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Comparison of Two Different PNN Training Approaches for Satellite Cloud
Data Classification

Bin Tian and Mahmood R. Azimi-Sadjadi

Abstract—This paper presents a training algorithm for proba- the Gaussian mixture model. In Sections IIl and IV, ML, and
bilistic neural networks (PNNs) using the minimum classification  MCE training schemes for PNN are discussed separately. Com-

error (MCE) criterion. A comparison is made between the MCE ; . ; ; ;
raining scheme and the widely used maximum likelihood (ML) parisons of these training algorithms are presented in Section V.

learning on a cloud classification problem using satellite imagery

data. II. GAUSSIAN MIXTURE MODEL
Index Terms—Cloud classification, maximum likelihood, min- Consider ad-dimensional input feature vectar which be-
imum classification error, probabilistic neural network. longs to one of theX classesg;, i = 1,2, ..., K. A classifier

can be regarded as a mappiigR? — {ci,c2...,cx} that
classifies the given patterx to classC/(x). Suppose that the
class conditional distributiomy(x | ¢;), and thea priori class

Probabilistic neural network (PNN) is a kind of supervise@robability P(c;) are known, then the best classifier is given by
neural network that are widely used in the area of pattern recqgie fundamental Bayes decision rule

nition, nonlinear mapping, and estimation of probability of class
membership and likelihood ratios. The original PNN structure O(x) = argmax P(¢;)p(x|¢;) i=1,2,...K. (1)
[1], is a direct neural-network implementation of the Parzen ‘”
nonparametric probability density function (PDF) estimatio®ne main concern when implementing the above optimal Bayes
[2] and Bayes classification rule. Although its training schemglassifier is to estimate(x | ¢;) andP(c;) from the training data
is very simple and fast, one major drawback is that potentialet. GenerallyP(c;) is highly dependent on the specific task and
avery large network will be formed since every training pattershould be decided by the physical knowledge of the problem.
needs to be stored. This leads to increased storage and confaui-the sake of convenience, uniform distribution assumption
tational time requirements during the testing phase. One natutal P(c;) is adopted in this study. Also, for any clagswe as-
idea to simplify the PNN is to reduce the number of neuronsume that the(x | c;) can be represented by a Gaussian mixture
i.e., use fewer kernels but place them at optimal places. In [@bdel, i.e,
Streitet al.improved the PNN by using finite Gaussian mixture
models and maximum likelihood (ML) training scheme. How-
ever, the ML-based training does not necessarily lead to a min-
imum error performance for the classifier. This may be due to
the fact that the Gaussian mixture model may not be an acevhere); is the number of Gaussian components in ctassd
rate assumption for some of the feature space distribution ang'’s are the weights of the components which satisfy the con-
the training data set is often inadequate. In [4], Juetreg. pro- straintzj.‘i]L 7 = 1, pji(x; pji, 5 )denotes the multivariate
posed a new learning scheme based upon the minimum clasgifaussian density function of thgh component in class and
cation error (MCE) criterion. In [5], Gish pointed out that miny.;; andX;; are its mean vector and covariance matrix, respec-
imization of the number of errors is not the only benefit of thavely. This Gaussian mixture model can be easily mapped to
MCE. The MCE criterion is also inherently robust. The robusthe PNN structure and the resultant PNN will need much fewer
ness stems from its counting misclassifications and ignoring theurons. The price paid for this simplification is that the simple
magnitude of the error, i.e., ignoring how far the misclassifiegbniterative training procedure will no longer be applicable. In-
events are from the decision boundary. Owing to its robustnestead, the weights of the PNN, i.e., the parameter sets of the mix-
MCE has been widely used in speech recognition applicationse model for each class, need to be estimated from the training
[6], [7] data set.

In this study, ML and MCE are used to estimate the parameter
sets of the Gaussian mixture model. Their performances are ex-  [Il. M AXIMUM LIKELIHOOD TRAINING FOR PNN
amined on the Geostationary Operational Environmental Satel

i . o Let\; = {mji, 11:, ;i 117, denote the parameter set used to
lite (GOES)-8 imagery data for cloud classification. The organ escribe the mixture model of classandA = {);}X, denote

izati f thi i follows. ion Il briefly i %l
Izattion of this paper is as follows. Section Il briefly introduce e whole parameter space for the PNN. The goal of training is
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separated intd( subsetsl;, i = 1,..., K, in which all the There is one important observation from (7) and (8). The up-
samples belong to clags. The ML estimation of parameter setdating of parameter set of class is only dependent on the
A is then given by training samples in this class, i.e., the optimization process can
K be solved separately for each class without considering the ef-
A* = argmax H H p(x | i A). 3) f_ect pfthe ot_hers. Thl_s is especially suitable for the qloud classi-
A fication application since a new cloud type can easily be added

T _ _ _
_ _Z_ * _ ~ to the system without affecting the other classes. Moreover, in
For the computational efficiency, generally we will maximizenhe updating process, we have the choice of updating only those

the equivalent log-likelihood, i.e., classes that are affected by the temporal changes in the cloud
K features. Another benefit of this property is the reduced training
A* = argmax Z Z log[p(x | ¢i; A)] time due to the fact that each class can be trained separately, thus
A T xer requiring a small number of neurons and training samples.
K Due to the nature of the PGD scheme, the PNN training
= argmaxz Z log[p(x | ci; A (4) process using (7) and (8) generally needs a lot of iterations
A o xer before converging to an acceptable result. This incurs expensive

The last step in (4) is arrived at based upon the assumption tﬁ%?t in the training pha;e. Fortqna}tely, there is an efficient
the conditional probability of class is solelv decided by the approach called expectation-maximization (EM) which solves
b y S5 y y this problem. The reader is referred to [9] for the detail treat-

parameter set of that class,and not by the parameter set of thement on this tonic
other classes. The maximization of the log-likelihood function pic.

can be done using a probability gradient descent (PGD) scheme

[8]. Let IV. MCE TRAINING FOR PNN
K The mainidea behind using ML criterion for the PNN training
F(T;A) = Z Z log[p(x | ¢i; Ai)] (5) wasto accurately estimate the class conditional probability from
i=1 x€T; the training samples. However, since the number of training

denote the log likelihood function and take the partial derivativseamples is limited and the Gaussian mixture assumption may

of this function with respect to each parameterinthen we not be correct, the estimated distribution may qgt be accurate.
So the optimal performance of the Bayes classifier may not be

have . ; . S
v reached in practice. If we reexamine the Bayes classification
OF(T;A) _ > dlogp(x | ci; Ai) rule in (1), it can be found that the actual valueptk | ¢;) is
0aj; el Oaj; in fact not so important for decision. As long as the conditional

i=1 K: j=1 M; (6) probability is larger than the corresponding values for the other
- P J Tt T e . . .

’ classes, the classifier can still make the right decision. There-
wherea;; represents either;;, p;;, or Ej_il. Based on (5) and fore, a natural approach to improve the performance of classi-

(6), we can further get fier is to estimate the functiongx|¢;), ¢ = 1,..., K, which
Dloglp(x | e A:)] P3(X: 1155, 550 can most succ_essfully d_iscrim_inate differe_nt classes. Thisis the
! = basic idea behind the discriminant analysis. In general, the dis-
I ji > e Pmi (X5 fomis Yomi ) Tmi criminant function can be in any form and may not necessarily
dlog[p(x|ci; \i)] D5 (X; pjis X ji )i relate to the probability, but here we still use the same form of
i M i (K s S o p(x| ), i.e., Gaussian mixture models.

Consider an input feature vectemelonging to class;. Ac-

x Yot (x — pyi . L . .
I (x = pgi) cording to the Bayes decision rule in (®,will be correctly

dloglp(x| e M) pyi(x i Bji)mji classified if
—1 - M;
azjl Zrn:l DPmi (X; Hmi s Enli)ﬂnli
1 ) )
n5 B = () (x = pii)l. () px|ei)Ple) > k:nf?,)fr[p(x ) Pler)]
ki
Based on the PGD scheme, the log-likelihood function can be
maximized using the following training equations: p(x,¢) > | max p(x, e (9)
new __ . old aF(T7 AOld) ki
T ST . .
Je which also can be rewritten as
new old + aF(T7 AOld)
wii =g Fag————=
J J 8uji p(X, ci) >1 or
1 new 1o OF (T; A1) max =1,k p(X,cx)
T R e ST ® ki
Nk
_ . ‘ p(x, ci)
wherea;, a», andas are learning factors with values between log > 0. (10)
maxg=i,..., K p(X7 Ck)
zero and one. ;

k#i
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For the training sekX, we can define a cost function

maxjp=1,....K p(x, )

K
N=2 2 f |l i

1=1 x€T;

11)

wheref(-) is a step function. It is very clear that the cost func-
tion E(T; A) is nothing but the count of the number of incor-
rectly classified samples. Minimizing this cost function thus
leads to minimizing the classification error. As a result, this cri-
terion is called MCE criterion [4], [10].

Direct minimization of the cost function in (11) is almost im-
possible since both the max (maximization) operation and the
step function are not differentiable. The maximization opera-
tion is used to find the most critical rival class far In [4], a
function ¢(x, ¢;) was suggested to approximate the maximiza-
tion operation

1/r
K
g(x,¢) = Z p(x,cn)” . (12)
k=1
[
For larger, q(x, ¢;) is generally a very good approximation of
themax ;— 1 k p(X, ) unless several(x, ¢;)s are simulta-

.....

neously close to or equal to the maximum value. In most of the
situationsy: = 3 or 4 is sufficient [4]. Moreover, we can use the
sigmoid function to replace the step function. Sigmoid function

can be considered as a smoothed version of step function and is
Fig. 1. GOES 8 satellite images obtained at 15:45 UTC, May 1st, 1995. (a)

(b)

defined as Visible. (b) IR.
1
fW=r——— (13)
W) 1+ exp(—sy) TABLE |
CONFUSION MATRIX FOR THE ML TRAINED PNN. (OJERALL CLASSIFICATION
wheres is a parameter. Using these approximations, the cost RATE 84.9%)
function in (10) becomes
WI| Cl [Ww|[Cw]| St |Cu|As| Ci|Cs|Sc
,Ci) WI1196.1{0.7]05] 0 | 0 {1 ]02}15/01]0
sz< < o)) @M ctloalot[ololo[37]04alas]0]0
i=1 xCT, Ww|[0.4]1.5/959( 0 | 0 |1.1} 0 |1.1]0 [0
This cost function in (14) is also called as “smooth count of Cwi 0101135220 {2210 3‘1'4 0 i'g
classification error” since the sigmoid function is used [10]. $t10101010 07639127 Q4.
Lo . Cul02/0]0)0(05[86.111.7]24]0.7)83
Now based on the MCE criterion, we want to find the pa- Asl 0101010 12513205442040144
rameters_ets of the PNIN,, that can minimize thg costfunqnon Cil0510510.7 0 lo111211.9186382106
(14). Again we can use the PGD scheme. ForjtiheGaussian cslolololololo1lisliz2dsadoa
component in class;, we take the derivative of the cost func- scloloalolol2183ha7iatosls

tion (14) with respect to the parameters. Using the chain rule

and after some manipulations, we can get , )
(logp(x|ci; Ni))/day,; for different parameters were given

OE(T; A) i Z 8logp(x i) before in (7) in Section II. The function(x; ¢, k) is defined as
=t o —f" |log 53] =k
k) = z " (16)
8logp(x | Cis z) u(x, b / p(x,¢:) plx,ei) P
—Z Z - o .. —f [log q(xcz)} (q(x,Ck)> i#k
k=1x€T}, Daji
i=1,...,K and j=1,...,M; (15) Once the derivative is determined, a similar learning rule as in

(8) can be used to minimize the cost function in (14).
where a;; represents either parametey;, 1, or Ej_il. The There are several observations from the training equations in
last step is obtained since the priori class probability, (16). First, the decoupling propertioes notexist for the min-
P(¢;), is independent of the parametergs. The results of imum error criterion. Each training sample contributes to the
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Fig. 2. Comparison of color-coded images. (a) Result of ML trained PNN. (b) Result of MCE trained PNN. (c) Expert labelled Image. (d) Colormap for ten
classes.

estimation of parameters of class no matter whether it be- on our experiments, the result of the MCE-PGD training is very
longs to clasg; or not. This is quite different from the situationsensitive to the initial values of the parameter set. This is partly
in the ML training where the parameters of clasare only de- due to the fact that the MCE training is mainly decided by the
cided by the training samples of that class. Moreover, the conttlistribution of a small subset of the training samples (around
bution of each training sample to the derivative is weighted liie initial boundaries) instead of the whole training set. It is
u(x;, k). The property of this function can be clearly demonguite common that the subset is not representing well the feature
strated in the following cases. Lgtbelong to clasg;, and as- space or its size is too small to lead to any meaningful training
sumep(x, ¢;) > q(x,¢;), 1.e,x can be correctly identified by result. In order to overcome this initialization problem, in our
the current parameter set with confidence, the contribution application we always use the ML trained PNN as the starting
this sample to the class will be weighted byu(x;i,k) =~ 0 point for the MCE-PGD training [4].
since f'(log(p(x, ci)/a(x, ¢i))) ~ 0 for (p(x, ¢:)/q(x, ¢i)) >
0. Similarly, if p(x, ¢;) < g(x, ¢;), 1.€, the inpuk is too difficult
to be correctly classified, its contribution to the parameter set is
also very small. On the other hand, those inputs located on thél'he performance of ML and MCE training algorithm was ex-
decision boundary region will lead to comparaple, ¢;) and amined using channel 1 (visible) and channel 4 (IR) of GOES 8
q(x, ¢;) values, thus contribute mostly to the final parameter esatellite images. One typical image pair obtained at 15:45 uni-
timation. Overall, the training results of the MCE criterion argersal time code (UTC), May 1st, 1995 is shown in Fig. 1.
mainly decided by the samples around the decision boundarieé\fter classification, the clouds were separated into ten
formed by the current parameter sets. Thisis a very distinct chalasses: Warm Land (WI), Cold Land (CI), Warm Water (Ww),
acteristic of the MCE training. Cold Water (Cw), Stratus (St), Cumulus (Cu), Altostratus (As),
Unlike the ML criterion, it is difficult to find an efficient Cirrus (Ci), Cirrostratus (Cs), and Stratocumulus (Sc). Table |
training approach for the MCE criterion to replace the PGPresents the classification confusion matrix of the ML training
scheme. The PGD solution suffers from several drawbackssttheme. The numbers located on the diagonal indicate the
not only converges very slowly leading to extensive computaerrect classification rate for each class. The overall classifi-
tional cost, but also it is prone to local minimum problem. Basezhtion rate is 84.9%. The color-coded image based on SVD

V. RESULTS AND DISCUSSIONS
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TABLE I
CONFUSION MATRIX FOR THE MCE TRAINED PNN. (OVERALL
CLASSIFICATION RATE 86.9%)

W1 CHWwW|Cw!] St I1Cul Ast Ci1Cs | Sc
WI197.1107i021 0 | 0 [07] 0 {12]0 [ Q
Cli0491.4 0 {0]0134{04(45/01]0
Wwi1.1(159371 010 [1.1/0 126/ 0190
Cw| 010165609 0122101304 010
St{0]0/01077.1/13401071 1 |0 |78
Cul02/01010102187.111.51291021 8
As| 01 0]0]0139128163)156104R243
Cil05105/041 0 ]0.41 1 105]19313.5[10.6
CslO0i0]10]010101[{07[R34[751[0.6
Sc|02{ 00 |0 (1.2]7.6(4.7]2.7(0.3183.3
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Overall, this study indicates that the MCE training can pro-
vide some improvements in the classification rate when com-
pared with the ML-type training. Clearly, the improvement of
MCE training is dependent on the feature space distribution.
However, considering that the PGD approach used for the MCE
training generally needs much more computational time than
that of the EM approach for the ML training, the performance
improvements may not be significant enough to justify the ad-
ditional training cost.

(1]
(2]

features [11] and using the ML-based classifier is shown in (3!
Fig. 2(a). For the ML training, the EM approach can help to
achieve the maximume-likelihood estimation efficiently when [4]
the observations can be viewed as incomplete data.
The confusion matrix of the MCE trained PNN is given in 5
Table 1. Comparing with the results of the ML-based PNN in
Table I, the overall classification rate is improved by 2%, not
. . AN 6]
as dramatic as we expected. This observation indicates that thLe
Gaussian mixture model may in fact be a good representation
of the feature space. Among the ten classes, accuracy improve?]
ments were observed for six of them, with the exceptions of
Warm Water (Ww), Stratus (St), Altostratus (As) and Cirro- [8]

stratus (Cs). The color-coded classified image is provided in Fig
2(b). Visual inspection of Fig. 2(b) and (a) reveals that the two

191

images are quite similar except for some minor isolated blocks.
Fig. 2(c) and (d) shows the meteorological expert labelled imag@rol
and the colormap for ten different classes, respectively. Note that
in Fig. 2(c) only those areas for which the labeling results ofi11]
the experts agreed were color coded and used for training and
testing of the PNNs.
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