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Comparison of Two Different PNN Training Approaches for Satellite Cloud
Data Classification

Bin Tian and Mahmood R. Azimi-Sadjadi

Abstract—This paper presents a training algorithm for proba-
bilistic neural networks (PNNs) using the minimum classification
error (MCE) criterion. A comparison is made between the MCE
training scheme and the widely used maximum likelihood (ML)
learning on a cloud classification problem using satellite imagery
data.

Index Terms—Cloud classification, maximum likelihood, min-
imum classification error, probabilistic neural network.

I. INTRODUCTION

Probabilistic neural network (PNN) is a kind of supervised
neural network that are widely used in the area of pattern recog-
nition, nonlinear mapping, and estimation of probability of class
membership and likelihood ratios. The original PNN structure
[1], is a direct neural-network implementation of the Parzen
nonparametric probability density function (PDF) estimation
[2] and Bayes classification rule. Although its training scheme
is very simple and fast, one major drawback is that potentially
a very large network will be formed since every training pattern
needs to be stored. This leads to increased storage and compu-
tational time requirements during the testing phase. One natural
idea to simplify the PNN is to reduce the number of neurons,
i.e., use fewer kernels but place them at optimal places. In [3]
Streitet al. improved the PNN by using finite Gaussian mixture
models and maximum likelihood (ML) training scheme. How-
ever, the ML-based training does not necessarily lead to a min-
imum error performance for the classifier. This may be due to
the fact that the Gaussian mixture model may not be an accu-
rate assumption for some of the feature space distribution and
the training data set is often inadequate. In [4], Juanget al.pro-
posed a new learning scheme based upon the minimum classifi-
cation error (MCE) criterion. In [5], Gish pointed out that min-
imization of the number of errors is not the only benefit of the
MCE. The MCE criterion is also inherently robust. The robust-
ness stems from its counting misclassifications and ignoring the
magnitude of the error, i.e., ignoring how far the misclassified
events are from the decision boundary. Owing to its robustness,
MCE has been widely used in speech recognition applications
[6], [7].

In this study, ML and MCE are used to estimate the parameter
sets of the Gaussian mixture model. Their performances are ex-
amined on the Geostationary Operational Environmental Satel-
lite (GOES)-8 imagery data for cloud classification. The organ-
ization of this paper is as follows. Section II briefly introduces
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the Gaussian mixture model. In Sections III and IV, ML, and
MCE training schemes for PNN are discussed separately. Com-
parisons of these training algorithms are presented in Section V.

II. GAUSSIAN MIXTURE MODEL

Consider a -dimensional input feature vector which be-
longs to one of the classes, . A classifier
can be regarded as a mapping, that
classifies the given pattern to class . Suppose that the
class conditional distribution, , and thea priori class
probability are known, then the best classifier is given by
the fundamental Bayes decision rule

(1)

One main concern when implementing the above optimal Bayes
classifier is to estimate and from the training data
set. Generally, is highly dependent on the specific task and
should be decided by the physical knowledge of the problem.
For the sake of convenience, uniform distribution assumption
for is adopted in this study. Also, for any class, we as-
sume that the can be represented by a Gaussian mixture
model, i.e,

(2)

where is the number of Gaussian components in classand
’s are the weights of the components which satisfy the con-

straint denotes the multivariate
Gaussian density function of theth component in class and

and are its mean vector and covariance matrix, respec-
tively. This Gaussian mixture model can be easily mapped to
the PNN structure and the resultant PNN will need much fewer
neurons. The price paid for this simplification is that the simple
noniterative training procedure will no longer be applicable. In-
stead, the weights of the PNN, i.e., the parameter sets of the mix-
ture model for each class, need to be estimated from the training
data set.

III. M AXIMUM LIKELIHOOD TRAINING FOR PNN

Let denote the parameter set used to
describe the mixture model of classand denote
the whole parameter space for the PNN. The goal of training is
to estimate the parameter spacefrom the training set. If we
assume that the parameters inare unknown fixed quantities,
the ML estimation method is a suitable choice.

Now suppose that the training samples drawn independently
from the feature space form the set, which can be further
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separated into subsets , in which all the
samples belong to class. The ML estimation of parameter set

is then given by

(3)

For the computational efficiency, generally we will maximize
the equivalent log-likelihood, i.e.,

(4)

The last step in (4) is arrived at based upon the assumption that
the conditional probability of class is solely decided by the
parameter set of that class,and not by the parameter set of the
other classes. The maximization of the log-likelihood function
can be done using a probability gradient descent (PGD) scheme
[8]. Let

(5)

denote the log likelihood function and take the partial derivative
of this function with respect to each parameter in, then we
have

(6)

where represents either , or . Based on (5) and
(6), we can further get

(7)

Based on the PGD scheme, the log-likelihood function can be
maximized using the following training equations:

(8)

where and are learning factors with values between
zero and one.

There is one important observation from (7) and (8). The up-
dating of parameter set of class is only dependent on the
training samples in this class, i.e., the optimization process can
be solved separately for each class without considering the ef-
fect of the others. This is especially suitable for the cloud classi-
fication application since a new cloud type can easily be added
to the system without affecting the other classes. Moreover, in
the updating process, we have the choice of updating only those
classes that are affected by the temporal changes in the cloud
features. Another benefit of this property is the reduced training
time due to the fact that each class can be trained separately, thus
requiring a small number of neurons and training samples.

Due to the nature of the PGD scheme, the PNN training
process using (7) and (8) generally needs a lot of iterations
before converging to an acceptable result. This incurs expensive
cost in the training phase. Fortunately, there is an efficient
approach called expectation-maximization (EM) which solves
this problem. The reader is referred to [9] for the detail treat-
ment on this topic.

IV. MCE TRAINING FOR PNN

The main idea behind using ML criterion for the PNN training
was to accurately estimate the class conditional probability from
the training samples. However, since the number of training
samples is limited and the Gaussian mixture assumption may
not be correct, the estimated distribution may not be accurate.
So the optimal performance of the Bayes classifier may not be
reached in practice. If we reexamine the Bayes classification
rule in (1), it can be found that the actual value of is
in fact not so important for decision. As long as the conditional
probability is larger than the corresponding values for the other
classes, the classifier can still make the right decision. There-
fore, a natural approach to improve the performance of classi-
fier is to estimate the functions , which
can most successfully discriminate different classes. This is the
basic idea behind the discriminant analysis. In general, the dis-
criminant function can be in any form and may not necessarily
relate to the probability, but here we still use the same form of

, i.e., Gaussian mixture models.
Consider an input feature vectorbelonging to class . Ac-

cording to the Bayes decision rule in (1),will be correctly
classified if

or

(9)

which also can be rewritten as

or

(10)
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For the training set , we can define a cost function

(11)

where is a step function. It is very clear that the cost func-
tion is nothing but the count of the number of incor-
rectly classified samples. Minimizing this cost function thus
leads to minimizing the classification error. As a result, this cri-
terion is called MCE criterion [4], [10].

Direct minimization of the cost function in (11) is almost im-
possible since both the max (maximization) operation and the
step function are not differentiable. The maximization opera-
tion is used to find the most critical rival class for. In [4], a
function was suggested to approximate the maximiza-
tion operation

(12)

For large is generally a very good approximation of
the unless several s are simulta-

neously close to or equal to the maximum value. In most of the
situations, or is sufficient [4]. Moreover, we can use the
sigmoid function to replace the step function. Sigmoid function
can be considered as a smoothed version of step function and is
defined as

(13)

where is a parameter. Using these approximations, the cost
function in (10) becomes

(14)

This cost function in (14) is also called as “smooth count of
classification error” since the sigmoid function is used [10].

Now based on the MCE criterion, we want to find the pa-
rameter sets of the PNN,, that can minimize the cost function
(14). Again we can use the PGD scheme. For theth Gaussian
component in class , we take the derivative of the cost func-
tion (14) with respect to the parameters. Using the chain rule
and after some manipulations, we can get

and (15)

where represents either parameter or . The
last step is obtained since thea priori class probability,

, is independent of the parameterss. The results of

(a)

(b)

Fig. 1. GOES 8 satellite images obtained at 15:45 UTC, May 1st, 1995. (a)
Visible. (b) IR.

TABLE I
CONFUSIONMATRIX FOR THE ML TRAINED PNN. (OVERALL CLASSIFICATION

RATE 84.9%)

for different parameters were given
before in (7) in Section II. The function is defined as

(16)

Once the derivative is determined, a similar learning rule as in
(8) can be used to minimize the cost function in (14).

There are several observations from the training equations in
(16). First, the decoupling propertydoes notexist for the min-
imum error criterion. Each training sample contributes to the
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Fig. 2. Comparison of color-coded images. (a) Result of ML trained PNN. (b) Result of MCE trained PNN. (c) Expert labelled Image. (d) Colormap for ten
classes.

estimation of parameters of class, no matter whether it be-
longs to class or not. This is quite different from the situation
in the ML training where the parameters of classare only de-
cided by the training samples of that class. Moreover, the contri-
bution of each training sample to the derivative is weighted by

. The property of this function can be clearly demon-
strated in the following cases. Letbelong to class , and as-
sume , i.e, can be correctly identified by
the current parameter set with confidence, the contribution of
this sample to the class will be weighted by
since for
. Similarly, if , i.e, the input is too difficult

to be correctly classified, its contribution to the parameter set is
also very small. On the other hand, those inputs located on the
decision boundary region will lead to comparable and

values, thus contribute mostly to the final parameter es-
timation. Overall, the training results of the MCE criterion are
mainly decided by the samples around the decision boundaries
formed by the current parameter sets. This is a very distinct char-
acteristic of the MCE training.

Unlike the ML criterion, it is difficult to find an efficient
training approach for the MCE criterion to replace the PGD
scheme. The PGD solution suffers from several drawbacks. It
not only converges very slowly leading to extensive computa-
tional cost, but also it is prone to local minimum problem. Based

on our experiments, the result of the MCE-PGD training is very
sensitive to the initial values of the parameter set. This is partly
due to the fact that the MCE training is mainly decided by the
distribution of a small subset of the training samples (around
the initial boundaries) instead of the whole training set. It is
quite common that the subset is not representing well the feature
space or its size is too small to lead to any meaningful training
result. In order to overcome this initialization problem, in our
application we always use the ML trained PNN as the starting
point for the MCE-PGD training [4].

V. RESULTS AND DISCUSSIONS

The performance of ML and MCE training algorithm was ex-
amined using channel 1 (visible) and channel 4 (IR) of GOES 8
satellite images. One typical image pair obtained at 15:45 uni-
versal time code (UTC), May 1st, 1995 is shown in Fig. 1.

After classification, the clouds were separated into ten
classes: Warm Land (Wl), Cold Land (Cl), Warm Water (Ww),
Cold Water (Cw), Stratus (St), Cumulus (Cu), Altostratus (As),
Cirrus (Ci), Cirrostratus (Cs), and Stratocumulus (Sc). Table I
presents the classification confusion matrix of the ML training
scheme. The numbers located on the diagonal indicate the
correct classification rate for each class. The overall classifi-
cation rate is 84.9%. The color-coded image based on SVD
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TABLE II
CONFUSION MATRIX FOR THE MCE TRAINED PNN. (OVERALL

CLASSIFICATION RATE 86.9%)

features [11] and using the ML-based classifier is shown in
Fig. 2(a). For the ML training, the EM approach can help to
achieve the maximum-likelihood estimation efficiently when
the observations can be viewed as incomplete data.

The confusion matrix of the MCE trained PNN is given in
Table II. Comparing with the results of the ML-based PNN in
Table I, the overall classification rate is improved by 2%, not
as dramatic as we expected. This observation indicates that the
Gaussian mixture model may in fact be a good representation
of the feature space. Among the ten classes, accuracy improve-
ments were observed for six of them, with the exceptions of
Warm Water (Ww), Stratus (St), Altostratus (As) and Cirro-
stratus (Cs). The color-coded classified image is provided in Fig.
2(b). Visual inspection of Fig. 2(b) and (a) reveals that the two
images are quite similar except for some minor isolated blocks.
Fig. 2(c) and (d) shows the meteorological expert labelled image
and the colormap for ten different classes, respectively. Note that
in Fig. 2(c) only those areas for which the labeling results of
the experts agreed were color coded and used for training and
testing of the PNNs.

Overall, this study indicates that the MCE training can pro-
vide some improvements in the classification rate when com-
pared with the ML-type training. Clearly, the improvement of
MCE training is dependent on the feature space distribution.
However, considering that the PGD approach used for the MCE
training generally needs much more computational time than
that of the EM approach for the ML training, the performance
improvements may not be significant enough to justify the ad-
ditional training cost.
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