

heights are shown in Fig. 3 for a free stream velocity of 10 ft/sec. These 

distributions are uniform and thus facilitate modeling of the approaching 

atmospheric flow which is a turbulent two-dimensional shear flow. The side­

wall boundary layers are each about 10 in. thick, thus leaving a working 

width for the wind tunnel of more than 10 ft. 

The velocity profiles exhibit a 1/7th power law behavior which is 

typical of turbulent boundary layers over flat terrain. The wind profiles 
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approaching the Fort Wayne model were, however, modified to match the 

field profiles. The modification technique is described later in this 

chapter. 

2.2 Instrumentation and Measurement Techniques 

2.2.1 Velocity profiles - The velocity distributions were measured 

with a pitot-static tube of standard design, 3.2 mm in diameter. The two 

pressure ports of the tube were connected to the two ports of an electronic 

differential pressure transducer (transonic, equibar tube 120). The pi tot 

tube was mounted on a remote control vertical carriage and its vertical 

position was monitored through a potentiometer mounted on the carriage. 

The D.C. output of this differential-capacitor device was recorded on an 

x~y plotter versus the height of the pitot tube. Dynamic pressure pro-

files were converted to wind velocity by evaluating local density from 

local temperature and barometric-pressure measurements. 

2.2.2 Temperature measurement - Surface air temperatures and temper-

ature profiles in the thermal boundary layer were measured with copper-

constantan thermocouples with their reference junctions in an ice bath. 

Fifty thermocouples were fixed on the surface of the model to obtain the 

spatial variation of temperature. The vertical profiles were taken by 

traversing a copper-constantan thermocouple on a carriage by remote control. 

The thermocouple emf was read out on a sensitive millivolt potentiometer. 

2.2.3 Turbulence intensity profiles - Longitudinal turbulence 

lu '2 
intensity (-u--) profiles were measured by the use of a hot-wire probe 

mounted normally to the flow. The hot-wire sensor used in these experi-

ments was 0.00035 in. diameter tungsten wire mounted on a Disa probe. 

A constant temperature hot-wire anemometer (FDDL-IL WW-WC-769-3) designed 
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at Colorado State University was used. The mean value of the anemometer 

output was measured by an integrator in conjunction with a Hewlett-Packard 

digital voltmeter. For the rms of the fluctuating signal a Disa Type 55 

D 35 RMS voltmeter was used. In the thermally stratified flow, a hot-wire 

sensor responds to both the temperature and velocity fluctuations and 

measurement techniques are more involved. In the present study, the method 

developed by Corrsin (1949) and Kovasnay (1953) was used. 

2.2.4 Visualization - Smoke was used to visually observe the diffu­

sion pattern~ o~ cr the model. Titanium tetrachloride was used to provide 

dense smoke required for photographic purposes. A polaroid camera was 

used to photograph the plumes. 

2.2.5 Diffusion tracer - Krypton-8S was used as a diffusion tracer 

for this investigation. It is a beta-emitting radioactive gas with a 

half life of 10.6 years. Kr-8S has many advantages over other tracers 

used in wind-tunnel studies. Its detection procedure is fairly simple 

and direct. It is diluted with air more than a thousand times before use 

to achieve a density nearly the same as that of air. The source strength 

can be controlled easily. 

Its versatility makes possible the dosage measurements in the wind 

tunnel for which no other technique seems to be available at the present 

time. 

2.2.6 Simulation of aircraft release - In order to simulate the 

elevated line source emitted by an aircraft, a traversing arrangement was 

designed as shown in Fig. 4. The schematic diagram of the tracer release 

system is presented in Fig. 5. The system can be described by considering 

the different components separately as follows. 

a. Traverse. A quasi-instantaneous line source waS produced by 

traversing a continuously emitting source of Kr-8S across the width of the 
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wind tunnel. In order to reduce the effect of the traversing arrangement 

on the flow patterns over the model, it was considered necessary to design 

a system which had the smallest possible dimensions normal to the flow 

and would, yet, be strong enough to carry the source smoothly. A stream­

lined brass plate 6 in. x 4 in. x 1/8 in. served as a carriage and could 

slide, by its four 1/2 in. long grooved supports, on two taut 16 gauge 

piano wires. These wires were tightened across the wind tunnel 12 in. 

above the wind tunnel floor and tension on them was adjusted to eliminate 

any oscillation due to the wind. The carriage was bound in a closed 

nylon thread loop which passed over four 1/4 in. 0.0. sheaves. The spring 

tensioned loop along with the carriage was driven by a 15 in. diameter 

sheave belted to 1 HP D.C. variable-speed motor. A 1/8 in. 1.0. brass 

tubing mounted on the carriage was used to release the tracer gas in the 

direction of flow. The height of release could be adjusted by raising 

or lowering the tube. 

b. Kr-85 feed system. The tracer gas was fed to the moving source 

through a Mayon tubing supported along one of the piano wires with twenty­

four 1/2 in. steel rings. As the carriage moved from one wall of the 

tunnel to the other, the extra length of Mayon tubing was retained outside 

the wind tunnel. This was done by displacing equal length of stainless 

steel wire cable over a 1 1/2 in. 0.0. sheave set at a height of 15 ft 

above the carriage. An adjusted counter-weight at the end of the wire 

cable facilitated a smooth transfer of the tubing. A Fisher and Porter 

flowmeter was used to measure the rate of release which was kept constant 

throughout this study at 500 cc/min. Once the flow rate was adjusted, 

using a pressure regulator on the source cylinder and the flow meter, the 

feed was controlled by a 6V DC miniature electric valve placed in the line 

only 13 ft from the release point. 
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c. Sudden release and closure. For a quasi-instantaneous source 

experiment in the wind tunnel, it is very essential to turn the tracer 

gas on and off precisely when the traversing starts and stops. This was 

accomplished by providing 1/4 in. 1.0. suction ports in front of the 

release point both at its starting and stopping positions. The suction 

was applied by a vacuum pump which discharged the gas withdrawn back to 

the wind tunnel at a section downwind from the city model. Thus release 

began as the source moved away from the suction port at the start and 

was stopped automatically as the source reached the other port. A rapid 

acceleration of the carriage to a predetermined speed was obtained by 

suddenly pressing an idler pully mounted on a lever against the slack 

motor belt. The carriage motion was most effectively stopped before the 

end suction port by applying brake to the 15 in. diameter sheave. 

d. Disposal of Kr-85. The Kr-85 gas released into the wind 

tunnel was discharged from the building into the atmosphere through a 

vertical duct. Since its concentration was smaller than the maximum 

permissible concentration, no health hazard existed. Furthermore, there 

was no chance for the discharged gas to re-enter the tunnel and cause 

error due to fluctuations in background activity. 

2.2.7 Sampling system - The concentration of a tracer released from 

a quasi-instantaneous source varies with time at a fixed point in space. 

A sampling device for such finite time releases usually is designed to 

obtain "dosage" --the time integral of the variable concentration. Thus 

the fundamental requirements for such a device are that it collects all 

tracer material passing by a sampling station and permits easy analysis 

of the total amount of tracer present in the sample. The system used in 

this study literally meets these requirements and is described under the 

same headings. 
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a. Collection equipment. Samples at an equivalent prototype 

height of 6 ft were drawn from the wind tunnel through 1/16 in. 1.0. 

brass tubes and collected in glass bottles as shown in Fig. 6. The tube 

site was selected to permit isokinetic sampling. Twenty-five samples 

could be obtained at the same time for one release. The samples were 

collected by displacement over water. Each of the 2S collector bottles, 

initially filled with water, was connected to a common reservoir of water 

through a spherical connector to ensure equal pressure drop. A flowmeter 

between the connector and the reservoir monitored the volumetric rate at 

which water was withdrawn from the bottle. This flow rate controlled 

the sampling rate from the wind tunnel. In order to collect the samples, 

a predetermined negative air pressure was created above the water surface 

in the reservoir with a vacuum pump and the ball valve was opened. 

After the required volume (about 200 cc) of the sample was obtained, this 

valve was closed. 

b. Analysis. Each sample was transferred into a cylindrical 

jacket around a Geiger-Mueller (G.M.) tube by a reverse process. Now the 

jacket was filled with water and pressure applied to air in the reservoir 

forced the sample from a collector bottle to transfer to the jacket. The 

volume of the jacket was exactly equal to that of the sample collected. 

Four jacketed G.M. tubes were used to facilitate transfer and analysis. 

Each G.M. tube was calibrated by using a gas of known concentration. The 

samples after transfer to G.M. tube jackets were counted by a scaler. 

2.3 Fort Wayne City Model 

A scale model of the city of Fort Wayne, Indiana was designed and 

built in the Fluid Dynamics and Diffusion Laboratory. The horizontal 

scale of the model was governed by the area to be modeled and the available 



11 

space in the environmental wind tunnel. In order to produce data com­

parable to the field study by Hilst and Bowne (1966), it was found 

necessary to model some of the surrounding rural area in addition to the 

city proper. Thus, a prototype width of 8 miles was required to be 

accommodated within 11 ft of the wind-tunnel width. A horizontal scale 

of 1:4000 satisfied this requirement and was used in the construction of 

the model. A vertical scale of 1:2000 was used to incorporate the vertical 

features like buildings. This exaggeration in the vertical was necessary 

because the building heights, if based on horizontal scales, were reduced 

so much that the model would behave as an "aerodynamically smooth" surface. 

The formalities of such a technique are discussed in the next chapter. 

2.3.1 Roughness characteristics - The model base was made of 3/4 in. 

thick plywood. A detailed map of the city was enlarged to the scale of 

1:4000 and was glued to the base. The model covered an area of 12 ft x 

12 ft and was assembled from 9 pieces of 4 ft x 4 ft plywood. Figure 7 

shows the area of the city covered by the model and diffusion sampling 

stations both in the field and in the model. Details of the high-rise 

buildings were derived from aerial photo maps and each building was 

modeled and fixed at the proper location in the downtown area. Buildings 

less than four stories high were modeled to appropriate height by 

simulating the entire city block as a single roughness element. An exact 

reproduction of the structure of a city block was considered unnecessary 

for three reasons. First, in and around downtown the structures are so 

close and knit with trees that a city block can be expected to behave as 

a single element. Second, this study being of an exploratory nature, an 

effort to model the fine details was uncalled for. Lastly, if a simplified 

geometrical modeling such as proposed could produce satisfactory results, 



12 

further development of wind-tunnel models as a tool for studying urban 

diffusion would be justified. 

City blocks were cut out of masonite sheets to proper proportions 

and shape as dictated by the map and aerial photos. The rural area was 

modeled by placing coarse sandpaper (SO Grit) and isolated patches of 

higher roughness were made from coarser paper. Each of the features 

were selected to contribute to the true roughness behavior of the city. 

2.3.2 Heat-island effect - This feature of the prototype was 

incorporated into the model by placing heat sources at the surface of the 

model. Nichrome wires were laid in four different circuits over the 

model as shown in Fig. 8. By changing the voltage across these circuits, 

the form of the surface temperature distribution in the model city could 

be controlled. Strips of fiberglass drapery cloth were placed beneath 

the nichrome wires along their entire length to prevent the model surface 

from being charred due to heat. The appreciable expansion experienced by 

the nichrome wires during heating was taken up by providing 0.1 in. 0.0. 

tensioned wire springs at the two ends of each wire. Each time the 

voltage was applied to the heating wires, the model surface temperatures 

were allowed to reach a steady state before data collection. 

2.4 Velocity-Profile Production Technique 

A number of methods were tried to produce a velocity profile over 

the model similar to that in the field. The final arrangement was a grid 

of cardboard tubes 2 1/2 in. diameter which were placed longitudinally at 

the entrance section across the width of the tunnel in two layers. This 

technique has similar advantages as those presented by Lloyd (1966) for 

flat boards. Also, a 16 foot-length of the wind-tunnel floor between 
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these tubes and the model was covered with fine roughness (rice grains 

glued to plywood sheets). 



14 

III. SIMULATION OF URBAN ATMOSPHERE AND DESIGN OF MODEL 

In order that the wind-tunnel model flow corresponds to those oc­

curring in the field, it is essential that the two flows be dynamically 

similar. This similarity conditions are usually sought in the differential 

equations cribing motion in the prototype flow as well as in the model 

flow. The conditions of dynamic similarity of a frictionless atmosphere 

were first examined by Batchelor (1953). His important conclusion is that 

if the flow fields are such that pressure and density everywhere depart 

by small fractional smounts only from the values of an equivalent atmos­

phere in adiabatic equilibrium and if the vertical distances over which 

appreciable changes in velocity occur are small compared with those for 

which density variations are appreciable, the Richardson number is the 

sole parameter governing dynamical similarity. Nemoto (1961 a,b,c, 1962), 

Cermak et. ale (1966) and McVehil et. ale (1967) have considered a 

variety of simulation problems. It is generally agreed that in case of a 

thermally stratified flow of turbulent air in the surface layer, dynamical 

similarity would be achieved if the model satisifes the following con­

ditions. 

1. Geometrical similarity 

2. Reynolds number equality 

3. Richardson number equality 

4. Approach flow similarity. 

Effect of earth's rotation on flow in the atmospheric surface layer can 

be ignored as the convective accerlation dominates the Coriolis accelera­

tion and the horizontal extent of the surface under consideration is 

rather small. Cermak et.al. (1966) point out that if the prototype 

lengths are less than 150 km, the Coriolis forces do not produce large 
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differences in flow patterns between model and prototype. The proposed 

Fort Wayne model covers only an area of 8 x 8 miles and thus qualifies 

for this simplification. 

The above stated similarity criteria cannot, however, be satisfied 

simultaneously between the model and the prototype. This problem is not 

new in modeling practice and can be analyzed by considering the relative 

importance of the different conditions in dispute. In conclusion, we 

may have to resort to partial simulation when the consequences of non-

duplication of certain similarity parameters is properly understood. 

The approach is that of making known and calculated approximations based 

on sound knowledge. 

3.1 Reynolds Number and Geometrical Similarity 

Reynolds-number similarity based on the viscosity of air is neither 

practical nor essential to the present modeling effort. Two alternatives 

have been offered by different authors. Nemoto (196la) evolves an "eddy" 

Reynolds number defined as 

R 
e 

UL 
= K 

m 

(1) 

as a similarity parameter. It is obviously not a practical criterion 

because the eddy diffusivities are not known off hand in the field or in 

the wind tunnel. On the basis of assumptions of local isotrophy and 

identity of rates of energy dissipation in the two flows, Nemoto expresses 

the Reynolds number criterion for modeling wind velocity as 

UocM 
U 

cap 
(2) 
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This is a much more plausible form of Reynolds number similarity and has 

the effect of scaling down the wind velocity instead of requiring it to 

be increased for the model as was the case with ordinary Reynolds number. 

The above approach to Reynolds number similarity disregards the 

effects of surface terrain on flow phenomena. The fact that the turbulent 

flow of air in the surface layer over an urban area is invariably 

aerodynamical rough 1 opens up a new possibility. According to McVehil 

et.al. (1967) an aerodynamically rough flow is similar to any other 

aerodynamically rough flow irrespective of its velocity, roughness length 

and kinematic viscosity. In other words, the velocity of flow, roughness 

length and viscosity can be varied independently of each other. Thus if 

the flow over the model is rough, the Reynolds numbers need not be equal. 

On the other hand, it is essential that the surface features be suf-

fiently large and the Reynolds number sufficiently large for the model to 

guarantee that the flow will have the characteristics of a flow over an 

aero-dynamically rough surface. 

The question whether a given surface produces an aerodynamically 

fully rough flow has been discussed by Sutton (1953) and Schlichting 

(1955). According to Sutton an aerodynamically rough surface is one in 

which the irregularities project into the flow enough to prevent the 

formation of a non-turbulent viscous layer, so that the motion is 

turbulent between the roughness elements. From Nikuradse's measurements 

on flow through pipes whose surfaces were uniformly covered with sand 

grains of height k , the criterion for fully rough flow was determined s 

to be 

(3) 
-- ;> 75 
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where u* is the friction velocity (defined as ./TO/P , T being the 
o 

surface shear stress and p the density of fluid) and v is the 

kinematic viscosity. Nikuradsets surface roughness was so placed that a 

single length such as k was sufficient to describe its properties. 
s 

For other surfaces like the model of the city of Fort Wayne, the number 

of such length parameters is increased. In addition to the height of the 

city blocks, some other lengths specifying their spacing must be con-

sidered. Schlichting (1936) simplified the problem by introducing a 

length called equivalent sand roughness k 
s 

for such surfaces. He 

carried out experimental determination of k for a number of roughness 
s 

types as a function of concentration of the roughness elements. Since 

then, several others have experimented with sharp edged roughness 

elements (see Koloseus and Davidian 1966). Such information makes it 

possible to use Nikuradse's test for roughness (as stated above) on the 

city model. 

Geometrical similarity between the model and the prototype is 

realized if the spatial boundaries in the two bear the same ratio at the 

corresponding locations. As indicated in the description of the model, 

the wind-tunnel width fixes the horizontal scale of the model at 1:4000. 

Now if we adopt the same ratio to scale the vertical heights in the model, 

geometrical similarity will be satisfied; however, an average residential 

area city block with its buildings and trees (taken to be about 25 ft 

high) would scale down to 0.075 in. in the model. The concentration of 

the blocks, A, is defined as the ratio of the sum of projected areas of 

the blocks normal to the wind direction, to the total floor area. Rouse 

(1965) and Koloseus and Davidian (1966) found, based on data from 

numerous sources, that a simple relation exists between the ratio of k s 



18 

to actual height of roughness kl and the roughness concentration y 

which is independent of the roughness shape and arrangement over the 

lower range of concentration, say, below 0.1. Estimate of concentration 

of blocks can be made from the map of the city. From three areas, selected 

at random, a rather uniform value of 0.022 for the concentration A is 

obtained if the height of the blocks is scaled to 0.075 in. From Koloseus 

and Davidian (1966), equivalent sand roughness to height ratio against 

It. = 0.022 is 

k s 
-- = 2.2 mk

l 

(4) 

where m is an indicator of relative surface rugosity taken to be equal 

to 0.88 for rectangular roughness~ With kl = 0.075 in., Eq. (4) gives 

k s = 0.145 in. (5) 

Using this estimate of k ,the criterion for a rough surface (Eq. 3) 
s 

may be checked after an approximate value for u* has been established. 

As is explained in the next section, Richardson-number similarity 

requires the wind velocity to be as low as practicable which is opposite 

to the need of keeping the flow over the model fully rough. The higher 

the velocity, the greater is the temperature differential required to 

produce the heat-island effect. The choice of wind velocity is thus 

limited to the minimum stable value attainable with the existing wind-

tunnel propeller system. This velocity is 8 ft/sec and is used to 

evaluate the similarity criteria. 

If the boundary layer over a flat plate is turbulent from the leading 

edge, the local skin-friction coefficient cf is given by Schlichting 

(,1955) as 
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2 
u* 1 
U2 = 2 c t 

f 
00 

5 x 105 < 

= 

R x 

0.0296 (R)- 1/5 
x 

< 107 (6) 

where R 
U x and is distance from the leading edge. If the model = ()() x x 

v 
is placed 20 ft from 

= 0.345 ft/sec. 

the leading edge, R x 

Using this value and 

14k s 
v = 

= lOG 

k s 

and from Eq. (6) , 

from Eq. (5), we get 

26.1 < 75 (7) 

According to Nikuradse's criterion given by Eq. (3), flow over a model 

scaled by 1:4000 vertically and horizontally is not aerodynamically rough. 

There are only two alternatives available to improve upon the 

magnitude of to ensure that the flow is fully rough. One is to 
v 

augment u* by increasing the wind velocity over the model and the 

other is to increase k s 
The former tends to make similarity of the 

heat-island effect impracticable and has to be discarded as a means of 

rectifying the situation. We are, thus, left with only one choice viz., 

to exaggerate the vertical scale of the model. The distorted models are 

not uncommon in hydraulics and ocean engineering laboratory studies. 

This compromise between geometrical and Reynolds number similarity is 

not expected to introduce any serious limitation if a fully rough flow 

is produced in the wind tunnel. Some encouragement for distorted models 

comes from the equations of motion of a turbulent atmosphere as brought 

out by Nemoto (1961). The degree of vertical exaggeration is related 

to ISc and K , the turbulent diffusivities in the longitudinal and 
z 

vertical directions respectively, as 

[
K K '] _ 2E. zM 1/2 

(l - K . K 
xM zp· 

(8) 



20 

where subscripts M and p stand for model and prototype. In the wind 

tunnel K and K are expected to be of the same order whereas in the 
x z 

field Kx is at least one order of magnitude bigger than K z (see for 

example, Kao and Wendell 1968 and Orgill 1970). Thus a vertical ex­

aggeration a = /DO ~ 3 is permissible in modeling atmospheric flow. 

Let us consider a vertical exaggeration of the model by a factor of 

2 which, by definition, doubles the concentration of the city block. 

From Koloseus and Davidian (1966) 

number is 

k = 0.58 in. and surface Reynolds 
s 

= 104 > 75 (9) 

Thus Nikuradse's criterion is satisfied and the flow over the model is 

fully rough aerodynamically if a vertical scale 1:2000 is used. 

3.2 Richardson Number Similarity 

In order to model the heat-island effect, the bulk Richardson 

numbers must be equal for model and prototype. It is defined as 

gL ~T = 0 (10) 

U~ Ta 

where the subscript '0' denotes the value of a quantity with respect to 

a reference height. Thus, U is the velocity at the reference height o 

and ~T is the temperature difference between the surface and the ref­
o 

erence height, T denotes the average temperature, 
a L the character-

istic length of flow and g the gravitational acceleration. In this 

study, the entire thermal structure is considered to be developed by 

heat sources within the city; therefore, elevated inversions and lapses 

in the upstream flow are eliminated from consideration. The thermal 
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structure over the model and the prototype will be similar if 

[
gL£\T ~1 

U2 T 1M 
o a 

= [

gL£\Tol 

u2 T Jp 
o a 

To start with, it is reasonable to assume that (Ta)M' the average 

temperature in the model is the same as that for the prototype (Ta)p' 

then the condition of similarity is 

In order to evaluate the temperature differential over the model 

we shall consider the specific field tri~l intended to be modeled. Of 

the six "reliabletl trials analyzed by Csanady, Hilst and Bowne (1967), 

half are designated as stable and half as moderately stable. As the 

(11) 

(12) 

present study is limited to the consideration of a neutral approach flow, 

one of the near-neutral trial 6S-06-G2 is selected for modeling. For 

simulating the vertical heat-island effect, a reference height equal to 

100 ft is selected. From G.T. Tower temperature data, the temperature 

differential £\T is found to be about 0.28oC. The ratio U 
op ( oM) may 

U U 
be approximated by ( ~1) since the velocity profile in the op wind 

UOO 

tunnel is also to be R maoe similar to that in the field. For the trial 

under consideration, velocity at about 3000 ft in the field is on the 

average 26 ft/sec and can be taken to be comparable to the proposed wind-

tunnel air speed of 8 ft/sec. Thus, the temperature differential in the 

wind tunnel is given by Eq. (12) as, 

~ ToM = 0.28 (2000) (2~)2 °c 

= 53.2oC ~ 960 F (13) 
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Thus, the Richardson number over the model will be similar to that over 

Fort Wayne within the first 100 ft at the G.T. Tower if a temperature 

differential of about 1000F is maintained in the model at the corresponding 

position. 

If the surface of the model is to be heated by resistance filaments 

(nichrome wire), it is necessary to investigate the feasibility of this 

scheme. This can be done by evaluating the power needed to huat the 

model in order to maintain the design temperature differential over it. 

We shall, thus, have to consider the heat transfer from the model in all 

the three modes--convection , conduction and radiation. 

1. Forced Convection~-There will be a spatial distribution of 

temperature over the model and the total temperature differential between 

the surface air and the free stream may be in excess of 1000P. On the 

average, however, we may assume that the surface is maintained, say, at 

l500p above the ambient temperature (of, say, 600p). The average heat-

transfer coefficient, h , over a rough plate under forced convection is 
c 

(see for example, Krieth 1967), 

[
u L]O.S 

h
e
= 0.037 .: ~ (Pr)0.33 (14) 

where k and Pr are the thermal conductivity and Prandtl number for 

air, L is the length of heated surface which is about 6 ft in the model, 

and Uw is the freestream velocity 8 ft/sec. If the fluid properties 

are evaluated at 

1 0 Tf = -2 (T f + T ) = 135 P sur ace 00 (15) 

Eq. (14) gives Accordingly, the heat transfer 

from the model (area ~ 36 ft 2 ) due to forced convection is 
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q1· = h (T f - T ) x model area c sur ace 00 

= 1.8 (150) x 36 ~ 9,700 Btu/hr (16) 

2. Conduction--If there is a Ii in. thick layer of plywood between 

the heated surface and the bottom of the wind-tunnel floor which may be 

at near-ambient temperature, some of the heat will be conducted through 

the plywood and lost by convection through the room. Taking thermal 

conductivity k of plywood as 0.1 Btu/hr ft of and floor temperature 

of, say, 100oF, heat transfer due to conduction through the wind tunnel 

floor is 

A k U -T ) q2 = t surface floor plywood 

36xO.l (110) = 1.5/12 
~ 3,200 Btu/hr (17) 

3. Radiation--The model is nearly completely surrounded by the 

wind tunnel on one side such that the geometry factor, G , may be 

taken to be 0.5. The net rate of heat transfer is given by 

q3 = o£AG (T· 4
d 1 - TW'4T 11) mo e . . wa s (18) 

where 0 is the Stefan-Boltzmann constant with a value of 0.17lxlO-s 

Btu/sq ft °R4 and is the emissivity of a plywood surface and Tt 

is the absolute temperature in degrees Rankine. Upon substitution of 

the relevant data, the heat transfer due to radiation is 

~ 4,100 Btu/hr (19) 
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4. Total Heat Transfer--The Total quantity of heat to be supplied 

to the model surface is 

q = ql + q2 + q3 = 17,000 Btu/hr. 

The power required to produce a heat island effect over the model city 

comparable to that over the prototype is, therefore, about 5KW. In 

order to be able to control the surface temperature pattern, it is 

necessary to divide the model into smaller units. If four separate 

(20) 

circuits are used, each will have to supply, on the average, 1.25KW. It 

is quite feasible to draw up to 2KW on 110 v supply outlets. As the power 

may have to be adjusted amongst the four circuits, the maximum power avail-

able per circuit was selected to be 1.75KW. Also, let n be the number of 

6 ft long 20 gauge nichrome wires (resistance 6.5 ohms per ft) in parallel. 

If the maximum current is 20 amperes, then from 

is obtained 

1,750 = (20)2 (39) 
n 

n = 9 (21) 

The density of the heating wires is to be in accordance with the recorded 

inventory of heat sources within the city. 

3.3 Approach Flow Similarity 

In addition to the various similarity parameters considered above, 

the boundary conditions in the field should be reproduced faithfully. Of 

special importance are upwind flow conditions and those at the upper 

boundary. If the velocity distributions are matched and turbulence levels 

are the same, it will not only satisfy the upwind requirements but also 
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take care of the boundary-layer thickness over the model. Moreover, the 

longitudinal pressure gradient in the ambient flow over the model should 

be adjusted zero as is the case in the field. 

3.4 Diffusion Similarity 

Once the similarity of flow is established, similarity in diffusion 

characteristics will follow if the linear dimensions of the source 

configuration are scaled properly. For example, the height of the quasi­

instantaneous source in the wind tunnel should correspond to the best 

estimates of the airp1ance elevation. Csanady et.a1. (1969) fix the 

cloud height at 75m for the trial 65-06-G2 which scales down to 1.48 in. 

in the model. Also the speed of the tracer release air craft is scaled 

to about 4 ft/min. One aspect of the field release method which cannot 

be readily simulated is the initial dispersion of the cloud in the wake 

of the air craft. This inability to model the initial conditions of the 

diffusion phenomena should not seriously affect similarity of distribution 

of the tracer material at distance downwind extending 10 - 20 times the 

source height. 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this chapter are presented the results of the measurements per­

formed on the model of the city of Fort Wayne in the environmental wind 

tunnel at the Fluid Dynamics and Diffusion Laboratory of Colorado State 

University_ The performance of the model in reproducing field flow 

characteristics is discussed. The model results are compared with those 

of the field trial 65-06-G2 (which was specifically modelled) and theory. 

Results of some visualization experiments, which were conducted before 

intensive model testing, are also presented. 

4.1 Data 

Model data were based on the values of test variables selected in 

the chapter on model design. Some of the data, which could not be pre­

sented wholly in graphical form, is arranged in tablular form in Appendix 

A. This is mostly the surface-dosage data obtained with and without 

incorporating the heat-island effect in the city model. All the vertical 

distributions are given only in graphical form. These include vertical 

temperature, velocity, turbulence and dosage data. 

4.2 Approach Flow 

The flow approaching the city area is characterized mainly by 

velocity and turbulence distribution in the vertical~ For the velocity 

profile reproduction, tower data (G.T.) and balloon data (Site 2) formed 

a set which could be compared directly to wind-tunnel velocity data at 

the corresponding location. After many trials, the two profiles were 

matched as shown in Fig. 9. Although turbulence data are sparse in the 

field, a comparison of whatever data are available is essential from the 

point of view of assessing model behavior. Figure 10 shows the vertical 
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distribution of longitudinal turbulence intensity in the wind tunnel 

along with field data. The agreement between the field and wind tunnel 

velocity and turbulence intensity profiles approaching the city provides 

much encouragement for arriving at a satisfactory simulation of flow 

and diffusion near the city. 

4.3 Flow Over the Model City 

The model city modifies the approaching flow both in respect to 

velocity and temperature characteristics. Figure 11 shows the velocity 

distributions at WANE T.V., G.T. Tower and mid-city locations. Whereas 

the WANE and G.T. profiles are nearly alike, that over the mid-city 

differs considerably and the joint effect of roughness and heating ex­

tends to a height equivalent to 200 meters in the prototype. Longitudinal 

turbulence intensity at the city block top level registers an increase 

from 29% at WANE to 42% at G.T. near the downtown area as shown in Fig. 

12. The effect of the roughness on turbulence intensity is more pro­

nounced than that on mean velocity and has already reached about the 75 

meter level at G.T. Figure 13 shows the development of vertical temper­

ature profiles over the model. The location of vertical temperature 

profile stations is indicated on the surface temperature map. The shape 

of the heat island produced in the wind tunnel is depicted in Fig. 14 

and is based on surface temperature data gathered at SO locations. Al­

though field data for the trial 6s-06-G2 is available only at 10 locations, 

the rough picture of the heat island that emerges from them (Fig. IS) is 

remarkably similar to that obtained in the wind tunnel as shown in Fig. 

14. This likeness in the heat-island shapes may be regarded as an 

evidence of the right interaction between the model geometry and the 

proper distribution of heat sources. Thus, flow over the city of Fort 
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Wayne is modelled well when the bulk Richardson numbers for model and 

prototype are equal at the city center. 

4.4 Visual Observations 

The dispersion of smoke plumes released at ground level upwind from 

the city was studied visually to observe if any spurious circulation 

patterns were present. The flow was found to be generally well behaved. 

In Fig. 16 are presented pictures of a smoke plume released at the start 

of the model upwind from WANE T.V. Tower. It is noticed that the plume 

experiences a sudden increase in its vertical spread as it passes over 

the city proper. Also, the lateral movement at the surface is seen to be 

along the streets. All this agrees generally with the field experience. 

4.5 Diffusion Results and Comparison with the Field Data 

The model diffusion results are first compared with the field data 

and then with the theory. All the dosage data is reduced to non-dimen-

sional form for these comparisons by writing the non-dimensional dosage 

D as 

ID (22) 

where D is the observed dosage, Uh the wind velocity at the source 

height hand Q the source strength. Model quantities were control-

led and were, thus, known precisely. There is, however, some uncertainty 

regarding hand Q values in the field. The adjusted figures for 

these parameters as given by Csanady et.al. (1967) are used in pre-

ference to those based on air-craft data. 

The surface dosage measurements, made at 250 stations on the model, 

are presented in Fig. 17 in the form of iso-dosage lines. These iso-lines 

are based on five station dosage averages to smooth the variability of 
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the individual dosages and to highlight the general characteristics. 

The highest non-dimensional dosage occurs in the rural area and has a 

value of 0.36. Also the area covered by a dosage equivalent to the city 

maximum is much larger in the rural area then it is in the city. 

A closed contour downwind from the downtown area can be attributed 

to mixing by the high-rise buildings which help to diffuse the higher 

concentration in the core of the plume to ground level. The lines up to 

1 1/2 ft from the walls are obliterated as the end effects due to the 

finite length of the line source become important in this region. The 

iso-dosage lines are fairly parallel upwind from the city and far in the 

rural area (say, 5 miles from mid-city) beside it. Thus the effect of 

the city extends in the cross-wind direction up to about half the city 

width from the outskirts beyond which the two dimensionality of the flow 

and the line source diffusion remains intact. 

A similar plot of iso-dosage lines from field data (based on five 

station averages) is shown in Fig. 18. No systematic conclusions can 

be drawn from these data as the dispersion over the city area does not 

distinguish itself as clearly from that over the rural area. A better 

picture of surface dosage distributions over these areas is obtained 

from Fig. 19 reproduced from Hilst and Bowne (1966). This represents 

an average of all the 70 field trials and is in qualitative agreement 

with the model pattern. A comparison of the non-dimensional surface 

dosages obtained in the model experiments and the field trial 65-06-G2 

at the fourth sampling line is made in Fig. 20. The two lateral dosage 

distributions show remarkable similarity in exhibiting the effect of the 

city on the dispersion process. Both show a dip of nearly the same shape 

in the dosage variation downwind from the city. Ten station average 
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dosages, plotted in the same figure further illustrate the effect of the 

city. The field dosages, however, show much more variability than the 

model data. 

The longitudinal variation of ground dosages in the model city and 

the prototype are presented in Fig. 21. Also imposed on the oraph is a 

similar relationship for the model but without the heat-island effect. 

The ground-level dosage in the field rises much more rapidly with dis-

tance than that in the model and starts decreasing from the first 

sampling line downwind. This is rather a sudden fall of the tracer 

material to the ground and takes place upwind of the city. Csanady 

et.al. (1967) explained it to be due to turbulence generated by the 

rural area (indicating a roughness length 

Hanna (1970) shows a value of 15 cm for 

z o = 3M). Analysis by 

z which seems more appropriate 
o 

index of roughness over farmlands. It appears that the initial disper-

sion of the tracer in the wake behind the air-craft which could not be 

reproduced in the laboratory might have been responsible for transporting 

the material to the ground earlier than would be caused by rural area 

turbulence alone. The effect of the downdraft from the disseminating 

air craft in causing substantial increase in ground-level dosages has 

been recognized by Vaughan and McMullen (1963) and Vaughan (1965). In 

such circumstances, direct comparison with the field data is not possible 

near the source. Away from the release line, the model and prototype 

data indicate nearly the same rate of decrease of dosage with distance 

and is indicated more clearly in Fig. 22. This comparison is very 

significant in that the rate of decrease of dosage represents the total 

effect of the city (both roughness and heat island). Moreover, the two 

cases become equivalent, despite the downdraft anomaly, at large 
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distances from the source as the tracer tends to "forget" its initial 

position. Thus the model gives a better overall picture of the effect 

of the city on dispersion process by excluding the aircraft downdraft 

effect in the field tests. The comparison of the model curves for 

dosage variation with and without the inclusion of the heat island 

effects in the city, clearly shows the importance of the internal heating 

upon the dispersion over a city. The maximum dosage in the city due to 

an elevated source would be reduced if the heat island is not present 

but the rate of decrease of dosage would be much slower. In general, 

elevated releases over an urban complex cause greater ground-level 

dosages than similar releases over a flat terrain. This effect emphasizes 

the need for locating industrial plants with tall stacks away from the 

cities. 

Some idea of the growth of plumes in the field and the model can be 

obtained by computing a 
z 

ground dosage is related 

from Sutton's model. 

a z as 

D o 
= /!.. h 

1f a 
z 

The non-dimensional 

(23) 

For a given value of Do' ~ and hence az can be obtained from Eq. (23). 
a z 

Figure 23 shows a comparison of field and wind-tunnel rates of growth of 

the cloud vertically. The two sets of data match reasonably well away 

from the source. 

4.6 Comparison with Theory 

Presently there is no theory of diffusion of a passive substance 

which incorporates surface roughness inhomogeneity and the heat-island 

effect. However, it is of practical importance to investigate the 
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possibility of using theoretical results based on the assumption of 

horizontal homogeneity. This can be done by using the local value of 

variable flow characteristics like shear velocity, roughness length 

determined from the flow field at the position of interest. The com-

parison between wind-tunnel data and theoretical results will be limited 

to Smith's (1957) model. According to this model, the velocity and 

vertical diffusivity are assumed to be distributed as follows: 

and 

~h = [{r 

K 
z 

~ 
[ 

zll-a 
= hj 

(24) 

(25) 

(~ is the vertical diffusivity at source height, h). The solution of 

the two-dimensional diffusion equation for non-dimensional dosage ID 

is then given by 

I 

where Q = source strength (~ci/cm), 

D = mean dosage (~ci-min/cc), 

z 
Z;; = h = non-dimensional height, and 

2Z;; (l+2a)/2l 
(l+2a)2~ ~ 

non-dimensional longitudinal distance, 

I = Modified Bessel function of the first order. 

(26) 



33 

Variation of ground-level dosage is found from Eq. (26) to be 

( l+a) -1/ (l+2a) 
D = --~~~------------

o rcl +a )~(1+a)/(l+2a) 
l+2a 

exp (27) 

Thus both vertical and ground level dosage distribution can be obtained 

if an estimate of a and ~ is available. From the velocity profiles 

over the model an average value of 0.2 for a is obtained. The reference 

diffusivity may be expressed as 

(28) 

on the assumption of a constant shear stress. The estimate of shear stress 

is also obtained from the velocity profiles. 

The comparison of ground-level dosages observed over the model with 

those predicted from Smith's equation in Fig. 24 shows good agreement 

between model derived and theoretical values. Dosages at the second 

sampling line are not in good agreement--probably because this is a 

region behind a step change in roughness. The vertical profiles of 

dosage at the beginning and the end of the city (sampling lines land 5) 

are compared with theoretical values in Figs. 2S and 26. The agreement 

is remarkable at the first sampling line in that the maximum dosages 

match rather well. The position of the center of the cloud observed in 

the wind tunnel is slightly lower than that predicted. At the end of the 

city a substantial difference in character of the two distributions exists. 

Here the thermal effect appears to modify the vertical diffusion rates 

and they are not accounted for in the Smith formulation. 
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v. CONCLUSIONS 

The possibility of modeling urban atmospheres and diffusion was 

explored by reproducing characteristics of flow over the city of Fort 

Wayne, Indiana in a wind tunnel. The dynamic similarity between wind 

tunnel and natural full~scale flows was achieved by designing the model 

such that flow over it was fully rough in an aerodynamic sense and the 

Richardson numbers were the same. The condition of fully rough flow 

was considered more crucial than strict geometrical similarity which was 

compromised for by exaggerating the vertical scale. In addition, the 

approach flow in the model was made to be similar to the atmospheric 

boundary layer. 

The heat-island pattern in the wind tunnel was found to be similar 

to that in the field, which is good evidence that the model geometry and 

heat-source distribution interacted in a similar manner in the two cases. 

The surface-dosage measurements lead to the same general conclusions as 

the field data. The highest dosages occur in the rural area. The high­

rise buildings tend to cause a local region of high dosages. The effect 

of the city extends in the cross-wind direction up to about half the city 

width from the outskirts beyond which the two dimensionality of flow 

remains intact. The rate of decrease of dosage at street level, far 

from the source, follows the same trend for model and full-scale data. 

The vertical and ground-level dosage distribution compares well with 

Smith's (1957) analysis. 

A method of dosage determination is evolved for analyzing quasi­

instantaneous source diffusion. Also the method of heating the model 

surface with nichrome-wire heating elements offers great versatility in 

producing thermal stratifications in the wind tunnel. 
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The present study did not include effects from undulation of the 

terrain and the approach flow was considered neutral. Furthermore, no 

attempt was made to model the climatic variation other than wind and 

temperature. The agreement found in flow and diffusion data for the 

model and the full-scale natural flow indicate that these complicating 

features can be studied by means of physical modeling. 

The results of this study have proved that it is possible, at least 

for neutral approach flows, to simulate the flow over complex surface 

such as a city and obtain useful information, relatively inexpensively, 

on urban diffusion. This investigation opens the way for studies of 

air-pollution problems for purposes of urban planning. The location of 

industrial sites and power-generation complexes relative to major 

topographical features, the location of freeways through existing cities, 

the grouping of tall buildings in an urban-development program, or the 

location of an entirely new city relative to topographic features to 

minimize air pollution potentials under adverse meteorological conditions 

can be studied systematically. 
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APPENDIX A 

NON-DIMENSIONALIZATION OF DOSAGES 

Laboratory Data 

Concentration of release gas = 164 pei/ee 

Length of release = 10.64 ft. 

Average traversing time = 3 min. 

Rate of flow = 500 ee/min. 

Rate of release = 164 pei/ee x 500 ee/min. 

= 82 mei/min. 

Total quantity released = 82 mei/min. x 3 min. 

= 246 mei 

246 mei 760 }.lei/em = = 10.64 x 30.48 em Source Strength, Q 

Height of release, h = 1.5 in. = 3.81 em 

Wind velocity at release ht., Uh = 4 ft/see = 7,320 em/min. 

Non-dimensiona1izing dosage = ~ 
Uhh 

760 x 106 ppei/ee = =-~~--~~~=-~--7,320 em/min x 3.8 em 

= 2.72 x 104 ppci-min./ce 

Field Data 

For Run 65-06-G2 (from Csanady et.a1. 1967) 

h = 75 m 

&- = 17,400 partic1es-min/m/1iter 
h 

Non-dimensiona1izing dosage = ~ = 232 particle-min/liter 
Uhh 
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APPENDIX B 

END EFFECTS DUE TO FINITE LENGTH SOURCE 

The width over which the tracer was released was less than the model 

width and thus some sampling points over the model did not "see" the whole 

width of the transient plume. The integration of the plume concentration 

for such locations was partial and identification of such regions was es­

sential. A continuous source experiment was performed to determine the 

lateral spread of a plume release at the height used for quasi-instantaneous 

source experiments. Fig. 27 shows the variation of ground concentration 

from such a release upwind of the city. The width of the plume at the 

ground is approximately 2 feet at the 5th sampling line. The traversing 

source started and stopped at about 8 inches from the wind tunnel walls. 

The region of partial integration is identified as that within 1'-8" from 

the walls as shown in Fig. 17. Thus, the data over the center 9 feet of 

the model can be regarded as that due to an infinite line source. 
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TABLE 

Surface Dosages ~ith Heat Island l ~~c i-mini ee) 

SampUng* Sampling Sampling Sampling Sampling SalllpIill~ 

Station Line 1 Line 2 Line 3 Line -l Line :; 

+(x-1.03 ft) (x=2.87 ft) (x=4.33 ft) (x=6,16 ft) lx=S.llll ft) 

1 
Sib9 2 535 2915 4880 4125 

3 2325 678S 9320 7150 730~ 

4 555 7360 9575 6940 7032 
5 530 6775 7500 8950 b53S 
6 520 8945 8440 9950 5494 
7 790 7170 9075 9090 -l5uO 
8 1300 7485 9765 9050 53':!:> 
9 1170 6240 11445 7725 5989 

10 1140 7345 9700 9730 6593 
11 445 7025 10765 8005 uI5:; 
12 1230 5365 11410 7530 6U4S 
13 470 9320 10270 6650 b483 
14 1320 8470 9930 9410 5714 
15 620 7545 8495 7975 b923 
16 33t; 8795 8770 9040 6043 
17 650 6980 7495 10210 5054 
18 800 7095 8360 9170 5879 
19 1420 69.30 6655 8675 6923' 
20 1115 bb40 105()0 7715 6868 
21 1185 bIS5 7990 8275 6868 
22 565 6875 7465 8280 5934 
23 765 595 9095 6500 5000 
24 1335 9515 7585 6970 
25 1615 10840 8<>30 8670 4395 
26 1460 8680 9120 8540 1373 
27 711 7220 9555 8400 5770 
28 787 9150 I10b5 7970 5840 
29 200 9110 9380 6585 4875 
30 1395 9450 5430 6050 50-l0 
31 749 8115 9370 6230 7580 
32 2320 8925 7975 6610 7615 
33 1509 6360 6155 6640 7015 
34 467 7550 7725 7400 6525 
35 1319 8115 7055 6325 5780 
36 1026 6200 7645 9150 5040 
37 924 7270 7095 8815 5610 
38 1390 8600 7320 7720 5525 
39 1047 9095 7865 5295 4275 
40 656 9485 7615 4910 4':10 
41 412 5145 7095 4720 5165 
42 2112 1440 4475 5740 5825 
43 b400 5835 
44 5940 5730 
45 52·U 
46 4532 

* Samp 1 ing stations are numbereo starting from the north cast eoge of the city lst.'c Fig. :-1. 
+ is the longitudinal distance measured in feet from the source. x 



41 

TABLE II 

Surface Dosages Without Heat Island (uuc i-min/eel 

Sampling* Sampling Sampling Sampling Sampling Sampling 1ine 
Station Line 1 Line 2 Line 3 Line .t Line 5 

+ (x=1.03 ft) (x=2.87 ft) (x=4.33 ft) (x=6.16 ft) lx=S.LlLl ftA 

1 2400 
2 1595 1707 5766 3095 
3 0.0 5959 5397 7176 .35.t5 
4 2462 5793 7319 7118 3980 
5 0.0 4447 5951 7278 53S<> 
6 271 6011 5960 6377 5151 
7 374 6127 8690 6572 5.t08 
8 1303 6651 7403 7688 .t713 
9 369 8351 8230 8707 52.t5 

10 1802 6942 7143 7167 01.32 
11 445 7623 6138 6260 5505 
12 241 8145 6214 6359 6038 
13 1415 7056 6078 5910 02.t.t 
14 723 6091 7825 5193 5253 
15 255 5039 6266 7430 60S1 
16 605 5880 8432 7121 6081 
17 860 8204 7726 7588 6277 
18 1305 6413 7292 8696 5625 
19 659 6837 6836 6996 557.t 
20 317 8866 7154 8019 5810 
21 977 8554 7145 8848 5571 
22 1074 5590 6760 7319 6526 
23 445 5935 8335 6158 6091 
24 295 8210 8576 6708 5679 
25 408 7509 6211 8905 5484 
26 1379 7050 6165 6176 4900 
27 1012 5239 7197 7261 6010 
28 105 5674 6005 6926 604.3 
29 758 6111 5905 5989 5098 
30 946 6349 5565 6662 5413 
31 1609 7995 8712 5858 .t845 
3';: 2546 7821 7127 5093 4615 
33 1297 7957 8085 4702 5-113 
34 385 8921 7667 5696 5-118 
35 1148 8765 7414 6486 5098 
36 1680 7335 8286 6377 5538 
37 648 5957 8730 6668 5750 
38 1268 7881 8370 636.3 5131 
39 1835 7037 8734 5003 5386 
40 1411 6168 4102 6247 8188 
41 458 5796 1791 6241 6609 
42 0 282.') 347 6936 5571 
43 8221 5594 
44 .>8oS 1297 
45 Ib25 
46 230 

*Salllpi ing stations are numbered starting from the northeast edge of the ~ity (S~e Fig. 7) 
+ x is the longitudinal distance measured in feet from the source. 
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TABLE III 

ELEVATED FIXED SOURCE CONCENTRATIONS AT GROU~O LEVEL 

WITU HEAT ISLANO 

Sampling *y 
Line (in) 

1 +4.5 
+(x=I.03 ftl +2~S 

+1.5 
+0.5 
-0.5 
-1.0 
-1.5 
-2.0 
-2.5 
-4.0 

3 +12.0 
(x=4.33 ft) +9.0 

+6.0 
+4.0 
+3.0 
+2.0 
+1.0 

0 
-1.0 
-3.0 
-5.0 
-6.5 
-9.S 

Concentration 
()Juci/cc) 

2 
19 
96 

230 
247 
193 
102 

71 
38 
0 

0 
15 
69 

234 
431 
520 
576 
758 
843 
663 
331 
62 
10 

*y is the model distance measured 
Positive towards north 

Q = 1550 IAci/min 

Sampling Y Concentration Sampling 
Line (in) (1JIJci/cc) Line 

7A +7.0 0 2 
(x=1.95 ft) +5.0 32 (x=l.87 ft) 

+3.0 161 
+2.0 478 
+1.0 905 

0 922 
-1.0 1011 
-2.0 685 
-2.5 365 
-4.25 106 
-5.25 23 
-7.25 7 
-9.25 0 

4 +12.0 0 5 
(x=6.1t> ft) +9.0 0 (x=S.OO ft) 

+5.0 85 
+3.0 240 
+1.0 400 

0 457 
-1.0 461 
-2.0 451 
-3.0 321 
-4.0 148 
-6.0 29 
-9.0 12 
-12.0 0 

in inches from the centreline of the plume. 

+ x is the longitudinal distance measured in feet from the source. 

Y Con..::cntrati..>11 
(in) te~d!~d 

+8.0 0 
+7.0 0 
+5.0 90 
+3.0 .. 50 
+2.0 767 
+1.0 907 

0 890 
-1.0 910 
-2.0 799 
-4.0 .335 
-6.0 35 
-S.O 22 

+12.0 18 
+9.0 84 
+6.0 180 
+4.5 247 
+3.0 289 
+1.5 301 

0 279 
-1.0 321 
-3.0 225 
-6.0 130 
-9.0 41 
-12.0 6 



43 

TABLE IV 

SURFACE AIR TEMPERATURES OVER THE ~1ODEL 

Sampling *y' Temp. Sampling y' Temp. Sampling Y' rl..'mp. 
Line (in) ( OF) Line (in) (oF) Line (in) \. oF) 

28 77.5 2 16 60.0 3 13 57.5 
... (x:;::!. 03 ft) 40 100.5 (x=2.87 ft) 28 61.0 (x=4.33 ft) 25 58.0 

52 77.5 40 62.0 37 65.5 
64 95.0 52 83.5 51 156.5 
76 91.5 77 210.5 67 1.19.0 
88 135.5 98 201.5 79 118.0 

100 164.5 111 148.0 92 132.3 
112 103.0 131 176.0 107 158.5 
124 66.5 143 58.0 119 123.5 
139 60.5 127 120.0 

4 19 57.5 5 16 56.0 
(x=6.16 ft) 31 58.2 (x=8.00 ft) 40 57.0 

43 61.0 55 66.5 
55 73.0 67 62.5 
67 72.6 79 78.0 
79 172.0 91 88.5 
91 215.0 103 68.2 

100 104.5 116 66.4 
112 70.3 124 63.2 
121 70.0 

+x is the longitudinal distance measured in feet from the line source. 

*y' is the distance measured in inches from the northeast edge of the model. 
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ENVIRONMENTAL WIND TlNVEL 

Figure 1. Environmental Wind Tunnel 
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Figure 5. Schematic Diagram of the Tracer Release System 
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A. Plan View 

B. Side View 

Figure 16 Smoke Diffusion over t he Model 
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Figure 17. Surface Dosage Pattern Observed over the Model. The Numbers on 
the Iso-Dosage Lines Indicate Non-Dimensional Dosage Defined 
on Page 28. 
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Figure 18. Surface Dosage Pattern Observed In Fort Wayne During Trial 
65-06-G2. The Numbers on the Iso-Dosage Lines Indicate 
Non-Dimensional Dosage Defined on Page 28. 
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Figure 19. Average Surface Dosage Observed in Fort Wayne City and Rural Areas During 70 Trials, in Particle­
Min/Liter (After Hilst and Bowne 1966) 
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